
UTILIZATION OF DENSE DEPTH INFORMATION FOR MONO-VIEW
OBJECT DETECTION AND INSTANCE SEGMENTATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞLAYAN CAN ÇAKIRGÖZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2022

Approval of the thesis:

UTILIZATION OF DENSE DEPTH INFORMATION FOR MONO-VIEW
OBJECT DETECTION AND INSTANCE SEGMENTATION

submitted by ÇAĞLAYAN CAN ÇAKIRGÖZ in partial fulfillment of the require-
ments for the degree of Master of Science in Electrical and Electronics Engineer-
ing Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Oğuz Akyüz
Computer Engineering, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Elif Vural
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Erkut Erdem
Computer Engineering, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Çağlayan Can Çakırgöz

Signature :

iv

ABSTRACT

UTILIZATION OF DENSE DEPTH INFORMATION FOR MONO-VIEW
OBJECT DETECTION AND INSTANCE SEGMENTATION

Çakırgöz, Çağlayan Can

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

MAY 2022, 102 pages

Object detection aims for detecting objects of certain classes in an image by bound-

ing them in rectangular boxes whereas instance segmentation tries to detect objects

in pixel level. Deep learning techniques, which have shown great improvements

over the last decade, are utilized in these topics as well, and a significant success

is achieved against the traditional methods. Similar improvements can be observed

in dense depth estimation which deals with deducing dense information of a scene

from a single image. Previous works have shown that object detection and instance

segmentation performances can be improved by incorporating sensor depth informa-

tion. This thesis studies whether or not it is possible to have similar improvements

when depth information is estimated from images instead of directly provided from

sensors. Our research have shown that incorporating estimated depth data results in

higher performance in object detection, although it fails in instance segmentation.

Keywords: Object Detection, Instance Segmentation, Convolutional Neural Networks

v

ÖZ

TEK BAKIŞLI NESNE TESPİTİ VE BÖLÜTLEMESİNDE SIK DERİNLİK
BİLGİSİ KULLANIMI

Çakırgöz, Çağlayan Can

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Mayıs 2022 , 102 sayfa

Nesne tespiti; bir görüntüde bulunan, belirli sınıflara ait nesneleri dikdörtgen sınırlar

içerisine alarak saptamayı hedefler. Örnek bölütleme ise nesneleri piksel düzeyinde

saptamaya çalışır. Geçen on yılda büyük bir gelişme gösteren derin öğrenme teknikle-

rinden bu konularda da yararlanılmış ve geleneksel yöntemlere karşı önemli başarılar

kazanılmıştır. Bir sahnenin derinlik bilgisinin tek görüntü üzerinden çıkarsanmaya

çalışıldığı tek bakışlı sık derinlik tahmini konusu da yine derin öğrenme teknikleriyle

büyük gelişme göstermiştir. Nesne tespiti ve bölütleme konularında sensörden topla-

nan derinlik bilgisinin de dahil edilmesinin başarımı artırdığı daha önceki çalışmalarla

ortaya konmuştur. Bu tezde de, görüntülerden tahmin edilen derinlik bilgisinin örnek

bölütleme ve nesne tespitinde başarım artışını sağlayıp sağlayamayacağı araştırıla-

caktır. Araştırmaların sonucunda, tahmini derinlik bilgisi kullanarak nesne tespitinde

başarım artışı sağlanmış ancak örnek bölütlemede aynı kazanım elde edilememiştir.

Anahtar Kelimeler: Nesne Tespiti, Örnek Bölütleme, Evrişimsel Sinir Ağları

vi

To Efe

vii

ACKNOWLEDGMENTS

First and foremost, I would like to present my special thanks to my supervisor Prof.

Dr. A. Aydın Alatan for his unparalleled support he has given me since day one. In

the past three years, I have not seen nothing but his kindness and sensibility. When I

hit the lowest point in my life, his encouragement helped me get up on my feet. The

journey that I began by admiring his intelligence and intellectuality has now come to

an end where I ended up admiring his personality even more.

I would like to thank my family members, especially my little sister. She was there

for me when everything went all wrong, and supported me through the darkest times

of my life. Despite all the concerns she has, I know that the life ahead of us will now

be brighter than ever. I would also like to thank my lovely aunts Ayşen Yılmaz and

Fatma Yılmaz who have given me so much support, respect and pure love since I was

born which makes me feel incredibly lucky and proud to be their son.

I should mention all my friends who have always been there for me. I would like to

thank Demet, Kübra and Şevval Tül for their twenty-year-long genuine friendship.

It is very fortunate of me to have such friends that I can get into contact and trust

whenever I am in need. I do not know how to thank Oğul Can and Yeti Ziya Gürbüz

enough for their priceless pieces of advice. They have always been the first address

that I called on whenever I ended up in deadlock. I would also like to thank İhsan

Emre Üstün for his constant support. After going through all the struggles together, I

am glad that we rode out 2020 as of now.

Lastly, I would like to thank my one and only Maya, who revived me and my family

with her existence.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 The Scope of the Thesis . 2

1.3 The Outline . 3

2 BACKGROUND . 5

2.1 Overview of Visual Recognition Problems 5

2.2 Convolutional Neural Networks . 7

2.3 Backbone Architectures . 9

2.4 Feature Fusion Paradigms . 10

2.4.1 Same-scale Element-wise Operations 11

ix

2.4.2 Multi-scale Feature Learning 11

2.4.2.1 Image Pyramid . 11

2.4.2.2 Integrated Features . 12

2.4.2.3 Pyramidal Features . 12

2.4.2.4 Feature Pyramid Network 12

3 OBJECT DETECTION FOR RGB & RGB-D IMAGES 13

3.1 Introduction . 13

3.2 Performance Metrics . 14

3.3 Datasets . 16

3.3.1 Pascal Visual Object Classes 16

3.3.2 ILSVRC . 16

3.3.3 MS-COCO . 17

3.4 Traditional Object Detectors . 17

3.5 Deep Learning-Based Object Detection in RGB 19

3.5.1 Two-Stage Detectors . 20

3.5.1.1 RCNN . 20

3.5.1.2 Fast RCNN . 21

3.5.1.3 Faster RCNN . 22

3.5.2 One-Stage Detectors . 23

3.5.2.1 YOLO . 23

3.5.2.2 YOLOv2 . 24

3.5.2.3 YOLOv3 . 24

3.6 Deep Learning-Based Object Detection in RGB-D 26

x

3.6.1 Fusion Techniques . 26

3.6.1.1 Early Fusion . 26

3.6.1.2 Late Fusion . 26

3.6.1.3 Deep Fusion . 27

3.6.2 Datasets . 28

4 INSTANCE SEGMENTATION . 29

4.1 Introduction . 29

4.2 Performance Metrics . 29

4.3 Datasets . 30

4.4 Traditional Instance Segmentation Models 30

4.5 Deep Learning-Based Instance Segmentation Models 31

4.5.1 Mask RCNN . 32

4.5.2 PANet . 32

4.5.3 SOLO . 34

4.5.4 SOLOv2 . 35

5 DEEP LEARNING-BASED SINGLE IMAGE DEPTH ESTIMATION . . . 39

5.1 Introduction . 39

5.2 Performance Metrics . 40

5.3 Deep Learning-Based Single Image Depth Estimation Models 41

5.3.1 Monodepth . 41

5.3.2 Monodepth2 . 42

6 PROPOSED METHODS . 45

6.1 Motivation . 45

xi

6.2 Proposed Idea . 46

6.3 Proposed Models . 46

6.3.1 Fusion by Concatenation . 47

6.3.2 Convolutional Fusion . 48

6.4 Datasets . 48

6.5 Experiments . 49

6.5.1 Test Results . 50

6.5.2 Discussion . 53

6.5.2.1 Instance Segmentation 53

6.5.2.2 Object Detection . 55

7 CONCLUSIONS & FUTURE WORKS 59

7.1 Conclusions . 59

7.2 Future Works . 60

APPENDICES

A CATEGORY-BASED TEST RESULTS . 63

A.1 Object Detection Test Results on SUN RGBD: Faster RCNN 63

A.2 Object Detection Test Results on MS-COCO Subset: Faster RCNN . 65

A.3 Object Detection Test Results on SUN RGBD: Mask RCNN 71

A.4 Object Detection Test Results on MS-COCO Subset: Mask RCNN . . 73

A.5 Instance Segmentation Test Results on SUN RGBD: Mask RCNN . . 79

A.6 Instance Segmentation Test Results on MS-COCO Subset: Mask
RCNN . 81

A.7 Instance Segmentation Test Results on SUN RGBD: SOLOv2 87

xii

A.8 Instance Segmentation Test Results on MS-COCO Subset: SOLOv2 . 89

REFERENCES . 95

xiii

LIST OF TABLES

TABLES

Table 3.1 Commonly used datasets and their statistics. 17

Table 3.2 Test speed and performance analysis of RCNN family in terms of

mean average precision (mAP) using PASCAL VOC-2012 test dataset. . . 21

Table 3.3 Performance analysis of some state-of-the-art models on different

datasets. 25

Table 4.1 Commonly used datasets and their statistics. 30

Table 4.2 Performance analysis of some state-of-the-art instance segmentation

models on MS-COCO test dataset. 37

Table 6.1 Object detection test results on SUN RGBD: Faster RCNN. 51

Table 6.2 Object detection test results on MS-COCO subset: Faster RCNN. . . 51

Table 6.3 Object detection test results on SUN RGBD: Mask RCNN. 51

Table 6.4 Object detection test results on MS-COCO subset: Mask RCNN. . . 51

Table 6.5 Instance segmentation test results on SUN RGBD: Mask RCNN. . . 52

Table 6.6 Instance segmentation test results on MS-COCO subset: Mask RCNN. 52

Table 6.7 Instance segmentation test results on SUN RGBD: SOLOv2. 52

Table 6.8 Instance segmentation test results on MS-COCO subset: SOLOv2. . 52

Table A.1 Model: RGB Image Only . 63

xiv

Table A.2 Model: 4-channel Input . 64

Table A.3 Model: 4-to-3 Mapping . 64

Table A.4 Model: RGB Depth Only . 65

Table A.5 Model: RGB Image Only . 66

Table A.6 Model: 4-channel Input . 67

Table A.7 Model: 6-channel Input . 68

Table A.8 Model: 4-to-3 Mapping . 69

Table A.9 Model: 6-to-3 Mapping . 70

Table A.10Model: RGB Image Only . 71

Table A.11Model: 4-channel Input . 72

Table A.12Model: 4-to-3 Mapping . 72

Table A.13Model: RGB Depth Only . 73

Table A.14Model: RGB Image Only . 74

Table A.15Model: 4-channel Input . 75

Table A.16Model: 6-channel Input . 76

Table A.17Model: 4-to-3 Mapping . 77

Table A.18Model: 6-to-3 Mapping . 78

Table A.19Model: RGB Image Only . 79

Table A.20Model: 4-channel Input . 80

Table A.21Model: 4-to-3 Mapping . 80

Table A.22Model: RGB Depth Only . 81

Table A.23Model: RGB Image Only . 82

xv

Table A.24Model: 4-channel Input . 83

Table A.25Model: 6-channel Input . 84

Table A.26Model: 4-to-3 Mapping . 85

Table A.27Model: 6-to-3 Mapping . 86

Table A.28Model: RGB Image Only . 87

Table A.29Model: 4-channel Input . 88

Table A.30Model: 4-to-3 Mapping . 88

Table A.31Model: RGB Depth Only . 89

Table A.32Model: RGB Image Only . 90

Table A.33Model: 4-channel Input . 91

Table A.34Model: 6-channel Input . 92

Table A.35Model: 4-to-3 Mapping . 93

Table A.36Model: 6-to-3 Mapping . 94

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Comparison between object detection and instance segmentation. 2

