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ABSTRACT 

PREDICTING MULTIPLE TYPES OF BIOLOGICAL RELATIONSHIPS WITH 

INTEGRATIVE NON-NEGATIVE MATRIX FACTORIZATION 

 

Kartlē, Onur Savaĸ 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof Dr. Yeĸim Aydēn Son 

Co-Supervisor: Assoc. Prof Dr. Tunca Doĵan 

 

May 2022, 111 pages 

 

Integrative research on multi-modal biological data is difficult due to their complexity and 

diverse structure. A critical issue in bioinformatics and computational biology is that many 

of the associations/relationships between biological components and concepts (i.e., genes, 

proteins, drugs, diseases, etc.) are still unknown due to the high costs and temporal 

requirements of wet-lab experiments that uncover them. This thesis aims to predict 

unknown relationships in biological data by leveraging documented protein-protein, drug-

target, gene-disease, and drug-side effect associations. To accomplish this task, first, 

biological datasets are obtained from UniProt, String, Stitch, Sider, Drugbank, 

Drugcentral, DisGENET, and KEGG databases, and their relationships are extracted and 

re-formatted as multiple pairwise relationship matrices. Some of these matrices contain 

continuous values to be used as association weights. We obtain highly sparse matrices 

mainly due to the high amount of missing data in biological databases.  Second, we 

predicted missing relationships via integrative matrix factorization, using the non-

negative matrix tri-factorization algorithm which is shown to successfully solve similar 

problems in the literature. For this, a prediction model is trained and evaluated using both 

classification and regression-based metrics.  Subsequently, large-scale prediction of 

pairwise relationships between proteins, drugs, diseases, and side effects is accomplished 

using the optimized model.  We obtained new predictions for drug-side effect, drug-

disease, drug-target protein, and gene/protein-disease interactions. We evaluated the top 

250 predictions with the highest scores and validated selected ones from the literature. We 

hope that the results of this thesis study will help life scientists in planning experimental 

work by providing preliminary sets of biological associations. 

Keywords: Non-negative matrix factorization, multi-relational data, drug-target 

interactions, drug-side effects relationships, gene-disease associations 
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ÖZ 

B¦T¦NC¦L NEGATĶF OLMAYAN MATRĶS FAKT¥RĶZASYONU ĶLE 

¢OKLU BĶYOLOJĶK ĶLĶķKĶ T¦RLERĶNĶN ¥NG¥R¦LMESĶ 

 

Kartlē, Onur Savaĸ 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Yeĸim Aydēn Son 

Ortak Tez Yºneticisi: Do­. Dr. Tunca Doĵan 

 

Mayēs 2022, 111 sayfa 

Y¿ksek seviyedeki karmaĸēklēĵē ve ­eĸitliliĵi nedeniyle ­ok modlu biyolojik veri ¿zerinde 

b¿t¿nleĸtirici araĸtērmalar ger­ekleĸtirmek zorludur. Biyolojik bileĸenler ve kavramlar 

(genler, proteinler, ila­lar, hastalēklar, vb.) arasēndaki iliĸkileri ortaya ­ēkarmak i­in 

kullanēlan laboratuvar deneylerinin y¿ksek maliyetleri ve zamansal gereksinimleri 

nedeniyle bahsi ge­en iliĸkilerin bir­oĵu halen bilinmemektedir. Bu tez, bilinen protein-

protein, ilaç-hedef, gen-hastalēk ve ila­-yan etki iliĸkilerinden yararlanarak bilinmeyen 

iliĸkileri tahmin etmeyi ama­lamaktadēr. Bu gºrevi ger­ekleĸtirmek i­in ºncelikle 

UniProt, String, Stitch, Sider, Drugbank, Drugcentral, DisGENET ve KEGG veri 

tabanlarēndan biyolojik veri k¿meleri elde edilmiĸ ve ikili iliĸki matrisleri olarak yeniden 

bi­imlendirilmiĸtir.  Bu matrislerden bazēlarē iliĸki aĵērlēklarē olarak kullanēlacak s¿rekli 

deĵerler i­ermektedir.  Biyolojik veri tabanlarēndaki mevcut verinin y¿ksek seviyede 

eksik olmasē nedeniyle seyrek matrisler elde edilmiĸtir. Daha sonra, literat¿rde benzer 

problemleri baĸarēlē bir ĸekilde ­ºzebildiĵi gºsterilen ñnegatif olmayan matris ¿­l¿ 

faktºrizasyonò algoritmasē kullanēlarak, matris ­arpanlarēna ayērma yaklaĸēmēyla 

biyolojik iliĸkileri tahmin eden bir model geliĸtirilmiĸtir. Bu model hem sēnēflandērma hem 

de regresyona dayalē metrikler kullanēlarak eĵitilmiĸ ve deĵerlendirilmiĸtir.  ¢alēĸmanēn 

devamēnda, optimize edilmiĸ model kullanēlarak proteinler, ila­lar, hastalēklar ve yan 

etkiler arasēndaki ikili iliĸkilerin b¿y¿k ºl­ekli tahmini ger­ekleĸtirilmiĸtir ve bu sayede 

yeni ilaç-yan etki, ilaç-hastalēk, ila­-hedef ve gen/protein-hastalēk etkileĸimleri elde 

edilmiĸtir. Her bir iliĸki tipi i­in en y¿ksek skora sahip ilk 250 tahmin deĵerlendirilmiĸtir 

ve se­ilenler literat¿re baĸvurularak doĵrulanmēĸtēr. Bu tez ­alēĸmasēndan elde edilen 

biyolojik etkileĸim odaklē tahmin sonu­larēnēn yaĸam bilimleri araĸtērmacēlarēnēn deneysel 

­alēĸmalarēnē planlamalarēna yardēmcē olacaĵēnē umuyoruz. 

Anahtar Sözcükler: Negatif olmayan matris faktºrizasyonu, ­oklu iliĸkisel veriler, ila­-

hedef etkileĸimleri, ila­-yan etki etkileĸimleri, gen-hastalēk etkileĸimleri   
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION  

 

1.1 Motivation  

The integrative study of multimodal biological data is challenging because of its 

complexity and diversity. A critical issue in bioinformatics and computational biology is 

that many relationships between biological components and concepts (i.e., genes, proteins, 

drugs, diseases, etc.) are still unknown due to high costs and time requirements. There are 

not enough financial budgets to carry out all the laboratory experiments that can reveal 

these relationships. Even if such a budget exists, experiments take a long time to yield 

results. Sometimes it is necessary to make a decision very quickly. During the Covid19 

pandemic between 2019 and 2022, drugs such as favipiravir, which are known to be 

effective for other viruses, were tested on humans, and it was observed that they were not 

effective for Covid19. An essential part of the systematic analysis of these data is 

integrating the different components of biological data and revealing the relationships 

between these components through computational biology methods. All this increases the 

importance of computational biology day by day and motivates researchers to investigate 

biological data with different computational biology methods. In this thesis, drug-side 

effect relationships, drug-disease relationships, drug-protein relationships, protein-protein 

relationships, and protein-disease relationships obtained from different biological 

databases were integrated into a model. The nonnegative matrix tri factorization (NMTF) 

was performed algorithm determined new relationships between these components. 

1.2 Biological Definitions 

The first dataset discussed in this thesis is the dataset that expresses drug-side effect 

relationships. A drug is a chemical preparation that makes it possible to treat a disease, 

reduce its symptoms or prevent it by affecting living cells. The drug consists of 2 

components called ñactive substanceò and ñcarrier.ò An active substance is a substance or 

mixture of substances that act on a living cell. A carrier is a chemical or mixture of 

substances that allow the active substance to be taken easily by the patient and does not 

have a separate effect. 
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The ñside effectò of the drug is that the patient is harmed by the drug he is taking. This 

side effect can occur when used in a single dose or for a long time or when taken at the 

same time as another drug. 

The second dataset is the drug-protein (target) interactions dataset. In the literature, these 

two problems have generally been investigated independently. Biologically speaking, 

these problems are two different problems; different experiments need to be done. When 

considered in terms of calculation, the situation is slightly different. Both problems can 

be expressed with similar mathematical models, and the result can be reached by applying 

the same methods to these models.  

The target may be, for example, a receptor. A receptor is a component of the body or cell. 

This component can receive different stimuli and can be a particular cell, a nerve ending, 

a protein that carries a signal from outside the cell to the inside, or a molecule in the cell 

membrane where an extracellular protein binds to enter the cell. The receptor concept was 

introduced into science due to the independent studies of Langley(1905) and Ehrlich, and 

Ehrlich(1877) was the first to use this notation. 

A ñligandò is a molecule that binds to a macromolecule, a protein, or a nucleic acid and 

has a functional role. 

When the receptor structure is known, the method of designing molecules that can affect 

this receptor is called ñdocking.ò Thanks to docking, the interaction of proteins and drugs 

can be observed. 

1.3 Mathematical Model of the Prediction Problems in the Biological Data 

Definition 1. Let V be a non-empty finite set, and let E be a relation from V to V.  G=(V, 

E) pair is called a graph. 

For instance, let there be V={a,b,c,d} , E={(a,b),(b,c),(b,a),(c,c),(c,d),(d,a),(d,b)} In this 

case, the pair G=(V, E) is a graph. We can visualize the graph in this example as follows. 

(Figure 1.1) 
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Figure 1.1. Example of a directed graph 

 

Each element of set V is called ñvertex,ò and set E is called ñedge.ò 

In the above example, it can be seen that there are both (a,b) and (b, a) edges between a 

and b. Instead of drawing two-directional edges from a to b and b to a, it is sufficient to 

draw an undirected edge between a and b. Instead of (a,b), it is used ab to represent the 

edge between vertices a and b in the graph. 

Example. Let the set of vertices V is V={a,b,c,d,e} and the set of edges E is E={ab, bc, 

ac, bd, de, ea, be, cd} . So the graph G=(V, E) can be visualized as follows. 
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Figure 1.2. Example of an undirected graph 

 

Definition 2. Let the graph G=(V, E) be given. If the w: E Ÿ R function is defined, the 

(G, W) pair is called a ñweighted graph.ò 

An example of a weighted graph is shown below. 

