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Abstract 
Educational facilities account for approximately 12% of the energy consumed by buildings in the US and UK. Classrooms should 
provide their occupants' satisfactory indoor environments as indoor conditions play a determinant role in the performance, 
productivity, attendance, and health of students and teachers. Indoor air quality and thermal comfort are two major determinants 
of healthy classrooms. Generally, classrooms operate at full capacity, leading to severe indoor overheating degrees (IOD) and high 
carbon dioxide (CO2) concentrations if not adequately ventilated. To assess classroom design alternatives in the design 
development phase and retrofit scenarios, building energy simulation is a widely used method to estimate performance indicators. 
However, consideration of a high number of design alternatives increases computational cost and requires tedious modeling 
efforts. Research in building performance predictions with machine learning methods gained increasing interest in recent years. 
Artificial neural networks (ANNs) are reported to yield satisfactory performance in the prediction of non-linear patterns of building 
performance. This study presents a data-driven framework to estimate heating energy demand, IOD, and CO2 concentration of 
naturally ventilated classrooms with ANNs. Five input variables are selected to predict specified performance indicators. 200 
classrooms with varying orientations, values of shape factor, glazing area, occupant density, and outdoor surface area are 
simulated. The ANNs are trained with a subset of EnergyPlus simulation results. Prediction models for three performance indicators 
are individually built, and prediction performances are evaluated. While regression coefficients range between 0.986 and 0.993, 
the average root means square error calculated is between %2 and 9%, implying high predictive capacity.  

Keywords: Artificial neural networks, building performance prediction, building energy simulation. 
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1.  Introduction 
Buildings constitute 40% of Europe's energy consumption and 36% of the greenhouse gas emissions (Europeran 
Commission, 2020). Notably, educational facilities account for 13% and 10% of the energy use of the US and UK 
buildings, respectively (Pérez-Lombard et al., 2008). Energy consumption of buildings is growing worldwide. Heating, 
ventilation, and air conditioning, the main factors of controlling indoor air quality, are responsible for the majority of 
building energy demand. In other words, providing thermal comfort indoors is the main demand behind energy 
consumption (Yang, et al., 2014). Specifically, children spend around 85% of their time indoors (Langevin, et al., 2016). 
Until the age of 18, students are reported to spend more time at school than any other place but at home (Bluyssen 
et al., 2018).  
 
Performance, productivity, attendance, and health of both students and teachers depend significantly on the indoor 
conditions in educational facilities (Zomorodian, et al., 2016). A study based on test scores implies that the increase in 
satisfaction with the indoor environmental quality enhances the learning performance of students' (Mumovic, et al., 
2009). Several studies have found an inverse correlation between the CO2 concentration levels and pupils' annual 
school attendance (Gaihre, et al., 2014; Shendell, et al., 2004). Similarly, it is found that students' performance in math 
exams is also significantly related to classroom-level ventilation concerning CO2 concentrations (Shaughnessy, et al, 
2006).  
 
Indoor environmental quality influences the well-being in school buildings since pupils are more sensitive to indoor 
climate conditions because of the nature of children's anatomical structures. Children are more susceptible to certain 
environmental pollutants than adults as the amount of air intake proportional to their body weight is more significant 
(Faustman, et al., 2000). As two major determinant factors of healthy classrooms for children, indoor air quality and 
thermal comfort are broadly emphasized in many studies on educational facilities (Zomorodian, et al., 2016). One of 
the key drivers is indoor air quality through CO2 concentration. It is also recommended by ASHRAE Standard 62 
(ASHRAE, 2019) and STM D6245 (ASTM, 1998). Therefore, the evaluation of room ventilation due to CO2 generated by 
its occupants becomes a standard evaluation method (Bartlett, et al., 2004). Additionally, the link between indoor air 
and thermal quality is a prominent study subject in the field (Fabi, et al., 2013). The indoor overheating degree (IOD) 
is studied as thermal comfort is an important determinant of students' learning performance. Air temperature, one of 
the significant factors influencing thermal comfort, has a considerable impact on learning (Heschong Mahone Group, 
2003). On the other hand, while providing comfort conditions in classrooms, energy demand may increase. Notably, 
in school buildings, space heating accounts for 47% of the total energy demand (NREL, 2013).  There is a tradeoff 
between occupant comfort and resource consumption, and the annual heating energy demand (Qheating) of naturally 
ventilated classrooms is studied as the third performance indicator. 
 
Building performance simulation has been an accurate and widely used method for quantifying performance indicators 
that enabling the design and operation of energy-efficient buildings (Yezioro, et al. 2008). Simulated results give an 
insight into the real-world data's underlying changes and trends (Wan et al., 2011). Even though using such advanced 
simulation tools give reliable results, it can be time-consuming and requires the user to learn and become an expert 
on the tool. When a number of design alternatives are needed to be evaluated, and various building parameters are 
involved in the design, machine learning tools are trusted broadly by the researchers for many years (Yu, et al., 2010; 
Tsanas & Xifara, 2012; Catalina, et al., 2008).  
 