Figure 1.2 An example for depth estimation from a single RGB image. [45] 2

Figure 2.1 Comparison of different computer vision problems. [73] 6

Figure 2.2 2D convolution with a 3x3 kernel. 8

Figure 2.3 Pooling with a 2x2 kernel and stride=2. 8

Figure 2.4 A basic CNN architecture for image classification. 9

Figure 2.5 A comparison of detection accuracy on MS-COCO dataset be-

tween different backbones used in Faster RCNN, R-FCN, and SSD [29]. 10

Figure 2.6 Multi-scale feature learning techniques. 11

Figure 3.1 The timeline of object detection [81]. 17

Figure 3.2 Comparison of deep learning-based object detector models: (a)

basic architecture of two-stage object detectors, (b) basic architecture

of one-stage object detectors. 19

Figure 3.3 Overview of RCNN architecture [73]. 20

Figure 3.4 Overview of Fast RCNN architecture [73]. 21

Figure 3.5 Overview of Faster RCNN architecture [73]. 22

Figure 3.6 Overview of YOLO architecture [52]. 23

xvii

Figure 3.7 Overview of YOLOv3 architecture [8]. 25

Figure 3.8 Overview of late fusion architecture in [14]. The upper branch

takes RGB image as input while the lower branch takes colored depth

map. Both branches have seven layers, and the output of 7th layers are

fused by a fc layer for classification. 27

Figure 3.9 Overview of modified YOLOv2 with deep fusion for RGB-D

data [48]. 28

Figure 4.1 Overview of Mask RCNN architecture [25]. 31

Figure 4.2 Overview of PANet architecture [43]. (a) FPN backbone. (b)

Bottom-up path augmentation. (c) Adaptive feature pooling. (d) Bound-

ing box branch. (e) Mask branch. 33

Figure 4.3 Details of mask prediction branch and adaptive feature pooling

of PANet. 33

Figure 4.4 Overview of SOLO architecture [68]. 35

Figure 4.5 Overview of SOLOv2 architecture [69]. 36

Figure 6.1 Proposed RGB-D object detection model. 47

Figure 6.2 Proposed RGB-D instance segmentation model. 48

Figure 6.3 Inference results of the best proposed Mask RCNN model: 6-

channel Input. 53

Figure 6.4 Inference results of the best proposed SOLOv2 model: 6-channel

Input. 54

Figure 6.5 Comparison between some selected visual results of RGB Image

Only and 4-channel Input models of Faster RCNN. 56

Figure 6.6 Inference results of the best Faster RCNN model: 4-channel Input. 57

xviii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AP Average Precision

CNN Convolutional Neural Network

fc Fully-Connected Layer

FPN Feature Pyramid Network

mAP Mean Average Precision

ResNet Residual Network

RoI Region of Interest

xix

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

Object detection problem deals with the classification and bounding box level local-

ization of object instances in an image whereas instance segmentation problem aims

at the classification and pixel-wise localization of the same instances. As two funda-

mental problems of computer vision, they have always been a hot spot for researchers.

Thanks to the innovations in hardwares, e.g., GPU, and neural network models, e.g.

CNN, a great amount of novel solutions with significant improvements have been pro-

posed in the last decade. For instance, deep learning-based RGB-D object detectors

and instance segmentation models have been proposed to fuse both color and depth

information through neural networks. It has been shown that detection and segmenta-

tion models can be improved by using RGB and depth data together rather than RGB

only. However, depth information is not available for most of the time; therefore,

RGB-D based models are not practical for real-time applications.

Development of deep neural networks also paved the way for efficient single image

depth estimation models. Traditionally, depth information is obtained either directly

from sensors, e.g. LIDAR, or through stereo vision using two cameras. With the help

of deep neural networks, depth of a scene can now be extracted quite successfully

from only one RGB image.

Now that depth information can be retrieved successfully from RGB images, the

scarce of depth information can be resolved by using the estimated depth information

rather than sensor data, and existing RGB-D models can replace standard RGB-only

object detection and instance segmentation models.

1

Figure 1.1: Comparison between object detection and instance segmentation.

Figure 1.2: An example for depth estimation from a single RGB image. [45]

1.2 The Scope of the Thesis

We analyze a couple of early fusion techniques for fusing RGB image with its esti-

mated depth mask, and we test the effect of these techniques on the object detection

and instance segmentation performances. First, we analyze the concatenation tech-

nique in which estimated depth mask is concatenated to the RGB image as the 4th

channel. Concatenated RGB-D images are directly given as inputs to state-of-the-

art object detection and instance segmentation models. As for the second technique,

convolution is used for fusion. A concatenated RGB-D image is first fed to a CNN

model which maps this 4-channel input to a 3-channel feature map. Then, this ex-

tracted feature map is given as input to state-of-the-art object detection and instance

segmentation models. Various state-of-the-art object detection and instance segmen-

tation architectures are modified with the proposed methods, and their effects are

discussed by comparing the performances of the modified and unmodified models.

2

1.3 The Outline

Technical background for object detection, instance segmentation, convolutional neu-

ral networks, and feature fusion techniques can be found in Chapter 2. Later in

Chapter 3, we present an overview of the works that have been done in both RGB

and RGB-D object detection areas. Following that, the literature review of instance

segmentation can be found in Chapter 4, and we give the literature review of deep

learning-based single image depth estimation in Chapter 5. In Chapter 6, proposed

methods and conducted experiments are explained in detail. Finally, we conclude the

thesis with summary and future works in Chapter 7.

3

4

CHAPTER 2

BACKGROUND

This chapter presents an overview of the object detection problem and the technical

background required for the following chapters. Section 2.1 introduces the funda-

mental visual recognition related computer vision problems. Convolutional neural

networks are studied in Section 2.2, followed by explaining backbone architectures

in Section 2.3. Finally, section 2.4 discusses the feature fusion techniques.

2.1 Overview of Visual Recognition Problems

The computer vision field involves various fundamental visual recognition problems

such as image classification [26], object detection [20], instance segmentation [25],

and semantic segmentation [7]. The purpose of image classification is to classify

an image according to the object or objects of the same class present in that image.

Regardless of the location, area and the number of objects, the whole image is labeled

based on the recognized object class. The image given in Fig. 2.1(a) is labeled as cow

although there are three cows present in the image. The location and the area of each

cow is not known either.

Object detection takes image classification further and in addition to recognition, it

also aims localization of each object within the image. Localization is realized by

finding the minimum rectangular region that covers the object completely. In the

image given in Fig. 2.1(b), each of the three cows are individually recognized and

located by their respective rectangular frames.

5

Figure 2.1: Comparison of different computer vision problems. [73]

The objective in semantic segmentation is to predict class labels of each pixel to a

class label including background. However, multiple objects of the same class are

not differentiated in semantic segmentation. In the image given in Fig. 2.1(c), each

pixel of cows are labeled as cow although there is no information about the number

of cows and which pixel belongs to which cow.

Instance segmentation tries to answer these questions by fusing object detection with

semantic segmentation. Instance segmentation aims to detect each object within the

image as in object detection, and then assigns pixels of object regions to class labels

as in semantic segmentation. In the image given in Fig. 2.1(d), each cow is detected

as in object detection; however, it takes it further and determines the true shape of

cows by pixel-level localization instead of rectangular regions.

As the scope of thesis covers only object detection, the primary focus in the following

sections is given on its the problem definition of object detection and its performance

metrics.

6

2.2 Convolutional Neural Networks

The history of neural networks can be traced back to 1947 [51]. In their work, Pitts

and McCulloch tried to put out a principled approach to solve learning problems.

With the introduction of back-propagation algorithm in 1986[57], neural networks

became popular in late 1980s and early 1990s. However, they lost their popularity

because of limited computation power and scarce of training data. During 2000s,

these problems were solved by the publication of large datasets, e.g. ImageNet, and

development of parallel computing systems with high performance, e.g. GPU clus-

ters. Thereby, neural networks have become popular once again and remains so even

today.

Neural networks with deep layers are referred to as deep neural networks, and con-

volutional neural networks (CNN) can be regarded as the most representative ones

among all deep models [38]. Even though fully connected neural networks can also

be used for feature learning and classification tasks, it is impractical for larger inputs

such as images because it requires a very large number of neurons to be trained. Con-

volution instead decreases the number of free parameters which makes it possible to

train deeper architectures.

A CNN architecture is built by several different types of layers are used, e.g., convo-

lutional layers, activation layers, pooling layers, etc. convolutional layers have a set

of trainable kernels for convolution. A neuron of a convolutional layer is connected

to a limited region of the previous layers, which is called as the receptive field of a

neuron. A convolutional neuron performs convolution over its receptive field, which

is basically the dot product of a convolutional kernel with the input matrix extracted

from its receptive field. In this way, all neurons of a convolutional layer form a 2D

feature map per a convolutional filter. The whole set of trainable kernels of a convo-

lutional layer forms a 3D feature map, which is output by the convolutional layer. In

order to introduce non-linearity to the model, an activation layer applies a non-linear

function on the output feature map of a convolutional layer. The commonly used ac-

tivation functions are rectified linear unit (ReLU), sigmoid, and hyperbolic tangent,

which are given in Equation (2.1), Equation (2.2), and Equation (2.3), respectively.

7

Figure 2.2: 2D convolution with a 3x3

kernel.

Figure 2.3: Pooling with a 2x2 kernel

and stride=2.

ReLU : f(x) = max(0, x) (2.1)

Sigmoid : σ(x) =
1

1 + ex
(2.2)

Hyperbolictangent : tanh(x) =
ex − e−x

ex + e−x
(2.3)

CNN gives more importance to a feature’s relative location with respect to the other

features than than precise location of features. Moreover, removing these redun-

dant features reduces overfitting, and decreases the number of trainable parameters

and computational costs. Thereby, CNNs aim at decreasing the spatial resolution by

keeping only the salient features of a feature map. This non-linear down-sampling op-

eration is called as pooling. The most common pooling operations are max-pooling

and average-pooling. In max-pooling, the input feature map is divided into grid cells

and the maximum element in each grid cell is output. In average-pooling, the input

feature map is divided into grid cells and the average of elements in each grid cell is

output.

