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ABSTRACT 

 

DEVELOPMENT OF SYNTHETIC AND REAL-WORLD POSE ESTIMATION 

DATASET TO BE USED IN HUMAN TRACKING SYSTEM 

 

Ersoy, Mustafa 

Master of Science, Mechanical Engineering 

Supervisor: Associate Prof. Dr. Ahmet Buğra Koku 

 

April 2022, 93 pages 

 

In this study, we propose an extendable, synthetic human pose estimation dataset named 

“Metupose”. Pose estimation aims to determine the pose of a person by detecting joints in 

an image or video. Dataset was created in Blender 3D software and with varying human 

objects and environment. It is also used to enhance the accuracy of pose estimation models 

in the literature. Metupose dataset contains 178000 images. Images have 1 to 4 people in 

it, where there is a total of 402000 people exist in these images. When we train different 

pose estimation models from the literature with our dataset, we observed an accuracy 

increase in all model/dataset cases. Our second contribution is the source code to create 

new images for the dataset. Although, Metupose contains large number of images for most 

of the applications, users may need to create their own custom dataset or want to increase 

the number of images. We provide original Blender 3D files and a simple configuration 

file so that users can create new dataset easily. Normally, creating a real-world dataset is 

time consuming and open to labelling errors. The advantage of our study is that datasets 

of desired sizes can be created from software, without any error, in an automized way. We 

finally, trained a pose estimation model with our Metupose dataset and integrated the 

trained model into Nvidia Jetson Nano that is equipped with a Raspberry Pi Camera and 

evaluated human tracking performance. Results indicate that single board computers offer 

a low-cost alternative to be used in human-robot interaction studies. 

Keywords: Pose Estimation, Extendable Dataset, Synthetic Dataset, Human Tracking 
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ÖZ 

 

İNSAN TAKİBİ SİSTEMLERİNDE KULLANIM AMAÇLI GERÇEK HAYAT VE 

SENTETİK İSKELET TAKİBİ VERİ SETİNİN GELİŞTİRİLMESİ 

 

Ersoy, Mustafa 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Doçent Dr. Öğretim Üyesi Ahmet Buğra Koku 

 

Nisan 2022, 93 sayfa 

 

Bu çalışmada, “Metupose” isimli sentetik ve genişletilebilir insan iskelet takibi veri seti 

sunduk. İskelet takibi, bir görüntü veya videodaki insan eklemlerini algılayarak insan 

duruşunu algılamaktır. Veri seti, Blender 3D programında değişken insan modelleri ve 

çevreye sahip şekilde üretilmiştir. Ayrıca, literatürdeki iskelet takibi modellerinin 

doğruluğunu artırmada kullanılmıştır. Metupose veri setinde 178000 görüntü vardır. Her 

bir görüntüde 1,2,3 veya 4 insan olmak üzere toplamda 402000 insan bulunmaktadır. 

Farklı iskelet takibi modellerini veri setimizle eğittiğimizde tüm model/veri seti 

durumlarında doğruluk artışı gözlemledik. İkinci katkımız ise, veri setinde yeni görüntüler 

oluşturmaya yarayan kaynak kodudur. Metupose veri setinde birçok uygulama için yeterli 

görüntü olsa da kullanıcılar kendilerine ait veri seti oluşturmak isteyebilir veya görüntü 

sayısını artırmak isteyebilir. Kullanıcıların kolayca yeni veri seti oluşturabilmesi için, 

orijinal Blender dosyalarını ve basit konfigürasyon dosyasını yayımladık. Normal 

koşullarda, gerçek hayat veri seti üretmek çok zaman alabilir ve hatalara açıktır. 

Çalışmamızın avantajı, sadece yazılım üzerinden otomatik şekilde hatasız veri seti 

üretmeye imkân sağlamasıdır. Son olarak, Metupose veri seti ile eğittiğimiz iskelet takibi 

modellerini Raspberry Pi kamerasına sahip Jetson Nano’da çalıştırdık. Sonuçlar, bu 

sistemin, insan-robot etkileşimi çalışmalarında düşük maliyetli bir alternatif olabileceğini 

gösterdi. 

Anahtar Kelimeler: İskelet takibi, Genişletilebilir Veri Seti, Yapay Veri Seti, İnsan Takibi 
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CHAPTER 1 

 

1. INTRODUCTION 

 

Human tracking is one of the most important concepts in computer vision. It is used for 

both human-computer communication and acquiring data from human movement. One of 

the ways to perform human tracking is the method called pose estimation. In this method, 

physical joints of people in each image are found and labelled by the algorithm. Depending 

on the pose estimation algorithm or model, selected joints may vary. However, most 

common ones are head, neck, shoulders, elbows, wrists, hips, knees, ankles. Because pose 

estimation is a difficult computer vision problem to model mathematically, its algorithm 

cannot be coded from scratch. Instead, deep learning models are trained on so many 

images with labeled data. When the deep learning model is fully trained, it is tested on 

new, real-world data to evaluate performance. In this study, we propose a pose estimation 

dataset named as “Metupose” and the source code to create new, custom-made dataset. 

Metupose dataset was used to train different pose estimation models and accuracy of 

trained models increased. Finally, trained models were integrated into Jetson Nano and 

Raspberry Pi camera system to be used in human tracking applications.  

In this chapter, general problems in pose estimation models and dataset have been 

discussed and literature survey has been provided. Secondly, our solutions to these 

problems and our motivation have been explained. 

 

1.1.    Problems in Pose Estimation 

 

Although there is so much research conducted on pose estimation, there are still minor 

problems in this field. These problems can be listed as follows: 

1. Occlusion 

2. Unknown number of people in an image 



 

 

2 

3. Interaction between different people 

4. Decrease in running speed with increase in number of people 

5. Accurate external camera calibration in stereo images 

6. Not having enough data and errors in annotation of data 

 

1.1.1. Occlusion 

 

This problem occurs when test object stays behind of an object and some of the joints are 

not visible due to occlusion by another object. The reason behind this problem is that most 

of the datasets consist of full human body images. When models are trained on images 

with full human body, they may not detect occluded parts very well. To avoid these 

problems more occluded images can used for training. 

 

1.1.2. Unknown Number of People 

 

Some pose estimation models are used for single person pose estimation and most of them 

are used for multi-person pose estimation. Single person pose estimation models such as 

EfficientPose [1] try to find only 1 person in an image fit keypoints into found person 

object. Keypoints can be considered as joints (shoulder, knee, neck etc.) in human body. 

Multi-person pose estimation models such as BaPose [2] however, try to find number of 

people correctly and try to fit keypoints into people found in the image. Some pose 

estimation models use highly accurate person detection or person segmentation models to 

locate each person effectively by fitting in a bounding box, then, perform pose estimation 

in that box to increase accuracy. However, when number of people increases in an image, 

the model may guess number of people in an image wrong and assign keypoints to wrong 

person. The reason behind this problem is that datasets may not cover different number of 

people in an image and also may not cover all possible interactions between multiple 

people. 
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1.1.3. Interaction Between Different People 

 

In multi-person images, some models may assign one person’s joints to another person. 

The reason can be two people can be so close to each other or there may be an interaction 

between two person such as occlusion. The reason behind this problem is that datasets 

may not cover all possible and complex interactions between people in an image. 

Therefore, when a model is tested on image of two very close people, model may assign 

one person’s arm to another. 

 

1.1.4. Decrease in Running Speed with Increase in Number of People 

 

This problem occurs mostly in models trained with top-down approaches. Top-down 

approaches such as RMPE [3] perform human detection or human segmentation firstly 

and create a bounding box for each person, later perform pose estimation in each box. In 

this approach, computation increases linearly with increasing number of people because 

the model detects each person one by one perform pose estimation on each person one 

after another. In top-down approaches, although the running speed decreases, pose 

estimation accuracy increases. 

 

1.1.5. Accurate External Camera Calibration in Stereo Images 

 

If properly implemented, 3-D pose estimation gives more valuable data that 2-D pose 

estimation. To train 3-D pose estimation model, one needs to have 3-D data of keypoints. 

Proper way of doing that is using multiple images. When multiple images are used and 

both internal and external properties of each camera is available, 3D location of a joint 

can be found by 3D reconstruction method. However, external parameters of multi camera 

setup needs to be known and it is difficult to get position and orientation of each camera 

outside laboratory. Most of the multi-camera datasets are created in laboratory but not 

outdoor. In laboratory the background is always same and because of that, models may 
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not work properly when tested with real world data with completely different background. 

 

1.1.6. Not Having Enough Data and Errors in Labelling of Data 

 

A pose estimation model should be able to work in so many domains with high accuracies 

to be considered as effective. One of the ways to increase the flexibility of the model is to 

use datasets from a wide range of domains. However, creating a dataset is an expensive 

process because all human joints in an image must be labelled manually. Therefore, there 

are only limited images in a specific real-world dataset. Also, when datasets are analyzed 

carefully, locations of joints in different images may differ slightly depending on the 

judgement of the person who labelled it. In some cases, due to occlusion and lighting, 

human eye cannot locate position of each joint in an image. Due to these problems, pose 

estimation models trained on datasets loses accuracy and performance when tested on 

different conditions. 

 

1.2.    Literature Survey 

 

Since pose estimation is a highly complex computer vision problem, machine learning 

and especially deep learning models are used in this field. General procedure is to use a 

pose estimation dataset to train the model. Datasets consist of labeled images. Labels are 

pixel locations of the keypoints in the image. Keypoints are specific joints in the body 

such as shoulders, ankles etc. Every dataset has its own set of keypoints. However, 

common keypoints used in most of the datasets are given Table 1. 
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Table 1: Name of Joints Used in Datasets in Literature 

 

No Joint No Joint No Joint 

1 Left ankle 7 Pelvis 13 Right elbow 

2 Left knee 8 Chest 14 Right wrist 

3 Left hip 9 Left shoulder 15 Neck 

4 Right ankle 10 Left elbow 16 Head 

5 Right knee 11 Left wrist   

6 Right hip 12 Right shoulder   

 

In 2D pose estimation datasets, pixel coordinates of each keypoint are available in datasets 

such as (x, y).  

Full datasets are usually separated into three subsets named as training subset, validation 

subset and test subset. Each subset contains completely different data than other two 

subsets. Training subset contains most of the data (80% - 90%) in the dataset. Validation 

data contains less data, and it is used for measuring the performance of model after each 

epoch during training. 

Some of the datasets contain extra information. For example, COCO dataset [5] provides 

human segmentation information by labelling pixels as 1 and 0 and H36M dataset [6] 

provides camera properties such as external parameters (angle and location) and internal 

parameters (focal length). This dataset provides both 2D and 3D pose estimation data. 

In datasets containing real human images, labels are created via two methods. First method 

is to label each joint manually in the image via a software. Examples for this approach are 

MPII and LSPet datasets. Second method is to place markers on human body around joints 

and later, performing image processing on taken images to find pixel location of each 

marker. H36M dataset [6] is the most common example of this approach. 

