
PREDICTING MULTIPLE TYPES OF BIOLOGICAL RELATIONSHIPS WITH 

INTEGRATIVE NON-NEGATIVE MATRIX FACTORIZATION 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

ONUR SAVAŞ KARTLI 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

BIOINFORMATICS 

 

 

 

 

 

 

 
MAY 2022 

  



 

  



 

Approval of the thesis:  
 

 

 

 

PREDICTING MULTIPLE TYPES OF BIOLOGICAL RELATIONSHIPS WITH 

INTEGRATIVE NON-NEGATIVE MATRIX FACTORIZATION 

 

Submitted by Onur Savaş Kartlı in partial fulfillment of the requirements for the degree of Master 

of Science in Health Informatics Department, Middle East Technical University by, 

 

Prof. Dr. Deniz Zeyrek Bozşahin 

Dean, Graduate School of Informatics 

 

Assoc. Prof Dr. Yeşim Aydın Son  

Head of Department, Health Informatics, METU 

 

Assoc. Prof Dr. Yeşim Aydın Son  

Supervisor, Health Informatics, METU 

 

Assoc. Prof. Dr. Tunca Doğan 

Co-Supervisor, Computer Engineering Dept., 

Hacettepe University 

 

 

Examining Committee Members: 

 

Assist. Prof Dr. Aybar Can Acar 

Health Informatics Dept., METU 

 

Assoc. Prof Dr. Yeşim Aydın Son 

Health Informatics Dept., METU 

 

Assist. Prof Dr. İdil Yet 

Bioinformatics Dept., Hacettepe University 

 

 

Date:                    09.05.2022 

 

 





iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 
 

 

 

 

 

 

Name, Last name :   ONUR SAVAŞ KARTLI 
 

 

 

Signature              :         

  



iv 

 

ABSTRACT 

PREDICTING MULTIPLE TYPES OF BIOLOGICAL RELATIONSHIPS WITH 

INTEGRATIVE NON-NEGATIVE MATRIX FACTORIZATION 

 

Kartlı, Onur Savaş 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof Dr. Yeşim Aydın Son 

Co-Supervisor: Assoc. Prof Dr. Tunca Doğan 

 

May 2022, 111 pages 

 

Integrative research on multi-modal biological data is difficult due to their complexity and 

diverse structure. A critical issue in bioinformatics and computational biology is that many 

of the associations/relationships between biological components and concepts (i.e., genes, 

proteins, drugs, diseases, etc.) are still unknown due to the high costs and temporal 

requirements of wet-lab experiments that uncover them. This thesis aims to predict 

unknown relationships in biological data by leveraging documented protein-protein, drug-

target, gene-disease, and drug-side effect associations. To accomplish this task, first, 

biological datasets are obtained from UniProt, String, Stitch, Sider, Drugbank, 

Drugcentral, DisGENET, and KEGG databases, and their relationships are extracted and 

re-formatted as multiple pairwise relationship matrices. Some of these matrices contain 

continuous values to be used as association weights. We obtain highly sparse matrices 

mainly due to the high amount of missing data in biological databases.  Second, we 

predicted missing relationships via integrative matrix factorization, using the non-

negative matrix tri-factorization algorithm which is shown to successfully solve similar 

problems in the literature. For this, a prediction model is trained and evaluated using both 

classification and regression-based metrics.  Subsequently, large-scale prediction of 

pairwise relationships between proteins, drugs, diseases, and side effects is accomplished 

using the optimized model.  We obtained new predictions for drug-side effect, drug-

disease, drug-target protein, and gene/protein-disease interactions. We evaluated the top 

250 predictions with the highest scores and validated selected ones from the literature. We 

hope that the results of this thesis study will help life scientists in planning experimental 

work by providing preliminary sets of biological associations. 

Keywords: Non-negative matrix factorization, multi-relational data, drug-target 

interactions, drug-side effects relationships, gene-disease associations 



v 

 

ÖZ 

BÜTÜNCÜL NEGATİF OLMAYAN MATRİS FAKTÖRİZASYONU İLE 

ÇOKLU BİYOLOJİK İLİŞKİ TÜRLERİNİN ÖNGÖRÜLMESİ 

 

Kartlı, Onur Savaş 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın Son 

Ortak Tez Yöneticisi: Doç. Dr. Tunca Doğan 

 

Mayıs 2022, 111 sayfa 

Yüksek seviyedeki karmaşıklığı ve çeşitliliği nedeniyle çok modlu biyolojik veri üzerinde 

bütünleştirici araştırmalar gerçekleştirmek zorludur. Biyolojik bileşenler ve kavramlar 

(genler, proteinler, ilaçlar, hastalıklar, vb.) arasındaki ilişkileri ortaya çıkarmak için 

kullanılan laboratuvar deneylerinin yüksek maliyetleri ve zamansal gereksinimleri 

nedeniyle bahsi geçen ilişkilerin birçoğu halen bilinmemektedir. Bu tez, bilinen protein-

protein, ilaç-hedef, gen-hastalık ve ilaç-yan etki ilişkilerinden yararlanarak bilinmeyen 

ilişkileri tahmin etmeyi amaçlamaktadır. Bu görevi gerçekleştirmek için öncelikle 

UniProt, String, Stitch, Sider, Drugbank, Drugcentral, DisGENET ve KEGG veri 

tabanlarından biyolojik veri kümeleri elde edilmiş ve ikili ilişki matrisleri olarak yeniden 

biçimlendirilmiştir.  Bu matrislerden bazıları ilişki ağırlıkları olarak kullanılacak sürekli 

değerler içermektedir.  Biyolojik veri tabanlarındaki mevcut verinin yüksek seviyede 

eksik olması nedeniyle seyrek matrisler elde edilmiştir. Daha sonra, literatürde benzer 

problemleri başarılı bir şekilde çözebildiği gösterilen “negatif olmayan matris üçlü 

faktörizasyon” algoritması kullanılarak, matris çarpanlarına ayırma yaklaşımıyla 

biyolojik ilişkileri tahmin eden bir model geliştirilmiştir. Bu model hem sınıflandırma hem 

de regresyona dayalı metrikler kullanılarak eğitilmiş ve değerlendirilmiştir.  Çalışmanın 

devamında, optimize edilmiş model kullanılarak proteinler, ilaçlar, hastalıklar ve yan 

etkiler arasındaki ikili ilişkilerin büyük ölçekli tahmini gerçekleştirilmiştir ve bu sayede 

yeni ilaç-yan etki, ilaç-hastalık, ilaç-hedef ve gen/protein-hastalık etkileşimleri elde 

edilmiştir. Her bir ilişki tipi için en yüksek skora sahip ilk 250 tahmin değerlendirilmiştir 

ve seçilenler literatüre başvurularak doğrulanmıştır. Bu tez çalışmasından elde edilen 

biyolojik etkileşim odaklı tahmin sonuçlarının yaşam bilimleri araştırmacılarının deneysel 

çalışmalarını planlamalarına yardımcı olacağını umuyoruz. 

Anahtar Sözcükler: Negatif olmayan matris faktörizasyonu, çoklu ilişkisel veriler, ilaç-

hedef etkileşimleri, ilaç-yan etki etkileşimleri, gen-hastalık etkileşimleri   



vi 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

 

 

To my dear son and father who motivated me with their presence and memories...  



vii 

 

ACKNOWLEDGMENTS 

 

First of all, I would like to thank my supervisor, Assoc. Prof Dr. Yeşim Aydın Son, for her 

guidance, invaluable advice, continuous support, and patience during this work.  

Besides my supervisor, I am deeply grateful to my co-supervisor, Assoc. Prof Dr. Tunca Doğan 

for his support, insightful comments, and suggestions. 

I show deepest gratitude and love to my son and wife, who showed endless understanding that the 

precious time they deserved was taken away from them during the creation of this thesis. 

Finally, I would like to thank my whole family for the opportunity to thank my father, who has 

always guided me throughout his life, albeit a little late, for their support during the writing of this 

thesis. 

 

 

 

 

  



viii 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ..................................................................................................................... iv 

ÖZ ....................................................................................................................................... v 

DEDICATION ................................................................................................................. vi 

ACKNOWLEDGMENTS ............................................................................................... vii 

TABLE OF CONTENTS ............................................................................................... viii 

LIST OF TABLES ............................................................................................................. x 

CHAPTERS 

1. INTRODUCTION ...................................................................................................... 1 

1.1 Motivation ........................................................................................................... 1 

1.2 Biological Definitions.......................................................................................... 1 

1.3 Mathematical Model of the Prediction Problems in the Biological Data ............ 2 

1.4 Matrix Factorization ............................................................................................ 7 

1.5 Aim of the Thesis ................................................................................................ 7 

1.6 Outline of the Thesis............................................................................................ 8 

2. LITERATURE REVIEW ............................................................................................... 9 

2.1 Nonnegative Matrix Factorization Method ......................................................... 9 

2.2 Drug-Target Relationship Prediction Problem .................................................. 10 

2.3 Drug-Side Effect Prediction Problem ................................................................ 12 

2.3.1  Docking Based Studies ............................................................................... 12 

2.3.2 Graph-based Studies ................................................................................... 12 

2.3.3 Machine Learning-based Studies ............................................................... 13 

2.3.4 Various Approaches ................................................................................... 13 

2.4 Biological Databases ......................................................................................... 13 

2.4.1 Protein-Protein Interaction Databases ........................................................ 14 

2.4.2 Drug-Target Protein Interactions ............................................................... 16 

2.4.3 Drug-Side Effect Interactions ..................................................................... 18 



ix 

 

2.4.4 Protein-Disease Interactions....................................................................... 19 

2.4.5 Drug-Disease Interactions .......................................................................... 21 

2.5 Matrix Factorization Method ............................................................................. 22 

2.6 Non-Negative Matrix Tri-Factorization Method ............................................... 25 

3. MATERIALS AND METHODS ................................................................................. 27 

3.1 Acquisition of PPI Data ..................................................................................... 27 

3.2 Acquisition of DTI Data .................................................................................... 28 

3.3 Acquisition of DSI Data .................................................................................... 29 

3.4 Acquisition of PDI Data .................................................................................... 31 

3.5 Acquisition of DDI Data ................................................................................... 34 

3.6 Proposed Model ................................................................................................. 36 

4. RESULTS ................................................................................................................ 39 

4.1. Application of Non-Negative Tri Matrix Factorization Algorithm ................... 43 

4.2. Interaction Matrices, Masking the Data Matrices and Initialization ................. 44 

4.3. Analysis of Parameters (Latent Factor Tests) and Stop Criterion ..................... 51 

4.4. Improvements of Scenario Models and Comparison of APS ............................ 61 

4.5. Prediction Results (Novel Interactions)............................................................. 65 

5. DISCUSSION AND CONCLUSION .......................................................................... 69 

REFERENCES ................................................................................................................. 73 

APPENDIX ...................................................................................................................... 81 

APPENDIX A .................................................................................................................. 81 

 

 

 

 

 



x 

 

LIST OF TABLES 

Table 3.1 The distribution of data and number of interactions within the scope of EI .... 33 
Table 3.2 Traditional Drugs on KEGG ............................................................................ 35 
Table 3.3 Examples of KEGG Drug Names .................................................................... 35 
Table 4.1 Characteristics of All Raw Data Frame ........................................................... 39 

Table 4.2 Characteristics of Final Data Frame After Eliminations .................................. 40 

Table 4.3 Test Scenarios for Optimum Iterations ............................................................ 48 

Table 4.4 Optimum Iteration Numbers per Scenario ....................................................... 51 

Table 4.5 Determining of the 1k  value of Scenario 1 ...................................................... 53 

Table 4.6 Determining of the 2k value of Scenario 1 ....................................................... 53 

Table 4.7 Determining of the 3k value of Scenario 1 ....................................................... 54 

Table 4.8 Determining of the 
4k value of Scenario 1 ....................................................... 54 

Table 4.9 Determining of the 
1k , 

2k , 3k , 
4k  values of Scenario 2 ................................ 56 

Table 4.10 Determining of the 
1k , 

2k , 
3k , 

4k  values of Scenario 3 .............................. 57 

Table 4.11 Determining of the 
1k , 

2k , 3k , 
4k  values of Scenario 4 .............................. 58 

Table 4.12 All Scenarios Tried for K Value Determination and Minimum Latent Factors

 .......................................................................................................................................... 59 

Table 4.13 Comparison of APS’s regarding Test Scheme Variations ............................. 62 

Table 4.14. Top 27 Scored Novel Drug / Side Effect Predictions regarding 12R  matrix

 .......................................................................................................................................... 65 

Table 4.15. Top 34 Scored Novel Drug / Protein Predictions regarding 23R  matrix ...... 66 

Table 4.16 Top 27 Scored Novel Drug / Disease Predictions regarding 
24R  matrix .... 67 

Table 4.17 Top 34 Scored Novel Protein / Disease Predictions regarding 34R  matrix .. 68 

Table 5.1. Sparsity and Density Rates of Relation Matrices ............................................ 70 

 

 

 

 

 



xi 

 

LIST OF FIGURES 

Figure 1.1. Example of a directed graph ............................................................................ 3 

Figure 1.2. Example of an undirected graph ...................................................................... 4 
Figure 1.3. Example of a weighted graph .......................................................................... 4 
Figure 1.4. Example of a bipartite graph............................................................................ 5 
Figure 1.5. Drug-side effect prediction problem as a bipartite graph ................................ 6 

Figure 1.6. Example of a weighted bipartite graph ............................................................ 7 
Figure 2.1. Sources of annotation for the UniProt Knowledgebase ................................. 15 

Figure 2.2. Data sources of interactions in STRING ....................................................... 16 
Figure 2.3. Summary for DrugCentral database .............................................................. 17 

Figure 2.4. KEGG data summary ..................................................................................... 22 
Figure 2.5. DSE prediction example given by a bipartite graph ...................................... 23 
Figure 2.6. A graph for explanation of MFM .................................................................. 24 

Figure 4.1. Side effects are ranked according to their degree against drugs .................... 41 
Figure 4.2. Drugs are ranked according to their degree against proteins ......................... 41 

Figure 4.3. Drugs are ranked according to their degree against diseases ........................ 42 
Figure 4.4. Proteins are ranked according to their degree against diseases ..................... 42 
Figure 4.5. Proteins are ranked according to their degree ................................................ 43 

Figure 4.6. Representative nodes and connections on graph G ....................................... 45 

Figure 4.7. Relations matrices of data .............................................................................. 45 

Figure 4.8. Average precision scores of initialization methods ....................................... 47 
Figure 4.9. Test scenario 1: APS-Loss with initial values ............................................... 49 

Figure 4.10. Test scenario 2: APS-Loss with initial values ............................................. 49 
Figure 4.11. Test scenario 3: APS-Loss with initial values ............................................. 50 
Figure 4.12. Test scenario 4: APS-Loss with initial values ............................................. 50 
Figure 4.13. Test scenario 5: APS-Loss with initial values ............................................. 51 
Figure 4.14. Test scenario 1: APS-Loss with values after k tests .................................... 59 

Figure 4.15. Test scenario 2: APS-Loss with values after k tests .................................... 60 
Figure 4.16. Test scenario 3: APS-Loss with values after k tests .................................... 60 
Figure 4.17. Test scenario 4: APS-Loss with values after k tests .................................... 61 
Figure 4.18. Maximum APS and precision-recall graph of test scenario 1 ..................... 63 
Figure 4.19. Maximum APS and precision-recall graph of test scenario 2 ..................... 63 

Figure 4.20. Maximum APS and precision-recall graph of test scenario 3 ..................... 64 
Figure 4.21. Maximum APS and precision-recall graph of test scenario 4 ..................... 64 

 



xii 

 

LIST OF ABBREVIATIONS 

 

MFM              Matrix Factorization Method 

NMFM Nonnegative matrix factorization method 

DTI Drug Target Interaction 

DSE Drug Side Effect  

NMTFM 

DTI 

DSI 

GDI 

PPI 

DDI 

Nonnegative matrix tri-factorization method 

Drug Target Interaction 

Drug Side Effect Interaction 

Gene Disease Interaction 

Protein Protein Interaction 

Drug Disease Interaction 

 



1 

 

 

CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

1.1 Motivation 

The integrative study of multimodal biological data is challenging because of its 

complexity and diversity. A critical issue in bioinformatics and computational biology is 

that many relationships between biological components and concepts (i.e., genes, proteins, 

drugs, diseases, etc.) are still unknown due to high costs and time requirements. There are 

not enough financial budgets to carry out all the laboratory experiments that can reveal 

these relationships. Even if such a budget exists, experiments take a long time to yield 

results. Sometimes it is necessary to make a decision very quickly. During the Covid19 

pandemic between 2019 and 2022, drugs such as favipiravir, which are known to be 

effective for other viruses, were tested on humans, and it was observed that they were not 

effective for Covid19. An essential part of the systematic analysis of these data is 

integrating the different components of biological data and revealing the relationships 

between these components through computational biology methods. All this increases the 

importance of computational biology day by day and motivates researchers to investigate 

biological data with different computational biology methods. In this thesis, drug-side 

effect relationships, drug-disease relationships, drug-protein relationships, protein-protein 

relationships, and protein-disease relationships obtained from different biological 

databases were integrated into a model. The nonnegative matrix tri factorization (NMTF) 

was performed algorithm determined new relationships between these components. 

1.2 Biological Definitions 

The first dataset discussed in this thesis is the dataset that expresses drug-side effect 

relationships. A drug is a chemical preparation that makes it possible to treat a disease, 

reduce its symptoms or prevent it by affecting living cells. The drug consists of 2 

components called “active substance” and “carrier.” An active substance is a substance or 

mixture of substances that act on a living cell. A carrier is a chemical or mixture of 

substances that allow the active substance to be taken easily by the patient and does not 

have a separate effect. 



2 

 

The “side effect” of the drug is that the patient is harmed by the drug he is taking. This 

side effect can occur when used in a single dose or for a long time or when taken at the 

same time as another drug. 

The second dataset is the drug-protein (target) interactions dataset. In the literature, these 

two problems have generally been investigated independently. Biologically speaking, 

these problems are two different problems; different experiments need to be done. When 

considered in terms of calculation, the situation is slightly different. Both problems can 

be expressed with similar mathematical models, and the result can be reached by applying 

the same methods to these models.  

The target may be, for example, a receptor. A receptor is a component of the body or cell. 

This component can receive different stimuli and can be a particular cell, a nerve ending, 

a protein that carries a signal from outside the cell to the inside, or a molecule in the cell 

membrane where an extracellular protein binds to enter the cell. The receptor concept was 

introduced into science due to the independent studies of Langley(1905) and Ehrlich, and 

Ehrlich(1877) was the first to use this notation. 

A “ligand” is a molecule that binds to a macromolecule, a protein, or a nucleic acid and 

has a functional role. 

When the receptor structure is known, the method of designing molecules that can affect 

this receptor is called “docking.” Thanks to docking, the interaction of proteins and drugs 

can be observed. 

1.3 Mathematical Model of the Prediction Problems in the Biological Data 

Definition 1. Let V be a non-empty finite set, and let E be a relation from V to V.  G=(V, 

E) pair is called a graph. 

For instance, let there be V={a,b,c,d} , E={(a,b),(b,c),(b,a),(c,c),(c,d),(d,a),(d,b)} In this 

case, the pair G=(V, E) is a graph. We can visualize the graph in this example as follows. 

(Figure 1.1) 



3 

 

 

Figure 1.1. Example of a directed graph 

 

Each element of set V is called “vertex,” and set E is called “edge.” 

In the above example, it can be seen that there are both (a,b) and (b, a) edges between a 

and b. Instead of drawing two-directional edges from a to b and b to a, it is sufficient to 

draw an undirected edge between a and b. Instead of (a,b), it is used ab to represent the 

edge between vertices a and b in the graph. 

Example. Let the set of vertices V is V={a,b,c,d,e} and the set of edges E is E={ab, bc, 

ac, bd, de, ea, be, cd} . So the graph G=(V, E) can be visualized as follows. 

 



4 

 

 

Figure 1.2. Example of an undirected graph 

 

Definition 2. Let the graph G=(V, E) be given. If the w: E → R function is defined, the 

(G, W) pair is called a “weighted graph.” 

An example of a weighted graph is shown below. 

 

Figure 1.3. Example of a weighted graph 

 



5 

 

Definition 3. Let the graph G=(V, E) be given. A G graph is called a bipartite graph if 

there are sets V1 and V2, both of which are non-empty sets and also satisfy the following 

conditions: 

1. V1∪ V2=V 

2. V1∩ V2=∅ 

3. If (u,v)∈ E is either u∈ V1 and v∈ V2 or u∈ V2 and v∈ V1. 

The drug-target interaction prediction problem can be modeled with the help of bipartite 

graphs as follows. 

 

 

Figure 1.4. Example of a bipartite graph 

 

Here, V1={D1, D2, D3, D4} is the set of drugs, and V2={T1, T2, T3, T4} is the set of 

targets. If a drug acts on a target, it is a match between the drug and its target; in other 

words, this drug has been combined with this target line. For example, it can be seen in 

the figure that it is known that the drug D1 acts on T1 and T3 targets. It is unknown 

whether the D1 drug acts on the T2 target, which may need to be investigated. We have 

experienced this problem together during the Covid-19 pandemic process. For example, 

hydroxychloroquine is a malaria drug, but it has been used for a long time against Covid-

19 disease, with the thought that it can be effective against the virus.  

Similarly, the favipiravir drug is an antiviral developed against the influenza virus, but it 

was thought that this drug could also successfully treat Covid-19. Remdesivir, on the other 

hand, was a drug used against Marburg and Ebola viruses, but this drug was found to have 

an antiviral effect against coronaviruses. As can be seen from these examples, when faced 

with a new disease, the effects of existing drugs are investigated before developing a new 

drug. 

Developing a new drug is both costly and impossible to prepare in a short enough time. 

In addition, it is necessary to investigate the effects of existing drugs not only against new 

diseases but also against known diseases. 



6 

 

Another similar problem is the problem of predicting the side effects of drugs. This 

problem is modeled with the help of the following graph. 

 

 

Figure 1.5. Drug-side effect prediction problem as a bipartite graph 

 

Here, V1={D1, D2, D3, D4} is the set of drugs, and V2={S1, S2, S3, S4} is the set of side 

effects of these drugs. Each drug has been paired with the side effects seen in people who 

have taken this drug, so lines link drugs with the side effects. For example, in the figure, 

the drug D3 is combined with S1 only, which means that only the S1 side effect has been 

seen as a D3 drug. However, it is not known whether the D3 drug has any other side effects 

and whether other side effects for each drug are the subject of constant research. In real 

life, drugs do not cause the same side effects in every person, and not every side effect is 

necessarily seen. Side effects are generally written under the headings of common and 

rarely seen side effects in drug package inserts. In other words, there is an incidence of 

side effects for each drug, so it would be more accurate to model the DSE prediction 

problem with a weighted two-cluster graph. 

 



7 

 

 

Figure 1.6. Example of a weighted bipartite graph 

 

In the diagram shown in Figure 1.6, it is seen that the D1 drug has three side effects such 

as S1, S3, and S4. It is known that among these side effects, the rate of S1 is 40%, the rate 

of S3 is 30%, and the rate of S4 is 20%. 

 

1.4 Matrix Factorization 

In numerical analysis problems, writing a given matrix as the product of two matrices with 

specific properties has been known as the decomposition terminus for a long time. For 

example, the Lower-Upper (LU) decomposition method, which is a method of solving the 

system by writing the matrix of a linear system of equations as the product of the lower 

and upper triangular matrices, was proposed by Banachiewicz in 1938 (Schwarzenberg-

Czerny (1995)). In recent years, the importance of the recommender systems problem has 

led to the development of the non-negative matrix factorization (NMF) algorithm. Later, 

this algorithm was also used for estimating biological data interactions. In both problems, 

we have a sparse matrix, and we are trying to predict the unfilled cells of this matrix. We 

try to approximate this matrix by the product of two non-negative matrices. In biological 

data, the sparse matrix we mentioned above is the adjacency matrix of a bipartite graph. 