By stacking multiple convolutional, activation, and pooling layers, the body of a CNN

is implemented. This section of a CNN acts as a feature extractor, and many deep

models use them as their first stage, called backbone of an architecture. For in-

stance, the backbone takes an image as input, processes it through its layers, and

8

Figure 2.4: A basic CNN architecture for image classification.

outputs a feature map. This feature can be transformed into a feature vector which

can be used as an embedding of the whole image in different problems. For classifi-

cation or regression purposes, the extracted feature vector is fully connected to a loss

layer with at least one hidden layer in between. To calculate the loss that should be

back-propagated during the training process, and find the classification probabilities

or regress unknown variables, the loss layer uses non-linear loss functions such as

softmax for predicting a single class of C mutually exclusive classes, sigmoid cross-

entropy predicting C independent probability values in [0,1], or Euclidean loss for

regressing to real-valued variable in (−∞,∞).

2.3 Backbone Architectures

A backbone network of a deep model serves as its feature extractor. As feature extrac-

tors of deep models, backbones a play huge role in the performance of deep models,

and they should be designed or chosen delicately. Even though backbones can be

architecture specific, most of them are actually image classification networks exclud-

ing the last fully connected layers. The frequently used backbones are VGG-16 [62],

ResNet [26], ResNeXt [41], Inception V2 [31], Inception V3 [65], and Hourglass

[37]. For mobile platforms, a lightweight backbone is a must. The commonly used

lightweight backbones are MobileNet [28], ShuffleNet [79], and SqueezeNet [30].

9

Figure 2.5: A comparison of detection accuracy on MS-COCO dataset between dif-

ferent backbones used in Faster RCNN, R-FCN, and SSD [29].

2.4 Feature Fusion Paradigms

Invariance and equivariance are important properties of image feature representations

[81]. The target of object classification is to learn how to interpret high-level seman-

tic information, which requires invariant feature representations. On the other hand,

object localization aims at discriminating position and scale changes, which requires

equivariant representations. Since object detection consists of both object localiza-

tion and classification tasks, object detectors are expected to learn both properties.

Deep CNN models have multiple convolutional and pooling layers which yields to

strong invariance but poor equivariance in deeper layers. Although classification of

objects can be realized better with deeper models, localization gets worse. Shallower

layers are preferable for localization as they preserve better spatial information such

as edges and contours.

To be more precise, detection of objects in different scales and aspect ratios is an

arduous work with a single feature map. Shallow layers have smaller receptive fields

and higher resolution which is suitable for detecting smaller objects while deep layers

have larger receptive fields and semantically richer features which are suitable for

detecting larger objects and image classification. This trade-off encourages the fusion

of deep and shallow features.

10

2.4.1 Same-scale Element-wise Operations

Feature fusion can be regarded as element-wise operation between two or more fea-

ture maps. Feature maps can be concatenated, summed or multiplied in an element-

wise manner. Multiplication may give more importance to certain features which

could improve small object detection while concatenation tends to fuse context infor-

mation better.

2.4.2 Multi-scale Feature Learning

(a) Image Pyramid (b) Integrated Features

(c) Pyramidal Features (d) Feature Pyramid

Figure 2.6: Multi-scale feature learning techniques.

2.4.2.1 Image Pyramid

An image is resized to multiple scales and each scale is used for training one of mul-

tiple detectors. Detectors trained with larger scales aim at detecting smaller objects

while those trained with smaller scales are used for detecting larger objects. During

testing, the detection results from all scales are merged on the original scale. How-

ever, this approach is ineffective and computationally expensive as it requires training

multiple detectors.

11

2.4.2.2 Integrated Features

Multi-scale feature maps extracted from different layers are fused into one feature

map which is used for final prediction. For this, semantically rich but low resolution

feature maps are up-sampled to the resolution of spatially rich high resolution feature

maps, then any of element-wise operations can be applied on them. The fused fea-

ture representation is more descriptive and comprises necessary spatial and semantic

information for both localization and classification.

2.4.2.3 Pyramidal Features

Feature maps extracted from different layers have different resolution and semantic

information. Then, each of these multi-scale feature maps is fed into different detec-

tion heads so that each head is trained for detecting objects in a certain scale.

2.4.2.4 Feature Pyramid Network

A feature pyramid network incorporates integrated features into a prediction pyra-

mid. A low resolution semantically rich feature map is up-sampled to higher resolu-

tion, and merged with a spatially richer feature map by summation or concatenation.

Thereby, the spatially richer feature map is enhanced semantically which is required

for detecting smaller objects. By this way, feature maps of certain shallow layers are

all semantically enriched, and a set of multi-scale semantically enriched feature maps

is obtained. Finally, each enriched feature map is fed into different detection heads

for detecting objects in a certain scale.

12

CHAPTER 3

OBJECT DETECTION FOR RGB & RGB-D IMAGES

This chapter presents a literature review on object detection. First, it begins with the

problem definition of object detection in Section 3.1. Then, object detection perfor-

mance metrics and datasets are presented in 3.2 and Section 3.3, respectively. Fol-

lowing them, a brief review on the traditional approaches to object detection is given

in Section 3.4. Finally, deep learning based object detection models are thoroughly

explained in Section 3.5 for RGB images and 3.6 for RGB-D images.

3.1 Introduction

Precise estimation of the concepts and locations of objects contained in each image

is essential for a complete image understanding. This task is commonly referred

to as object detection [80]. As one of the fundamental problems of computer vision,

object detection forms the basis of many other computer vision tasks, such as instance

segmentation [11, 23, 24], image captioning [34, 72, 75], object tracking [33], etc.

Object detection involves both object classification and location regression tasks [73].

Therefore, the problem definition for object detection is how a model should be de-

signed so that it finds out the precise positions and class labels of each object instances

in an input image [59].

13

3.2 Performance Metrics

The most common metrics used to measure the performance of object detectors are

average precision and mean average precision [50], Before going into details of them,

how a predicted bounding box is regarded as a correct detection should be set forth.

Intersection of union (IoU) is a metric that shows how much a predicted bounding

box overlaps with a ground truth bounding box. It is based on the Jaccard Index, a

coefficient of similarity for two sets of data [32]. It is basically calculated by dividing

the area of overlap between the predicted and ground truth bounding boxes by the

area of their union.

J(Bp, Bg) = IoU =
area(Bp ∩Bg)

area(Bp ∪Bg

(3.1)

where Bp and Bg stand for the predicted and the ground truth bounding boxes, re-

spectively.

A predicted bounding is assigned to a ground truth bounding box if their IoU is above

a threshold t, and their category labels are the same. A predicted bounding box cannot

be assigned to multiple ground truths but a ground truth can be assigned to multiple

predictions. Among all predictions assigned to a ground truth, the one with the high-

est confidence score is labeled as true positive (TP). This means that the detector

successfully detects an existing object. The rest of the predictions are labeled as false

positive (FP), which means that the detector claims to find a non-existing object. Fi-

nally, ground truth bounding boxes that has no assigned predictions are labeled as

false negative (FN). This means that an existing object cannot be found by the detec-

tor.

A detector’s precision (P) tells us what percentage of its predictions are true. It is

calculated by dividing the number of correct detections by the number of total detec-

tions.

P =
TP

TP + FP
(3.2)

14

A detector’s recall (R) shows us what percentage of the existing objects are success-

fully detected. It is calculated by dividing the number of correct detections by the

number of total ground truth objects.

R =
TP

TP + FN
(3.3)

A detector’s performance over a class of objects is measured by average precision

(AP), which is basically the area under the class-based precision-recall curve. To

calculate this area, 11-point interpolation is used. First, all detections of a class are

sorted in decreasing order based on their confidence scores. Then, starting from the

detection with the most confidence score, precision and recall values are calculated at

each detection. However, the alternating sequence of TP and FP detections yields to

a zigzag-like precision-recall curve which is not monotonically decreasing.

To remedy this problem, interpolated precisions at 11 recall values are used. Finally,

the average of these interpolated precision values gives us the AP.

AP =
1

11

∑
r∈R

pinterp(r) (3.4)

where, R = {0, 0.1, 0.2, ..., 1.0}, and

pinterp(r) = max
r′ :r′⩾r

p(r
′
) (3.5)

where, p and r
′ are the calculated precision and recall values.

To measure the overall performance of an object detector over all object classes,

mean average precision (mAP) is used, which is basically the average of APs over

all classes. To give more emphasis on localization accuracy, MS-COCO introduced

mAP@[.5:.95] which averages mAP over different IoU thresholds in [0.5:0.05:0.95].

MS-COCO benchmark uses different notations for the aforementioned metrics: AP50

refers to mAP calculated with IoU threshold at 0.5, AP75 refers to mAP calculated

with IoU threshold at 0.75, and AP refers to mAP@[.5:.95].

15

There are also three AP values measured over different object sizes: APs, APm, and

APl. APs is measured over the objects sizes of which are smaller than 32x32 pixels,

whereas APl is measured over the objects sizes of which are larger than 96x96 pixels.

Finally, APm is measured over the objects sizes of which are larger than 32x32 pixels

but smaller than 96x96 pixels.

3.3 Datasets

Since large amount of data is the most important requirement of neural networks, sev-

eral datasets and benchmarks have been developed over the past two decades such as

PASCAL VOC2007 Challenge [15], PASCAL VOC2012 Challenge [16], ImageNet

Large Scale Visual Recognition Challenge [58], MS-COCO Challenge [42], etc.

3.3.1 Pascal Visual Object Classes

Pascal Visual Object Classes 2007 (VOC07) is one of the first and most important

benchmarks of object detection community. It has approximately 5k images and 12k

objects of 20 classes that are common in everyday life such as person, bird, cat,

bottle, sofa, etc. Later, in 2012, the dataset was increased to nearly 12k images and

27k objects of the same 20 classes, called as PASCAL VOC12. Today, VOC has

become old-fashioned due to the introduction of larger datasets.

3.3.2 ILSVRC

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was held since

2010 until 2017, and included object detection challenge on ImageNet dataset. ILSVRC-

14 and ILSVRC-17 have the same training datasets: 476k images and 534k objects

of 200 classes. The only difference is that the latter has a larger test set.

16

3.3.3 MS-COCO

MS-COCO came in sight in 2015 and has become the standard dataset for object

detection. It has more small objects, and bounding box annotations include segmen-

tation masks which helps precise localization. MS-COCO has approximately 123k

images and 900k objects of 80 classes.

Table 3.1: Commonly used datasets and their statistics.

Dataset
train validation trainval test

images objects images objects images objects images objects

VOC-2007 2,501 6,301 2,510 6,307 5,011 12,608 4,952 14,796

VOC-2012 5,717 13,609 5,823 13,841 11,540 27,450 10,991 -

ILSVRC-2014 456,567 478,807 20,121 55,502 476,688 534,309 40,152 -

ILSVRC-2017 456,567 478,807 20,121 55,502 476,688 534,309 65,500 -

MS-COCO-2015 82,783 604,907 40,504 291,875 123,287 896,782 81,434 -

MS-COCO-2015 118,287 860,001 5,000 36,781 123,287 896,782 40,670 -

3.4 Traditional Object Detectors

Figure 3.1: The timeline of object detection [81].