In this part of the chapter, brief information about the datasets in the literature have been 

provided. In the next part, details about most common datasets have been explained. 
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1.3.    Human Pose Estimation Datasets 

 

Various pose estimation datasets are available in literature. Each dataset has its own 

different images and own different annotation. Properties of some of the common datasets 

are explained, and sample images are provided in the next chapter. 

 

1.3.1. COCO Dataset 

 

COCO is a large-scale universal computer vision dataset. It has so many useful features 

to be used in different parts of the computer vision fields. For example, there are 1.5 

million object instances, 80 categories of objects and 250000 people in this dataset. 

Keypoint locations and segmentation data for people are available in this dataset and these 

two parameters are used as annotation for human pose estimation applications. A sample 

image COCO dataset showing person segmentation and keypoint locations is given in 

Figure 1. 

 

 
 

Figure 1: Sample Annotated Image from COCO Dataset [7] 
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1.3.2. MPII Dataset 

 

It includes approximately 25000 images containing over 40000 people with annotated 

body parts. Images are collected from YouTube videos containing various daily human 

activities. Sample images from MPII dataset is given in Figure 2. 

 

 
 

Figure 2: Sample Images from MPII Dataset [4] 

 

1.3.3. H36M Dataset 

 

It includes 3.6 million 3D human poses and corresponding images. All images were taken 

in a large room, there are 11 actors performing 17 different activities such as discussion, 

smoking, talking on the phone etc. There are markers on the actors around keypoints such 

as shoulders, elbows and data is collected by 4 synchronized cameras at 50 Hz. Sample 

images from this dataset is given in Figure 3. 
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Figure 3: Sample Images from H36M Dataset [6] 

 

1.3.4. CrowdPose Dataset 

 

CrowdPose dataset [8] contains about 20000 images and a total of 80000 human poses 

with 14 labeled keypoints. The test set includes 8000 images. Dataset are created from 

crowd images extracted from MSCOCO, MPII, and AI Challenger dataset. Sample image 

from this dataset is given in Figure 4. 

 

 

 

Figure 4: Sample Images from Crowdpose Dataset [8] 

 

1.3.5. LSP/MPII-MPHB Dataset 

LSP/MPII-MPHB dataset [9] includes 26675 images and 29732 humans, it is created by 

images from SLP and MPII datasets. Sample images from the dataset is given in Figure 5. 
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Figure 5: Sample Images from LSP/MPII MPHB Dataset [9] 

 

1.4.    Problems with Pose Estimation Datasets 

 

As shown in the previous chapter, all datasets need manual labelling on images or a camera 

setup that creates labels automatically. Both approaches may result in errors due to reasons 

below: 

• Manual labelling of images may be performed by different people which leads to 

inconsistency throughout the images 

• Exact location of joints may not be achieved, especially joints occluded by other 

objects can be difficult to locate 

• There can be human errors when labelling manually, and it is hard to check every 

joint in thousands of images in a large dataset. 

• Physical setup to label joints automatically (like in H36M dataset) leads to error 

because markers can only be attached to surface of the human body but not 

attached to actual joints inside body. This situation leads to error when taking 

images of the marker from different angles. 
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1.5.    Synthetic Datasets 

 

Creating a pose estimation dataset can be time consuming and may lead to erroneous 

results due to reasons explained in the previous chapter. However, to be able to create pose 

estimation models that work in so many different domains, wide range of image data is 

needed. In that case, creating a rich and diverse dataset is a difficult problem. 

To be able to solve this problem, synthetic data can be used to create dataset. Synthetic 

data can be the kind of data acquired from computer simulation programs. Pose estimation 

datasets mainly focus on human images. Therefore, different human models can be created 

in a simulation program, and each human model can be rigged to have different poses to 

create a rich dataset. Rigging is placing a skeleton system inside a human model and 

attaching it human body. This skeleton can be moved, and human body will follow the 

movement because skeleton and human body were combined and move as one part. Later, 

human model image and exact position of each body joint in the skeleton can be extracted 

from software whether it is occluded or not. Therefore, creating a synthetic dataset is an 

automated process which provides both images with different person instances and 

annotation files. Also, with additional small effort, content of the dataset can be improved 

via software without needing physical setup. 

There are different 3D simulation programs to create human models and rig them. The 

most common programs can be listed as below: 

• Blender 

• Unity 

• Unreal 

• Maya 

• Cinema 4D 

• Zbrush 

Sample human model images from each 3D program are given in Table 2. 
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Table 2: Sample Images from Different 3D Design Software 

 

 
Blender Human Model [10]  

Unity Human Model [11] 

 
Unreal Human Model [12]  

Maya Human Model [13] 

 
Cinema 4D Human Model [14]  

Zbrush Human Model [15] 

 

As shown in Table 2, human models in different 3D design software are quite similar to 

real human images. This provides an opportunity to create a dataset from simulation 

program because human models in program looks like a real human and they can be used 

for training the model. Data created by a simulation program is called synthetic data. 
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Possible advantages for using synthetic data for creation of dataset is listed below: 

• after setting up a system to create human models automatically, it takes a little time 

to create extra data 

• Character joints can be acquired automatically from software without error 

• size, weight, clothing, and instant pose of the character can easily be changed 

• Environment, lighting, background, and foreground objects can easily be changed 

• number of people and their interaction with each other 

• different scenarios for occlusion can be created 

• Real and accurate of joint positions can be obtained 

 

1.6.    Synthetic Datasets in the Literature 

 

There are multiple synthetic datasets studies in the literature. SurReal [16], JTA [17] and 

AGORA [18] are the most common ones. In this section, features of these datasets and 

comparison with our dataset are provided. 

 

1.6.1. SurReal Dataset 

 

SurReal [16] is synthetic dataset that is created in 3D Blender software and it contains 5.5 

Million images. They used 3D human models inside Blender software and replaced 

background with random images from LSUN dataset. To our knowledge, this is most 

similar study to our work. However, our work differs from Surreal dataset and differences 

are summarized in Table 3. Also, sample images from this dataset given in Figure 6. 
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Table 3: Comparison of Surreal and Metupose Dataset 

 

Parameter Surreal Datasets Metupose Dataset 

Person number Single person Single and multi person 

Background environment Only indoor Both indoor, outdoor 

Occlusion No occlusion Occlusion by both objects 

and human models 

Background image From LSUN dataset, 

contains humans 

From Youtube or phone 

camera. Customizable, 

extendable, does not 

contain humans 

Extendable dataset Extendable but requires 

Blender and SMPL data 

Blender can be used but is 

not a necessity. Dataset can 

be extended via Python. 

 

 
 

Figure 6: Sample Images from Surreal Dataset 

 

1.6.2. JTA Dataset 

 

JTA [17] is a synthetic dataset created from GTA5 computer games. It is a multi person 

dataset and contains 10 million human objects total. Although 10 million is a huge number, 

most of the data comes from similar scenes. In this dataset, there are 512 different scenes, 

each scene has 30 seconds of video, and each video contains average 21 people. Video 

frame rate is 30 fps and when these numbers are multiplied; 10 million human pose is 

obtained. 
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As can be seen from here, there are only 512 scenes and some of the scenes may be 

redundant if human models perform regular activities such as walking instead of more 

complex activities. Our work differs from JTA dataset and differences are summarized in 

Table 4. Also, sample images from this dataset are given in Figure 7. 

 

Table 4: Comparison of JTA and Metupose Dataset 

 

Parameter JTA Dataset Metupose dataset 

Scene variability Only 512 different scenes, 

limited by environments in 

GTA 5 game 

Currently 57000 

background image and 

easily customizable and 

extendable 

Environment type Only urban scenarios, no 

indoor 

Both indoor and outdoor 

scenarios 

Extendibility Not extendable Extendable 

Camera mode Images only from 

Surveillance mode 

Images from different 

angles 

 

 

 
 

Figure 7: Sample Images from JTA Dataset 
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1.6.3. AGORA Dataset 

 

AGORA [18] is a realistic synthetic dataset that contains 17000 images with 170000 static 

poses. These images contain 350 different human model with 4240 total human instances. 

Human models are 3D scanned version of real people and these models were purchased 

from commercial suppliers. To our knowledge AGORA is the most realistic synthetic pose 

estimation dataset. Our work differs from AGORA dataset and differences are summarized 

in Table 5. Also, sample image from this dataset is given in Figure 8. 

 

Table 5: Comparison of AGORA and Metupose Dataset 

 

Parameter AGORA Metupose Dataset 

Number of person Only multi-person Both single and multi person 

Environment No indoor images Both indoor and outdoor 

images 

Camera distance Only images from distant view 

angle 

Images from close and distant 

view angle 

Cost Expensive, 3D models need to 

be purchased, and they are not 

available in final dataset 

No cost, 3D models are 

available 

Complex poses No complex poses Complex poses available 

Variable clothing No Yes 

Freely available Yes Yes 
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Figure 8: Sample Images from AGORA Dataset 

 

During the time our study started, Surreal and JTA datasets were available and their 

performance on real applications encouraged us to move forward in synthetic dataset 

creation subject. Although there were multiple synthetic datasets in the literature, still 

there was no easy and flawless solution. Each dataset has their pros and cons and that 

shaped our motivation to create an easy to use, extendable dataset with various domains. 

 

1.7.    Motivation 

 

There are multiple ways to track human movements and pose estimation is one of these 

methods. Pose estimation models are created by training a deep learning model with 

datasets. These datasets include human images and pixel location of human joints in the 

images. The models are trained on these datasets and trained models are used in real life 

situations later. 

Real life performance of pose estimation models depends on two factors: Quality of 

dataset and quality of model used. Quality of dataset depends on multiple factors such as 

content of images, errors in labelling joints. Also, creating and labelling a dataset takes so 

much time and most of the datasets in the literature are fixed and are not increased. 
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To build a highly accurate pose estimation model to be used in human tracking studies, 

we focused on developing a high-quality dataset instead of developing model. To build 

dataset, synthetic data from 3D design software were used. Synthetic datasets can solve 

real world pose estimation dataset problems because infinitely many images can be 

created without any errors in labelling. Therefore, synthetic datasets are easily expandable 

when needed within a short duration. 

Our motivation in this study is to create a synthetic dataset from 3D design software and 

combine this dataset with other datasets in the literature to train a pose estimation model 

and observe whether model’s performance will increase or not. 

Our second motivation is to provide 3D human models and related source code so that 

users can create their own dataset in the future. Also, this source code will have tools for 

human pose complexity analysis, person cropping and background image generation etc. 

In this study, we propose a synthetic pose estimation dataset and source code for dataset 

generation. Also, performance of models trained on these datasets were compared with 

other pose estimation models in the literature. Our trained pose estimation model was 

integrated into Jetson Nano and Raspberry Pi camera system to be used in human tracking 

applications. 

 

1.8.    Layout of Thesis 

 

In chapter 1, purpose and general overview of the study was introduced. Also, literature 

survey about pose estimation and problems in pose estimation were provided. Our solution 

to these problems and contributions were provided in motivation chapter. 