However, it is challenging to model the integrated data with a bipartite graph. In general, 

the proposed models consist of a union of bipartite graphs.  

1.5 Aim of the Thesis 

Investigation of integrated biological data is essential for diagnosing and treating diseases 

and predicting new side effects of the drugs. In addition, these studies can help predict 

connections between biomolecules such as drug-protein and protein-target. Performing 



8 

 

these studies in laboratories is costly and may not always be reliable due to the limited 

number of experiments. For this reason, computational estimation methods for drug-target 

relationships have become more prevalent in recent years. Drug-side effect prediction can 

reveal some side effects that may not be possible to detect in clinical trials, as some side 

effects occur under certain conditions. 

 This thesis aims to predict unknown interactions in biological data by utilizing 

documented protein-protein, drug-target, gene-disease, and drug-side-effect relationships. 

To accomplish this task, firstly, biological datasets are obtained from UniProt, String, 

Stitch, Sider, Drugbank, Drugcentral, DisGENET, and KEGG databases, and their binary 

relationships are extracted and reformatted as multiple binary relationship matrices. These 

matrices contain values to be used as relationship weights whenever possible. We aim to 

obtain relatively sparse matrices due to the high amount of missing data in biological 

databases. Second, we aim to predict/predict these missing relationships through 

integrative matrix factorization using the NMTF method. This algorithm has been shown 

in the literature to solve similar problems successfully. A prediction model is trained and 

evaluated using classification and regression-based metrics such as precision, recall, 

average precision accuracy, and mean absolute error. Finally, large-scale estimation of the 

bilateral relationships between proteins, drugs, diseases, and adverse events are performed 

using the optimized model. We hope that the results of this thesis will help life scientists 

efficiently plan their experimental work by providing a preliminary set of biological 

institutions. 

1.6 Outline of the Thesis 

Within the scope of the second chapter, the literature review carried out has been 

conveyed. First of all, Non-Negative Matrix Factorization is discussed, and then the 

prediction problems between biological elements and their solution approaches are 

mentioned. 

In chapter 3, first, the biological elements and their database source and the stages of the 

database assembly are explained in detail. Next, the mathematical model within the scope 

of the prediction problem, the model proposed by the thesis, and the solution method are 

given. 

Chapter 4 presents a survey of the data obtained for testing, parameter tests applied within 

the scope of NMTF, error measurements regarding these tests, and tests performed within 

the designed scenarios. The results of the performances were compared, and new 

interaction estimates made with the most appropriate one among them were explained. 

The fifth and last chapter revisits the results and their discussion and proposes potential 

future studies.



9 

 

 

CHAPTER 2 

 

2. LITERATURE REVIEW 

 

2.1 Nonnegative Matrix Factorization Method 

The development of data science towards the end of the 20th century led to the need to 

use the matrix factorization method in different ways for different problems. Paatero and 

Tapper (1994) suggested non-negative matrix factorization. The authors expressed the 

problem as the bilinear matrix equation in this study, but this study can be considered a 

starting point for further studies. Li et al. (2001) propose a local non-negative matrix 

factorization (LNMF) method for the problem of visual patterns. They add a term 

representing localized features to the objective function. 

Based on the fact that the matrix given in many problems is very sparse (that is, the value 

in only a few cells of the matrix is known), Hoyer (2004) examined this proposed method 

by adding a sparsity condition. 

 The Matrix factorization method was first explained by Simon Funk in 2006 in a blog 

post about the recommendation systems competition organized by Netflix. (Funk(2006)). 

After this competition, researchers’ interest in this algorithm has increased considerably. 

The first serious scientific study describing this method for recommender systems is done 

by Salakhutdinov and Mnih (2008). The success of this method is highly dependent on 

the choice of initial matrices. The dimensions of these matrices are often called latent 

vectors (variables) or hyperparameters. In recent years, studies on the choosing of latent 

vectors and initial matrices have increased. Langville et al. (2006) compare the various 

initialization methods and show that the success of results depends on the choosing initial 

matrices and latent vectors. Ar (2020) proposes a new method for the initial matrices that 

uses the distribution of the non-empty cells of the given input matrix. Hassani et al. (2021) 

modify the initialization if the K-spherical Means method chooses the initial matrices. 

The NMF method has also been applied to biological data and computational biology 

problems. Devarajan (2008) discovered molecular patterns such as protein-gene 

microarray relationships and expression profiles, cross-platform and cross-species 

analysis, function-gene relationship, and drug-target interaction. Pehkonen et al. (2005) 

used this method to identify and visualize gene clusters through functional classes. They 

obtained different grouping results for a different number of clusters, that is, for a different 

number of latent factors. They separated these clusters using a developed tool called 



10 

 

GENERATOR, differentiating between clusters as the number of clusters changes. They 

also reported comparing their tools and other computational tools to demonstrate the 

performance of their algorithm. Zhang et al. (2020) propose a computational method to 

predict circRNA-disease interactions for integrated biological data. For this, they use the 

NMF algorithm. Before applying the algorithm, they try various approaches to create more 

reliable networks. First, circRNA annotation, sequence, and functional similarity 

networks are determined, and disease-related genes and semantics are used to construct 

disease functional and semantic similarity networks. Second, metapath2vec++ is used in 

an integrated network to examine built-in features and initial prediction evaluation. 

Finally, they use NMF by taking the similarity as a constraint and optimizing it to produce 

final predictions. Yang and Michailidis(2016) propose a new multimodal data analysis 

method designed for heterogeneous data based on the NMF method. They provide an 

algorithm for collaborative decomposition of related data matrices, including a sparsity 

parameter for multivariate settings. The NMF method was used by Gönen (2012) for the 

drug-target interaction (DTI) prediction problem. He formulates the problem, which 

combines binary classification, size reduction, and matrix factorization. He uses in 

calculations drug similarities and genomic similarity between targets. 

 The NMTF algorithm, which we used in this thesis and think is suitable for integrated 

biological data, was first proposed by Ding et al. (2006). Zitnik et al. (2013) use the NMTF 

algorithm to discover diseases-diseases interactions. Zitnik et al. (2015) apply the 

algorithm to the gene prioritization problem. Dissez et al. (2019 propose a drug 

repositioning algorithm based on the NMTF method for the integrated biological data. 

They demonstrate how to build a general-purpose graph covering the most critical drug 

discovery aspects. They explore how initiation and termination can significantly affect the 

quality of outcomes for re-administration of a drug. Ceddia et al. (2020) modify the NMTF 

algorithm by taking the shortest paths to extract more connections between nodes than 

those explicitly included in integrated networks. With this modification, the shortest path 

NMTF method leads to discoveries of drug-protein interactions, new drug annotations, 

and new drug-disease relationships. The method concludes that drugs target proteins not 

directly related to known drugs. Pinoli et al. (2021) consider the problem of predicting 

synergistic drug pairings in several cell lines. To solve the problem, they propose an 

NMTF-based approach that uses the integration of different data types. The proposed 

computational framework is based on a networked representation of existing data on drug 

synergy, allowing for the integration of genomic information into cell lines. They 

computerize the performance of his method in finding missing relationships between 

synergistic drug pairs and cell lines, calculate synergy scores between drug pairs in a given 

cell line, and evaluate the benefits of adding cell line genomic data to the network. 

2.2 Drug-Target Relationship Prediction Problem 

Studies investigating the problem of drug-target relationship estimation can be classified 

into two groups. Studies in the first group have addressed this problem as the “binary 



11 

 

classification problem.” The binary classification problem investigates whether there is a 

relationship between a drug and a target. 

Among the studies in this group, Gao et al. (2018) made predictions using artificial neural 

networks. In this study, the authors used “long short term memory recurrent neural 

networks and graph-based convolutional neural networks” to transform protein and drug 

structures into dense vector spaces. They made the classification with the help of the 

sigmoid function. The dataset used in this work is the open BindingDB [Gilson et al., 

2016]. This dataset contains data that includes the relationship of drug or drug candidate 

molecules with the target or target candidate proteins. According to their determined 

criteria, the authors took 1.3 million snapshots from this dataset and created a binary 

classification set containing 39747 positive and 31218 negative data. 

One of the studies that deal with the drug-target relationship estimation problem as a 

binary classification problem is the study of Wen et al. (2017). This study applied a deep 

learning algorithm to predict new drug-target associations. The drug and target data used 

in the study are from the DrugBank database (http://www.drugbank.ca), and the drug-

target interactions protein identifiers section of the DrugBank database is from the “drug 

target identifier” category ((https://www.drugbank.ca/releases/latest#protein-identifiers) 

has been downloaded. In addition, approved drug constructs and approved target 

sequences were obtained from https://www.drugbank.ca/releases/latest#structures and 

https://www.drugbank.ca/releases/latest#target-sequences, respectively. 

Wang et al. 2018, is one of the works classified as binary. This article is based on a 

hypothesis. This hypothesis is that the interactions between drugs and target proteins are 

closely related to the sequence of target proteins and the molecular structure of drug 

compounds. The authors proposed a new 3-step computational method based on this 

hypothesis to reveal an unknown large-scale drug-target interaction. In the first step of the 

proposed method, the target protein sequence is converted into a matrix containing 

biological evolutionary information. In the second step, a deep learning algorithm is 

applied to reveal hidden high-level features. In the third step, firstly, these features are 

combined with drug information, the decision tree is created, and finally, the rotation 

forest classifier is applied to obtain the most probable targets. 

One of the studies that deal with the drug-target relationship estimation problem as a 

binary classification problem is the study of Wen et al. (2017). This study applied a deep 

learning algorithm to predict new drug-target associations. The drug and target data used 

in the study are from the DrugBank database (http://www.drugbank.ca), and the drug-

target interactions protein identifiers section of the DrugBank database is from the "drug 

target identifier" category ((https://www.drugbank.ca/releases/latest#protein-identifiers) 

has been downloaded. In addition, approved drug constructs and approved target 

sequences were obtained from https://www.drugbank.ca/releases/latest#structures and 

https://www.drugbank.ca/releases/latest#target-sequences, respectively. 



12 

 

When the drug-target relationship prediction problem is considered a binary classification 

problem, it is assumed that the drug acts on a target completely or has no effect. In real 

life, this is not always the case. A drug can have a specific effect on a target at a certain 

level. Studies in the second group try to estimate the degree of this effect. 

Recently, deep neural networks have been used for DTI prediction problems. Deep models 

are created either through graph representation  (Nguyen et al. (2020), Wang et al. (2020) 

or sequence representation of the data(Özgur et al. (2018), Zhao et al. (2020), Zeng et al. 

(2021)). 

2.3 Drug-Side Effect Prediction Problem 

Related studies of these problems can be divided into four groups, including docking-

based, network-based, machine learning-based, and various approaches that differ from 

these three approaches. 

2.3.1  Docking Based Studies 

Since docking is done directly on the drug target and is not dependent on experimental 

data, this method is more likely than other methods to reveal new, unexpected 

associations. However, a long processing time requires the 3D structure of drugs and 

targets. 

Chen and Ung(2001) performed the docking using a procedure that includes multiple 

coupling of the shape of the conformer of the molecule with the gap, followed by 

molecular-mechanical optimization of bending and minimization of energy on both the 

molecule and protein residues in the binding site. They selected potential protein targets 

by evaluating the energy of molecular mechanics. They also analyzed the binding 

competitiveness with other ligands that bind at least one PDB entry to the same receptor 

site. 

2.3.2 Graph-based Studies 

In this method, the DSE problem is modeled with the help of graphs. These graphs are 

often bipartite graphs. The notation of a graph is also used as a network in the literature. 

For this reason, the concept of network-based is sometimes used instead of graph-based. 

This method requires much less processing time than the docking method and does not 

require the 3D structure of drugs and proteins, but the success performance is very 

dependent on the model created. For example, the network neighborhood model only 

considers direct neighborhoods, which reduces the success performance. Zhao et al. 

(2021) developed a new drug side effects prediction model that uses a graph attention 

network to integrate similarity information, known drug-side effects information and word 

embedding. Luo et al. (2014), Ye et al. (2014), Zhao et al. (2019), and Zhao et al. (2020) 

are examples of studies published in this group in recent years.  



13 

 

2.3.3 Machine Learning-based Studies 

If we evaluate these studies in general, we can observe that this method has the following 

advantageous features: 1) It does not need data in a 3D structure to reach the result 2) The 

applied algorithms do not work too much in the processing time 3) It requires relatively 

little supervision. 4) The data need not be very comprehensive. 

Besides, this method has the following disadvantages: 1) This method involves 

uncertainty, and 2) The successful performance of the method depends on the diversity 

and distribution of the compounds in the dataset. 

These studies used machine learning methods such as support vector machine, logistic 

regression, naive Bayes, k-nearest neighbor, and random forest methods. 

Liu et al. (2012) use several machine learning classification methods to integrate different 

data types into a single model. 

Jahid and Ruan (2013) show how similar drugs cause similar side effects and use a 

machine learning approach to predict them. However, they cannot identify the 

mechanisms underlying the side effects. 

Zhang et al. (2015) propose a multi-label k nearest neighbor algorithm based on feature 

selection to predict drug side effects. 

Dmitri and Lio (2017) developed a new tool based on machine learning to solve the drug 

side effects problem. They first grouped the drugs according to their properties and then 

made side-effect estimates based on scores. Biological validation of the resulting clusters 

is performed using enrichment analysis, another feature implemented in the methodology. 

2.3.4 Various Approaches 

Few studies applied sparse canonical correlation analysis (SCCA; Hardoon & Shawe-

Taylor, 2011) or various scoring-based algorithms. Pauwels(2011) and Yamanishi et al. 

(2012) can be given as examples of such studies. 

2.4 Biological Databases 

This thesis collected Protein-Protein Interactions, Drug-Target Protein Interactions, Drug-

Side Effect Interactions, Gene-Disease Interactions, Gene-Protein Interactions, and Drug-

Disease Interactions from certain data banks. These collected interactions were integrated, 

classified as described in the following subsections, and related matrices were prepared 

for testing with the Non-Negative Matrix Tri-Factorization algorithm. In line with the 

purpose of the thesis, a study was conducted to estimate unreviewed or unrecorded 

potential relationships based on the relationships present in these matrices. Our goal was 

to improve the accurate selection of samples in labor-time-intensive laboratory 



14 

 

experiments currently being carried out with limited resources. The databases from which 

data are obtained are as follows; 

1. UniProt (UniProt Consortium, T. (2018) and STRING (Protein-Protein Interactions) 

2. Drugbank and Drugcentral (Drug-Target Protein Interactions) 

3. Sider and STITCH (Drug-Side Effect Interactions) 

4. UniProt, HGNC, and NCBI-NIH(Gene-Protein Interactions) 

5. Disgenet (Piñero et al. (2019) (Gene-Disease Interactions)  

6. KEGG (Kanehisa et al. (2010)), Disgenet and Drugbank (Drug-Disease Interactions) 

The databases used and their features, data acquisition, and processing stages are detailed 

in the following sections. The numerical characteristics of the collected raw data are also 

given in the same sections. The necessary elimination and editing processes performed on 

the raw data, the test data obtained as a result, and the characteristics of this data are 

discussed in the results section. 

 

2.4.1 Protein-Protein Interaction Databases 
 

The following databases were administrated for retrieval of the current protein list and 

protein-protein interactions. 

 

2.4.1.1 UniProt (The Universal Protein Resource) 

 

The Universal Protein Resource (UniProt) is a comprehensive protein sequence and 

annotation data. The UniProt databases are the UniProt Knowledgebase (UniProtKB), 

the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). The 

UniProt consortium and host institutions EMBL-EBI, SIB, and PIR, are committed to 

long-term preserving the UniProt databases.  

UniProt collaborates with the European Bioinformatics Institute (EMBL-EBI), the SIB 

Swiss Institute of Bioinformatics, and the Protein Information Resource (PIR). Across the 

three institutes, more than 100 people are involved in different tasks such as database 

curation, software development, and support. 

EMBL-EBI and SIB together used to produce Swiss-Prot and TrEMBL, while PIR 

produced the Protein Sequence Database (PIR-PSD). These two data sets coexisted with 

https://www.uniprot.org/help/uniprotkb
https://www.uniprot.org/help/uniref
https://www.uniprot.org/help/uniparc
https://www.ebi.ac.uk/
https://www.sib.swiss/
https://www.sib.swiss/
http://pir.georgetown.edu/
https://www.uniprot.org/help/uniprot_staff


15 

 

different protein sequence coverage and annotation priorities. Translated EMBL 

Nucleotide Sequence Data Library ( TrEMBL) was created because sequence data was 

generated at a pace exceeding Swiss-Prot’s ability to keep up. Meanwhile, PIR maintained 

the PIR-PSD and related databases, including iProClass, a database of protein sequences 

and curated families. In 2002 the three institutes decided to pool their resources and 

expertise and formed the UniProt consortium, now headed by Alex Bateman, Alan Bridge, 

and Cathy Wu. 

UniProt is a database that contains many different data classes regarding many existing 

organisms and can present these data to users holistically. Here are some examples of data 

classes: names and taxonomy, sequences, function, interaction, expression, gene ontology, 

structure, subcellular location, family, and domains. 

In this thesis, protein entries were used in the acquisition of members of Homo sapiens, 

which were specified as reviewed proteins (SwissProt) and the subsequent conversion of 

protein-protein relationships to this format. 

 

Figure 2.1. Sources of annotation for the UniProt Knowledgebase 

(https://www.uniprot.org/docs/uniprot_flyer.pdf) 

 

 

https://www.uniprot.org/help/bateman
https://www.uniprot.org/help/bridge
http://pir.georgetown.edu/pirwww/aboutpir/wubio.shtml


16 

 

2.4.1.2 STRING 

 

It is the data bank within STRING where the interaction data of human proteins are 

obtained. Thanks to its scoring data feature, it has enabled the creation of matrices that 

can yield more efficient results in the NTMF algorithm. The definition of the database, 

according to the website, is as follows; STRING is a database of known and predicted 

protein-protein interactions. The interactions include direct (physical) and indirect 

(functional) associations; they stem from computational prediction, knowledge transfer 

between organisms, and interactions aggregated from other (primary) databases. The 

STRING database currently covers 24.584.628 proteins from 5.090 organisms. 

 

Figure 2.2. Data sources of interactions in STRING (https://string-db.org/cgi/about) 

 

2.4.2 Drug-Target Protein Interactions 
 

Drug-Target Protein interactions were collected and integrated from two different sources, 

DrugCentral and Drugbank. In this context, the dataset was prepared by considering the 

interactions in both databases as commons and separate unique records while separating 

the duplicated records. General information about the relevant data banks and the method 

of obtaining data are presented in the following sections. 

 

2.4.2.1 DrugCentral 

 

Drugcentral is an online drug information resource created and maintained by the Division 

of Translational Informatics at the University of New Mexico in collaboration with the 

IDG (Illuminating the Druggable Genome), according to their introductory page website.  

DrugCentral provides information on active ingredients, chemical entities, pharmaceutical 

products, drug mode of action, indications, and pharmacologic action. They are 

monitoring FDA, EMA, and PMDA for new drug approval regularly to ensure the 

currency of the resource. Limited information on discontinued and drugs approved outside 

the US is also available; however, regulatory approval information can’t be verified. The 

database was developed and maintained by Oleg Ursu, Sorin Avram, Cristian Bologa, 



17 

 

Liliana Halip, Alina Bora, Giovanni Bocci, and Tudor Oprea. Web application developed 

by Jayme and Holmes. 

 

 

Figure 2.3. Summary for DrugCentral database. (https://drugcentral.org/about) 

 

2.4.2.2 DrugBank Online 

 

DrugBank Online is a comprehensive, free-to-access online database containing 

information on drugs and drug targets. They combine detailed drug (i.e., chemical, 

pharmacological, and pharmaceutical) data with comprehensive drug target (i.e., 

sequence, structure, and pathway) information as both a bioinformatics and a 

cheminformatics resource. 

DrugBank started in 2006 in Dr. David Wishart’s lab at the University of Alberta. It began 

as a project to help academic researchers get detailed structured information about drugs. 

In 2011 it became a part of The Metabolomics Innovation Center (TMIC). The project 

continued to grow in scope and popularity and was spun out into OMx Personal Health 

Analytics Inc in 2015. 

The latest release of DrugBank Online (version 5.1.9, released 2022-01-03) contains 

14,595 drug entries, including 2,719 approved small molecule drugs and 1,511 approved 

biologics (proteins, peptides, vaccines, and allergenic), 132 nutraceuticals and over 6,657 

experimental (discovery-phase) drugs. Additionally, 5,269 non-redundant protein (i.e. 

drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each 

entry contains more than 200 data fields, with half of the information being devoted to 

drug/chemical data and the other half devoted to drug target or protein data. 

 



18 

 

2.4.3 Drug-Side Effect Interactions 
 

Drug-Side Effect interactions were collected and integrated from two different sources, 

SIDER, and STITCH. Both databases were used while acquiring Drug-Side Effect 

Interaction data. General information about the relevant data banks and the method of 

obtaining data are explained in the following sections. 

 

2.4.3.1 SIDER and STITCH 

 

STITCH is a database that mainly uses String DB infrastructure, provides chemical 

interaction data, records drugs with its unique reference number system (SMILE), and 

shows their interactions. 

On the other hand, SIDER is a database that primarily focuses on side effects and does 

this by subjecting the data obtained from articles and prospectuses to various criteria 

(MedDRA, ATC) and using Stitch references. 

SIDER (Side Effect Resource) contains information on marketed medicines and their 

recorded adverse drug reactions. The information is extracted from public documents and 

package inserts. The available information includes side effect frequency, drug and side 

effect classifications, and links to further information, for example, drug-target relations. 

Version 4.1, released on October 21, 2015, was administrated on this thesis. This release 

version uses the MedDRA dictionary (version 16.1). 

The MedDRA Concept Type data class is divided into two classes for presenting detailed 

information, LLT: Lowest Level Term and PT: Preferred Term. 

According to the guidance document, all side effects are given in LLT. Additionally, in 

PT, each LLT has a PT equivalent. It is said that PT filtering is preferable because the 

LLT can be overly detailed at times. Both LLT and PT values were considered valuable 

to avoid data loss since we had already removed duplicate values from the data. When we 

analyze the data from this perspective, there are 163.206 PTs, 145,742 LLTs, and 901 

unclassified entries. These LLTs are equivalent for most purposes and to the same PT. 

The following example can be given to the LLT, PT distinction. 

 

 

 

 



19 

 

i. C0235431 PT Blood creatinine increased 

a. C0151578 LLT C0151578 Creatinine increased 

b. C0235431 LLT C0235431 Blood creatinine increased 

c. C0700225 LLT C0700225 Serum creatinine increased 

d. C0858118 LLT C0858118 Plasma creatinine increased  

 

2.4.4 Protein-Disease Interactions 
 

In order to form the Protein Disease Interactions, the data obtained from the databases, 

about which information is given in the following section, were used. First, gene-protein 

interactions and gene-disease interactions were obtained for reference mapping. PDI raw 

data were created after these two interaction data were mapped as a gene-protein-disease 

network. 

 

2.4.4.1 Gene – NIH under (NCBI (National Center for Biotechnology Information)) 

 

The whole Gene ID list available has been collected from the Gene, which is one of the 

NCBI Databases (Gene 2004).  

Gene supplies gene-specific connections in the nexus of map, sequence, expression, 

structure, function, citation, and homology data. Unique identifiers are assigned to genes 

with defining sequences, genes with known map positions, and genes inferred from 

phenotypic information. These gene identifiers are used throughout NCBI's databases and 

tracked through updates of annotation. Gene includes genomes represented by NCBI 

Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval 

from NCBI's Entrez and E-Utilities systems. Gene comprises sequences from thousands 

of distinct taxonomic identifiers, ranging from viruses to bacteria to eukaryotes. It 

represents chromosomes, organelles, plasmids, viruses, transcripts, and millions of 

proteins. 

