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ABSTRACT

AN EMOTION RECOGNITION METHOD WITH LOW SPEC ECG AND
EEG DEVICES

Köse, Emre Kutlu
M.S., Department of Medical Informatics

Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu

May 2022, 67 pages

In recent years, developments on sensory technologies make electroencephalography
and electrocardiography devices portable and more accessible. This provides new
opportunities in emotion recognition area for researches and the industry. Interest of
industry grows on the subject. Moreover, popularity of emotion recognition research
is increased. To increase further possibilities of emotion recognition systems, this
study provides an emotion recognition method that uses portable electroencephalog-
raphy (EEG) and electrocardiography (ECG) devices. This study proposes an EEG
feature called zero-crossing variance that detects small frequency chances on data
and tests effectiveness of three different classifiers with it. Different from similar
works, the study solves three class classification problem for valence and arousal and
achieves accuracy of 92% for valence and 95% for arousal.

Keywords: EEG, ECG, HRV, Emotion, Classification
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ÖZ

DÜŞÜK ÖZELLİKLİ EEG VE EKG CİHAZLARIYLA DUYGU TAHMİNİ

Köse, Emre Kutlu
Yüksek Lisans, Sağlık Bilişimi Bölümü

Tez Yöneticisi: Prof. Dr. Ünal Erkan Mumcuoğlu

Mayıs 2022 , 67 sayfa

Sensör teknolojilerinde oluşan son yıllardaki gelişmeler, elektroensefalografi (EEG)
ve elektrokardiyo-grafi (EKG) cihazlarının daha taşınabilir ve daha erişilebilir hale
getirmiştir. Bu durum araştırmacılar ve endüstri için duygu tanımada yeni fırsatlar
sunmaktadır. Duygu tanıma sistemlerini daha kullanılabilir hale getirebilemek için bu
çalışmada, taşınabilir elektroensefalografi ve elektrokardiyogram cihazlarını kullanan
bir duygu tanıma yöntemi sunulmaktadır. Çalışma yeni bir EEG değişkeni önermiştir.
Bu değişken için üç farklı sınıflandırma yönteminin performanslarını karşılaştırmıştır.
Benzer çalışmalardan farklı olarak, bu çalışmada üç gruplu sınıflandırma problemi
çözülmüştür. Çalışmada değerlik için %92, uyarılma için %95 doğruluk değeleri elde
edilmiştir.

Anahtar Kelimeler: EEG, EKG, HRV, Duygu, Sınıflandırma
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CHAPTER 1

INTRODUCTION

This chapter provides brief introduction to study. Motivation of work, background
research and similar studies are explained in this chapter.

1.1 Motivation and Problem Definition

Emotion recognition is becoming an important subject in robotics, marketing, educa-
tion, and the entertainment industries. In marketing and entertainment industries it is
used for targeting purposes, in robotics it is used to improve human machine interac-
tions, in education it is used to investigate learning process and to improve learning
methodo-logies [7].

Need of industry also increases popularity of emotion recognition studies and develop-
ment of related sensory and devices [8]. Currently, electroencephalography (EEG)
and electrocardiography (ECG) are among the most popular human body parameters
that are used in emotion recognition [7]. However, there are not definite standards for
emotion recognition through electroencephalography signals [9].

Even though, more affordable and acceptable performing EEG devices such as Open
BCI and Emotiv EPOC headset exist, according to literature review of Torres et al.,
new devices will become even more useful [9]. Moreover, They state that current
models of EEG devices gives discomfort after long usage time [9].

Since there is no standard for emotion recognition using EEG signals, this work aims
to provide a new method that performs on par with existing researches by using a few
number of EEG scalp locations to reduce cost and discomfort of a such system, with
the help of electrocardiography recordings.

1.2 EEG

EEG is used to measure the electrical activity of the cerebral cortex. EEG can only
detect pyramidal neurons on the higher levels of the cerebral cortex. Pyramidal neu-
rons create dipoles that can be detectable via EEG thanks to their unique shape and
positioning on the cerebral cortex. Moreover, EEG can sense the voltage change on
the scalp due to excitatory and inhibitory postsynaptic potentials of multiple neurons.
Even though; the major cause of potential change is action potential, these can not be
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detected by EEG since they occur too rapidly to sum on each other to create enough
potential on the scalp [1]. Action potentials occur around 1 ms, whereas postsynaptic
potentials last up to a couple of 10 ms.

Summed neuron potentials create voltage on EEG scalp. If these neurons are fired
simultaneously, resulted EEG wave will have high amplitude and low frequency. On
the other hand, asynchronously fired neurons cause high frequency and low amplitude
EEG signals. These processes are called synchronization and de- synchronization.
Figure1.2 shows how 3 Hz firing rate results in different EEG waves for synchroniza-
tion and de-synchronization.

Figure 1.1: Synchronization and desynchronization [1]

EEG signals are divided into frequency bands which are the delta (0.5-4Hz), theta (4-
8Hz), alpha (8–13Hz), beta (13–30Hz),and gamma (>30Hz). According to Wang’s
review on literature, alpha, beta and gamma bands are better to use on emotion recog-
nition studies [8]. Which also complies with Suhaimi’s work [10]. Moreover to
frequency bands, different brain regions relate different activities. Zhang’s findings
on EEG scalp locations and emotion recognition task shows that prefrontal cortex
activity correlates with emotion in humans [11]. Suhaimi’s review also shows that
frontal lope has an important role in emotion-related studies [10].

Emotional valence index(EVI) is a EEG feature that relates emotional valence [12].
According to Tomarken’s work that shows the relation between frontal asymmetry
and emotional valence, frontal lope alpha power on the left sphere decreases with
positive emotions while right frontal lope alpha power decreases with negative ones
[13]. Some existing works use other frequency bands related to frontal asymmetry
metrics [14] [12].

According to Wang’s review one of the most popular information theory related EEG
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feature is sample entropy [8]. Approximate sample entropy (ApEn) was proposed
to quantify the complexity of short and noisy time series. Aproximate sample en-
trophy is calculated as follows. Firstly, probability of vectors with in range r of
Xm(i) calculated as Cm

i (r). Then,logaritmic average of all posible vector’s probabil-
ities gives Φm(r). Finally, approximate sample entrophy becomes ApEn(m, r,N) =
Φm(r)− Φm+1(r).

Cm
i (r) = 1/(N −m+ 1)

N−m+1∑
j=1

Θ[r− ‖ Xm(i)−Xm(j) ‖] (1.1)

Φm(r) = 1/(N −m+ 1)
N−m+1∑

j=1

ln[Cm
i (r)] (1.2)

ApEn(m, r,N) = Φm(r)− Φm+1(r) (1.3)

1.3 Artifact Subspace Reconstruction

Artifact Subspace Reconstruction is an automatic pre-processing method for EEG
signals. ASR learns statistical properties of clean calibration data and compares these
statistics with statistics of new data during the processing. ASR consists of two parts;
calibration and processing. Calibration includes recording approximately 1 min EEG
data in ideal condition (which gives clean data). The algorithm learns the statistical
properties of this data and rejects noisy parts that have different statistical properties
than the calibration data, in the processing part.

ASR works as follows. It takes low artifact, clean signal Xc = RQxM (Q: num-
ber of channels, M: sample length). Then decompose it to its principle compo-
nents W = [w1wQ]εRQxQ. Component activations are calculated as Y = XcW

T .
For each component’s RMS value, mean mk and standard deviation sk are calcu-
lated in overlapping short time windows (0.5 seconds). Using per-component mean
m = [m1mk] and standard deviation s = [s1sk], the vector of per-component thresh-
olds tij = mij + csij is calculated. "c" is a tunable cut-off parameter that determines
how much of signal variance will be removed. Typical it is taken as c = 5 − 7.
However, according to Chang et al., that is too aggressive and removes parts con-
taining meaningful brain signals, and they suggest that "c" should be between 10 and
100 [15]. In the last step, UεRQxQ is chosen as Uij = 1,if σij < tij; Uij = 0 oth-
erwise. Then Xc becomes Xclean = VM(M ⊗ U)+V TX , where M = V TM̄ and
M̄M̄T = Cor(X).

3



Figure 1.2: ASR method [2]

1.4 ECG

ECG senses electrical signals that occurs during heart beat. Heart consist of four re-
gions which are left atrium, right atrium, left ventricle and right ventricle. Electrical
signals that occurs during heart beat, stars from sinoatrial node which resides in right
atrium. Then, after small delay, it spreads through ventricle. These signals are mea-
sured from skin and ECG signals emerge from them. There are 4 electrodes in a full
ECG setup. They can be seen from Figure1.3.