In chapter 2, initial studies about pose estimation were shared. In these initial studies 

sample images from 3 different data groups were collected and performance of pose 

estimation models in the literature were evaluated on these images. Image groups are: 

1. Basic Human Models from V-rep software 

2. 3D design software human images found from internet 

3. Real world images taken from tv series 
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The purpose of initial study is to compare performance of models in the literature on real 

world data and synthetic data before building an actual synthetic dataset. Our thesis was 

that if a model trained on real world dataset performs well on synthetic images, then a 

model trained on synthetic dataset can perform well on real worlds images. This condition 

was observed in chapter 2. Also, concept of domain randomization was introduced. 

In chapter 3, general information about Blender, which is the selected 3D design software, 

was introduced. Also, iterations in the process of dataset generation and different methods 

to create data were explained. 

In chapter 4, details about used pose estimation models were introduced. Also, 

performance of our synthetic dataset has been evaluated using different datasets and 

different pose estimation models. 

Finally, conclusion and recommendations for future work are presented in chapter 5. 
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CHAPTER 2 

 

2. PERFORMANCE of POSE ESTIMATION MODELS on SYNTHETIC 

IMAGES 

 

In chapter 1, importance of dataset to train a model has been explained and general 

problems with datasets have been introduced. These problems were limited number of 

images, human errors during labelling and amount of time spent on labelling. Synthetic 

datasets seem to overcome these problems because creating data is an automated process 

and there can be no errors with labelling. However, before building a synthetic dataset 

with wide range of domains, we wanted to test whether this approach will work. To be 

able to do that, we preferred to compare performances of real world pose estimation 

models on two datasets which are real world dataset and synthetic dataset. If performance 

of models in both datasets become similar, that will mean pose estimation models does 

not differentiate synthetic image data from real image data and that will lead us to move 

forward. Our thesis was if real world pose estimation models perform equally well on 

synthetic datasets, synthetic pose estimation models (models trained only with synthetic 

data) can perform well on real world images. This chapter covers this issue and at the end, 

domain randomization concept was introduced. This concept states if a model is trained 

only on synthetic data, with so many different conditions, then the model will perform 

well on real world data because it will consider real world data as another different 

condition like in training data. 

 

2.1.    Vrep 3D Software Information 

 

In initial studies, synthetic data was created to evaluate the performance of real world pose 

estimation models. This initial synthetic data was created in V-REP software. Vrep is an 

open-source software to create basic simulation environment. In this environment, there 
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are various objects such as: 

• human models 

• various robotic arms 

• various mechanisms 

• LIDAR sensors, proximity sensors 

• cameras 

• cars 

• basic objects like table, chair, computer, cubes 

• joints, force/torque sensors 

• lights 

 

VREP is not a 3D design software, objects are imported or called into the program. 

Human model was imported in VREP and moved in trajectory on a surface to get images 

from different angles. Sample images from this work are given in Figure 9. 

 

 
 

Figure 9: Human Models in Vrep Software 
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As shown in images above, VREP human models are not very realistic. In this software, 

shirt color, pants color, hair color and walking trajectory was changed during acquisition 

of images to create variety of situations. 

 

2.2.    Performing Pose Estimation on Different Image Groups 

 

Total 90 VREP human model images were tested on 3 different pose estimation models. 

The purpose of performing pose estimation is to compare results with real world results 

to evaluate the behavior of pose estimation model in synthetic dataset. Sample output 

images are given in Figure 10. 

 

 
 

Figure 10: Outputs of Github Pose Estimation Model on images from Vrep software 
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After performing pose estimation on V-REP images, more realistic human models were 

found from internet to evaluate pose estimation models. Human models from GTA5 game 

and Unity software were collected. Pose estimation outputs are given in Figure 11 and 

Figure 12. 

 

 
 

Figure 11: Pose Estimation Model Outputs on Unity Human Model Images 
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Figure 12: Pose Estimation Model Outputs on GTA5 Images 

 

After applying pose estimation models on VREP, Unity and GTA5 human models, same 

pose estimation models were used on real human images. The reason is to compare results 

of simulation data and real data. Results for real human images are given in Figure 13. 

 

 
 

Figure 13: Pose Estimation Outputs for Real Human Images from TV Shows 

 

So far, pose estimation models have been applied on human images from 4 different 

domains. These are: 

• VREP software (90 images) 

• Unity 3D software (45 images) 
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• GTA5 game (81 images) 

• Real human images (100 images) 

 

2.3.    Quantifying Performances of Pose Estimation Models 

 

Results of the same pose estimation models have been compared on 4 different domains. 

Because these images do not have any ground truth pose data, comparison have been 

performed by observation. To evaluate the performance of a model, normally, model must 

be evaluated on real world and synthetic datasets with ground truth data. However, this 

was the first application about pose estimation in thesis study, and evaluation has been 

made manually by observation. 

Each person in images have been evaluated and one of the 5 different labels have been 

given in each operation. These 5 grades are: 

• Perfect 

• Fair 

• Bad 

• No Detection 

• Wrong Detection (Extra person detection) 

 

2.3.1. Perfect Label 

 

Perfect label is given to people in the images with a very good pose estimation 

performance. There must be no missing joints and each detected point should be close 

enough to respective joint. Sample image for perfect label is given in Table 6. 

 

2.3.2. Fair Label 

 

Fair label was given to people in the images with almost perfect pose estimation 

performance. There can be one or two missing joints in a person to be considered as fair. 
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Sample image for fair label is given in Table 6. 

 

2.3.3. Bad Label 

 

Bad label was given to people in the images with worse pose estimation performance than 

Fair label. In this group, there must be a detection but number of missing or misplaced 

joints can be three or more. Sample image for Bad label is given in Table 6. 

 

2.3.4. No Detection Label 

 

No detection label was used when a person appears on images but pose estimation model 

could not find any of the joints belonging to that person. Sample image for no detection 

label is given in Table 6. 

 

2.3.5. Wrong Detection (Extra person detection) 

 

Wrong detection label was used when pose estimation model detect some joints although 

there was no human in detected part of the image. Sample image for wrong detection label 

is given in Table 6. 
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Table 6: Sample Images for Labels Used to Evaluate Outputs 

 

Label Name Sample Image 

Perfect 

 

Fair 

 

Bad 

 

No Detection 

 

Wrong Detection 

 
 

Evaluation of outputs of pose estimation models in 4 different data group (real, GTA5, 

Unity and VREP) has been performed manually based on the criteria of labels (perfect, 
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fair, bad, no detection, extra detection) above. 4 different pose estimation models available 

in Github were used. Name of these works are given below: 

 

Model 1: Lightweigh Human Pose Estimation 3d Demo Pytorch [19] 

Model 2: Lifting from the Deep Release [20] 

Model 3: Yet Another Openpose Implementation [21] 

Model 4: Human Pose Estimation Opencv [22] 

 

Performance comparison of these models are given in Table 7 to Table 10. 

 

Table 7: Comparison of Three Different Pose Estimation Models on Real Data Group by 

Percentage 

 

REAL 

REAL (338 people) Perfect Fair Bad No Detection 
Wrong Detection 

(extra) 

Model1 (%) 79 14 2 5 1 

Model2 (%) 29 10 13 48 1 

Model3 (%) 26 20 35 19 0 

 

Table 8: Comparison of Three Different Pose Estimation Models on GTA5 Data Group 

by Percentage 

 

GTA5 

GTA5 (165 people) Perfect Fair Bad No Detection 
Wrong Detection 

(extra) 

Model1 (%) 79 12 6 3 5 

Model2 (%) 53 15 8 24 3 

Model3 (%) 20 44 25 11 1 



 

 

28 

 

Table 9: Comparison of Three Different Pose Estimation Models on Unity Data Group 

by Percentage 

 

UNITY 

UNITY (107 people) Perfect Fair Bad No Detection 
Wrong Detection 

(extra) 

Model1 (%) 77 19 2 2 0 

Model2 (%) 31 31 18 20 1 

Model3 (%) 24 18 36 22 0 

 

Table 10: Comparison of Three Different Pose Estimation Models on Vrep Data Group 

by Percentage 

 

V-REP 

V-REP (90 People) Perfect Fair Bad No Detection 
Wrong Detection 

(extra) 

Model1 (%) 42 50 2 6 0 

Model2 (%)      

Model3 (%) 42 48 2 8 0 

Model4 (%) 29 66 5 0 0 

 

From the accuracy data given in Table 7 to 10, it can be concluded that accuracy of models 

in real data group is very close to accuracy of GTA5 and Unity data group. It was observed 

that Model 1 has the highest accuracy in all data groups so, it can give the most reliable 

information about detection accuracy throughout data groups. Accuracy comparison of 

different data group on model 1 is given in Table 11. 
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Table 11: Accuracy of Model 1 Throughout Different Data Groups by Percentage 

 

MODEL 1 

Data Groups Perfect Fair Bad No Detection Wrong Detection 

(extra) 

Real (%) 79 14 2 5 1 

GTA5 (%) 79 12 6 3 5 

Unity (%) 77 19 2 2 0 

VREP (%) 42 50 2 6 0 

 

From Table 7 to 11, it can be observed that performance of different pose estimation 

models is consistent within Real data group, Unity data group and GTA5 data group. From 

these data, it can be concluded that pose estimation models trained on real data can work 

both on real data and synthetic data. Therefore, our thesis is the reverse of that statement. 

If one trains a model purely on synthetic data, this trained model may work well on real 

images. These results lead us to create a realistic and complex synthetic dataset from a 3D 

design software. 

Simulation dataset can be changed, modified, labeled easily and accurately in a very short 

time. Therefore, if a model trained on simulation data works on real data, users can create 

their own data through a script without needing a physical equipment. 

According to Table 11, accuracy of model 1 on VREP data group is lower and the most 

probable reason is that VREP human models does not contain enough details and texturing 

for feature detection. For example, arm and shirt has the same plain color. 

Although VREP images were not helpful in comparison with real images, it was an 

important step to start working on a 3D simulation program. VREP studies were followed 

by Blender Studies. During that time following items have been achieved in VREP 

program: 

• performing human walk on modified trajectory 

• getting coordinates of every joint during walking through Python VREP API 

• Modifying hair color of human model 
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• Modifying shirt and pants color 

• Adding objects to simulation 

These items were important learning blocks to start working on Blender which is a 

complex 3D design software for creating synthetic dataset. 

 

2.4.    Domain Randomization 

 

In machine learning, domain randomization is an important concept. Basically, when a 

model is trained on a wide variety of synthetic data, it can work on real world data as well 

because model perceives real world data as another variation of synthetic data. Examples 

for variation of data in simulation dataset can be listed as: 

• different colors 

• different relative sizes of objects 

• different camera angles, multiple images of the same instance from different 

angles 

• different lighting 

• different number of objects 

• different textures and shapes of objects 

In a synthetic dataset, it is easy to change parameters listed above and to create new data 

with a wide range of features. Therefore, when a model is trained on large synthetic dataset, 

this model will work well on real world data because model will perceive real world data 

as another variation or sub-category of large synthetic dataset. 