 

 

 

 



20 

 

2.4.4.2 HGNC (HUGO Gene Nomenclature Committee) 

 

The HGNC Gene ID (Nomenclature) content offered by HNGC has been used to 

understand and compare the nature of missing links and search for alternatives in areas 

where the Gene ID and or Gene Name data classes are not available. The relevant database 

is introduced in its resources as follows. (Tweedie et al. (2021)) 

HGNC is a non-profit making body jointly funded by the US National Human Genome 

Research Institute (NHGRI) and Wellcome (UK). They operate under the auspices of 

HUGO, with crucial policy advice from a Scientific Advisory Board (SAB), and they also 

consult with a team of specialist advisors who support specific gene family nomenclature 

issues. They collaborate with staff at other gene nomenclature resources, especially the 

MGNC and RGNC. 

The HGNC is responsible for approving unique symbols and names for human loci, 

including protein-coding genes, ncRNA genes, and pseudogenes, allowing clear scientific 

communication. For each known human gene, HGNC approves a gene name and symbol 

(short-form abbreviation). All approved symbols are stored in the HGNC database, a 

curated online repository of HGNC-approved gene nomenclature, gene groups, and 

associated resources, including links to genomic, proteomic, and phenotypic information. 

Each symbol is unique, and they ensure that each gene is only given one approved gene 

symbol. It is necessary to provide a unique symbol for each gene so that they and others 

can talk about them, and this also facilitates electronic data retrieval from publications and 

databases. In preference, each symbol maintains parallel construction in different 

members of a gene family and can also be used in other species, especially other 

vertebrates, including mice. There is an already approved almost 43,000 symbols; around 

19,000 are for protein-coding genes, and the remainder includes pseudogenes, non-coding 

RNAs, and genomic features. 

 

2.4.4.3 DisGeNET 

 

The DisGeNET database is vital in the thesis work, especially with the UMLS Concept 

ID from the data classes it contains. Due to the subject data class, both diseases and side 

effects can be mapped based on ID. In addition to getting rid of the adverse impacts of 

name-type naming, it is ensured that intersecting common records are not eliminated and 

disrupt the interaction prediction. The brief introductory information about him is as 

follows; DisGeNET is a discovery platform containing one of the largest publicly 

available collections of genes and variants associated with human diseases; it integrates 

data from expert-curated repositories, GWAS catalogs, animal models, and the scientific 

literature. Stored data are homogeneously annotated with controlled vocabularies and 



21 

 

community-driven ontologies. Additionally, several original metrics are provided to assist 

in prioritizing genotype-phenotype relationships. 

The current version of DisGeNET (v7.0) contains 1,134,942 gene-disease associations, 

between 21,671 genes and 30,170 diseases, disorders, traits, and clinical or abnormal 

human phenotypes, and 369,554 variant-disease associations, between 194,515 variants 

and 14,155 diseases, traits, and phenotypes. 

 

2.4.5 Drug-Disease Interactions 
 

2.4.5.1 KEGG (Kyoto Encyclopedia of Genes and Genomes) 

 

Although the KEGG database has its unique identification system and does not have the 

user-friendly interface used by other databases today, it has been used to provide some 

fundamental data for our thesis due to its bioinformatics elements and their interaction 

data. This database, which makes a difference, especially with Drug Disease Interaction 

data, is defined in its resources. 

KEGG is a database resource for understanding high-level functions and utilities of the 

biological system, such as the cell, the organism, and the ecosystem, from genomic and 

molecular-level information. It is a computer representation of the biological system, 

consisting of molecular building blocks of genes and proteins (genomic information) and 

chemical substances (chemical information) that are integrated with the knowledge of 

molecular wiring diagrams of interaction, reaction, and relation networks (systems 

information). It also contains disease and drug information (health information) 

perturbations to the biological system. 

KEGG is an integrated database resource consisting of sixteen databases shown, and they 

are broadly categorized into systems information, genomic information, chemical 

information, and health information. 

 



22 

 

 

Figure 2.4. KEGG data summary (https://www.genome.jp/kegg/kegg1a.html) 

2.5 Matrix Factorization Method 

In numerical analysis problems, the method of writing a given matrix as the product of 

two matrices with specific properties has been known as the decomposition terminus for 

a long time. For example, the LU decomposition method, which is a method of solving 

the system by writing the matrix of a linear system of equations as the product of the lower 

and upper triangular matrices, was proposed by Banachiewicz in 1938. 

The development of data science towards the end of the 20th century led to the need to 

use the matrix factorization method in different ways for different problems. Paatero and 

Tapper (1994) suggested nonnegative matrix factorization. 

Based on the fact that the matrix given in many problems is very sparse (that is, the value 

in only a few cells of the matrix is known), Hoyer (2004) examined this proposed method 

by adding a sparsity condition. 

As used in this thesis, the Matrix factorization method was first explained by Simon Funk 

in 2006 in a blog post about the recommendation systems competition organized by 

Netflix. (Funk(2006)). The first serious scientific study describing this method for 

suggestion systems is by Salakhutdinov. and Mnih A (2008). The matrix factorization 

method for the first time by Gönen(2012) for the DTI estimation problem. 

An M matrix can represent every graph on the computer. If there are m drugs and n side 

effects (or targets) in a DSE (or DTI) estimation problem, the size of the M matrix will be 

m x n. If there is an edge between Di drug and Sj (or Tj) in the graph, one is written in the 

M matrix cell (i,j); otherwise, zero is written. Let us consider the following example. 

(Figure 2.5) 

 



23 

 

 

Figure 2.5. DSE prediction example given by a bipartite graph 

 

For this example, the matrix M is 4x3 dimensional and will look like this 



















=

010

011

010

101

M       

M is a large and sparse matrix, which means that 1s in the matrix are much less than 0s. 

The Matrix Factorization Method can be briefly described as follows: 

Choosing k small positive integer, 0<a<1, 0<b<1. It is necessary to find such L and R 

matrices of mxk and kxn dimensions, respectively, so that the following function takes 

the minimum value: 

22

1

2])[( RbLaMLR
ijM

ijij ++−
=

    (1) 

Here L  and R  denote the norm of these matrices, and the norm of a matrix A is defined 

as follows: 

       =
ji

ijAA
,

2       (2) 

The Matrix Factorization method can perform with the following steps: 

Step 1. Small positive integer k and numbers a and b that meet the conditions 0<a<1, 

0<b<1, and a number e close to 0 are selected. 

Step 2. The mxk and kxn sized L and R matrices are taken randomly. 



24 

 

Step 3. Calculating the P=LR matrix. 

Step 4. For each (i,j) cell equal to 1 of the M matrix, the square of the difference between 

Pij and Mij is calculated, and these values are collected in an E variable. 

Step 5. The values of a and b that meet the conditions 0<a<1, 0<b<1 are taken, and                                                      

E+
22 |||||||| RbLa +  is assigned to E. 

Step 6. Searching for other L and R matrices that make the E value smaller. 

Step 7. If the absolute value of the difference between two consecutive values of E is 

greater than e, go to the third step; otherwise, the algorithm stops working. 

The matrix factorization method can be explained with a simple example. For instance, 

the following DSE prediction problem was given. (Figure 2.6) 

 

 

Figure 2.6. A graph for the explanation of MFM 

 

The matrix of this graph will be as follows: 

















=

001

010

101

M        

Let us take the k=1 and a=b=0.1. Let L=

















1

0

1

 and R=[1 0 1]. Let us calculate the LR 

matrix. 

LR obtained as,  



25 

 

LR=

















101

000

101

       

If we compare LR and matrix M, the places with 1 in the M matrix, we can see that only 

the value in cell (2,2) is different. For these L and R matrices, we find the E value 

E=1+0.1(1+1)+0.1(1+1)=1.4 

Now let us take L=

















1

1

1

 and R=[1 1 1]. In this case, the LR matrix is obtained as; 

LR=

















111

111

111

       

Since the matrix M has all cells equal to 1, this time, the E value will be 

E=0.1(1+1+1)+0.1(1+1+1)=0.6. No smaller value can be obtained for this example. This 

simple example concludes that every D1, D2, and D3 drug has S1, S2, and S3 side effects. 

2.6  Non-Negative Matrix Tri-Factorization Method 

Let us denote the unit matrix with I. For matrix A, if we denote the transpose of AT and 

matrix A, the matrix consists of the interchanges of rows and columns. 

 

As an example, it 







=

124

312
M is, then 

















=

13

21

42
TM  will be. 

If A.AT=I for a matrix A, then the matrix A is called an orthogonal matrix as a definition. 

For example, 
















−

=

5

3

5

4
5

4

5

3

A  its matrix is an orthogonal matrix 

If there are no negative numbers in the cells of the input matrix, such matrices are called 

non-negative matrices. In Ding et al.’s (2006) study, the matrix factorization method was 

developed. Let our input matrix be the non-negative matrix M with dimensions nxm. Let 



26 

 

us pick a small number, k. We are looking for L, S, and R matrices of nxk, kxk, and mxk 

dimensions, respectively, 




−

0

2])[(

ijM

ijij
T MLSR       (3) 

let the expression take the smallest possible value. Here L and R matrices are orthogonal 

matrices. This method is called the matrix tri-factorization method. If n=m and matrix M 

is a symmetric matrix, then L=R. 

 

 

 



27 

 

CHAPTER 3 

 

3. MATERIALS AND METHODS 

3.1 Acquisition of PPI Data 

To acquire the PPI dataset, proceeded as follows; 

Step 1. Downloaded String DB references for 20.375 Human proteins on UniProtKB 

Step 2. Eliminated a total of 1.822 protein data lines without STRING reference numbers 

Step 3. For the remaining 18.553 protein entry, the STRING reference numbers were 

edited as part of the database search requirement, clearing the organism code and other 

code expressions, 9606. and; i.e. 

Step 4. This protein data was queried at the STRING database’s lowest possible 

confidence level (0.15). Before this query, the protein data were converted into clusters of 

1.800 members since the related database offers the possibility to query up to 2.000 entries 

within the technical possibilities. 

Step 5. As a result, 561.330 PPI data were obtained, reference numbers were switched 

back to UniProt IDs, and scores were created. 100 PPI data had to be eliminated in the 

final stage because two different STRING cross-reference values were allocated for 

P11836 and Q9H714. Thus, the raw data of the PPI dataset was created. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Protein-Protein Interaction; a total of 561,330 scored relationships were obtained to form 

a Laplacian matrix with dimensions of 17,765 x 18,002 (X1: Protein, Y1: Protein), and 

the scores were above the 0.15 confidence interval, which is the lowest confidence level 

STRING could provide (when we consider the matrix dimensions only to the members 

with relations, the matrix dimensions). The numbers of all protein entries as classified 

reviewed and SwissProt are 20.376, but we must state that 1,823 protein entries do not 

contain a STRING reference, and 788 proteins score below 0.15.  

However, this raw data has been eliminated for finding the new predictions with an 

algorithm. The reasons for this process and the final numeric characters have been given 

in the results section. 

 



28 

 

3.2  Acquisition of DTI Data 

Step 1. Drug-Target Protein interaction data extracted from literature, drug labels, and 

external data sources downloaded from DrugCentral DB. This raw data includes the 

following classes and contains a total of 19,379 rows of data; Drug Name, Struct ID, 

Target Name, Target Class, Accession No, Gene, Swiss-Prot, act_value, act_unit, 

act_type, act_comment, act_source, act_source_url, relation, MOA, MOA Source, MOA 

Source URL, action type, tdl, and Organism. 

Step 2. Non-Homo sapiens organisms were eliminated from the raw data content first. 

(Remaining data 14,301, eliminated data 5.077) 

Step 3. Uniprot and Swiss-Prot references were checked; there are no empty entries in 

these classes, so there is no elimination realized. 

Step 4. At this stage, more than one UniProt ID belongs to a drug in the data content; in 

some drugs, these two different reference values, while in others, it reaches up to 55 

values. Each interaction was converted into pairs containing singular information, 

yielding 15,457 rows of data, including redundant data. 

Step 5. From the existing data, columns Struct ID, Target Name, Target Class, Gene, 

Swiss-Prot, act_value, act_unit, act_type, act_comment, act_source, act_source_url, 

relation, MOA, MOA Source, MOA Source URL, action type, tdl, and Organism classes 

have been removed. Duplicate entries were eliminated, resulting in DrugCentral-sourced 

data consisting of 15,347 lines. 

Step 6. DrugBank data was analyzed and processed as the second step of dataset 

preparation. The downloaded data’s existing DrugBank ID, Type, and UniProtName 

classifications were eliminated. 

Step 7. The data, which includes a total of 21,626 lines, lines by parsing the data belonging 

to non-human organisms besides the human protein data although they are not reviewed 

(SwissProt), remaining data consists of 20,375. After the redundant data is eliminated, our 

DrugBank data consisting of 16,794 lines of unique data, is formed. 

Step 8. Before merging data from both databases, it was examined to determine how many 

entries we got from which database and the number of those that were found in both 

databases and those that were not. According to this;  

I. Number of Drugcentral specific DTIs: 4.508  

II. Number of Drugbank specific DTIs: 3.836  

III. Number of common DTIs registered on both databases: 27,178. 



29 

 

Step 9. Following the merging of Drugbank and Drugcentral data (35,522), duplicate data 

was removed, and 28,522 rows of DTI data were available with data from both databases. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Drug-Target (Protein) Interaction; a total of 28,522 relationships that will take one value. 

When we consider the matrix dimensions only to the members with relations, the 

dimensions are 6.594 x 3.265 (X1:Drug, Y1:Protein) 

However, this raw data includes drug names as a node reference and must be converted to 

Drugbank IDs. For that reason, raw data is mapped over IDs for quickly finding the new 

predictions with the algorithm. The steps of this process and final numeric characters have 

been given in the results section. 

3.3 Acquisition of DSI Data 

Drug Names x Stitch ID data downloaded from Sider DB and Stitch ID x ATC Code data 

are integrated. Then, only Stitch ID1 and Side Effect data were extracted from the table 

containing StitchID1, StitchID2, UMLS Concept, MedDRA Concept Type, MedDRA 

Term, and Side Effect data. Sider frequencies of side effects also provide data. However, 

they could not be used because they partly scored verbally and partly in numerical groups. 

The use of two different Stitch IDs was researched in the data. Accordingly, a decision 

has been made to use it as a reference value and integrate Stitch ID > Side Effect > Drug 

Name. Stitch ID_1 CID1XXX format is used for flat compounds, while Stitch ID_2 

CID0XXX represents stereo-specific compounds. E.g., CID100000085 stands for 

carnitine, while CID000010917 stands for L-carnitine. Since flat compound Stitch ID is 

used for all other reference tables in the database, the data column in CID0XXX format 

has been removed. In the last case, the data consisting of 309,849 lines were purified from 

repetitive entries. The Drug-Side Effect Interaction data consisting of 158.209 lines were 

obtained, so the third matrix to be used in the algorithm is completed. 

Due to a suspicion of potential error in the side effect data compilation process, the Drug 

Name x Side Effect data was reviewed again.; The merge, elimination, and integration 

sequence at different stages are repeated. The number of duplications and their reasons 

can be explained as follows: 

Step 1. The raw data from Sider is divided into LLT, PT, and Non according to their 

“meddra_concept_type.” 

Step 2. While the number of data in the LLT class is 145,742, the classes 

Stitch_ID2(stereo-specific compound reference), umls_concept_ID, and meddra_term 

purged. Duplications from the table of Stitch_ID1 x Side Effects classes were eliminated. 

So we have 138,899 rows of unique data rows. (Number of Duplicated Data: 6,843) 



30 

 

Step 3. While the number of data in the PT class was 163.206, the same operations were 

repeated in the previous item. As a result, we have 145,321 rows of unique data rows. 

(Number of Duplicated Data: 17,885) 

Step 4. In the NON-class (without the meddra_concept_type classification), the number 

of data was 901, and I repeated the same operations. As a result, we have 857 rows of 

unique data rows. (Number of Duplicate Data: 44) 

At this stage, we believe that the factor that causes the data number to decrease due to 

duplications is eliminating the Stitch_ID2 class. Because one Stitch_ID1 (flat-compound) 

data versus more than one Stitch_ID2 data and Side Effect mapped, this ensures that the 

raw data is unique without the classes that which was eliminated, and as we eliminate the 

classes, only the redundant data after mapping in Stitch_ID1 x MedDRA Concept Type x 

Side Effect, causing elimination. 

Step 5. All the data combined. In this intermediate data form of 285,077 rows, we have 

eliminated the distinctive class “meddra_concept type.” After this process, when the 

duplication elimination is realized again, we have 163.221 unique data. The large number 

of duplications in this data I attributed with Stitch_ID1 x Side Effect classes to the fact 

that all side effects are given as LLT and also processed as PT, but in some cases, LLT is 

the same as PT. The following statement on the Sider download page is also for this; All 

side effects found on the labels are given as LLT. 

Additionally, the PT is shown. There is at least one PT for every LLT, but sometimes the 

PT is the same as the LLT. LLTs are sometimes too detailed, and therefore you might 

want to filter for PT. (Number of Duplicate Data: 121,856) 

Step 6. At the last stage, the Stitch_ID1 X Side Effect data match, consisting of 163.221 

lines, with the DrugNames (Stitch_ID1 x DrugNames) data I obtained from the Stitch_ID1 

reference point, again via Sider DB. Again, this final form was checked in the Drug Names 

x Side Effect classes for duplications. We got Side Effect data consisting of 158.209 

unique lines. (Number of Duplicate Data: 5.012) At this stage, we think that the reason 

for the existing duplications may be more than one Stitch_ID1 definition for a drug name. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Drug-Side Effect Interaction; a total of 158.209 relations were gathered to be used in a 

relation matrix with dimensions of 1.345 x 6.123 (X1: Drug, Y1: Side Effect), and the 

value of 1 was obtained by using the data in the databases together when we apply the 

matrix dimensions only to the members with relations. This raw data only consists of drug 

and side effect names; for smooth and fast test runs of our code and algorithm, all of these 

nodes needed to be converted as IDs. 

 



31 

 

Like others, this raw data also has been eliminated for finding the new predictions with 

the algorithm. The reasons for this process and the final numeric characters have been 

given in the results section.  

3.4 Acquisition of PDI Data 

In creating the Protein Disease neighborhood matrix, Gene X Protein relationships should 

be obtained in the first step. Data collection and preparation processes carried out in this 

context are explained in the continuation of the subsection. 

As a starting point, an attempt was made to reach all of the Gene ID references 

corresponding to proteins in the SwissProt (reviewed) class. Therefore, the Gene ID data 

of 1.518 entries did not exist in the Protein Gene Interactions data downloaded from 

UniProtKB in the first place. In the previous process, it was thought that this deficiency 

could be overcome with HGNC ID, but since HGNC-ID and Gene-ID data did not belong 

to the same class, it was necessary to develop a different approach. Within the framework 

of this approach, the following stages were followed; 

In the first stage, UniProt ID / Gene Names / Gene ID / HGNC class data table was 

downloaded from UniProtKB; this data contains 20.376 protein entries, including all 

SwissProt class proteins. 

When examined, there were 1.518 protein entries without Gene ID data, 190 without 

HGNC ID data, and 136 protein entries without Gene Name data. It was assumed that 

protein entries missing in GeneID data should contain at least one of these three data 

classes to be completed using other data references. So, 132 entries were identified in this 

table that had none of the Gene Names, Gene ID, and HGNC ID data in common; Due to 

the lack of reference data on these, they were excluded from the sample, and the remaining 

data of 20.244 lines continued to be examined. (When the random entries selected in the 

132 screening sample are checked retrospectively in UniProtKB, it is seen that there is no 

record of the gene data.) 

During the pre-processing, for 1.386 entries without Gene ID data, the tables are 

completed using Genes Names and HGNC ID references. For this purpose, first, all Homo 

sapiens gene data with organism code 9606 was obtained from NCBI-NIH / Gene DB, 

and all data classes except NCBI Gene ID / Nomenclature ID (HGNC) / Ensembl Gene 

ID / Synonyms and SwissProt Accession (UniProt ID) were eliminated. As such, 198.866 

lines of data were available. After eliminating the 58.133 lines of data that did not 

correspond to Swissprot Accession, 140.733 rows of data were left. All data classes except 

NCBI Gene ID and Swissprot Accession were eliminated, and repetitive values for the 

remaining classes were eliminated, yielding 20.197 lines of unique UniProt ID / Gene ID 

data. Because there was more than one SwissProt ID equivalent for some Gene ID values, 

these data were combined into single matches, and a reference table of 20.301 rows and 

non-repeating values to be used for completion was created. 



32 

 

In the next step, the data obtained from UniProtKB and the data obtained from NCBI-NIH 

were mapped to complete the missing/missing links, and as a result of this process, only 

124 UniProt ID data without Gene ID counterparts remained. Thanks to NCBI-NIH data, 

1.262 missing links were resolved. 

HGNC ID data and Gene Name data were checked for the remaining 124 UniProt ID 

entries without Gene ID data. It was observed that 37 entries did not have HGNC ID data, 

but all of them had Gene Name naming. A new mapping process was initiated over the 

HGNC ID X Gene ID link, and 87 more lost links were recovered. The remaining 37 

missing links were manually searched and reviewed one by one on both NCBI NIH and 

UniProtKB, and a total of 11 more working references were found.  

At the last stage, “This record has been withdrawn by NCBI because the model on which 

it was based was not predicted in later annotation” or “This record has been withdrawn 

by NCBI staff. By XM_006717347.3 which is not sufficient evidence to define a distinct 

gene”, it has been determined that reference withdrawal was made for various reasons. 

As a result, 20.542 rows of interaction data were obtained by eliminating 158 missing 

links and singularizing the Gene x Protein data with the remaining relationships. The 

prediction test will not be performed as a standalone matrix. In this data, the number of 

unique proteins present is 20.218, while the number of unique gene ids is 20.287. 

In the second part of the study on Protein Disease Interactions, research was conducted 

within the scope of Gene Disease Interactions. DisGeNET, which has a short introductory 

content in the previous section, has been used as a data bank in this sense. The research 

and evaluation processes of the subject data are given below. 

"Curated" Gene Disease Associations and "BeFree" Gene Disease Associations tables, 

containing relationships from different sources, were downloaded via DisGeNET. When 

the features of these tables are examined respectively, the data contained in the first one, 

UniProt, see that it is supported by expert-curated resources such as CGI, ClinGen, 

Genomics England Panel App, PsyGeNET, Orphanet, the HPO, and CTD. At the same 

time, the content found in the latter is extracted gene-disease associations from MEDLINE 

abstracts published between January 1970 and December 2019 using the BeFree system. 

We see that while negations of associations were detected using patterns and keywords. 

The data classes that have been used and have DisGeNet DB are; geneID (NCBI Entrez 

Gene Identifier), gene symbol (Official Gene Symbol), diseaseID (UMLS concept unique 

identifier), disease name (Name of the disease), and evidence index. In particular, the 

"Evidence index" (EI)  scoring was used as a distinguishing factor in evaluating the data. 

Because when the content of this data class is examined, the EI indicates the existence of 

contradictory results in publications supporting the gene/variant-disease associations. This 

index is computed for the sources BeFree and PsyGeNET by identifying the publications 

reporting an adverse finding on a particular VDA or GDA. The EI classification can be 

summarized as follows: 



33 

 

i. EI = 1 indicates that all the publications support the GDA or the VDA 

ii. EI < 1 indicates that there are publications that assert that there is no association 

between the gene/variants and the disease. 

iii. If the gene/variant has no EI value, the index has not been computed for this 

association. 

The EI is computed as follows; where: Npubspositive is the number of publications 

supporting a GDA in BeFree or PsyGeNET, or a VDA in BeFree and Npubstotal, is the 

total number of publications in BeFree or PsyGeNET supporting that GDA, or in BeFree 

for VDAs 

 

total

pozitive

pubs

pubs

N

N
EI =

    (4) 

Considering Evidence Index scoring and explanations, relationships classified as EI<1 in 

the BEFREE labeled data were excluded and eliminated. At the same time, there is no 

excluded data in the data labeled Curated. 