17

The history of object detection can be partitioned into two periods: traditional detec-

tion models and deep learning-based detection networks.

Traditional object detectors comprise of three tasks: generation of region proposals,

feature vector extraction, and classification of region proposals. As a first task, pos-

sible regions which may contain objects should be detected. These proposed regions

are commonly referred to as regions of interest (RoI). To capture these regions, slid-

ing windows are used [67, 1, 12]. However, multiple sliding windows in different

scales are required as objects can be found in different scales and aspect ratios. In the

second task, feature vectors are extracted from region proposals in order to encapsu-

late the semantic information found in these region. For this task, low level feature

descriptors are utilized, e.g., HOG (Histogram of Gradients) [12], SIFT (Scale Invari-

ant Feature Transform) [40], and DPM (Deformable Part-based Model) [17]. In the

last task, the region proposals are labeled to one of the classes based on their feature

vectors. To do this, extracted feature vectors are used to train region classifiers such

as SVM (Support Vector Machine) [27].

Traditional methods require meticulous design of feature descriptors to get satisfac-

tory results. As one of the groundbreaking object detection algorithms, DPMs won

PASCAL VOC challenges in three consecutive years from 2007 to 2009. However,

no significant progress was achieved by traditional methods after 2008. There are a

couple of prominent reasons behind their limitations [73]. First, low level feature de-

scriptors were mainly used and manually designed. This results in obtaining deficient

semantic information from region proposals. Secondly, each stage of object detectors

were designed individually. As they were not end-to-end trainable, traditional object

detectors would fail in finding the global optimum solution.

As traditional object detection models suffered from certain limitations, no significant

improvement was achieved from 2008 until 2012 when convolutional neural networks

appeared.

18

3.5 Deep Learning-Based Object Detection in RGB

Object detectors can primarily be grouped into two types of models based on the as-

sembly of their architectures: two-stage detectors (Fig. 3.2a) and one-stage detectors

(Fig. 3.2b).

(a)

(b)

Figure 3.2: Comparison of deep learning-based object detector models: (a) basic

architecture of two-stage object detectors, (b) basic architecture of one-stage object

detectors.

19

3.5.1 Two-Stage Detectors

3.5.1.1 RCNN

RCNN (Region-based Convolutional Neural Network) [36] comprises of three con-

secutive tasks: generation of region proposals, feature extraction, and classification.

Similar to the traditional object detectors, the first stage of RCNN uses selective

search for generation of region proposals. In the second stage, proposed regions are

first cropped from the input image, resized, and then fed into the backbone to extract

the feature vectors of crops. Finally, based on these feature vectors, SVMs classify the

objects assumed to be in the image crops, and the coordinates of the region proposals

are adjusted by regressors.

Contrary to the traditional methods which use low level feature descriptors, RCNN

uses a CNN model (AlexNet [36] trained on ImageNet [13]) for feature extraction

from region proposals. Since CNNs have more discriminative expression capability

than hand-crafted descriptors, RCNN surpassed all traditional models on VOC-2007,

with a great improvement of mAP from 33.7% (DPM-v5 [17]) to 58.5%. However,

RCNN cannot be used for real-time applications. RCNN is too slow (47s per test

image) as it generates 2000 region proposals per image most of which are redundant,

and each of these 2000 region proposals is processed through AlexNet which requires

a lot of time.

Figure 3.3: Overview of RCNN architecture [73].

20

3.5.1.2 Fast RCNN

The order of RoI generation and feature extraction tasks of RCNN is swapped in Fast

RCNN [19]. As a first task, an image is given as input to the CNN, and at the output,

the feature map of the whole image is acquired. Then, region proposals are generated

from this feature map by using selective search, which is called as RoI pooling layer.

As a result, CNN is used only once instead of 2000 times per image. Consequently,

Fast RCNN becomes approximately 20 times faster than RCNN (Table. 3.2). Ex-

tracted regions of the convolutional feature map are then fed into a sequence of fully

connected layers to obtain the fixed-length feature vector. Finally, this feature vector

is fed into two parallel branches: a softmax layer to predict the class label including

the background, and a regression layer that outputs four real-valued number for each

of classes. These four numbers are used to refine the boundaries of the region propos-

als. With these modifications, Fast RCNN achieved mAP of 70.0% on VOC-2007,

increased from 58.5% of RCNN.

Figure 3.4: Overview of Fast RCNN architecture [73].

Table 3.2: Test speed and performance analysis of RCNN family in terms of mean

average precision (mAP) using PASCAL VOC-2012 test dataset.

Model mAP Test Speed (sec.)

RCNN 62.4 49

Fast RCNN 68.4 2.3

Faster RCNN 70.4 0.2

21

3.5.1.3 Faster RCNN

Both RCNN and Fast RCNN use selective search which is non-trainable and time-

consuming. Therefore, in Faster RCNN [55], selective search is replaced with a con-

volutional network, called as region proposal network, and it serves as the attention

mechanism of whole architecture. As proposals, k different regions with predefined

scale and aspect ratios, called anchors, are considered. An n x n window slides over

the feature map, and at each sliding-window location, the n x n portion of the feature

map is mapped to a 256-d feature vector, which is then fed into two parallel branches:

the cls layer outputs 2 scores for each of k anchors that indicate the probability of

them comprising an object or not, and reg layer outputs 4 normalized coordinates for

each of k anchors. Consequently, Faster RCNN becomes the first end-to-end trainable

deep learning based object detector.

Fast RCNN achieved mAP of 73.2% on VOC07, increased from 70.0% of Fast RCNN.

However, the real improvement of Faster RCNN is its speed: Faster RCNN is 10 timer

faster than Fast RCNN, and 200 times faster than RCNN (Table 3.2), which makes

Faster RCNN the first near-realtime deep learning based object detector as well.

Figure 3.5: Overview of Faster RCNN architecture [73].

22

3.5.2 One-Stage Detectors

3.5.2.1 YOLO

YOLO (You Look Only Once) [52] was the first real-time one-stage deep learning-

based object detector. The idea behind YOLO is that it removes the task of region

proposal generation and models object detection as a regression problem.

YOLO divides an image into an S x S grid and regards each cell as a region of interest.

For each grid cell, YOLO considers B bounding boxes, and predicts x,y,w,h and a

confidence score for each bounding box. (x, y) represents the center of the bounding

box relative to the grid center, and (w, h) represents the width and height relative to

the image size. Moreover, for each grid cell, C class probabilities are predicted. As

for the implementation details of YOLO, an input image is first processed through a

CNN model, called DarkNet, and extracts a feature vector. Then, the feature vector

is fully connected to a feature map of size S x S x (5∗B + C).

The single-stage architecture of YOLO and the lack of region proposal generation

makes it faster than RCNN family. YOLO works at 45 fps and achieves an mAP of

63.4% on VOC2007, and 57.9% on VOC2012. However, YOLO has its own draw-

backs too. There is a fixed number of bounding boxed per grid cell, and they fail

to capture small or crowded objects. Furthermore, only one feature map is utilized,

which leads to insufficient generalization and deficient learning of objects at multiple

scales or aspect ratios.

Figure 3.6: Overview of YOLO architecture [52].

23

3.5.2.2 YOLOv2

YOLO tries to detect the coordinates of the bounding boxes by using fully connected

layers on the feature vector extracted from the DarkNet backbone. YOLOv2 [53]

removes these fully connected layers and uses hand-picked priors in multiple scale

and aspect ratios, called anchor boxes, to predict the true bounding box. Predicting

offsets rather than coordinates simplifies the task and allows the network to learn

faster. Moreover, using anchor boxes separates the localization and classification

tasks which YOLO tries to realize on the same feature map. Meanwhile, YOLOv2

predicts class probabilities and confidence score for each anchor box.

In addition to using anchor boxes, YOLOv2 increases the depth of its backbone to 19,

called as DarkNet-19, uses more bounding boxes, and applies batch normalization.

3.5.2.3 YOLOv3

YOLO suffers from ineffective detection of objects at multiple scales or aspect ra-

tios, especially the small ones. This issue keeps YOLO’s performance behind Faster

RCNN’s, and makes it less preferable despite its speed. To remedy this problem,

YOLOv3 [54] uses a similar concept to feature pyramid networks and predicts bound-

ing boxes at 3 different scales. To do this, outputs of 79th, 91th, and 103th layers are

used. Each layer is fed into 3 parallel branches, each of which has 3 convolutional

layers, and a different stride, i.e., the first branch has a stride of 32, the second one has

16, and the last one has 8. Finally, the output of these branches are passed through

kernels of size 1 x 1 x (B x (5 + C)) as each grid cell has B bounding boxes each of

which has C class probabilities, 1 objectness score, and 4 coordinate offsets.

In addition to detection at 3 different scales, YOLOv3 also increases the depth of its

backbone to 53, called DarkNet-53, to extract semantically richer features. More im-

portantly, YOLOv3 upsamples lower resolution but semantically richer feature maps

of later stages, and concatenates them with semantically poor but higher resolution

feature maps of earlier stages. This helps YOLOv3 obtain semantically richer and

higher resolution feature maps which is needed for detection of smaller objects.a

24

Figure 3.7: Overview of YOLOv3 architecture [8].

Table 3.3: Performance analysis of some state-of-the-art models on different datasets.

Model
VOC-2007 VOC-2012 MS-COCO

(mAP) (mAP) (AP) (AP50)

RCNN (Alex) 58.5 53.3 - -

RCNN (VGG) 66.0 62.4 - -

Fast RCNN 78.9 80.1 19.7 35.9

Faster RCNN 69.9 70.4 21.9 42.7

YOLO 63.4 57.9 - -

YOLOv2 78.6 73.4 21.6 44.0

YOLOv3 - - 33.0 57.9

25

3.6 Deep Learning-Based Object Detection in RGB-D

Traditionally, object detection algorithms would frequently work with RGB images.

With low-cost 3D scanners being more available in recent years, a variety of RGB-D

object detection datasets and algorithms have been proposed. Similar to the differ-

ent problems of computer vision, unparalleled levels of performances have also been

achieved in RGB-D object detection with the new deep learning techniques and avail-

ability of large datasets.

RGB-D object detection models are very similar to RGB based object detectors. They

utilize the same pipeline architectures e.g. one-stage or two-stage detectors. However,

RGB-D object detection algorithms aim to use different modalities found in the RGB-

D images. Since they involve complementary information, e.g. color and depth,

RGB-D object detection models require an efficient fusion strategy. These strategies

can be grouped into three types: early fusion, late fusion, and deep fusion [71].