 

Figure 1.3. Example of a weighted graph 
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Definition 3. Let the graph G=(V, E) be given. A G graph is called a bipartite graph if 

there are sets V1 and V2, both of which are non-empty sets and also satisfy the following 

conditions: 

1. V1  ᷾V2=V 

2. V1  ᷊V2=  ɲ

3. If (u,v)  ɴE is either uɴ V1 and vɴ  V2 or uɴ  V2 and vɴ  V1. 

The drug-target interaction prediction problem can be modeled with the help of bipartite 

graphs as follows. 

 

 

Figure 1.4. Example of a bipartite graph 

 

Here, V1={D1, D2, D3, D4} is the set of drugs, and V2={T1, T2, T3, T4} is the set of 

targets. If a drug acts on a target, it is a match between the drug and its target; in other 

words, this drug has been combined with this target line. For example, it can be seen in 

the figure that it is known that the drug D1 acts on T1 and T3 targets. It is unknown 

whether the D1 drug acts on the T2 target, which may need to be investigated. We have 

experienced this problem together during the Covid-19 pandemic process. For example, 

hydroxychloroquine is a malaria drug, but it has been used for a long time against Covid-

19 disease, with the thought that it can be effective against the virus.  

Similarly, the favipiravir drug is an antiviral developed against the influenza virus, but it 

was thought that this drug could also successfully treat Covid-19. Remdesivir, on the other 

hand, was a drug used against Marburg and Ebola viruses, but this drug was found to have 

an antiviral effect against coronaviruses. As can be seen from these examples, when faced 

with a new disease, the effects of existing drugs are investigated before developing a new 

drug. 

Developing a new drug is both costly and impossible to prepare in a short enough time. 

In addition, it is necessary to investigate the effects of existing drugs not only against new 

diseases but also against known diseases. 
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Another similar problem is the problem of predicting the side effects of drugs. This 

problem is modeled with the help of the following graph. 

 

 

Figure 1.5. Drug-side effect prediction problem as a bipartite graph 

 

Here, V1={D1, D2, D3, D4} is the set of drugs, and V2={S1, S2, S3, S4} is the set of side 

effects of these drugs. Each drug has been paired with the side effects seen in people who 

have taken this drug, so lines link drugs with the side effects. For example, in the figure, 

the drug D3 is combined with S1 only, which means that only the S1 side effect has been 

seen as a D3 drug. However, it is not known whether the D3 drug has any other side effects 

and whether other side effects for each drug are the subject of constant research. In real 

life, drugs do not cause the same side effects in every person, and not every side effect is 

necessarily seen. Side effects are generally written under the headings of common and 

rarely seen side effects in drug package inserts. In other words, there is an incidence of 

side effects for each drug, so it would be more accurate to model the DSE prediction 

problem with a weighted two-cluster graph. 
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Figure 1.6. Example of a weighted bipartite graph 

 

In the diagram shown in Figure 1.6, it is seen that the D1 drug has three side effects such 

as S1, S3, and S4. It is known that among these side effects, the rate of S1 is 40%, the rate 

of S3 is 30%, and the rate of S4 is 20%. 

 

1.4 Matrix Factorization 

In numerical analysis problems, writing a given matrix as the product of two matrices with 

specific properties has been known as the decomposition terminus for a long time. For 

example, the Lower-Upper (LU) decomposition method, which is a method of solving the 

system by writing the matrix of a linear system of equations as the product of the lower 

and upper triangular matrices, was proposed by Banachiewicz in 1938 (Schwarzenberg-

Czerny (1995)). In recent years, the importance of the recommender systems problem has 

led to the development of the non-negative matrix factorization (NMF) algorithm. Later, 

this algorithm was also used for estimating biological data interactions. In both problems, 

we have a sparse matrix, and we are trying to predict the unfilled cells of this matrix. We 

try to approximate this matrix by the product of two non-negative matrices. In biological 

data, the sparse matrix we mentioned above is the adjacency matrix of a bipartite graph. 

However, it is challenging to model the integrated data with a bipartite graph. In general, 

the proposed models consist of a union of bipartite graphs.  

1.5 Aim of the Thesis 

Investigation of integrated biological data is essential for diagnosing and treating diseases 

and predicting new side effects of the drugs. In addition, these studies can help predict 

connections between biomolecules such as drug-protein and protein-target. Performing 
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these studies in laboratories is costly and may not always be reliable due to the limited 

number of experiments. For this reason, computational estimation methods for drug-target 

relationships have become more prevalent in recent years. Drug-side effect prediction can 

reveal some side effects that may not be possible to detect in clinical trials, as some side 

effects occur under certain conditions. 

 This thesis aims to predict unknown interactions in biological data by utilizing 

documented protein-protein, drug-target, gene-disease, and drug-side-effect relationships. 

To accomplish this task, firstly, biological datasets are obtained from UniProt, String, 

Stitch, Sider, Drugbank, Drugcentral, DisGENET, and KEGG databases, and their binary 

relationships are extracted and reformatted as multiple binary relationship matrices. These 

matrices contain values to be used as relationship weights whenever possible. We aim to 

obtain relatively sparse matrices due to the high amount of missing data in biological 

databases. Second, we aim to predict/predict these missing relationships through 

integrative matrix factorization using the NMTF method. This algorithm has been shown 

in the literature to solve similar problems successfully. A prediction model is trained and 

evaluated using classification and regression-based metrics such as precision, recall, 

average precision accuracy, and mean absolute error. Finally, large-scale estimation of the 

bilateral relationships between proteins, drugs, diseases, and adverse events are performed 

using the optimized model. We hope that the results of this thesis will help life scientists 

efficiently plan their experimental work by providing a preliminary set of biological 

institutions. 

1.6 Outline of the Thesis 

Within the scope of the second chapter, the literature review carried out has been 

conveyed. First of all, Non-Negative Matrix Factorization is discussed, and then the 

prediction problems between biological elements and their solution approaches are 

mentioned. 

In chapter 3, first, the biological elements and their database source and the stages of the 

database assembly are explained in detail. Next, the mathematical model within the scope 

of the prediction problem, the model proposed by the thesis, and the solution method are 

given. 

Chapter 4 presents a survey of the data obtained for testing, parameter tests applied within 

the scope of NMTF, error measurements regarding these tests, and tests performed within 

the designed scenarios. The results of the performances were compared, and new 

interaction estimates made with the most appropriate one among them were explained. 

The fifth and last chapter revisits the results and their discussion and proposes potential 

future studies.
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CHAPTER 2 

 

2. LITERATURE  REVIEW  

 

2.1 Nonnegative Matrix Factorization Method 

The development of data science towards the end of the 20th century led to the need to 

use the matrix factorization method in different ways for different problems. Paatero and 

Tapper (1994) suggested non-negative matrix factorization. The authors expressed the 

problem as the bilinear matrix equation in this study, but this study can be considered a 

starting point for further studies. Li et al. (2001) propose a local non-negative matrix 

factorization (LNMF) method for the problem of visual patterns. They add a term 

representing localized features to the objective function. 

Based on the fact that the matrix given in many problems is very sparse (that is, the value 

in only a few cells of the matrix is known), Hoyer (2004) examined this proposed method 

by adding a sparsity condition. 

 The Matrix factorization method was first explained by Simon Funk in 2006 in a blog 

post about the recommendation systems competition organized by Netflix. (Funk(2006)). 

After this competition, researchersô interest in this algorithm has increased considerably. 

The first serious scientific study describing this method for recommender systems is done 

by Salakhutdinov and Mnih (2008). The success of this method is highly dependent on 

the choice of initial matrices. The dimensions of these matrices are often called latent 

vectors (variables) or hyperparameters. In recent years, studies on the choosing of latent 

vectors and initial matrices have increased. Langville et al. (2006) compare the various 

initialization methods and show that the success of results depends on the choosing initial 

matrices and latent vectors. Ar (2020) proposes a new method for the initial matrices that 

uses the distribution of the non-empty cells of the given input matrix. Hassani et al. (2021) 

modify the initialization if the K-spherical Means method chooses the initial matrices. 

The NMF method has also been applied to biological data and computational biology 

problems. Devarajan (2008) discovered molecular patterns such as protein-gene 

microarray relationships and expression profiles, cross-platform and cross-species 

analysis, function-gene relationship, and drug-target interaction. Pehkonen et al. (2005) 

used this method to identify and visualize gene clusters through functional classes. They 

obtained different grouping results for a different number of clusters, that is, for a different 

number of latent factors. They separated these clusters using a developed tool called 
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GENERATOR, differentiating between clusters as the number of clusters changes. They 

also reported comparing their tools and other computational tools to demonstrate the 

performance of their algorithm. Zhang et al. (2020) propose a computational method to 

predict circRNA-disease interactions for integrated biological data. For this, they use the 

NMF algorithm. Before applying the algorithm, they try various approaches to create more 

reliable networks. First, circRNA annotation, sequence, and functional similarity 

networks are determined, and disease-related genes and semantics are used to construct 

disease functional and semantic similarity networks. Second, metapath2vec++ is used in 

an integrated network to examine built-in features and initial prediction evaluation. 

Finally, they use NMF by taking the similarity as a constraint and optimizing it to produce 

final predictions. Yang and Michailidis(2016) propose a new multimodal data analysis 

method designed for heterogeneous data based on the NMF method. They provide an 

algorithm for collaborative decomposition of related data matrices, including a sparsity 

parameter for multivariate settings. The NMF method was used by Gönen (2012) for the 

drug-target interaction (DTI) prediction problem. He formulates the problem, which 

combines binary classification, size reduction, and matrix factorization. He uses in 

calculations drug similarities and genomic similarity between targets. 

 The NMTF algorithm, which we used in this thesis and think is suitable for integrated 

biological data, was first proposed by Ding et al. (2006). Zitnik et al. (2013) use the NMTF 

algorithm to discover diseases-diseases interactions. Zitnik et al. (2015) apply the 

algorithm to the gene prioritization problem. Dissez et al. (2019 propose a drug 

repositioning algorithm based on the NMTF method for the integrated biological data. 