HRV is calculated through an ECG signal. It is the measure of the difference in time
between consecutive R intervals of ECG signal which can be seen in idealized form
in Figure 1.4.

The autonomic nervous system (ANS) has a critical role in physiological arousal
[4]. There are two parts of ANS, which are the excitatory sympathetic nervous sys-
tem (SNS) and the inhibitory parasympathetic nervous system (PNS). SNS becomes
domi-nant and increases heart rate in case of environmental stress to make the body
able to adapt to changing environmental factors. PNS, on the other hand, reduces
heart rate in stable conditions. ANS causes varying heartbeats in case of stress or
different emotions. This property makes HRV useful in emotion recognition stud-
ies. Quintana’s work provides direct evidence of a relationship between emotion and
HRV [16].

There are two different theories regarding the relation between ANS and emotions.
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Figure 1.3: ECG Electrode Locations [3]

One of these theories is the polyvagal theory proposed by Porges [17]. The polyvagal
theory explains emotional responses (also environmental stressors) through 3 subsys-
tems that become active in sequence depending on their evolutionary stage. In the
case of external stimuli, the ventral vagal complex (VVC) which is the most recent
one in the evolutionary line among 3 subsystems, becomes active first and causes a
rapid increase in heart rate. Then, the sympathetic nervous system is activated to
increase heart beat further, due to insufficiency of rapid heart rate increase coming
from VVC. Finally, the dorsal vagal complex (DVC) which is the most primitive one
among 3 subsystems, becomes active due to excessive usage of oxygen sources in the
body caused by increased heart rate and reduced heart rate. Another theory proposed
by Thayer and Lane is the neurovisceral model [18]. Their model explains that the
emotional process is controlled by a system that is a part of a even bigger dynamic
system. This complex system is also connected to ANS which affects HRV.

There are several metrics related to HRV from the literature review of Kim [19]. Some
of these metrics are calculated in the time domain such as the root mean square of the
successive differences (RMSSD), the number of interval differences of successive
NN intervals (consecutive R-R interbeat intervals) greater than 50 ms (NN50). There
are also metrics calculated in the frequency domain. As explained in Bradley’s work,
the high-frequency (HF )component is a power spectral density of 0.15–0.40 Hz band
and primarily reflects PNS activity [4]. The low-frequency (LF) component is a power
spectral density of 0.04 –0.15 Hz band and mostly relates to SNS activity. The ratio
of LF to HF (LH) is also used by researchers to investigate the balance between PSN
and SNS.

5



Figure 1.4: Idealized ECG segment [4]

1.5 Emotional Models

The emotional models can be divided into two categories. One of these categories is
categorical models. Categorical models put emotions in distinct emotion classes. The
other category is dimensional models. Dimensional models represent emotions in a
dimensional space that uses a set of common dimensions.

Ekman’s basic emotions model is a well-known categorical model. Ekman’s model
contains six distinct emotional states which are happiness, anger, fear, enjoyment,
sadness, and disgust [20]. Ekman’s theory comes from the research on facial express-
ions. According to his findings, there are six distinct universal facial expressions that
repre-sent six different emotions.

Circumplex model of emotion is one of the most widely used emotional models [21].
Model is proposed by Russel, after Schlosberg’s proposal which states that emotions
can be represented by two bipolar dimensions (valence and arousal) [5] [22]. Dimen-
sions in the circumplex model are valence and arousal. Figure 1.5 shows represen-
tation of eight emotions in valence-arousal space. The valence scale represents the
direction of the feeling or emotion, such as how positive the emotion is. The arousal
scale represents the intensity of the emotion experienced in response to the stimuli.
Arousal is mostly about the physical response of the body.

Categorical models may cause inaccuracy. When the exact names of emotion felt by
the subject doesn’t appear in categories, the subject may choose different emotions
due to personal differences. Therefore, bipolar dimensions provide more accurate
representation especially in self-reporting studies [21]. Schlosberg’s model comes
from the examination of errors that occur during the classification of emotional states
of facial expressions [22]. Russell also favors bipolar dimensions in self-reporting
studies [5]. Moreover, Thayer states that the dynamic system nature of the neurovis-
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Figure 1.5: Circumplex Model of Affect as Eight Emotions Represented in Valence-

Arousal Space [5]

ceral model makes sense with dimensional models [18].

1.6 Classification Methods

Literature reviews show that KNN and SVM are the two most popular classification
algorithms in emotion recognition studies [23]. Since this work uses 3 classes that
should be classified, a binary classifier such as SVM is not applicable. Therefore, This
subsection provides a brief explanation of KNN, ECOC (which is a machine learning
method such as SVM and can be used on classification problem that involves more
than 2 classes), and random forest method which is the main classification method
that used in this work.

Random forest classifier is made of multiple number of tree predictors that cast a vote
on prediction result according to their prediction [24]. Prediction is made according
to popular result among predictions of each individual tree.

In the training procedure of random forest, each tree is trained with random samples
from the training set. These random samples may or may not return the training set
depending on the random forest model. If the selected samples return to the training
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set, they may be chosen to train another tree in the model.

Trees are grown depending on features’ Gini scores. Gini score represents impurity
of classification related to the feature (so, it is the probability of the wrong classifica-
tion in case of a random selection related to a specific feature). Equation 1.4 shows
calculation of Gini score. Each node is divided according to features with the lowest
Gini score.

Hyperparameters of the random forest method are the number of trees, the maximum
number of split, mtry, and replacement [25]. Number of trees is a self-explanatory
parameter that represents the number of trees in a random forest model. Number of
the split is the parameter that limits how deep can a tree split. Mtry is the number
of variables that are randomly sampled in each split and for classification problems,
optimum usage is sqrtp (where p is a variable number). The replacement parameter
chooses whether or not randomly chosen samples will be available for other trees.

G =
C∑
i=1

p(i) ∗ p(1− i) (1.4)

K nearest neighbor algorithm works as follows. Let’s assume there are sample pairs
as Xs for variables and Ys for class. While trying to estimate point y from variables
x, K number of points from Xs that have the lowest distance to x is determined and
they become Xk and related classes become Yk. The class that has the most number
of members in Yk, is predicted as y.

Error-correcting output codes models can be used for classification problems that
involve more than two classes.Support vector machine models can not be used, since
they are binary classifiers. In ECOC models, multi-class classification problems are
solved as several binary class problem by using multiple SVM classifiers.

There are two different methods to reduce multiple class problems to several binary
classification problems. The first method is one against one. In this method, from
all exiting classes, two pair is chosen an d they are treated as a binary class problem.
Therefore, for each pair of classes one SVM classifier is trained. That means for the K
class, the K(K− 1)/2 model is trained. The second method is one against all. In this
method, each exiting class and all remaining classes becomes a binary classification
problem. Therefore, for each class one SVM classifier is trained. That means for the
K class, the K model is trained.

1.7 Classification Performance Metrics

This sub section explains calculations and meanings of classification performance
metrics used in this work. Since the work classifies 3 class problem, this chapter
focuses on only performance metrics related 3 class problem.

From Table1.1, for ith class, Ti shows the number of times it predicted correctly and
Fji shows the number of times it predicted as j instead of i.
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Table 1.1: Example Confusion Matrix

True/Actual

Class1 Class2 Class3

Predicted Class1 T1 F12 F13

Class2 F21 T2 F23

Class3 F31 F32 T3

Precision is measurement of how many times prediction made as i, actually i. Equa-
tion 1.5 shows how precision can be calculated for "Class1". It is the ratio between
positive and false positives for that specific class.

Precision1 =
T1

T1 + F12 + F13

(1.5)

Recall is measurement of how many times class i is correctly classified. Equation 1.6
shows how precision can be calculated for "Class1". It is the ratio between positive
and false negatives for that specific class.

Recall1 =
T1

T1 + F21 + F31

(1.6)

F1 score provides insight about how successful classifier is. For a specific class, it is
the harmonic mean of the class’s precision and recall score. Equation 1.7 shows the
calculation of F1 score for Class1.

F1score1 =
2 ∗ Precision1 ∗Recall1
Precision1 +Recall1

(1.7)

Accuracy is ratio between number of correct predictions and total predictions. Equa-
tion 1.8 shows how it is calculated.

Accuracy =
T1 + T2 + T3

T1 + F21 + F31 + T2 + F12 + F13 + T3 + F13 + F23

(1.8)

F1 scores are calculated each class separately,. However, in order to make clear com-
parison between classifiers, overall F1 score should be calculated. There are two
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different methods for that purpose. First one is Macro-F1 score and it is calculated
by taking arithmetic mean of F1 scores of classes. Equation 1.9 shows calculation
of Macro-F1 score. Second one is weighted F1 score which is calculated by taking
weighted average of F1 scores. In weighted average case, class distribution of true
data is used as weights. Example of calculated weight for Class1 is shown in equation
?? and Weighted-F1 score calculation is shown in 1.11.In same way both macro and
weighted average of recall and precision can be calculated.

