

DEVELOPMENT OF SYNTHETIC AND REAL-WORLD POSE ESTIMATION

DATASET TO BE USED IN HUMAN TRACKING SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA ERSOY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

APRIL 2022

Approval of the thesis:

DEVELOPMENT OF SYNTHETIC AND REAL-WORLD POSE ESTIMATION

DATASET TO BE USED IN HUMAN TRACKING SYSTEM

Submitted by MUSTAFA ERSOY in partial fulfillment of the requirements for the degree

of Master of Science in Mechanical Engineering Department, Middle East Technical

University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences ________________

Prof. Dr. M. A. Sahir Arıkan

Head of the Department, Mechanical Engineering ________________

Associate Prof. Dr. Ahmet Buğra Koku

Supervisor, Mechanical Engineering, METU ________________

Examining Committee Members:

Prof. Dr. Yiğit Yazıcıoğlu

Mechanical Engineering, METU ________________

Associate Prof. Dr. Ahmet Buğra Koku

Mechanical Engineering, METU ________________

Assistant Prof. Dr. Ali Emre Turgut

Mechanical Engineering, METU ________________

Assistant Prof. Dr. Emre Akbaş

Computer Engineering, METU ________________

Assistant Prof. Dr. Kutluk Bilge Arıkan

Mechanical Engineering, TED University ________________

 Date: 29.04.2022

iv

I hereby declare that all information in this document has been obtained and pre-

sented in accordance with academic rules and ethical conduct. I also declare that, as

required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Surname: Mustafa Ersoy

 Signature:

v

ABSTRACT

DEVELOPMENT OF SYNTHETIC AND REAL-WORLD POSE ESTIMATION

DATASET TO BE USED IN HUMAN TRACKING SYSTEM

Ersoy, Mustafa

Master of Science, Mechanical Engineering

Supervisor: Associate Prof. Dr. Ahmet Buğra Koku

April 2022, 93 pages

In this study, we propose an extendable, synthetic human pose estimation dataset named

“Metupose”. Pose estimation aims to determine the pose of a person by detecting joints in

an image or video. Dataset was created in Blender 3D software and with varying human

objects and environment. It is also used to enhance the accuracy of pose estimation models

in the literature. Metupose dataset contains 178000 images. Images have 1 to 4 people in

it, where there is a total of 402000 people exist in these images. When we train different

pose estimation models from the literature with our dataset, we observed an accuracy

increase in all model/dataset cases. Our second contribution is the source code to create

new images for the dataset. Although, Metupose contains large number of images for most

of the applications, users may need to create their own custom dataset or want to increase

the number of images. We provide original Blender 3D files and a simple configuration

file so that users can create new dataset easily. Normally, creating a real-world dataset is

time consuming and open to labelling errors. The advantage of our study is that datasets

of desired sizes can be created from software, without any error, in an automized way. We

finally, trained a pose estimation model with our Metupose dataset and integrated the

trained model into Nvidia Jetson Nano that is equipped with a Raspberry Pi Camera and

evaluated human tracking performance. Results indicate that single board computers offer

a low-cost alternative to be used in human-robot interaction studies.

Keywords: Pose Estimation, Extendable Dataset, Synthetic Dataset, Human Tracking

vi

ÖZ

İNSAN TAKİBİ SİSTEMLERİNDE KULLANIM AMAÇLI GERÇEK HAYAT VE

SENTETİK İSKELET TAKİBİ VERİ SETİNİN GELİŞTİRİLMESİ

Ersoy, Mustafa

Yüksek Lisans, Makina Mühendisliği

Tez Yöneticisi: Doçent Dr. Öğretim Üyesi Ahmet Buğra Koku

Nisan 2022, 93 sayfa

Bu çalışmada, “Metupose” isimli sentetik ve genişletilebilir insan iskelet takibi veri seti

sunduk. İskelet takibi, bir görüntü veya videodaki insan eklemlerini algılayarak insan

duruşunu algılamaktır. Veri seti, Blender 3D programında değişken insan modelleri ve

çevreye sahip şekilde üretilmiştir. Ayrıca, literatürdeki iskelet takibi modellerinin

doğruluğunu artırmada kullanılmıştır. Metupose veri setinde 178000 görüntü vardır. Her

bir görüntüde 1,2,3 veya 4 insan olmak üzere toplamda 402000 insan bulunmaktadır.

Farklı iskelet takibi modellerini veri setimizle eğittiğimizde tüm model/veri seti

durumlarında doğruluk artışı gözlemledik. İkinci katkımız ise, veri setinde yeni görüntüler

oluşturmaya yarayan kaynak kodudur. Metupose veri setinde birçok uygulama için yeterli

görüntü olsa da kullanıcılar kendilerine ait veri seti oluşturmak isteyebilir veya görüntü

sayısını artırmak isteyebilir. Kullanıcıların kolayca yeni veri seti oluşturabilmesi için,

orijinal Blender dosyalarını ve basit konfigürasyon dosyasını yayımladık. Normal

koşullarda, gerçek hayat veri seti üretmek çok zaman alabilir ve hatalara açıktır.

Çalışmamızın avantajı, sadece yazılım üzerinden otomatik şekilde hatasız veri seti

üretmeye imkân sağlamasıdır. Son olarak, Metupose veri seti ile eğittiğimiz iskelet takibi

modellerini Raspberry Pi kamerasına sahip Jetson Nano’da çalıştırdık. Sonuçlar, bu

sistemin, insan-robot etkileşimi çalışmalarında düşük maliyetli bir alternatif olabileceğini

gösterdi.

Anahtar Kelimeler: İskelet takibi, Genişletilebilir Veri Seti, Yapay Veri Seti, İnsan Takibi

vii

To Tolga, Uygar and Fatma

viii

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor Associate Prof. Dr.

Ahmet Buğra Koku for his guidance, advice, criticism, encouragements, and insight

throughout the research.

I would like to extend my thanks to ODTÜ BAP Koordinasyon Birimi for their financial

support in this study. (Project No: 10587)

I would like to thank METU ROMER for letting me perform experiments on their Vicon

system during my studies.

I would like to extend my thanks to Fatih Tosun for his friendship and for supporting me

every day during my studies.

I sincerely thank to my friend Burak Anıl Güler for his friendship and everything. Also,

for convincing me to buy his GPU during my studies. Without that purchase, this study

would not be possible.

I also would like to thank to my old team manager Dr. Ahmet Bayrak and my coworkers

Beyza Nur Cenkci, Mete Gökalp and Sarp Karadayı for always supporting and believing

in me.

And of course, my greatest thanks go to Ersoy family including my parents Murat Ersoy,

Ayfer Ersoy and my brother Tolga Ersoy, my uncle Duran Ersoy and his wife Ümmühani

Ersoy and my cousins Uygar Ersoy and Fatma Ersoy. You all always supported and

believed in me and encouraged me to push my limits in my entire life. Thank you all for

everything.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

CHAPTERS

1. INTRODUCTION .. 1

1.1. Problems in Pose Estimation .. 1

1.1.1. Occlusion ... 2

1.1.2. Unknown Number of People ... 2

1.1.3. Interaction Between Different People .. 3

1.1.4. Decrease in Running Speed with Increase in Number of People 3

1.1.5. Accurate External Camera Calibration in Stereo Images 3

1.1.6. Not Having Enough Data and Errors in Labelling of Data 4

1.2. Literature Survey .. 4

1.3. Human Pose Estimation Datasets .. 6

1.3.1. COCO Dataset .. 6

1.3.2. MPII Dataset... 7

1.3.3. H36M Dataset ... 7

1.3.4. CrowdPose Dataset .. 8

1.3.5. LSP/MPII-MPHB Dataset ... 8

1.4. Problems with Pose Estimation Datasets .. 9

1.5. Synthetic Datasets .. 10

1.6. Synthetic Datasets in the Literature .. 12

1.6.1. SurReal Dataset .. 12

1.6.2. JTA Dataset ... 13

1.6.3. AGORA Dataset ... 15

1.7. Motivation .. 16

x

1.8. Layout of Thesis ... 17

2. PERFORMANCE of POSE ESTIMATION MODELS on SYNTHETIC

IMAGES .. 19

2.1. Vrep 3D Software Information ... 19

2.2. Performing Pose Estimation on Different Image Groups 21

2.3. Quantifying Performances of Pose Estimation Models 24

2.3.1. Perfect Label ... 24

2.3.2. Fair Label .. 24

2.3.3. Bad Label .. 25

2.3.4. No Detection Label ... 25

2.3.5. Wrong Detection (Extra person detection) .. 25

2.4. Domain Randomization .. 30

2.5. Final Notes .. 31

3. STUDIES ON BLENDER 3D SOFTWARE .. 33

3.1. Blender General Information ... 33

3.2. Blender Properties and Capabilities Regarding Pose Estimation 34

3.2.1. Creating Human Models.. 34

3.2.2. Person Rigging and Animation ... 37

3.2.3. Python API .. 38

3.2.4. Changing Appearance of Human Model .. 38

3.3. Image Creation in Blender .. 41

3.3.1. Creating a Street Environment ... 41

3.3.2. Human Model in Front of a Plane Video Method 43

3.3.3. Person Cropping Method .. 46

3.3.4. Pose Complexity Analysis .. 55

3.3.5. Further Details About Three Dataset Generation Methods 64

3.4. Testing Different Pose Estimation Models on Blender Dataset 66

3.5. Creation of Blender Dataset ... 68

4. TRAINING MODELS with BLENDER DATASET ... 71

4.1. Blender Annotation File Details ... 71

4.2. Training Models on Blender Dataset ... 72

xi

4.3. Details about Training ... 73

4.4. Deploying the Trained Model on Jetson Nano .. 81

CHAPTER 5 ... 85

5. CONCLUSION ... 85

5.1. General Conclusion ... 85

5.2. Future Work ... 86

REFERENCES ... 87

6. APPENDIX ... 93

xii

LIST OF TABLES

TABLES

Table 1: Name of Joints Used in Datasets in Literature ... 5
Table 2: Sample Images from Different 3D Design Software ... 11
Table 3: Comparison of Surreal and Metupose Dataset ... 13
Table 4: Comparison of JTA and Metupose Dataset .. 14

Table 5: Comparison of AGORA and Metupose Dataset ... 15
Table 6: Sample Images for Labels Used to Evaluate Outputs .. 26
Table 7: Comparison of Three Different Pose Estimation Models on Real Data Group by

Percentage .. 27
Table 8: Comparison of Three Different Pose Estimation Models on GTA5 Data Group

by Percentage ... 27

Table 9: Comparison of Three Different Pose Estimation Models on Unity Data Group

by Percentage ... 28

Table 10: Comparison of Three Different Pose Estimation Models on Vrep Data Group

by Percentage ... 28
Table 11: Accuracy of Model 1 Throughout Different Data Groups by Percentage 29

Table 12: Sample Images for Textures in Blender ... 39
Table 13: Content of Our Source Code .. 52

Table 14: Number of Vectors in Each Category, Group ... 60
Table 15: Performance of 4 Different Models on Blender Dataset by mAP metric 67

Table 16: Order and Name of Joints in Blender .csv Dataset... 71
Table 17: 3 Experiments to measure effectiveness of Metupose dataset 74

Table 18: Accuracies of Pretrained Github Models on 4 Different Datasets 76
Table 19: Explanation for Different Datasets ... 77
Table 20: Explanation for Different Training Conditions .. 78

Table 21: Definition of Sample Pose Estimation Model Names 78
Table 22: Accuracy Values for Experiment 1 (Pose ResNet50 + MPII Dataset) 78

Table 23: Accuracy Values for Experiment 2 (Pose ResNet50 + Crowdpose Dataset) ... 79
Table 24: Accuracy Values for Experiment 3 (HRNet + MPII Dataset) 79

Table 25: Performance of Metupose Dataset in Different Configurations 80
Table 26: Real Time Fps Values of Our Trained Pose ResNet50 Model in Different

Hardware .. 82
Table 27: Real Time Fps Values of Our Trained Pose HRNet Model in Different

Hardware .. 82

xiii

LIST OF FIGURES

FIGURES

Figure 1: Sample Annotated Image from COCO Dataset [7] .. 6
Figure 2: Sample Images from MPII Dataset [4] ... 7
Figure 3: Sample Images from H36M Dataset [6] ... 8
Figure 4: Sample Images from Crowdpose Dataset [8] ... 8

Figure 5: Sample Images from LSP/MPII MPHB Dataset [9] .. 9
Figure 6: Sample Images from Surreal Dataset ... 13
Figure 7: Sample Images from JTA Dataset .. 14

Figure 8: Sample Images from AGORA Dataset ... 16
Figure 9: Human Models in Vrep Software ... 20
Figure 10: Outputs of Github Pose Estimation Model on images from Vrep software ... 21

Figure 11: Pose Estimation Model Outputs on Unity Human Model Images 22
Figure 12: Pose Estimation Model Outputs on GTA5 Images ... 23