They demonstrate how to build a general-purpose graph covering the most critical drug 

discovery aspects. They explore how initiation and termination can significantly affect the 

quality of outcomes for re-administration of a drug. Ceddia et al. (2020) modify the NMTF 

algorithm by taking the shortest paths to extract more connections between nodes than 

those explicitly included in integrated networks. With this modification, the shortest path 

NMTF method leads to discoveries of drug-protein interactions, new drug annotations, 

and new drug-disease relationships. The method concludes that drugs target proteins not 

directly related to known drugs. Pinoli et al. (2021) consider the problem of predicting 

synergistic drug pairings in several cell lines. To solve the problem, they propose an 

NMTF-based approach that uses the integration of different data types. The proposed 

computational framework is based on a networked representation of existing data on drug 

synergy, allowing for the integration of genomic information into cell lines. They 

computerize the performance of his method in finding missing relationships between 

synergistic drug pairs and cell lines, calculate synergy scores between drug pairs in a given 

cell line, and evaluate the benefits of adding cell line genomic data to the network. 

2.2 Drug-Target Relationship Prediction Problem 

Studies investigating the problem of drug-target relationship estimation can be classified 

into two groups. Studies in the first group have addressed this problem as the ñbinary 
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classification problem.ò The binary classification problem investigates whether there is a 

relationship between a drug and a target. 

Among the studies in this group, Gao et al. (2018) made predictions using artificial neural 

networks. In this study, the authors used ñlong short term memory recurrent neural 

networks and graph-based convolutional neural networksò to transform protein and drug 

structures into dense vector spaces. They made the classification with the help of the 

sigmoid function. The dataset used in this work is the open BindingDB [Gilson et al., 

2016]. This dataset contains data that includes the relationship of drug or drug candidate 

molecules with the target or target candidate proteins. According to their determined 

criteria, the authors took 1.3 million snapshots from this dataset and created a binary 

classification set containing 39747 positive and 31218 negative data. 

One of the studies that deal with the drug-target relationship estimation problem as a 

binary classification problem is the study of Wen et al. (2017). This study applied a deep 

learning algorithm to predict new drug-target associations. The drug and target data used 

in the study are from the DrugBank database (http://www.drugbank.ca), and the drug-

target interactions protein identifiers section of the DrugBank database is from the ñdrug 

target identifierò category ((https://www.drugbank.ca/releases/latest#protein-identifiers) 

has been downloaded. In addition, approved drug constructs and approved target 

sequences were obtained from https://www.drugbank.ca/releases/latest#structures and 

https://www.drugbank.ca/releases/latest#target-sequences, respectively. 

Wang et al. 2018, is one of the works classified as binary. This article is based on a 

hypothesis. This hypothesis is that the interactions between drugs and target proteins are 

closely related to the sequence of target proteins and the molecular structure of drug 

compounds. The authors proposed a new 3-step computational method based on this 

hypothesis to reveal an unknown large-scale drug-target interaction. In the first step of the 

proposed method, the target protein sequence is converted into a matrix containing 

biological evolutionary information. In the second step, a deep learning algorithm is 

applied to reveal hidden high-level features. In the third step, firstly, these features are 

combined with drug information, the decision tree is created, and finally, the rotation 

forest classifier is applied to obtain the most probable targets. 

One of the studies that deal with the drug-target relationship estimation problem as a 

binary classification problem is the study of Wen et al. (2017). This study applied a deep 

learning algorithm to predict new drug-target associations. The drug and target data used 

in the study are from the DrugBank database (http://www.drugbank.ca), and the drug-

target interactions protein identifiers section of the DrugBank database is from the "drug 

target identifier" category ((https://www.drugbank.ca/releases/latest#protein-identifiers) 

has been downloaded. In addition, approved drug constructs and approved target 

sequences were obtained from https://www.drugbank.ca/releases/latest#structures and 

https://www.drugbank.ca/releases/latest#target-sequences, respectively. 
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When the drug-target relationship prediction problem is considered a binary classification 

problem, it is assumed that the drug acts on a target completely or has no effect. In real 

life, this is not always the case. A drug can have a specific effect on a target at a certain 

level. Studies in the second group try to estimate the degree of this effect. 

Recently, deep neural networks have been used for DTI prediction problems. Deep models 

are created either through graph representation  (Nguyen et al. (2020), Wang et al. (2020) 

or sequence representation of the data(Özgur et al. (2018), Zhao et al. (2020), Zeng et al. 

(2021)). 

2.3 Drug-Side Effect Prediction Problem 

Related studies of these problems can be divided into four groups, including docking-

based, network-based, machine learning-based, and various approaches that differ from 

these three approaches. 

2.3.1  Docking Based Studies 

Since docking is done directly on the drug target and is not dependent on experimental 

data, this method is more likely than other methods to reveal new, unexpected 

associations. However, a long processing time requires the 3D structure of drugs and 

targets. 

Chen and Ung(2001) performed the docking using a procedure that includes multiple 

coupling of the shape of the conformer of the molecule with the gap, followed by 

molecular-mechanical optimization of bending and minimization of energy on both the 

molecule and protein residues in the binding site. They selected potential protein targets 

by evaluating the energy of molecular mechanics. They also analyzed the binding 

competitiveness with other ligands that bind at least one PDB entry to the same receptor 

site. 

2.3.2 Graph-based Studies 

In this method, the DSE problem is modeled with the help of graphs. These graphs are 

often bipartite graphs. The notation of a graph is also used as a network in the literature. 

For this reason, the concept of network-based is sometimes used instead of graph-based. 

This method requires much less processing time than the docking method and does not 

require the 3D structure of drugs and proteins, but the success performance is very 

dependent on the model created. For example, the network neighborhood model only 

considers direct neighborhoods, which reduces the success performance. Zhao et al. 

(2021) developed a new drug side effects prediction model that uses a graph attention 

network to integrate similarity information, known drug-side effects information and word 

embedding. Luo et al. (2014), Ye et al. (2014), Zhao et al. (2019), and Zhao et al. (2020) 

are examples of studies published in this group in recent years.  
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2.3.3 Machine Learning-based Studies 

If we evaluate these studies in general, we can observe that this method has the following 

advantageous features: 1) It does not need data in a 3D structure to reach the result 2) The 

applied algorithms do not work too much in the processing time 3) It requires relatively 

little supervision. 4) The data need not be very comprehensive. 

Besides, this method has the following disadvantages: 1) This method involves 

uncertainty, and 2) The successful performance of the method depends on the diversity 

and distribution of the compounds in the dataset. 

These studies used machine learning methods such as support vector machine, logistic 

regression, naive Bayes, k-nearest neighbor, and random forest methods. 

Liu et al. (2012) use several machine learning classification methods to integrate different 

data types into a single model. 

Jahid and Ruan (2013) show how similar drugs cause similar side effects and use a 

machine learning approach to predict them. However, they cannot identify the 

mechanisms underlying the side effects. 

Zhang et al. (2015) propose a multi-label k nearest neighbor algorithm based on feature 

selection to predict drug side effects. 

Dmitri and Lio (2017) developed a new tool based on machine learning to solve the drug 

side effects problem. They first grouped the drugs according to their properties and then 

made side-effect estimates based on scores. Biological validation of the resulting clusters 

is performed using enrichment analysis, another feature implemented in the methodology. 

2.3.4 Various Approaches 

Few studies applied sparse canonical correlation analysis (SCCA; Hardoon & Shawe-

Taylor, 2011) or various scoring-based algorithms. Pauwels(2011) and Yamanishi et al. 

(2012) can be given as examples of such studies. 

2.4 Biological Databases 

This thesis collected Protein-Protein Interactions, Drug-Target Protein Interactions, Drug-

Side Effect Interactions, Gene-Disease Interactions, Gene-Protein Interactions, and Drug-

Disease Interactions from certain data banks. These collected interactions were integrated, 

classified as described in the following subsections, and related matrices were prepared 

for testing with the Non-Negative Matrix Tri-Factorization algorithm. In line with the 

purpose of the thesis, a study was conducted to estimate unreviewed or unrecorded 

potential relationships based on the relationships present in these matrices. Our goal was 

to improve the accurate selection of samples in labor-time-intensive laboratory 
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experiments currently being carried out with limited resources. The databases from which 

data are obtained are as follows; 

1. UniProt (UniProt Consortium, T. (2018) and STRING (Protein-Protein Interactions) 

2. Drugbank and Drugcentral (Drug-Target Protein Interactions) 

3. Sider and STITCH (Drug-Side Effect Interactions) 

4. UniProt, HGNC, and NCBI-NIH(Gene-Protein Interactions) 

5. Disgenet (Piñero et al. (2019) (Gene-Disease Interactions)  

6. KEGG (Kanehisa et al. (2010)), Disgenet and Drugbank (Drug-Disease Interactions) 

The databases used and their features, data acquisition, and processing stages are detailed 

in the following sections. The numerical characteristics of the collected raw data are also 

given in the same sections. The necessary elimination and editing processes performed on 

the raw data, the test data obtained as a result, and the characteristics of this data are 

discussed in the results section. 

 

2.4.1 Protein-Protein Interaction Databases 
 

The following databases were administrated for retrieval of the current protein list and 

protein-protein interactions. 

 

2.4.1.1 UniProt (The Universal Protein Resource) 

 

The Universal Protein Resource (UniProt) is a comprehensive protein sequence and 

annotation data. The UniProt databases are the UniProt Knowledgebase (UniProtKB), 

the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). The 

UniProt consortium and host institutions EMBL-EBI, SIB, and PIR, are committed to 

long-term preserving the UniProt databases.  

UniProt collaborates with the European Bioinformatics Institute (EMBL-EBI), the SIB 

Swiss Institute of Bioinformatics, and the Protein Information Resource (PIR). Across the 

three institutes, more than 100 people are involved in different tasks such as database 

curation, software development, and support. 

EMBL-EBI and SIB together used to produce Swiss-Prot and TrEMBL, while PIR 

produced the Protein Sequence Database (PIR-PSD). These two data sets coexisted with 

https://www.uniprot.org/help/uniprotkb
https://www.uniprot.org/help/uniref
https://www.uniprot.org/help/uniparc
https://www.ebi.ac.uk/
https://www.sib.swiss/
https://www.sib.swiss/
http://pir.georgetown.edu/
https://www.uniprot.org/help/uniprot_staff
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different protein sequence coverage and annotation priorities. Translated EMBL 

Nucleotide Sequence Data Library ( TrEMBL) was created because sequence data was 

generated at a pace exceeding Swiss-Protôs ability to keep up. Meanwhile, PIR maintained 

the PIR-PSD and related databases, including iProClass, a database of protein sequences 

and curated families. In 2002 the three institutes decided to pool their resources and 

expertise and formed the UniProt consortium, now headed by Alex Bateman, Alan Bridge, 

and Cathy Wu. 