Table 3.1. The distribution of data and number of interactions within the scope of EI 

 

 

Additionally, source and score data classes are eliminated by DSI, DPI, disease type, 

disease class, diseaseSemanticType, YearInitial, YearFinal, NofPmids, NofSnps, and 

source and score data classes; they do not have a single classification system, and no data 

separation is made according to them. 

Before these two different tagged relationships are combined, screened, and duplication 

checked, the Curated Gene Disease Association data consists of 84,038 rows that do not 

contain duplicate items. The BEFREE Gene Disease Association data consists of 846,474 

rows that do not contain duplicate items. First, 54,603 relationships, BEFREE-labeled data 

with an EI value of less than one were excluded. As a result of combining the remaining 

relationships, 875,909 lines of Gene X Disease data were obtained. When it is combined 

the data belonging to these two different classes by adding the source information, since 



34 

 

they may have been registered more than once in different sources, it was determined that 

41,374 relations were entered into the records twice, so a total of 20,687 records 

originating from BEFREE were excluded from the scope. As a result, a total of 855,222 

lines of integrated and unique relationship data were obtained from these sources. The 

numerical properties of these relationships, for which we did not create any matrix on their 

own, appear as X1: 19.203 Gene-ID and Y1: 23.005 Disease-ID. 

These two data sets, the stages of which were obtained in this way, were combined into a 

single data set as Protein Disease Interaction to be used in neighbor matrices and make 

new interaction estimations. Other operations are explained in the results section. 

3.5 Acquisition of DDI Data 

The last data set used in this thesis study, Drug X Disease Interactions, was prepared by 

KEGG, Drugbank, and DisGeNET databases. Compared to our other datasets, the 

following processes have been followed in order to progress with minimum loss in this 

dataset, which has very few interactions and nodes and is very valuable in this sense. 

Working with the initial data set consisting of a total of 4,891 relationships on KEGG DB, 

which is one of the rare sources where the subject interactions can be found holistically, 

initially included 1,961 unique drugs and 544 unique disease entries. However, these data 

could not be linked with the data types in the interaction matrices created before due to 

the referencing system used by KEGG DB (Drug Format: D0123, Disease Format: 

H0123). In order to meaningfully link this unique referencing with other matrices 

retrospectively, the KEGG Drug ID entries, which form the first part of the matrix, were 

converted into Drugbank IDs. Using the data provided by the Drugbank database access, 

Drugbank ID X KEGG ID mapping of all available drugs was performed. Thanks to this 

mapping, 1,299 of the 1,961 unique drug entries could be referenced with the DrugbankID 

data. 

As can be understood from the number of entries not found, there are several reasons why 

some of the KEGG Drug ID X Drugbank ID references are not responding; one of them 

is specified in a phrase that appears on the Drugbank screen while manually referencing; 

"this drug entry is a stub and has not been fully annotated. It is scheduled to be annotated 

soon". These entries are mainly traditional Japanese and Chinese therapeutic mixtures 

(specified as plant species in the contents of KEGG Entry) as listed in table 3.2.  

Finally, in response to a disease entry, we would like to point out that KEGG DB has 

entered drugs in X and Y format due to the combined use of more than one drug in the 

clinic; these have also been made into single links. Therefore, the total number of 

relationships has been 4,948. 

 

 



35 

 

Table 3.2. Traditional drugs on KEGG 

 

 

Next, KEGG Drug Names were manually searched on DrugbankDB for the remaining 

662 unique drug entries. Little progress has been made by mapping the KEGG Drug Name 

> Drugbank Drug Name, but very little data can be referenced in this way. During the 

current manual query processes, KEGG stores the Drug Name class as more than one (up 

to twelve in some drugs); an example of this situation is shared in table 3.3 below. 

. 

Table 3.3. Examples of KEGG drug names 

 

 

When searching by name on Drugbank, it has been seen that USAN-labeled names usually 

give high results, but JAN, INN, and JN17-labeled names have few responses. In addition, 

TN-labeled names are thought to be different brand drugs with the same active substance 

produced by different companies. Searches that did not respond to the first name were 

also tried with the second and third names to refer to them with the least possible loss, but 

as a result, the Drugbank IDs for 152 drugs could not be found. There is no doubt that the 

reasons mentioned above also have an impact on this issue. 



36 

 

KEGG Disease ID entries, which form the second part of the matrix, were converted to 

Disgenet Disease ID format. At this stage, “Disgenet Disease ID X Disgenet Disease 

Name X KEGG Disease Name X by KEGG Disease ID mapping, 2,094 of 4,948 

relationship data were mapped in this way, but 2,854 relationships were exposed, and it 

was seen that they consisted of 330 unique diseases. Referencing these missing links was 

again carried out with manual controls. It is seen that the records entered as different 

diseases in the Disgenet and KEGG records, by their nature, actually contain only minor 

nuances. These are; are factors such as commas, hyphens, numbers, or inverted 

expressions that make mapping through text difficult. During the procedures, the disease 

names and the MeSH (Medical Subject Headings) data included in the KEGG data were 

used. MeSH data could also be used for mapping because both KEGG and Disgenet use 

this data, but this was not possible as Disgenetin does not presently have MeSH data 

inaccessible data tables. As a result, reference could not be made for only five diseases, 

and "KEGG Disease ID X KEGG Drug ID X Drugbank ID X Disgenet ID" data was 

created. After eliminating the unanswered relationships and duplicate entries from any 

reference point, the DrugX Disease data that will form the final neighborhood matrix 

consists of 3.742 Interactions and X1: 1.447 (Drug) X2: 517 (Disease) nodes. 

As it will be explained in the Result section, no such relationship has been made about 

this data. In contrast, the relationships other than the nodes that do not have a common in 

some matrices are eliminated. 

3.6 Proposed Model 

Our objective function is as the following: 

2

434334

2

424224

2

323223

2

212112342423124321 ),,,,,,,( HAHRHAHRHAHRHAHRAAAAHHHHF −+−+−+−=

                (5) 

Our aim is to minimize this objective function under the constraint: 

0,0,0,0 4321  HHHH    (6) 

IHHIHHIHHIHH TTTT ==== 44332211 ,,,    (7) 

0,0,0,0 34242312  AAAA    (8) 

Here 34242312 ,,, RRRR  are the matrices with sizes 43423221 ,,, xnnxnnxnnxnn , respectively. 

4321 ,,, HHHH  are non-negative orthogonal matrices with sizes 44332211 ,,, xknxknxknxkn

, respectively. 

34242312 ,,, AAAA  are matrices with sizes 43423221 ,,, xkkxkkxkkxkk , respectively. 



37 

 

In the formula of objective function F  by the S  we denote the Frobenius Norm of a 

matrix. 

njmisS ij = 1,1],[       (9) 

that is  


= =

=
m

i

n

j

ijsS
1 1

2

      (10) 

We use the random Acol initialization technique for initial values of the matrices 

4321 ,,, HHHH , which was introduced by Langville et al. (2006). 

In this technique 
1H  is initialized by averaging p  randomly chosen columns from 

12R . 

Unlike this method, in random selection, the sparse 
12R  matrix is tried to be obtained with 

the help of a dense 
1H  matrix. The Acol method eliminates the disadvantage of random 

selection. The H  and A matrices are calculated in each subsequent step with the help of 

the previous ones with the help of the following formulas: 

ji

T

ji

T

jiji
AHRH

AHR
HH

,1221211

,12212

),(1),(1
)(

)(
     (11) 

ji

TTT

ji

TTT

jiji
AHRHAHRHAHRH

AHRAHRAHR
HH

,244242223323221211222

,244242332312112

),(2),(2
)(

)(

++

++
    (12) 

ji

TT

ji

TT

jiji
AHRHAHRH

AHRAHR
HH

,34434332322333

,3443423223

),(3),(3
)(

)(

+

+
     (13) 

ji

TT

ji

TT

jiji
AHRHAHRH

AHRAHR
HH

,34334442422444

,3433424224

),(4),(4
)(

)(

+

+
     (14) 

ji

TT

ji

T

jiji
HHAHH

HRH
AA

,221211

,2121

),(12),(12
)(

)(
     (15) 

ji

TT

ji

T

jiji
HHAHH

HRH
AA

,332322

,3232

),(23),(23
)(

)(
    (16) 



38 

 

ji

TT

ji

T

jiji
HHAHH

HRH
AA

,442422

,4242

),(24),(24
)(

)(
     (17) 

ji

TT

ji

T

jiji
HHAHH

HRH
AA

,443433

,4343

),(34),(34
)(

)(
     (18) 

where; THHH 1111 = , THHH 2222 = , 
THHH 3333 = , THHH 4444 = . 

In our model, we include intra-data type relations, such as the Protein-Protein Interactions, 

with the aid of the 3W  Neighborhood matrix of the protein-protein bipartite graph. In a 

diagonal matrix, for each i  the degree of protein i in the cell ),( ii of the matrix, that is, 

the number of proteins with which it is associated is written. Let the matrix 3D  be the 

degrees matrix of this graph. With the help of 3W  and 3D  matrices, we construct the 

Laplacian matrix with the formula of 333 WDL −= . After that, we add a new term to our 

objective function that corresponds to proteins-proteins interactions; 

)(

),,,,,,,,(

333

2

434334

2

424224

2

323223

2

2121123342423124321

HLHtrHAHR

HAHRHAHRHAHRLAAAAHHHHF

T+−

+−+−+−=
                    

            (19) 

Here, )( 333 HLHtr T
is denoted the sum of the diagonal elements of the 333 HLH T

 .  



39 

 

CHAPTER 4 

 

4. RESULTS 

A comprehensive study was carried out within this thesis to collect the available data from 

various biological databases in the broadest possible framework and loss to predict new 

interactions with the minor data. The numerical characteristics of the data frame that we 

have as a result of this first raw data collection stage are given in table 4.1 below. 

Table 4.1. Characteristics of all raw data frame 

 

 

The integrated data, in which the new interaction estimation is performed with the NMTF 

algorithm, has been subjected to some eliminations. First of all, for the connection points 

of the dataset to be turned into neighborhood matrices, all protein data were converted to 

UniProt IDs, drug data to Drugbank IDs, and disease and side effect data to UMLS 

Concept IDs. Non-existent ports and interaction data from any of them had to be 

eliminated. In the continuation of this elimination process, a protein-based focus was 

carried out for the rapid operation of the algorithm, and protein entries were shared within 

the scope of Protein-Protein Interaction (Laplacian, L11 matrix), Target Protein-Drug 

Interaction (Relation, R23 matrix), Protein-Disease Interaction (R34 matrix) interactions. 

Relationships that do not exist are excluded. 

The disease and side effect connection points are located in the Drug-Disease Interaction 

(R24) and Drug-Side Effect Interaction (R12) matrices and use the same identification 

system (UMLS Concept ID). As these two databases intersect, their areas in common on 

the raw data and relationships related to this are excluded from the scope, with no adverse 

effect on the estimation results. Finally, we mapped the existing Gene Protein 

relationships onto the Gene Disease relationships to create the Protein Disease Interaction 

(R34) matrix. Meanwhile, we excluded the relationships that the reference Gene link point 

did not respond to from our dataset. After evaluations, mapping, conversion of 

identification numbers, and elimination were completed, the NMTF algorithm was run. 

The final data frame and the characteristics are given in table 4.2 below. 

 



40 

 

Table 4.2. Characteristics of final data frame after eliminations 

 

 

As can be seen from the table, the number of proteins found in common in the relevant 

matrices is 3.097. However, during the control tests, it was observed that some of the drug 

nodes could not find a response in the Drug Disease Interaction and Drug Side Effect 

Interaction interaction data; therefore, on the main graph created by the algorithm, the 

Target Protein Drug Interaction interaction table, in which the drug list is obtained, can be 

added to each one. Drug entries from two sub-datasets, which were found to be missing 

in this dataset, were added later, and virtual interactions were created. In order to make it 

easier to find the sources retrospectively when the results are received, an ID named 

OSK705 was given as a protein entry for the drug nodes coming from the Drug Disease 

sub-dataset. In contrast, an ID named OSK507 was made for the drug nodes coming from 

the drug nodes stemmed from the Drug Side Effect sub-dataset.  

In addition, since some disease nodes are in the Drug Disease Interaction data but not in 

the Protein Disease Interaction data, they were added to the list of relations from which 

the disease node list was taken, and virtual responses were given. Next, it was checked 

with the relevant part of the code in which the NMTF method was applied, and the 

unintentional loss of any node or interaction data was prevented. In addition, as mentioned 

before, any additional loss in the Drug Disease Interaction data, which is very valuable, is 

prevented. In the last case, the data frame fitted to the algorithm and recognized according 

to the relevant part of the code has the following features; “There are 3.105 side effects, 

6.584 drugs, 3.097 proteins, and 17.034 diseases, 42.209 links between side effects and 

drugs, 27.356 links between drugs and proteins, 342.163 links between proteins and 

diseases and 3.742 links between drugs and diseases.” 

As we are about to focus on link prediction between relation side effects and drugs, drugs 

and diseases, diseases and proteins, and proteins and proteins, it is essential to have a good 

understanding of these matrices. 

The number of side effects associated with drugs varies a lot. While one side effect 

(C143060 - Feeling Abnormal) is associated with 647 drugs, also one another side effect 

(C3665609 - Conjunctival Xerosis) is in interacted with only one drug (DB01193- 

Acebutolol). We have similar variances, which can be better-understood thanks to the 

following plots. 



41 

 

 

Figure 4.1. Side effects are ranked according to their degree against drugs 

 

 

Figure 4.2. Drugs are ranked according to their degree against proteins 

 

According to Figure 4.2, one drug is associated with 302 proteins, DB12010 - 

Fostamatinib. On the other hand, another drug “Lepirudin - DB00001, is only interaction 

with one protein, "Prothrombin,” can be given as an example. 

 



42 

 

 

Figure 4.3. Drugs are ranked according to their degree against diseases 

 

This boxplot also shows only 1.447 drugs among a 6.584 drug entry list since only 1.447 

members interacted with the disease before prediction tests. The figure also shows that 

one drug, “Prednisolone,” is associated with 80 Diseases, DB00860.   

 

Figure 4.4. Proteins are ranked according to their degree against diseases 

 



43 

 

In this figure, one protein, “Tumor Necrosis Factor,” is associated with 2.328 diseases, 

with a UniProt ID: P01374. 

 

 

Figure 4.5. Proteins are ranked according to their degree 

According to our interaction data, one protein, “Glyceraldehyde-3-phosphate 

dehydrogenase,” with the ID of P04406, is associated with 214 other proteins on a 

weighted score, and Figure 4.5 shows this issue on a box plot. 

 

4.1.   Application of Non-Negative Tri Matrix Factorization Algorithm 

Under the sub-title of the subject, the processes and actions carried out for interaction 

estimation with the NMTF method within the scope of the thesis study were examined. 

After transforming the data to fit the method that has been used, we describe the different 

optimizations made on the method, and then we show the main results. Accordingly, the 

processes are gathered in 4 parts; each part has an explanation regarding the processes and 

their results. 

The implementation of the method was carried out using Python 3.7.9 and Microsoft 

Visual Studio Code as an application programming interface. The system configuration 

used during the application and tests is Intel Core i7-3630QM 2.40GHz CPU, and 16 GB 

RAM operates under Windows 10 Home Edition. 



44 

 

Before the application, the environment, methods, and methods used in the reference 

article were examined. The necessary adaptations were made for the data set that is the 

subject of the thesis. 

4.2. Interaction Matrices, Masking the Data Matrices and Initialization 

First, the packages that need to be used in the method are acquired. Python 

libraries/packages used in the method are; “sklearn,” “matplotlib,” “tqdm,” “scipy,” 

“seaborn,” “pandas,” and “numpy.” 

Initially, our interaction data was heterogeneously located in different text files, with the 

files named DrugsToDiseases.txt, DrugsToProteins.txt, DrugsToSideEffects.txt, 

ProteinsToDiseases.txt, and ProteinsToProteins.txt. Based on the content of the files 

listed, the following matrices were obtained; 

12R  : Inter-Association between the Drugs and Side Effects, 

23R  : Inter-Association between the Drugs and Proteins, 

24R  : Inter-Association between the Drugs and Diseases, 

34R   : Inter-Association between the Proteins and Diseases, 

3W  ( 3L ) : Intra-Associations among Proteins. 

A separate class was used to obtain the matrices from the text files we have, and in the 

content of this class, “network” is invoked to interpret data and transform it into 

neighborhood matrices easily. Again, among these processes, functions are defined to load 

the data by showing the address and creating the required matrix of the loaded data. The 

data to be predicted for interaction is gathered under a single graph named G. This graph 

contains all nodes related to the problem and connections between nodes. The related 

graph can be represented by the figure below. 

 



45 

 

 

Figure 4.6. Representative nodes and connections on graph G 

 

 

Figure 4.7. Relations matrices of data 

 



46 

 

A validation set is created by transforming the interaction data into related graphs and 

neighborhood matrices. This set of data is used to test the NMTF algorithm. 

For simplicity's sake, a random matrix M10 is first created with the same size R12 

containing 10% empty elements and 90% zeros. The indexes of the null items in this 

matrix correspond to the items of the validation set. 

A M matrix of the exact dimensions as the 12R  matrix, such as 21 nxn , was created to 

validate the proposed model. This is a binary type matrix with only ten percent of the 

matrix elements having a value of 1. The locations of the one values in the M  matrix were 

chosen randomly. Then, with the help of the M  matrix, the trainR _12  matrix was created 

with the following formula. 

 



 =

=
otherwise

jiMifjiR
R train

,0

0],[],,[12
_12     (20) 

 

Then, we applied the NMTF algorithm to our model by replacing the 12R  matrix trainR _12 . 

After the application, we converted the obtained foundR _12  matrix into a binary foundR _12  

matrix by choosing a specific threshold value and comparing this matrix's elements with 

the appropriate elements of the 12R  matrix. There are four situations here. 

Situation 1. If the formal elements of both matrices, namely 12R and foundR _12  matrices, are 

1, this is genuinely positive. Let the number of such cases be a . 

Situation 2. The false positives are represented here. If only the appropriate element of the 

foundR _12  matrix is 1. Let the number of these states be b . 

Situation 3. If the appropriate elements of both matrices, namely 12R  and foundR _12  

matrices, are 0, it is the case of a true negative; let the number of these states be c  

Situation 4. If only the appropriate element of the 12R  matrix is 1, it is a case of false 

negatives. Let the number of these states be d  

With the help of these cases, we used two metrics: 

Recall =
da

a

+
     (21) 



47 

 

Precision =
ba

a

+
     (22) 

Naturally, these values will vary depending on the threshold value selected. We have 

plotted the precision-recall graph in the improvements section for all the scenarios and 

different models we have covered, changing the threshold value from 0 to 1. In addition, 

we used the Average Precision Score (APS) metric as a metric that expresses the area 

under this graph. The APS formula for this chart can be defined as follows: 

APS=
=

n

i 1

( Recall −)(i Recall ))1( −i Precision )(i   (23) 

Here, for example, )/( daa +  the ratio is marked for the i  threshold value selected with 

Recall )(i . 

After creating and importing the data and validation set in a suitable format, we started 

tuning our NMTF model. 

The initialization of the NMTF algorithm includes four different types of initialization in 

the reference article and the master's thesis. The library for running the “spherical kmeans” 

type, one of these four methods, has been eliminated as it is no longer available in the 

current version of Python. The other three initialization methods with naively selected 

parameters were compared, and the results given in the figure below were obtained. 

 

Figure 4.8. Average precision scores of initialization methods 



48 

 

As can be interpreted from the figure, among “random,” “acol,” and “kmeans,” acol type 

initialization was chosen to be used in the next steps of the thesis study. The performance 

taken according to the Average Precision Score (APS) curves was considered in making 

this decision. Random type initiation because its performance is lower than others under 

a specific iteration; On the other hand, kmeans was excluded because it uses more system 

resources and runs slower than others. One iteration takes 55 seconds under kmeans while 

11 seconds is required for one iteration with an acol, since kmeans initialization method 

needs a clustering phase at the start. Acol type initiation was preferred because it works 

fast and gives relatively high APS in relatively few iterations. Following this selection, 

attempts were made to reach the optimum number of iterations, limited to 500, within the 

K value scenarios in the table below. The optimum number of iterations was determined 

for each scenario. 

 

Table 4.3. Test scenarios for optimum iterations 

 

 

All given test scenarios have been tested. The results given in the graphs below have been 

interpreted and compared. The phase of determining the hyperparameters has been passed 

with the optimum iteration numbers determined here. The values in Table 4.4 were used 

in the optimum latent factor tests, which will be explained in the next section. 



49 

 

 

Figure 4.9. Test scenario 1: APS-Loss with initial values 

 

 

Figure 4.10. Test scenario 2: APS-Loss with initial values 

 



50 

 

 

Figure 4.11. Test scenario 3: APS-Loss with initial values 

 

 

Figure 4.12. Test scenario 4: APS-Loss with initial values 

 



51 

 

 

Figure 4.13. Test scenario 5: APS-Loss with initial values 

 

Since test scenario number 5 performed very poorly when the results were evaluated and 

required a very high number of iterations, the subsequent optimum latent factor tests were 

made within the scope of correct result development and interaction estimation stages. 

Therefore, the operations were continued with the remaining four scenarios. 

Table 4.4. Optimum iteration numbers per scenario 

 

4.3. Analysis of Parameters (Latent Factor Tests) and Stop Criterion 

The parameters that determine the model we are considering the variables are; 4321 ,,, kkkk

It is helpful to reiterate that these variables are included in the H  and A matrices 

dimensions described in the solution method. For example, the dimensions of the matrix 



52 

 

1H  are 11xkn . Again, as can be seen from the formulas described in the solution method, 

the H  A  matrices affect the values of the 34242312 ,,, RRRR  matrices that we are trying to 

estimate, but this effect can be direct or indirect. For example, the 1H  matrix directly 

affects only the creation of the 12R  matrix, so it can be said that the matrix on which the 

value of the 1k  variable directly affects is the 12R  matrix. The 2H  matrix is used to 

determine the 12R  23R  24R  matrices; that is, the 2k  variable directly affects the values of 

these three matrices. 

In this thesis, parameter analysis was carried out with the following method. First of all, 

various experiments were carried out using randomly different values. In addition to the 

results of these experiments, the studies of Abay(2020) and Dissez(2019) were also 

presented. Five different scenarios were created for parameter tests. Afterward, for each 

scenario, 432 ,, kkk  values were kept constant at the values while the value of the 
1k  

variable in the scenario was changed at certain intervals, provided that the value in the 

scenario was within the trial range. The absolute error in the formation of the 
12R  matrix, 

which this variable directly affects, was calculated for each case. 

The 1k  value, which causes the least margin of error found, was taken as the first 

parameter value in this scenario, and the analysis of the 2k  variable was started. During 

this analysis, the values of the 431 ,, kkk  variables were kept constant following the 

scenario. In contrast, the 2k  variable was changed at a specific interval, provided that its 

value in the scenario was within the range. The absolute errors in the estimations 23R  and 

24R  matrices were calculated for each case. If at least two of these errors take the smallest 

value for the same 2k  value, this 2k  value is selected to continue the scenario. If these 

errors took their minimum values for a different 2k  value, this scenario continued with the 

smallest of these 2k  values. The values of the other 43 , kk variables were calculated 

similarly. The scenarios discussed and their results are presented in the tables below. Our 

error formula is: 

Let )ˆ(ˆ
ijaA =  be a prediction matrix of the matrix )( ijaA = with size nxm . Then the 

absolute mean error is calculated by the formula: 

nm

aa

Error

m

i

n

j

ijij

.

ˆ
1 1


= =

−

=      (24) 

Scenario 1. In this scenario, it is taken as 125,125,35,25 4321 ==== kkkk , and we will 

call it the (25,35,125,125) scenario for short. Here, the 1k  variable was changed in ten 



53 

 

total steps by increasing its value by 25 at each step in the range of 25 to 250, and the 

results in Table 4.5 were obtained. 