Figure 13: Pose Estimation Outputs for Real Human Images from TV Shows 23
Figure 14: Blender Human Models in Turbsquid Website [26] 35
Figure 15: Default Human Model Created by MbLab addon in Blender 35

Figure 16: Demonstration of 6 Steps to Create a Human Model from Scratch 36
Figure 17: Three Different Poses of the Same Human Model and Joints 37

Figure 18: Human models created by different textures .. 40
Figure 19: Sample Image for Street Model Created in Blender....................................... 42

Figure 20: Human Models Placed in the Street Model in Blender 43
Figure 21: Outside view of Street Model in Blender ... 44

Figure 22: Human Model in front of a Video Plane (Rendered View) 45
Figure 23: Human Model in front of a Video Plane (Outside View) 45
Figure 24: Sample Images with Changing Background .. 46

Figure 25: Human Model, Cameras and Lights inside 100 Meters Diameter Green

Sphere in Blender ... 47

Figure 26: Left Side: Images Rendered from 3D Blender Space, Right Side: Cropped

Version of Images in Opencv ... 48

Figure 27: Cropped Human Model Images Pasted onto Variable Background 49
Figure 28: Various Objects Added to Image to Create Occlusion 50
Figure 29: Rendering Images from Blender .. 54
Figure 30: Cropping Human Models from Green Screen Images 54

Figure 31: Sample Image Showing a Joint Vector on a Human Model 57
Figure 32: Joint Vectors for Left Shoulder to Elbow in Entire Dataset with 10 Images .. 58
Figure 33: Grouping of Joint Vectors Based on 20x20 Grid Categories 59

Figure 34: Histogram of Scores for 4 Person Case Using 30000 Images 61
Figure 35: Histogram of Scores of Cropped Person Library (49000 Images) 61
Figure 36: 5 Images with Highest Pose Complexity Scores .. 62
Figure 37: 5 Images with Lowest Pose Complexity Scores ... 62

xiv

Figure 38: Two Different Keyframes from Blender Animation 65
Figure 39: 3D to 2D Camera Projection Procedure [31] .. 68

Figure 40: Representation of Pinhole Camera Models (HeadVision, 2019) 70
Figure 41: Architecture of Pose ResNet50 models used in Training [36] 74
Figure 42: Framework of the Pose ResNet Model Used in Training [36] 75
Figure 43: Architecture of pretrained HRNet Model ... 77
Figure 44: Throttle Error on Jetson Nano During Real Time Pose Estimation via

ResNet50 Model ... 83

xv

LIST OF ABBREVATIONS

ABBREVATIONS

PCK: Percentage of Correct Keypoints

PCKh: Percentage of Correct Keypoints-head

mAP: Mean Average Precision

2D: Two Dimensional

3D: Three Dimensional

OS: Operating System

CPU: Central Processing Units

GPU: Graphics Processing Units

fx: Focal length of camera in x direction

fy: Focal length of camera in y direction

u,v: pixel coordinates

cx, cy: optical center location of camera

Xc, Yc, Zc: 3D location of an object in camera coordinate system

Xp, Yp, Zp: 3D location of an object in world coordinate system

s: scaling factor in camera

xvi

1

CHAPTER 1

1. INTRODUCTION

Human tracking is one of the most important concepts in computer vision. It is used for

both human-computer communication and acquiring data from human movement. One of

the ways to perform human tracking is the method called pose estimation. In this method,

physical joints of people in each image are found and labelled by the algorithm. Depending

on the pose estimation algorithm or model, selected joints may vary. However, most

common ones are head, neck, shoulders, elbows, wrists, hips, knees, ankles. Because pose

estimation is a difficult computer vision problem to model mathematically, its algorithm

cannot be coded from scratch. Instead, deep learning models are trained on so many

images with labeled data. When the deep learning model is fully trained, it is tested on

new, real-world data to evaluate performance. In this study, we propose a pose estimation

dataset named as “Metupose” and the source code to create new, custom-made dataset.

Metupose dataset was used to train different pose estimation models and accuracy of

trained models increased. Finally, trained models were integrated into Jetson Nano and

Raspberry Pi camera system to be used in human tracking applications.

In this chapter, general problems in pose estimation models and dataset have been

discussed and literature survey has been provided. Secondly, our solutions to these

problems and our motivation have been explained.

1.1. Problems in Pose Estimation

Although there is so much research conducted on pose estimation, there are still minor

problems in this field. These problems can be listed as follows:

1. Occlusion

2. Unknown number of people in an image

2

3. Interaction between different people

4. Decrease in running speed with increase in number of people

5. Accurate external camera calibration in stereo images

6. Not having enough data and errors in annotation of data

1.1.1. Occlusion

This problem occurs when test object stays behind of an object and some of the joints are

not visible due to occlusion by another object. The reason behind this problem is that most

of the datasets consist of full human body images. When models are trained on images

with full human body, they may not detect occluded parts very well. To avoid these

problems more occluded images can used for training.

1.1.2. Unknown Number of People

Some pose estimation models are used for single person pose estimation and most of them

are used for multi-person pose estimation. Single person pose estimation models such as

EfficientPose [1] try to find only 1 person in an image fit keypoints into found person

object. Keypoints can be considered as joints (shoulder, knee, neck etc.) in human body.

Multi-person pose estimation models such as BaPose [2] however, try to find number of

people correctly and try to fit keypoints into people found in the image. Some pose

estimation models use highly accurate person detection or person segmentation models to

locate each person effectively by fitting in a bounding box, then, perform pose estimation

in that box to increase accuracy. However, when number of people increases in an image,

the model may guess number of people in an image wrong and assign keypoints to wrong

person. The reason behind this problem is that datasets may not cover different number of

people in an image and also may not cover all possible interactions between multiple

people.

3

1.1.3. Interaction Between Different People

In multi-person images, some models may assign one person’s joints to another person.

The reason can be two people can be so close to each other or there may be an interaction

between two person such as occlusion. The reason behind this problem is that datasets

may not cover all possible and complex interactions between people in an image.

Therefore, when a model is tested on image of two very close people, model may assign

one person’s arm to another.

1.1.4. Decrease in Running Speed with Increase in Number of People

This problem occurs mostly in models trained with top-down approaches. Top-down

approaches such as RMPE [3] perform human detection or human segmentation firstly

and create a bounding box for each person, later perform pose estimation in each box. In

this approach, computation increases linearly with increasing number of people because

the model detects each person one by one perform pose estimation on each person one

after another. In top-down approaches, although the running speed decreases, pose

estimation accuracy increases.

1.1.5. Accurate External Camera Calibration in Stereo Images

If properly implemented, 3-D pose estimation gives more valuable data that 2-D pose

estimation. To train 3-D pose estimation model, one needs to have 3-D data of keypoints.

Proper way of doing that is using multiple images. When multiple images are used and

both internal and external properties of each camera is available, 3D location of a joint

can be found by 3D reconstruction method. However, external parameters of multi camera

setup needs to be known and it is difficult to get position and orientation of each camera

outside laboratory. Most of the multi-camera datasets are created in laboratory but not

outdoor. In laboratory the background is always same and because of that, models may

4

not work properly when tested with real world data with completely different background.

1.1.6. Not Having Enough Data and Errors in Labelling of Data

A pose estimation model should be able to work in so many domains with high accuracies

to be considered as effective. One of the ways to increase the flexibility of the model is to

use datasets from a wide range of domains. However, creating a dataset is an expensive

process because all human joints in an image must be labelled manually. Therefore, there

are only limited images in a specific real-world dataset. Also, when datasets are analyzed

carefully, locations of joints in different images may differ slightly depending on the

judgement of the person who labelled it. In some cases, due to occlusion and lighting,

human eye cannot locate position of each joint in an image. Due to these problems, pose

estimation models trained on datasets loses accuracy and performance when tested on

different conditions.

1.2. Literature Survey

Since pose estimation is a highly complex computer vision problem, machine learning

and especially deep learning models are used in this field. General procedure is to use a

pose estimation dataset to train the model. Datasets consist of labeled images. Labels are

pixel locations of the keypoints in the image. Keypoints are specific joints in the body

such as shoulders, ankles etc. Every dataset has its own set of keypoints. However,

common keypoints used in most of the datasets are given Table 1.

5

Table 1: Name of Joints Used in Datasets in Literature

No Joint No Joint No Joint

1 Left ankle 7 Pelvis 13 Right elbow

2 Left knee 8 Chest 14 Right wrist

3 Left hip 9 Left shoulder 15 Neck

4 Right ankle 10 Left elbow 16 Head

5 Right knee 11 Left wrist

6 Right hip 12 Right shoulder

In 2D pose estimation datasets, pixel coordinates of each keypoint are available in datasets

such as (x, y).

Full datasets are usually separated into three subsets named as training subset, validation

subset and test subset. Each subset contains completely different data than other two

subsets. Training subset contains most of the data (80% - 90%) in the dataset. Validation

data contains less data, and it is used for measuring the performance of model after each

epoch during training.

Some of the datasets contain extra information. For example, COCO dataset [5] provides

human segmentation information by labelling pixels as 1 and 0 and H36M dataset [6]

provides camera properties such as external parameters (angle and location) and internal

parameters (focal length). This dataset provides both 2D and 3D pose estimation data.

In datasets containing real human images, labels are created via two methods. First method

is to label each joint manually in the image via a software. Examples for this approach are

MPII and LSPet datasets. Second method is to place markers on human body around joints

and later, performing image processing on taken images to find pixel location of each

marker. H36M dataset [6] is the most common example of this approach.

In this part of the chapter, brief information about the datasets in the literature have been

provided. In the next part, details about most common datasets have been explained.

6

1.3. Human Pose Estimation Datasets

Various pose estimation datasets are available in literature. Each dataset has its own

different images and own different annotation. Properties of some of the common datasets

are explained, and sample images are provided in the next chapter.

1.3.1. COCO Dataset

COCO is a large-scale universal computer vision dataset. It has so many useful features

to be used in different parts of the computer vision fields. For example, there are 1.5

million object instances, 80 categories of objects and 250000 people in this dataset.

Keypoint locations and segmentation data for people are available in this dataset and these

two parameters are used as annotation for human pose estimation applications. A sample

image COCO dataset showing person segmentation and keypoint locations is given in

Figure 1.

Figure 1: Sample Annotated Image from COCO Dataset [7]

7

1.3.2. MPII Dataset

It includes approximately 25000 images containing over 40000 people with annotated

body parts. Images are collected from YouTube videos containing various daily human

activities. Sample images from MPII dataset is given in Figure 2.

Figure 2: Sample Images from MPII Dataset [4]

1.3.3. H36M Dataset

It includes 3.6 million 3D human poses and corresponding images. All images were taken

in a large room, there are 11 actors performing 17 different activities such as discussion,

smoking, talking on the phone etc. There are markers on the actors around keypoints such

as shoulders, elbows and data is collected by 4 synchronized cameras at 50 Hz. Sample

images from this dataset is given in Figure 3.

8

Figure 3: Sample Images from H36M Dataset [6]

1.3.4. CrowdPose Dataset

CrowdPose dataset [8] contains about 20000 images and a total of 80000 human poses

with 14 labeled keypoints. The test set includes 8000 images. Dataset are created from

crowd images extracted from MSCOCO, MPII, and AI Challenger dataset. Sample image

from this dataset is given in Figure 4.

Figure 4: Sample Images from Crowdpose Dataset [8]

1.3.5. LSP/MPII-MPHB Dataset

LSP/MPII-MPHB dataset [9] includes 26675 images and 29732 humans, it is created by

images from SLP and MPII datasets. Sample images from the dataset is given in Figure 5.

9

Figure 5: Sample Images from LSP/MPII MPHB Dataset [9]

1.4. Problems with Pose Estimation Datasets

As shown in the previous chapter, all datasets need manual labelling on images or a camera

setup that creates labels automatically. Both approaches may result in errors due to reasons

below:

• Manual labelling of images may be performed by different people which leads to

inconsistency throughout the images

• Exact location of joints may not be achieved, especially joints occluded by other

objects can be difficult to locate

• There can be human errors when labelling manually, and it is hard to check every

joint in thousands of images in a large dataset.

• Physical setup to label joints automatically (like in H36M dataset) leads to error

because markers can only be attached to surface of the human body but not

attached to actual joints inside body. This situation leads to error when taking

images of the marker from different angles.

10

1.5. Synthetic Datasets

Creating a pose estimation dataset can be time consuming and may lead to erroneous

results due to reasons explained in the previous chapter. However, to be able to create pose

estimation models that work in so many different domains, wide range of image data is

needed. In that case, creating a rich and diverse dataset is a difficult problem.

To be able to solve this problem, synthetic data can be used to create dataset. Synthetic

data can be the kind of data acquired from computer simulation programs. Pose estimation

datasets mainly focus on human images. Therefore, different human models can be created

in a simulation program, and each human model can be rigged to have different poses to

create a rich dataset. Rigging is placing a skeleton system inside a human model and

attaching it human body. This skeleton can be moved, and human body will follow the

movement because skeleton and human body were combined and move as one part. Later,

human model image and exact position of each body joint in the skeleton can be extracted

from software whether it is occluded or not. Therefore, creating a synthetic dataset is an

automated process which provides both images with different person instances and

annotation files. Also, with additional small effort, content of the dataset can be improved

via software without needing physical setup.