Various machine learning techniques have been involved in the research for the prediction of building performance 
indicators. For instance, multiple linear regression, artificial neural networks (ANNs) (Kumar, et al., 2013), decision 
trees, and support vector machines have been explored in several studies (Seyedzadeh, et al., 2018). In some studies, 
estimations with ANNs have been found more reliable compared to other data-driven models because of their higher 
performance in the prediction of non-linear patterns (Walker, et al., 2020; Yalcintas & Ozturk, 2006; Seyedzadeh, et 
al., 2018). For instance, Ascione et al. (2017) accurately predicted building performance through energy consumption 
and thermal comfort of occupants with ANNs and offered a framework to be applied independently of the building 
type. Namely, space heating and cooling and the ratio of yearly discomfort hours are calculated. Later, they improved 
the whole-building parameters such as geometry, envelope, operation, etc., with ANNs for retrofitting purposes. 
Similarly, there have been several studies employing ANNs for performance predictions of educational buildings 
(Sterman & Baglione, 2012; Fan, et al., 2019; Neto & Fiorelli, 2008; Kusiak, et al., 2010). However, in these studies, 
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selected educational buildings were only university buildings, and predictions were based on real-world data. There is 
a research gap in the development of predictive models applied to primary and secondary school buildings, particularly 
for the classroom spaces. Therefore, this study aims to predict the performance of classroom spaces based on the 
proposed framework for the analysis of synthetic data and the building of an ANNs.  
 
2.  Methodology 
This paper proposes a data-driven framework for the analysis of the synthetic data and building of ANNs. Firstly, a 
naturally ventilated classroom in Ankara, Turkey, is modeled and simulated with EnergyPlus engine through Ladybug 
Tools (Roudsari & Pak, 2013) for data generation. Then the data is explored through the analysis of the simulation 
outputs. Finally, after data preprocessing and exploration, ANNs are built and their performances are evaluated. The 
described ANNs are generated in an Anaconda (Anaconda Software Distribution, 2020) environment in a python 
programming language with the TensorFlow (Abadi, et al., 2016) library. 
 

 
 

Figure 1: The proposed framework 
 
2.1.  Data  
Variables and sampling: The impact of five input variables (Table 1); namely orientation, shape factor, glazing area, 
occupant density, and exposed surface area per floor area, is explored to determine the output variables of Qheating, 
CO2 concentration, and IOD of classroom space. The majority of the indicated input variables have been associated 
widely with building performance in the energy performance of buildings literature (Tsanas & Xifara, 2012; 
Pessenlehner & Mahdavi, 2003). Furthermore, since studies show that CO2 concentration in classrooms is significantly 
related to the number of students sharing the same space (Yalçın, et al., 2018), occupant density is also included in 
the input space. Input variables contain both categorical and continuous data. For the continuous variables, the Latin 
hypercube sampling (LHS) method, a generalized stratified sampling technique (Shields & Zhang, 2016) is applied. For 
the performance simulations, the weather file for Ankara is used. Building materials chosen for the simulated 
classroom space is based on a previously studied school building (Akköse, et al., 2021). Following the applied 
framework, selected performance indicators can be easily predicted with classrooms in other cities with different 
building materials. 
 
Qheating (kWh/m2), indoor CO2 exceedance (ppm), and indoor overheating degree (°C) are recorded as output variables. 
Total heating energy demand normalized by floor area is recorded as the first output variable. The second output 
variable is quantified by the difference between indoor temperatures and the indoor operative temperature limit of 
28°C and is named as indoor overheating degree (IOD) (Hamdy, et al, 2017). IOD is the cumulative sum of these hourly 
temperature differences. Finally, indoor CO2 exceedance is calculated in the same manner to understand the intensity 
and frequency of concentration levels above the threshold specified by ASHRAE standards (ASHRAE, 2019). The 
outdoor CO2 concentration is assumed to be 300 parts per million (ppm); therefore, with respect to ASHRAE standards, 
the highest acceptable CO2 concentration limit is selected as 1000 ppm (ASHRAE, 2019). For the occupied hours, 
concentrations above 1000 pm is considered and aggregated annually. 
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Table 1: Input variables 
 

Mathematical 
representation 

Input variable Unit Distribution Range Sampling 

X1 Orientation - uniform ∈ {𝑁, 𝐸, 𝑆,𝑊}	 - 

X2 Shape factor m-1 uniform ∈ 𝑅: (1.0 − 1.3)	 LHS 

X3 Glazing area m2 uniform ∈ 𝑅: (6.0 − 8.0)	 LHS 

X4 Occupant density ppl/m2 uniform ∈ 𝑅: (16 − 30)	 LHS 

X5 Exposed surface 
area per m2 

m-1 uniform ∈ 𝑅: (18.0 − 36.4)	 LHS 

 
Data preprocessing and statistical analysis: 200 simulations were performed. First missing and faulty data points that 
might be obtained due to errors occurred during the simulations are checked and eliminated from the dataset. In 
order to understand the data, descriptive statistics is used to analyze data distributions. Following, a correlation matrix 
is generated to capture variable dependency, and the data points are visualized. The Spearman correlation coefficient 
(ρ) is calculated to evaluate the monotonic relationship between variables.  
 