UniProt is a database that contains many different data classes regarding many existing 

organisms and can present these data to users holistically. Here are some examples of data 

classes: names and taxonomy, sequences, function, interaction, expression, gene ontology, 

structure, subcellular location, family, and domains. 

In this thesis, protein entries were used in the acquisition of members of Homo sapiens, 

which were specified as reviewed proteins (SwissProt) and the subsequent conversion of 

protein-protein relationships to this format. 

 

Figure 2.1. Sources of annotation for the UniProt Knowledgebase 

(https://www.uniprot.org/docs/uniprot_flyer.pdf) 

 

 

https://www.uniprot.org/help/bateman
https://www.uniprot.org/help/bridge
http://pir.georgetown.edu/pirwww/aboutpir/wubio.shtml
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2.4.1.2 STRING 

 

It is the data bank within STRING where the interaction data of human proteins are 

obtained. Thanks to its scoring data feature, it has enabled the creation of matrices that 

can yield more efficient results in the NTMF algorithm. The definition of the database, 

according to the website, is as follows; STRING is a database of known and predicted 

protein-protein interactions. The interactions include direct (physical) and indirect 

(functional) associations; they stem from computational prediction, knowledge transfer 

between organisms, and interactions aggregated from other (primary) databases. The 

STRING database currently covers 24.584.628 proteins from 5.090 organisms. 

 

Figure 2.2. Data sources of interactions in STRING (https://string-db.org/cgi/about) 

 

2.4.2 Drug-Target Protein Interactions 
 

Drug-Target Protein interactions were collected and integrated from two different sources, 

DrugCentral and Drugbank. In this context, the dataset was prepared by considering the 

interactions in both databases as commons and separate unique records while separating 

the duplicated records. General information about the relevant data banks and the method 

of obtaining data are presented in the following sections. 

 

2.4.2.1 DrugCentral 

 

Drugcentral is an online drug information resource created and maintained by the Division 

of Translational Informatics at the University of New Mexico in collaboration with the 

IDG (Illuminating the Druggable Genome), according to their introductory page website.  

DrugCentral provides information on active ingredients, chemical entities, pharmaceutical 

products, drug mode of action, indications, and pharmacologic action. They are 

monitoring FDA, EMA, and PMDA for new drug approval regularly to ensure the 

currency of the resource. Limited information on discontinued and drugs approved outside 

the US is also available; however, regulatory approval information canôt be verified. The 

database was developed and maintained by Oleg Ursu, Sorin Avram, Cristian Bologa, 
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Liliana Halip, Alina Bora, Giovanni Bocci, and Tudor Oprea. Web application developed 

by Jayme and Holmes. 

 

 

Figure 2.3. Summary for DrugCentral database. (https://drugcentral.org/about) 

 

2.4.2.2 DrugBank Online 

 

DrugBank Online is a comprehensive, free-to-access online database containing 

information on drugs and drug targets. They combine detailed drug (i.e., chemical, 

pharmacological, and pharmaceutical) data with comprehensive drug target (i.e., 

sequence, structure, and pathway) information as both a bioinformatics and a 

cheminformatics resource. 

DrugBank started in 2006 in Dr. David Wishartôs lab at the University of Alberta. It began 

as a project to help academic researchers get detailed structured information about drugs. 

In 2011 it became a part of The Metabolomics Innovation Center (TMIC). The project 

continued to grow in scope and popularity and was spun out into OMx Personal Health 

Analytics Inc in 2015. 

The latest release of DrugBank Online (version 5.1.9, released 2022-01-03) contains 

14,595 drug entries, including 2,719 approved small molecule drugs and 1,511 approved 

biologics (proteins, peptides, vaccines, and allergenic), 132 nutraceuticals and over 6,657 

experimental (discovery-phase) drugs. Additionally, 5,269 non-redundant protein (i.e. 

drug target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each 

entry contains more than 200 data fields, with half of the information being devoted to 

drug/chemical data and the other half devoted to drug target or protein data. 
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2.4.3 Drug-Side Effect Interactions 
 

Drug-Side Effect interactions were collected and integrated from two different sources, 

SIDER, and STITCH. Both databases were used while acquiring Drug-Side Effect 

Interaction data. General information about the relevant data banks and the method of 

obtaining data are explained in the following sections. 

 

2.4.3.1 SIDER and STITCH 

 

STITCH is a database that mainly uses String DB infrastructure, provides chemical 

interaction data, records drugs with its unique reference number system (SMILE), and 

shows their interactions. 

On the other hand, SIDER is a database that primarily focuses on side effects and does 

this by subjecting the data obtained from articles and prospectuses to various criteria 

(MedDRA, ATC) and using Stitch references. 

SIDER (Side Effect Resource) contains information on marketed medicines and their 

recorded adverse drug reactions. The information is extracted from public documents and 

package inserts. The available information includes side effect frequency, drug and side 

effect classifications, and links to further information, for example, drug-target relations. 

Version 4.1, released on October 21, 2015, was administrated on this thesis. This release 

version uses the MedDRA dictionary (version 16.1). 

The MedDRA Concept Type data class is divided into two classes for presenting detailed 

information, LLT: Lowest Level Term and PT: Preferred Term. 

According to the guidance document, all side effects are given in LLT. Additionally, in 

PT, each LLT has a PT equivalent. It is said that PT filtering is preferable because the 

LLT can be overly detailed at times. Both LLT and PT values were considered valuable 

to avoid data loss since we had already removed duplicate values from the data. When we 

analyze the data from this perspective, there are 163.206 PTs, 145,742 LLTs, and 901 

unclassified entries. These LLTs are equivalent for most purposes and to the same PT. 

The following example can be given to the LLT, PT distinction. 
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i. C0235431 PT Blood creatinine increased 

a. C0151578 LLT C0151578 Creatinine increased 

b. C0235431 LLT C0235431 Blood creatinine increased 

c. C0700225 LLT C0700225 Serum creatinine increased 

d. C0858118 LLT C0858118 Plasma creatinine increased  

 

2.4.4 Protein-Disease Interactions 
 

In order to form the Protein Disease Interactions, the data obtained from the databases, 

about which information is given in the following section, were used. First, gene-protein 

interactions and gene-disease interactions were obtained for reference mapping. PDI raw 

data were created after these two interaction data were mapped as a gene-protein-disease 

network. 

 

2.4.4.1 Gene ï NIH under (NCBI (National Center for Biotechnology Information)) 

 

The whole Gene ID list available has been collected from the Gene, which is one of the 

NCBI Databases (Gene 2004).  

Gene supplies gene-specific connections in the nexus of map, sequence, expression, 

structure, function, citation, and homology data. Unique identifiers are assigned to genes 

with defining sequences, genes with known map positions, and genes inferred from 

phenotypic information. These gene identifiers are used throughout NCBI's databases and 

tracked through updates of annotation. Gene includes genomes represented by NCBI 

Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval 

from NCBI's Entrez and E-Utilities systems. Gene comprises sequences from thousands 

of distinct taxonomic identifiers, ranging from viruses to bacteria to eukaryotes. It 

represents chromosomes, organelles, plasmids, viruses, transcripts, and millions of 

proteins. 
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2.4.4.2 HGNC (HUGO Gene Nomenclature Committee) 

 

The HGNC Gene ID (Nomenclature) content offered by HNGC has been used to 

understand and compare the nature of missing links and search for alternatives in areas 

where the Gene ID and or Gene Name data classes are not available. The relevant database 

is introduced in its resources as follows. (Tweedie et al. (2021)) 

HGNC is a non-profit making body jointly funded by the US National Human Genome 

Research Institute (NHGRI) and Wellcome (UK). They operate under the auspices of 

HUGO, with crucial policy advice from a Scientific Advisory Board (SAB), and they also 

consult with a team of specialist advisors who support specific gene family nomenclature 

issues. They collaborate with staff at other gene nomenclature resources, especially the 

MGNC and RGNC. 

The HGNC is responsible for approving unique symbols and names for human loci, 

including protein-coding genes, ncRNA genes, and pseudogenes, allowing clear scientific 

communication. For each known human gene, HGNC approves a gene name and symbol 

(short-form abbreviation). All approved symbols are stored in the HGNC database, a 

curated online repository of HGNC-approved gene nomenclature, gene groups, and 

associated resources, including links to genomic, proteomic, and phenotypic information. 

Each symbol is unique, and they ensure that each gene is only given one approved gene 

symbol. It is necessary to provide a unique symbol for each gene so that they and others 

can talk about them, and this also facilitates electronic data retrieval from publications and 

databases. In preference, each symbol maintains parallel construction in different 

members of a gene family and can also be used in other species, especially other 

vertebrates, including mice. There is an already approved almost 43,000 symbols; around 

19,000 are for protein-coding genes, and the remainder includes pseudogenes, non-coding 

RNAs, and genomic features. 

 

2.4.4.3 DisGeNET 

 

The DisGeNET database is vital in the thesis work, especially with the UMLS Concept 

ID from the data classes it contains. Due to the subject data class, both diseases and side 

effects can be mapped based on ID. In addition to getting rid of the adverse impacts of 

name-type naming, it is ensured that intersecting common records are not eliminated and 

disrupt the interaction prediction. The brief introductory information about him is as 

follows; DisGeNET is a discovery platform containing one of the largest publicly 

available collections of genes and variants associated with human diseases; it integrates 

data from expert-curated repositories, GWAS catalogs, animal models, and the scientific 

literature. Stored data are homogeneously annotated with controlled vocabularies and 
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community-driven ontologies. Additionally, several original metrics are provided to assist 

in prioritizing genotype-phenotype relationships. 

The current version of DisGeNET (v7.0) contains 1,134,942 gene-disease associations, 

between 21,671 genes and 30,170 diseases, disorders, traits, and clinical or abnormal 

human phenotypes, and 369,554 variant-disease associations, between 194,515 variants 

and 14,155 diseases, traits, and phenotypes. 

 

2.4.5 Drug-Disease Interactions 
 

2.4.5.1 KEGG (Kyoto Encyclopedia of Genes and Genomes) 

 

Although the KEGG database has its unique identification system and does not have the 

user-friendly interface used by other databases today, it has been used to provide some 

fundamental data for our thesis due to its bioinformatics elements and their interaction 

data. This database, which makes a difference, especially with Drug Disease Interaction 

data, is defined in its resources. 