There are different 3D simulation programs to create human models and rig them. The

most common programs can be listed as below:

• Blender

• Unity

• Unreal

• Maya

• Cinema 4D

• Zbrush

Sample human model images from each 3D program are given in Table 2.

11

Table 2: Sample Images from Different 3D Design Software

Blender Human Model [10]

Unity Human Model [11]

Unreal Human Model [12]

Maya Human Model [13]

Cinema 4D Human Model [14]

Zbrush Human Model [15]

As shown in Table 2, human models in different 3D design software are quite similar to

real human images. This provides an opportunity to create a dataset from simulation

program because human models in program looks like a real human and they can be used

for training the model. Data created by a simulation program is called synthetic data.

12

Possible advantages for using synthetic data for creation of dataset is listed below:

• after setting up a system to create human models automatically, it takes a little time

to create extra data

• Character joints can be acquired automatically from software without error

• size, weight, clothing, and instant pose of the character can easily be changed

• Environment, lighting, background, and foreground objects can easily be changed

• number of people and their interaction with each other

• different scenarios for occlusion can be created

• Real and accurate of joint positions can be obtained

1.6. Synthetic Datasets in the Literature

There are multiple synthetic datasets studies in the literature. SurReal [16], JTA [17] and

AGORA [18] are the most common ones. In this section, features of these datasets and

comparison with our dataset are provided.

1.6.1. SurReal Dataset

SurReal [16] is synthetic dataset that is created in 3D Blender software and it contains 5.5

Million images. They used 3D human models inside Blender software and replaced

background with random images from LSUN dataset. To our knowledge, this is most

similar study to our work. However, our work differs from Surreal dataset and differences

are summarized in Table 3. Also, sample images from this dataset given in Figure 6.

13

Table 3: Comparison of Surreal and Metupose Dataset

Parameter Surreal Datasets Metupose Dataset

Person number Single person Single and multi person

Background environment Only indoor Both indoor, outdoor

Occlusion No occlusion Occlusion by both objects

and human models

Background image From LSUN dataset,

contains humans

From Youtube or phone

camera. Customizable,

extendable, does not

contain humans

Extendable dataset Extendable but requires

Blender and SMPL data

Blender can be used but is

not a necessity. Dataset can

be extended via Python.

Figure 6: Sample Images from Surreal Dataset

1.6.2. JTA Dataset

JTA [17] is a synthetic dataset created from GTA5 computer games. It is a multi person

dataset and contains 10 million human objects total. Although 10 million is a huge number,

most of the data comes from similar scenes. In this dataset, there are 512 different scenes,

each scene has 30 seconds of video, and each video contains average 21 people. Video

frame rate is 30 fps and when these numbers are multiplied; 10 million human pose is

obtained.

14

As can be seen from here, there are only 512 scenes and some of the scenes may be

redundant if human models perform regular activities such as walking instead of more

complex activities. Our work differs from JTA dataset and differences are summarized in

Table 4. Also, sample images from this dataset are given in Figure 7.

Table 4: Comparison of JTA and Metupose Dataset

Parameter JTA Dataset Metupose dataset

Scene variability Only 512 different scenes,

limited by environments in

GTA 5 game

Currently 57000

background image and

easily customizable and

extendable

Environment type Only urban scenarios, no

indoor

Both indoor and outdoor

scenarios

Extendibility Not extendable Extendable

Camera mode Images only from

Surveillance mode

Images from different

angles

Figure 7: Sample Images from JTA Dataset

15

1.6.3. AGORA Dataset

AGORA [18] is a realistic synthetic dataset that contains 17000 images with 170000 static

poses. These images contain 350 different human model with 4240 total human instances.

Human models are 3D scanned version of real people and these models were purchased

from commercial suppliers. To our knowledge AGORA is the most realistic synthetic pose

estimation dataset. Our work differs from AGORA dataset and differences are summarized

in Table 5. Also, sample image from this dataset is given in Figure 8.

Table 5: Comparison of AGORA and Metupose Dataset

Parameter AGORA Metupose Dataset

Number of person Only multi-person Both single and multi person

Environment No indoor images Both indoor and outdoor

images

Camera distance Only images from distant view

angle

Images from close and distant

view angle

Cost Expensive, 3D models need to

be purchased, and they are not

available in final dataset

No cost, 3D models are

available

Complex poses No complex poses Complex poses available

Variable clothing No Yes

Freely available Yes Yes

16

Figure 8: Sample Images from AGORA Dataset

During the time our study started, Surreal and JTA datasets were available and their

performance on real applications encouraged us to move forward in synthetic dataset

creation subject. Although there were multiple synthetic datasets in the literature, still

there was no easy and flawless solution. Each dataset has their pros and cons and that

shaped our motivation to create an easy to use, extendable dataset with various domains.

1.7. Motivation

There are multiple ways to track human movements and pose estimation is one of these

methods. Pose estimation models are created by training a deep learning model with

datasets. These datasets include human images and pixel location of human joints in the

images. The models are trained on these datasets and trained models are used in real life

situations later.

Real life performance of pose estimation models depends on two factors: Quality of

dataset and quality of model used. Quality of dataset depends on multiple factors such as

content of images, errors in labelling joints. Also, creating and labelling a dataset takes so

much time and most of the datasets in the literature are fixed and are not increased.

17

To build a highly accurate pose estimation model to be used in human tracking studies,

we focused on developing a high-quality dataset instead of developing model. To build

dataset, synthetic data from 3D design software were used. Synthetic datasets can solve

real world pose estimation dataset problems because infinitely many images can be

created without any errors in labelling. Therefore, synthetic datasets are easily expandable

when needed within a short duration.

Our motivation in this study is to create a synthetic dataset from 3D design software and

combine this dataset with other datasets in the literature to train a pose estimation model

and observe whether model’s performance will increase or not.

Our second motivation is to provide 3D human models and related source code so that

users can create their own dataset in the future. Also, this source code will have tools for

human pose complexity analysis, person cropping and background image generation etc.

In this study, we propose a synthetic pose estimation dataset and source code for dataset

generation. Also, performance of models trained on these datasets were compared with

other pose estimation models in the literature. Our trained pose estimation model was

integrated into Jetson Nano and Raspberry Pi camera system to be used in human tracking

applications.

1.8. Layout of Thesis

In chapter 1, purpose and general overview of the study was introduced. Also, literature

survey about pose estimation and problems in pose estimation were provided. Our solution

to these problems and contributions were provided in motivation chapter.

In chapter 2, initial studies about pose estimation were shared. In these initial studies

sample images from 3 different data groups were collected and performance of pose

estimation models in the literature were evaluated on these images. Image groups are:

1. Basic Human Models from V-rep software

2. 3D design software human images found from internet

3. Real world images taken from tv series

18

The purpose of initial study is to compare performance of models in the literature on real

world data and synthetic data before building an actual synthetic dataset. Our thesis was

that if a model trained on real world dataset performs well on synthetic images, then a

model trained on synthetic dataset can perform well on real worlds images. This condition

was observed in chapter 2. Also, concept of domain randomization was introduced.

In chapter 3, general information about Blender, which is the selected 3D design software,

was introduced. Also, iterations in the process of dataset generation and different methods

to create data were explained.

In chapter 4, details about used pose estimation models were introduced. Also,

performance of our synthetic dataset has been evaluated using different datasets and

different pose estimation models.

Finally, conclusion and recommendations for future work are presented in chapter 5.

19

CHAPTER 2

2. PERFORMANCE of POSE ESTIMATION MODELS on SYNTHETIC

IMAGES

In chapter 1, importance of dataset to train a model has been explained and general

problems with datasets have been introduced. These problems were limited number of

images, human errors during labelling and amount of time spent on labelling. Synthetic

datasets seem to overcome these problems because creating data is an automated process

and there can be no errors with labelling. However, before building a synthetic dataset

with wide range of domains, we wanted to test whether this approach will work. To be

able to do that, we preferred to compare performances of real world pose estimation

models on two datasets which are real world dataset and synthetic dataset. If performance

of models in both datasets become similar, that will mean pose estimation models does

not differentiate synthetic image data from real image data and that will lead us to move

forward. Our thesis was if real world pose estimation models perform equally well on

synthetic datasets, synthetic pose estimation models (models trained only with synthetic

data) can perform well on real world images. This chapter covers this issue and at the end,

domain randomization concept was introduced. This concept states if a model is trained

only on synthetic data, with so many different conditions, then the model will perform

well on real world data because it will consider real world data as another different

condition like in training data.

2.1. Vrep 3D Software Information

In initial studies, synthetic data was created to evaluate the performance of real world pose

estimation models. This initial synthetic data was created in V-REP software. Vrep is an

open-source software to create basic simulation environment. In this environment, there

20

are various objects such as:

• human models

• various robotic arms

• various mechanisms

• LIDAR sensors, proximity sensors

• cameras

• cars

• basic objects like table, chair, computer, cubes

• joints, force/torque sensors

• lights

VREP is not a 3D design software, objects are imported or called into the program.

Human model was imported in VREP and moved in trajectory on a surface to get images

from different angles. Sample images from this work are given in Figure 9.

Figure 9: Human Models in Vrep Software

21

As shown in images above, VREP human models are not very realistic. In this software,

shirt color, pants color, hair color and walking trajectory was changed during acquisition

of images to create variety of situations.

2.2. Performing Pose Estimation on Different Image Groups

Total 90 VREP human model images were tested on 3 different pose estimation models.

The purpose of performing pose estimation is to compare results with real world results

to evaluate the behavior of pose estimation model in synthetic dataset. Sample output

images are given in Figure 10.

Figure 10: Outputs of Github Pose Estimation Model on images from Vrep software

22

After performing pose estimation on V-REP images, more realistic human models were

found from internet to evaluate pose estimation models. Human models from GTA5 game

and Unity software were collected. Pose estimation outputs are given in Figure 11 and

Figure 12.

Figure 11: Pose Estimation Model Outputs on Unity Human Model Images

23

Figure 12: Pose Estimation Model Outputs on GTA5 Images

After applying pose estimation models on VREP, Unity and GTA5 human models, same

pose estimation models were used on real human images. The reason is to compare results

of simulation data and real data. Results for real human images are given in Figure 13.

Figure 13: Pose Estimation Outputs for Real Human Images from TV Shows

So far, pose estimation models have been applied on human images from 4 different

domains. These are:

• VREP software (90 images)

• Unity 3D software (45 images)

24

• GTA5 game (81 images)

• Real human images (100 images)

2.3. Quantifying Performances of Pose Estimation Models

Results of the same pose estimation models have been compared on 4 different domains.

Because these images do not have any ground truth pose data, comparison have been

performed by observation. To evaluate the performance of a model, normally, model must

be evaluated on real world and synthetic datasets with ground truth data. However, this

was the first application about pose estimation in thesis study, and evaluation has been

made manually by observation.

Each person in images have been evaluated and one of the 5 different labels have been

given in each operation. These 5 grades are:

• Perfect

• Fair

• Bad

• No Detection

• Wrong Detection (Extra person detection)

2.3.1. Perfect Label

Perfect label is given to people in the images with a very good pose estimation

performance. There must be no missing joints and each detected point should be close

enough to respective joint. Sample image for perfect label is given in Table 6.

2.3.2. Fair Label

Fair label was given to people in the images with almost perfect pose estimation

performance. There can be one or two missing joints in a person to be considered as fair.

25

Sample image for fair label is given in Table 6.

2.3.3. Bad Label

Bad label was given to people in the images with worse pose estimation performance than

Fair label. In this group, there must be a detection but number of missing or misplaced

joints can be three or more. Sample image for Bad label is given in Table 6.

2.3.4. No Detection Label

No detection label was used when a person appears on images but pose estimation model

could not find any of the joints belonging to that person. Sample image for no detection

label is given in Table 6.

2.3.5. Wrong Detection (Extra person detection)

Wrong detection label was used when pose estimation model detect some joints although

there was no human in detected part of the image. Sample image for wrong detection label

is given in Table 6.

26

Table 6: Sample Images for Labels Used to Evaluate Outputs

Label Name Sample Image

Perfect

Fair

Bad

No Detection

Wrong Detection

Evaluation of outputs of pose estimation models in 4 different data group (real, GTA5,

Unity and VREP) has been performed manually based on the criteria of labels (perfect,

27

fair, bad, no detection, extra detection) above. 4 different pose estimation models available

in Github were used. Name of these works are given below:

Model 1: Lightweigh Human Pose Estimation 3d Demo Pytorch [19]

Model 2: Lifting from the Deep Release [20]

Model 3: Yet Another Openpose Implementation [21]

Model 4: Human Pose Estimation Opencv [22]

Performance comparison of these models are given in Table 7 to Table 10.