Table 4.5. Determining the 1k  value of scenario 1 

1k  2k  3k  4k  Error 
12R  

25 35 125 125 0,003107 

50 35 125 125 0,003110 

75 35 125 125 0,003106 

100 35 125 125 0,003112 

125 35 125 125 0,003109 

150 35 125 125 0,003113 

175 35 125 125 0,003110 

200 35 125 125 0,003108 

225 35 125 125 0,003103 

250 35 125 125 0,003110 

 

In scenario 1 (table 4.5), the optimum value of the 
1k  variable was found to be 225. As 

this is the lowest error rate calculated, other experiments are continued with this value. 

The value of the 2k  variable is determined based on the values of =1k 225 

125,125 43 == kk that were kept constant, and the value of the 2k  variable was raised 

from 35 to 350 by increments of increasing its value by 35 in each step, and the results are 

presented in Table 4.6. 

Table 4.6. Determining the 2k value of scenario 1 

1k  
2k  

3k  
4k  Error 

12R  Error 
23R  Error 

24R  

225 35 125 125 0,003106 0,001808 0,000046 

225 70 125 125 0,003125 0,001856 0,000052 

225 105 125 125 0,003128 0,001859 0,000051 

225 140 125 125 0,003126 0,001892 0,000051 

225 175 125 125 0,003121 0,001885 0,000048 

225 210 125 125 0,003117 0,001804 0,000050 

225 245 125 125 0,003109 0,001768 0,000048 

225 280 125 125 0,003114 0,001837 0,000049 

225 315 125 125 0,003122 0,001889 0,000049 

225 350 125 125 0,003117 0,001831 0,000048 

 

In this scenario, the variable's value was determined as 35, and in the following 

experiments, this value was used.  



54 

 

Next, to determine the value of the 3k  variable, the values of =1k 225, 2k =35, 4k =125 

were kept constant by the scenario, and the value of the 3k variable was changed in the 

range of 75 to 165 by increments of ten, for ten steps, as presented below in Table 4.7. 

 

Table 4.7. Determining the 3k value of scenario 1 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

225 35 75 125 0,003103 0,001743 0,006987 

225 35 85 125 0,003107 0,001741 0,006984 

225 35 95 125 0,003108 0,001780 0,006987 

225 35 105 125 0,003107 0,001766 0,006986 

225 35 115 125 0,003110 0,001796 0,006983 

225 35 125 125 0,003108 0,001834 0,006984 

225 35 135 125 0,003109 0,001775 0,006988 

225 35 145 125 0,003117 0,001814 0,006979 

225 35 155 125 0,003107 0,001811 0,006987 

225 35 165 125 0,003117 0,001758 0,006978 
 

The value of the 3k  was determined as 75 according to the rule described above, and the 

scenario was continued with this value. 

In order to determine the value of the 
4k  variable, the values of  

1k =225, 
2k =35 and 3k

=75 were kept constant following the scenario. The value of the 
4k  variable was changed 

in the range of 65 to 200 by 15 increments in each step, with ten steps. The results are 

listed in Table 4.8. 

 

Table 4.8. Determining the 
4k value of scenario 1 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

225 35 75 65 0,003096 0,000047 0,006991 

225 35 75 80 0,003097 0,000046 0,006984 

225 35 75 95 0,003103 0,000046 0,006987 

225 35 75 110 0,003107 0,000047 0,006982 

225 35 75 125 0,003105 0,000047 0,006985 

225 35 75 140 0,003094 0,000048 0,006987 

225 35 75 155 0,003110 0,000049 0,006981 

225 35 75 170 0,003095 0,000048 0,006987 

225 35 75 185 0,003108 0,000051 0,006985 

225 35 75 200 0,003095 0,000048 0,006985 



55 

 

 

Finally, the value of the 
4k  variable was determined as 95 according to the rule described 

above, and the scenario was continued with this value. 

All scenarios given in the table below have been run as explained in the methods section. 

The best latent factor results stated have been reached and used in the analysis. The 

resulting error rates are given below, except for the first scenario. 

Regarding scenario 2, the value of the 
1k , 

2k , 3k , 
4k  variables were determined as 30, 

10, 40, and 20, respectively, and the scenario tests were continued with these values. For 

scenario 3, the value of the 
1k , 

2k , 3k , 
4k  variables were determined as 100, 25, 150, 

and 150, respectively, and the scenario tests were continued with these values. As a last 

and fourth scenario, according to the rule described before, the value of the 
1k , 

2k , 3k , 

4k  variables were determined as 40, 250, 425, 450, respectively, and the scenario tests 

were continued with these values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

Table 4.9. Determining the 
1k , 

2k , 3k , 
4k  values of scenario 2 

1k  
2k  

3k  4k  Error 
12R  

10 20 70 40 0,003069 

20 20 70 40 0,003064 

30 20 70 40 0,003064 

40 20 70 40 0,003067 

50 20 70 40 0,003066 

60 20 70 40 0,003070 

70 20 70 40 0,003064 

80 20 70 40 0,003075 

90 20 70 40 0,003071 

100 20 70 40 0,003076 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
24R  

30 10 70 40 0,003062 0,001641 0,000044 

30 20 70 40 0,003064 0,001671 0,000045 

30 30 70 40 0,003066 0,001673 0,000046 

30 40 70 40 0,003074 0,001741 0,000045 

30 50 70 40 0,003080 0,001769 0,000048 

30 60 70 40 0,003070 0,001724 0,000048 

30 70 70 40 0,003075 0,001793 0,000047 

30 80 70 40 0,003083 0,001833 0,000047 

30 90 70 40 0,003081 0,001777 0,000050 

30 100 70 40 0,003078 0,001862 0,000049 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

30 10 40 40 0,003062 0,001627 0,006989 

30 10 50 40 0,003063 0,001657 0,006988 

30 10 60 40 0,003064 0,001674 0,006990 

30 10 70 40 0,003067 0,001705 0,006988 

30 10 80 40 0,003079 0,001713 0,006986 

30 10 90 40 0,003072 0,001713 0,006988 

30 10 100 40 0,003070 0,001742 0,006989 

30 10 110 40 0,003078 0,001732 0,006984 

30 10 120 40 0,003070 0,001762 0,006986 

30 10 1 40 0,003080 0,001780 0,006986 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

30 10 40 10 0,003062 0,000044 0,006989 

30 10 40 20 0,003062 0,000044 0,006989 

30 10 40 30 0,003062 0,000044 0,006990 

30 10 40 40 0,003061 0,000044 0,006988 

30 10 40 50 0,003061 0,000044 0,006987 

30 10 40 60 0,003062 0,000045 0,006988 

30 10 40 70 0,003062 0,000044 0,006987 

30 10 40 80 0,003062 0,000045 0,006988 

30 10 40 90 0,003063 0,000046 0,006990 

30 10 40 100 0,003063 0,000045 0,006990 



57 

 

Table 4.10. Determining the 
1k , 

2k , 
3k , 

4k  values of scenario 3 

1k  
2k  

3k  4k  Error 
12R  

20 25 150 150 0,003092 

30 25 150 150 0,003099 

40 25 150 150 0,003098 

50 25 150 150 0,003103 

60 25 150 150 0,003103 

70 25 150 150 0,003098 

80 25 150 150 0,003096 

90 25 150 150 0,003096 

100 25 150 150 0,003092 

110 25 150 150 0,003101 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
24R  

100 25 150 150 0,003093 0,001815 0,000049 

100 50 150 150 0,003092 0,001812 0,000050 

100 75 150 150 0,003104 0,001907 0,000052 

100 100 150 150 0,003095 0,001854 0,000055 

100 125 150 150 0,003091 0,001791 0,000053 

100 150 150 150 0,003096 0,001892 0,000052 

100 175 150 150 0,003097 0,001874 0,000054 

100 200 150 150 0,003084 0,001830 0,000050 

100 225 150 150 0,003088 0,001818 0,000050 

100 250 150 150 0,003086 0,001801 0,000050 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

100 25 150 150 0,003086 0,001790 0,006980 

100 25 175 150 0,003089 0,001787 0,006976 

100 25 200 150 0,003096 0,001831 0,006972 

100 25 225 150 0,003098 0,001795 0,006976 

100 25 250 150 0,003092 0,001819 0,006973 

100 25 275 150 0,003095 0,001827 0,006962 

100 25 300 150 0,003095 0,001829 0,006963 

100 25 325 150 0,003094 0,001795 0,006961 

100 25 350 150 0,003097 0,001804 0,006956 

100 25 375 150 0,003094 0,001808 0,006957 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

100 25 150 150 0,003090 0,000047 0,006980 

100 25 150 175 0,003080 0,000048 0,006983 

100 25 150 200 0,003084 0,000047 0,006973 

100 25 150 225 0,003095 0,000048 0,006973 

100 25 150 250 0,003094 0,000049 0,006979 

100 25 150 275 0,003080 0,000048 0,006976 

100 25 150 300 0,003089 0,000048 0,006977 

100 25 150 325 0,003089 0,000048 0,006980 

100 25 150 350 0,003088 0,000049 0,006973 

100 25 150 375 0,003089 0,000049 0,006974 



58 

 

Table 4.11. Determining the 
1k , 

2k , 3k , 
4k  values of scenario 4 

1k  
2k  

3k  4k  Error 
12R  

20 250 425 450 0,003117 

40 250 425 450 0,003107 

60 250 425 450 0,003108 

80 250 425 450 0,003108 

100 250 425 450 0,003116 

120 250 425 450 0,003114 

140 250 425 450 0,003113 

160 250 425 450 0,003126 

180 250 425 450 0,003132 

200 250 425 450 0,003128 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
24R  

40 75 425 450 0,003115 0,001855 0,000055 

40 100 425 450 0,003123 0,001918 0,000054 

40 125 425 450 0,003114 0,001844 0,000052 

40 150 425 450 0,003107 0,001909 0,000052 

40 175 425 450 0,003112 0,001891 0,000052 

40 200 425 450 0,003100 0,001845 0,000053 

40 225 425 450 0,003111 0,001845 0,000052 

40 250 425 450 0,003096 0,001800 0,000051 

40 275 425 450 0,003088 0,001849 0,000051 

40 300 425 450 0,003109 0,001879 0,000051 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

40 250 400 450 0,003105 0,001829 0,006973 

40 250 425 450 0,003107 0,001820 0,006969 

40 250 450 450 0,003110 0,001859 0,006959 

40 250 475 450 0,003101 0,001863 0,006955 

40 250 500 450 0,003105 0,001845 0,006955 

40 250 525 450 0,003101 0,001860 0,006954 

40 250 550 450 0,003103 0,001827 0,006957 

40 250 575 450 0,003111 0,001856 0,006954 

40 250 600 450 0,003104 0,001848 0,006953 

40 250 625 450 0,003110 0,001820 0,006951 

1k  
2k  

3k  4k  Error 
12R  Error 

23R  Error 
34R  

40 250 425 400 0,003099 0,000052 0,006975 

40 250 425 425 0,003100 0,000052 0,006970 

40 250 425 450 0,003096 0,000052 0,006974 

40 250 425 475 0,003101 0,000051 0,006970 

40 250 425 500 0,003108 0,000052 0,006964 

40 250 425 525 0,003108 0,000051 0,006967 

40 250 425 550 0,003101 0,000051 0,006957 

40 250 425 575 0,003104 0,000052 0,006962 

40 250 425 600 0,003099 0,000052 0,006953 

40 250 425 625 0,003107 0,000054 0,006954 



59 

 

Table 4.12. All scenarios tried for k value determination and minimum latent factors 

 

 

The optimum iteration numbers and the best values of the constructed test scenarios have 

been determined up to this stage. APS Loss graphs were again obtained within these 

determined parameters for all four scenarios, and the results are given in Tables 4.14-17 

below. 

 

Figure 4.14. Test scenario 1: APS-Loss with values after k tests 



60 

 

 

 

Figure 4.15. Test scenario 2: APS-Loss with values after k tests 

 

Figure 4.16. Test scenario 3: APS-Loss with values after k tests 

 



61 

 

 

Figure 4.17. Test scenario 4: APS-Loss with values after k tests 

 

A stop criterion is needed for our algorithm, which deactivates the remaining iterations, if 

any, under these conditions; 

i. Stop after a defined and fixed number of iterations; 

ii. Use a stop criterion based on the loss. 

Our stop criterion determined as 02.0=  , and formula is; 


− +

)(

)()(
)(

)1()(

n

nn

GF

GFGF
     (25) 

 

4.4. Improvements of Scenario Models and Comparison of APS  

Following the finding of the latent factor values that show the optimum error rate within 

the scope of the four scenarios in question, the development of the scenarios as models 

and the drawing of the APS values that they can take according to the latest situation and 

the precision-recall graphs were used as the decision-making step before the interaction 

test. 

 



62 

 

Table 4.13. Comparison of APSs regarding test scheme variations 

 

 

At this stage, based on the latent factor values obtained in the previous step, trials were 

made under three new variations for each designated scenario. As a result of 12 tests 

performed, APS developments were recorded, and precision-recall graphics were 

obtained. The relevant variation of the scenario with the most significant improvement 

was determined as the final parameter reference for the interaction test. 

Accordingly, the relevant variations of the optimum latent factor values, their values , and 

the final APS results are given in the table above. At the same time, the Precision / Recall 

and Maximum APS performances of the models are shown in the following figures. 

 



63 

 

 
Figure 4.18. Maximum APS and precision-recall graph of test scenario 1   

 

 

 
Figure 4.19. Maximum APS and precision-recall graph of test scenario 2 

 



64 

 

 
Figure 4.20. Maximum APS and precision-recall graph of test scenario 3 

 

Figure 4.21. Maximum APS and precision-recall graph of test scenario 4 

 



65 

 

4.5. Prediction Results (Novel Interactions) 

As a final result, all estimation results were obtained under related variation of the fourth 

scenario under maximum iteration of 120 and 
1k =100, 

2k =150, 3k =500, 
4k =500. The 

25 highest scoring interaction predictions are shown for each relation type. All prediction 

results are based on ID but are referenced with their names.Table 4.14. Top 27 scored 

novel drug - side effect relationship predictions  

 

 

 

 

 

 

 

Drug Name (Drug ID) Side Effect (UMLS Concept ID) Ranking Score

sertraline DB01104 Infection C0009450 1,2623

olanzapine DB00334 Vision blurred C0344232 1,1592

paliperidone DB01267 Hyperhidrosis C0020458 1,1363

valproate DB00313 Shock C0036974 1,094

bortezomib DB00188 Dry mouth C0043352 1,0938

oxaliplatin DB00526 Feeling abnormal C1443060 1,0586

donepezil DB00843 Palpitations C0030252 1,0568

sitaxsentan DB06268 Musculoskeletal discomfort C0948594 1,0532

fluvoxamine DB00176 Mediastinal disorder C0025061 1,0507

capecitabine DB01101 Nervousness C0027769 1,0101

ropinirole DB00268 Sweating C0038990 0,9947

posaconazole DB01263 Tension C0233494 0,9892

progesterone DB00396 Dysgeusia C0013378 0,9482

clomipramine DB01242 Oedema peripheral C0085649 0,9387

paroxetine DB00715 Abdominal distension C0000731 0,9147

lamotrigine DB00555 Urethral disorder C0041969 0,9132

5-ASA DB00244 Hypoaesthesia C0020580 0,896

tramadol DB00193 Face oedema C0542571 0,8898

moxifloxacin DB00218 Weight decreased C0043096 0,8766

carbamazepine DB00564 Discomfort C0234215 0,8651

citalopram DB00215 Blood creatinine increased C0235431 0,8569

risperidone DB00734 Liver function test abnormal C0151766 0,843

aripiprazole DB01238 Abnormal vision C3665386 0,8394

fentanyl DB00813 Alanine aminotransferase increased C0151905 0,8305

fluoxetine DB00472 Aspartate aminotransferase increased C0151904 0,7877

pregabalin DB00230 Drowsiness C0013144 0,7779

doxorubicin DB00997 Disturbance in sexual arousal C0855242 0,7633



66 

 

Table 4.15. Top 34 scored novel drug-protein relationship predictions 

 

 

 

 

 

 

 

 

Drug ID Drug Name UniProt ID Protein Ranking Score

DB00734 Risperidone P08183 ATP-dependent translocase 0,1538

DB00715 Paroxetine P08183 ATP-dependent translocase 0,1485

DB01238 Aripiprazole Q13085 Acetyl-CoA carboxylase 1 0,1462

DB00285 Venlafaxine P35348 Alpha-1A adrenergic receptor 0,1371

DB00472 Fluoxetine P08183 ATP-dependent translocase 0,1365

DB00273 Topiramate P35348 Alpha-1A adrenergic receptor 0,1353

DB00413 Pramipexole P35348 Alpha-1A adrenergic receptor 0,1351

DB00215 Citalopram Q13085 Acetyl-CoA carboxylase 1 0,1310

DB01156 Bupropion P18089 Alpha-2B adrenergic receptor 0,1287

DB00813 Fentanyl P18089 Alpha-2B adrenergic receptor 0,1247

DB00997 Doxorubicin P18089 Alpha-2B adrenergic receptor 0,1188

DB00230 Pregabalin P28223 5-hydroxytryptamine receptor 2A 0,1116

DB00230 Pregabalin P31645 Sodium-dependent serotonin transporter 0,1108

DB01238 Aripiprazole Q16539 Mitogen-activated protein kinase 14 0,1059

DB01238 Aripiprazole P35354 Prostaglandin G/H synthase 2 0,1058

DB01104 Sertraline P14416 Dopamine D2 receptor 0,1051

DB00537 Ciprofloxacin P14416 Dopamine D2 receptor 0,1049

DB00413 Pramipexole P20309 Muscarinic acetylcholine receptor M3 0,1012

DB00734 Risperidone P23975 Sodium-dependent noradrenaline transporter 0,1007

DB00734 Risperidone P07858 Cathepsin B 0,0984

DB00715 Paroxetine P07858 Cathepsin B 0,0979

DB00193 Tramadol P00533 Epidermal growth factor receptor 0,0976

DB00193 Tramadol P28223 5-hydroxytryptamine receptor 2A 0,0959

DB00215 Citalopram P07550 Beta-2 adrenergic receptor 0,0952

DB00472 Fluoxetine P01375 Tumor necrosis factor 0,0946

DB00215 Citalopram Q02318 Sterol 26-hydroxylase, mitochondrial 0,0945

DB00268 Ropinirole P00533 Epidermal growth factor receptor 0,0942

DB00268 Ropinirole P31645 Sodium-dependent serotonin transporter 0,0942

DB00230 Pregabalin P07550 Beta-2 adrenergic receptor 0,0929

DB00734 Risperidone Q01959 Sodium-dependent dopamine transporter 0,0928

DB00176 Fluvoxamine P20309 Muscarinic acetylcholine receptor M3 0,0927

DB00996 Gabapentin P20309 Muscarinic acetylcholine receptor M3 0,0926

DB00230 Pregabalin Q02318 Sterol 26-hydroxylase, mitochondrial 0,0923

DB00285 Venlafaxine P01375 Tumor necrosis factor 0,0922



67 

 

Table 4.16. Top 27 scored novel drug-disease relationship predictions 

 

 

 

 

 

 

 

 

 

 

Drug ID Drug Name UMLS Concept ID Disease Name Ranking Score

DB01238 Aripiprazole C0017636 Glioblastoma 0,0202

DB01156 Bupropion C0006142 Malignant neoplasm of breast 0,0201

DB01238 Aripiprazole C0011849 Diabetes Mellitus 0,0194

DB01238 Aripiprazole C0235974 Pancreatic carcinoma 0,0191

DB01101 Capecitabine C0678222 Breast Carcinoma 0,0188

DB00472 Fluoxetine C0027627 Neoplasm Metastasis 0,0185

DB00413 Pramipexole C0376358 Malignant neoplasm of prostate 0,0184

DB00734 Risperidone C0242379 Malignant neoplasm of lung 0,0182

DB00230 Pregabalin C0242379 Malignant neoplasm of lung 0,0181

DB01156 Bupropion C2239176 Liver carcinoma 0,0181

DB00586 Diclofenac C2239176 Liver carcinoma 0,0181

DB01156 Bupropion C0027627 Neoplasm Metastasis 0,0180

DB00586 Diclofenac C0006826 Malignant Neoplasms 0,0180

DB00334 Olanzapine C2239176 Liver carcinoma 0,0180

DB00268 Ropinirole C0009402 Colorectal Carcinoma 0,0179

DB00273 Topiramate C2239176 Liver carcinoma 0,0178

DB00783 Estradiol C0006142 Malignant neoplasm of breast 0,0176

DB00215 Citalopram C1621958 Glioblastoma Multiforme 0,0175

DB01165 Ofloxacin C2239176 Liver carcinoma 0,0175

DB00997 Doxorubicin C0017636 Glioblastoma 0,0174

DB00188 Bortezomib C0006826 Malignant Neoplasms 0,0174

DB00813 Fentanyl C0006826 Malignant Neoplasms 0,0174

DB00193 Tramadol C0242379 Malignant neoplasm of lung 0,0174

DB00537 Ciprofloxacin C0376358 Malignant neoplasm of prostate 0,0173

DB00997 Doxorubicin C0699791 Stomach Carcinoma 0,0173

DB01024 Mycophenolic acid C2239176 Liver carcinoma 0,0173

DB01229 Paclitaxel C0376358 Malignant neoplasm of prostate 0,0172



68 

 

Table 4.17. Top 34 scored novel protein-disease relationship predictions 

 

 

 

 

 

 

 

UniProt ID Protein Name
UMLS Concept 

ID
Disease

Ranking 

Score

P15692 Vascular endothelial growth factor A C0006142 Malignant neoplasm of breast 1,8379

P01375 Tumor necrosis factor (Cachectin) C0376358 Malignant neoplasm of prostate 1,8344

O00329
Phosphatidylinositol 4,5-bisphosphate 3-

kinase catalytic subunit delta isoform
C0006142 Malignant neoplasm of breast 1,8147

P28482 Mitogen-activated protein kinase 1 C0006826 Malignant Neoplasms 1,7833

P48736
Phosphatidylinositol 4,5-bisphosphate 3-

kinase catalytic subunit gamma isoform
C0678222 Breast Carcinoma 1,7755

P14780 Matrix metalloproteinase-9 C0006826 Malignant Neoplasms 1,7581

P37231
Peroxisome proliferator-activated receptor 

gamma
C0678222 Breast Carcinoma 1,6979

P14780 Matrix metalloproteinase-10 C1269955 Tumor Cell Invasion 1,6944

P15692 Vascular endothelial growth factor A C1269955 Tumor Cell Invasion 1,6181

P05231 Interleukin-12 C0007131 Non-Small Cell Lung Carcinoma 1,5643

P03372 Estrogen receptor C0009402 Colorectal Carcinoma 1,5319

P05231 Interleukin-13 C0600139 Prostate carcinoma 1,5263

P35354 Prostaglandin G/H synthase 2 C1621958 Glioblastoma Multiforme 1,5261

P10415 Apoptosis regulator Bcl-2 C2239176 Liver carcinoma 1,5220

P14780 Matrix metalloproteinase-14 C0242379 Malignant neoplasm of lung 1,5170

P35354 Prostaglandin G/H synthase 2 C0002395 Alzheimer's Disease 1,5011

P35354 Prostaglandin G/H synthase 2 C1306460 Primary malignant neoplasm of lung 1,4856

P37231
Peroxisome proliferator-activated receptor 

gamma
C0376358 Malignant neoplasm of prostate 1,4723

P05231 Interleukin-17 C0017636 Glioblastoma 1,4686

P42345 Serine/threonine-protein kinase mTOR C0009402 Colorectal Carcinoma 1,4567

P42574 Caspase-3 C0006142 Malignant neoplasm of breast 1,4446

P05231 Interleukin-20 C0025202 melanoma 1,4395

P42574 Caspase-4 C0678222 Breast Carcinoma 1,4391

P14780 Matrix metalloproteinase-15 C0600139 Prostate carcinoma 1,4351

P35354 Prostaglandin G/H synthase 2 C0235974 Pancreatic carcinoma 1,4258

P14780 Matrix metalloproteinase-17 C0684249 Carcinoma of lung 1,4056

P28482 Mitogen-activated protein kinase 6 C0017636 Glioblastoma 1,4015

P05231 Interleukin-22 C0011849 Diabetes Mellitus 1,3761

P05231 Interleukin-23 C0027819 Neuroblastoma 1,3568

P01579 Interferon gamma C0009402 Colorectal Carcinoma 1,3554

Q16665 Hypoxia-inducible factor 1-alpha C2239176 Liver carcinoma 1,3441

P02768 Albumin C2239176 Liver carcinoma 1,3368

O00329
Phosphatidylinositol 4,5-bisphosphate 3-

kinase catalytic subunit delta isoform
C1621958 Glioblastoma Multiforme 1,3179

P05019 Insulin-like growth factor I C0009402 Colorectal Carcinoma 1,3097



69 

 

CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

This study aims to predict unknown relationships in biological data by leveraging 

documented protein-protein, drug-target, gene-disease, and drug-side effect associations. 