KEGG is a database resource for understanding high-level functions and utilities of the 

biological system, such as the cell, the organism, and the ecosystem, from genomic and 

molecular-level information. It is a computer representation of the biological system, 

consisting of molecular building blocks of genes and proteins (genomic information) and 

chemical substances (chemical information) that are integrated with the knowledge of 

molecular wiring diagrams of interaction, reaction, and relation networks (systems 

information). It also contains disease and drug information (health information) 

perturbations to the biological system. 

KEGG is an integrated database resource consisting of sixteen databases shown, and they 

are broadly categorized into systems information, genomic information, chemical 

information, and health information. 
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Figure 2.4. KEGG data summary (https://www.genome.jp/kegg/kegg1a.html) 

2.5 Matrix Factorization Method  

In numerical analysis problems, the method of writing a given matrix as the product of 

two matrices with specific properties has been known as the decomposition terminus for 

a long time. For example, the LU decomposition method, which is a method of solving 

the system by writing the matrix of a linear system of equations as the product of the lower 

and upper triangular matrices, was proposed by Banachiewicz in 1938. 

The development of data science towards the end of the 20th century led to the need to 

use the matrix factorization method in different ways for different problems. Paatero and 

Tapper (1994) suggested nonnegative matrix factorization. 

Based on the fact that the matrix given in many problems is very sparse (that is, the value 

in only a few cells of the matrix is known), Hoyer (2004) examined this proposed method 

by adding a sparsity condition. 

As used in this thesis, the Matrix factorization method was first explained by Simon Funk 

in 2006 in a blog post about the recommendation systems competition organized by 

Netflix. (Funk(2006)). The first serious scientific study describing this method for 

suggestion systems is by Salakhutdinov. and Mnih A (2008). The matrix factorization 

method for the first time by Gönen(2012) for the DTI estimation problem. 

An M matrix can represent every graph on the computer. If there are m drugs and n side 

effects (or targets) in a DSE (or DTI) estimation problem, the size of the M matrix will be 

m x n. If there is an edge between Di drug and Sj (or Tj) in the graph, one is written in the 

M matrix cell (i,j); otherwise, zero is written. Let us consider the following example. 

(Figure 2.5) 

 



23 

 

 

Figure 2.5. DSE prediction example given by a bipartite graph 

 

For this example, the matrix M is 4x3 dimensional and will look like this 
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M is a large and sparse matrix, which means that 1s in the matrix are much less than 0s. 

The Matrix Factorization Method can be briefly described as follows: 

Choosing k small positive integer, 0<a<1, 0<b<1. It is necessary to find such L and R 

matrices of mxk and kxn dimensions, respectively, so that the following function takes 

the minimum value: 

22

1

2])[( RbLaMLR
ijM

ijij ++-ä
=

    (1) 

Here L  and R  denote the norm of these matrices, and the norm of a matrix A is defined 

as follows: 

       ä=
ji

ijAA
,

2       (2) 

The Matrix Factorization method can perform with the following steps: 

Step 1. Small positive integer k and numbers a and b that meet the conditions 0<a<1, 

0<b<1, and a number e close to 0 are selected. 

Step 2. The mxk and kxn sized L and R matrices are taken randomly. 
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Step 3. Calculating the P=LR matrix. 

Step 4. For each (i,j) cell equal to 1 of the M matrix, the square of the difference between 

Pij and Mij is calculated, and these values are collected in an E variable. 

Step 5. The values of a and b that meet the conditions 0<a<1, 0<b<1 are taken, and                                                      

E+
22 |||||||| RbLa +  is assigned to E. 

Step 6. Searching for other L and R matrices that make the E value smaller. 

Step 7. If the absolute value of the difference between two consecutive values of E is 

greater than e, go to the third step; otherwise, the algorithm stops working. 

The matrix factorization method can be explained with a simple example. For instance, 

the following DSE prediction problem was given. (Figure 2.6) 

 

 

Figure 2.6. A graph for the explanation of MFM 

 

The matrix of this graph will be as follows: 
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Let us take the k=1 and a=b=0.1. Let L=
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 and R=[1 0 1]. Let us calculate the LR 

matrix. 

LR obtained as,  
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If we compare LR and matrix M, the places with 1 in the M matrix, we can see that only 

the value in cell (2,2) is different. For these L and R matrices, we find the E value 

E=1+0.1(1+1)+0.1(1+1)=1.4 

Now let us take L=
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 and R=[1 1 1]. In this case, the LR matrix is obtained as; 

LR=
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Since the matrix M has all cells equal to 1, this time, the E value will be 

E=0.1(1+1+1)+0.1(1+1+1)=0.6. No smaller value can be obtained for this example. This 

simple example concludes that every D1, D2, and D3 drug has S1, S2, and S3 side effects. 

2.6  Non-Negative Matrix Tri -Factorization Method 

Let us denote the unit matrix with I. For matrix A, if we denote the transpose of AT and 

matrix A, the matrix consists of the interchanges of rows and columns. 
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If A.AT=I fo r a matrix A, then the matrix A is called an orthogonal matrix as a definition. 

For example, 
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A  its matrix is an orthogonal matrix 

If there are no negative numbers in the cells of the input matrix, such matrices are called 

non-negative matrices. In Ding et al.ôs (2006) study, the matrix factorization method was 

developed. Let our input matrix be the non-negative matrix M with dimensions nxm. Let 



26 

 

us pick a small number, k. We are looking for L, S, and R matrices of nxk, kxk, and mxk 

dimensions, respectively, 

ä
>

-

0

2])[(

ijM

ijij
T MLSR       (3) 

let the expression take the smallest possible value. Here L and R matrices are orthogonal 

matrices. This method is called the matrix tri-factorization method. If n=m and matrix M 

is a symmetric matrix, then L=R. 
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CHAPTER 3 

 

3. MATERIALS  AND METHODS 

3.1 Acquisition of PPI Data 

To acquire the PPI dataset, proceeded as follows; 

Step 1. Downloaded String DB references for 20.375 Human proteins on UniProtKB 

Step 2. Eliminated a total of 1.822 protein data lines without STRING reference numbers 

Step 3. For the remaining 18.553 protein entry, the STRING reference numbers were 

edited as part of the database search requirement, clearing the organism code and other 

code expressions, 9606. and; i.e. 

Step 4. This protein data was queried at the STRING databaseôs lowest possible 

confidence level (0.15). Before this query, the protein data were converted into clusters of 

1.800 members since the related database offers the possibility to query up to 2.000 entries 

within the technical possibilities. 

Step 5. As a result, 561.330 PPI data were obtained, reference numbers were switched 

back to UniProt IDs, and scores were created. 100 PPI data had to be eliminated in the 

final stage because two different STRING cross-reference values were allocated for 

P11836 and Q9H714. Thus, the raw data of the PPI dataset was created. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Protein-Protein Interaction; a total of 561,330 scored relationships were obtained to form 

a Laplacian matrix with dimensions of 17,765 x 18,002 (X1: Protein, Y1: Protein), and 

the scores were above the 0.15 confidence interval, which is the lowest confidence level 

STRING could provide (when we consider the matrix dimensions only to the members 

with relations, the matrix dimensions). The numbers of all protein entries as classified 

reviewed and SwissProt are 20.376, but we must state that 1,823 protein entries do not 

contain a STRING reference, and 788 proteins score below 0.15.  

However, this raw data has been eliminated for finding the new predictions with an 

algorithm. The reasons for this process and the final numeric characters have been given 

in the results section. 
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3.2  Acquisition of DTI  Data 

Step 1. Drug-Target Protein interaction data extracted from literature, drug labels, and 

external data sources downloaded from DrugCentral DB. This raw data includes the 

following classes and contains a total of 19,379 rows of data; Drug Name, Struct ID, 

Target Name, Target Class, Accession No, Gene, Swiss-Prot, act_value, act_unit, 

act_type, act_comment, act_source, act_source_url, relation, MOA, MOA Source, MOA 

Source URL, action type, tdl, and Organism. 

Step 2. Non-Homo sapiens organisms were eliminated from the raw data content first. 

(Remaining data 14,301, eliminated data 5.077) 

Step 3. Uniprot and Swiss-Prot references were checked; there are no empty entries in 

these classes, so there is no elimination realized. 

Step 4. At this stage, more than one UniProt ID belongs to a drug in the data content; in 

some drugs, these two different reference values, while in others, it reaches up to 55 

values. Each interaction was converted into pairs containing singular information, 

yielding 15,457 rows of data, including redundant data. 

Step 5. From the existing data, columns Struct ID, Target Name, Target Class, Gene, 

Swiss-Prot, act_value, act_unit, act_type, act_comment, act_source, act_source_url, 

relation, MOA, MOA Source, MOA Source URL, action type, tdl, and Organism classes 

have been removed. Duplicate entries were eliminated, resulting in DrugCentral-sourced 

data consisting of 15,347 lines. 

Step 6. DrugBank data was analyzed and processed as the second step of dataset 

preparation. The downloaded dataôs existing DrugBank ID, Type, and UniProtName 

classifications were eliminated. 

Step 7. The data, which includes a total of 21,626 lines, lines by parsing the data belonging 

to non-human organisms besides the human protein data although they are not reviewed 

(SwissProt), remaining data consists of 20,375. After the redundant data is eliminated, our 

DrugBank data consisting of 16,794 lines of unique data, is formed. 

Step 8. Before merging data from both databases, it was examined to determine how many 

entries we got from which database and the number of those that were found in both 

databases and those that were not. According to this;  

I. Number of Drugcentral specific DTIs: 4.508  

II.  Number of Drugbank specific DTIs: 3.836  

III.  Number of common DTIs registered on both databases: 27,178. 
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Step 9. Following the merging of Drugbank and Drugcentral data (35,522), duplicate data 

was removed, and 28,522 rows of DTI data were available with data from both databases. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Drug-Target (Protein) Interaction; a total of 28,522 relationships that will take one value. 

When we consider the matrix dimensions only to the members with relations, the 

dimensions are 6.594 x 3.265 (X1:Drug, Y1:Protein) 

However, this raw data includes drug names as a node reference and must be converted to 

Drugbank IDs. For that reason, raw data is mapped over IDs for quickly finding the new 

predictions with the algorithm. The steps of this process and final numeric characters have 

been given in the results section. 