Macro− F1 =
F1score1 + F1score2 + F1score3

3
(1.9)

Weight1 = T1 + F21 + F31 (1.10)

Weighted−F1 =
weight1 ∗ F1score1 + weight2 ∗ F1score2 + weight3 ∗ F1score3

weight1 + weight2 + weight3
(1.11)

Finally, After calculation for other classes, performance metrics becomes as table1.2.

Table 1.2: Arousal Classification Results for Fixed Channel Case

Class Name Prec Recall F1 Sample Size

Class1 Precision1 Recall1 F1score1 weight1

Class2 Precision2 Recall2 F1score2 weight2

Class3 Precision3 Recall3 F1score3 weight3

macro avg Macro− Precision Macro−Recall Macro− F1

weighted avg Weighted− Precision Weighted−Recall Weighted− F1

Accuracy

1.8 Chi-Squared Test

Chi-squared test is a non-parametric statistical test that investigates the relationship
between two categorical variable. Relationship is investigated through comparison
between frequencies observed in the categories and expected frequencies which is the
value if the frequency is obtained by pure chance. Equation 1.12 shows calculation
of chi-squared test.

X2 =
∑ (observedij − expectedij)2

expectedij
(1.12)
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Table 1.3: Example Frequency Distribution Table For 2 Classes

Class Name B1 B2 B3

A1 V11 V12 V13

A2 V21 V22 V23

A3 V31 V32 V33

From Table1.3, A and B are two variables with each having 3 classes. V11 to V33 are
observed values.

For each observation, expected value is calculated through ratio between multipli-
cation of total values in the row and the column that observed value fills and the
total number of observation. Example calculation for observed value V11 is shown in
Equation 1.13.

Expected11 =
(V11 + V12 + V13) ∗ (V11 + V21 + V31)

V11 + V12 + V13 + V21 + V22 + V23 + V13 + V31 + V32 + V33
(1.13)

As X2 value is increased, distribution between variables are less likely to happen by
pure chance. Therefore, two variables are more likely to be related to each other. This
method also can be used to compare features in a classification problem. Importance
of each feature can be understood by comparing chi-squared test results between each
feature and the class.

In this study matlab function fscchi2() is used to get importance scores of features.
However, as mentioned before chi-squared test can be used between categorical variab-
les and features in this study are continuous. Therefore, function quantizes continuous
data to bins then applies chi-squared test as if it is categorical data.
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1.9 Similar Studies

This study proposes an emotion recognition method that uses ECG and EEG signals.
In this section, methods used by similar emotion recognition studies are investigated.
EEG metrics in current studies are discussed here since they are different than the
most popular metrics previously mentioned in EEG section. However, HRV metrics
are the same as previously mentioned features, therefore they are not discussed in this
section. Moreover to EEG metrics other available human body parameters are briefly
mentioned.

There are different human body parameters used in similar studies. Two of the avail-
able parameters are discussed in previous sections since they are the topic of this
study. Other parameters are galvanic skin response (GSA), respiration rate analy-
sis (RRA), skin temperature measurements (SKT), and electromyogram. GSA is the
measurement of the electrical conductance of the skin. It is usually used with ECG
features to stress assessment. RRA is the measurement of pace and depth of breath-
ing. It is possible to predict it from ECG and is usually used with other metrics to
predict emotions [7]. SKT is the measurement of the surface temperature of the skin.
It is related to parasympathetic system activity like HRV features. Generally, there is
a large delay between emotion occurrence and change in SKT measurement. EMG is
used to detect muscle activity in humans through electrodes placed on the skin.

The most commonly used EEG features are power spectral density, statistical, wavelet
transform, differential entropy, sample entropy, wavelet empirical mode decomposi-
tion according to Wang’s review [8]. Kim’s review also mentions power spectral
density and adds brain asymmetry-related features [26]. Among studies that com-
pared to this study, Cui’s work extracts features related to brain asymmetry via ex-
tracting information through several CNN [27]. In Cheng’s work pre-processed EEG
data directly feed into a cascaded random forest model which output of each level
of random forest model becomes the next level’s features, as a 2D vector [28]. In
Liu’s work again, EEG data is processed through series of specialized deep learn-
ing models to acquire features then to be classified [29]. In Wang’s work symmetric
and positive definite (SPD) matrix which is a convolutional network, method is used
to extract features from EEG data [30]. Maheshwari’s work power of different fre-
quency bands of EEG signals are used as features [31]. In Song’s work, the graph that
consists of nodes made by differential entropy feature of each EEG channel is used
as a feature [32].

According to Wang’s review on literature, Support Vector Machine(SVM), KNN,
Random Forest, Naive Bayes(NB) are the most popular machine learning methods
in the literature [8]. Moreover, Kim’s 2013 review on literature mentions SVM and
KNN as popular methods [26]. However, neural network methods are gaining popu-
larity in recent years [8]. This also complies with recent studies that are compa-red to
the results of this study in Table 3.7.

In this study, the Dreamer data set is used. There are also other available data sets that
exist. DEAP data set contains EEG data of 32 subjects collected during music video
watching sessions. For 22 subjects, frontal face video is also provided. After sessions
participants rate music pieces according to valence, arousal, and dominance. For the
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SEED data set, emotional video clips are shown to 15 participants. EEG record-
ings and frontal face videos are collected. Emotional states are collected through a
question-naire.
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CHAPTER 2

METHOD

In this chapter, methods and design choices are explained. In this work, the Dreamer
data set is used [33]. Dreamer data set contains arousal and valence scores which
are given by 23 participants to 18 videos. In video sessions, ECG and EEG data of
participants are collected. Due to the difference in the length of videos and to provide
the necessary time to emotions which are related to video become dominant, the last
60 seconds of each video is used, as suggested by Katsigian-nis [33].

Valence and arousal scores are predicted through ECG and EEG recordings, rather
than the actual emotions assessed to videos. Since assessment has been done in dif-
ferent study beforehand, the response of Dreamer study participants may differ from
the assessed emotions. Moreover, There are works favoring the valence and arousal
model in self-reporting studies [21] [18] [22].

Figure 2.1: Valence-Arousal Prediction System

There are 3 main blocks to the proposed prediction system, which are pre-processing,
feature extraction and classification. The following sub-chapters explain those steps.
Figure 2.1 shows overall system blocks.
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2.1 Dreamer Data Set

Dreamer is a data set that contains EEG and ECG recordings of 23 participants [33].
Recordings are collected during participants are exposed to audio and visual stim-
uli. 18 video clips from Gabert-Quillen’s work are used as stimuli [34]. Video clips
represent 9 different emotions which are amusement, excitement, happiness, anger,
disgust, fear, sadness, surprise, calmness.

ECG recordings in the data set are collected with SHIMMER wireless sensor plat-
form. The platform uses Class 2 Bluetooth for communication. Moreover, the plat-
form provides LA -> LL and RA -> LL readings with 256 Hz sampling frequency.
Burns et al. show that ECG readings taken from SHIMMER achieved a sensitivity
of 99.6%, a mean positive predictivity of 99.8%, and a mean detection error rate of
0.5% with QRS detection algorithm [35].

Figure 2.2: Emotiv EPOC wireless EEG headset Scalp Locations [6]

EEG recordings in the data set are collected with an Emotiv EPOC wireless EEG
headset. Headset provides EEG signal on locations international 10-20 system AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, M1, and M2. Locations
also provided in Figure 2.2. Reference points M1 and M2 are shown as P3 and P4 in
Figure 2.2. M1 is used as a ground reference for all other sensors and M2 is used as
a reference for reducing external electrical interference. Emotiv EPOC wireless EEG
headset works with a 128 Hz sampling frequency.

Low grade Emotive Epoc Headset is expected to provide EEG signal with poor signal
to noise ratio. However, Badcock’s work that compares Emotive Epoc Headset to
research-grade Neuroscan Synamps shows that Emotiv EPOC headset can be an al-
ternative to research-grade devices [36]. Through investigating correlations between

16



signals in same channels of research grade device and EPOC Emotive Headset, the
study shows that resulted wave forms are significantly similar. Moreover, study com-
pares peak amplitude and latency measures of resulted signals through t-test, and finds
no significant difference between measurements. Therefore, Emotive EPOC headset
could be a valid alternative to research grade devices.