One study [23] used domain randomization to explore capabilities of a model trained only 

on synthetic data. They performed object localization and grasping and using a model only 

trained on simulation data, they achieved 1.5 cm accuracy in real world conditions model 

was robust enough to distractors and occlusions. 

Another study [24] used domain randomization to perform car detection and by using only 

simulation data, they achieved performance comparable to real world dataset. 

Another study [25] increased performance of domain randomization even further. They 
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used active domain randomization concept. Basically, this concept uses reinforcement 

learning to search for most informative parameters in domain randomization and uses 

these parameters more often when creating dataset and this leads to increase in overall 

accuracy because the content of the simulation dataset was optimized for maximum 

training accuracy. 

 

2.5.    Final Notes 

 

When pose estimation models were tested on real images, Unity 3D software images and 

GTA5 images, accuracy results were consistent. That means, a model trained only on real 

world data can work well on simulation data as well. Also, there was a concept called 

domain randomization which utilizes wide variety of synthetic data on training a model 

and uses this model on real world data with high accuracy. Based on these facts, we created 

an environment on Blender 3D software to create pose estimation dataset and we used this 

dataset to train a pose estimation model. After training, accuracy of the pretrained model 

was increased. Our trained model was deployed in Nvidia Jetson Nano and Raspberry Pi 

camera system to be used in human tracking applications in the future. 

After getting promising results explained in this chapter, creating dataset in a 3D design 

software have been decided and Blender software was chosen for this work. In the next 

chapter, capabilities of Blender software have been explained and methods and procedures 

to create synthetic dataset from Blender have been discussed. 
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CHAPTER 3 

 

3. STUDIES ON BLENDER 3D SOFTWARE 

 

In chapter 2, based on tests performed on real world pose estimation models, it was 

observed that real world models worked equally well on real world data and synthetic data. 

Therefore, that lead us to create realistic dataset from a 3D design software. Blender 

software was selected to create human models and environment. 

In this chapter, general information about Blender 3D design software has been introduced 

and methods and procedures to create synthetic datasets have been explained. These 

methods include: 

• environment design 

• human model design 

• extraction of joint locations via Python 

• creating non-repeating data 

• creating data from different domains 

• pose complexity analysis 

 

One of most important steps to create high quality synthetic dataset is to cover wide range 

of domains that can appear in real life situations. Methods used to increase the variability 

of data were illustrated in this chapter. 

 

3.1.    Blender General Information 

 

Blender is the free and open-source 3D creation suite. It supports the entirety of the 3D 

pipeline modeling, rigging, animation, simulation, rendering, compositing and motion 

tracking, even video editing and game creation. It is very popular in graphical design 
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market and is fully supported in Windows, Linux and MacOS operating systems. Blender  

website has complete documentation of the software and because it is so popular there are 

so many Youtube tutorials, forums, and websites to learn Blender. This software comes 

with built-in installed Python. This python is completely inside the Blender program and 

has no connection with regular Python installed on computer. Blender has a library in 

Python called bpy. By using this library, one can change or modify so many objects inside 

Blender program. 

Because it is completely open source, comes with preinstalled Python inside and has a 

python library which provides so much flexibility, Blender software was selected to create 

synthetic data. In the next part, Blender properties and capabilities regarding pose 

estimation has been explained. 

 

3.2.    Blender Properties and Capabilities Regarding Pose Estimation 

 

3.2.1. Creating Human Models 

 

There are multiple ways used to create realistic human models in Blender. First one is 

downloading human models from internet and importing them into Blender. Because 

Blender is an open-source free software, there are so many websites that provide free or 

paid Blender models, and some parts of these models are realistic human models. Sample 

human images from Turbosquid website are given in Figure 14. 
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Figure 14: Blender Human Models in Turbsquid Website [26] 

 

Second way to create human models is using add-ons. Add-ons are extra software 

designed for a specific purpose and they can be installed in Blender. There is an open-

source add-on used to create realistic human models in Blender. This addon is called 

MbLab [27]. This addon has 14 different human models in it and when a model is created, 

its age, mass, hair, skin color, size and body type can be modified through a GUI. All 

human models in the final dataset were created by MbLab [27] add-on method. Sample 

image for a human model created by MbLab [27] tool is given in Figure 15. 

 

 
 

Figure 15: Default Human Model Created by MbLab addon in Blender 
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Third option is to create human models from scratch. However, creating a realistic human 

model requires hard work and expertise in 3D design field, and it is not an automated 

process. To demonstrate the process of creating a human model from scratch, sample 

images given in Figure 16 show the 6 steps are given below. These images were taken 

from YouTube Blender tutorials. 

 

 
 

Figure 16: Demonstration of 6 Steps to Create a Human Model from Scratch 

 

In this part of the chapter, methods used to create realistic human models were explained. 

Second method (MbLab addon) was selected to create human models due to ease of use 

and configuration options. In Blender, joint position and rotation data can only be obtained 
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if a human model has a skeleton system. In Blender, skeleton system moves accordingly 

with human body and in the next part, methods used to acquire joint data from skeleton 

system has been explained.  

 

3.2.2. Person Rigging and Animation 

 

Person rigging is integrating a skeleton system inside a human model and, when a joint in 

the skeleton system moves, body moves accordingly. Each movement in skeleton leads to 

different pose of human body. Also, joint locations at any instance can be obtained through 

python API. Sample image for human body rigging is given in Figure 17. 

 

 
 

Figure 17: Three Different Poses of the Same Human Model and Joints 

 

MbLab Blender addon was chosen to create human models and it comes with default 

rigging feature as illustrated in Figure 17. Also, MbLAb addon has an option for realistic 

joint limitations. Therefore, when a human body joint is forced to do an unrealistic joint 

movement, software limits that movement to stay within human joint movement 

limitations. If necessary, skeleton system can be built from scratch as well. 

After creating a human model and finish rigging, joint data is available to collect, and this 
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is performed by built-in Python feature inside Blender software. Also, built-in Python 

enable user to change some of the parameters from script in an automized way. In the next 

part, details about Python API have been discussed. 

 

3.2.3. Python API 

 

Blender comes with built-in Python API. Python was used for changing parameters from 

script to increase variability of dataset and it was also used for acquiring joint data to 

create annotation files of dataset. 

Blender python has a library called bpy and this library can change position, rotation, color, 

texture of an object and it can get information of object position, rotation. In this study, 

following parameters have been performed from Python script: 

• Getting 2d and 3d joint locations of each human in each frame 

• Saving joints data in a csv file 

• Changing color and texture of human cloth, hair, and skin 

• Changing position of human model, camera, and lights  

Python script is so important to create randomized human models and environment in an 

automized way. In this part, capabilities of Python API to create a dataset with a wide 

range of domains in an automized way has been explained. In the next part, details about 

randomization of parameters have been discussed. 

 

3.2.4. Changing Appearance of Human Model 

 

In Blender, it is possible to change texture and color of t-shirt, pants, hair and skin and this 

is an important step to create randomized data because if all models have the same 

appearance, that may lead to overfitting during training. To avoid that, these parameters 

were changed automatically in every frame via Python script. Different textures have been 

applied to each part to change appearance. Numbers of textures were given below: 

• 1069 different t-shirt textures 
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• 1069 different pants textures (same 1069 images with t-shirt textures) 

• 21 different hair textures 

• 36 different skin textures 

 

These texture images were found from Google and sample images for each group are 

shown in Table 12. 

 

Table 12: Sample Images for Textures in Blender 

 

Category Texture Images 

Tshirt Textures (1069 units) 

 
Pants Textures (1069 units) 

 
Hair Textures (21 units) 
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(Table 12 Cont’d) 

Skin Textures (36 units) 

 
 

After selecting a random texture for t-shirt, pants, hair and skin, human model is 

completely ready and sample images are given in Figure 18. 

 

 
 

Figure 18: Human models created by different textures 

     

In this part, textures used to create various human models have been discussed. Firstly, 

human model was created, then rigging has been applied and finally, texturing has been 

applied on human model to have a different appearance in every image in the dataset. 

After these steps, final images to create synthetic dataset can be acquired via rendering 

and it has been discussed in the next part of the chapter. 
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3.3.    Image Creation in Blender 

 

After human models have been created and rigging and texturing have been performed, it 

is possible to get 2D, 3D joint locations through Python API. However, to create a robust 

dataset, not only human model but also environment has to be designed carefully to cover 

wide range of domains in the final datasets. There were three methods used to create 

environment. First one was to design a street that has human models, houses, trees, roads 

etc. After applying this method, it was observed that creating large amount of nonrepeating 

synthetic data was not feasible and it took too much time. Therefore, a second method was 

proposed. In this method, background image of the model has been changed in every 

frame to create variability in different images because each image in the dataset has a 

different background from various domains. Although the second method provided good 

results it still lacks features such as multi-person and occlusion so, a third method is 

proposed. In the third method, human model was placed in a green space in Blender and 

cropped from green background to paste onto new changing background later. This 

method allowed us to have multi person dataset with occlusion feature. Only third method 

(cropped person method) is used for dataset generation. Details about these three methos 

have been explained in the next parts. 

Before getting into details about each method, details about capabilities of Blender 

software were provided below: 

 

3.3.1. Creating a Street Environment 

 

Blender has an addon to create buildings called Building Tools. Following parameters can 

be changed easily via this addon to create a new building: 

• Number of floors 

• Number of windows, doors, and balconies 

• Shape of windows, doors, and balconies 

• Roof type 
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• Height and width of building 

• Location of building 

 

Also, by changing textures in each surface, appearance of each building can be changed 

automatically. Also, tree models have been added. After that, human models were placed 

on the street and image and joint data were collected to create synthetic datasets. Images 

are obtained via rendering output of Blender software and resolution is 960x540. Auxiliary 

view of street and human models placed in the street are given in Figure 19 and Figure 20 

respectively. 

 

 

 

Figure 19: Sample Image for Street Model Created in Blender 
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Figure 20: Human Models Placed in the Street Model in Blender 

 

Although street view method is an automated process to create synthetic dataset, it does 

not provide variety of objects in the environment. This may cause problems to work on 

different domains later because there needs to be variability not only in human model data 

but also in environment data to create a robust synthetic dataset. Therefore, second method 

was proposed which is changing background of human model. Details of this method was 

discussed in the next part. 

 

3.3.2. Human Model in Front of a Plane Video Method 

 

Although street view explained in the previous part provides so much flexibility and 

automation in the process of creating dataset, it was observed that it was not scalable 

enough which means it would take so much time to create dataset with thousands of non-

repeating images containing different objects in the environment. To illustrate, outside 
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view of the street used to create dataset is given below. When camera goes through the 

entire street taking images of human models in each frame, the whole street provides only 

150 images. 

A sample image from street model is given in Figure 21. 

 

 

 

Figure 21: Outside view of Street Model in Blender 

 

Most of the real-world datasets contains more than 10000 images. Therefore, required 

simulation images will be even more than 10000. To solve this problem, street model, 

buildings and everything was completely removed, and human model was placed in front 

of a plane and that plane shows images like a screen. Therefore, background image of the 

human model was changed in every image, and this simulated environment change. 