3.3 Acquisition of DSI Data 

Drug Names x Stitch ID data downloaded from Sider DB and Stitch ID x ATC Code data 

are integrated. Then, only Stitch ID1 and Side Effect data were extracted from the table 

containing StitchID1, StitchID2, UMLS Concept, MedDRA Concept Type, MedDRA 

Term, and Side Effect data. Sider frequencies of side effects also provide data. However, 

they could not be used because they partly scored verbally and partly in numerical groups. 

The use of two different Stitch IDs was researched in the data. Accordingly, a decision 

has been made to use it as a reference value and integrate Stitch ID > Side Effect > Drug 

Name. Stitch ID_1 CID1XXX  format is used for flat compounds, while Stitch ID_2 

CID0XXX  represents stereo-specific compounds. E.g., CID100000085 stands for 

carnitine, while CID000010917 stands for L-carnitine. Since flat compound Stitch ID is 

used for all other reference tables in the database, the data column in CID0XXX  format 

has been removed. In the last case, the data consisting of 309,849 lines were purified from 

repetitive entries. The Drug-Side Effect Interaction data consisting of 158.209 lines were 

obtained, so the third matrix to be used in the algorithm is completed. 

Due to a suspicion of potential error in the side effect data compilation process, the Drug 

Name x Side Effect data was reviewed again.; The merge, elimination, and integration 

sequence at different stages are repeated. The number of duplications and their reasons 

can be explained as follows: 

Step 1. The raw data from Sider is divided into LLT, PT, and Non according to their 

ñmeddra_concept_type.ò 

Step 2. While the number of data in the LLT class is 145,742, the classes 

Stitch_ID2(stereo-specific compound reference), umls_concept_ID, and meddra_term 

purged. Duplications from the table of Stitch_ID1 x Side Effects classes were eliminated. 

So we have 138,899 rows of unique data rows. (Number of Duplicated Data: 6,843) 
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Step 3. While the number of data in the PT class was 163.206, the same operations were 

repeated in the previous item. As a result, we have 145,321 rows of unique data rows. 

(Number of Duplicated Data: 17,885) 

Step 4. In the NON-class (without the meddra_concept_type classification), the number 

of data was 901, and I repeated the same operations. As a result, we have 857 rows of 

unique data rows. (Number of Duplicate Data: 44) 

At this stage, we believe that the factor that causes the data number to decrease due to 

duplications is eliminating the Stitch_ID2 class. Because one Stitch_ID1 (flat-compound) 

data versus more than one Stitch_ID2 data and Side Effect mapped, this ensures that the 

raw data is unique without the classes that which was eliminated, and as we eliminate the 

classes, only the redundant data after mapping in Stitch_ID1 x MedDRA Concept Type x 

Side Effect, causing elimination. 

Step 5. All the data combined. In this intermediate data form of 285,077 rows, we have 

eliminated the distinctive class ñmeddra_concept type.ò After this process, when the 

duplication elimination is realized again, we have 163.221 unique data. The large number 

of duplications in this data I attributed with Stitch_ID1 x Side Effect classes to the fact 

that all side effects are given as LLT and also processed as PT, but in some cases, LLT is 

the same as PT. The following statement on the Sider download page is also for this; All 

side effects found on the labels are given as LLT. 

Additionally, the PT is shown. There is at least one PT for every LLT, but sometimes the 

PT is the same as the LLT. LLTs are sometimes too detailed, and therefore you might 

want to filter for PT. (Number of Duplicate Data: 121,856) 

Step 6. At the last stage, the Stitch_ID1 X Side Effect data match, consisting of 163.221 

lines, with the DrugNames (Stitch_ID1 x DrugNames) data I obtained from the Stitch_ID1 

reference point, again via Sider DB. Again, this final form was checked in the Drug Names 

x Side Effect classes for duplications. We got Side Effect data consisting of 158.209 

unique lines. (Number of Duplicate Data: 5.012) At this stage, we think that the reason 

for the existing duplications may be more than one Stitch_ID1 definition for a drug name. 

As a result, we have the following raw data regarding the network we want to create as a 

result of the study; 

Drug-Side Effect Interaction; a total of 158.209 relations were gathered to be used in a 

relation matrix with dimensions of 1.345 x 6.123 (X1: Drug, Y1: Side Effect), and the 

value of 1 was obtained by using the data in the databases together when we apply the 

matrix dimensions only to the members with relations. This raw data only consists of drug 

and side effect names; for smooth and fast test runs of our code and algorithm, all of these 

nodes needed to be converted as IDs. 
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Like others, this raw data also has been eliminated for finding the new predictions with 

the algorithm. The reasons for this process and the final numeric characters have been 

given in the results section.  

3.4 Acquisition of PDI Data 

In creating the Protein Disease neighborhood matrix, Gene X Protein relationships should 

be obtained in the first step. Data collection and preparation processes carried out in this 

context are explained in the continuation of the subsection. 

As a starting point, an attempt was made to reach all of the Gene ID references 

corresponding to proteins in the SwissProt (reviewed) class. Therefore, the Gene ID data 

of 1.518 entries did not exist in the Protein Gene Interactions data downloaded from 

UniProtKB in the first place. In the previous process, it was thought that this deficiency 

could be overcome with HGNC ID, but since HGNC-ID and Gene-ID data did not belong 

to the same class, it was necessary to develop a different approach. Within the framework 

of this approach, the following stages were followed; 

In the first stage, UniProt ID / Gene Names / Gene ID / HGNC class data table was 

downloaded from UniProtKB; this data contains 20.376 protein entries, including all 

SwissProt class proteins. 

When examined, there were 1.518 protein entries without Gene ID data, 190 without 

HGNC ID data, and 136 protein entries without Gene Name data. It was assumed that 

protein entries missing in GeneID data should contain at least one of these three data 

classes to be completed using other data references. So, 132 entries were identified in this 

table that had none of the Gene Names, Gene ID, and HGNC ID data in common; Due to 

the lack of reference data on these, they were excluded from the sample, and the remaining 

data of 20.244 lines continued to be examined. (When the random entries selected in the 

132 screening sample are checked retrospectively in UniProtKB, it is seen that there is no 

record of the gene data.) 

During the pre-processing, for 1.386 entries without Gene ID data, the tables are 

completed using Genes Names and HGNC ID references. For this purpose, first, all Homo 

sapiens gene data with organism code 9606 was obtained from NCBI-NIH / Gene DB, 

and all data classes except NCBI Gene ID / Nomenclature ID (HGNC) / Ensembl Gene 

ID / Synonyms and SwissProt Accession (UniProt ID) were eliminated. As such, 198.866 

lines of data were available. After eliminating the 58.133 lines of data that did not 

correspond to Swissprot Accession, 140.733 rows of data were left. All data classes except 

NCBI Gene ID and Swissprot Accession were eliminated, and repetitive values for the 

remaining classes were eliminated, yielding 20.197 lines of unique UniProt ID / Gene ID 

data. Because there was more than one SwissProt ID equivalent for some Gene ID values, 

these data were combined into single matches, and a reference table of 20.301 rows and 

non-repeating values to be used for completion was created. 
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In the next step, the data obtained from UniProtKB and the data obtained from NCBI-NIH 

were mapped to complete the missing/missing links, and as a result of this process, only 

124 UniProt ID data without Gene ID counterparts remained. Thanks to NCBI-NIH data, 

1.262 missing links were resolved. 

HGNC ID data and Gene Name data were checked for the remaining 124 UniProt ID 

entries without Gene ID data. It was observed that 37 entries did not have HGNC ID data, 

but all of them had Gene Name naming. A new mapping process was initiated over the 

HGNC ID X Gene ID link, and 87 more lost links were recovered. The remaining 37 

missing links were manually searched and reviewed one by one on both NCBI NIH and 

UniProtKB, and a total of 11 more working references were found.  

At the last stage, ñThis record has been withdrawn by NCBI because the model on which 

it was based was not predicted in later annotationò or ñThis record has been withdrawn 

by NCBI staff. By XM_006717347.3 which is not sufficient evidence to define a distinct 

geneò, it has been determined that reference withdrawal was made for various reasons. 

As a result, 20.542 rows of interaction data were obtained by eliminating 158 missing 

links and singularizing the Gene x Protein data with the remaining relationships. The 

prediction test will not be performed as a standalone matrix. In this data, the number of 

unique proteins present is 20.218, while the number of unique gene ids is 20.287. 

In the second part of the study on Protein Disease Interactions, research was conducted 

within the scope of Gene Disease Interactions. DisGeNET, which has a short introductory 

content in the previous section, has been used as a data bank in this sense. The research 

and evaluation processes of the subject data are given below. 

"Curated" Gene Disease Associations and "BeFree" Gene Disease Associations tables, 

containing relationships from different sources, were downloaded via DisGeNET. When 

the features of these tables are examined respectively, the data contained in the first one, 

UniProt, see that it is supported by expert-curated resources such as CGI, ClinGen, 

Genomics England Panel App, PsyGeNET, Orphanet, the HPO, and CTD. At the same 

time, the content found in the latter is extracted gene-disease associations from MEDLINE 

abstracts published between January 1970 and December 2019 using the BeFree system. 

We see that while negations of associations were detected using patterns and keywords. 

The data classes that have been used and have DisGeNet DB are; geneID (NCBI Entrez 

Gene Identifier), gene symbol (Official Gene Symbol), diseaseID (UMLS concept unique 

identifier), disease name (Name of the disease), and evidence index. In particular, the 

"Evidence index" (EI)  scoring was used as a distinguishing factor in evaluating the data. 

Because when the content of this data class is examined, the EI indicates the existence of 

contradictory results in publications supporting the gene/variant-disease associations. This 

index is computed for the sources BeFree and PsyGeNET by identifying the publications 

reporting an adverse finding on a particular VDA or GDA. The EI classification can be 

summarized as follows: 
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i. EI = 1 indicates that all the publications support the GDA or the VDA 

ii.  EI < 1 indicates that there are publications that assert that there is no association 

between the gene/variants and the disease. 

iii.  If the gene/variant has no EI value, the index has not been computed for this 

association. 