The biological datasets are first obtained from UniProt, String, Stitch, Sider, Drugbank, 

Drugcentral, DisGENET, and KEGG databases, and their relationships are extracted and 

re-formatted as multiple pairwise relationship matrices.  

Related databases were analyzed, and drug-side effects, drugs- diseases, drugs-proteins, 

proteins-proteins, and proteins-diseases interaction data were obtained and integrated into 

a single data frame. The subject data frame is modeled with a large graph representing 

them all. This graph is a combination of five bipartite graphs. The matrices representing 

drug-side effects, drugs- diseases, drugs-proteins, proteins-proteins, and proteins-diseases 

relationships are built by removing each bipartite graph's neighborhood matrices forming 

the model graph.  

Using 90% of the matrix representing the drug-side effects relationships, ten-fold cross-

train matrices were created, and the NMTF algorithm was applied to obtain new 

interaction estimates. New interactions with the best 250 score values were obtained in 

each neighborhood matrix, while interpretation and literature research was done for the 

top results. 

First, new predictions were checked retrospectively. Their existence was checked in the 

interactions already present in the data used; in this context, all predictions belong to 

interactions whose existence was not recorded by the databases before. In addition, it was 

rechecked whether there was any entry shared between side effects and diseases; if no 

common items were found, and the data that originally had a common UMLS Concept ID 

in the dataset was eliminated. When the R12 matrix new interaction predictions are 

examined, it is seen that the IDs of some side effects are not found in the DisGeNET 

database. This is because the side effect data is sourced from the SIDER database, and the 

records it contains are taken from public documents and package inserts. 

The scores alone are not meaningful and insufficient to explain the reliability of the new 

estimates obtained in this study. Subject scores were used for ranking purposes. 

The score ranges of the new predictions did vary. The scores were > 1  in R12 and R34 

matrices. However, these values were between 0 and 1 in the R23 and R24 matrices. The 

reason for this is that the matrices have relatively different sparsity levels and dimensions. 

A protein-based focus was made while creating the data frame that is thought to affect 

these score ranges, so editing the same data frame on a drug basis and running the re-



70 

 

estimation algorithm can completely change the estimates and the related scores. This 

issue may be the subject of future studies. 

 

Table 5.1. Sparsity and density rates of relation matrices 

 

 

Certain nodes such as Aripiprazole are observed to be encountered more frequently. We 

can expect that testing the matrices forming the data frame with the algorithm one by one 

may lead to different results and estimations.  

Olanzapine is an active ingredient that includes a type of atypical antipsychotic drug group 

approved for use in treating schizophrenia and bipolar disorder. As a result of this thesis, 

it was estimated that the drugs whose active ingredient is olanzapine have side effects 

such as blurred vision. The study also reported by Serrano and Maldonado (2021) that 

olanzapine can cause blurred vision when taken in overdoses. 

Paliperidone is an atypical antipsychotic. It is mainly used to treat schizophrenia and 

schizoaffective disorder. As a result of the study in this thesis, it was estimated that this 

drug might have side effects such as excessive sweating (hyperhidrosis). In Rus et al. 

(2015) and Kokalj et al. (2016) studies, it has also been reported that this drug has side 

effects. 

Valproate is a medication primarily used to treat epilepsy and bipolar disorder and prevent 

migraine headaches. Our results have estimated that this drug may have a shock as a side 

effect.  Kumar (2022) also reported that he observed the shock side effect of this drug in 

children, even fatally, in his clinical studies. 

Donepezil is a medicine used to treat Alzheimer's type dementia. It is known to provide 

minor benefits in cases with mental function and the ability to function. Our matrix 

analysis estimated that this drug might have palpitation as a side effect in this thesis. This 

observation has also been presented in the studies of Tanaka et al. (2009), Morris et al. 

(2021), and Hoffman and Bloemer (2021). 

Venlafaxine is an antidepressant drug of the serotonin-norepinephrine reuptake inhibitor 

class. It is used to treat major depressive disorder, generalized anxiety disorder, panic 



71 

 

disorder, and social phobia. It can also be used for chronic pain. In this thesis, it was 

predicted that this drug might also be effective on α1A-adrenergic receptors. The exact 

prediction was also made in Salvi et al. (2016) study using the regression analysis method.  

Citalopram is a serotonin reuptake inhibitor (SSRI). It is the most selective molecule with 

the highest specificity for serotonin. It is one of the rare antidepressants that are effective 

in the behavioral problems of Alzheimer's disease. Here we have predicted that this drug 

may affect the Acetyl-CoA carboxylase 1 protein, which is also reported in experimental 

studies by Visco et (2018). 

Pregabalin is a medication used to treat epilepsy, neuropathic pain, fibromyalgia, restless 

legs syndrome, and generalized anxiety disorder. In this thesis, it was predicted that this 

drug might affect the 5-hydroxytryptamine receptor 2A. In the study of Hallak et al. 

(2019), the role of muscarinic and serotonergic-2A receptors in the antinociceptive effect 

of pregabalin was investigated. 

Aripiprazole is recommended and used in the treatment of schizophrenia and bipolar 

disorder. It is used as adjunctive therapy in the treatment of major depressive disorder and 

psychotic disorders. It was predicted that this drug could also be used in Glioblastoma 

disease. Glioblastoma is a primary malignant brain tumor that can occur in the brain or 

spinal cord. This tumor is the most common brain tumor and the most difficult to treat. 

Forno et al. (2020) reported using this drug at low doses for Glioblastoma disease in their 

study. In the study by Suziki et al. (2019), Brexpiprazole was reported as a new 

antipsychotic drug for depression and schizophrenia, which is prepared on the basis of the 

drug Aripiprazole and is also effective for glioblastoma. Additionally, Aripiprazole was 

estimated to be helpful in the treatment of pancreatic cancer. It was also reported in the 

study of Suziki et al. (2016) that this drug can be used in pancreatic cancer.  

Bupropion is an atypical antidepressant used to treat the major depressive disorder and 

support smoking cessation. In this thesis, it was predicted that this drug could be used to 

treat malignant breast tumors. In the study of Mathias et al. (2006), it was stated that this 

drug is used to treat breast cancer. 

Capecitabine is a chemotherapy drug used to treat breast cancer, stomach cancer, and 

colorectal cancer. In this thesis, it was predicted that this drug could also be used to treat 

breast carcinoma. Breast carcinoma is the metastatic form of breast cancer. Curigliano et 

al. (2022) reported that they used this drug on breast carcinoma patients in their clinical 

studies and obtained successful results. 

Vascular endothelial growth factor (VEGF) is active in angiogenesis, vasculogenesis, and 

endothelial cell growth and induces endothelial cell proliferation, promotes cell migration, 

inhibits apoptosis, and induces permeabilization of blood vessels. In this thesis, it was 

predicted that this protein could also take part in breast cancer mechanisms. Yoshiji et al. 

(1996) study suggests that VEGF is an essential angiogenic factor in human breast cancer 

via gene expression. 



72 

 

Tumor necrosis factor (cachectin) protein is related to the TNF gene. Cytokine binds to 

TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR. It is mainly secreted by macrophages and 

can induce cell death of certain tumor cell lines. It is a potent pyrogen causing fever by 

direct action or by stimulation of interleukin-1 secretion and is implicated in the induction 

of cachexia. Under certain conditions, it can stimulate cell proliferation and induce cell 

differentiation. In this thesis, it was predicted that this protein could be an interaction with 

prostate cancer. Nakashima et al. (1998) also suggest that with their article, tumor necrosis 

factor may be one of the factors contributing to the complex syndrome of cachexia in 

patients with prostate cancer. 

Overall, the optimized model is accomplished large-scale prediction of pairwise 

relationships between proteins, drugs, diseases, and side effects.  We obtained new 

predictions for drug-side effect, drug-disease, drug-target protein, and gene/protein-

disease interactions. When the top 250 predictions with the highest scores are 

retrospectively investigated, we have found that several of the prediction is validated in 

the literature. We hope that this thesis study's results will help life-scientists plan 

experimental work by providing preliminary sets of biological associations. 

We would like to emphasize that the matrices, the inputs of the algorithm used, are 

extremely sparse. This creates an obstacle to obtaining more successful results. In the 

future, it can be tried to obtain results by first separating these matrices into denser 

submatrices and applying the NMTF algorithm to the submatrices. 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 

 

 

REFERENCES 

 

 

Abay, G. (2020). Biological data integration and relation prediction by matrix 

factorization (Master's Thesis, METU Informatics Institute). 

Ar, Y. (2020). An initialization method for the latent vectors in probabilistic matrix 

factorization for sparse datasets. Evolutionary Intelligence, 13(2), 269-281. 

Ceddia, G., Pinoli, P., Ceri, S., and Masseroli, M. (2020). Matrix factorization-based 

technique for drug repurposing predictions. IEEE journal of biomedical and health 

informatics, 24(11), 3162-3172. 

Chen, Y. Z., and Ung, C. Y. (2001). Prediction of potential toxicity and side effect protein 

targets of a small molecule by a ligand–protein inverse docking approach. Journal 

of Molecular Graphics and Modelling, 20(3), 199-218. 

Curigliano, G., Mueller, V., Borges, V., Hamilton, E., Hurvitz, S., Loi, S., ... & Winer, E. 

(2022). Tucatinib versus placebo added to trastuzumab and capecitabine for 

patients with pretreated HER2+ metastatic breast cancer with and without brain 

metastases (HER2CLIMB): final overall survival analysis. Annals of 

Oncology, 33(3), 321-329. 

Devarajan, K. (2008). Nonnegative matrix factorization: An analytical and interpretive 

tool    in computational biology. PLoS Computational Biology, 4(7), e1000029. 

Dimitri, G. M., and Lió, P. (2017). DrugClust: a machine learning approach for drugs side 

effects prediction. Computational biology and chemistry, 68, 204-210. 

Ding, C., Li, T., Peng, W., and Park, H. (2006). Orthogonal nonnegative matrix t-

factorizations for clustering. In Proceedings of the 12th ACM SIGKDD 

international conference on Knowledge discovery and data mining , pp. 126-135. 

Dissez, G., Ceddia, G., Pinoli, P., Ceri, S., and Masseroli, M. (2019). Drug repositioning 

predictions by non-negative matrix tri-factorization of integrated association data. 

In Proceedings of the 10th ACM International Conference on Bioinformatics, 

Computational Biology and Health Informatics, 25-33. 



74 

 

Ehrlich, P. (1877). Beiträge zur Kenntniss der Anilinfärbungen und ihre Verwendung in 

der mikroskopischen Technik. Archiv für Mikroskopische Anatomie, 13, 263–277 

Forno, F., Maatuf, Y., Boukeileh, S., Dipta, P., Mahameed, M., Darawshi, O., Priel, A., 

Valverde A. M. and Tirosh, B. (2020). Aripiprazole cytotoxicity coincides with 

activation of the unfolded protein response in human hepatic cells. Journal of 

Pharmacology and Experimental Therapeutics, 374(3), 452-461. 

Funk S. (2006). Netflix Update: Try This at Home. 

Gao KY, Fokoue A, Luo H, et al. (2018). Interpretable drug target prediction using deep 

neural representation. In: Proceedings of the Twenty-Seventh International Joint 

Conference on Artificial Intelligence, IJCAI, July 13–19, Stockholm, Sweden, 

3371–3377.  

Gene [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for 

Biotechnology Information; 2004 – [cited 2022 25 04]. Available from: 

https://www.ncbi.nlm.nih.gov/gene/ 

Gilson, MK, Liu T, Baitaluk M, Nicola G, Hwang L, and Chong J. (2016). Bindingdb in 

2015: A public database for medicinal chemistry, computational chemistry and 

systems pharmacology. Nucleic acids research, 44(D1):D1045–D1053. 

Gönen, M. (2012). Predicting drug–target interactions from chemical and genomic kernels 

using Bayesian matrix factorization. Bioinformatics, 28(18), 2304-2310. 

Gunther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J, Urdiales 

EG, Gewiess A, Jensen LJ, Schneider R, Skoblo R, Russell RB, Bourne PE, Bork 

P and Preissner R. (2008). Supertarget and matador: resources for exploring drug-

target relationships. Nucleic Acids Res. 36(Database issue), 919–922. 

doi:10.1093/nar/gkm862 

Hallak, M., Balci, H., Günaydın, C., & Bilge, S. S. (2019). The role of muscarinic and 

serotonergic-2A receptors in the antinociceptive effect of pregabalin. Physiology 

and Pharmacology, 23(4), 302-308 

Hardoon, D. R., and Shawe-Taylor, J. (2011). Sparse canonical correlation analysis. 

Machine Learning, 83(3), 331–353. 

Hoffman, L., & Bloemer, J. (2021). Side effects of drugs used in the treatment of 

Alzheimer's disease. In Side Effects of Drugs Annual (Vol. 43, pp. 71-77). 

Elsevier. 

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. 

Journal of machine learning research, 5(9). 

https://www.ncbi.nlm.nih.gov/gene/


75 

 

Jahid, M. J., and  Ruan, J. (2013). An ensemble approach for drug side effect prediction. 

In 2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 

440-445. 

Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for 

representation and analysis of molecular networks involving diseases and drugs. 

Nucleic Acids Res. 38, D355-D360. 

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, 

Araki M and Hirakawa M. (2006). From genomics to chemical genomics: new 

developments in kegg. Nucleic Acids Res. 34(suppl 1), 354–357.  

Kokalj, A., Rijavec, N., & Tavčar, R. (2016). Case Report: Delirium with anticholinergic 

symptoms after a combination of paliperidone and olanzapine pamoate in a patient 

known to smoke cannabis: an unfortunate coincidence. BMJ Case Reports, 2016. 

Kumar, U. A. Study of Comparing the Efficacy of Intravenous Levetiracetam Versus 

Intravenous Valproate inthe Management of Refractory Status Epilepticus in 

Children. European Journal of Molecular & Clinical Medicine, 9(03), 2022. 

Langley J.N. (1905). On the reaction of cells and of nerve-endings to certain poisons, 

chiefly as regards the reaction of striated muscle to nicotine and to curari. J 

Physiol. 33 (4–5), 374–413. 

Langville, A. N., Meyer, C. D., Albright, R., Cox, J., and Duling, D. (2006). Initializations 

for the nonnegative matrix factorization. In Proceedings of the twelfth ACM 

SIGKDD international conference on knowledge discovery and data mining, 23-

26. 

Li, S. Z., Hou, X. W., Zhang, H. J., and Cheng, Q. S. (2001). Learning spatially localized, 

parts-based representation. In Proceedings of the 2001 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition. CVPR (Vol. 1, pp. I-I). 

IEEE. 

Liu, M., Wu, Y., Chen, Y., Sun, J., Zhao, Z., Chen, X. W. et al. (2012). Large-scale 

prediction of adverse drug reactions using chemical, biological, and phenotypic 

properties of drugs. Journal of the American Medical Informatics 

Association, 19(e1), e28-e35. 

Luo, Y., Liu, Q., Wu, W., Li, F., and Bo, X. (2014). Predicting drug side effects based on 

link prediction in bipartite network. In 2014 7th International Conference on 

Biomedical Engineering and Informatics, 729-733. IEEE. 

Mathias, C., Mendes, C. C., de Sena, E. P., de Moraes, E. D., Bastos, C., Braghiroli, M. 

I., Nunez G., Athanazio R., Alban L., Moore and H. C. F. and Giglio, A. (2006). 



76 

 

An open-label, fixed-dose study of bupropion effect on sexual function scores in 

women treated for breast cancer. Annals of Oncology, 17(12), 1792-1796. 

Morris, R., Luboff, H., Jose, R. P., Eckhoff, K., Bu, K., Pham, M., ... & Cheng, F. (2021). 

Bradycardia due to donepezil in adults: Systematic analysis of FDA adverse event 

reporting system. Journal of Alzheimer's Disease, 81(1), 297-307. 

Nakashima, J., Tachibana, M., Ueno, M., Miyajima, A., Baba, S., & Murai, M. (1998). 

Association between tumor necrosis factor in serum and cachexia in patients with 

prostate cancer. Clinical Cancer Research, 4(7), 1743-1748. 

Nguyen, T., Le, H., Quinn, T. P., Le, T., and Venkatesh, S. (2020). Predicting drug–target 

binding affinity with graph neural networks. BioRxiv, 684662. 

Öztürk H, Olmez EO, Özgür A. (2016). A comparative study of smiles-based compound 

similarity functions for drug target interaction prediction. BMC Bioinform, 17, 

128. 

Öztürk H, Özgür A, Olmez EO. (2018). Deepdta: deep drug-target binding affinity 

prediction. Bioinformatics, 34(17): i821–i829. 

Paatero, P and Tapper, U. (1994). Positive matrix factorization: A non-negative factor 

model with optimal utilization of error estimates of data values. Environmetrics, 

5, 111–126. 

Pauwels, E., Stoven, V., and Yamanishi, Y. (2011). Predicting drug side-effect profiles: a 

chemical fragment-based approach. BMC Bioinformatics, 12(1), 169. 

Pehkonen, P., Wong, G., and Törönen, P. (2005). Theme discovery from gene lists for 

identification and viewing of multiple functional groups. BMC Bioinformatics, 6, 

1–18.  

Piñero J., Ramírez-Anguita J. M., Saüch-Pitarch J., Ronzano F., Centeno E., Sanz F., and 

Furlong L. I., (2020). The DisGeNET knowledge platform for disease genomics: 

2019 update, Nucleic Acids Research, 48(D1), D845–D855.  

Pinoli, P., Ceddia, G., Ceri, S., & Masseroli, M. (2021). Predicting drug synergism by 

means of non-negative matrix tri-factorization. IEEE/ACM Transactions on 

Computational Biology and Bioinformatics. 

Rus, S. G., Iborte, A. S., & Abad, M. B. (2015). Tolerability of Paliperidone in 

Inpatients. European Psychiatry, 30, 1619. 

Salakhutdinov, R. R. and Mnih A. (2008). Probabilistic matrix factorization. In Advances 

in neural information processing systems, 1257-1264. 



77 

 

Salvi, V., Mencacci, C., & Barone-Adesi, F. (2016). H1-histamine receptor affinity 

predicts weight gain with antidepressants. European 

Neuropsychopharmacology, 26(10), 1673-1677. 

Schomburg I., Chang A., Ebeling C., Gremse M., Heldt C., Huhn G. and Schomburg D. 

(2004). Brenda, the enzyme database: updates and major new developments. 

Nucleic Acids Res. 32(suppl 1), 431–433.  

Schwarzenberg-Czerny, A.  (1995). On matrix factorization and efficient least squares 

solution. Astronomy and Astrophysics Supplement Series. 110, 405-410. 

Serrano, W. C., & Maldonado, J. (2021). The Use of Physostigmine in the Diagnosis and 

Treatment of Anticholinergic Toxicity After Olanzapine Overdose: Literature 

Review and Case Report. Journal of the Academy of Consultation-Liaison 

Psychiatry, 62(3), 285-297. 

Suzuki, S., Okada, M., Kuramoto, K., Takeda, H., Sakaki, H., Watarai, H., Sanomachi, T. 

Seino, S., Yoshioka,T. and Kitanaka, C. (2016). Aripiprazole, an antipsychotic and 

partial dopamine agonist, inhibits cancer stem cells and reverses 

chemoresistance. Anticancer research, 36(10), 5153-5161. 

Suzuki, S., Yamamoto, M., Sanomachi, T., Togashi, K., Sugai, A., Seino, S.,Yoshioka T., 

Kitanaka, C. and Okada, M. (2019). Brexpiprazole, a serotonin-dopamine activity 

modulator, can sensitize glioma stem cells to osimertinib, a third-generation 

EGFR-TKI, via survivin reduction. Cancers, 11(7), 947. 

Tanaka, A., Koga, S., & Hiramatsu, Y. (2009). Donepezil-induced adverse side effects of 

cardiac rhythm: 2 cases report of atrioventricular block and Torsade de 

Pointes. Internal Medicine, 48(14), 1219-1223.  

The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021 

(2021). Nucleic Acids Research. 49(D1), D480–D489.  

Tweedie S, Braschi B, Gray KA, Jones TEM, Seal RL, Yates B and Bruford EA. 

Genenames.org: the HGNC and VGNC resources in 2021 (2021). Nucleic Acids 

Res. PMID: 33152070 PMCID: PMC7779007 DOI: 10.1093/nar/gkaa980 

UniProt Consortium, T. (2018). UniProt: the universal protein knowledgebase. Nucleic 

Acids Research. https://doi.org/10.1093/nar/gky092 

Visco, D. B., Manhaes-de-Castro, R., Chaves, W. F., Lacerda, D. C., da Conceição 

Pereira, S., Ferraz-Pereira, K. N., & Toscano, A. E. (2018). Selective serotonin 

reuptake inhibitors affect structure, function and metabolism of skeletal muscle: a 

systematic review. Pharmacological Research, 136, 194-204. 



78 

 

Wang X, Liu Y, Lu F, et al.(2020). Dipeptide frequency of word frequency and graph 

convolutional networks for dta prediction. Front Bioeng Biotechnol, 8, 267. 

Wang L, You Z-H, Chen X, et al. (2018). A computational-based method for predicting 

drug-target interactions by using stacked autoencoder deep neural network. J 

Comput Biol. 25(3), 361–373. 

Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y and Lu H. Deep learning-based drug-

target interaction prediction. (2017).  J Proteome Res, 16(4), 1401–1409. 

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B,  and Hassanali 

M. (2008). Drugbank: a knowledgebase for drugs, drug actions and drug targets. 

Nucleic Acids Res. 36(suppl 1), 901–906.  

Yang, Z., and Michailidis, G. (2016). A non-negative matrix factorization method for   

detecting modules in heterogeneous omics multi-modal 

data. Bioinformatics, 32(1), 1-8. 

Yamanishi Y, Araki M, Gutteridge A, Honda W, and Kanehisa M. (2008). Prediction of 

drug-target interaction networks from the integration of chemical and genomic 

spaces. Bioinformatics. 24(13), 232–240.  

Yamanishi, Y., Pauwels, E., and Kotera, M. (2012). Drug side-effect prediction based on 

the integration of chemical and biological spaces. Journal of Chemical 

Information and Modeling, 52(12), 3284–3292. 

Ye, H., Liu, Q., and Wei, J. (2014). Construction of drug network based on side effects 

and its application for drug repositioning. PloS one, 9(2), e87864. 

Yoshiji, H., Gomez, D. E., Shibuya, M., & Thorgeirsson, U. P. (1996). Expression of 

vascular endothelial growth factor, its receptor, and other angiogenic factors in 

human breast cancer. Cancer Research, 56(9), 2013-2016. 

Zeng Y, Chen X., Luo Y., Li X., and Peng D. (2021). Deep drug-target binding affinity 

prediction with attention block. Briefings in Bioinformatics. bbab117. 