2.2 Pre-processing

EEG signals are contaminated by artifacts from different sources. These sources
could be external or internal. External artifacts may occur due to faulty electrodes,
line noise and high electrode impedance. Internal artifacts are caused by physiolog-
ical sources such as muscle activity, cardiac activity or eye movement [37]. Those
artifacts should be eliminated to increase the quality of data for classification. ECG
signals, on the other hand, carry little noise which does not require pre-processing.
Therefore, this section only covers pre-processing on the EEG signals.

According to Stamos Katsigiannis and Naeem Ramzan, in Dreamer Database, EEG
data is corrupted by ocular artifacts below 4 Hz, muscle movement related artifacts
above 30 Hz and power line noise between 50 and 60 Hz [33]. Therefore, there is a
relatively clean part between 4 Hz and 30 Hz. Moreover, this part carries information
related action potentials an it is divided into different frequency bands. These bands
are alpha, beta, and gamma.
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Figure 2.3: PSD of EEG signal on P7 for 23 participants before filters applied
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Figure 2.4: PSD of EEG signal on P7 for 23 participants after filters applied
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In this study, alpha and beta bands are utilized. To get this band, firstly, a bandpass
filter with a passband between 12 Hz and 30 Hz is applied to the signal. Figure 2.3
shows power spectral density of raw signal and Figure 2.4 shows PSD of the filtered
signal for 23 participants. As Figures show, higher and lower frequency component
of signals are sufficiently reduced. Matlab’s higpass() function is used to build filter.

2.3 EEG Features

The frequency of EEG signals varies over time due to the nature of fired neurons on
the cerebral cortex. As mentioned before, de-synchronization and synchronization of
fired neurons result in low and high-frequency signals. These frequency changes are
related to brain activity, so the relation between the frequency of EEG signals and the
emotion of a person is investigated by many different works. According to Wang’s
review on literature, different frequency bands reflect the different state of mind, and
also positive and negative emotions relate to different frequencies of EEG signal [8].
EEG feature proposed in this work uses these frequency changes in the signal.

The feature represents the amount of frequency changes over a specified time window.
First step of the feature calculation is the determination of the time difference between
consecutive zero-crossing points of EEG signal. The second step is calculation of
variance of the time differences in a 4.5 second time window.

The emotive epoc headset is a low spec device with poor sampling frequency. To
reduce the effects of the sampling frequency, an extra step is introduced into the
determination of zero-crossing points. As mentioned in work of Albert et al. , to
determine zero-crossing points more accurately values of samples around sign change
occurs are taken into account [38]. Where ZC is zero-crossing point. v1 is the sample
before and v2 is the sample after than the zero-crossing point. t1 and t2 are their
respective times; ZC is calculated as equation 2.1. Time and values are also visible
in figure2.5.

ZC = t1 + ((t2 − t1) ∗ v1/(v1 − v2)) (2.1)
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Figure 2.5: Example Signal and Samples Around Zero Crossing Point

2.4 ECG Features

ECG feature in this study is based on heart rate variability. HRV is the measurement
of time between consecutive R curves in ECG signals. Detection of R peaks is done
as follows. Firstly, a mean filter with a window length of four samples is applied to
the ECG signal to reduce P and Q peaks. This prevents miss identification of P and
Q peaks as R peaks. Then, the Matlab function "findpeaks()" is applied to the filtered
signal to detect R points. "findpeaks()" function detects samples that have a higher
value than both of its neighbors and also higher than a given threshold. The threshold
is chosen as 0.9, since R peaks occur higher than 0.9 in available data.

HRV feature that is used in this work, is the mean absolute difference. The mean
absolute difference feature is calculated by averaging absolute values of difference in
consecutive HRV values. Where W is window length, HRV and MAD are hearth rate
variability and mean absolute difference respectively; Equation 2.2 shows how the
mean absolute feature is calculated.

MAD(r) = 1/(W )

W∗(r+1)−1∑
i=rW

|HRV (i+ 1)−HRV (i)| (2.2)
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Figure 2.6: Filtered and Raw ECG with Detected R Peaks

2.5 Classification

The classification method chosen in this work is the random forest method due to
its performance compared to KNN and SVM methods. Both arousal and valence
prediction models trained with 2 EEG and 1 ECG feature which are chosen according
to chi-square test results(optimum locations for each participant given in Table A.1 -
Table A.4).

In the random forest model, Matlab’s fitcensemble() method with ’bag’ option is
used. The method provides good classification accuracy even with default parameters,
however, training and prediction take a longer time. Therefore, without losing too
much accuracy, the number of trees and maximum split of trees are reduced. In Figure
2.7 and Figure 2.8, average resubstitution loss for 23 participants related to maximum
number of split and number of trees is provided. Resubstitution loss is the weighted
fraction of misclassified observations and calculated through resubLoss() function of
Matlab. Where n is number of samples, wj is weight of related observation, ŷj is
predicted class and yj is actual class; resubstitution loss becomes as Equation 2.3.

L =
n∑

j=1

wjI(yj 6= ŷj) (2.3)

Random Forest models are tested with 2,4,16,32,64,128 and 256 maximum number
of split and 1 to 150 number of trees. Optimization is done according to the aver-
age resubstitution loss of 23 models (one model for each participant). Substitution
loss is calculated by using out of bag samples for optimization. However, overall

21



classifica-tion performances given in "Results" section, are calculated with separate
samples(vali-dation set). Figure 2.7 and Figure 2.8 shows the optimized parameters.
For valence, the maximum number of the split is 64 and the number of trees is 9. For
arousal, the maximum number of the split is 128 and the number of trees is 11.
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Figure 2.7: Arousal Resubstitution Loss

In KNN models, Matlab function fitcknn() is used. As mentioned before, the only
parameter to control in such model is the K which controls the number of neighbors
that is used to predict the class of a data point. For different overall accuracy of 23
participants that is calculated by averaging 5 trials for different "K" values is provided
in Figure 2.9 and 2.10.

KNN models have tested 2 to 50 neighbors by increasing the number of neighbors
by 2 in each iteration. Optimization is done by considering the average accuracy of
models for 23 participants. The number of neighbors is 27 for valence classification.
The number of neighbors is 26 for valence classification. Those can be seen through
Figure 2.9 and 2.10 respectively.

For ECOC models, Matlab function fitcecoc() is used with one vs all option. In one
vs all method, ECOC models train SVM models for each class to treat the multi-class
problem as several binary classification problems. Learner type choice that is used in
SVM is investigated in this section.

In ECOC models, 3 different SVM learners are tested. These learners are linear,
Gaussian, and polynomial. Optimization is done by considering the average accuracy
of models for 23 participants. Linear learners performed poorly, while polynomial
and Gaussian learners show similar results. Since polynomial learners show more ro-
bust classification results, polynomial learners are chosen. Accuracy related valence
and arousal cases can be seen through Figure 2.11 and 2.12 respectively.
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Figure 2.9: Valence Accuracy vs Number of Neighbors for KNN Model
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Figure 2.10: Arousal Accuracy vs Number of Neighbors for KNN Model
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Figure 2.11: Valence Accuracy vs Learners for ECOC Model
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Figure 2.12: Arousal Accuracy vs Learners for ECOC Model
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CHAPTER 3

RESULTS

In this chapter, classification performance metrics related to different classifiers and
features are presented. Classifier performances that are presented in this chapter are
calculated as follows. For each participant, 5 trials are performed. For each trial,
new random samples are selected to train and validate the new model. Moreover, a
confusion matrix is calculated for that model. A total of 115 (for 23 participants and
5 trial) confusion matrices are added to each other. Then, the performance metrics
are calculated from resulted confusion matrix.

Valence and arousal data is given as 5 scale data in the Dreamer data set. However,
in this work, the scale is reduced to 3 (high, neutral, low). Values 4 and 5 in the
Dreamer data set are mapped into the "High" class, 3 is mapped into the "Neutral"
class, 1 and 2 are mapped into "Low". Resulted class distributions are given in Fig.
3.1 and Fig. 3.2. High class dominates class distribution in arousal data, while neutral
and low classes are sharing remaining data points equally. In valence data, low and
high classes have a similar number of data points and neutral class has lower data
points than them.
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Figure 3.1: Distribution of Arousal Classes

Distribution of Valence Data
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Figure 3.2: Distribution of Valence Classes
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3.1 Evaluation of EEG Features

In this section, performance analysis of EEG features are provided for both valence
and arousal estimation. Predictor importance scores are calculated through the chi-
squared test and test results are presented as bar graphs. Each bar in the bar graphs in
this section represents the average importance score of 23 participants for the related
feature.