Demonstration of this method is shown in Figure 22 and Figure 23. 
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Figure 22: Human Model in front of a Video Plane (Rendered View) 

 

 
 

Figure 23: Human Model in front of a Video Plane (Outside View) 

 

Human model pose, location, clothing, hair color, skin color and background image are 

different in every image in the dataset. Different background creates the effect of different 

environment domains. Example images created using this method are given in Figure 24. 
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Figure 24: Sample Images with Changing Background 

 

3.3.3. Person Cropping Method 

 

Although the street method did not provide enough flexibility with the environment, plane 

video method solved these problems with changing and varying background. However, 

plane video method could only provide single person data without occlusion and all data 

generation is performed in 3D Blender software, which means if a user wants to expand 

Metupose dataset in the future, he needs to install Blender, install necessary addons, 

necessary libraries in Python which differs from regular Python and run Blender on a 

powerful GPU. 

To provide more flexibility in dataset generation, human cropping method has been 

developed. In that method, human model images are taken in green colored 3D Blender 

space and cropped. Later, all cropped images are pasted on different background in 

random coordinates at random scales. Once the person images have been cropped, they 
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can be used in all datasets in the future by using only regular Python. 

After cropping images, all operations are performed in Python and Blender software is not 

necessary. 

Firstly, in Blender software, human model, cameras and lights were placed inside a very 

large, 100-meter diameter green colored sphere to create a green screen effect. The reason 

to use a very large sphere is that regardless of camera position and angle, background will 

always be green because all the objects are in a green sphere. A sample image is given in 

Figure 25. 

 

 

 

Figure 25: Human Model, Cameras and Lights inside 100 Meters Diameter Green 

Sphere in Blender 
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After setting Blender environment, human model performs different movements and 

images are rendered from the view angle of 5 different cameras. Sample result images 

with green background and their cropped version are shown in Figure 26: 

 

 
 

Figure 26: Left Side: Images Rendered from 3D Blender Space, Right Side: Cropped 

Version of Images in Opencv 

 

Firstly, images are cropped via green color masking in opencv Python. After cropping, we 

have all pixel information about cropped image. 
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After that, object images with transparent background have been downloaded from 

internet. They were used as occlusion objects. From 26 different categories over 1000 

object images have been downloaded. In the second method we had used plane video 

method and from that method, we already had 57000 different and independent images to 

be used as background. These background images were obtained from different YouTube 

videos that does not contain human in it. However, to ensure there is absolutely no person 

in any of the background images, we performed pose estimation on 57000 images and 

detected human in only small percentage of all images and deleted those images. 

Lightweight Human Pose Estimation 3d Demo Pytorch [19] model was used for pose 

estimation and to be safe, we set confidence threshold level very low to detect any person 

even in harder cases. We also provide source code for detecting human in video and 

deleting this frame. User only need to provide video itself, and number of second between 

each frame and code will extract frames as images with no human in it. 

Firstly, cropped human models are pasted on background image as shown in Figure 27: 

 

 

 

Figure 27: Cropped Human Model Images Pasted onto Variable Background 
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Later, occlusion objects are randomly selected from object library, scaled and pasted on 

image to create occlusion. Occluded person image is given in Figure 28. 

 

 

Figure 28: Various Objects Added to Image to Create Occlusion 

 

During creation of dataset following steps has been taken into consideration: 

1. Content of background images (indoor, outdoor) was known before, therefore, 

only relevant objects suitable with the background has been used in each image. 

For example, tree objects are only used with outdoor background images not in-

door. 
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2. Cropped images were not directly pasted, their scales have been randomly changed 

before pasting. 

3. If an image is multiple person image, scale of each person is random but also close 

to other people in the image. For example, in an image, height of one person cannot 

be 5 times the height of another person. The range changes between 0.8 and 1.2. 

4. Scale of occlusion objects have been set relative to human size in the image. For 

example, a luggage cannot be larger than any human in any image etc. and if there 

is a laptop, laptop has to be smaller than luggage as well. Each object has a dimen-

sion coefficient. 

5. Information whether a joint is occluded or truncated is available, but occlusion 

information is not utilized in MPII dataset format. However, user will still have 

that information in our dataset. 

6. We provide final, ready to use dataset and also the source code. Users can use our 

dataset or they can create their own dataset with our source code. Content of our 

source code is summarized in Table 13. 
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Table 13: Content of Our Source Code 

 

No Item Explanation 

1 27 different Blender Models Each model can provide 5000 green screen 

images from 5 different camera angles 

2 Textures for clothing 1000+ texture images for clothing and 

various textures for hair and skin color 

3 49000 cropped person images Users can use our cropped person images; 

they don’t have to deal with Blender 

4 57000 background images Users can use our background images 

obtained from Youtube videos with no 

human in it 

5 Background image creation 

source 

Users can create their custom background 

images by providing a video. Our code will 

detect people in video and provide only 

frames with no human in it 

6 Pose complexity analysis code Users can scan through entire cropped 

person images and entire final dataset images 

sort images based on difficulty of poses 

7 Occlusion objects From 26 different categories, over 1000 

object images with transparent background 

were provided to create occlusion 

8 Dataset generation code Users can create their dataset by using our 

code and cropped images 

9 Actual final dataset We provide final, ready to use dataset with 

178000 images and 402000 people in it. 

 

Links to the source code is given in Appendix. 
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As shown in Table 13, so many different contents are available in the source code for 

different purposes and there are different ways to create dataset. For simplicity, we wanted 

to separate these methods into three parts. These are: 

1. GPU + CPU available option 

2. Only CPU available option 

3. Nothing available option 

 

GPU + CPU Available Option 

If users have a powerful GPU and CPU, they can use our Blender human models to create 

dataset from scratch. We provide 27 different Blender human models, and inside Blender, 

they can edit following parameters: 

• Human model appearance 

• animations, movements 

• human scales 

• joint content in dataset 

• texture of clothing 

• lighting, camera angle 

 

To create variability, users can edit these features manually but, in fact, they don’t have to. 

We provide 27 human models and each human model has 5 different camera view and this 

makes 135 configuration and each configuration provides 1000 different green screen 

image. Every time they run Blender even for the same human model with same camera, 

they will still get different hair color, skin color, clothing, and body size every time. By 

keeping everything same, only similarity between different runs will be type of the 

movement itself. However, when camera or human model is changed, everything will 

change as well. 

After running Blender which means rendering images, users will get human model images 

with green screen background. Sample image is given in Figure 29. 
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Figure 29: Rendering Images from Blender 

 

Later, each green screen images are cropped to remove green background. A sample 

image is given in Figure 30. 

 

 

 

Figure 30: Cropping Human Models from Green Screen Images 

 

Every step followed so far is one-time only process. This means the final dataset is created 

by selecting human models from cropped image library. Once the cropped image library 

has been created, infinitely many final datasets can be created randomly from these 

cropped images without using Blender. The reason to use Blender is to enrich the content 

of cropped image library which is base of synthetic dataset. We currently provide 49000 

different cropped images and if users want to expand the content of that library, they can 

use Blender otherwise, Blender is not necessary. 

After getting cropped images, they can automatically create synthetic dataset by only 

specifying a few parameters such as image number, occlusion level etc. All parameters 

will be set from config.csv file. 
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Only CPU Available Option 

Blender can utilize both CPU and GPU but when it runs only on CPU it works slower. 

Therefore, this option is for the users that don’t have a GPU in their computer. Users can 

download our 49000 cropped images and create their own dataset. Every time they create 

a new dataset, they will get different images because in every time, code will choose 

random cropped images, and paste them onto random background images alongside with 

random objects. For this option, only Python is necessary. 

 

Nothing Available Option 

In this option, nothing is necessary because we already provide a sample final dataset. 

Users can download this dataset and use it. Our sample dataset contains: 

54000 x 1 person images 

54000 x 2 person images 

40000 x 3 person images 

30000 x 4 person images 

That makes total 178000 images with 402000 people in it. For comparison, MPII dataset 

contains total 25000 people in it. 

One of the best features of our dataset is that it is completely extendable by running our 

source code. Also, users can change content of the background and clothing textures for 

their specific purpose. 

 

3.3.4. Pose Complexity Analysis 

 

During creation of dataset, one of the most important elements is to have variable, unique 

and nonredundant dataset. To achieve that, different background image, clothing, lighting, 

camera angle, human size etc. was used to minimize the redundancy. However, these 

parameters only covered appearance of the image but not body pose itself. For example, 

a dataset may contain infinitely many lightings, coloring etc. but pose estimation models 

are actually trained on location of joint data. Therefore, we created a new method to         
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measure complexity of the poses in created images. Pose complexity can be applied to 

individual cropped images and final images as well. 

For example, when we create 50000 image dataset, to avoid redundancy, we may need 

images with most unique and different poses in it. In our source, we can specify this feature 

by giving (0, 60) numbers which means only accept images that has highest scores 

between top 0% and top 60%. This means, after creating dataset, our pose complexity 

algorithm scans through entire dataset, then score each image based on its complexity and 

accept top 60% score and discard bottom 40% scores. 

The benefit of measuring pose complexity is to discard most common and repetitive poses 

and only accept most unique and difficult poses to achieve maximum performance with 

minimum number of training images. Too many redundant and repetitive images may lead 

to higher storage requirements and higher training duration. 

To our knowledge, there was only one study that performed pose estimation complexity 

method when creating dataset and it was MPII dataset. In that study, without giving 

equation details, it was briefly explained as, images with the most uncommon and different 

poses compared to rest of the dataset has the maximum pose complexity score. Therefore, 

by considering that statement as our starting point, we created a new pose complexity 

metric. In most simple terms, algorithm scans through entire dataset, extract all pose 

vectors (a vector from shoulder to elbow, knee to ankle etc.) then categorizes all vectors 

based on x and y coordinates, then gives high scores to vectors, if that vector has a unique 

or uncommon (x, y) vector. 

For demonstration, let’s consider there are 10 people in a final dataset and we work on 

joint vector between left shoulder and left elbow. This means we will have 10 different 

2D vectors. A sample vector from one of the images is shown in Figure 31. 
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Figure 31: Sample Image Showing a Joint Vector on a Human Model 

 

In the example above, vector dimensions for left shoulder to elbow was obtained. For that 

joint, 9 other vectors will also be obtained from rest of the dataset (10-1 = 9 images in the 

dataset). After getting all 10 vectors from 10 images in the entire dataset, all of them will 

be placed on 2D coordinate system as shown in Figure 32. 
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Figure 32: Joint Vectors for Left Shoulder to Elbow in Entire Dataset with 10 Images 

 

As shown in grids, let’s say we categorize entire 2D spaces with 20-pixel grids. This means, 

in a 2D space bounded by (-60, 80) and (100, -60) coordinates as shown above, by dividing 

it into 20 pixels grids, there will be total 56 grid squares (56 categories). In these categories, 

some of the poses fall into the same grid square (same category) as shown in Figure 33. 
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Figure 33: Grouping of Joint Vectors Based on 20x20 Grid Categories 

 

So far, we created a dataset with 10 images, and scanned through the entire dataset for left 

shoulder-left elbow joint vectors and pasted 10 vectors onto 2D coordinate system and 

grouped them under 20x20 pixels grid. After grouping, 5 categories appeared. Number of 

vectors in each category is listed in Table 14. 
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Table 14: Number of Vectors in Each Category, Group 

 

Category Number of Vector 

1 3 

2 2 

3 1 

4 1 

5 3 

 

According to Table 14, in our algorithm, vectors in category 3 and category 4 will get the 

highest scores because they are one of a kind, most uncommon and unique vectors. 