Table 7: Comparison of Three Different Pose Estimation Models on Real Data Group by

Percentage

REAL

REAL (338 people) Perfect Fair Bad No Detection
Wrong Detection

(extra)

Model1 (%) 79 14 2 5 1

Model2 (%) 29 10 13 48 1

Model3 (%) 26 20 35 19 0

Table 8: Comparison of Three Different Pose Estimation Models on GTA5 Data Group

by Percentage

GTA5

GTA5 (165 people) Perfect Fair Bad No Detection
Wrong Detection

(extra)

Model1 (%) 79 12 6 3 5

Model2 (%) 53 15 8 24 3

Model3 (%) 20 44 25 11 1

28

Table 9: Comparison of Three Different Pose Estimation Models on Unity Data Group

by Percentage

UNITY

UNITY (107 people) Perfect Fair Bad No Detection
Wrong Detection

(extra)

Model1 (%) 77 19 2 2 0

Model2 (%) 31 31 18 20 1

Model3 (%) 24 18 36 22 0

Table 10: Comparison of Three Different Pose Estimation Models on Vrep Data Group

by Percentage

V-REP

V-REP (90 People) Perfect Fair Bad No Detection
Wrong Detection

(extra)

Model1 (%) 42 50 2 6 0

Model2 (%)

Model3 (%) 42 48 2 8 0

Model4 (%) 29 66 5 0 0

From the accuracy data given in Table 7 to 10, it can be concluded that accuracy of models

in real data group is very close to accuracy of GTA5 and Unity data group. It was observed

that Model 1 has the highest accuracy in all data groups so, it can give the most reliable

information about detection accuracy throughout data groups. Accuracy comparison of

different data group on model 1 is given in Table 11.

29

Table 11: Accuracy of Model 1 Throughout Different Data Groups by Percentage

MODEL 1

Data Groups Perfect Fair Bad No Detection Wrong Detection

(extra)

Real (%) 79 14 2 5 1

GTA5 (%) 79 12 6 3 5

Unity (%) 77 19 2 2 0

VREP (%) 42 50 2 6 0

From Table 7 to 11, it can be observed that performance of different pose estimation

models is consistent within Real data group, Unity data group and GTA5 data group. From

these data, it can be concluded that pose estimation models trained on real data can work

both on real data and synthetic data. Therefore, our thesis is the reverse of that statement.

If one trains a model purely on synthetic data, this trained model may work well on real

images. These results lead us to create a realistic and complex synthetic dataset from a 3D

design software.

Simulation dataset can be changed, modified, labeled easily and accurately in a very short

time. Therefore, if a model trained on simulation data works on real data, users can create

their own data through a script without needing a physical equipment.

According to Table 11, accuracy of model 1 on VREP data group is lower and the most

probable reason is that VREP human models does not contain enough details and texturing

for feature detection. For example, arm and shirt has the same plain color.

Although VREP images were not helpful in comparison with real images, it was an

important step to start working on a 3D simulation program. VREP studies were followed

by Blender Studies. During that time following items have been achieved in VREP

program:

• performing human walk on modified trajectory

• getting coordinates of every joint during walking through Python VREP API

• Modifying hair color of human model

30

• Modifying shirt and pants color

• Adding objects to simulation

These items were important learning blocks to start working on Blender which is a

complex 3D design software for creating synthetic dataset.

2.4. Domain Randomization

In machine learning, domain randomization is an important concept. Basically, when a

model is trained on a wide variety of synthetic data, it can work on real world data as well

because model perceives real world data as another variation of synthetic data. Examples

for variation of data in simulation dataset can be listed as:

• different colors

• different relative sizes of objects

• different camera angles, multiple images of the same instance from different

angles

• different lighting

• different number of objects

• different textures and shapes of objects

In a synthetic dataset, it is easy to change parameters listed above and to create new data

with a wide range of features. Therefore, when a model is trained on large synthetic dataset,

this model will work well on real world data because model will perceive real world data

as another variation or sub-category of large synthetic dataset.

One study [23] used domain randomization to explore capabilities of a model trained only

on synthetic data. They performed object localization and grasping and using a model only

trained on simulation data, they achieved 1.5 cm accuracy in real world conditions model

was robust enough to distractors and occlusions.

Another study [24] used domain randomization to perform car detection and by using only

simulation data, they achieved performance comparable to real world dataset.

Another study [25] increased performance of domain randomization even further. They

31

used active domain randomization concept. Basically, this concept uses reinforcement

learning to search for most informative parameters in domain randomization and uses

these parameters more often when creating dataset and this leads to increase in overall

accuracy because the content of the simulation dataset was optimized for maximum

training accuracy.

2.5. Final Notes

When pose estimation models were tested on real images, Unity 3D software images and

GTA5 images, accuracy results were consistent. That means, a model trained only on real

world data can work well on simulation data as well. Also, there was a concept called

domain randomization which utilizes wide variety of synthetic data on training a model

and uses this model on real world data with high accuracy. Based on these facts, we created

an environment on Blender 3D software to create pose estimation dataset and we used this

dataset to train a pose estimation model. After training, accuracy of the pretrained model

was increased. Our trained model was deployed in Nvidia Jetson Nano and Raspberry Pi

camera system to be used in human tracking applications in the future.

After getting promising results explained in this chapter, creating dataset in a 3D design

software have been decided and Blender software was chosen for this work. In the next

chapter, capabilities of Blender software have been explained and methods and procedures

to create synthetic dataset from Blender have been discussed.

32

33

CHAPTER 3

3. STUDIES ON BLENDER 3D SOFTWARE

In chapter 2, based on tests performed on real world pose estimation models, it was

observed that real world models worked equally well on real world data and synthetic data.

Therefore, that lead us to create realistic dataset from a 3D design software. Blender

software was selected to create human models and environment.

In this chapter, general information about Blender 3D design software has been introduced

and methods and procedures to create synthetic datasets have been explained. These

methods include:

• environment design

• human model design

• extraction of joint locations via Python

• creating non-repeating data

• creating data from different domains

• pose complexity analysis

One of most important steps to create high quality synthetic dataset is to cover wide range

of domains that can appear in real life situations. Methods used to increase the variability

of data were illustrated in this chapter.

3.1. Blender General Information

Blender is the free and open-source 3D creation suite. It supports the entirety of the 3D

pipeline modeling, rigging, animation, simulation, rendering, compositing and motion

tracking, even video editing and game creation. It is very popular in graphical design

34

market and is fully supported in Windows, Linux and MacOS operating systems. Blender

website has complete documentation of the software and because it is so popular there are

so many Youtube tutorials, forums, and websites to learn Blender. This software comes

with built-in installed Python. This python is completely inside the Blender program and

has no connection with regular Python installed on computer. Blender has a library in

Python called bpy. By using this library, one can change or modify so many objects inside

Blender program.

Because it is completely open source, comes with preinstalled Python inside and has a

python library which provides so much flexibility, Blender software was selected to create

synthetic data. In the next part, Blender properties and capabilities regarding pose

estimation has been explained.

3.2. Blender Properties and Capabilities Regarding Pose Estimation

3.2.1. Creating Human Models

There are multiple ways used to create realistic human models in Blender. First one is

downloading human models from internet and importing them into Blender. Because

Blender is an open-source free software, there are so many websites that provide free or

paid Blender models, and some parts of these models are realistic human models. Sample

human images from Turbosquid website are given in Figure 14.

35

Figure 14: Blender Human Models in Turbsquid Website [26]

Second way to create human models is using add-ons. Add-ons are extra software

designed for a specific purpose and they can be installed in Blender. There is an open-

source add-on used to create realistic human models in Blender. This addon is called

MbLab [27]. This addon has 14 different human models in it and when a model is created,

its age, mass, hair, skin color, size and body type can be modified through a GUI. All

human models in the final dataset were created by MbLab [27] add-on method. Sample

image for a human model created by MbLab [27] tool is given in Figure 15.

Figure 15: Default Human Model Created by MbLab addon in Blender

36

Third option is to create human models from scratch. However, creating a realistic human

model requires hard work and expertise in 3D design field, and it is not an automated

process. To demonstrate the process of creating a human model from scratch, sample

images given in Figure 16 show the 6 steps are given below. These images were taken

from YouTube Blender tutorials.

Figure 16: Demonstration of 6 Steps to Create a Human Model from Scratch

In this part of the chapter, methods used to create realistic human models were explained.

Second method (MbLab addon) was selected to create human models due to ease of use

and configuration options. In Blender, joint position and rotation data can only be obtained

37

if a human model has a skeleton system. In Blender, skeleton system moves accordingly

with human body and in the next part, methods used to acquire joint data from skeleton

system has been explained.

3.2.2. Person Rigging and Animation

Person rigging is integrating a skeleton system inside a human model and, when a joint in

the skeleton system moves, body moves accordingly. Each movement in skeleton leads to

different pose of human body. Also, joint locations at any instance can be obtained through

python API. Sample image for human body rigging is given in Figure 17.

Figure 17: Three Different Poses of the Same Human Model and Joints

MbLab Blender addon was chosen to create human models and it comes with default

rigging feature as illustrated in Figure 17. Also, MbLAb addon has an option for realistic

joint limitations. Therefore, when a human body joint is forced to do an unrealistic joint

movement, software limits that movement to stay within human joint movement

limitations. If necessary, skeleton system can be built from scratch as well.

After creating a human model and finish rigging, joint data is available to collect, and this

38

is performed by built-in Python feature inside Blender software. Also, built-in Python

enable user to change some of the parameters from script in an automized way. In the next

part, details about Python API have been discussed.

3.2.3. Python API

Blender comes with built-in Python API. Python was used for changing parameters from

script to increase variability of dataset and it was also used for acquiring joint data to

create annotation files of dataset.

Blender python has a library called bpy and this library can change position, rotation, color,

texture of an object and it can get information of object position, rotation. In this study,

following parameters have been performed from Python script:

• Getting 2d and 3d joint locations of each human in each frame

• Saving joints data in a csv file

• Changing color and texture of human cloth, hair, and skin

• Changing position of human model, camera, and lights

Python script is so important to create randomized human models and environment in an

automized way. In this part, capabilities of Python API to create a dataset with a wide

range of domains in an automized way has been explained. In the next part, details about

randomization of parameters have been discussed.

3.2.4. Changing Appearance of Human Model

In Blender, it is possible to change texture and color of t-shirt, pants, hair and skin and this

is an important step to create randomized data because if all models have the same

appearance, that may lead to overfitting during training. To avoid that, these parameters

were changed automatically in every frame via Python script. Different textures have been

applied to each part to change appearance. Numbers of textures were given below:

• 1069 different t-shirt textures

39

• 1069 different pants textures (same 1069 images with t-shirt textures)

• 21 different hair textures

• 36 different skin textures

These texture images were found from Google and sample images for each group are

shown in Table 12.

Table 12: Sample Images for Textures in Blender

Category Texture Images

Tshirt Textures (1069 units)

Pants Textures (1069 units)

Hair Textures (21 units)

40

(Table 12 Cont’d)

Skin Textures (36 units)

After selecting a random texture for t-shirt, pants, hair and skin, human model is

completely ready and sample images are given in Figure 18.

Figure 18: Human models created by different textures

In this part, textures used to create various human models have been discussed. Firstly,

human model was created, then rigging has been applied and finally, texturing has been

applied on human model to have a different appearance in every image in the dataset.

After these steps, final images to create synthetic dataset can be acquired via rendering

and it has been discussed in the next part of the chapter.

41

3.3. Image Creation in Blender

After human models have been created and rigging and texturing have been performed, it

is possible to get 2D, 3D joint locations through Python API. However, to create a robust

dataset, not only human model but also environment has to be designed carefully to cover

wide range of domains in the final datasets. There were three methods used to create

environment. First one was to design a street that has human models, houses, trees, roads

etc. After applying this method, it was observed that creating large amount of nonrepeating

synthetic data was not feasible and it took too much time. Therefore, a second method was

proposed. In this method, background image of the model has been changed in every

frame to create variability in different images because each image in the dataset has a

different background from various domains. Although the second method provided good

results it still lacks features such as multi-person and occlusion so, a third method is

proposed. In the third method, human model was placed in a green space in Blender and

cropped from green background to paste onto new changing background later. This

method allowed us to have multi person dataset with occlusion feature. Only third method

(cropped person method) is used for dataset generation. Details about these three methos

have been explained in the next parts.

Before getting into details about each method, details about capabilities of Blender

software were provided below:

3.3.1. Creating a Street Environment

Blender has an addon to create buildings called Building Tools. Following parameters can

be changed easily via this addon to create a new building:

• Number of floors

• Number of windows, doors, and balconies

• Shape of windows, doors, and balconies

• Roof type

42

• Height and width of building

• Location of building

Also, by changing textures in each surface, appearance of each building can be changed

automatically. Also, tree models have been added. After that, human models were placed

on the street and image and joint data were collected to create synthetic datasets. Images

are obtained via rendering output of Blender software and resolution is 960x540. Auxiliary

view of street and human models placed in the street are given in Figure 19 and Figure 20

respectively.