In Figure 3.3 and Figure 3.4, power, brain asymmetry, sample entropy and zero-
crossing variance features are compared to each other. Each power, sample entropy
and zero-crossing variance feature is calculated through one channel. This channel is
different from participant to participant. "ZCV Ch1" , "Pow Ch1" and "SampEnt Ch1"
are zero-crossing variance, power and sample entropy features calculated through
best channels respectively. For example, "ZCV Ch1" for arousal case is calculated
by using channels "EEG1" from Table A.3 and Table A.4. These channels achieve
highest chi-squared test scores for the related participant with "ZCV Ch1". Similarly,
for "Pow Ch1" and "SamoEnt Ch1" best channels with related feature is used. In
"Ch2" features, second best channels are used. Brain asymmetry feature is calculated
by using all channels.

According to Figure 3.3 and Figure 3.4, "ZCV Ch1" and "ZCV Ch2" are the most
important features for both arousal and valence estimation. Brain asymmetry is the
third most important feature for arousal and valence.
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Figure 3.3: EEG Feature Importance Scores for Arousal Estimation by using chi-

square test
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EEG Features Importence Scores for Valence
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Figure 3.4: EEG Feature Importance Scores for Valence Estimation by using chi-

square test

3.2 Evaluation of Features

In this section, performance analysis of features are provided for both valence and
arousal estimation. Predictor importance scores are calculated through the chi-squared
test and test results are presented as bar graphs. Each bar in the bar graphs in this sec-
tion represents the average importance score of 23 participants for the related feature.

RMSSD, NN50, MAD, LH have previously mentioned HRV features. EVI and
EEG1-EEG6 features are EEG features. EGGi feature is a zero-crossing variance
metric obtained from the EEG channel that results in ith highest importance score.
For example; EEG1 is a zero-cross variance metric calculated from the EEG channel
that provides the best importance score.

In Figure 3.5; importance score of different features for arousal estimation is given.
The most important feature is MAD which is the HRV feature. Since other HRV
features have low importance scores, MAD is the only HRV feature that is used in
classification. Zero crossing variance metrics have relatively higher importance than
the EVI. EVI has higher importance than only after EEG4 and less important zero-
crossing variance metrics. Therefore, EVI is not used in arousal estimation.

In Figure 3.6; the importance score of different features for valence estimation is
given. The importance of HRV features in valence estimation is similar to arousal
estimation. While MAD is the most important feature, other HRV features are not
important. Scores of EEG features in valence estimation is also similar to arousal
estimation case. However, in this case, EVI is slightly more important. Even though,
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Figure 3.5: Feature Importance Scores for Arousal Estimation by using chi-square

test

EVI feature is more important than arousal case, it is not used, since EEG1 and
EEG2 are sufficient for classification.
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Figure 3.6: Feature Importance Scores for Valence Estimation by using chi-square

test
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3.3 Evaluation of ZCV Feature in Terms of EEG Scalp Locations

In this section, the zero-crossing variance of different EEG locations is evaluated
in terms of importance to arousal and valence estimation. Importance is calculated
through the chi-squared test. Scores and rankings of each EEG location are presented
in the bar graphs. Each bar in the bar graphs that relates importance scores (Fig.3.7,
Fig. 3.9), represents average importance score of 23 participants for related EEG
scalp location. Bars in ranking graphs (Fig.3.8, Fig. 3.10) represents total points for
23 participant. For each participant, the most important EEG location gets 13 points,
while the least important one gets 0. Each remaining location gets one less point as its
rank gets lower. Therefore, a higher bar represents a better EEG location in ranking
graphs.

Figure 3.8 and Figure 3.7 shows that P7, T7, FC5, F3, F7, T8 scalp locations provide
better overall valence estimation performance with zero-crossing variance feature.
Figure 3.10 and Figure 3.9 shows that P7, T7, FC5, F3, F7 scalp locations are impor-
tant in arousal classification like valence case. However, for arousal case, F3 is the
most important location.

In this chapter both rank and score graphs are provided in case of outlying chi-squared
test results that might occur in some participants. However, rank and score graphs
show similar results regarding the importance of EEG scalps locations. Therefore, it
is safe to say that the locations provided in this chapter are important.
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EEG Channel Locations Importence Scores for Valence
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Figure 3.7: EEG Channel Locations’ Importance Scores for Valence Estimation by

using chi-square test
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EEG Channel Locations Importence Rankings for Valence
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Figure 3.8: EEG Channel Locations’ Importance Ranks for Valence Estimation by

using chi-square test

EEG Channel Locations Importence Scores for Arousal
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Figure 3.9: EEG Channel Locations’ Importance Scores for Arousal Estimation by

using chi-square test
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EEG Channel Locations Importence Rankings for Arousal
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Figure 3.10: EEG Channel Locations’ Importance Ranks for Arousal Estimation by

using chi-square test
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3.4 Evaluation of Different Classifier

In this section, the performance of different classifiers is evaluated. ECOC, KNN
and random forest methods are concerned in this study. Classifiers are evaluated only
using multi-modal features (ECG and EEG features together), individual modalities
are investigated in a different chapter.

Table 3.1: Arousal Classification Results for Different Classifiers

KNN ECOC Random Forest

Class Name Prec Recall F1 Prec Recall F1 Prec Recall F1 Sample Size

Low 0.63 0.69 0.66 0.64 0.67 0.66 0.93 0.95 0.94 1429

Neutral 0.63 0.55 0.59 0.61 0.58 0.59 0.95 0.95 0.95 1353

High 0.71 0.72 0.71 0.71 0.72 0.71 0.95 0.95 0.95 2163

macro avg 0.66 0.65 0.65 0.66 0.65 0.65 0.95 0.95 0.95

weighted avg 0.66 0.67 0.66 0.66 0.66 0.66 0.95 0.95 0.95

Accuracy = 0,66 Accuracy = 0,67 Accuracy = 0,95

Arousal classification performance for different classifiers are given in Table 3.1. The
random forest method provides better precision, recall, and F1 score for all three
classes. Moreover, It has the highest overall accuracy among the methods used.

Table 3.2: Valence Classification Results for Different Classifiers

KNN ECOC Random Forest

Class Name Prec Recall F1 Prec Recall F1 Prec Recall F1 Sample Size

Low 0.65 0.69 0.67 0.66 0.71 0.68 0.93 0.93 0.93 1913

Neutral 0.60 0.50 0.55 0.63 0.51 0.57 0.91 0.89 0.90 1074

High 0.64 0.66 0.65 0.64 0.66 0.65 0.92 0.92 0.92 1958

macro avg 0.63 0.62 0.62 0.64 0.63 0.63 0.92 0.92 0.92

weighted avg 0.64 0.64 0.64 0.65 0.64 0.64 0.92 0.92 0.92

Accuracy = 0,64 Accuracy = 0,65 Accuracy = 0,92

Valence classification performance for different classifiers are given in Table 3.2. The
random forest method provides better precision, recall, and F1 score for all three
classes. Moreover, It has the highest overall accuracy among the methods used.

Since highest performing method is random forest, accuracy scores for each subject
are also provided in Figure3.11 and Figure3.12 for random forest method. Results
are provided as bar graph as each bar represents different participants.
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Figure 3.11: Accuracy of Valence Classification for Different Participants
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Figure 3.12: Accuracy of Arousal Classification for Different Participants
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3.5 Evaluation of Modality Performances

In this section, different modalities used in both arousal and valence classification are
compared. HRV and EEG features are used separately in individual modalitie cases.
However, in multi-modal case, combination of HRV and EEG features are used for
classification. Only random forest method is used for classification in this section
since previous section shows that it outperforms other methods.

In EEG-only models, EVI and EEG1-EEG3 features are used in both arousal and
valence classification. In HRV only models, RMSSD, NN50, MAD, LH features are
used in both arousal and valence classification. Moreover, in the Multi-modal case,
MAD, EEG1 and EEG2 features are used in the arousal and valence classification.

Figure 3.4 and Figure 3.3 show that combining EEG and HRV features outperforms
individual modality features in both arousal and valence classification.