3.6.1 Fusion Techniques

3.6.1.1 Early Fusion

The RGB image and the depth map are concatenated to form a 4-channel image, and

then this concatenated image is fed as the input to the object detector. Since fusion

process is performed outside the object detector, this technique is referred to as early

fusion.

3.6.1.2 Late Fusion

The RGB image and the depth map are processed individually in different networks.

Just before the final stage, which deals with classification and bounding box regres-

sion, the features output by these parallel networks are fused by either concatenation,

and this fused feature map is used for the final stage. Since the fusion takes place last,

this technique is referred to as late fusion.

26

In [14], two CNN networks are used for each modality. Both networks are pre-trained

on ImageNet that take 3-channel inputs. To be able to use depth maps as input, they

are first normalized to lie in the range of [0,255], and then applied by a jet colormap

to increase the channel depth from one to three. Both RGB and colored depth map

are processed by their own network that has 5 convolutional layers and 2 fc layers.

Then the output of the last fc layers of both networks are concatenated, and then fed

to the last fc and classification layers.

Figure 3.8: Overview of late fusion architecture in [14]. The upper branch takes RGB

image as input while the lower branch takes colored depth map. Both branches have

seven layers, and the output of 7th layers are fused by a fc layer for classification.

3.6.1.3 Deep Fusion

In deep fusion technique, the color and depth information are independently pro-

cessed through their own CNN branches. Then, the output of these branches are

fused by concatenation and fed to the third CNN branch which prepares the final

feature map for classification and bounding box regression.

27

Ophoff et al. modify YOLOv2 by utilizing deep fusion technique [48]. The first 14

layers of YOLOv2, which has 27 layers in total, are duplicated and used as the two

parallel CNN branches Each branch outputs either a depth-based feature map or a

color-based one. Then, these output feature maps are concatenated and followed by

1x1 convolution for dimension reduction. The fused feature map is then fed to the

shared last 13 layers of YOLOv2.

(a) Modified YOLOv2 architecture. (b) Fusion layer.

Figure 3.9: Overview of modified YOLOv2 with deep fusion for RGB-D data [48].

3.6.2 Datasets

Compared to the RGB datasets, there are fewer RGB-D datasets as RGB-D images

are harder to obtain. One of the most commonly used RGB-D datasets is SUN RGBD

[63] and can be regarded as the standard dataset. It contains 10335 real RGB-D im-

ages of room scenes. The training and testing datasets contain 5285 and 5050 im-

ages, respectively. Ground truth annotations include 2D bounding boxes, 3D bound-

ing boxes, instance and semantic segmentation masks, object orientation, and room

layout estimation. More than 800 categories are labeled; however, a base set of 19

classes is commonly used for object detection. Similarly, a base set of 37 classes is

often used for instance segmentation.

28

CHAPTER 4

INSTANCE SEGMENTATION

This chapter presents a literature review on instance segmentation. First, it begins

with a brief introduction and problem definition of instance segmentation in Section

4.1. Then, object detection performance metrics and datasets are presented in 4.2 and

Section 4.3, respectively. Following them, a brief review on the traditional approaches

to instance segmentation is given in Section 4.4. Finally, deep learning based instance

segmentation models are thoroughly explained in Section 4.5.

4.1 Introduction

Similar to the generic object detection, instance segmentation deals with classifica-

tion and localization of objects in an input image. However, contrary to the generic

object detection, instance segmentation performs pixel-level localization instead of

enclosing the object in a rectangular bounding-box. For this, each pixel is assigned to

a unique object of a certain class. Thereby, instance segmentation can be regarded as

solving object detection and semantic segmentation problems simultaneously. Since

instance segmentation provides the most detailed information about objects, it is

highly demanded by different fields, e.g., intelligent driving and medical health [66].

4.2 Performance Metrics

Performance metrics used to assess an instance segmentation model is nearly the same

as the metrics used for object detection models (Section 3.2). The only difference is

in the calculation of IoU. In object detection, IoU is defined between the detected and

29

ground-truth bounding boxes. Meanwhile, in instance segmentation, IoU is defined

between the detected and ground-truth pixel masks.

4.3 Datasets

As is well known, datasets play a huge role in deep-learning based computer vision

tasks. As a result, a quite number of instance segmentation datasets and benchmarks

have been developed through years. Along with their object detection datasets (Sec-

tion 3.3), Pascal VOC and MS-COCO provide datasets for instance segmentation as

well. Pascal VOC was the most prominent one until MS-COCO came out. MS-

COCO’s object detection dataset has pixel-level annotations that can also be used for

instance segmentation, which makes it the largest and most commonly used dataset

for instance segmentation. Apart from these two datasets, Cityscapes Dataset [9] and

the Mapillary Vistas Dataset (MVD) [46] can be mentioned as other frequently used

datasets for instance segmentation.

Table 4.1: Commonly used datasets and their statistics.

Dataset Classes Train-Val Images Test Images

VOC-2012 20 11,540 10,991

Cityscapes 8 3,475 1,525

MVD 66 25,000 -

MS-COCO-2015 80 123,287 40,670

4.4 Traditional Instance Segmentation Models

The history of instance segmentation dates back to the traditional image segmenta-

tion models. These models partition images into mutually exclusive yet meaningful

regions, and pixels in the same region have some certain correlations.

Traditional image segmentation models can be grouped into three types of methods:

thresholds [49, 78, 77], edges [10], and clustering [70, 60]. The threshold-based

30

image segmentation classifies pixels based on different gray-scale thresholds. Pixels

that fall into the same gray-scale range are grouped into the same region. This method

is convenient for images in which there are apparent gray-scale differences between

objects and the background. The edge-based image segmentation detects boundary

pixels of an object, and then connects them to form the object’s contour. Commonly

used edge-based models include Roberts operator [56], Prewitt algorithm [76], Sobel

[18], and Canny [6]. Finally, the cluster-based image segmentation tries to merge

neighboring pixels with similar features into the same partition. Commonly used

models include K-means [3], FCM [47], and SLIC [2].

4.5 Deep Learning-Based Instance Segmentation Models

Instance segmentation technology has made huge progress with the improvements in

hardware efficiencies and deep learning techniques. Especially, deep learning-based

object detection models have made profound contributions to the advancement in the

instance segmentation field.

Figure 4.1: Overview of Mask RCNN architecture [25].

31

4.5.1 Mask RCNN

Mask RCNN [25] is basically an extension to Faster RCNN. The model incorpo-

rates a mask branch to Faster RCNN so as to predict segmentation mask of instances.

In Faster RCNN, region proposals are only used for classification and regression of

bounding box offsets. Mask RCNN feeds these region of interests (RoI) to its segmen-

tation head as well. Segmentation head first performs RoI pooling, i.e., divides RoI

into 14x14 feature map by bilinear interpolation. Bilinear interpolation is preferred

because quantization yields to loss of necessary data or addition of uninterested data

on the RoI boundaries. Then this feature map is fed through multiple convolution

layers and upsampled to size of 28x28. Finally, 1x1 convolutional kernel per class is

applied to get segmentation mask per class. As MS-COCO has 80 classes, the output

of segmentation head has 80 channels in Figure 4.1. The correct segmentation mask

is decided based on the classification output of Faster RCNN. According to the clas-

sification result, the corresponding class channel in segmentation output is chosen.

With all these contributions, Mask RCNN achieved first position in 2016 MS-COCO

challenges.

4.5.2 PANet

Path aggregation network (PANet) [43] takes Mask RCNN further by introducing

bottom-up path augmentation and fully connected fusion. The overall architecture

of PANet is similar to Mask RCNN. It uses ResNet with FPN as its baseline. The

multi-scale feature maps extracted from different FPN layers are processed through

its bottom-up augmented path. Then, as in Mask RCNN, RoI pooling is performed

on these processed feature maps, and extracted RoI features are fed into both de-

tection and segmentation branches. In both branches, features are fused halfway to

leverage semantic and spatial information as much as possible. As a result of these

contributions, PANet achieved the first position in 2017 MS-COCO challenge.

As the novel contribution of PANet, bottom-up path augmentation is used right after

the backbone ResNet-FPN. The backbone generates feature levels {P2, P3, P4, P5}.

32

Figure 4.2: Overview of PANet architecture [43]. (a) FPN backbone. (b) Bottom-up

path augmentation. (c) Adaptive feature pooling. (d) Bounding box branch. (e) Mask

branch.

The proposed augmented path begins with the lowest level P2, and each feature level

goes through a 3x3 convolution with stride 2 to match its resolution with the higher

feature level so that they can be summed and processed by another 3x3 convolutional

layer which outputs the fused feature map of that layer. By repeating this bottom-up

augmentation strategy, fused feature levels {N2, N3, N4, N5} are obtained. The rea-

son to incorporate this network is that it enhances the localization ability of FPN hier-

archy by propagating low-level features from lower layers to higher layers. Without

bottom-up augmentation, FPN only propagates high-level semantically rich features

from higher layers to lower layers.

(a) Mask prediction branch.
(b) Adaptive feature pooling.

Figure 4.3: Details of mask prediction branch and adaptive feature pooling of PANet.

33

As in Mask RCNN, RoI pooling is performed on each of fused feature maps, and

they are fed into both detection and segmentation branches. In detection branch, each

extracted feature map is first processed through a fc layer, and then summed. This

enables the network to adapt features. The fused feature is then processed through

one fc layer for bounding box regression and one fc layer for obtaining class proba-

bilities. In segmentation branch, each extracted feature map is first processed through

an individual convolutional layer, and then the outputs of these layers are summed.

The fused feature map is processed through two more convolutional layers and then

fed into two parallel sub-networks. The first sub-network applies one convolutional

and one deconvolutional layer, and predicts a binary pixel-level mask for each class

independently, which decouples the segmentation and classification tasks as in Mask

RCNN. The second sub-network applies two fc layers, and predicts class-agnostic

foreground/background mask. The outputs of both sub-networks are summed to ob-

tain the final segmentation mask.

4.5.3 SOLO

As is known, two objects in an image have either different centroids or different

scales. Using this prior information, SOLO [68] introduces the notion of instance

categories and aims for directly predicting segmentation masks instead of detect-then-

segment procedure. As a result, SOLO can be trained in an end-to-end fashion using

only mask annotations. Unlike previous instance segmentation models which perform

classification, bounding-box-level detection, and segmentation, SOLO performs only

classification and segmentation tasks. With its simple yet effective model, SOLO

reaches the same performance of Mask RCNN.

SOLO basically divides an input image into a grid of SxS cells. The grid cell where

the center of an object is located is responsible for classification and segmentation of

that object. Hence, each grid cell handles only one instance. To distinguish objects

with different sizes, SOLO uses FPN backbone and utilizes multi-scale feature maps.