Figure 19: Sample Image for Street Model Created in Blender

43

Figure 20: Human Models Placed in the Street Model in Blender

Although street view method is an automated process to create synthetic dataset, it does

not provide variety of objects in the environment. This may cause problems to work on

different domains later because there needs to be variability not only in human model data

but also in environment data to create a robust synthetic dataset. Therefore, second method

was proposed which is changing background of human model. Details of this method was

discussed in the next part.

3.3.2. Human Model in Front of a Plane Video Method

Although street view explained in the previous part provides so much flexibility and

automation in the process of creating dataset, it was observed that it was not scalable

enough which means it would take so much time to create dataset with thousands of non-

repeating images containing different objects in the environment. To illustrate, outside

44

view of the street used to create dataset is given below. When camera goes through the

entire street taking images of human models in each frame, the whole street provides only

150 images.

A sample image from street model is given in Figure 21.

Figure 21: Outside view of Street Model in Blender

Most of the real-world datasets contains more than 10000 images. Therefore, required

simulation images will be even more than 10000. To solve this problem, street model,

buildings and everything was completely removed, and human model was placed in front

of a plane and that plane shows images like a screen. Therefore, background image of the

human model was changed in every image, and this simulated environment change.

Demonstration of this method is shown in Figure 22 and Figure 23.

45

Figure 22: Human Model in front of a Video Plane (Rendered View)

Figure 23: Human Model in front of a Video Plane (Outside View)

Human model pose, location, clothing, hair color, skin color and background image are

different in every image in the dataset. Different background creates the effect of different

environment domains. Example images created using this method are given in Figure 24.

46

Figure 24: Sample Images with Changing Background

3.3.3. Person Cropping Method

Although the street method did not provide enough flexibility with the environment, plane

video method solved these problems with changing and varying background. However,

plane video method could only provide single person data without occlusion and all data

generation is performed in 3D Blender software, which means if a user wants to expand

Metupose dataset in the future, he needs to install Blender, install necessary addons,

necessary libraries in Python which differs from regular Python and run Blender on a

powerful GPU.

To provide more flexibility in dataset generation, human cropping method has been

developed. In that method, human model images are taken in green colored 3D Blender

space and cropped. Later, all cropped images are pasted on different background in

random coordinates at random scales. Once the person images have been cropped, they

47

can be used in all datasets in the future by using only regular Python.

After cropping images, all operations are performed in Python and Blender software is not

necessary.

Firstly, in Blender software, human model, cameras and lights were placed inside a very

large, 100-meter diameter green colored sphere to create a green screen effect. The reason

to use a very large sphere is that regardless of camera position and angle, background will

always be green because all the objects are in a green sphere. A sample image is given in

Figure 25.

Figure 25: Human Model, Cameras and Lights inside 100 Meters Diameter Green

Sphere in Blender

48

After setting Blender environment, human model performs different movements and

images are rendered from the view angle of 5 different cameras. Sample result images

with green background and their cropped version are shown in Figure 26:

Figure 26: Left Side: Images Rendered from 3D Blender Space, Right Side: Cropped

Version of Images in Opencv

Firstly, images are cropped via green color masking in opencv Python. After cropping, we

have all pixel information about cropped image.

49

After that, object images with transparent background have been downloaded from

internet. They were used as occlusion objects. From 26 different categories over 1000

object images have been downloaded. In the second method we had used plane video

method and from that method, we already had 57000 different and independent images to

be used as background. These background images were obtained from different YouTube

videos that does not contain human in it. However, to ensure there is absolutely no person

in any of the background images, we performed pose estimation on 57000 images and

detected human in only small percentage of all images and deleted those images.

Lightweight Human Pose Estimation 3d Demo Pytorch [19] model was used for pose

estimation and to be safe, we set confidence threshold level very low to detect any person

even in harder cases. We also provide source code for detecting human in video and

deleting this frame. User only need to provide video itself, and number of second between

each frame and code will extract frames as images with no human in it.

Firstly, cropped human models are pasted on background image as shown in Figure 27:

Figure 27: Cropped Human Model Images Pasted onto Variable Background

50

Later, occlusion objects are randomly selected from object library, scaled and pasted on

image to create occlusion. Occluded person image is given in Figure 28.

Figure 28: Various Objects Added to Image to Create Occlusion

During creation of dataset following steps has been taken into consideration:

1. Content of background images (indoor, outdoor) was known before, therefore,

only relevant objects suitable with the background has been used in each image.

For example, tree objects are only used with outdoor background images not in-

door.

51

2. Cropped images were not directly pasted, their scales have been randomly changed

before pasting.

3. If an image is multiple person image, scale of each person is random but also close

to other people in the image. For example, in an image, height of one person cannot

be 5 times the height of another person. The range changes between 0.8 and 1.2.

4. Scale of occlusion objects have been set relative to human size in the image. For

example, a luggage cannot be larger than any human in any image etc. and if there

is a laptop, laptop has to be smaller than luggage as well. Each object has a dimen-

sion coefficient.

5. Information whether a joint is occluded or truncated is available, but occlusion

information is not utilized in MPII dataset format. However, user will still have

that information in our dataset.

6. We provide final, ready to use dataset and also the source code. Users can use our

dataset or they can create their own dataset with our source code. Content of our

source code is summarized in Table 13.

52

Table 13: Content of Our Source Code

No Item Explanation

1 27 different Blender Models Each model can provide 5000 green screen

images from 5 different camera angles

2 Textures for clothing 1000+ texture images for clothing and

various textures for hair and skin color

3 49000 cropped person images Users can use our cropped person images;

they don’t have to deal with Blender

4 57000 background images Users can use our background images

obtained from Youtube videos with no

human in it

5 Background image creation

source

Users can create their custom background

images by providing a video. Our code will

detect people in video and provide only

frames with no human in it

6 Pose complexity analysis code Users can scan through entire cropped

person images and entire final dataset images

sort images based on difficulty of poses

7 Occlusion objects From 26 different categories, over 1000

object images with transparent background

were provided to create occlusion

8 Dataset generation code Users can create their dataset by using our

code and cropped images

9 Actual final dataset We provide final, ready to use dataset with

178000 images and 402000 people in it.

Links to the source code is given in Appendix.

53

As shown in Table 13, so many different contents are available in the source code for

different purposes and there are different ways to create dataset. For simplicity, we wanted

to separate these methods into three parts. These are:

1. GPU + CPU available option

2. Only CPU available option

3. Nothing available option

GPU + CPU Available Option

If users have a powerful GPU and CPU, they can use our Blender human models to create

dataset from scratch. We provide 27 different Blender human models, and inside Blender,

they can edit following parameters:

• Human model appearance

• animations, movements

• human scales

• joint content in dataset

• texture of clothing

• lighting, camera angle

To create variability, users can edit these features manually but, in fact, they don’t have to.

We provide 27 human models and each human model has 5 different camera view and this

makes 135 configuration and each configuration provides 1000 different green screen

image. Every time they run Blender even for the same human model with same camera,

they will still get different hair color, skin color, clothing, and body size every time. By

keeping everything same, only similarity between different runs will be type of the

movement itself. However, when camera or human model is changed, everything will

change as well.

After running Blender which means rendering images, users will get human model images

with green screen background. Sample image is given in Figure 29.

54

Figure 29: Rendering Images from Blender

Later, each green screen images are cropped to remove green background. A sample

image is given in Figure 30.

Figure 30: Cropping Human Models from Green Screen Images

Every step followed so far is one-time only process. This means the final dataset is created

by selecting human models from cropped image library. Once the cropped image library

has been created, infinitely many final datasets can be created randomly from these

cropped images without using Blender. The reason to use Blender is to enrich the content

of cropped image library which is base of synthetic dataset. We currently provide 49000

different cropped images and if users want to expand the content of that library, they can

use Blender otherwise, Blender is not necessary.

After getting cropped images, they can automatically create synthetic dataset by only

specifying a few parameters such as image number, occlusion level etc. All parameters

will be set from config.csv file.

55

Only CPU Available Option

Blender can utilize both CPU and GPU but when it runs only on CPU it works slower.

Therefore, this option is for the users that don’t have a GPU in their computer. Users can

download our 49000 cropped images and create their own dataset. Every time they create

a new dataset, they will get different images because in every time, code will choose

random cropped images, and paste them onto random background images alongside with

random objects. For this option, only Python is necessary.

Nothing Available Option

In this option, nothing is necessary because we already provide a sample final dataset.

Users can download this dataset and use it. Our sample dataset contains:

54000 x 1 person images

54000 x 2 person images

40000 x 3 person images

30000 x 4 person images

That makes total 178000 images with 402000 people in it. For comparison, MPII dataset

contains total 25000 people in it.

One of the best features of our dataset is that it is completely extendable by running our

source code. Also, users can change content of the background and clothing textures for

their specific purpose.

3.3.4. Pose Complexity Analysis

During creation of dataset, one of the most important elements is to have variable, unique

and nonredundant dataset. To achieve that, different background image, clothing, lighting,

camera angle, human size etc. was used to minimize the redundancy. However, these

parameters only covered appearance of the image but not body pose itself. For example,

a dataset may contain infinitely many lightings, coloring etc. but pose estimation models

are actually trained on location of joint data. Therefore, we created a new method to

56

measure complexity of the poses in created images. Pose complexity can be applied to

individual cropped images and final images as well.

For example, when we create 50000 image dataset, to avoid redundancy, we may need

images with most unique and different poses in it. In our source, we can specify this feature

by giving (0, 60) numbers which means only accept images that has highest scores

between top 0% and top 60%. This means, after creating dataset, our pose complexity

algorithm scans through entire dataset, then score each image based on its complexity and

accept top 60% score and discard bottom 40% scores.

The benefit of measuring pose complexity is to discard most common and repetitive poses

and only accept most unique and difficult poses to achieve maximum performance with

minimum number of training images. Too many redundant and repetitive images may lead

to higher storage requirements and higher training duration.

To our knowledge, there was only one study that performed pose estimation complexity

method when creating dataset and it was MPII dataset. In that study, without giving

equation details, it was briefly explained as, images with the most uncommon and different

poses compared to rest of the dataset has the maximum pose complexity score. Therefore,

by considering that statement as our starting point, we created a new pose complexity

metric. In most simple terms, algorithm scans through entire dataset, extract all pose

vectors (a vector from shoulder to elbow, knee to ankle etc.) then categorizes all vectors

based on x and y coordinates, then gives high scores to vectors, if that vector has a unique

or uncommon (x, y) vector.

For demonstration, let’s consider there are 10 people in a final dataset and we work on

joint vector between left shoulder and left elbow. This means we will have 10 different

2D vectors. A sample vector from one of the images is shown in Figure 31.

57

Figure 31: Sample Image Showing a Joint Vector on a Human Model

In the example above, vector dimensions for left shoulder to elbow was obtained. For that

joint, 9 other vectors will also be obtained from rest of the dataset (10-1 = 9 images in the

dataset). After getting all 10 vectors from 10 images in the entire dataset, all of them will

be placed on 2D coordinate system as shown in Figure 32.

58

Figure 32: Joint Vectors for Left Shoulder to Elbow in Entire Dataset with 10 Images

As shown in grids, let’s say we categorize entire 2D spaces with 20-pixel grids. This means,

in a 2D space bounded by (-60, 80) and (100, -60) coordinates as shown above, by dividing

it into 20 pixels grids, there will be total 56 grid squares (56 categories). In these categories,

some of the poses fall into the same grid square (same category) as shown in Figure 33.

59

Figure 33: Grouping of Joint Vectors Based on 20x20 Grid Categories

So far, we created a dataset with 10 images, and scanned through the entire dataset for left

shoulder-left elbow joint vectors and pasted 10 vectors onto 2D coordinate system and

grouped them under 20x20 pixels grid. After grouping, 5 categories appeared. Number of

vectors in each category is listed in Table 14.

60

Table 14: Number of Vectors in Each Category, Group

Category Number of Vector

1 3

2 2

3 1

4 1

5 3

According to Table 14, in our algorithm, vectors in category 3 and category 4 will get the

highest scores because they are one of a kind, most uncommon and unique vectors.

However, vectors in categories 1 and 5 will get lowest scores because they are most

common and easily found vector in the dataset. So far, we only performed pose complexity

analysis for one joint (left shoulder to left elbow) but in real cases we perform for 9

different joint vectors in human body and multiply scores of 9 vectors for each image to

get the final score. It can be thought as a 3D distribution plot.

Human objects with the highest scores will be most common and easy poses and will get

least scores. However, people with least scores will be most unique and hard to find

therefore, they will get highest pose complexity scores.

Numbers in Table 14 may seem trivial because it has only 10 images for demonstration

purposes. However, when we apply this method datasets with thousands of images,

distribution graph shows a complex behavior. For example, histogram given in Figure 34

shows pose complexity scores for a dataset with 30000 images with 4 people in each image.

Histogram given in Figure 35 shows the individual pose complexity of the entire cropped

person library with 49000 images.