However, vectors in categories 1 and 5 will get lowest scores because they are most 

common and easily found vector in the dataset. So far, we only performed pose complexity 

analysis for one joint (left shoulder to left elbow) but in real cases we perform for 9 

different joint vectors in human body and multiply scores of 9 vectors for each image to 

get the final score. It can be thought as a 3D distribution plot. 

Human objects with the highest scores will be most common and easy poses and will get 

least scores. However, people with least scores will be most unique and hard to find 

therefore, they will get highest pose complexity scores. 

Numbers in Table 14 may seem trivial because it has only 10 images for demonstration 

purposes. However, when we apply this method datasets with thousands of images, 

distribution graph shows a complex behavior. For example, histogram given in Figure 34 

shows pose complexity scores for a dataset with 30000 images with 4 people in each image. 

Histogram given in Figure 35 shows the individual pose complexity of the entire cropped 

person library with 49000 images. 
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Figure 34: Histogram of Scores for 4 Person Case Using 30000 Images 

 

 
 

Figure 35: Histogram of Scores of Cropped Person Library (49000 Images) 
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Analysis on 30000 images with 4 people takes 10 seconds to run. In Figure 36 and Figure 

37, 5 images with highest scores and 5 images with lowest scores are given after the 

analysis. 

 

 

Figure 36: 5 Images with Highest Pose Complexity Scores 

 

 

 

Figure 37: 5 Images with Lowest Pose Complexity Scores 
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As shown in Figure 36 and Figure 37 , images with most person to person interaction, 

most occlusion and truncation got the highest scores and images with least occlusion and 

common, easy poses usually taken straightly from front view got least scores. 

Parameters effecting pose complexity scores are listed below: 

• Number of images in each grid category 

• Number of occluded joints in each person 

• Number of truncated joints in each person 

 

For each joint vector [i] in each human model [j], pose complexity analysis starts as below: 

maxnumi: 9x1 vector for each joint vector, it represents the number of vectors in the most 

crowded category for joint i (i: vector from left shoulder to left elbow etc.) 

calcnumji: 120000 x 9 vector for 120000 people and 9 joint vector. It represents number 

of vectors that fall into the same category, grid with vector coming from person j and joint 

vector i. 

occludedj: 120000 x 1 vector. Number of joints occluded or truncated for person j 

personscorej: 120000 x 1 vector. Score of each person 

imagescorek: 30000 x 1 vector. Final image scores of each image by summing person 

scores of 4 persons in each image. 

scorej = ∏ (
2∗maxnumi−calcnumji

maxnumi
)

1.2
𝑖
1                     (1) 

personscorej = scorej ∗ (
9+occludedj

9
)

3

                 (2) 

 imagescorek =  ∑ (personscorej)
4
1                         (3) 

scorej = initial score of person j without occlusion correction 

personscorej = Score of person j after making occlusion correction 

imagescorek = Score of image k by summing scores of 4 persons in each image. 
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3.3.5. Further Details About Three Dataset Generation Methods 

 

Background Images 

Street environment method places human models in 3D street. Therefore, no background 

image is required. However, they are required for plane video method and cropped person 

method. The background images change in every frame which means every image in a 

dataset contains different background image. Also, most of the images were taken from 

YouTube videos with various content such as indoor, outdoor, nature etc. 

When creating background image library, special attention has been given to following items: 

1. There can be no human in the background images because that disturbs training 

process. Only human in an image must be Blender human model. 

2. To avoid people appearances in each video frame, we used a fast and highly 

accurate pose estimation model to detect people in different frames and discard 

that frame if there is a human in it. We provide the source code for this tool so that 

users can create their own background without human in it. 

3. Videos contents are chosen from various domains and one frame was extracted in 

every 5 seconds of each video to avoid consecutive frame redundancy. 

 

Animation and Human Movement in Blender 

Blender software provides not only 3D design of objects but also animation and movement 

of objects in 3D space. To avoid overfitting during training, synthetic dataset must cover 

wide range of human body movements. Considering 178000 images in the dataset, pose 

and location of human models must be non-repeating. To be able to achieve that, 

animation feature of Blender was used. 

To be able to move person or change pose of the human model in Blender, keyframes are 

used. Keyframes are pose and location instances of a human model. There are 4 different 
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parameters stored in an instance. These are: 

• Full human body location information 

• Full human body rotation information 

• Location information of every joint 

• Rotation information of every joint 

By changing these 4 parameters, it is possible to locate and rotate human body anywhere 

in the whole image. It is also possible to change human pose completely by changing 

location and rotation of each joint. These variations create keyframes and each keyframe 

is used to create an animation of the moving human model. Two different keyframes are 

given in Figure 38. 

 

 

 

Figure 38: Two Different Keyframes from Blender Animation 

 

In Figure 38, human body poses for both left and right side was manually created and 

there are 22 frames between these keypoints. If start and end point of a person is provided, 

Blender can perform interpolation between start frame and final frame and fills 22 frame 

gap in such a way that it goes from frame 271 to frame 293 in a smooth way. 

Since every start and finish keyframe is different, beginning and end of the interpolation 

is different so, movement between every keyframe is different. This method was used to 

ensure the nonrepeating human poses throughout dataset. 
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Dynamically Changing Parameters 

So far, changing of background and variation of human pose in each frame have been 

discussed. To increase variability even further, some parameters inside Blender have been 

changed in each frame. 

• In each frame, brightness of lights is changed randomly to create different lighting 

conditions. 

• In each frame, t-shirt color and texture, pants color and texture, skin color and 

texture and hair color and texture of human model change. 

• Images are taken by cameras from 5 different angles 

• In each frame, scale of the model changes and that changes body ratio. 

All these changes are adjusted via Python scripts which was provided in source code. 

 

3.4.    Testing Different Pose Estimation Models on Blender Dataset 

 

In the duration of dataset generation, to quantitively evaluate synthetic dataset, 4 different 

pose estimation models available on GitHub were used to test their performance on 

Blender Dataset. The purpose of this evaluation is to observe whether real world pose 

estimation models performs well on synthetic images created by Blender. To represent 

accuracy values, MPJPE metric [6] has been used. This is the L2 norm over all the joints 

in all images. 

 

Error (MPJPE)  =  
(∑ ((xgt−x)

2
+(ygt−y)

2
)

n

k=0
) 0.5

n
               (4) 

 

x: estimated x coordinate of joint 

xgt: ground truth x coordinate of joint 

y: estimated y coordinate of joint 
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ygt: ground truth y coordinate of joint 

n: number of total joints in dataset 

 

4 different models were used to perform this test. These models are: 

Model 1: Lightweight Human Pose Estimation 3d Demo Pytorch [19] 

Model 2: Posenet Pytorch [28] 

Model 3: Deep High Resolution Net Pytorch [29] 

Model 4: Pytorch Openpose [30] 

These 4 models were tested on 200 Blender images and error values based on MPJPE 

metric are given in Table 15. 

 

Table 15: Performance of 4 Different Models on Blender Dataset by mAP metric 

 

Models Error in pixels (MPJPE) Detection Ratio (%) 

Model 1 5.69 91.92 

Model 2 3.03 95 

Model 3 5.18 84.62 

Model 4 4.35 92.08 

 

In Table 15 above, error in pixel means MPJPE error over the entire Blender dataset. 

Detection ratio is the percentage of joints detected in whole dataset. For example, Model 

1 detected 91.92% of all joints in Blender dataset and in detected joints, error is 5.69 pixels 

based on MPJPE error metric. 

These values are close to values in literature. This means pose estimation models trained 

on real world data can perform well on Blender simulation data as well. Therefore, a 
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human pose estimation model trained on Blender dataset may work on real world data as 

well. This thesis was checked in later chapters. 

 

3.5.    Creation of Blender Dataset 

 

So far, the way to build human model and 3D environment has been explained. After 

completing these steps, dataset was created. 

In the dataset, there are 178000 images and a single .json annotation file. .json file contains 

joint locations in each image as x and y pixel coordinate location. Blender software has a 

3D environment inside but created images needs to have 2D joint locations. Therefore, 

3D environment was projected into 2D images to create dataset. This means 3D (x,y,z) 

coordinate of joints in Blender software, was converted into 2D (x,y) coordinate in images. 

Camera internal parameters and projection matrix were used for this operation by 

assuming pinhole camera model. Visual representation of pinhole camera model is given 

in Figure 39. 

 

 

 

Figure 39: 3D to 2D Camera Projection Procedure [31] 
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Po = original 3D coordinates of object point [Xp, Yp, Zp] 

Oo = original 3D coordinates of camera [Xo, Yo, Zo] 

Pc = coordinates of object point converted from Po [Xc, Yc, Zc] 

Oc = Center of projection ((0,0,0) coordinates in converted coordinate system) 

In Blender, camera position and rotation information are available, and object point 

position information is also available. Focal length and image plane size is also available. 

To be able to convert 3D coordinates into 2D pixel coordinates following formula was 

used. Equation 5 provides a simplified version of camera calibration equation. 

𝑠 ∗ [
𝑢
𝑣
1

] =  [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 −𝑋𝑜
𝑟21 𝑟22 𝑟23 −𝑌𝑜
𝑟31 𝑟32 𝑟33 −𝑍𝑜

0 0 0 1

] [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

]                     (5) 

In Equation 5, [Xp, Yp, Zp, 1]T matrix is the 3D coordinates of object points. In this case, 

reference coordinate system is Blender original coordinate system. However, it needs to 

be converted into camera coordinate system and rotation and translation matrix [R|T] was 

used for this operation. Rotation matrix is the 3x3 Euler rotation of camera with respect 

to Blender coordinate system. Translation matrix is a 3x1 matrix and it contains 3D 

coordinates of camera with respect to original Blender coordinate system. Rotation and 

translation matrix is augmented as shown in Equation 5. 

Note that in Equation 5, object point coordinates are converted into camera coordinate 

system coordinates. In this case, reference coordinate system is taken as camera coordinate 

system but not Blender coordinate system. It is explained in Equation 6 below: 

[

𝑋𝑐
𝑌𝑐
𝑍𝑐
1

]  =  [

𝑟11 𝑟12 𝑟13 −𝑋𝑜
𝑟21 𝑟22 𝑟23 −𝑌𝑜
𝑟31 𝑟32 𝑟33 −𝑍𝑜

0 0 0 1

] [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

]                               (6) 

When object point position in camera coordinate system is found, the projection on image 

plane has to be found. Cameras in Blender software works with pinhole camera model. 