SOLO first processes the input image through its FPN backbone, and obtains multi-

scale feature maps. These feature maps are then fed into the prediction heads. There

is one prediction head responsible for each scale of feature map, and each prediction

34

Figure 4.4: Overview of SOLO architecture [68].

head has two parallel branches, one for classification and one for segmentation. The

classification branch predicts C class probabilities for each grid cell, i.e. the output

tensor is of size SxSxC. By this way, all class probabilities are conditioned on grid

cells. The segmentation branch predicts segmentation mask for each grid cell, i.e.

the output tensor is of size WxHxS2, where W and H stand for the original image

width and height, respectively. Consequently, a one-to-one correspondence between

classification and class-agnostic segmentation is achieved. Finally, all grid results are

compiled and NMS is used to filter duplicated detections.

Before feeding to the prediction heads, feature maps extracted from multiple FPN

layers are actually concatenated with normalized coordinates of corresponding pixels

in order to incorporate the spatial functionality to the network. The reason behind the

explicitly incorporating spatial information is that convolutional kernels are spatially

invariant to some degree whereas SOLO needs to be spatially variant because seg-

mentation masks are conditioned on the grid cells. If the original feature map is of

size HxWxD, the concatenated feature map is of size HxWx(D+2), where the last two

channels are (x,y) coordinates of the corresponding pixel, normalized to [-1,1].

4.5.4 SOLOv2

SOLOv2 [69] takes SOLO further by introducing a couple of modifications to its

segmentation branch. The first modification is that SOLOv2 fuses multi-scale feature

outputs of FPN backbone into a unified feature map. The feature map extracted from

35

the deepest FPN level, P5, is concatenated with normalized pixel coordinates. By

applying a series of convolutions, up-samplings, and element-wise summation with

the rest of output feature maps of FPN, a single feature representation is obtained,

and fed into the prediction head.

SOLOv2 modifies the prediction head by using dynamic convolution in its segmen-

tation branch. SOLO outputs a segmentation tensor of size HxWxS2. This output

tensor is very large and computationally inefficient. SOLO prepares segmentation

mask for all grid cells as if there were at least one object in each of these cells.

Therefore, SOLOv2 aims for performing segmentation for only valid cells, which

requires dynamic convolution. For this, segmentation branch is decoupled into two

sub-branches: kernel branch and feature branch. Feature branch performs convolu-

tion on the input feature map extracted from FPN, and obtains the final feature map

of size WxHxE, where E stands for the channel depth, W and H stand for the origi-

nal image width and height, respectively. Kernel branch performs convolution on the

very same feature map of FPN, and outputs segmentation kernels of each grid cell.

The output of kernel branch is of size SxSxD, where D is the channel depth and corre-

sponds to the segmentation kernel size, i.e., if the segmentation kernel size of a grid

cell is kxk, then D = k2E.

Figure 4.5: Overview of SOLOv2 architecture [69].

36

In short, the valid grid cells are decided based on the class probabilities computed by

the classification branch. Then, segmentation kernels of the valid cells are extracted

from the kernel branch. By performing convolution using these segmentation kernels

on the feature map output by the feature branch, segmentation mask of each valid cell

is obtained.

Model AP (%) Year

Mask RCNN 37.1 2017

PANet 40.0 2018

SOLO 37.8 2020

SOLOv2 39.7 2020

Table 4.2: Performance analysis of some state-of-the-art instance segmentation mod-

els on MS-COCO test dataset.

37

38

CHAPTER 5

DEEP LEARNING-BASED SINGLE IMAGE DEPTH ESTIMATION

This chapter presents a literature review on single image depth estimation. First, it

begins with a brief introduction and problem definition of monocular depth estima-

tion in Section 5.1. Then, object detection performance metrics are explained in 5.2.

Finally, deep learning-based single image depth estimation models are given in Sec-

tion 5.3.

5.1 Introduction

As one of the most fundamental problems in scene understanding, depth estimation

is the task of predicting the spatial structure of a scene based on the appearance of

objects in images. There are many applications such as synthetic object insertion in

computer graphics [35], synthetic depth of field in computational photography [4],

grasping in robotics [39], using depth as a cue in human body pose estimation [61],

robot assisted surgery [64], and automatic 2D to 3D conversion in film [74].

Successful depth estimation techniques have been developed using structure from mo-

tion, shape-from-X, binocular and multi-view stereo; however, most of these meth-

ods require multiple observations of the interested scene, e.g., multiple viewpoints or

multiple observations under different lighting conditions [21]. To tackle this prob-

lem, many researchers have focused on monocular depth estimation which aims for

predicting dense map for a given single RGB image. What makes monocular depth

estimation challenging is that there is an infinite number of 3D scenes that yield to

the same 2D image, i.e. there is a one-to-many mapping between RGB images and

depth maps [44]. Human visual system utilizes several monocular cues to overcome

39

this ambiguity such as occlusion, perspective, size, texture gradient, motion parallax

etc. This phenomenon that humans use prior knowledge and statistics for monocular

depth estimation has encouraged many researchers to exploit machine learning and

deep learning techniques to advance depth estimation models.

5.2 Performance Metrics

Given a predicted depth image and the corresponding ground truth, with d̂p and dp

denoting the estimated and ground-truth depths respectively at pixel p, and T being

the total number of pixels for which there exist both valid ground truth and predicted

depth [5],

• Absolute Relative Error

1

T

∑
p

|dp − d̂p|
dp

(5.1)

• Linear Root Mean Square Error (RMSE)

√
1

T

∑
p

(dp − d̂p)2 (5.2)

• Log-Scale Invariant RMSE

1

T

∑
p

(log d̂p − log dp + α(d̂p, dp))
2 (5.3)

where α(d̂p, dp) addresses scale alignment.

• Accuracy Under A Threshold

max(
d̂p
dp

,
dp

d̂p
) = δ < th (5.4)

where th is a predefined threshold.

40

5.3 Deep Learning-Based Single Image Depth Estimation Models

5.3.1 Monodepth

Prior to Monodepth [21], most of the learning-based approaches considered monocu-

lar depth estimation as a supervised regression problem. This requires a large quantity

of labeled data; however, obtaining quality depth data from a variety of environments

is burdensome. To remedy this problem, Monodepth removes the necessity of ground

truth depth data by replacing it with binocular stereo images, and poses depth estima-

tion as an image reconstruction problem. To be more precise, Monodepth has access

to I l and Ir during training, the left and right RGB images captured simultaneously

from a calibrated stereo pair. Instead of directly estimating the depth map, Monodepth

tries to find the dense correspondence field dr that can be utilized to reconstruct the

right image from the left pair, i.e. Ĩr = I l(dr), where Ĩr corresponds to the recon-

structed right image. If the input images are rectified, d becomes the image disparity

that Monodepth learns to estimate. Given the baseline b and the camera focal length

f , the depth can be estimated from the estimated disparity, d̂ = bf/d.

Monodepth network is basically built upon an encoder-decoder architecture. The de-

coder stage has skip connections from the encoder’s activation blocks to fuse feature

maps for higher resolution details. Monodepth outputs predicted disparities at four

different scales, and then reconstructs images with backward mapping using a bilin-

ear sampler. The network is trained to estimate the disparity maps for both views by

sampling the opposite input images so that consistency between both disparity maps

can be enforced for more accurate results. However, disparity maps in both cases are

still generated from only the left image I l for the sake of monocular depth estimation.

During the test time, image reconstruction branches and right image pipelines are re-

moved, and only the left disparity map output will be used in depth estimation of the

input (left) image.

As disparity predictions are performed at four different scales, the loss function C is

formed as the sum of losses at each output scale, C =
∑4

s=1Cs. A loss module at

each scale computes Cs as weighted combination of three terms,

41

Cs = αap(C
l
ap + Cr

ap) + αds(C
l
ds + Cr

ds) + αlr(C
l
lr + Cr

lr) (5.5)

These terms are,

• The appearance matching loss, Cap, enforces the reconstructed image to look

similar to the original image,

C l
ap =

1

N

∑
i,j

α
1− SSIM(I lij, Ĩ

l
ij)

2
+ (1− α)||I lij − Ĩ lij|| (5.6)

where I lij is the input image, Ĩ lij is the reconstructed image, and N is the number

of pixels.

• The disparity smoothness loss, Cds, encourages disparities to be locally smooth

with L1 penalty on the disparity gradients ∂d,

C l
ds =

1

N

∑
i,j

|∂xdlij|e−||∂xIlij || + |∂ydlij|e−||∂yIlij || (5.7)

• The left-right disparity consistency loss, Clr, enforces the left-view disparity

map to be equal to the projected right-view disparity map,

C l
lr =

1

N

∑
i,j

|dlij − drij+dlij
| (5.8)

Finally, during inference, Monodepth estimates the disparity at the finest scale that

has the same resolution as the input image. By using the camera baseline and focal

length, disparity map can be converted to the depth map.

5.3.2 Monodepth2

In order to close the gap between the monocular and binocular depth estimation net-

works, Monodepth2 [22] takes the idea of Monodepth further by introducing several

innovations. Similar to Monodepth, Monodepth2 is also trained using image recon-

struction as the supervisory signal. Self-supervision can be performed using synchro-

nized stereo pairs or monocular videos. In self-supervised stereo training, disparities

between the image pairs are predicted. On the other hand, in self-supervised monoc-

ular training, consecutive temporal video frames are used for training. As a result,

42

in addition to the disparities, the camera pose between the consecutive frames should

be estimated too. The camera pose is only required for training, and not used during

inference.

The overall architecture of Monodepth is very similar to Monodepth. Monodepth2

uses U-Net for its depth network, which is basically an encoder-decoder model. Given

the input image It, the depth network estimates the depth map Dt. As one of the

introduced innovations, a 4-layer CNN is used as the pose network which predicts the

pose between a pair of frames. Similar to the Monodepth, loss function is composed

of three terms. Given that It is the input image, It′ is the image pair, Tt→t′ is the pose

of It′ with respect to It, and Dp is the dense depth map,

• Photometric reprojection error, Lp,

Lp =
∑
t′

pe(It, It′→t), (5.9)

and It′→t = It′
〈
proj(Dt, Tt→t′ , K)

〉
(5.10)

where pe() is the photometric reconstruction error, e.g., L1 distance in pixel

space, proj() is the resulting 2D coordinates of the projected depth Dt in T
′
t ,

and
〈〉

is the bilinear sampling operator.

• Photometric error function, pe(),

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)||Ia − Ib|| (5.11)

• Edge-aware smoothness error, Ls,

Ls = |∂x, d∗t |e−|∂xIt| + |∂y, d∗t |e−|∂yIt| (5.12)

where d∗t = dt/dt is the mean-normalized inverse depth.