The EI is computed as follows; where: Npubspositive is the number of publications 

supporting a GDA in BeFree or PsyGeNET, or a VDA in BeFree and Npubstotal, is the 

total number of publications in BeFree or PsyGeNET supporting that GDA, or in BeFree 

for VDAs 

 

total

pozitive

pubs

pubs

N

N
EI =

    (4) 

Considering Evidence Index scoring and explanations, relationships classified as EI<1 in 

the BEFREE labeled data were excluded and eliminated. At the same time, there is no 

excluded data in the data labeled Curated. 

Table 3.1. The distribution of data and number of interactions within the scope of EI 

 

 

Additionally, source and score data classes are eliminated by DSI, DPI, disease type, 

disease class, diseaseSemanticType, YearInitial, YearFinal, NofPmids, NofSnps, and 

source and score data classes; they do not have a single classification system, and no data 

separation is made according to them. 

Before these two different tagged relationships are combined, screened, and duplication 

checked, the Curated Gene Disease Association data consists of 84,038 rows that do not 

contain duplicate items. The BEFREE Gene Disease Association data consists of 846,474 

rows that do not contain duplicate items. First, 54,603 relationships, BEFREE-labeled data 

with an EI value of less than one were excluded. As a result of combining the remaining 

relationships, 875,909 lines of Gene X Disease data were obtained. When it is combined 

the data belonging to these two different classes by adding the source information, since 
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they may have been registered more than once in different sources, it was determined that 

41,374 relations were entered into the records twice, so a total of 20,687 records 

originating from BEFREE were excluded from the scope. As a result, a total of 855,222 

lines of integrated and unique relationship data were obtained from these sources. The 

numerical properties of these relationships, for which we did not create any matrix on their 

own, appear as X1: 19.203 Gene-ID and Y1: 23.005 Disease-ID. 

These two data sets, the stages of which were obtained in this way, were combined into a 

single data set as Protein Disease Interaction to be used in neighbor matrices and make 

new interaction estimations. Other operations are explained in the results section. 

3.5 Acquisition of DDI Data 

The last data set used in this thesis study, Drug X Disease Interactions, was prepared by 

KEGG, Drugbank, and DisGeNET databases. Compared to our other datasets, the 

following processes have been followed in order to progress with minimum loss in this 

dataset, which has very few interactions and nodes and is very valuable in this sense. 

Working with the initial data set consisting of a total of 4,891 relationships on KEGG DB, 

which is one of the rare sources where the subject interactions can be found holistically, 

initially included 1,961 unique drugs and 544 unique disease entries. However, these data 

could not be linked with the data types in the interaction matrices created before due to 

the referencing system used by KEGG DB (Drug Format: D0123, Disease Format: 

H0123). In order to meaningfully link this unique referencing with other matrices 

retrospectively, the KEGG Drug ID entries, which form the first part of the matrix, were 

converted into Drugbank IDs. Using the data provided by the Drugbank database access, 

Drugbank ID X KEGG ID mapping of all available drugs was performed. Thanks to this 

mapping, 1,299 of the 1,961 unique drug entries could be referenced with the DrugbankID 

data. 

As can be understood from the number of entries not found, there are several reasons why 

some of the KEGG Drug ID X Drugbank ID references are not responding; one of them 

is specified in a phrase that appears on the Drugbank screen while manually referencing; 

"this drug entry is a stub and has not been fully annotated. It is scheduled to be annotated 

soon". These entries are mainly traditional Japanese and Chinese therapeutic mixtures 

(specified as plant species in the contents of KEGG Entry) as listed in table 3.2.  

Finally, in response to a disease entry, we would like to point out that KEGG DB has 

entered drugs in X and Y format due to the combined use of more than one drug in the 

clinic; these have also been made into single links. Therefore, the total number of 

relationships has been 4,948. 
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Table 3.2. Traditional drugs on KEGG 

 

 

Next, KEGG Drug Names were manually searched on DrugbankDB for the remaining 

662 unique drug entries. Little progress has been made by mapping the KEGG Drug Name 

> Drugbank Drug Name, but very little data can be referenced in this way. During the 

current manual query processes, KEGG stores the Drug Name class as more than one (up 

to twelve in some drugs); an example of this situation is shared in table 3.3 below. 

. 

Table 3.3. Examples of KEGG drug names 

 

 

When searching by name on Drugbank, it has been seen that USAN-labeled names usually 

give high results, but JAN, INN, and JN17-labeled names have few responses. In addition, 

TN-labeled names are thought to be different brand drugs with the same active substance 

produced by different companies. Searches that did not respond to the first name were 

also tried with the second and third names to refer to them with the least possible loss, but 

as a result, the Drugbank IDs for 152 drugs could not be found. There is no doubt that the 

reasons mentioned above also have an impact on this issue. 
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KEGG Disease ID entries, which form the second part of the matrix, were converted to 

Disgenet Disease ID format. At this stage, ñDisgenet Disease ID X Disgenet Disease 

Name X KEGG Disease Name X by KEGG Disease ID mapping, 2,094 of 4,948 

relationship data were mapped in this way, but 2,854 relationships were exposed, and it 

was seen that they consisted of 330 unique diseases. Referencing these missing links was 

again carried out with manual controls. It is seen that the records entered as different 

diseases in the Disgenet and KEGG records, by their nature, actually contain only minor 

nuances. These are; are factors such as commas, hyphens, numbers, or inverted 

expressions that make mapping through text difficult. During the procedures, the disease 

names and the MeSH (Medical Subject Headings) data included in the KEGG data were 

used. MeSH data could also be used for mapping because both KEGG and Disgenet use 

this data, but this was not possible as Disgenetin does not presently have MeSH data 

inaccessible data tables. As a result, reference could not be made for only five diseases, 

and "KEGG Disease ID X KEGG Drug ID X Drugbank ID X Disgenet ID" data was 

created. After eliminating the unanswered relationships and duplicate entries from any 

reference point, the DrugX Disease data that will form the final neighborhood matrix 

consists of 3.742 Interactions and X1: 1.447 (Drug) X2: 517 (Disease) nodes. 

As it will be explained in the Result section, no such relationship has been made about 

this data. In contrast, the relationships other than the nodes that do not have a common in 

some matrices are eliminated. 

3.6 Proposed Model 

Our objective function is as the following: 

2

434334

2

424224

2

323223

2

212112342423124321 ),,,,,,,( HAHRHAHRHAHRHAHRAAAAHHHHF -+-+-+-=

                (5) 

Our aim is to minimize this objective function under the constraint: 

0,0,0,0 4321 ²²²² HHHH    (6) 

IHHIHHIHHIHH TTTT ==== 44332211 ,,,    (7) 

0,0,0,0 34242312 ²²²² AAAA    (8) 

Here 34242312 ,,, RRRR  are the matrices with sizes 43423221 ,,, xnnxnnxnnxnn , respectively. 

4321 ,,, HHHH  are non-negative orthogonal matrices with sizes 44332211 ,,, xknxknxknxkn

, respectively. 

34242312 ,,, AAAA  are matrices with sizes 43423221 ,,, xkkxkkxkkxkk , respectively. 
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In the formula of objective function F  by the S  we denote the Frobenius Norm of a 

matrix. 

njmisS ij ¢¢¢¢= 1,1],[       (9) 

that is  
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We use the random Acol initialization technique for initial values of the matrices 

4321 ,,, HHHH , which was introduced by Langville et al. (2006). 

In this technique 
1H  is initialized by averaging p  randomly chosen columns from 

12R . 

Unlike this method, in random selection, the sparse 
12R  matrix is tried to be obtained with 

the help of a dense 
1H  matrix. The Acol method eliminates the disadvantage of random 

selection. The H  and Amatrices are calculated in each subsequent step with the help of 

the previous ones with the help of the following formulas: 
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where; THHH 1111= , THHH 2222= , 
THHH 3333= , THHH 4444= . 

In our model, we include intra-data type relations, such as the Protein-Protein Interactions, 

with the aid of the 3W  Neighborhood matrix of the protein-protein bipartite graph. In a 

diagonal matrix, for each i  the degree of protein i in the cell ),( ii of the matrix, that is, 

the number of proteins with which it is associated is written. Let the matrix 3D  be the 

degrees matrix of this graph. With the help of 3W  and 3D  matrices, we construct the 

Laplacian matrix with the formula of 333 WDL -= . After that, we add a new term to our 

objective function that corresponds to proteins-proteins interactions; 
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Here, )( 333 HLHtr T
is denoted the sum of the diagonal elements of the 333 HLH T

 .  
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CHAPTER 4 

 

4. RESULTS 

A comprehensive study was carried out within this thesis to collect the available data from 

various biological databases in the broadest possible framework and loss to predict new 

interactions with the minor data. The numerical characteristics of the data frame that we 

have as a result of this first raw data collection stage are given in table 4.1 below. 

Table 4.1. Characteristics of all raw data frame 

 

 

The integrated data, in which the new interaction estimation is performed with the NMTF 

algorithm, has been subjected to some eliminations. First of all, for the connection points 

of the dataset to be turned into neighborhood matrices, all protein data were converted to 

UniProt IDs, drug data to Drugbank IDs, and disease and side effect data to UMLS 

Concept IDs. Non-existent ports and interaction data from any of them had to be 

eliminated. In the continuation of this elimination process, a protein-based focus was 

carried out for the rapid operation of the algorithm, and protein entries were shared within 

the scope of Protein-Protein Interaction (Laplacian, L11 matrix), Target Protein-Drug 

Interaction (Relation, R23 matrix), Protein-Disease Interaction (R34 matrix) interactions. 

Relationships that do not exist are excluded. 

The disease and side effect connection points are located in the Drug-Disease Interaction 

(R24) and Drug-Side Effect Interaction (R12) matrices and use the same identification 

system (UMLS Concept ID). As these two databases intersect, their areas in common on 

the raw data and relationships related to this are excluded from the scope, with no adverse 

effect on the estimation results. Finally, we mapped the existing Gene Protein 

relationships onto the Gene Disease relationships to create the Protein Disease Interaction 

(R34) matrix. Meanwhile, we excluded the relationships that the reference Gene link point 

did not respond to from our dataset. After evaluations, mapping, conversion of 

identification numbers, and elimination were completed, the NMTF algorithm was run. 