Table 3.3: Arousal Classification Results for Different Modalities

EEG HRV EEG+HRV

Class Name Prec Recall F1 Prec Recall F1 Prec Recall F1 Sample Size

Low 0,69 0,72 0,70 0,87 0,90 0,89 0,91 0,94 0,92 1320

Neutral 0,68 0,64 0,66 0,93 0,88 0,90 0,95 0,93 0,94 1387

High 0,77 0,77 0,77 0,91 0,92 0,92 0,95 0,95 0,95 2238

macro avg 0,71 0,71 0,71 0,90 0,90 0,90 0,94 0,94 0,94

weighted avg 0,72 0,72 0,72 0,90 0,90 0,90 0,94 0,94 0,94

Accuracy = 0,72 Accuracy = 0,90 Accuracy = 0,94

Table 3.4: Valance Classification Results for Different Modalities

EEG HRV EEG+HRV

Class Name Prec Recall F1 Prec Recall F1 Prec Recall F1 Sample Size

Low 0,73 0,77 0,75 0,90 0,92 0,91 0,93 0,94 0,94 1930

Neutral 0,68 0,62 0,65 0,89 0,84 0,86 0,89 0,90 0,90 1056

High 0,73 0,72 0,73 0,88 0,89 0,89 0,93 0,93 0,93 1959

macro avg 0,71 0,71 0,71 0,89 0,88 0,89 0,92 0,92 0,92

weighted avg 0,72 0,72 0,72 0,89 0,89 0,89 0,92 0,92 0,92

Accuracy = 0,72 Accuracy = 0,89 Accuracy = 0,92
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3.6 Evaluation of Fixed Channel Location Performance

Up to this point, presented classification results are achieved by using optimum EEG
scalp locations for each participant (EEG1 and EEG2). This chapter investigates the
case which channel locations did not change between participants.

First 3 locations that are chosen as optimum points for 23 person according to chi-
squared test, can be seen in detail from Table A.1-A.4. Popular choices for EEG1

and EEG2 locations for valence and arousal shown in Figure 3.13 and Figure 3.14.
From most popular locations, T7 and F3 are chosen as fixed locations.
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Figure 3.13: Number of Times EEG Channel Locations Chosen for Valence Estima-

tion

In Table 3.5 and Table 3.6, classification performance results are presented for valence
and arousal respectively. 91% accuracy, F1, precision and recall scores are achieved
for valence classification. For arousal classification, 92% accuracy, F1, precision and
recall scores are achieved.

Accuracy for each participant given in Figure3.15 and Figure3.16 for valence and
arousal classification. Participants 2 and 8 show low accuracy scores in valence clas-
sification. Participant 8 shows relatively poor results compared to other partici-pants,
also in arousal classification. Participants 4 and 5 shows overall best results.
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Figure 3.14: Number of Times EEG Channel Locations Chosen for Arousal Estima-

tion

Table 3.5: Valance Classification Results for Fixed Channel Case

Class Name Prec Recall F1 Sample Size

Low 0,94 0,94 0,94 1910

Neutral 0,89 0,90 0,89 1073

High 0,93 0,92 0,93 1962

macro avg 0,92 0,92 0,92

weighted avg 0,93 0,93 0,93

Accuracy = 0,93
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Table 3.6: Arousal Classification Results for Fixed Channel Case

Class Name Prec Recall F1 Sample Size

Low 0,90 0,92 0,91 1345

Neutral 0,92 0,93 0,93 1449

High 0,94 0,92 0,93 2151

macro avg 0,92 0,92 0,92

weighted avg 0,92 0,92 0,92

Accuracy = 0.92
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Figure 3.15: Accuracy of Valence Classification with Fixed Channel for Different

Participants
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Figure 3.16: Accuracy of Arousal Classification with Fixed Channel for Different

Participants
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3.7 Comparison of Classification Results for Different Channel Pairs

In this section, classification results of the method that uses fixed locations T7 and F3
and other possible two channel combinations are compared. For every model, MAD
feature is used with two zero-crossing variance features. 5x2 cross-validation with
t-test applied to compare classification results achieved by using T7-F3 channel pair
to other 90 possible combinations of channel pairs for 23 participants.

In 5x2 cross-validation test, for two trials data is randomly but evenly split into 5
subsets. Four of these subsets are used to train two models and one subset is used to
get accuracy scores for two models. This process repeated for five subsets. Then, for
second trial new random five subsets are acquired and the process is repeated for these
five subsets. Finally, ten paired accuracy values are obtained for two models. After
that, paired t-test is applied to compare the difference between accuracy values. This
process is implemented via Matlab function "testckfold()". The function provides
information about which model performs better, in addition to the significance of
differences between accuracy values. Table A.10, Table A.11 and Table A.9 shows
the locations which T7-F3 pair fails to shows significantly better results (p>0.05).

From Table A.9, for participants 3, 4, 7, 9, 10, 11, 14, 17 and 23 T7-F3 pair shows
significantly better performance than any other location for arousal classification
(p<0.05). For other participants, there are better or similar performing channel pairs.
For some of the participants that T7-F3 shows significantly better results, even though,
T7-F3 pair is not optimum location according to chi-squared test.

From Table A.10 and Table A.11, for participants 2,3, 5, 9, 11, 15,19 and 23 T7-
F3 pair shows significantly better performance than any other location for valence
classification (p<0.05). For some of the participants that T7-F3 shows significantly
better results, even though, T7-F3 pair is not optimum location according to chi-
squared test.

To sum up, Accuracy results show significant differences depending on the channel
choice. For some participants, T7-F3 shows significantly better performance than the
other possible locations, even though some of these locations are expected to perform
better according to chi-squared test results.

3.8 Evaluation of Results

In this sections results presented in this work is discussed and compared to other
studies.

When the results are examined in terms of EEG features, even though optimum lo-
cations depend on the participant, overall importance scores show some differences
with existing works. In Zhang and Peng’s work which investigates optimum EEG
electrodes for emotion recognition, most of the locations presented in their work are
similar to this work. However, P8, F8, and O2 are reported as important locations
in their work. They are not in this work [11]. Moreover, P7 and T7 locations which
are among the most important locations in this work, are not considered important in

44



Zhang’s work [11]. According to Sarno’s [39] work AF3, F7, FC5, T7, T8, and AF4
scalp locations have the highest importance in arousal. T8 and T7 locations have the
highest importance in valence according to Pearson-correlation test results. Although
T7 is an important location both in this and Sarno’s study, P7 is also not considered
in Sarno’s work [39].

HRV features which are investigated by previous studies such as LH ratio, RMSSD,
NN50 do not show promising results in this study [4] [19]. However, the mean of
average difference in consecutive RR intervals(MAD) feature shows high importance
score.

Classification accuracy achieved through the random forest are 92% for valence and
95% for arousal. The best classification result was achieved via using EEG and ECG
metrics together. When the result is compared to similar works that use Dreamer data
set from Table 3.7, the proposed work achieves comparable results with them.

Methods proposed in Table 3.7 rely on more than two EEG locations. This work
uses ECG signals to reduce the number of EEG scalps. Neural networks are popular
among recent studies for both feature extraction and classification. This work, on the
other hand, relies on more conventional methods for classification.

Table 3.7: Results of Similar Works

References Method Accuracy

Valence Arousal

Cui et al. [27] Regional-Asymmetric Convolution Neural Network, Asymmetric Differential Layer 0.95 0.97

Cheng et al. [28] spatial position relationship, deep forest 0.89 0.90

Liu Y. et al. [29] Multi-level features guided capsule network 0.94 0.95

Wang Y. et al. [30] SPD matrix network 0.67 0.76

Maheshwari et al. [31] Multi-channel, rhythm selection, CNN 0.97 0.96

Song et al. [32] Dynamic graph convolution neural network 0.86 0.85
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CHAPTER 4

CONCLUSIONS

4.1 Discussions

In this work, an emotion recognition method that uses EEG and ECG signals is pre-
sented. This chapter revolves around discussions of the results.

The proposed work detects arousal and valence scores rather than the distinct emotion
classes. One of the reasons for this, Dreamer data set does not provide actual emotions
of subjects. It only provides arousal and valence scores provided by participants for
each video. The second reason is, as mentioned before, dimensional representation
of emotions reduces the error caused by participants while scoring emotions in self-
assessment studies.

Presented pre-processing method and EEG features provide high accuracy together.
Therefore, more complex pre-processing methods are not deployed. EEG signals
carry many physiological artifacts and some of these are dealt in data collection state
by asking participants to stand still as much as possible. However, in real life applica-
tions more complex pre-processing methods may be required. For this purpose ASR
method might be useful.

Proposed zero-crossing variance feature aims to provide a measure of small frequency
changes on EEG signal. In similar works, P7 does not show importance in gen-
eral. However, it becomes an important location with the zero-crossing feature in this
study.

In ECOC method, linear learners provide poor results compared to Gaussian and
polynomial learners. KNN also performs similar to polynomial learners and random
forest performs even better. Both KNN and random forest method can handle non
linear distribution. These results indicate, features shows non linear relationships
with classes.