For monocular training, two temporally adjacent frames to It are used as image pairs

for the computation of reprojection error, i.e., It′ ∈ {It−1, It+1}. Previous self-

supervised monocular depth estimation models would average these errors to obtain

the final reprojection error; however, this fails in cases where some pixels are oc-

cluded in an adjacent image and not occluded in the other because the occluded pixels

43

cause a high reprojection error. To tackle this problem, Monodepth2 uses the min-

imum of reprojection error at each pixel. Therefore, the final per-pixel reprojection

loss becomes,

Lp = min
t′

pe(It, It′→t) (5.13)

Another contribution of Monodepth2 is a simple auto-masking method which filters

out pixels whose appearance does not change from one frame to another. The reason

behind this is that self-supervised monocular training assumes a static scene and a

moving camera, and the performance is highly degraded when this assumption is not

met. Monodepth2 applies a per-pixel binary mask µ ∈ {0, 1} to the loss. µ includes

pixels where the reprojection error of the warped image It′→t is lower than that of the

original image pair I ′
t , i.e.,

µ =
[′

min
t

pe(It, It′→t) <
′

min
t

pe(It, It′)
]

(5.14)

where
[]

is the Iverson bracket.

The final contribution of Monodepth2 is in its multi-scale estimation. During train-

ing, Monodepth performs multi-scale depth prediction and calculates the photometric

reprojection error on images at the resolution of each decode layer. However, this

results in holes in large low-texture regions and texture-copy artifacts. To remedy this

problem, Monodepth2 upsamples the lower resolution depth maps to the input im-

age resolution, and then calculate the losses. This also enforces the multi-scale depth

maps to learn how to reconstruct the high resolution input target images as accurately

as possible.

44

CHAPTER 6

PROPOSED METHODS

6.1 Motivation

Previous works have shown that object detection performances can be improved by

incorporating depth information obtained from sensors such as LIDAR. However,

neither RGB-D object detection nor instance segmentation is practical because of a

couple of reasons:

• Scarcity of labeled data: Deep learning-based RGB object detection and in-

stance segmentation algorithms have shown great improvements in recent years.

Yet, these models are highly dependent on the training data. The quantity and

quality of datasets can be seen as the bottleneck of deep learning-based mod-

els. To work with RGB images, not only there are plenty of benchmarks and

datasets but also one can prepare their own dataset even just by using their cell-

phone cameras. However, contrary to the RGB images, depth data is expensive

and difficult to acquire. There are only a few datasets available, and it is rather

impractical to prepare high quality custom-made depth datasets.

• Impractical application: Even though a comprehensive RGB-D dataset can

be obtained for offline training, depth information should still be supplied to

the detection or segmentation model during inference. This requires the use of

an RGB-D camera or a depth sensor along with an RGB camera all of which

ideally have the same sensor characteristics as the cameras used to prepare the

training dataset. Due to the high prices of depth sensors and their arduous syn-

chronization with RGB sensors, RGB-D object detection and instance segmen-

tation algorithms do not receive much attention from industrial applications.

45

6.2 Proposed Idea

In order to benefit from their superior performances, we aim to eliminate the draw-

backs of RGB-D models by replacing sensor-based depth information with the esti-

mated monocular depth maps. The possible advantages of incorporating monocular

depth estimation into object detection and instance segmentation are:

• Any RGB dataset can be converted to an RGB-D training dataset.

• Since depth of the scene is estimated from the RGB data, they are both inher-

ently synchronized.

• Single image depth estimation models do not require an extra depth sensor

neither in training nor in inference.

• Any platform which uses an RGB-based object detection or instance segmen-

tation model can be easily replaced with an RGB-D based model.

6.3 Proposed Models

The state-of-the-art monocular depth estimation, object detection and instance seg-

mentation models are modified such that detection and segmentation models take as

input both RGB images and depth maps. The proposed models are comprised of two

stages. The first stage is where depth estimation takes place, and Monodepth2 is used

to extract a 1-channel depth map from an input RGB image. We consider using two

types of depth maps: grayscale or RGB. To obtain an RGB depth map, Jet colormap

is applied to the extracted 1-channel depth map.

In the second stage, the input RGB image and the corresponding depth map are fed

to the fusion module. We propose two types of fusion modules: concatenation and

convolution. The output of the fusion module is then supplied to the second stage

where either object detection or instance segmentation takes place. SOLOv2 and

Mask RCNN are used for the instance segmentation stage, and Faster RCNN is used

for object detection stage.

46

Both of the proposed fusion modules exploit the early fusion technique. Thus, there

are no parallel branches for different modalities. Color and depth information are

processed together through the layers of the aforementioned architectures. Since the

proposed models use early fusion technique, there is no need to modify RGB-based

object detection and instance segmentation architectures except for their first layers.

6.3.1 Fusion by Concatenation

A 3-channel RGB image is concatenated with either 1-channel depth map to form a

4-channel image or 3-channel depth map to form a 6-channel image. The fused image

is then fed as input to either an object detection or an instance segmentation archi-

tecture. Since these models are originally developed for RGB images, convolutional

filters in their input layers accept inputs with 3-channel only. As a result, their first

layers should be modified such that they can convolute 4-channel and 6-channel input

images.

RGB
Image D

ep
th

Es

tim
at

io
n

Depth
Map

Fu
si

on
 M

od
ul

e

O
bj

ec
t

D
et

ec
tio

n Bounding Box
Coordinates

Class Probabilities

Figure 6.1: Proposed RGB-D object detection model.

47

6.3.2 Convolutional Fusion

Similar to the fusion by concatenation, a 3-channel RGB image is concatenated with

either 1-channel depth map to form a 4-channel image or 3-channel depth map to

form a 6-channel image. The fused image is then processed through a couple of

convolutional layers. The first convolutional layer increases the channel size to 8

while the second layer decreases it to 3. Both layers preserve the original width and

height of the input RGB image. The purpose of this mini-head network is to let the

model learn how it can fuse the color and depth information in the most effective way

when early fusion strategy is applied.

The output of the mini-head is then fed to either an object detection or an instance

segmentation architecture. Since the output of the mini-head has 3 channels in depth,

it can be directly supplied to the first layer of the following object detection or instance

segmentation architecture without any further modification.

RGB
Image D

ep
th

Es

tim
at

io
n

Depth
Map

Fu
si

on
 M

od
ul

e

In
st

an
ce

Se

gm
en

ta
tio

n

Segmentation
Masks

Class Probabilities

Figure 6.2: Proposed RGB-D instance segmentation model.

6.4 Datasets

The proposed models are trained and tested on SUN RGBD and our subset of MS-

COCO Detection 2017 dataset. The annotations of SUN RGBD and MS-COCO 2017

have both bounding box coordinates and pixel-level segmentation masks; therefore,

48

both datasets can be used for object detection and instance segmentation tasks. How-

ever, MS-COCO 2017 is a very large dataset: it contains 120k images for training

and 5k images for validation. Considering the capacity of available hardware in hand,

training the proposed models on the whole dataset takes too much time e.g. 27 days on

a single GPU of NVIDIA GeForce RTX 2080Ti. To accelerate the training process,

a subset of MS-COCO Detection 2017 training dataset is used. The subset is pre-

pared by sampling random 12k training images, corresponding to 10% of the original

dataset. The random sampling is repeated until the subset has the same class distribu-

tion as the original dataset’s. The original validation and test sets are kept since they

are already small, and they do not affect the duration of the training process.

6.5 Experiments

To be able to measure the effect of proposed methods, a variety of experiments have

been conducted using our MS-COCO subset. First, object detection and instance

segmentation models are trained and tested with only RGB images. Their results

make up the baseline for each proposed model, and they are referred to as RGB

Image Only models. Likewise, these models are also trained and tested with only

RGB depth maps. Their results indicate the worst-case scenario for each proposed

model, and they are referred to as RGB Depth Only models. Then, to measure the

effect of concatenating fusion module, two series of experiments are conducted. In

the first series, models are trained and tested with RGB images and grayscale depth

maps, and they are referred to as 4-channel Input models. In the second series, models

are trained and tested with RGB images and RGB depth maps, and they are referred

to as 6-channel Input models. Similarly, to measure the effect of convolutional fusion

module, two series of experiments are executed. In the first series, models are trained

and tested with RGB images and grayscale depth maps, and they are referred to as

4-to-3 Mapping models. In the second series, models are trained and tested with RGB

images and RGB depth maps, and they are referred to as 6-to-3 Mapping models.

In order to assess how efficiently the estimated depth information is exploited by the

proposed methods, the same experiments are repeated using SUN RGBD dataset.

Since SUN RGBD contains true depth data along with RGB images, their results

49

make up the best-case scenario for each proposed model and allow us to compare

one model with another in the most accurate way possible. Moreover, and most im-

portantly, by comparing the performances of models trained and tested on our MS-

COCO subset and SUN RGBD, we can deduce if estimated depth data gives as much

information as true depth data does for instance segmentation and object detection

tasks.

In all experiments, Monodepth2 is used for depth estimation stage. It is not in-

cluded in the training process but used offline in order to accelerate the training.

Before training, all depth maps are obtained by Monodepth2 with pre-trained weights

mono+stereo_640x192 [22]. In the second stage, SOLOv2 and Mask RCNN are

used for instance segmentation tasks whereas Faster RCNN is used for object detec-

tion. Moreover, object detection head of Mask RCNN is also used for crosschecking

Faster RCNN performance.

As backbone, all models use ResNet pre-trained on ImageNet. Hyperparameters are

kept constant for the same instance segmentation or object detection architecture.

Base learning rate is 0.01 for all SOLOv2 and Mask R-CNN models, and 0.02 for

all Faster RCNN models. Batch size is kept 4 for all models. Number of iterations

changes according to the training dataset because the SUN RGBD dataset has less

than half of the images our MS-COCO subset has and this causes much earlier over-

fitting when SUN RGBD is used. Therefore, all models are trained for 270k iterations

when our MS-COCO dataset is used, and for 90k iterations when SUN RGBD is used.

To train the models with convolutional modules, ResNet weights are kept frozen dur-

ing the first 5k iterations so that convolutional filters can be optimized much faster.

Apart from this, all weights are updated during the whole training process of all mod-

els. Experiments are executed with 1 NVIDIA GeForce RTX 2080Ti.

6.5.1 Test Results

The test results of the aforementioned experiments are given from Table 6.1 to Table

6.8. We used MS-COCO notations for the metrics (see Section 3.2). Furthermore, the

category-based AP results can be found in Appendix A.