61

Figure 34: Histogram of Scores for 4 Person Case Using 30000 Images

Figure 35: Histogram of Scores of Cropped Person Library (49000 Images)

62

Analysis on 30000 images with 4 people takes 10 seconds to run. In Figure 36 and Figure

37, 5 images with highest scores and 5 images with lowest scores are given after the

analysis.

Figure 36: 5 Images with Highest Pose Complexity Scores

Figure 37: 5 Images with Lowest Pose Complexity Scores

63

As shown in Figure 36 and Figure 37 , images with most person to person interaction,

most occlusion and truncation got the highest scores and images with least occlusion and

common, easy poses usually taken straightly from front view got least scores.

Parameters effecting pose complexity scores are listed below:

• Number of images in each grid category

• Number of occluded joints in each person

• Number of truncated joints in each person

For each joint vector [i] in each human model [j], pose complexity analysis starts as below:

maxnumi: 9x1 vector for each joint vector, it represents the number of vectors in the most

crowded category for joint i (i: vector from left shoulder to left elbow etc.)

calcnumji: 120000 x 9 vector for 120000 people and 9 joint vector. It represents number

of vectors that fall into the same category, grid with vector coming from person j and joint

vector i.

occludedj: 120000 x 1 vector. Number of joints occluded or truncated for person j

personscorej: 120000 x 1 vector. Score of each person

imagescorek: 30000 x 1 vector. Final image scores of each image by summing person

scores of 4 persons in each image.

scorej = ∏ (
2∗maxnumi−calcnumji

maxnumi
)

1.2
𝑖
1 (1)

personscorej = scorej ∗ (
9+occludedj

9
)

3

 (2)

 imagescorek = ∑ (personscorej)
4
1 (3)

scorej = initial score of person j without occlusion correction

personscorej = Score of person j after making occlusion correction

imagescorek = Score of image k by summing scores of 4 persons in each image.

64

3.3.5. Further Details About Three Dataset Generation Methods

Background Images

Street environment method places human models in 3D street. Therefore, no background

image is required. However, they are required for plane video method and cropped person

method. The background images change in every frame which means every image in a

dataset contains different background image. Also, most of the images were taken from

YouTube videos with various content such as indoor, outdoor, nature etc.

When creating background image library, special attention has been given to following items:

1. There can be no human in the background images because that disturbs training

process. Only human in an image must be Blender human model.

2. To avoid people appearances in each video frame, we used a fast and highly

accurate pose estimation model to detect people in different frames and discard

that frame if there is a human in it. We provide the source code for this tool so that

users can create their own background without human in it.

3. Videos contents are chosen from various domains and one frame was extracted in

every 5 seconds of each video to avoid consecutive frame redundancy.

Animation and Human Movement in Blender

Blender software provides not only 3D design of objects but also animation and movement

of objects in 3D space. To avoid overfitting during training, synthetic dataset must cover

wide range of human body movements. Considering 178000 images in the dataset, pose

and location of human models must be non-repeating. To be able to achieve that,

animation feature of Blender was used.

To be able to move person or change pose of the human model in Blender, keyframes are

used. Keyframes are pose and location instances of a human model. There are 4 different

65

parameters stored in an instance. These are:

• Full human body location information

• Full human body rotation information

• Location information of every joint

• Rotation information of every joint

By changing these 4 parameters, it is possible to locate and rotate human body anywhere

in the whole image. It is also possible to change human pose completely by changing

location and rotation of each joint. These variations create keyframes and each keyframe

is used to create an animation of the moving human model. Two different keyframes are

given in Figure 38.

Figure 38: Two Different Keyframes from Blender Animation

In Figure 38, human body poses for both left and right side was manually created and

there are 22 frames between these keypoints. If start and end point of a person is provided,

Blender can perform interpolation between start frame and final frame and fills 22 frame

gap in such a way that it goes from frame 271 to frame 293 in a smooth way.

Since every start and finish keyframe is different, beginning and end of the interpolation

is different so, movement between every keyframe is different. This method was used to

ensure the nonrepeating human poses throughout dataset.

66

Dynamically Changing Parameters

So far, changing of background and variation of human pose in each frame have been

discussed. To increase variability even further, some parameters inside Blender have been

changed in each frame.

• In each frame, brightness of lights is changed randomly to create different lighting

conditions.

• In each frame, t-shirt color and texture, pants color and texture, skin color and

texture and hair color and texture of human model change.

• Images are taken by cameras from 5 different angles

• In each frame, scale of the model changes and that changes body ratio.

All these changes are adjusted via Python scripts which was provided in source code.

3.4. Testing Different Pose Estimation Models on Blender Dataset

In the duration of dataset generation, to quantitively evaluate synthetic dataset, 4 different

pose estimation models available on GitHub were used to test their performance on

Blender Dataset. The purpose of this evaluation is to observe whether real world pose

estimation models performs well on synthetic images created by Blender. To represent

accuracy values, MPJPE metric [6] has been used. This is the L2 norm over all the joints

in all images.

Error (MPJPE) =
(∑ ((xgt−x)

2
+(ygt−y)

2
)

n

k=0
) 0.5

n
 (4)

x: estimated x coordinate of joint

xgt: ground truth x coordinate of joint

y: estimated y coordinate of joint

67

ygt: ground truth y coordinate of joint

n: number of total joints in dataset

4 different models were used to perform this test. These models are:

Model 1: Lightweight Human Pose Estimation 3d Demo Pytorch [19]

Model 2: Posenet Pytorch [28]

Model 3: Deep High Resolution Net Pytorch [29]

Model 4: Pytorch Openpose [30]

These 4 models were tested on 200 Blender images and error values based on MPJPE

metric are given in Table 15.

Table 15: Performance of 4 Different Models on Blender Dataset by mAP metric

Models Error in pixels (MPJPE) Detection Ratio (%)

Model 1 5.69 91.92

Model 2 3.03 95

Model 3 5.18 84.62

Model 4 4.35 92.08

In Table 15 above, error in pixel means MPJPE error over the entire Blender dataset.

Detection ratio is the percentage of joints detected in whole dataset. For example, Model

1 detected 91.92% of all joints in Blender dataset and in detected joints, error is 5.69 pixels

based on MPJPE error metric.

These values are close to values in literature. This means pose estimation models trained

on real world data can perform well on Blender simulation data as well. Therefore, a

68

human pose estimation model trained on Blender dataset may work on real world data as

well. This thesis was checked in later chapters.

3.5. Creation of Blender Dataset

So far, the way to build human model and 3D environment has been explained. After

completing these steps, dataset was created.

In the dataset, there are 178000 images and a single .json annotation file. .json file contains

joint locations in each image as x and y pixel coordinate location. Blender software has a

3D environment inside but created images needs to have 2D joint locations. Therefore,

3D environment was projected into 2D images to create dataset. This means 3D (x,y,z)

coordinate of joints in Blender software, was converted into 2D (x,y) coordinate in images.

Camera internal parameters and projection matrix were used for this operation by

assuming pinhole camera model. Visual representation of pinhole camera model is given

in Figure 39.

Figure 39: 3D to 2D Camera Projection Procedure [31]

69

Po = original 3D coordinates of object point [Xp, Yp, Zp]

Oo = original 3D coordinates of camera [Xo, Yo, Zo]

Pc = coordinates of object point converted from Po [Xc, Yc, Zc]

Oc = Center of projection ((0,0,0) coordinates in converted coordinate system)

In Blender, camera position and rotation information are available, and object point

position information is also available. Focal length and image plane size is also available.

To be able to convert 3D coordinates into 2D pixel coordinates following formula was

used. Equation 5 provides a simplified version of camera calibration equation.

𝑠 ∗ [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 −𝑋𝑜
𝑟21 𝑟22 𝑟23 −𝑌𝑜
𝑟31 𝑟32 𝑟33 −𝑍𝑜

0 0 0 1

] [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

] (5)

In Equation 5, [Xp, Yp, Zp, 1]T matrix is the 3D coordinates of object points. In this case,

reference coordinate system is Blender original coordinate system. However, it needs to

be converted into camera coordinate system and rotation and translation matrix [R|T] was

used for this operation. Rotation matrix is the 3x3 Euler rotation of camera with respect

to Blender coordinate system. Translation matrix is a 3x1 matrix and it contains 3D

coordinates of camera with respect to original Blender coordinate system. Rotation and

translation matrix is augmented as shown in Equation 5.

Note that in Equation 5, object point coordinates are converted into camera coordinate

system coordinates. In this case, reference coordinate system is taken as camera coordinate

system but not Blender coordinate system. It is explained in Equation 6 below:

[

𝑋𝑐
𝑌𝑐
𝑍𝑐
1

] = [

𝑟11 𝑟12 𝑟13 −𝑋𝑜
𝑟21 𝑟22 𝑟23 −𝑌𝑜
𝑟31 𝑟32 𝑟33 −𝑍𝑜

0 0 0 1

] [

𝑋𝑝
𝑌𝑝
𝑍𝑝
1

] (6)

When object point position in camera coordinate system is found, the projection on image

plane has to be found. Cameras in Blender software works with pinhole camera model.

Therefore, this model is used to get 2D coordinates in image plane. Another visual

70

representation of pinhole camera model is given in Figure 40.

Figure 40: Representation of Pinhole Camera Models (HeadVision, 2019)

To be able to use pinhole camera models, internal camera matrix is used as shown in

Equation 5. To perform similarity in triangle following equations are used:

𝑠 ∗ [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑋𝑐
𝑌𝑐
𝑍𝑐
1

] (7)

By performing matrix multiplications in Equation 7, u and v values were found and these

are pixel coordinates of object points in created image. s value is a constant and it is found

by the image plane size that can be adjustable in Blender software.

In this chapter, Blender features and methods to create synthetic dataset have been

discussed. To create a rich dataset, different randomization methods have been applied.

In the next chapter, details about usage of synthetic dataset on training and accuracy

results have been discussed.

71

CHAPTER 4

4. TRAINING MODELS with BLENDER DATASET

In chapter 3, methods and procedures to create synthetic dataset with high variability have

been discussed. By applying these procedures, synthetic dataset was created. This dataset

consists of 178000 images and a single annotation file in .json format. However, to be able

utilize synthetic dataset in training, annotation file was converted to MPII dataset format.

Details about files and training has been discussed in next parts.

4.1. Blender Annotation File Details

Blender annotation file is in csv format, and it contains 18 joint coordinates for every

human model in the image. In the final dataset, .csv file is converted to .json file to be

suitable with MPII dataset format. Name of the joints are given in the Table 16.

Table 16: Order and Name of Joints in Blender .csv Dataset

Joint Number Joint Name Joint Number Joint Name

1 Top of the head 10 Right Wrist

2 Bottom of head 11 Chest

3 Left Thorax 12 Pelvis

4 Left Shoulder 13 Left Hip

5 Left Elbow 14 Left Knee

6 Left Wrist 15 Left Ankle

7 Right Throax 16 Right Hip

8 Right Shoulder 17 Right Knee

9 Right Elbow 18 Right Ankle

72

4.2. Training Models on Blender Dataset

Blender dataset is a custom-made dataset, and it can be converted into other dataset

formats. Generally, different datasets in literature contains 16-17 joints in them and their

joint order from first joint to last joint may differ. Also, file format and the way coordinates

are presented may differ.

After literature survey about datasets, to evaluate our dataset’s performance, two datasets

from literature have been selected. These are MPII dataset and Crowdpose. Especially,

MPII dataset is one of the most widely used human pose estimation dataset and there is

more information and source code available on internet about this dataset compared to

other datasets. MPII dataset contains over 25000 images of people performing different

daily activities. Its annotation file formats are .mat format and .json format. Crowdpose

dataset contains 20000 images from crowded scenes in daily activities. Its annotation file

is a .json file as well.

Required information for MPII dataset is listed below:

• Joint visibility

• Joint locations

• Image file name

• Scale of human body in image with respect to 200 pixels

• Center coordinates of human body

All this information can be extracted from Blender software and Crowdpose dataset as

well. Therefore, original Blender annotation file with .csv format were converted into

MPII dataset format and Crowdpose dataset format was also converted to MPII format to

be used in training later.

To be able train human pose estimation model, firstly, training model must be selected.

Model can be trained from scratch or training can be resumed on a previously trained

model. Then, training source code needs to be found. Source codes for models trained on

MPII dataset are available on GitHub. Among them, 4 approach were selected. These are:

73

1. Epipolarpose [32]

2. Pytorch Pose [33]

3. Human Pose Estimation Pytorch [34]

4. HRNet [35]

After working on four different source code above, 3rd and 4th source codes were selected.

It was possible to train first two pose estimation models, but they were excluded due to

some limitations.

4.3. Details about Training

As explained in previous chapter, effectiveness of Metupose dataset has been tested via

two pose estimation models and two pose estimation datasets. Models are Pose Resnet50

and HRNet. Datasets are MPII and Crowdpose dataset.