2.2.  Prediction Model 
ANN: The human brain is composed of massive neural networks that enable humans to accomplish many complex 
tasks, including but not limited to face recognition, speaking, body movement, etc. More than 10 billion 
interconnected neurons in the human brain receive, process, and transmit information through biochemical reactions 
(Kumar, et al., 2013). In reference to the brains' nervous system, artificial neural networks have been developed as 
generalizations of underlying mathematical models of the interconnected neurons in the brain.  

 
Figure 2: Feed-forward multi-layer perceptron (MLP) architecture. 

 
An ANN is a processing data system that learns the input-output relationship from the obtained data. The most popular 
and simple architecture of ANN is the feed-forward multi-layer perceptron (MLP), and it is used in this study. It is 
composed of one input layer, single or multiple layers of hidden neurons, and one output layer (Figure 2). A neural 
network takes in inputs, multiplies them by weights and adds biases. Following, the results are passed to activation 
functions and outputs are received. An activation function defines the output of a node given an input or number of 
inputs. The last output is the ANN's prediction for the given input or inputs. 
 
ANN Performance: The performance of ANN is related to both input and output data together with the model's 
architecture and parameters (Kalogirou & Bojic, 2000). The number of hidden layers is one of the most critical factors 
affecting the prediction model performance, and is typically detected by trial and error. Three prediction models are 
trained for each output variable, and different numbers of layers of hidden neurons are explored for better prediction 
performance. Although the number of layers changes, neurons in each layer is set to 5, based on the number of input 
variables. The activation function for hidden layers is also critical for ANNs' performance. Rectified Linear Unit (ReLU) 
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activation function is a commonly preferred activation function in the literature, and it is chosen in this study. RMSE 
is selected for the loss function, while the regression optimizer is Adam, which is an algorithm for stochastic gradient 
descent for training ANNs. The batch size and epochs of training are also critical parameters of an ANN. Batch size is 
the number of training samples worked through in each iteration, i.e., epochs. It is found that larger batch sizes 
degrade the model quality in terms of the model's ability to generalize (Keskar, et al., 2017). Therefore, batch sizes of 
1 and 4 are chosen with the adjusted number of epochs. Additionally, the proportion of data used for training and 
testing is also one of the critical decisions. The complete and preprocessed dataset is split into train and test subsets. 
Since input variables vary in terms of units and quantities, train and test sets are scaled separately to prevent data 
leakage before the training process. The ratio of training data to testing data is chosen as 8/2 for the CO2 prediction 
model and 9/1 for IOD and Qheating after trials with 9/1, 8/2 and 7/2 proportions.  
 
Model Evaluation: The networks' performance has been evaluated with the calculation of three different metrics: root 
mean square error (RMSE), mean absolute error (MAE), and R-squared (R2). RMSE is the standard deviation of the 
prediction errors. It is the measure of how far the predictions deviate from the actual values (1). MAE is the average 
magnitude of errors in the prediction data set (2). Lastly, R2, called the coefficient of determination in statistics, is the 
measure of how well the ML model predicts the actual values. It is based on the ratio of the total variation of outcomes 
predicted by the prediction model (3). 
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where 𝑝!  is the predicted value of the performance indicator, 𝑎!  is the actual value of the indicator, and 𝑛 is the number 
of data points in the dataset.  
 
3.  Results 
 
3.1.  Data Analysis 
Two observations are removed from the dataset due to missing values found in some of the output variables. First, 
the statistical description of the data is examined (Table 2). The minimum energy demanding case is almost one third 
of the most demanding with the specified input parameters. The minimum-maximum ratio is significant in IOD results. 
Standard deviation is greater than the mean of the values, and the data points' distribution for IOD is right-skewed; in 
other words, there are extreme values significantly less in number and resulted uneven distribution of data points in 
the dataset. 