Therefore, this model is used to get 2D coordinates in image plane. Another visual 
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representation of pinhole camera model is given in Figure 40. 

 

 

Figure 40: Representation of Pinhole Camera Models (HeadVision, 2019) 

 

To be able to use pinhole camera models, internal camera matrix is used as shown in 

Equation 5. To perform similarity in triangle following equations are used: 

𝑠 ∗ [
𝑢
𝑣
1

] =  [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑋𝑐
𝑌𝑐
𝑍𝑐
1

]                                        (7) 

By performing matrix multiplications in Equation 7, u and v values were found and these 

are pixel coordinates of object points in created image. s value is a constant and it is found 

by the image plane size that can be adjustable in Blender software. 

In this chapter, Blender features and methods to create synthetic dataset have been 

discussed. To create a rich dataset, different randomization methods have been applied. 

In the next chapter, details about usage of synthetic dataset on training and accuracy 

results have been discussed. 
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CHAPTER 4 

 

4. TRAINING MODELS with BLENDER DATASET 

 

In chapter 3, methods and procedures to create synthetic dataset with high variability have 

been discussed. By applying these procedures, synthetic dataset was created. This dataset 

consists of 178000 images and a single annotation file in .json format. However, to be able 

utilize synthetic dataset in training, annotation file was converted to MPII dataset format. 

Details about files and training has been discussed in next parts. 

 

4.1.    Blender Annotation File Details 

 

Blender annotation file is in csv format, and it contains 18 joint coordinates for every 

human model in the image. In the final dataset, .csv file is converted to .json file to be 

suitable with MPII dataset format. Name of the joints are given in the Table 16. 

 

Table 16: Order and Name of Joints in Blender .csv Dataset 

 

Joint Number Joint Name Joint Number Joint Name 

1 Top of the head 10 Right Wrist 

2 Bottom of head 11 Chest 

3 Left Thorax 12 Pelvis 

4 Left Shoulder 13 Left Hip 

5 Left Elbow 14 Left Knee 

6 Left Wrist 15 Left Ankle 

7 Right Throax 16 Right Hip 

8 Right Shoulder 17 Right Knee 

9 Right Elbow 18 Right Ankle 
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4.2.    Training Models on Blender Dataset 

 

Blender dataset is a custom-made dataset, and it can be converted into other dataset 

formats. Generally, different datasets in literature contains 16-17 joints in them and their 

joint order from first joint to last joint may differ. Also, file format and the way coordinates 

are presented may differ. 

After literature survey about datasets, to evaluate our dataset’s performance, two datasets 

from literature have been selected. These are MPII dataset and Crowdpose. Especially, 

MPII dataset is one of the most widely used human pose estimation dataset and there is 

more information and source code available on internet about this dataset compared to 

other datasets. MPII dataset contains over 25000 images of people performing different 

daily activities. Its annotation file formats are .mat format and .json format. Crowdpose 

dataset contains 20000 images from crowded scenes in daily activities. Its annotation file 

is a .json file as well. 

Required information for MPII dataset is listed below: 

• Joint visibility 

• Joint locations 

• Image file name 

• Scale of human body in image with respect to 200 pixels 

• Center coordinates of human body 

 

All this information can be extracted from Blender software and Crowdpose dataset as 

well. Therefore, original Blender annotation file with .csv format were converted into 

MPII dataset format and Crowdpose dataset format was also converted to MPII format to 

be used in training later. 

To be able train human pose estimation model, firstly, training model must be selected. 

Model can be trained from scratch or training can be resumed on a previously trained 

model. Then, training source code needs to be found. Source codes for models trained on 

MPII dataset are available on GitHub. Among them, 4 approach were selected. These are: 
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1. Epipolarpose [32] 

2. Pytorch Pose [33] 

3. Human Pose Estimation Pytorch [34] 

4. HRNet [35] 

 

After working on four different source code above, 3rd and 4th source codes were selected. 

It was possible to train first two pose estimation models, but they were excluded due to 

some limitations. 

 

4.3.    Details about Training 

 

As explained in previous chapter, effectiveness of Metupose dataset has been tested via 

two pose estimation models and two pose estimation datasets. Models are Pose Resnet50 

and HRNet. Datasets are MPII and Crowdpose dataset. 

General procedure to measure effectiveness can be described as follows: 

1. Firstly, Metupose dataset was combined with MPII dataset 

2. ‘Original Pose ResNet50’ model has been trained further for 100 epochs with the 

combined dataset in step 1 by resuming training 

3. Same ‘Original Pose ResNet50’ model has been trained further for 100 epochs 

with only MPII dataset 

4. Performance of two trained models in step 2 and step 3 are tested on 3 different 

datasets. These are: 

a. MPII dataset 

b. Crowdpose dataset 

c. LSPet dataset 

The example given above were performed for (Pose ResNet50 model + MPII dataset) 

bundle. Same procedure was performed on (Pose ResNet50 model + Crowdpose dataset) 

bundle and (HRNet model + MPII dataset) bundle. Three different experiments are 

summarized in Table 17. 
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Table 17: 3 Experiments to measure effectiveness of Metupose dataset 

 

Experiment Used Pose Estimation 

Model 

Used Literature Dataset 

Experiment 1 Pose ResNet50 MPII 

Experiment 2 Pose ResNet50 Crowdpose 

Experiment 3 HRNet MPII 

 

The reason to perform 3 different experiments is to ensure the effectiveness of our dataset 

in different conditions. If we only performed Experiment 1 for example, we would only 

know effectiveness on Pose ResNet50 model and MPII dataset, but we would not know 

effectiveness on HRNet model and Crowdpose dataset. This is important for 

generalizability of effectiveness of our dataset. 

 

Pose ResNet50 Pose Estimation Model Overview 

Selected source code for Pose ResNet50 model is Human Pose Estimation Pytorch by 

Microsoft which is the official implementation of Simple Baselines for Human Pose 

Estimation and Tracking study. 

Original MPII dataset annotation file is in .mat format but in source code, it was converted 

to .json format. Both json annotation file and pretrained models were available in their 

source code. Architecture and framework of Pose ResNet50 model is given in Figure 41 

and Figure 42. 

 

 

 

Figure 41: Architecture of Pose ResNet50 models used in Training [36] 
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Figure 42: Framework of the Pose ResNet Model Used in Training [36] 

 

In the training models, ResNet [37] was used as a backbone. Additional deconvolutional 

layers has been added to backbone and models were created. 

Chosen source code has an accuracy metric called as PCKh. It is a different variation of 

PCK metric from a different study [38]. In this study, person bounding boxes were created 

and threshold bounding boxes are also created by multiplying person bounding box 

dimensions with a constant such as 0.1. For example, if person bounding boxes have 

dimensions such as 400 x 600 pixels, then, threshold bounding box dimension will be 40 

x 60 pixels. Maximum of the two values which is 60 is taken. If the difference between 

estimated joint coordinate and ground truth joint coordinate is lower than threshold length 

(60 pixels) then, this estimation will be considered as correct. When this metric is applied 

to all images and all joints in a dataset, percentage of the correct labels will give PCK 

values. If 87% of all joints in a dataset was considered as correct, then pose estimation 

model will have PCK value of 87 in this dataset. 

In source code, there was a slight change about accuracy metric. Instead of using full body 

to create threshold values, they used head segment length as reference length and 0.5 as 

the multiplying constant. This new metric is called PCKh (Percentage of Correct 

Keypoints-Head) 
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There were 6 different pretrained pose estimation models provided in the source code. In 

training and validation for Pose ResNet, only first model, pose_resnet50_256x256.pth.tar 

model was used. Accuracy values of six pretrained models from GitHub were tested on 

four different datasets and results are listed in Table 18. 

 

Table 18: Accuracies of Pretrained Github Models on 4 Different Datasets 

 

No Model 
Blender Acc 

(PCKh) 

MPII Acc 

(PCKh) 

LSPet Acc 

(PCKh) 

Crowdpose Acc 

(PCKh) 

1 
Pose resnet50 

256x256 

39.5 
88.5 

26.1 59.1 

2 
Pose resnet50 

384x384 

39.5 
89.1 

24.2 61.0 

3 
Pose resnet101 

256x256 

40.2 
89.1 

25.8 59.6 

4 
Pose resnet101 

384x384 

40.7 
90.0 

24.2 61.6 

5 
Pose resnet152 

256x256 

41.3 
89.6 

24.2 60.5 

6 
Pose resnet152 

384x384 

43.5 
90.2 

25.4 63.6 

 

HRNet Pose Estimation Model Preview 

Selected source code for Pose HRNet model is the official implementation of Deep High 

Resolution Representation Learning for Human Pose Estimation. 

Pretrained HRNet model was trained on MPII dataset and original MPII dataset annotation 

file is in .mat format but in HRNet source code, it was converted into .json format. Both 

json annotation file and pretrained models were available in their source code. Name of 

pretrained model is pose_hrnet_w32_256x256.pth and its architecture is given in Figure 

43. 
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Figure 43: Architecture of pretrained HRNet Model 

 

Both Pose ResNet50 and HRNet models in Github were pretrained on MPII dataset and 

their accuracy metric is PCKh. 

Explanation for keywords used in accuracy results table is given in Table 19 and  

Table 20. 

 

Table 19: Explanation for Different Datasets 

 

No Dataset Keyword Dataset Meaning 

1 MPII Official MPII dataset containing 25000 people 

2 Crowdpose Official Crowdpose dataset, containing 26000 people 

from crowded scenes 

3 LSPet A portion of official LSPet dataset, containing 9000 

people. Single person dataset with very difficult poses. 

4 Blender Sample from our Blender dataset containing 43200 

people 

5 BL_MP Combination of BLender and MPII dataset containing 

68000 people 

6 BL_CR Combination of BLender and CRowdpose dataset 

containing 69000 people 
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Table 20: Explanation for Different Training Conditions 

 

No Training Keyword Training Meaning 

1 FS_60E Trained From Scratch for 60 epochs 

2 RT_100E Resumed Training on previously trained model for 100 

epochs 

3 ORG Original model from Github 

 

Sample model names based on combined keywords from the tables are given in Table 21. 

 

Table 21: Definition of Sample Pose Estimation Model Names 

 

No Model Model Meaning 

1 PR--RT_100E--BL_MP Pose ResNet model 100 epochs resume-trained on 

combination of Blender and MPII datasets 

2 PR--FS_60E--BL_CR Pose ResNet model trained from scratch for 60 epoch 

on combination of Blender and Crowdpose datasets 

2 HR--RT_100E--BL_MP HRNet model 100 epochs resume-trained on 

combination of Blender and MPII datasets 

3 ORG--PR Original pretrained Pose ResNet model from Github 

4 ORG--HR Original pretrained HRNet model from Github 

 

Experiments and results are given in Table 22 to Table 24. 