General procedure to measure effectiveness can be described as follows:

1. Firstly, Metupose dataset was combined with MPII dataset

2. ‘Original Pose ResNet50’ model has been trained further for 100 epochs with the

combined dataset in step 1 by resuming training

3. Same ‘Original Pose ResNet50’ model has been trained further for 100 epochs

with only MPII dataset

4. Performance of two trained models in step 2 and step 3 are tested on 3 different

datasets. These are:

a. MPII dataset

b. Crowdpose dataset

c. LSPet dataset

The example given above were performed for (Pose ResNet50 model + MPII dataset)

bundle. Same procedure was performed on (Pose ResNet50 model + Crowdpose dataset)

bundle and (HRNet model + MPII dataset) bundle. Three different experiments are

summarized in Table 17.

74

Table 17: 3 Experiments to measure effectiveness of Metupose dataset

Experiment Used Pose Estimation

Model

Used Literature Dataset

Experiment 1 Pose ResNet50 MPII

Experiment 2 Pose ResNet50 Crowdpose

Experiment 3 HRNet MPII

The reason to perform 3 different experiments is to ensure the effectiveness of our dataset

in different conditions. If we only performed Experiment 1 for example, we would only

know effectiveness on Pose ResNet50 model and MPII dataset, but we would not know

effectiveness on HRNet model and Crowdpose dataset. This is important for

generalizability of effectiveness of our dataset.

Pose ResNet50 Pose Estimation Model Overview

Selected source code for Pose ResNet50 model is Human Pose Estimation Pytorch by

Microsoft which is the official implementation of Simple Baselines for Human Pose

Estimation and Tracking study.

Original MPII dataset annotation file is in .mat format but in source code, it was converted

to .json format. Both json annotation file and pretrained models were available in their

source code. Architecture and framework of Pose ResNet50 model is given in Figure 41

and Figure 42.

Figure 41: Architecture of Pose ResNet50 models used in Training [36]

75

Figure 42: Framework of the Pose ResNet Model Used in Training [36]

In the training models, ResNet [37] was used as a backbone. Additional deconvolutional

layers has been added to backbone and models were created.

Chosen source code has an accuracy metric called as PCKh. It is a different variation of

PCK metric from a different study [38]. In this study, person bounding boxes were created

and threshold bounding boxes are also created by multiplying person bounding box

dimensions with a constant such as 0.1. For example, if person bounding boxes have

dimensions such as 400 x 600 pixels, then, threshold bounding box dimension will be 40

x 60 pixels. Maximum of the two values which is 60 is taken. If the difference between

estimated joint coordinate and ground truth joint coordinate is lower than threshold length

(60 pixels) then, this estimation will be considered as correct. When this metric is applied

to all images and all joints in a dataset, percentage of the correct labels will give PCK

values. If 87% of all joints in a dataset was considered as correct, then pose estimation

model will have PCK value of 87 in this dataset.

In source code, there was a slight change about accuracy metric. Instead of using full body

to create threshold values, they used head segment length as reference length and 0.5 as

the multiplying constant. This new metric is called PCKh (Percentage of Correct

Keypoints-Head)

76

There were 6 different pretrained pose estimation models provided in the source code. In

training and validation for Pose ResNet, only first model, pose_resnet50_256x256.pth.tar

model was used. Accuracy values of six pretrained models from GitHub were tested on

four different datasets and results are listed in Table 18.

Table 18: Accuracies of Pretrained Github Models on 4 Different Datasets

No Model
Blender Acc

(PCKh)

MPII Acc

(PCKh)

LSPet Acc

(PCKh)

Crowdpose Acc

(PCKh)

1
Pose resnet50

256x256

39.5
88.5

26.1 59.1

2
Pose resnet50

384x384

39.5
89.1

24.2 61.0

3
Pose resnet101

256x256

40.2
89.1

25.8 59.6

4
Pose resnet101

384x384

40.7
90.0

24.2 61.6

5
Pose resnet152

256x256

41.3
89.6

24.2 60.5

6
Pose resnet152

384x384

43.5
90.2

25.4 63.6

HRNet Pose Estimation Model Preview

Selected source code for Pose HRNet model is the official implementation of Deep High

Resolution Representation Learning for Human Pose Estimation.

Pretrained HRNet model was trained on MPII dataset and original MPII dataset annotation

file is in .mat format but in HRNet source code, it was converted into .json format. Both

json annotation file and pretrained models were available in their source code. Name of

pretrained model is pose_hrnet_w32_256x256.pth and its architecture is given in Figure

43.

77

Figure 43: Architecture of pretrained HRNet Model

Both Pose ResNet50 and HRNet models in Github were pretrained on MPII dataset and

their accuracy metric is PCKh.

Explanation for keywords used in accuracy results table is given in Table 19 and

Table 20.

Table 19: Explanation for Different Datasets

No Dataset Keyword Dataset Meaning

1 MPII Official MPII dataset containing 25000 people

2 Crowdpose Official Crowdpose dataset, containing 26000 people

from crowded scenes

3 LSPet A portion of official LSPet dataset, containing 9000

people. Single person dataset with very difficult poses.

4 Blender Sample from our Blender dataset containing 43200

people

5 BL_MP Combination of BLender and MPII dataset containing

68000 people

6 BL_CR Combination of BLender and CRowdpose dataset

containing 69000 people

78

Table 20: Explanation for Different Training Conditions

No Training Keyword Training Meaning

1 FS_60E Trained From Scratch for 60 epochs

2 RT_100E Resumed Training on previously trained model for 100

epochs

3 ORG Original model from Github

Sample model names based on combined keywords from the tables are given in Table 21.

Table 21: Definition of Sample Pose Estimation Model Names

No Model Model Meaning

1 PR--RT_100E--BL_MP Pose ResNet model 100 epochs resume-trained on

combination of Blender and MPII datasets

2 PR--FS_60E--BL_CR Pose ResNet model trained from scratch for 60 epoch

on combination of Blender and Crowdpose datasets

2 HR--RT_100E--BL_MP HRNet model 100 epochs resume-trained on

combination of Blender and MPII datasets

3 ORG--PR Original pretrained Pose ResNet model from Github

4 ORG--HR Original pretrained HRNet model from Github

Experiments and results are given in Table 22 to Table 24.

Experiment 1 (Pose ResNet model + MPII dataset) Bundle

Table 22: Accuracy Values for Experiment 1 (Pose ResNet50 + MPII Dataset)

No Model MPII (% PCKh) Crowdpose

(% PCKh)

LSPet (% PCKh)

1 PR--RT_100E--BL_MP 89.25 60.45 27.44

2 PR--RT_100E--MPII 88.73 58.76 25.83

3 ORG--PR 88.5 59.12 26.1

79

Experiment 2 (Pose ResNet + Crowdpose) Bundle

Table 23: Accuracy Values for Experiment 2 (Pose ResNet50 + Crowdpose Dataset)

No Model MPII (% PCKh) Crowdpose

(% PCKh)

LSPet (% PCKh)

1 PR--FS_60E--BL_CR 78.82 64.63 17.63

2 PR--FS_60E--Crowdpose 77.51 62.48 16.29

Experiment 3 (HRNet + MPII) Bundle

Table 24: Accuracy Values for Experiment 3 (HRNet + MPII Dataset)

No Model MPII (% PCKh) Crowdpose

(% PCKh)

LSPet (% PCKh)

1 HR--RT_100E--BL_MP 89.98 63.62 28.88

2 HR--RT_100E--MPII 89.91 62.03 27.70

3 ORG--HR 90.30 59.12 26.1

From the accuracies given in Table 22 to 23, findings are summarized below:

1. Regardless of the pose estimation model and dataset, our Blender dataset increased

accuracies in all cases.

2. There was only a slight accuracy drop in Experiment 3 MPII test compared to

original model. In that experiment original accuracy was already high (90.30

PCKh) and further training even in its own MPII dataset resulted in drop in

accuracy. The reason could be original model could already be saturated and well-

tuned for MPII dataset so, further training in MPII may disturb the model and

result in very small decrease instead of an increase. Also, accuracy of our model

is still higher than 100 epoch MPII resume training case.

3. Blender dataset increased accuracies both in training from scratch and resume

training cases

80

4. In experiment 1, resume training in MPII dataset resulted in accuracy drop in

Crowdpose and LSPet dataset but adding Blender dataset resulted in accuracy

increase.

Experiment 4 (Changing Content of Metupose Dataset)

Apart from 3 experiment, another experiment has been performed to measure the

effectiveness different Metupose dataset configurations. In this experiment, total number

of people in the whole Metupose dataset has been kept same and image number in each

image has been changed. In training source code, the important parameter is number of

total people in all images but not the number of images itself. Results for (Pose ResNet50

and MPII dataset) bundle are given in Table 25.

Table 25: Performance of Metupose Dataset in Different Configurations

No Model MPII (% PCKh) Crowdpose

(% PCKh)

LSPet

(% PCKh)

1 PR--RT_100E--BL_MP_1 89.07 59.71 27.19

2 PR--RT_100E--BL_MP_1234 89.09 60.48 26.88

3 PR--RT_100E--BL_MP_4 89.25 60.45 27.44

4 PR--RT_100E--MPII 88.73 58.76 25.83

5 ORG--PR 88.5 59.12 26.1

• PR--RT_100E--BL_MP_1 : Metupose dataset includes 1 person x 43200 images

• PR--RT_100E--BL_MP_1234 : Metupose dataset includes:

o 1 person x 10800 images

o 2 person x 5400 images

o 3 person x 3600 images

o 4 person x 2700 images

• PR--RT_100E--BL_MP_4 : Metupose dataset includes 4 person x 10800 images

From the accuracies given in Table 25, findings are summarized below:

1. Crowdpose is a multi person dataset and it contains crowded environment. LSPet

81

on the other hand is a single person dataset. When first and second Metupose

dataset configuration was compared, first one (single person Metupose dataset) is

better at LSPet and worse at Crowdpose.

2. Second configuration (mixed Metupose dataset) is better at Crowdpose and worse

at LSPet dataset.

3. When first 2 configuration are compared as explained in steps above, results make

sense because single person configuration performs better on single person dataset

and mixed, multi-person configuration performs better crowded multi-person

dataset.

4. However, instead of using mixed dataset, when we use only 4 people images, it

performs better than any configuration in all cases. The reason for that could be increased

occlusion and increase in complex interaction between different people.

Some may argue that adding new data to a dataset is expected to increase accuracy and

therefore increase in accuracy due to additional Blender data is an expected outcome. This

is correct. However, creating data in Blender is an automated process and it is completely

free and does not take so much time. Furthermore, Blender provides all joint locations

whether it is necessary or not for a specific dataset. This is especially useful because

combining two different datasets from literature may be difficult or even impossible due

to difference in the content of two datasets. Different dataset may include different number

of joints, different location of joints labelled by different authorities.

Also, creating a new dataset for additional data manually is an expensive process but new

and infinite amount data can easily be created via Blender. Because of these reasons,

accuracy of a model can be increased almost effortlessly through Metupose dataset.

4.4. Deploying the Trained Model on Jetson Nano

Trained models are firstly tested on desktop computer through real time webcam video,

later tested on Nvidia Jetson Nano.

As expected, desktop gave so much more fps compared to jetson nano and results are

82

given in Table 26 and Table 27.

Table 26: Real Time Fps Values of Our Trained Pose ResNet50 Model in Different

Hardware

Hardware Fps

Nvidia RTX3080 111.0 fps

Nvidia GTX1050ti 16.7 fps

AMD Ryzen9 5900x (CPU) 8.5 fps

Nvidia Jetson Nano (10W mode) 3.4 fps

Nvidia Jetson Nano (5W mode) 3.8 fps

Table 27: Real Time Fps Values of Our Trained Pose HRNet Model in Different

Hardware

Hardware Fps

Nvidia RTX3080 26.3

Nvidia GTX1050ti 13.1

AMD Ryzen9 5900x (CPU) 8.1

Nvidia Jetson Nano (10W mode) 2.8

Nvidia Jetson Nano (5W mode) 2.2

It was observed that Nvidia Jetson Nano was barely enough to track human. Also, during

pose estimation, Jetson Nano gave over-current throttling error as shown in Figure 44. In

some of the experiments, Nvidia Jetson Nano shut down itself because of high workload.

Because these complex models were trained on Desktop computer it can be difficult for

single board computer to run it non-stop. However, there is a way to increase fps by using

TensorRT. This tool is specifically designed by Nvidia to convert Desktop trained models

to Jetson compatible models. This tool provides an increase in fps between 1.2 times to 6

times the original fps. We could not achieve to convert our model via TensorRT but this

can be done as future work.

Also, in desktop hardware, there was a small fps difference between ResNet50 and HRNet

model in GTX1050ti and AMD CPU devices. However, there was almost 4 times the

difference in RTX3080 hardware. Actual reason is not known but one of the possible

reasons could be special deep learning technology used in latest RTX3080 GPU may work

83

completely optimized with ResNet50 model but not with HRNet model. Release dates for

RTX3080 and GTX1050ti is 2020 and 2016 respectively. In the last a few years, Nvidia

provided so much more optimization in deep learning applications with their new devices

compared to 6-7 years ago. A sample image of Jetson Nano pose estimation studies is

given in Figure 44.