The final data frame and the characteristics are given in table 4.2 below. 
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Table 4.2. Characteristics of final data frame after eliminations 

 

 

As can be seen from the table, the number of proteins found in common in the relevant 

matrices is 3.097. However, during the control tests, it was observed that some of the drug 

nodes could not find a response in the Drug Disease Interaction and Drug Side Effect 

Interaction interaction data; therefore, on the main graph created by the algorithm, the 

Target Protein Drug Interaction interaction table, in which the drug list is obtained, can be 

added to each one. Drug entries from two sub-datasets, which were found to be missing 

in this dataset, were added later, and virtual interactions were created. In order to make it 

easier to find the sources retrospectively when the results are received, an ID named 

OSK705 was given as a protein entry for the drug nodes coming from the Drug Disease 

sub-dataset. In contrast, an ID named OSK507 was made for the drug nodes coming from 

the drug nodes stemmed from the Drug Side Effect sub-dataset.  

In addition, since some disease nodes are in the Drug Disease Interaction data but not in 

the Protein Disease Interaction data, they were added to the list of relations from which 

the disease node list was taken, and virtual responses were given. Next, it was checked 

with the relevant part of the code in which the NMTF method was applied, and the 

unintentional loss of any node or interaction data was prevented. In addition, as mentioned 

before, any additional loss in the Drug Disease Interaction data, which is very valuable, is 

prevented. In the last case, the data frame fitted to the algorithm and recognized according 

to the relevant part of the code has the following features; ñThere are 3.105 side effects, 

6.584 drugs, 3.097 proteins, and 17.034 diseases, 42.209 links between side effects and 

drugs, 27.356 links between drugs and proteins, 342.163 links between proteins and 

diseases and 3.742 links between drugs and diseases.ò 

As we are about to focus on link prediction between relation side effects and drugs, drugs 

and diseases, diseases and proteins, and proteins and proteins, it is essential to have a good 

understanding of these matrices. 

The number of side effects associated with drugs varies a lot. While one side effect 

(C143060 - Feeling Abnormal) is associated with 647 drugs, also one another side effect 

(C3665609 - Conjunctival Xerosis) is in interacted with only one drug (DB01193- 

Acebutolol). We have similar variances, which can be better-understood thanks to the 

following plots. 



41 

 

 

Figure 4.1. Side effects are ranked according to their degree against drugs 

 

 

Figure 4.2. Drugs are ranked according to their degree against proteins 

 

According to Figure 4.2, one drug is associated with 302 proteins, DB12010 - 

Fostamatinib. On the other hand, another drug ñLepirudin - DB00001, is only interaction 

with one protein, "Prothrombin,ò can be given as an example. 
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Figure 4.3. Drugs are ranked according to their degree against diseases 

 

This boxplot also shows only 1.447 drugs among a 6.584 drug entry list since only 1.447 

members interacted with the disease before prediction tests. The figure also shows that 

one drug, ñPrednisolone,ò is associated with 80 Diseases, DB00860.   

 

Figure 4.4. Proteins are ranked according to their degree against diseases 
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In this figure, one protein, ñTumor Necrosis Factor,ò is associated with 2.328 diseases, 

with a UniProt ID: P01374. 

 

 

Figure 4.5. Proteins are ranked according to their degree 

According to our interaction data, one protein, ñGlyceraldehyde-3-phosphate 

dehydrogenase,ò with the ID of P04406, is associated with 214 other proteins on a 

weighted score, and Figure 4.5 shows this issue on a box plot. 

 

4.1.   Application of Non-Negative Tri Matrix Factorization Algorithm  

Under the sub-title of the subject, the processes and actions carried out for interaction 

estimation with the NMTF method within the scope of the thesis study were examined. 

After transforming the data to fit the method that has been used, we describe the different 

optimizations made on the method, and then we show the main results. Accordingly, the 

processes are gathered in 4 parts; each part has an explanation regarding the processes and 

their results. 

The implementation of the method was carried out using Python 3.7.9 and Microsoft 

Visual Studio Code as an application programming interface. The system configuration 

used during the application and tests is Intel Core i7-3630QM 2.40GHz CPU, and 16 GB 

RAM operates under Windows 10 Home Edition. 
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Before the application, the environment, methods, and methods used in the reference 

article were examined. The necessary adaptations were made for the data set that is the 

subject of the thesis. 

4.2. Interaction Mat rices, Masking the Data Matri ces and Initialization  

First, the packages that need to be used in the method are acquired. Python 

libraries/packages used in the method are; ñsklearn,ò ñmatplotlib,ò ñtqdm,ò ñscipy,ò 

ñseaborn,ò ñpandas,ò and ñnumpy.ò 

Initially , our interaction data was heterogeneously located in different text files, with the 

files named DrugsToDiseases.txt, DrugsToProteins.txt, DrugsToSideEffects.txt, 

ProteinsToDiseases.txt, and ProteinsToProteins.txt. Based on the content of the files 

listed, the following matrices were obtained; 

12R  : Inter-Association between the Drugs and Side Effects, 

23R  : Inter-Association between the Drugs and Proteins, 

24R  : Inter-Association between the Drugs and Diseases, 

34R   : Inter-Association between the Proteins and Diseases, 

3W  ( 3L ) : Intra-Associations among Proteins. 

A separate class was used to obtain the matrices from the text files we have, and in the 

content of this class, ñnetworkò is invoked to interpret data and transform it into 

neighborhood matrices easily. Again, among these processes, functions are defined to load 

the data by showing the address and creating the required matrix of the loaded data. The 

data to be predicted for interaction is gathered under a single graph named G. This graph 

contains all nodes related to the problem and connections between nodes. The related 

graph can be represented by the figure below. 
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Figure 4.6. Representative nodes and connections on graph G 

 

 

Figure 4.7. Relations matrices of data 
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A validation set is created by transforming the interaction data into related graphs and 

neighborhood matrices. This set of data is used to test the NMTF algorithm. 

For simplicity's sake, a random matrix M10 is first created with the same size R12 

containing 10% empty elements and 90% zeros. The indexes of the null items in this 

matrix correspond to the items of the validation set. 

A M matrix of the exact dimensions as the 12R  matrix, such as 21 nxn , was created to 

validate the proposed model. This is a binary type matrix with only ten percent of the 

matrix elements having a value of 1. The locations of the one values in the M  matrix were 

chosen randomly. Then, with the help of the M  matrix, the trainR _12  matrix was created 

with the following formula. 

 

í
ì
ë =
=

otherwise

jiMifjiR
R train

,0

0],[],,[12
_12     (20) 

 

Then, we applied the NMTF algorithm to our model by replacing the 12R  matrix trainR _12 . 

After the application, we converted the obtained foundR _12  matrix into a binary foundR _12  

matrix by choosing a specific threshold value and comparing this matrix's elements with 

the appropriate elements of the 12R  matrix. There are four situations here. 

Situation 1. If the formal elements of both matrices, namely 12R and foundR _12  matrices, are 

1, this is genuinely positive. Let the number of such cases be a . 

Situation 2. The false positives are represented here. If only the appropriate element of the 

foundR _12  matrix is 1. Let the number of these states be b . 

Situation 3. If the appropriate elements of both matrices, namely 12R  and foundR _12  

matrices, are 0, it is the case of a true negative; let the number of these states be c  

Situation 4. If only the appropriate element of the 12R  matrix is 1, it is a case of false 

negatives. Let the number of these states be d  

With the help of these cases, we used two metrics: 

Recall =
da

a

+
     (21) 
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Precision =
ba

a

+
     (22) 

Naturally, these values will vary depending on the threshold value selected. We have 

plotted the precision-recall graph in the improvements section for all the scenarios and 

different models we have covered, changing the threshold value from 0 to 1. In addition, 

we used the Average Precision Score (APS) metric as a metric that expresses the area 

under this graph. The APS formula for this chart can be defined as follows: 

APS=ä
=

n

i 1

( Recall -)(i Recall ))1( -i Precision )(i   (23) 

Here, for example, )/( daa +  the ratio is marked for the i  threshold value selected with 

Recall )(i . 

After creating and importing the data and validation set in a suitable format, we started 

tuning our NMTF model. 

The initialization of the NMTF algorithm includes four different types of initialization in 

the reference article and the master's thesis. The library for running the ñspherical kmeansò 

type, one of these four methods, has been eliminated as it is no longer available in the 

current version of Python. The other three initialization methods with naively selected 

parameters were compared, and the results given in the figure below were obtained. 

 

Figure 4.8. Average precision scores of initialization methods 
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As can be interpreted from the figure, among ñrandom,ò ñacol,ò and ñkmeans,ò acol type 

initialization was chosen to be used in the next steps of the thesis study. The performance 

taken according to the Average Precision Score (APS) curves was considered in making 

this decision. Random type initiation because its performance is lower than others under 

a specific iteration; On the other hand, kmeans was excluded because it uses more system 

resources and runs slower than others. One iteration takes 55 seconds under kmeans while 

11 seconds is required for one iteration with an acol, since kmeans initialization method 

needs a clustering phase at the start. Acol type initiation was preferred because it works 

fast and gives relatively high APS in relatively few iterations. Following this selection, 

attempts were made to reach the optimum number of iterations, limited to 500, within the 

K value scenarios in the table below. The optimum number of iterations was determined 

for each scenario. 

 

Table 4.3. Test scenarios for optimum iterations 

 

 

All given test scenarios have been tested. The results given in the graphs below have been 

interpreted and compared. The phase of determining the hyperparameters has been passed 

with the optimum iteration numbers determined here. The values in Table 4.4 were used 

in the optimum latent factor tests, which will be explained in the next section. 
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Figure 4.9. Test scenario 1: APS-Loss with initial values 

 

 

Figure 4.10. Test scenario 2: APS-Loss with initial values 
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Figure 4.11. Test scenario 3: APS-Loss with initial values 

 

 

Figure 4.12. Test scenario 4: APS-Loss with initial values 
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Figure 4.13. Test scenario 5: APS-Loss with initial values 

 

Since test scenario number 5 performed very poorly when the results were evaluated and 

required a very high number of iterations, the subsequent optimum latent factor tests were 

made within the scope of correct result development and interaction estimation stages. 

Therefore, the operations were continued with the remaining four scenarios. 

Table 4.4. Optimum iteration numbers per scenario 

 

4.3. Analysis of Parameters (Latent Factor Tests) and Stop Criterion 

The parameters that determine the model we are considering the variables are; 4321 ,,, kkkk

It is helpful to reiterate that these variables are included in the H  and A matrices 

dimensions described in the solution method. For example, the dimensions of the matrix 






























