Zhang, Y., Lei, X., Fang, Z., and Pan, Y. (2020). CircRNA-disease associations prediction 

based on metapath2vec++ and matrix factorization. Big Data Mining and 

Analytics. 3(4), 280-291. 

Zhang, W., Liu, F., Luo, L., and Zhang, J. (2015). Predicting drug side effects by multi-

label learning and ensemble learning. BMC bioinformatics, 16(1), 1-11. 

Zhao, X., Chen, L., Guo, Z. H., and Liu, T. (2019). Predicting drug side effects with 

compact integration of heterogeneous networks. Current Bioinformatics, 14(8), 

709-720. 



79 

 

Zhao, H., Zheng, K., Li, Y., and Wang, J. (2021). A novel graph attention model for 

predicting frequencies of drug–side effects from multi-view data. Briefings in 

Bioinformatics, 22(6), bbab239. 

Zhao L., Wang J., Pang L., Liu Y., and Zhang L. (2020). Gansdta: Predicting drug-target 

binding affinity  using gans. Frontiers in Genetics, 10,1243. 

Žitnik M. , Janjić V.,  Larminie C., Zupan B., and Pržulj N. (2013). Discovering   disease-

disease associations by fusing systems-level molecular data. Scientific reports 3, 

3202. 

Žitnik, M., Nam E. A., Dinh C., Kuspa A., Shaulsky G., and Zupan B. (2015). Gene  

prioritization by compressive data fusion and chaining. PLoS computational 

biology 11(10), e1004552. 

 

 

 

  



80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

APPENDIX 

 

APPENDIX A 

 

A.1 Modified Codes of NMTF 

A.1.1. Part 1 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

 

This file load create a loader class to import the data 

from txt files and create required matrices for our 

problem. 

 

In order to run the code, you must have a folder named data 

and you must have txt files with appropriate names in this 

folder. 

 

In order to run the code, you must also have an empty 

folder named tmp. 

 

This is the first code you have to run and you only have to 

run it once. 

""" 

 

 

#First we load the packages we need 

from scipy import sparse 

import numpy as np 

 

#These two classes are implemented in the repository 

from load_data_NMTF import loader 

 

#While using a server to run this notebook, it can be 

necessary to limit the number of threads 

import os 



82 

 

 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

#f_labelsdrugs = 'DrugsToSideEffects.txt' 

f_sideeffectsdrugs = 'DrugsToSideEffects.txt' 

f_drugsproteins = 'DrugsToProteins.txt' 

#f_proteinspathways = 'ProteinsToPathways.txt' 

f_proteinsdiseases = 'ProteinsToDiseases.txt' 

f_drugsdiseases = 'DrugsToDiseases.txt' 

f_protprot = 'ProteinsToProteins.txt' 

#f_pathpath = 'PathwaysToPathways.txt' 

 

load = loader(f_sideeffectsdrugs,  

              f_drugsproteins,  

              f_proteinsdiseases,  

              f_drugsdiseases,  

              f_protprot) 

 

#R12, R23, R34, R25, W3= load.association_matrices() 

R12, R23, R34, R24, W3,proteins,drugs,diseases, sideeffects 

= load.association_matrices() 

d3 = np.array(W3.sum(axis=0)) 

D3 = sparse.diags(d3[0], 0) 

L3 = D3 - W3 #laplacian matrix of intra-protein links 

 

R12=sparse.csc_matrix(R12) 

R23=sparse.csc_matrix(R23) 

R34=sparse.csc_matrix(R34) 

R24=sparse.csc_matrix(R24) 

W3=sparse.csc_matrix(W3) 

L3=sparse.csc_matrix(L3) 

sparse.save_npz('./tmp/R12.npz', R12) 

sparse.save_npz('./tmp/R23.npz', R23) 

sparse.save_npz('./tmp/R34.npz', R34) 

sparse.save_npz('./tmp/R24.npz', R24) 

sparse.save_npz('./tmp/W3.npz', W3) 

sparse.save_npz('./tmp/L3.npz', L3) 

print("Sparce matrices are created") 

 

 

 

 



83 

 

 

A.1.2. Load Data 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

 

This file load create a loader class to import the data 

from txt files and create required matrices for our problem 

 

In order to run the code, you must have a folder named data 

and you must have txt files with appropriate names in this 

folder. 

 

You do not need to run this code specifically, it will be 

called and run where necessary. 

""" 

 

#We use networkx as a way to interpret the data and to 

transform it easily through adjacency matrices 

import networkx as nx 

class loader: 

 

    #we initialize the loader by giving the paths to the 

files. 

    def __init__(self, f_drugssideeffects, f_drugsproteins, 

f_proteinsdiseases, f_drugsdiseases, f_protprot): 

        self.drugssideeffects_file = './data/' + 

f_drugssideeffects 

        self.drugsproteins_file = './data/' + 

f_drugsproteins 

        self.proteinsdiseases_file = './data/' + 

f_proteinsdiseases 

        self.drugsdiseases_file = './data/' + 

f_drugsdiseases 

        self.intraprot_file = './data/' + f_protprot 

    #    self.intrapath_file = './data/' + f_pathpath 

 

 

    #Then we can use this method to return the needed 

matrices 

    def association_matrices(self): 



84 

 

 

        drug_set = set() 

        protein_set = set() 

        with open(self.intraprot_file, "r") as pp: 

            for line in pp: 

                (protein, protein1, ww) = 

line.strip().split("\t") 

                protein_set.add(protein) 

        pp.close() 

        proteins = list(protein_set) 

        proteins.sort() 

        pl=len(proteins) 

         

        ff=open("./data/proteins.txt","w") 

        for hh in range(pl): 

            Temp="%s\n"%(proteins[hh])     

            ff.write(Temp) 

        ff.close() 

         

        with open(self.drugsproteins_file, "r") as dp: 

            for line in dp: 

                (drug, protein) = line.strip().split("\t") 

                drug_set.add(drug) 

        dp.close() 

        drugs = list(drug_set) 

        drugs.sort() 

         

        pl=len(drugs) 

         

        ff=open("./data/drugs.txt","w") 

        for hh in range(pl): 

            Temp="%s\n"%(drugs[hh])     

            ff.write(Temp) 

        ff.close() 

 

        disease_set = set() 

        with open(self.proteinsdiseases_file, "r") as pd: 

            for line in pd: 

                (protein1, disease) = 

line.strip().split("\t") 

                disease_set.add(disease) 

        pd.close() 

        diseases = list(disease_set) 

        diseases.sort(



85 

 

        #TODO: check that the loaded proteins list are 

coherent (same for drugs and diseases) 

        pl=len(diseases) 

         

        ff=open("./data/diseases.txt","w") 

        for hh in range(pl): 

            Temp="%s\n"%(diseases[hh])     

            ff.write(Temp) 

        ff.close() 

 

        with open(self.drugssideeffects_file, "r") as f: 

            SideEffectToDrug = [element.strip().split('\t') 

for element in f.readlines()] 

            sideeffects = [i[1] for i in SideEffectToDrug 

if i[0] in drugs] 

        f.close() 

        sideeffects = list(set(sideeffects)) 

        sideeffects.sort() #list of sideeffects, sorted in 

the alphabetical order 

        edges12 = [(link[0], link[1]) for link in 

SideEffectToDrug] #edges12 contains edges between drugs and 

sideeffects 

 

        pl=len(sideeffects) 

         

        ff=open("./data/sideeffects.txt","w") 

        for hh in range(pl): 

            Temp="%s\n"%(sideeffects[hh])     

            ff.write(Temp) 

        ff.close() 

        with open(self.drugsproteins_file, "r") as f: 

            data_graph = [element.split() for element in 

f.readlines()] 

        f.close() 

        edges23 = [(element[0],element[1]) for element in 

data_graph] #edges23 contains edges between drugs and 

proteins 

 

        with open(self.proteinsdiseases_file, "r") as f: 

            data_graph = [element.split() for element in 

f.readlines()] 

        f.close() 

 



86 

 

        edges34 = [(element[0],element[1]) for element in 

data_graph] #edges34 contains edges between proteins and 

diseases 

 

        with open(self.drugsdiseases_file, "r") as f: 

            data_graph = [element.split() for element in 

f.readlines()] 

        f.close() 

        edges24 = [(element[0],element[1]) for element in 

data_graph] #edges24 contains edges between drugs and 

diseases 

        

        W3 = 

nx.adjacency_matrix(nx.read_weighted_edgelist(self.intrapro

t_file, nodetype=str), nodelist=proteins) 

         

        G = nx.Graph() 

        G.add_nodes_from(sideeffects) 

        G.add_nodes_from(proteins) 

        G.add_nodes_from(diseases) 

        G.add_nodes_from(drugs) 

        G.add_edges_from(edges12) 

        G.add_edges_from(edges23) 

        G.add_edges_from(edges34) 

        G.add_edges_from(edges24) 

 

        R = nx.adjacency_matrix(G, nodelist=sideeffects + 

drugs + proteins + diseases) 

        n_drugs = len(drugs) 

        n_proteins = len(proteins)  

        n_sideeffects = len(sideeffects) 

        n_diseases = len(diseases) 

        R12 = R[:n_sideeffects, 

n_sideeffects:(n_drugs+n_sideeffects)] 

        R23 = R[n_sideeffects:(n_drugs+n_sideeffects), 

(n_drugs+n_sideeffects):(n_drugs+n_sideeffects+n_proteins)] 

        R34 = 

R[(n_drugs+n_sideeffects):(n_drugs+n_sideeffects+n_proteins

), 

(n_drugs+n_sideeffects+n_proteins):(n_drugs+n_sideeffects+n

_proteins+n_diseases)] 

        R24 = R[n_sideeffects:(n_drugs+n_sideeffects), 

(n_drugs+n_sideeffects+n_proteins):] 



87 

 

 

        return R12, R23, R34, R24, W3, proteins, drugs, 

diseases, sideeffects 

 

 

 

 

A.1.3. Method NMTF 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

""" 

 

import numpy as np 

import sklearn.metrics as metrics 

#from spherecluster import SphericalKMeans 

from sklearn.cluster import KMeans 

from scipy import sparse 

 

 

class NMTF: 

    #First load and convert to numpy arrays the data 

    R12 = sparse.load_npz('./tmp/R12.npz').toarray() 

    R23 = sparse.load_npz('./tmp/R23.npz').toarray() 

    R34 = sparse.load_npz('./tmp/R34.npz').toarray() 

    R24 = sparse.load_npz('./tmp/R24.npz').toarray() 

    W3 = sparse.load_npz('./tmp/W3.npz').toarray() 

    #W4 = sparse.load_npz('./tmp/W4.npz').toarray() 

    L3 = sparse.load_npz('./tmp/L3.npz').toarray() 

    #L4 = sparse.load_npz('./tmp/L4.npz').toarray() 

     

    #Those matrices are called Degree matrices 

    D3 = L3 + W3 

    #D4 = L4 + W4 

     

    #eps is a constant needed experimentally in update 

rules to make sure that the denominator is never null 

    eps = 1e-8 

     

    n1, n2 = R12.shape 

    n3, n4 = R34.shape 



88 

 

    #n4 = R24.shape[1] 

     

    def update(self, A, num, den): 

        return A*(num / (den + NMTF.eps))**0.5 

     

    vupdate = np.vectorize(update) 

     

     

    def __init__(self, init_method, parameters, mask): 

        self.init_method = init_method 

        self.K = parameters 

        self.M = mask 

        self.iter = 0 

     

    def initialize(self): 

         

        self.R12_train = np.multiply(NMTF.R12, self.M) 

         

        if self.init_method == 'random': 

            """Random uniform""" 

            self.G1 = np.random.rand(NMTF.n1, self.K[0]) 

            self.G2 = np.random.rand(NMTF.n2, self.K[1]) 

            self.G3 = np.random.rand(NMTF.n3, self.K[2]) 

            self.G4 = np.random.rand(NMTF.n4, self.K[3]) 

        #    self.G5 = np.random.rand(NMTF.n5, self.K[4]) 

         

        #if self.init_method == 'skmeans': 

            """spherical k-means""" 

             

            #Sperical k-means clustering is done on the 

initial data 

        #    skm1 = SphericalKMeans(n_clusters=self.K[0]) 

        #    skm1.fit(self.R12_train.transpose()) 

        #    skm2 = SphericalKMeans(n_clusters=self.K[1]) 

        #    skm2.fit(self.R12_train) 

        #    skm3 = SphericalKMeans(n_clusters=self.K[2]) 

        #    skm3.fit(NMTF.R23) 

        #    skm4 = SphericalKMeans(n_clusters=self.K[3]) 

        #    skm4.fit(NMTF.R34) 

        #    skm5 = SphericalKMeans(n_clusters=self.K[4]) 

        #   skm5.fit(NMTF.R24) 

             

            #Factor matrices are initialized with the 

center coordinates 

        #    self.G1 = skm1.cluster_centers_.transpose() 



89 

 

 

        #    self.G2 = skm2.cluster_centers_.transpose() 

        #    self.G3 = skm3.cluster_centers_.transpose() 

        #    self.G4 = skm4.cluster_centers_.transpose() 

        #    self.G5 = skm5.cluster_centers_.transpose() 

             

        if self.init_method == 'acol': 

            """random ACOL""" 

            #We will "shuffle" the columns of R matrices 

and take the mean of k batches 

            Num1 = np.random.permutation(NMTF.n2) 

            Num2 = np.random.permutation(NMTF.n1) 

            Num3 = np.random.permutation(NMTF.n2) 

            Num4 = np.random.permutation(NMTF.n3) 

            Num5 = np.random.permutation(NMTF.n2) 

             

            G1 = [] 

            for l in np.array_split(Num1, self.K[0]): 

                G1.append(np.mean(self.R12_train[:,l], axis 

= 1)) 

            self.G1 = np.array(G1).transpose() 

             

            G2 = [] 

            for l in np.array_split(Num2, self.K[1]): 

                

G2.append(np.mean(self.R12_train.transpose()[:,l], axis = 

1)) 

            self.G2 = np.array(G2).transpose() 

             

            G3 = [] 

            for l in np.array_split(Num3, self.K[2]): 

                

G3.append(np.mean(NMTF.R23.transpose()[:,l], axis = 1)) 

            self.G3 = np.array(G3).transpose() 

             

            G4 = [] 

            for l in np.array_split(Num4, self.K[3]): 

                

G4.append(np.mean(NMTF.R34.transpose()[:,l], axis = 1)) 

            self.G4 = np.array(G4).transpose() 

             

            G5 = [] 

            for l in np.array_split(Num5, self.K[4]): 

                

G5.append(np.mean(NMTF.R24.transpose()[:,l], axis = 1)) 



90 

 

            self.G5 = np.array(G5).transpose() 

         

        if self.init_method == 'kmeans': 

            """k-means with clustering on previous item""" 

            #As for spherical k-means, factor matrices will 

be initialized with the centers of clusters. 

            km1 = KMeans(n_clusters=self.K[0], n_init = 

10).fit_predict(self.R12_train.transpose()) 

            km2 = KMeans(n_clusters=self.K[1], n_init = 

10).fit_predict(self.R12_train) 

            km3 = KMeans(n_clusters=self.K[2], n_init = 

10).fit_predict(self.R23) 

            km4 = KMeans(n_clusters=self.K[3], n_init = 

10).fit_predict(self.R34) 

           # km5 = KMeans(n_clusters=self.K[4], n_init = 

10).fit_predict(self.R24) 

             

            self.G1 = 

np.array([np.mean([self.R12_train[:,i] for i in 

range(len(km1)) if km1[i] == p], axis = 0) for p in 

range(self.K[0])]).transpose() 

            self.G2 = np.array([np.mean([self.R12_train[i] 

for i in range(len(km2)) if km2[i] == p], axis = 0) for p 

in range(self.K[1])]).transpose() 

            self.G3 = np.array([np.mean([self.R23[i] for i 

in range(len(km3)) if km3[i] == p], axis = 0) for p in 

range(self.K[2])]).transpose() 

            self.G4 = np.array([np.mean([self.R34[i] for i 

in range(len(km4)) if km4[i] == p], axis = 0) for p in 

range(self.K[3])]).transpose() 

         #   self.G5 = np.array([np.mean([self.R24[i] for i 

in range(len(km5)) if km5[i] == p], axis = 0) for p in 

range(self.K[4])]).transpose() 

             

        self.S12 = 

np.linalg.multi_dot([self.G1.transpose(), self.R12_train, 

self.G2]) 

        self.S23 = 

np.linalg.multi_dot([self.G2.transpose(), self.R23, 

self.G3]) 

        self.S34 = 

np.linalg.multi_dot([self.G3.transpose(), self.R34, 

self.G4]) 



91 

 

        self.S24 = 

np.linalg.multi_dot([self.G2.transpose(), self.R24, 

self.G4]) 

         

    def iterate(self): 

        #These following lines compute the matrices needed 

for our update rules 

        Gt2G2 = np.dot(self.G2.transpose(), self.G2) 

        G2Gt2 = np.dot(self.G2, self.G2.transpose()) 

        G3Gt3 = np.dot(self.G3, self.G3.transpose()) 

        Gt3G3 = np.dot(self.G3.transpose(), self.G3) 

        G4Gt4 = np.dot(self.G4, self.G4.transpose()) 

         

        R12G2 = np.dot(self.R12_train, self.G2) 

        R23G3 = np.dot(NMTF.R23, self.G3) 

        R34G4 = np.dot(NMTF.R34, self.G4) 

        R24G4 = np.dot(NMTF.R24, self.G4) 

         

        W3G3 = np.dot(NMTF.W3, self.G3) 

        #W4G4 = np.dot(NMTF.W4, self.G4) 

        D3G3 = np.dot(NMTF.D3, self.G3) 

        #D4G4 = np.dot(NMTF.D4, self.G4) 

        G3Gt3D3G3 = np.dot(G3Gt3, D3G3) 

        #G4Gt4D4G4 = np.dot(G4Gt4, D4G4) 

        G3Gt3W3G3 = np.dot(G3Gt3, W3G3) 

        #G4Gt4W4G4 = np.dot(G4Gt4, W4G4) 

         

        R12G2St12 = np.dot(R12G2, self.S12.transpose()) 

        G1G1tR12G2St12 = np.linalg.multi_dot([self.G1, 

self.G1.transpose(), R12G2St12]) 

        Rt12G1S12 = 

np.linalg.multi_dot([self.R12_train.transpose(), self.G1, 

self.S12]) 

        G2Gt2Rt12G1S12 = np.dot(G2Gt2, Rt12G1S12) 

        R23G3St23 = np.dot(R23G3, self.S23.transpose()) 

        G2Gt2R23G3St23 = np.dot(G2Gt2, R23G3St23) 

        Rt23G2S23 = 

np.linalg.multi_dot([NMTF.R23.transpose(),self.G2, 

self.S23]) 

        G3Gt3Rt23G2S23 = np.dot(G3Gt3,Rt23G2S23) 

        R34G4St34 = np.dot(R34G4, self.S34.transpose()) 

        G3Gt3R34G4St34 = np.dot(G3Gt3,R34G4St34) 

        Rt34G3S34 = 

np.linalg.multi_dot([NMTF.R34.transpose(),self.G3, 

self.S34]) 



92 

 

        G4Gt4Rt34G3S34 = np.dot(G4Gt4,Rt34G3S34) 

        Rt24G2S24 = 

np.linalg.multi_dot([NMTF.R24.transpose(), self.G2, 

self.S24]) 

        G4G4tRt24G2S24 = np.linalg.multi_dot([self.G4, 

self.G4.transpose(), Rt24G2S24]) 

        R24G4St24 = np.dot(R24G4, self.S24.transpose()) 

        G2Gt2R24G4St24 = np.dot(G2Gt2, R24G4St24) 

         

        Gt1R12G2 = np.dot(self.G1.transpose(),R12G2) 

        Gt2R23G3 = np.dot(self.G2.transpose(),R23G3) 

        Gt3R34G4 = np.dot(self.G3.transpose(),R34G4) 

        Gt2R24G4 = np.dot(self.G2.transpose(), R24G4) 

        Gt1G1S12Gt2G2 = 

np.linalg.multi_dot([self.G1.transpose(), self.G1, 

self.S12, Gt2G2]) 

        Gt2G2S23Gt3G3 = np.linalg.multi_dot([Gt2G2, 

self.S23, Gt3G3]) 

        Gt3G3S34Gt4G4 = np.linalg.multi_dot([Gt3G3, 

self.S34, self.G4.transpose(), self.G4]) 

        Gt2G2S24Gt4G4 = np.linalg.multi_dot([Gt2G2, 

self.S24, self.G4.transpose(), self.G4]) 

         

        #Here factor matrices are updated. 

        self.G1 = NMTF.vupdate(self, self.G1, R12G2St12, 

G1G1tR12G2St12) 

        self.G2 = NMTF.vupdate(self, self.G2, Rt12G1S12 + 

R23G3St23 + R24G4St24, G2Gt2Rt12G1S12 + G2Gt2R23G3St23 + 

G2Gt2R24G4St24) 

        self.G3 = NMTF.vupdate(self, self.G3, Rt23G2S23 + 

R34G4St34 + W3G3 + G3Gt3D3G3, G3Gt3Rt23G2S23 + 

G3Gt3R34G4St34 + G3Gt3W3G3 + D3G3) 

        self.G4 = NMTF.vupdate(self, self.G4, 

Rt24G2S24+Rt34G3S34, G4G4tRt24G2S24+G4Gt4Rt34G3S34) 

        #self.G5 = NMTF.vupdate(self, self.G5, Rt25G2S25, 

G5G5tRt25G2S25) 

         

        self.S12 = NMTF.vupdate(self, self.S12, Gt1R12G2, 

Gt1G1S12Gt2G2)  

        self.S23 = NMTF.vupdate(self, self.S23, Gt2R23G3, 

Gt2G2S23Gt3G3) 

        self.S34 = NMTF.vupdate(self, self.S34, Gt3R34G4, 

Gt3G3S34Gt4G4) 

        self.S24 = NMTF.vupdate(self, self.S24, Gt2R24G4, 

Gt2G2S24Gt4G4) 



93 

 

         

        self.iter += 1 

         

    def validate(self, metric='aps'): 

        n, m = NMTF.R12.shape 

        R12_found = np.linalg.multi_dot([self.G1, self.S12, 

self.G2.transpose()]) 

        R12_2 = [] 

        R12_found_2 = [] 

         

        #We first isolate the validation set and the 

corresponding result 

        for i in range(n): 

            for j in range(m): 

                if self.M[i, j] ==  0: 

                    R12_2.append(NMTF.R12[i, j]) 

                    R12_found_2.append(R12_found[i, j]) 

        #We can asses the quality of our output with APS or 

AUROC score 

        if metric == 'auroc': 

            fpr, tpr, threshold = metrics.roc_curve(R12_2, 

R12_found_2) 

            return metrics.auc(fpr, tpr) 

        if metric == 'aps': 

            return metrics.average_precision_score(R12_2, 

R12_found_2) 

         

    def loss(self): 

         

        Gt3L3G3 = np.linalg.multi_dot([self.G3.transpose(), 

NMTF.L3, self.G3]) 

        #Gt4L4G4 = 

np.linalg.multi_dot([self.G4.transpose(), NMTF.L4, 

self.G4]) 

         

        J = np.linalg.norm(self.R12_train - 

np.linalg.multi_dot([self.G1, self.S12, 

self.G2.transpose()]), ord='fro')**2 

        J += np.linalg.norm(NMTF.R23 - 

np.linalg.multi_dot([self.G2, self.S23, 

self.G3.transpose()]), ord='fro')**2 

        J += np.linalg.norm(NMTF.R34 - 

np.linalg.multi_dot([self.G3, self.S34, 

self.G4.transpose()]), ord='fro')**2 



94 

 

        J += np.linalg.norm(NMTF.R24 - 

np.linalg.multi_dot([self.G2, self.S24, 

self.G4.transpose()]), ord='fro')**2 

        J += np.trace(Gt3L3G3) 