 
Table 2: Output variable description 

 
Mathematical 
Representation 

Output 
Variable 

Units Mean Std. Min Max 

y1 Qheating kWh/m2 20.706 8.327 5.514 49.188 

y2 IOD °C 124.652 184.075 9.005 1226.964 

y3 CO2 exceedance ppm 2293987 545962 1391631 3878137 

 
The relationship between input and output variables is visualized with the parallel coordinates graph (Figure 3). It is 
noticeable that the highest value of Qheating is observed when the glazing area is maximized. The energy loss from the 
larger glazing surface implies an increased Qheating demand. South-facing classrooms demand less Qheating, 
unsurprisingly. Likewise, maximum IOD values are observed in south-facing classrooms. Lastly, the upper bound of 
obtained CO2 exceedance is observed strictly with high occupant densities. 
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Figure 3: Parallel coordinates graph, colored by Qheating. 
 
The correlations among the five input variables and three output variables are calculated (Figure 4). Between CO2 
concentrations and occupant density, a very high level of correlation is observed. Exposed surface area per m2 is 
negatively correlated with shape factor. Qheating also has a moderate positive relation with the glazing area. IOD does 
not have a direct correlation with any of the input variables. However, it exhibits weak positive correlations with 
orientation, shape factor, glazing area, and occupant density. Only between exposed surface area per m2 and shape 
factor are correlated in input parameters. Output variables of IOD and CO2 exceedance also have a week positive 
correlation.  
 

 
Figure 4: Correlation matrix. 

  
3.2.  Model Performances 
ANNs are evaluated based on the performance metrics of R2 and RMSE and MAE errors (Table 3). While Qheating and 
CO2 concentration are predicted successfully with the average error rate of 4% and 2%, respectively, IOD is predicted 
with 9% RMSE error. It can be stated that the almost perfect linear relationship between occupant density and CO2 
concentration enabled the CO2 prediction model to outperform. On the other hand, the IOD prediction model 
underperforms when compared to the other ANN models. This can be explained with the skewed distribution of data 
points and the IOD's insignificant linear relationships between input variables. Additionally, it should be reminded that 
model performances are dependent of the data distribution. Unless containing a missing attribute, none of the 
observed data is removed from the dataset in this study. However, there are extreme values observed in the data 
distributions. Those values could be detected as outliers. However, they are left in the datasets since these extreme 
values are legitimate observations that are a natural part of the population.  
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Table 3: Prediction performances based on R2, RMSE, and MAE. 

 
Output 
Variable 

R2 RMSE MAE 

Qheating 0.992 0.762 0.579 

IOD 0.986 12.18 8.176 

CO2 

Concentration 
0.993 38072.179 31699.001 

 
It can be concluded that with the defined and demonstrated framework, selected input variables of occupant density, 
shape factor, glazing area, exposed surface area per m2, and orientation are sufficient in predicting performance 
indicators of CO2 exceedance and Qheating. The RMSEs of specified performance indicators are 38072.179 ppm and 
0.762 kWh/m2, respectively. On the other hand, selected input variables give relatively poor results for predicting IOD. 
It can be due to skewed data distribution resulting from the nature of design parameters. Therefore, a larger space of 
input attributes or a higher number of data points has the potential to improve prediction performances together with 
the tuning of ANN parameters. 
 
3.3.  Implications on Classroom Design 
Simple design parameters selected and used in this study give insights into classroom spaces' performance. Although 
ANN is reported to be a black box method due to any insights approximated from the result, preliminary data analysis 
gives insights for classroom design. It is observed that Qheating is positively correlated with the glazing area. Increased 
energy loss from the glazing area implies and higher energy demand. Similarly, larger exterior surface area and shape 
factor indicate greater energy demand. For CO2 concentration levels, occupant density is a vital parameter. In smaller 
classrooms, the student capacity should be controlled to maintain indoor air quality. On the other hand, for IOD, a 
direct relation between inputs and outputs is not evident, and the black box prediction method plays an essential role 
in predicting IOD accurately.  
 
4.  Discussion and Conclusion 
Prediction performances of built ANN can be improved with larger data sets. Moreover, with the described framework, 
input features can be expanded, and the ANNs can be better tuned to achieve more detailed and accurate predictions. 
This study focuses on only the physical parameters of a classroom space together with the occupant density. 
Occupants play an essential role in building performance, and further research can be carried on with the inclusion of 
occupant-centric controls to input space. Furthermore, the selected performance indicators can vary together with 
the input variables. We have presented a data-driven framework to predict Qheating, IOD, and CO2 concentration levels 
of classroom spaces with ANN.  
 
We have predicted three performance indicators with the input variables of orientation, shape factor, glazing area, 
occupant density, and exposed surface area per m2. After the data exploration, three MLP models are built for each 
prediction of each output variable. With the selected input parameters, satisfactory results are obtained. The ANNs 
for predicting Qheating and CO2 concentration are provided better results than for predicting IOD. The test set was 
predicted with the average RMSE rate of 4% and 2% concerning the mean of actual values. IOD is relatively poorly 
predicted with an average error rate of 9%. Model performances can be improved as discussed. The described 
framework can be applied for the easy and fast assessment of design alternatives during the design development 
phase or retrofit scenarios. 
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