 

Experiment 1 (Pose ResNet model + MPII dataset) Bundle 

Table 22: Accuracy Values for Experiment 1 (Pose ResNet50 + MPII Dataset) 

 

No Model MPII (% PCKh) Crowdpose 

(% PCKh) 

LSPet (% PCKh) 

1 PR--RT_100E--BL_MP 89.25 60.45 27.44 

2 PR--RT_100E--MPII 88.73 58.76 25.83 

3 ORG--PR 88.5 59.12 26.1 
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Experiment 2 (Pose ResNet + Crowdpose) Bundle 

Table 23: Accuracy Values for Experiment 2 (Pose ResNet50 + Crowdpose Dataset) 

 

No Model MPII (% PCKh) Crowdpose 

(% PCKh) 

LSPet (% PCKh) 

1 PR--FS_60E--BL_CR 78.82 64.63 17.63 

2 PR--FS_60E--Crowdpose 77.51 62.48 16.29 

 

Experiment 3 (HRNet + MPII) Bundle 

Table 24: Accuracy Values for Experiment 3 (HRNet + MPII Dataset) 

 

No Model MPII (% PCKh) Crowdpose 

(% PCKh) 

LSPet (% PCKh) 

1 HR--RT_100E--BL_MP 89.98 63.62 28.88 

2 HR--RT_100E--MPII 89.91 62.03 27.70 

3 ORG--HR 90.30 59.12 26.1 

 

From the accuracies given in Table 22 to 23, findings are summarized below: 

1. Regardless of the pose estimation model and dataset, our Blender dataset increased 

accuracies in all cases. 

2. There was only a slight accuracy drop in Experiment 3 MPII test compared to 

original model. In that experiment original accuracy was already high (90.30 

PCKh) and further training even in its own MPII dataset resulted in drop in 

accuracy. The reason could be original model could already be saturated and well-

tuned for MPII dataset so, further training in MPII may disturb the model and 

result in very small decrease instead of an increase. Also, accuracy of our model 

is still higher than 100 epoch MPII resume training case. 

3. Blender dataset increased accuracies both in training from scratch and resume 

training cases 
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4. In experiment 1, resume training in MPII dataset resulted in accuracy drop in 

Crowdpose and LSPet dataset but adding Blender dataset resulted in accuracy 

increase. 

 

Experiment 4 (Changing Content of Metupose Dataset) 

Apart from 3 experiment, another experiment has been performed to measure the 

effectiveness different Metupose dataset configurations. In this experiment, total number 

of people in the whole Metupose dataset has been kept same and image number in each 

image has been changed. In training source code, the important parameter is number of 

total people in all images but not the number of images itself. Results for (Pose ResNet50 

and MPII dataset) bundle are given in Table 25. 

 

Table 25: Performance of Metupose Dataset in Different Configurations 

 

No Model MPII (% PCKh) Crowdpose 

(% PCKh) 

LSPet  

(% PCKh) 

1 PR--RT_100E--BL_MP_1 89.07 59.71 27.19 

2 PR--RT_100E--BL_MP_1234 89.09 60.48 26.88 

3 PR--RT_100E--BL_MP_4 89.25 60.45 27.44 

4 PR--RT_100E--MPII 88.73 58.76 25.83 

5 ORG--PR 88.5 59.12 26.1 

 

• PR--RT_100E--BL_MP_1 : Metupose dataset includes 1 person x 43200 images 

• PR--RT_100E--BL_MP_1234 : Metupose dataset includes: 

o 1 person x 10800 images 

o 2 person x 5400 images 

o 3 person x 3600 images 

o 4 person x 2700 images 

• PR--RT_100E--BL_MP_4 : Metupose dataset includes 4 person x 10800 images 

From the accuracies given in Table 25, findings are summarized below: 

1. Crowdpose is a multi person dataset and it contains crowded environment. LSPet 
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on the other hand is a single person dataset. When first and second Metupose 

dataset configuration was compared, first one (single person Metupose dataset) is 

better at LSPet and worse at Crowdpose. 

2. Second configuration (mixed Metupose dataset) is better at Crowdpose and worse 

at LSPet dataset. 

3. When first 2 configuration are compared as explained in steps above, results make 

sense because single person configuration performs better on single person dataset 

and mixed, multi-person configuration performs better crowded multi-person 

dataset. 

4. However, instead of using mixed dataset, when we use only 4 people images, it 

performs better than any configuration in all cases. The reason for that could be increased 

occlusion and increase in complex interaction between different people. 

Some may argue that adding new data to a dataset is expected to increase accuracy and 

therefore increase in accuracy due to additional Blender data is an expected outcome. This 

is correct. However, creating data in Blender is an automated process and it is completely 

free and does not take so much time. Furthermore, Blender provides all joint locations 

whether it is necessary or not for a specific dataset. This is especially useful because 

combining two different datasets from literature may be difficult or even impossible due 

to difference in the content of two datasets. Different dataset may include different number 

of joints, different location of joints labelled by different authorities. 

Also, creating a new dataset for additional data manually is an expensive process but new 

and infinite amount data can easily be created via Blender. Because of these reasons, 

accuracy of a model can be increased almost effortlessly through Metupose dataset. 

 

4.4. Deploying the Trained Model on Jetson Nano 

 

Trained models are firstly tested on desktop computer through real time webcam video, 

later tested on Nvidia Jetson Nano. 

As expected, desktop gave so much more fps compared to jetson nano and results are 
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given in Table 26 and Table 27. 

Table 26: Real Time Fps Values of Our Trained Pose ResNet50 Model in Different 

Hardware 

 

Hardware Fps 

Nvidia RTX3080 111.0 fps 

Nvidia GTX1050ti 16.7 fps 

AMD Ryzen9 5900x (CPU) 8.5 fps 

Nvidia Jetson Nano (10W mode) 3.4 fps 

Nvidia Jetson Nano (5W mode) 3.8 fps 

 

Table 27: Real Time Fps Values of Our Trained Pose HRNet Model in Different 

Hardware 

 

Hardware Fps 

Nvidia RTX3080 26.3 

Nvidia GTX1050ti 13.1 

AMD Ryzen9 5900x (CPU) 8.1 

Nvidia Jetson Nano (10W mode) 2.8 

Nvidia Jetson Nano (5W mode) 2.2 

 

It was observed that Nvidia Jetson Nano was barely enough to track human. Also, during 

pose estimation, Jetson Nano gave over-current throttling error as shown in Figure 44. In 

some of the experiments, Nvidia Jetson Nano shut down itself because of high workload. 

Because these complex models were trained on Desktop computer it can be difficult for 

single board computer to run it non-stop. However, there is a way to increase fps by using 

TensorRT. This tool is specifically designed by Nvidia to convert Desktop trained models 

to Jetson compatible models. This tool provides an increase in fps between 1.2 times to 6 

times the original fps. We could not achieve to convert our model via TensorRT but this 

can be done as future work. 

Also, in desktop hardware, there was a small fps difference between ResNet50 and HRNet 

model in GTX1050ti and AMD CPU devices. However, there was almost 4 times the 

difference in RTX3080 hardware. Actual reason is not known but one of the possible 

reasons could be special deep learning technology used in latest RTX3080 GPU may work 



 

 

83 

completely optimized with ResNet50 model but not with HRNet model. Release dates for 

RTX3080 and GTX1050ti is 2020 and 2016 respectively. In the last a few years, Nvidia 

provided so much more optimization in deep learning applications with their new devices 

compared to 6-7 years ago. A sample image of Jetson Nano pose estimation studies is 

given in Figure 44. 

 

 
 

Figure 44: Throttle Error on Jetson Nano During Real Time Pose Estimation via 

ResNet50 Model 
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CHAPTER 5 

 

5. CONCLUSION 

 

5.1.        General Conclusion 

Human pose estimation is basically finding pixel location of joints in an image, and it is 

one of the most rapidly growing fields in machine vision. In this field, mostly, deep 

learning algorithms are used for maximum accuracy and flexibility. Although deep 

learning models give accurate results in most of the cases, there are still some cases where 

even some advanced models fail. These cases can be listed as: occlusion, multiple people 

in an image, interactions between people etc. To be able to overcome these problems pose 

estimation models need to be robust and flexible in different conditions and it needs to be 

trained on a wide variety of data to increase performance. However, creating a dataset 

from real world images is an expensive and time-consuming process and created data may 

be subject to errors because all joints are manually labelled by a human. To overcome 

these problems, a parametric synthetic dataset approach is proposed where existing 

datasets can also be enhanced with these synthetic images. When pose estimation models 

trained only on real world images were tested on simulation data created in a 3D graphics 

software, accuracies were satisfactory, and they were even close to the real-world 

accuracies. This means, once a model performs well on real world data, it does not 

differentiate simulation data from real world data and works on both. Therefore, our 

hypothesis is that when a model is trained only on simulation data, it can work on real 

world data as well since opposite case is observed to be true. To be able to test that, we 

created a synthetic pose estimation dataset in Blender 3D software and tested the 

effectiveness of our dataset with two different pose estimation model and 2 different 

datasets. During testing we trained different pose estimation models via Metupose dataset 

and observed changes in model accuracies. Our Metupose dataset led to accuracy increase 
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in all model/dataset cases. This means increasing a pose estimation model’s accuracy by 

using Metupose dataset is possible and creating Metupose dataset is an automated and 

effortless process. We provide a complete 178000 image and 402000 person dataset and 

source code and necessary tools to create new dataset easily. By using Metupose dataset, 

we trained a pose estimation model and integrated the model into Nvidia Jetson Nano and 

Raspberry Pi camera system and results were satisfactory. This system can be used as a 

low-cost human tracking system in the future studies. 

 

5.2.        Future Work 

Although Metupose dataset was successful for increasing accuracy of pose estimation 

models, there are some areas that can be improved in future studies. 

Firstly, our trained model was run on Jetson Nano single board computer at 3.4 fps, this is 

barely enough to track a moving human object. To increase running fps, TensorRT module 

developed by Nvidia can be used. 

MPII dataset contains total 25000 people and when we combine our Metupose dataset 

with MPII dataset, we added images with total 43200 persons out of total 402000 persons. 

For this case, future work could be increasing number of persons from Metupose dataset 

to observe if there is any increase in final accuracy. 

All human models in our study were created by MbLab addon in Blender software and 

there are other tools and software to create even more realistic human models with 

different clothing style. Therefore, our whole study can be reproduced on another 3D 

design software platform to observe if there will be an increase in accuracy. 
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CHAPTER 6 

 

6. APPENDIX 

 

All our source code is available in links below: 

• https://github.com/mustafa-ersoy/metupose-dataset 

• https://drive.google.com/drive/u/2/folders/1-

3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE 

• https://users.metu.edu.tr/kbugra/research/metupose/ 

 

All links above contain same source code. 

https://github.com/mustafa-ersoy/metupose-dataset
https://drive.google.com/drive/u/2/folders/1-3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE
https://drive.google.com/drive/u/2/folders/1-3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE
https://users.metu.edu.tr/kbugra/research/metupose/