In this work, intrasubject classification method is utilized due to personalized nature
of HRV and EEG data. Moreover, to calculate HRV from ECG signal, relatively
large time window is used, and also only the last 60 seconds of each video is used as
suggested by Katsigiannis [33]. Therefore, sample size for each classifier is limited.
This requires a classification method that can be used with limited data (not too small
sample size) such as random forest. Neural network methods were avoided due to
number of available data points don’t exceed (even though, it is close due to low
number of features used) Alwosheel’s suggestions [40]. However, there are recent
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works that use CNN and achieve good accuracy. They solve 2 class problem for
valence and arousal [27] [32]. Since, this work focuses on 3 class problem, required
neural network would be more complex for this work. Therefore, such method still
may not be applicable. Features proposed in this work may be tried in a system that
uses neural network methods with a larger data set.

When the accuracy achieved for each subject is examined from Figure3.11, Fig-
ure3.12, Figure3.15 and Figure3.16, similar accuracy values are observed. Accuracy
for partici-pant 8 is poor all cases. Accuracy values related to subject, show similar
results with [29] and [28] works. This implies, there might be personal errors (espe-
cial for participant 8) in arousal and valence scores that cause inaccuracy independent
from channel choice and classification method.

Accuracy achieved by optimum scalp locations are 92% for valence and 95% for
arousal and by fixed locations 92% for valence and 93% for arousal. Accuracy values
are similar for both case, because fixed locations are the actual best locations for
almost half of the participants and they are at least good locations for remaining
participants, since, there is few better location pairs that provides significantly better
performance among 90 possible pairs(Table A.9 - Table A.11).Fixed location case
might be advantageous, since it reduces total number of required EEG scalp to two.
This can reduce cost and also may provide better comfort to user of a such system.

Even though, system solves 3 class classification problem, system manages to achieve
high accuracy values. Moreover, it proposes an option that only requires two scalps.
These are the advantages of this work over the similar ones. However, still this work
does not provide definitive standard for emotion recognition, it just provides an alter-
native to existing works.

4.2 Future Work

This chapter tries to provide new research and investigation ideas related to proposed
method.

Proposed zero-crossing variance feature helps system to recognize emotion of a per-
son. Even though, it is not investigated in this work, this feature may show correla-
tions with other brain functions. Therefore, further investigation may be useful and
provide an alternative investigation method for EEG signals.

In similar works, P7 doesn’t show importance in general. Significance of the location
may be investigated with further studies. Even though, the importance is presented,
reasons behind it is not enlightened in this work. Therefore, activity of channel might
be further investigated.

In this work, the Dreamer data set is used. Data collection step in the Dreamer data
set is performed in ideal conditions where participants stand still as much as possible.
However, in real life cases, EEG signals carry many physiological artifacts due to
muscle movement. A database prepared in such environment may help researchers to
investigate relation between EEG signals and emotion in real life scenario.
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This study and similar ones, does not provide definitive standards for emotion recogni-
tion. Therefore, further research may focus on identifying reasons behind the high
accuracy of proposed systems and provides definitive standard.

4.3 Conclusion

In this work, an emotion recognition method that uses of EEG and ECG signals, is
presented.

Simple band pass filtering was applied to EEG signals to reduce noise and also ex-
tract alpha and beta bands. After pre-processing, proposed zero-crossing variance
feature was collected from EEG channels. For two different channel selection meth-
ods system is tested. These methods are fixed and optimum. In the optimum method,
different locations are chosen for each individual by comparing their chi-squared test
results. In the fixed case, most used locations from optimum case are used for all
participants.

To acquire HRV features from ECG, firstly a mean filter applied to ECG signal. Then,
R points are detected. Mean absolute difference of consecutive R-R time intervals are
calculated and the MAD feature is extracted.

Performance for different modalities and classification methods are investigated. KNN,
ECOC and random forest methods are compared and random forest achieves the best
result. For modalitiy differences, this work shows that EEG and ECG features provide
better results together.

To sum up, in this work an emotion recognition system presented which uses off
the shelf, low spec devices. System performs on a par with similar works, while it
solves 3 class classification problem. That might provide better insight about persons
emotional state since, neutral state for both valence and arousal is provided by system.
Moreover, this system can achieve high accuracy scores by only using two electrodes.
Therefore, this work successfully achieves desired results.
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APPENDIX A

DETAILED RESULTS FOR EACH PARTICIPANT

A.1 Best Channel Locations For Participants

EEG channel locations that provides zero-crossing variance feature with the highest
chi-squared test score for each participant given in tables in this section.
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Table A.1: EEG1-EEG3 Locations for Valence (Participant 1-16)

Participant Number EEG1 EEG2 EEG3

1 P7 P8 F3

2 T7 F4 P7

3 T7 T8 P7

4 P8 P7 T7

5 P7 O1 O2

6 P7 T7 FC5

7 T7 FC6 T8

8 T8 T7 FC5

9 T8 P7 T7

10 F4 AF3 O2

11 T7 T8 F7

12 F4 F7 F3

13 F7 AF3 F4

14 FC5 AF3 F7

15 AF4 FC5 F4

16 AF4 FC5 F3
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Table A.2: EEG1-EEG3 Locations for Valence (Participant 17-23)

Participant Number EEG1 EEG2 EEG3

17 O2 F3 FC5

18 F7 P7 AF3

19 FC5 F4 F3

20 O1 O2 T7

21 T7 FC5 F3

22 F7 FC5 F3

23 AF3 P7 T8
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Table A.3: EEG1-EEG3 Locations for Arousal (Participant 1-16)

Participant Number EEG1 EEG2 EEG3

1 P7 T8 F8

2 P7 T7 FC6

3 F3 T7 O2

4 F3 F8 O2

5 O1 O2 FC5

6 T7 FC5 T8

7 T7 T8 FC5

8 O2 T7 T8

9 T8 FC5 P7

10 F3 F4 AF4

11 T7 AF4 FC6

12 F4 F3 P7

13 F7 T7 F3

14 F7 AF3 F3

15 F3 F7 P7

16 AF4 FC5 F7
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Table A.4: EEG1-EEG3 Locations for Arousal (Participant 17-23)

Participant Number EEG1 EEG2 EEG3

17 FC5 T7 AF3

18 P7 F3 F7

19 AF3 P7 F3

20 F3 T7 T8

21 P7 F7 F4

22 F7 FC5 F3

23 T8 AF3 F3

59



A.2 Random Forest Accuracy Results For Participants

Tables in this section covers accuracy of classification results in 5 trails for each
participant. Tables for valence, arousal classification results for optimum and fixed
channel case are provided.
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Table A.5: Valence Classification Accuracy Results for Random Forest(Optimum

Location Case)

Participant Number trail-1 trail-2 trail-3 trail-4 trail-5

1 0.95 0.95 0.93 0.81 0.84

2 0.84 0.79 0.98 0.93 0.91

3 0.91 0.91 0.91 0.88 0.88

4 1 1 1 0.98 0.95

5 0.98 1 0.95 0.98 1

6 0.91 0.93 0.93 0.93 0.91

7 0.91 0.91 0.93 0.91 0.88

8 0.84 0.84 0.91 0.91 0.88

9 0.91 0.95 0.93 0.86 0.95

10 0.93 0.91 1 0.88 0.88

11 1 0.98 0.95 0.98 1

12 0.86 0.93 0.86 0.88 0.95

13 0.86 0.95 0.91 0.91 0.93

14 0.91 0.86 0.91 0.95 0.88

15 0.98 0.98 0.98 1 0.98

16 0.98 0.98 0.95 0.93 0.95

17 0.95 0.91 0.86 0.95 0.84

18 0.95 0.95 0.91 0.93 0.98

19 0.93 0.93 0.88 0.93 0.81

20 0.86 0.95 0.95 0.93 0.91

21 0.95 0.93 0.95 0.98 0.95

22 0.84 0.84 0.86 0.98 0.88

23 0.91 0.88 0.86 0.77 0.91
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Table A.6: Arousal Classification Accuracy Results for Random Forest(Optimum

Location Case)