Figure 44: Throttle Error on Jetson Nano During Real Time Pose Estimation via

ResNet50 Model

84

85

CHAPTER 5

5. CONCLUSION

5.1. General Conclusion

Human pose estimation is basically finding pixel location of joints in an image, and it is

one of the most rapidly growing fields in machine vision. In this field, mostly, deep

learning algorithms are used for maximum accuracy and flexibility. Although deep

learning models give accurate results in most of the cases, there are still some cases where

even some advanced models fail. These cases can be listed as: occlusion, multiple people

in an image, interactions between people etc. To be able to overcome these problems pose

estimation models need to be robust and flexible in different conditions and it needs to be

trained on a wide variety of data to increase performance. However, creating a dataset

from real world images is an expensive and time-consuming process and created data may

be subject to errors because all joints are manually labelled by a human. To overcome

these problems, a parametric synthetic dataset approach is proposed where existing

datasets can also be enhanced with these synthetic images. When pose estimation models

trained only on real world images were tested on simulation data created in a 3D graphics

software, accuracies were satisfactory, and they were even close to the real-world

accuracies. This means, once a model performs well on real world data, it does not

differentiate simulation data from real world data and works on both. Therefore, our

hypothesis is that when a model is trained only on simulation data, it can work on real

world data as well since opposite case is observed to be true. To be able to test that, we

created a synthetic pose estimation dataset in Blender 3D software and tested the

effectiveness of our dataset with two different pose estimation model and 2 different

datasets. During testing we trained different pose estimation models via Metupose dataset

and observed changes in model accuracies. Our Metupose dataset led to accuracy increase

86

in all model/dataset cases. This means increasing a pose estimation model’s accuracy by

using Metupose dataset is possible and creating Metupose dataset is an automated and

effortless process. We provide a complete 178000 image and 402000 person dataset and

source code and necessary tools to create new dataset easily. By using Metupose dataset,

we trained a pose estimation model and integrated the model into Nvidia Jetson Nano and

Raspberry Pi camera system and results were satisfactory. This system can be used as a

low-cost human tracking system in the future studies.

5.2. Future Work

Although Metupose dataset was successful for increasing accuracy of pose estimation

models, there are some areas that can be improved in future studies.

Firstly, our trained model was run on Jetson Nano single board computer at 3.4 fps, this is

barely enough to track a moving human object. To increase running fps, TensorRT module

developed by Nvidia can be used.

MPII dataset contains total 25000 people and when we combine our Metupose dataset

with MPII dataset, we added images with total 43200 persons out of total 402000 persons.

For this case, future work could be increasing number of persons from Metupose dataset

to observe if there is any increase in final accuracy.

All human models in our study were created by MbLab addon in Blender software and

there are other tools and software to create even more realistic human models with

different clothing style. Therefore, our whole study can be reproduced on another 3D

design software platform to observe if there will be an increase in accuracy.

87

REFERENCES

[1] Groos, D., Ramampiaro, H., & Ihlen, E. A. (2020). EfficientPose: Scalable single-

person pose estimation. Applied Intelligence, 51(4), 2518–2533.

https://doi.org/10.1007/s10489-020-01918-7

[2] Artacho, B., & Savakis, A. (2020). UniPose: Unified Human Pose Estimation in

Single Images and Videos. 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.00706

[3] Fang, H. S., Xie, S., Tai, Y. W., & Lu, C. (2017). RMPE: Regional Multi-person

Pose Estimation. 2017 IEEE International Conference on Computer Vision

(ICCV). https://doi.org/10.1109/iccv.2017.256

[4] Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2D Human Pose

Estimation: New Benchmark and State of the Art Analysis. 2014 IEEE Conference

on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2014.471

[5] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

& Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context. Com-

puter Vision – ECCV 2014, 740–755. https://doi.org/10.1007/978-3-319-10602-

1_48

[6] Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014). Human3.6M:

Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural

Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(7), 1325–1339. https://doi.org/10.1109/tpami.2013.248

[7] Ganesh, P. (2019, May 25). Human Pose Estimation : Simplified - Towards Data

Science. Medium. Retrieved January 30, 2022, from https://towardsdatasci-

ence.com/human-pose-estimation-simplified-6cfd88542ab3

[8] Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H. S., & Lu, C. (2019). CrowdPose:

Efficient Crowded Scenes Pose Estimation and a New Benchmark. 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/cvpr.2019.01112

https://doi.org/10.1007/s10489-020-01918-7
https://doi.org/10.1109/cvpr42600.2020.00706
https://towardsdatascience.com/human-pose-estimation-simplified-6cfd88542ab3
https://towardsdatascience.com/human-pose-estimation-simplified-6cfd88542ab3
https://doi.org/10.1109/cvpr.2019.01112

88

[9] Cai, Y., & Tan, X. (2016). Weakly supervised human body detection under arbi-

trary poses. 2016 IEEE International Conference on Image Processing (ICIP).

https://doi.org/10.1109/icip.2016.7532427

[10] Brito, A. (2019, May 15). Free download: Casual animated human scale •.

Blender 3D Architect. https://www.blender3darchitect.com/furniture-models/free-

download-casual-animated-human-scale/

[11] Carica, A. (2021, October 12). Unity 3d Person Model. 3dmodelsz. Retrieved

January 30, 2022, from https://3dmodelsz.blogspot.com/2021/10/unity-3d-person-

model.html

[12] Garreffa, A. (2021, March 17). Unreal Engine MetaHuman tool makes super-

realistic human models. TweakTown. Retrieved January 30, 2022, from

https://www.tweaktown.com/news/77788/unreal-engine-metahuman-tool-makes-

super-realistic-human-models/index.html

[13] 3D realistic rig - TurboSquid 1401132. (2019, April 24). TurboSquid. Retrieved

January 30, 2022, from https://www.turbosquid.com/3d-models/3d-realistic-rig-

1401132

[14] L. (2017, February 1). People In Motion 2 Offers an Easy Way to Populate Scenes

in C4D. Lesterbanks. Retrieved January 30, 2022, from

https://lesterbanks.com/2017/02/people-in-motion-2-populate-c4d/

[15] 3D people character model - TurboSquid 1522543. (2020, March 14). TurboSquid.

Retrieved January 30, 2022, from https://www.turbosquid.com/3d-models/3d-

people-character-model-1522543

[16] Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M. J., Laptev, I., &

Schmid, C. (2017). Learning from Synthetic Humans. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/cvpr.2017.492

[17] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, and R. Cucchiara,

"Learning to Detect and Track Visible and Occluded Body Joints in a Virtual

World," ECCV, vol. abs/1803.08319, 2018

[18] Patel, P., Huang, C. H. P., Tesch, J., Hoffmann, D. T., Tripathi, S., & Black, M. J.

(2021). AGORA: Avatars in Geography Optimized for Regression Analysis. 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/cvpr46437.2021.01326

https://doi.org/10.1109/icip.2016.7532427

89

[19] Osokin, D. (2021a, May 1). GitHub - Daniil-Osokin/lightweight-human-pose-es-

timation-3d-demo.pytorch: Real-time 3D multi-person pose estimation demo in

PyTorch. OpenVINO backend can be used for fast inference on CPU. GitHub.

Retrieved December 3, 2021, from https://github.com/Daniil-Osokin/lightweight-

human-pose-estimation-3d-demo.pytorch

[20] Tome, D. (2020, March 24). GitHub - DenisTome/Lifting-from-the-Deep-release:

Implementation of “Lifting from the Deep: Convolutional 3D Pose Estimation

from a Single Image.” GitHub. Retrieved December 3, 2021, from

https://github.com/DenisTome/Lifting-from-the-Deep-release

[21] Zen, M. (2020a, July 14). GitHub - MikeOfZen/Yet-Another-Openpose-Implemen-

tation: This project reimplements from scratch the OpenPose paper (Cao et

al,2018), Using Tensorflow 2.1 and optional TPU powered training. GitHub. Re-

trieved December 3, 2021, from https://github.com/MikeOfZen/Yet-Another-

Openpose-Implementation

[22] Uddin, M. (2020a, September 13). GitHub - misbah4064/human-pose-estimation-

opencv: Perform Human Pose Estimation in OpenCV Using OpenPose MobileNet.

GitHub. Retrieved December 3, 2021, from https://github.com/misbah4064/hu-

man-pose-estimation-opencv

[23] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017).

Domain randomization for transferring deep neural networks from simulation to

the real world. 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). https://doi.org/10.1109/iros.2017.8202133

[24] Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T.,

Cameracci, E., Boochoon, S., & Birchfield, S. (2018). Training Deep Networks

with Synthetic Data: Bridging the Reality Gap by Domain Randomization. 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). https://doi.org/10.1109/cvprw.2018.00143

[25] Mehta, B., Diaz, M., Golemo, F., Pal, C.J., & Paull, L. (2019). Active Domain

Randomization. CoRL.

[26] Free Blender Human Models. (2022). TurboSquid. Retrieved January 30, 2022,

from https://www.turbosquid.com/Search/3D-Models/free/human/blend

[27] About – MB-Lab Official Website. (2021). Mblab. Retrieved May 20, 2022, from

https://mblab.dev/about/

https://www.turbosquid.com/Search/3D-Models/free/human/blend

90

[28] Wightman, R. (2019, August 14). GitHub - rwightman/posenet-pytorch: A

PyTorch port of Google TensorFlow.js PoseNet (Real-time Human Pose Estima-

tion). GitHub. Retrieved December 3, 2021, from https://github.com/rwight-

man/posenet-pytorch

[29] Xiao, B. (2021, May 19). GitHub - leoxiaobin/deep-high-resolution-net.pytorch:

The project is an official implementation of our CVPR2019 paper “Deep High-

Resolution Representation Learning for Human Pose Estimation.” GitHub. Re-

trieved December 3, 2021, from https://github.com/leoxiaobin/deep-high-resolu-

tion-net.pytorch

[30] Huang, Z. (2021, June 21). GitHub - Hzzone/pytorch-openpose: pytorch imple-

mentation of openpose including Hand and Body Pose Estimation. GitHub. Re-

trieved December 3, 2021, from https://github.com/Hzzone/pytorch-openpose

[31] Dehkharghani, S. S., Pleshkova, G. S. (2014). Geometric Thermal Infrared Cam-

era Calibration for Target Tracking by a Mobile Robot. Comptes Rendus L’Acad-

emie Bulgare des Sciences. 67. 109-114.

[32] Kocabaş, M. (2019, July 26). GitHub - mkocabas/EpipolarPose: Self-Supervised

Learning of 3D Human Pose using Multi-view Geometry (CVPR2019). GitHub.

Retrieved December 3, 2021, from https://github.com/mkocabas/EpipolarPose

[33] Yang, W. (2021, February 10). GitHub - bearpaw/pytorch-pose: A PyTorch toolkit

for 2D Human Pose Estimation. GitHub. Retrieved December 3, 2021, from

https://github.com/bearpaw/pytorch-pose

[34] Microsoft. (2019, April 10). GitHub - microsoft/human-pose-estimation.pytorch:

The project is an official implement of our ECCV2018 paper “Simple Baselines

for Human Pose Estimation and Tracking(https://arxiv.org/abs/1804.06208).”

GitHub. Retrieved December 3, 2021, from https://github.com/microsoft/human-

pose-estimation.pytorch

[35] Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep High-Resolution Representa-

tion Learning for Human Pose Estimation. 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/cvpr.2019.00584

[36] Xiao, B., Wu, H., & Wei, Y. (2018). Simple Baselines for Human Pose Estimation

and Tracking. Computer Vision – ECCV 2018, 472–487.

https://doi.org/10.1007/978-3-030-01231-1_29

91

[37] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). https://doi.org/10.1109/cvpr.2016.90

[38] Yang, Y., & Ramanan, D. (2013). Articulated Human Detection with Flexible

Mixtures of Parts. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(12), 2878–2890. https://doi.org/10.1109/tpami.2012.261

[39] M. (2022). GitHub - mustafa-ersoy/metupose-dataset: This code helps you create

your own synthetic pose estimation dataset in MPII format using Python. GitHub.

Retrieved May 20, 2022, from https://github.com/mustafa-ersoy/metupose-dataset

https://doi.org/10.1109/tpami.2012.261

92

93

CHAPTER 6

6. APPENDIX

All our source code is available in links below:

• https://github.com/mustafa-ersoy/metupose-dataset

• https://drive.google.com/drive/u/2/folders/1-

3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE

• https://users.metu.edu.tr/kbugra/research/metupose/

All links above contain same source code.

https://github.com/mustafa-ersoy/metupose-dataset
https://drive.google.com/drive/u/2/folders/1-3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE
https://drive.google.com/drive/u/2/folders/1-3NnpnKSBVgotMPqNe6fdZfMEEE7fPeE
https://users.metu.edu.tr/kbugra/research/metupose/