         

        return J 

     

    def __repr__(self): 

        return 'Model NMTF with (k1, k2, k3, k4, k5)=({}, 

{}, {}, {}, {}) and {} initialization'.format(self.K[0], 

self.K[1], self.K[2], self.K[3], self.K[4], 

self.init_method) 

 

 

 

A.1.4. Part 2 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

""" 

 

#First we load the packages we need 

import sklearn.metrics as metrics 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook 

from scipy import sparse 

import seaborn as sns 

import pandas as pd 

import numpy as np 

 

#These two classes are implemented in the repository 

from load_data_NMTF import loader 

from method_NMTF import NMTF 

 

#While using a server to run this notebook, it can be 

necessary to limit the number of threads 

import os 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 



95 

 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

#f_labelsdrugs = 'DrugsToSideEffects.txt' 

f_sideeffectsdrugs = 'DrugsToSideEffects.txt' 

f_drugsproteins = 'DrugsToProteins.txt' 

#f_proteinspathways = 'ProteinsToPathways.txt' 

f_proteinsdiseases = 'ProteinsToDiseases.txt' 

f_drugsdiseases = 'DrugsToDiseases.txt' 

f_protprot = 'ProteinsToProteins.txt' 

#f_pathpath = 'PathwaysToPathways.txt' 

 

load = loader(f_sideeffectsdrugs,  

              f_drugsproteins,  

              f_proteinsdiseases,  

              f_drugsdiseases,  

              f_protprot) 

 

#R12, R23, R34, R25, W3= load.association_matrices() 

R12, R23, R34, R24, W3,proteins,drugs,diseases, sideeffects 

= load.association_matrices() 

 

d3 = np.array(W3.sum(axis=0)) 

D3 = sparse.diags(d3[0], 0) 

L3 = D3 - W3 #laplacian matrix of intra-protein links 

 

bar = np.sum(R12.toarray(), axis=1) 

bar.sort() 

rbar = bar[::-1] 

X = np.arange(len(rbar)) 

plt.rcParams["figure.figsize"] = (300,100) 

plt.bar(X, rbar) 

plt.xlabel('Side Effects') 

plt.ylabel('Number of associated Drugs') 

plt.show() 

 

bar = np.sum(R23.toarray(), axis=1) 

bar.sort() 

rbar = bar[::-1] 

X = np.arange(len(rbar)) 

plt.rcParams["figure.figsize"] = (300,100) 

plt.bar(X, rbar) 

plt.xlabel('Drugs') 

plt.ylabel('Number of associated Proteins') 

plt.show



96 

 

bar = np.sum(R24.toarray(), axis=1) 

bar.sort() 

rbar = bar[::-1] 

X = np.arange(len(rbar)) 

plt.rcParams["figure.figsize"] = (300,100) 

plt.bar(X, rbar) 

plt.xlabel('Drugs') 

plt.ylabel('Number of associated Diseases') 

plt.show() 

 

bar = np.sum(R34.toarray(), axis=1) 

bar.sort() 

rbar = bar[::-1] 

X = np.arange(len(rbar)) 

plt.rcParams["figure.figsize"] = (300,100) 

plt.bar(X, rbar) 

plt.xlabel('Proteins') 

plt.ylabel('Number of associated Diseases') 

plt.show() 

 

bar = np.sum(W3.toarray(), axis=1) 

bar.sort() 

rbar = bar[::-1] 

X = np.arange(len(rbar)) 

plt.rcParams["figure.figsize"] = (300,100) 

plt.bar(X, rbar) 

plt.xlabel('Proteins') 

plt.ylabel('Number of associated Proteins') 

plt.show() 

 

inter_sd = np.count_nonzero(R12.toarray()) 

inter_dp = np.count_nonzero(R23.toarray()) 

inter_pd = np.count_nonzero(R34.toarray()) 

inter_dd = np.count_nonzero(R24.toarray()) 

print('There are {} side effects, {} drugs, {} proteins and 

{} diseases'.format(R12.shape[0], R12.shape[1], 

R23.shape[1], R34.shape[1])) 

print('There are {} links between side effects and 

drugs'.format(inter_sd)) 

print('There are {} links between drugs and 

proteins'.format(inter_dp)) 

print('There are {} links between proteins and 

diseases'.format(inter_pd)) 

print('There are {} links between drugs and 

diseases'.format(inter_dd)) 



97 

 

 

M10 = np.random.binomial(1, 0.9, size=R12.shape) 

np.save('./tmp/M10', M10) 

 

 

 

 

A.1.5. Part 3 (Initialization) 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

This is the third code you have to run 

""" 

 

import os 

import time 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

 

from method_NMTF import NMTF 

import numpy as np 

 

M10 = np.load('./tmp/M10.npy') 

 

K = {} 

 

K['acol'] = [30, 10, 40, 20, 40] 

 

max_iter = 500 

nb_init = 1 

 

INIT = ['acol'] 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

for init in INIT: 

    print(init) 

    nmtf = NMTF(init, K[init], M10) 



98 

 

 

    loss, aps = np.zeros((nb_init, max_iter//10)), 

np.zeros((nb_init, max_iter//10)) 

    for i in range(nb_init): 

        print(i) 

        seconds=time.time() 

        local_time = time.ctime(seconds) 

        print("Local time:", local_time) 

        nmtf.initialize() 

        for p in range(max_iter): 

            seconds=time.time() 

            local_time = time.ctime(seconds) 

            print("Local time:", local_time) 

            print(p) 

            nmtf.iterate() 

            if p % 10 == 0: 

                loss[i, p//10], aps[i, p//10] = 

nmtf.loss(), nmtf.validate() 

        result = [loss, aps] 

        np.save('./tmp/initialization_' + init, result) 

 

 

 

A.1.6. Part 4 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

This is the fourth code you have to run  

""" 

 

#First we load the packages we need 

import sklearn.metrics as metrics 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook 

from scipy import sparse 

import seaborn as sns 

import pandas as pd 

import numpy as np 

import csv 

import time 

#These two classes are implemented in the repository 



99 

 

from load_data_NMTF import loader 

from method_NMTF import NMTF 

 

#While using a server to run this notebook, it can be 

necessary to limit the number of threads 

import os 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

#f_labelsdrugs = 'DrugsToSideEffects.txt' 

f_sideeffectsdrugs = 'DrugsToSideEffects.txt' 

f_drugsproteins = 'DrugsToProteins.txt' 

#f_proteinspathways = 'ProteinsToPathways.txt' 

f_proteinsdiseases = 'ProteinsToDiseases.txt' 

f_drugsdiseases = 'DrugsToDiseases.txt' 

f_protprot = 'ProteinsToProteins.txt' 

#f_pathpath = 'PathwaysToPathways.txt' 

 

load = loader(f_sideeffectsdrugs,  

              f_drugsproteins,  

              f_proteinsdiseases,  

              f_drugsdiseases,  

              f_protprot) 

 

#R12, R23, R34, R25, W3, W4 = load.association_matrices() 

R12, R23, R34, R24, W3,proteins,drugs,diseases, sideeffects 

= load.association_matrices() 

 

d3 = np.array(W3.sum(axis=0)) 

D3 = sparse.diags(d3[0], 0) 

L3 = D3 - W3 #laplacian matrix of intra-protein links 

max_iter = 500 

 

M10 = np.load('./tmp/M10.npy') 

 

INIT = ['acol'] 

plt.rcParams["figure.figsize"] = (15,8) 

 

for init in INIT: 

    [loss, aps] = np.load('./tmp/initialization_' + init + 

'.npy') 

    X = np.arange(1, max_iter, 10) 

    df = pd.DataFrame(aps, columns = X).melt() 



100 

 

 

    sns.lineplot(x="variable", y="value", data=df, ci='sd', 

label = init) 

plt.xlabel('Iterations') 

plt.ylabel('Average Precision Score (APS)') 

plt.show() 

 

R12 = NMTF.R12 

n, m = R12.shape 

c_iter=int(max_iter/10) 

X1 = np.arange(1, max_iter, 10) 

X=np.array(X1) 

aa=np.array(loss)/(n*m) 

bb=np.array(aps) 

a=np.arange(c_iter) 

a=a.astype(float) 

b=np.arange(c_iter) 

b=b.astype(float) 

for i in range(c_iter): 

    a[i]=aa[0][i] 

for i in range(c_iter): 

    b[i]=bb[0][i]      

plt.rcParams["figure.figsize"] = (7,5) 

 

 

fig, ax1 = plt.subplots() 

color = 'tab:red' 

ax1.set_xlabel('Iterations') 

ax1.set_ylabel('Average Loss', color=color) 

ax1.plot(X, a, color=color) 

ax1.tick_params(axis='y', labelcolor=color) 

 

ax2 = ax1.twinx()  # instantiate a second axes that shares 

the same x-axis 

color = 'tab:blue' 

ax2.set_ylabel('Average Precision Score', color=color)  # 

we already handled the x-label with ax1 

ax2.plot(X, b, color=color) 

ax2.tick_params(axis='y', labelcolor=color) 

 

fig.tight_layout()  # otherwise the right y-label is 

slightly clipped 

plt.axvline(x=1, color='k', linestyle = ':') 

 

plt.show() 



101 

 

A.1.7. Part 5 (Improvements) 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

This is the fifth code you have to run 

""" 

 

import os 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

 

from method_NMTF import NMTF 

import numpy as np 

import time 

 

""" 

MODEL 1: Acol init, bad parameters, max_iter 

MODEL 2: change init to skmeans 

MODEL 3: but good parameters 

MODEL 4: perfect 

""" 

 

#Create once and for all models the mask matrix and the 

associated R12_r which will be approximated 

M10 = np.load('./tmp/M10.npy') 

R12_train = np.multiply(NMTF.R12, M10) 

max_iter = 260 

 

K_bad = [40, 20, 70, 20, 300] 

K_bad_2 = [50,20, 50, 30, 100] 

K_good = [30, 10, 40, 20,100] 

 

nmtf1 = NMTF('acol', K_bad, M10) 

nmtf2 = NMTF('acol', K_bad_2, M10) 

nmtf34 = NMTF('acol', K_good, M10) 

 

nmtf1.initialize() 

nmtf2.initialize() 

nmtf34.initialize() 



102 

 

 

#model 1 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

print(nmtf1) 

while nmtf1.iter < max_iter: 

    nmtf1.iterate() 

R12_found_1 = np.linalg.multi_dot([nmtf1.G1, nmtf1.S12, 

nmtf1.G2.transpose()]) 

np.save('./tmp/R12_found_1', R12_found_1) 

print(nmtf1.validate()) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

#model 2 

print(nmtf2) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

while nmtf2.iter < max_iter: 

    nmtf2.iterate() 

R12_found_2 = np.linalg.multi_dot([nmtf2.G1, nmtf2.S12, 

nmtf2.G2.transpose()]) 

np.save('./tmp/R12_found_2', R12_found_2) 

print(nmtf2.validate()) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

#model 3 & 4 

print(nmtf34) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

not_done = True 

loss_old = nmtf34.loss() 

while nmtf34.iter < max_iter: 

    nmtf34.iterate()  

    if not_done: 

        loss_new = nmtf34.loss() 

        CRIT = abs((loss_new - loss_old) / loss_new)   

        if CRIT < 2e-2: 

            not_done = False 

            R12_found_4 = np.linalg.multi_dot([nmtf34.G1, 

nmtf34.S12, nmtf34.G2.transpose()]) 



103 

 

 

            np.save('./tmp/R12_found_4', R12_found_4) 

            print(nmtf34.validate()) 

        loss_old = loss_new 

         

print(nmtf34.validate()) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

R12_found_3 = np.linalg.multi_dot([nmtf34.G1, nmtf34.S12, 

nmtf34.G2.transpose()]) 

seconds=time.time() 

local_time = time.ctime(seconds) 

print("Local time:", local_time) 

np.save('./tmp/R12_found_3', R12_found_3) 

Error1=0.0 

Error2=0.0 

Error3=0.0 

Error4=0.0 

for i in range(NMTF.n1): 

    for j in range(NMTF.n2): 

        Error1=Error1+abs(NMTF.R12_train[i][j]-

R12_found_1[i][j]) 

        Error2=Error2+abs(NMTF.R12_train[i][j]-

R12_found_2[i][j]) 

        Error3=Error3+abs(NMTF.R12_train[i][j]-

R12_found_3[i][j]) 

        Error4=Error4+abs(NMTF.R12_train[i][j]-

R12_found_4[i][j]) 

Error1=Error1/(NMTF.n1*NMTF.n2) 

Error2=Error2/(NMTF.n1*NMTF.n2) 

Error3=Error3/(NMTF.n1*NMTF.n2) 

Error4=Error4/(NMTF.n1*NMTF.n2) 

print('Error1=', Error1) 

print('Error2=', Error2) 

print('Error3=', Error3) 

print('Error4=', Error4) 

 

 

 

 

 

 

 

 



104 

 

A.1.8. Part 6 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

This is the sixth code you have to run 

""" 

 

#First we load the packages we need 

import sklearn.metrics as metrics 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook 

from scipy import sparse 

import seaborn as sns 

import pandas as pd 

import numpy as np 

import csv 

import time 

 

#These two classes are implemented in the repository 

from load_data_NMTF import loader 

from method_NMTF import NMTF 

 

#While using a server to run this notebook, it can be 

necessary to limit the number of threads 

import os 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

#f_labelsdrugs = 'DrugsToSideEffects.txt' 

f_sideeffectsdrugs = 'DrugsToSideEffects.txt' 

f_drugsproteins = 'DrugsToProteins.txt' 

#f_proteinspathways = 'ProteinsToPathways.txt' 

f_proteinsdiseases = 'ProteinsToDiseases.txt' 

f_drugsdiseases = 'DrugsToDiseases.txt' 

f_protprot = 'ProteinsToProteins.txt' 

#f_pathpath = 'PathwaysToPathways.txt' 

 

load = loader(f_sideeffectsdrugs,  

              f_drugsproteins,  

              f_proteinsdiseases, 



105 

 

              f_drugsdiseases,  

              f_protprot) 

 

#R12, R23, R34, R25, W3, W4 = load.association_matrices() 

R12, R23, R34, R24, W3,proteins,drugs,diseases, sideeffects 

= load.association_matrices() 

 

d3 = np.array(W3.sum(axis=0)) 

D3 = sparse.diags(d3[0], 0) 

L3 = D3 - W3 #laplacian matrix of intra-protein links 

 

plt.rcParams["figure.figsize"] = (10,7) 

 

M10 = np.load('./tmp/M10.npy') 

R12 = NMTF.R12 

n, m = R12.shape 

 

for mi in range(4): 

    R12_found = np.load('./tmp/R12_found_' + str(mi+1) + 

'.npy') 

 

    R12_2 = [] 

    R12_found_2 = [] 

    for i in range(n): 

        for j in range(m): 

            if M10[i, j] ==  0: 

                R12_2.append(R12[i, j]) 

                R12_found_2.append(R12_found[i, j]) 

     

     

    precision, recall, _ = 

metrics.precision_recall_curve(R12_2, R12_found_2) 

    aps = metrics.average_precision_score(R12_2, 

R12_found_2) 

 

    plt.plot(recall, precision, label="Model " + str(mi+1) 

+", APS= %0.2f" % aps) 

 

base_precision = np.count_nonzero(R12_2) / len(R12_2) 

#plt.axhline(base_precision, color='grey', 

linestyle='dashed', label = "random classifier, APS = 

%0.2f" % base_precision) 

plt.xlim([0, 1]) 

plt.ylim([0, 1]) 

plt.xlabel('recall') 



106 

 

plt.ylabel('precision') 

plt.legend() 

plt.show() 

 

 

 

A.1.9. Part 7 (Prediction) 

 

""" 

This code is a modified version of the code created by 

gaetanddissez  

@author of the modification: Onur Savaş KARTLI 

Original code was retrieved from Dissez et al. (2019) 

This is the seventh code you have to run 

""" 

 

#First we load the packages we need 

import sklearn.metrics as metrics 

import matplotlib.pyplot as plt 

from tqdm import tqdm_notebook 

from scipy import sparse 

import seaborn as sns 

import pandas as pd 

import numpy as np 

import csv 

import time 

 

#These two classes are implemented in the repository 

from load_data_NMTF import loader 

from method_NMTF import NMTF 

 

#While using a server to run this notebook, it can be 

necessary to limit the number of threads 

import os 

os.environ["MKL_NUM_THREADS"] = "5" 

os.environ["NUMEXPR_NUM_THREADS"] = "5" 

os.environ["OMP_NUM_THREADS"] = "5" 

os.environ["OPENBLAS_NUM_THREADS"] = "5" 

os.environ["VECLIB_MAXIMUM_THREADS"] = "5" 

#f_labelsdrugs = 'DrugsToSideEffects.txt' 

f_sideeffectsdrugs = 'DrugsToSideEffects.txt' 

f_drugsproteins = 'DrugsToProteins.txt' 

#f_proteinspathways = 'ProteinsToPathways.txt' 

f_proteinsdiseases = 'ProteinsToDiseases.txt' 



107 

 

f_drugsdiseases = 'DrugsToDiseases.txt' 

f_protprot = 'ProteinsToProteins.txt' 

#f_pathpath = 'PathwaysToPathways.txt' 

 

load = loader(f_sideeffectsdrugs,  

              f_drugsproteins,  

              f_proteinsdiseases,  

              f_drugsdiseases,  

              f_protprot) 

 

#R12, R23, R34, R25, W3, W4 = load.association_matrices() 

R12, R23, R34, R24, W3,proteins,drugs,diseases, sideeffects 

= load.association_matrices() 

# pn indicates number of predictions 

pn=100 

d3 = np.array(W3.sum(axis=0)) 

D3 = sparse.diags(d3[0], 0) 

L3 = D3 - W3 #laplacian matrix of intra-protein links 

n, m = NMTF.R12.shape 

M = np.ones((n, m)) 

K = [30, 10, 40, 20,100] 

 

nmtf_final = NMTF('acol', K, M) 

J = [] 

epsilon = 2e-2 

 

nmtf_final.initialize() 

J.append(nmtf_final.loss()) 

 

for i in range(30): 

    nmtf_final.iterate() 

    J.append(nmtf_final.loss()) 

     

    if ((J[-2] - J[-1]) / J[-1]) < epsilon: 

        break 

         

np.save('./tmp/R12_final', 

np.linalg.multi_dot([nmtf_final.G1, nmtf_final.S12, 

nmtf_final.G2.transpose()])) 

np.save('./tmp/R24_final', 

np.linalg.multi_dot([nmtf_final.G2, nmtf_final.S24, 

nmtf_final.G4.transpose()])) 

np.save('./tmp/R23_final', 

np.linalg.multi_dot([nmtf_final.G2, nmtf_final.S23, 

nmtf_final.G3.transpose()])) 



108 

 

np.save('./tmp/R34_final', 

np.linalg.multi_dot([nmtf_final.G3, nmtf_final.S34, 

nmtf_final.G4.transpose()])) 

 

R12 = sparse.load_npz('./tmp/R12.npz').toarray() 

R24 = sparse.load_npz('./tmp/R24.npz').toarray() 

R23 = sparse.load_npz('./tmp/R23.npz').toarray() 

R34 = sparse.load_npz('./tmp/R34.npz').toarray() 

 

R12_found = np.load('./tmp/R12_final.npy') 

R24_found = np.load('./tmp/R24_final.npy') 

R23_found = np.load('./tmp/R23_final.npy') 

R34_found = np.load('./tmp/R34_final.npy') 

 

n1, m1 = R12.shape 

n2, m2 = R24.shape 

n3, m3 = R23.shape 

n4, m4 = R34.shape 

 

new_links_R12 = np.multiply(np.ones((n1, m1)) - R12, 

R12_found) 

new_links_R24 = np.multiply(np.ones((n2, m2)) - R24, 

R24_found) 

new_links_R23 = np.multiply(np.ones((n3, m3)) - R23, 

R23_found) 

new_links_R34 = np.multiply(np.ones((n4, m4)) - R34, 

R34_found) 

 

index_new_links_R12 = np.argsort(new_links_R12.flatten()) 

ff=open("R12_prediction.txt","w")     

     

for i in range(1, pn+1): 

     

    Temp="%s        %s       

%.4f\n"%(drugs[index_new_links_R12[-i]% 

m1],sideeffects[index_new_links_R12[-i]// 

m1],new_links_R12[index_new_links_R12[-i] // m1, 

index_new_links_R12[-i] % m1]) 

     

    ff.write(Temp) 

     

ff.close() 

 

print('R12 prediction is finished') 

ff=open("R24_prediction.txt","w") 



109 

 

 

Val=np.zeros(pn+1) 

In1=np.zeros((pn+1), dtype=int) 

In2=np.zeros((pn+1), dtype=int) 

 

for gi in range(n2): 

    for gj in range(m2): 

        tt=0 

        gk=pn-1 

        av=new_links_R24[gi][gj] 

        while av>Val[gk] and gk>0: 

            tt=1 

            In1[gk+1]=In1[gk] 

            In2[gk+1]=In2[gk] 

            Val[gk+1]=Val[gk] 

            gk=gk-1 

        if tt>0: 

            In1[gk+1]=gi 

            In2[gk+1]=gj 

            Val[gk+1]=av 

        if av>Val[0]: 

            In1[1]=In1[0] 

            In2[1]=In2[0] 

            Val[1]=Val[0] 

            In1[0]=gi 

            In2[0]=gj 

            Val[0]=av 

for i in range(pn): 

    Temp="%s        %s       

%.4f\n"%(drugs[In1[i]],diseases[In2[i]],Val[i]) 

    ff.write(Temp) 

ff.close() 

print('R24 prediction is finished') 

 

ff=open("R23_prediction.txt","w") 

Val=np.zeros(pn+1) 

In1=np.zeros((pn+1), dtype=int) 

In2=np.zeros((pn+1), dtype=int) 

 

for gi in range(n3): 

    for gj in range(m3): 

        tt=0 

        gk=pn-1 

        av=new_links_R23[gi][gj] 

        while av>Val[gk] and gk>0: 



110 

 

            tt=1 

            In1[gk+1]=In1[gk] 

            In2[gk+1]=In2[gk] 

            Val[gk+1]=Val[gk] 

            gk=gk-1 

        if tt>0: 

            In1[gk+1]=gi 

            In2[gk+1]=gj 

            Val[gk+1]=av 

        if av>Val[0]: 

            In1[1]=In1[0] 

            In2[1]=In2[0] 

            Val[1]=Val[0] 

            In1[0]=gi 

            In2[0]=gj 

            Val[0]=av 

for i in range(pn): 

    Temp="%s        %s       

%.4f\n"%(drugs[In1[i]],proteins[In2[i]],Val[i]) 

     

    

    ff.write(Temp) 

ff.close() 

print('R23 prediciton is finished') 

 

ff=open("R34_prediction.txt","w") 

 

Val=np.zeros(pn+1) 

In1=np.zeros((pn+1), dtype=int) 

In2=np.zeros((pn+1), dtype=int) 

for gi in range(n4): 

    for gj in range(m4): 

        tt=0 

        gk=pn-1 

        av=new_links_R34[gi][gj] 

        while av>Val[gk] and gk>0: 

            tt=1 

            In1[gk+1]=In1[gk] 

            In2[gk+1]=In2[gk] 

            Val[gk+1]=Val[gk] 

            gk=gk-1 

        if tt>0: 

            In1[gk+1]=gi 

            In2[gk+1]=gj 

            Val[gk+1]=av 



111 

 

        if av>Val[0]: 

            In1[1]=In1[0] 

            In2[1]=In2[0] 

            Val[1]=Val[0] 

            In1[0]=gi 

            In2[0]=gj 

            Val[0]=av 

for i in range(pn): 

    Temp="%s        %s       

%.4f\n"%(proteins[In1[i]],diseases[In2[i]],Val[i]) 

    ff.write(Temp) 

ff.close() 

print('R34 prediciton is finished' 