Participant Number trail-1 trail-2 trail-3 trail-4 trail-5

1 0.91 1 0.93 0.98 0.93

2 0.88 0.95 0.95 0.95 0.98

3 0.98 1 0.98 0.98 1

4 1 0.98 1 1 1

5 0.98 0.93 0.98 0.98 0.98

6 0.95 0.93 0.98 0.98 1

7 0.98 1 0.98 0.95 0.95

8 0.77 0.86 0.79 0.77 0.84

9 0.98 1 0.98 1 0.98

10 0.95 0.86 0.98 0.98 0.95

11 0.98 0.95 0.88 1 0.98

12 0.98 0.98 0.98 0.98 0.93

13 1 0.98 0.98 0.98 0.86

14 0.91 1 1 0.95 0.93

15 1 0.98 1 0.98 1

16 0.98 0.93 0.86 0.98 0.93

17 0.95 0.91 0.95 0.93 0.93

18 0.95 0.98 0.98 0.91 0.95

19 0.95 0.98 0.91 0.95 0.98

20 0.98 0.93 0.93 0.95 0.98

21 0.98 0.86 0.98 0.95 1

22 0.91 0.88 0.77 0.91 0.86

23 0.93 0.86 0.88 0.93 0.95
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Table A.7: Valence Classification Accuracy Results for Random Forest(Fixed Loca-

tion Case)

Participant Number trail-1 trail-2 trail-3 trail-4 trail-5

1 0.91 0.98 0.98 0.88 0.86

2 0.86 0.91 0.74 0.86 0.79

3 0.93 0.88 0.93 0.95 0.88

4 1 1 1 1 1

5 1 0.98 0.95 1 0.95

6 0.91 0.93 0.98 0.88 0.93

7 0.98 0.79 0.81 0.78 0.78

8 0.77 0.84 0.84 0.72 0.84

9 0.95 0.93 0.95 0.95 0.95

10 0.91 0.93 0.93 0.86 0.91

11 0.98 1 1 0.98 1

12 0.91 0.88 0.93 0.86 0.93

13 0.91 0.95 0.91 0.93 0.93

14 0.79 0.88 0.86 0.77 0.84

15 0.98 1 0.98 1 0.98

16 0.93 0.88 0.91 0.93 0.88

17 0.88 0.84 0.95 0.86 0.84

18 0.98 0.98 0.93 0.95 0.93

19 0.91 0.81 0.98 0.91 0.93

20 1 0.95 0.91 0.93 0.98

21 0.95 0.79 0.95 0.95 1

22 0.81 0.86 0.86 0.86 0.86

23 0.86 0.95 0.95 0.91 0.93
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Table A.8: Arousal Classification Accuracy Results for Random Forest(Fixed Loca-

tion Case)

Participant Number trail-1 trail-2 trail-3 trail-4 trail-5

1 0.91 0.86 0.95 0.91 0.88

2 0.86 0.88 0.88 0.91 0.93

3 1 1 1 1 1

4 1 0.98 0.95 1 1

5 1 1 1 1 0.98

6 0.98 0.98 1 1 0.93

7 0.86 0.95 0.88 0.98 0.98

8 0.81 0.88 0.84 0.81 0.79

9 0.95 0.98 0.98 0.98 0.98

10 0.88 0.91 0.93 0.86 0.88

11 1 1 0.98 0.98 1

12 1 0.91 0.91 0.86 0.93

11 0.95 0.72 0.93 0.98 1

14 0.91 0.95 0.86 0.91 0.98

15 0.98 0.95 0.95 1 1

16 0.93 0.81 0.95 0.91 0.86

17 0.88 0.95 0.91 0.84 0.91

18 0.91 0.88 0.84 0.95 0.81

19 0.88 0.93 0.86 0.86 0.91

20 0.93 0.98 0.93 0.95 0.91

21 0.95 0.98 0.95 0.93 0.91

22 0.91 0.86 0.86 0.86 0.79

23 0.84 0.88 0.84 0.91 0.91
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A.3 Cross Validation of Classification Results Between T7-F3 and Other Chan-
nels

Channel and participants pairs that does not provide significantly better accuracy than
T7-F3 pair are provided with relevant p value.

Table A.9: Cross Validation of Classification Results Between T7-F3 and Other Chan-

nels for Arousal Classification

Participant Number Channels P-Values Participant Number Channels P-Values

1 ’P7-O1’ 0.094 13 ’O1-FC6’ 0.056

2 ’T7-P7’ 0.109 13 ’P8-F4’ 0.099

2 ’T7-O1’ 0.051 15 ’P7-FC6’ 0.072

2 ’P7-AF4’ 0.073 16 ’T7-F4’ 0.052

5 ’F7-FC5’ 0.076 18 ’AF3-F3’ 0.132

6 ’F7-AF4’ 0.054 18 ’AF3-P7’ 0.062

8 ’F7-O1’ 0.084 18 ’F7-F4’ 0.052

8 ’O2-P8’ 0.088 18 ’FC5-FC6’ 0.100

12 ’F7-FC5’ 0.119 19 ’AF3-O2’ 0.076

12 ’FC5-AF4’ 0.073 19 ’AF3-F4’ 0.077

13 ’AF3-O2’ 0.074 19 ’FC5-T7’ 0.206

13 ’AF3-P8’ 0.079 19 ’P7-O2’ 0.078

13 ’AF3-F4’ 0.060 19 ’P7-F8’ 0.070

13 ’F7-F3’ 0.226 20 ’AF3-P8’ 0.068

13 ’F7-FC5’ 0.052 20 ’F7-P7’ 0.104

13 ’F7-O2’ 0.056 21 ’P7-O2’ 0.158

13 ’F3-F4’ 0.052 22 ’FC5-T7’ 0.058

13 ’FC5-T8’ 0.057

13 ’FC5-F4’ 0.057

13 ’P7-F8’ 0.091
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Table A.10: Cross Validation of Classification Results Between T7-F3 and Other

Channels for Valence Classification (Part-1)

Participant Number Channels P-Values Participant Number Channels P-Values

1 ’AF3-P7’ 0.085 8 ’T7-F8’ 0.055

1 ’F3-P7’ 0.255 8 ’O2-T8’ 0.373

1 ’P7-AF4’ 0.081 10 ’F7-FC6’ 0.170

1 ’T8-F4’ 0.057 10 ’FC5-F4’ 0.054

4 ’T7-P7’ 0.203 10 ’P8-F4’ 0.177

4 ’P7-F4’ 0.063 10 ’T8-F4’ 0.142

4 ’O1-O2’ 0.067 12 ’F7-F4’ 0.117

6 ’FC5-P7’ 0.122 13 ’AF3-F3’ 0.148

6 ’P7-T8’ 0.096 13 ’AF3-FC5’ 0.070

7 ’FC5-O1’ 0.160 13 ’AF3-FC6’ 0.063

7 ’FC5-F8’ 0.050 13 ’F7-O1’ 0.067

7 ’FC5-AF4’ 0.084 13 ’F7-F4’ 0.178

7 ’T7-T8’ 0.060 13 ’F7-AF4’ 0.055

7 ’P7-FC6’ 0.114 13 ’P7-FC6’ 0.051

7 ’P7-AF4’ 0.080 13 ’O1-F8’ 0.063

7 ’O1-F4’ 0.082 14 ’AF3-P7’ 0.086

7 ’O2-FC6’ 0.354 14 ’AF3-FC6’ 0.204

8 ’F7-T8’ 0.118 14 ’F7-F3’ 0.072

8 ’T7-F4’ 0.053 14 ’F7-T7’ 0.067
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Table A.11: Cross Validation of Classification Results Between T7-F3 and Other

Channels for Valence Classification (Part-2)

Participant Number Channels P-Values Participant Number Channels P-Values

14 ’F3-P7’ 0.051 16 ’P7-P8’ 0.108

14 ’F3-F8’ 0.089 16 ’O1-P8’ 0.131

14 ’FC5-P7’ 0.173 16 ’P8-T8’ 0.071

14 ’T7-P7’ 0.076 16 ’FC6-F4’ 0.085

14 ’P7-O1’ 0.090 16 ’FC6-AF4’ 0.061

14 ’P7-O2’ 0.134 17 ’F7-O2’ 0.057

14 ’P7-T8’ 0.051 17 ’F3-O2’ 0.118

14 ’O2-F4’ 0.053 18 ’F7-FC5’ 0.052

16 ’AF3-F3’ 0.097 18 ’F7-P7’ 0.135

16 ’AF3-AF4’ 0.384 20 ’AF3-P8’ 0.061

16 ’F7-P8’ 0.074 20 ’FC5-O2’ 0.088

16 ’F7-AF4’ 0.078 21 ’AF3-FC6’ 0.165

16 ’F3-FC5’ 0.155 21 ’O2-FC6’ 0.061

16 ’F3-P8’ 0.178 22 ’AF3-FC5’ 0.052

16 ’FC5-P7’ 0.300 22 ’F7-T7’ 0.054

16 ’FC5-P8’ 0.175 22 ’FC5-O2’ 0.120

16 ’FC5-T8’ 0.208 22 ’P7-T8’ 0.057

16 ’FC5-AF4’ 0.678 22 ’P7-F8’ 0.066

16 ’T7-FC6’ 0.080
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