50

Table 6.1: Object detection test results on SUN RGBD: Faster RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Image Only 16.702 27.578 17.663 3.213 11.833 23.021

4-channel Input 16.936 27.528 18.036 2.476 11.196 23.913

4-to-3 Mapping 16.138 26.046 17.217 2.437 10.160 22.944

Table 6.2: Object detection test results on MS-COCO subset: Faster RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Depth Only 5.944 11.438 5.364 0.435 3.222 12.595

RGB Image Only 23.215 38.712 24.495 10.852 24.062 31.396

4-channel Input 25.482 40.712 27.544 11.133 25.896 35.181

6-channel Input 25.269 41.669 26.736 11.888 25.403 34.431

4-to-3 Mapping 22.258 37.153 23.265 8.917 22.281 31.434

6-to-3 Mapping 23.013 39.673 23.801 10.073 23.624 31.838

Table 6.3: Object detection test results on SUN RGBD: Mask RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Image Only 17.052 28.093 17.835 3.162 12.267 23.481

4-channel Input 17.207 27.980 18.178 2.816 11.560 24.194

4-to-3 Mapping 16.492 26.695 17.597 2.262 10.188 23.416

Table 6.4: Object detection test results on MS-COCO subset: Mask RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Depth Only 7.188 13.648 6.798 0.644 4.373 14.449

RGB Image Only 25.365 41.472 27.099 13.089 25.866 33.739

4-channel Input 24.876 40.385 26.433 11.163 25.092 34.060

6-channel Input 25.628 40.911 27.540 11.759 25.976 35.478

4-to-3 Mapping 22.854 37.787 24.298 11.094 22.672 31.850

6-to-3 Mapping 23.488 38.749 24.933 9.722 23.778 33.043

51

Table 6.5: Instance segmentation test results on SUN RGBD: Mask RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Image Only 14.215 26.571 13.572 1.545 8.536 20.329

4-channel Input 14.210 26.482 13.921 1.281 7.741 20.762

4-to-3 Mapping 13.473 24.989 13.179 0.902 6.785 19.875

Table 6.6: Instance segmentation test results on MS-COCO subset: Mask RCNN.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Depth Only 6.892 12.293 6.810 0.340 3.689 15.377

RGB Image Only 23.609 39.191 24.869 9.926 23.792 34.958

4-channel Input 22.968 37.950 24.205 8.138 22.754 35.229

6-channel Input 23.307 38.480 24.420 8.662 23.614 35.607

4-to-3 Mapping 21.454 35.594 22.523 8.141 20.935 33.398

6-to-3 Mapping 21.686 36.363 22.375 6.986 22.125 33.550

Table 6.7: Instance segmentation test results on SUN RGBD: SOLOv2.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Image Only 16.894 30.995 16.285 1.583 10.180 23.703

4-channel Input 14.358 26.660 13.769 0.874 7.571 20.762

4-to-3 Mapping 16.458 29.687 16.243 1.057 8.769 23.607

Table 6.8: Instance segmentation test results on MS-COCO subset: SOLOv2.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

RGB Depth Only 5.740 10.503 5.486 0.179 2.903 11.981

RGB Image Only 23.888 38.565 25.098 8.006 25.164 35.043

4-channel Input 21.454 36.655 21.702 6.492 22.407 32.683

6-channel Input 22.501 37.678 22.378 7.129 23.119 33.788

4-to-3 Mapping 22.363 36.881 22.897 6.737 23.102 35.524

6-to-3 Mapping 22.447 37.448 23.198 7.641 23.661 35.221

52

6.5.2 Discussion

6.5.2.1 Instance Segmentation

In instance segmentation experiments which are conducted with our MS-COCO sub-

set, RGB Image Only models are consistently superior to the proposed methods.

Original SOLOv2 trained with only RGB images achieves an AP of 23.888% while

the 4-channel, 6-channel, 4-to-3 Mapping and 6-to-3 Mapping models achieve an

AP of 21.454%, 22.501%, 22.363% and 22.447%, respectively. Likewise, original

Mask RCNN trained with only RGB images achieves an AP of 23.609% while the

4-channel, 6-channel, 4-to-3 Mapping and 6-to-3 Mapping models achieve an AP of

22.968%, 23.307%, 21.454% and 21.686%, respectively. With both SOLOv2 and

Mask RCNN architectures, 6-channel Input models exceed the performance of 4-

Channel Input models. Similarly, 6-to-3 Mapping models yield better results than

4-to-3 Mapping models. This can be explained by the fact that the original SOLOv2

and Mask RCNN architectures are tuned for RGB data, and the pre-trained ResNet

weights are obtained from RGB images only. Therefore, it is expected that these sys-

tems respond more positively when depth data is given in RGB format rather than in

grayscale.

(a) Typical successful case. (b) Typical failure case.

Figure 6.3: Inference results of the best proposed Mask RCNN model: 6-channel

Input.

53

Even though the RGB Image Only models get the highest AP scores, the obtained

results are very close to one another, independent of the original architecture and fu-

sion module. This shows us that deep learning-based instance segmentation models

intrinsically estimates and exploits depth information through their convolutional lay-

ers. As a result, explicitly feeding the estimated depth maps to these architectures did

not yield any improvement.

To support this argument, we can refer to the results of instance segmentation experi-

ments conducted with SUN RGBD dataset. RGB Image Only models are once again

consistently superior to the proposed methods. Original SOLOv2 trained with only

RGB images achieves an AP of 16.894% while the 4-channel and 4-to-3 Mapping

models achieve an AP of 14.358% and 16.458%, respectively. Likewise, original

Mask RCNN trained with only RGB images achieves an AP of 14.215% while the

4-channel and 4-to-3 Mapping models achieve an AP of 14.210% and 13.473%, re-

spectively. Since SUN RGBD contains true depth data, these results can show us

if there is a problem with the estimated depth data or the proposed methods cannot

exploit any type of depth information. Since the results are consistent regardless of

the dataset, we can conclude that deep learning-based instance segmentation models

intrinsically estimate and exploit depth information, and any additional depth infor-

mation is not necessary.

(a) Typical successful case. (b) Typical failure case.

Figure 6.4: Inference results of the best proposed SOLOv2 model: 6-channel Input.

54

The lower AP results of the proposed models can be explained by the fact that the

fused RGB and depth data is first processed through the ResNet backbone which is

pre-trained on ImageNet dataset, and this dataset comprises only RGB images. Thus,

it is natural to observe a small drop in performance when the RGB-trained ResNet

weights face with depth data that is already extracted in the following layers and has

nothing to bring forth.

6.5.2.2 Object Detection

In object detection experiments which are conducted with our MS-COCO subset, con-

catenating fusion models are consistently superior to the other methods. For Faster

RCNN architecture, 4-channel model achieves an AP of 25.482% and 6-channel

model achieves an AP of 25.269% while the RGB Image Only, 4-to-3 Mapping and

6-to-3 Mapping models achieve an AP of 23.215%, 22.258% and 23.013%, respec-

tively. The performance of 4-channel and 6-channel Input models are very close to

each other and the difference between them is that 6-channel Input model is better

at detecting small objects with APs of 11.888% while the 4-channel Input model is

better at detecting medium-size and large objects with APm and APl of 25.896% and

35.181%, respectively. Apart from this, Mask RCNN not only outputs segmentation

masks but also bounding box coordinates, i.e. Mask RCNN involves Faster RCNN as

a part of its architecture. Therefore, the object detection performance of Mask RCNN

can also be used for crosschecking the sole Faster RCNN experiments. Once again,

6-channel Input model is superior to the other methods. 6-channel model achieves an

AP of 25.628% whereas the RGB Image Only, 4-channel Input, 4-to-3 Mapping and

6-to-3 Mapping models achieve an AP of 25.365%, 24.876%, 22.854% and 23.488%,

respectively.

As in instance segmentation experiments, 6-to-3 Mapping models yield better results

than 4-to-3 Mapping models. Similarly, 6-channel Input models either exceed or

equal to 4-Channel Input models. Once again, this can be explained by the fact that

the original Faster RCNN is tuned for RGB data, and the pre-trained ResNet weights

are obtained from RGB images only. Thus, it is expected that these systems respond

more positively when depth data is given in RGB format rather than in grayscale.

55

(a) "RGB Image Only" Model Results (b) "4-channel Input" Model Results

Figure 6.5: Comparison between some selected visual results of RGB Image Only

and 4-channel Input models of Faster RCNN.

56

(a) Typical successful case. (b) Typical failure case.

Figure 6.6: Inference results of the best Faster RCNN model: 4-channel Input.

Contrary to the instance segmentation architectures, object detection architectures

can benefit from depth information and improve their performances. To support this

argument, we can refer to the results of object detection experiments conducted with

SUN RGBD dataset. Models with concatenating module are once again consistently

superior to the RGB Image Only and convolutional fusion methods. 4-channel Input

model Faster RCNN achieves an AP of 16.936% while the RGB Image Only and 4-to-

3 Mapping models achieve an AP of 16.702% and 16.138%, respectively. Likewise,

4-channel Input model of Mask RCNN’s object detection head achieves an AP of

17.207% while the RGB Image Only and 4-to-3 Mapping models achieve an AP of

17.052% and 16.492%, respectively. Since SUN RGBD contains true depth data,

these results can show us if the proposed methods can exploit any type of additional

depth information. As the results are consistent regardless of the dataset, we can

conclude that any kind of depth data improves the object detection performance and

the existing deep learning-based object detection models do not exploit it intrinsically.

Therefore, by explicitly supplying estimated depth information, we could boost their

performances.

57

58

CHAPTER 7

CONCLUSIONS & FUTURE WORKS

7.1 Conclusions

In this thesis, we studied whether or not it is possible to achieve improvements in

performances when estimated dense-depth map is incorporated to the object detec-

tion and instance segmentation architectures. To be able to exploit both depth and

color information, we proposed two fusion modules based on early fusion technique:

fusion by concatenation and convolutional fusion. We then integrated these fusion

modules to various RGB object detection and instance segmentation architectures,

and tested them if any significant improvement is achieved. In experiments, we used

only Monodepth2 for monocular depth estimation.

For object detection task, the fusion modules are incorporated into Faster RCNN.

Fusion by concatenation models trained on MS-COCO dataset outperformed the RGB

Image Only models. For Faster RCNN architecture, 4-channel model achieves an AP

of 25.482% and 6-channel model achieves an AP of 25.269% while the RGB Image

Only, 4-to-3 Mapping and 6-to-3 Mapping models achieve AP of 23.215%, 22.258%

and 23.013%, respectively. The same tendency is observed when the models are

trained on SUN-RGBD datasets, i.e., depth data is not estimated but obtained from

sensors. 4-channel Input model Faster RCNN achieves an AP of 16.936% while the

RGB Image Only and 4-to-3 Mapping models achieve AP of 16.702% and 16.138%,

respectively. This tendency indicates that the existing deep learning-based object

detection models do not exploit depth information intrinsically and thus explicitly

using estimated depth information can boost their performances.

As for instance segmentation task, the proposed fusion modules are incorporated into

59

SOLOv2 and Mask RCNN architectures. Unlike object detection models, none of the

modified instance segmentation models trained on MS-COCO surpassed the RGB

Image Only models. SOLOv2 trained with only RGB images achieved an AP of

23.888% while the 4-channel, 6-channel, 4-to-3 Mapping and 6-to-3 Mapping mod-

els achieved AP of 21.454%, 22.501%, 22.363% and 22.447%, respectively. Like-

wise, Mask RCNN trained with only RGB images achieved an AP of 23.609% while

the 4-channel, 6-channel, 4-to-3 Mapping and 6-to-3 Mapping models achieved AP

of 22.968%, 23.307%, 21.454% and 21.686%, respectively. The same tendency is

observed when the models are trained on SUN-RGBD datasets, i.e., depth data is

not estimated but obtained from sensors. SOLOv2 trained with only RGB images

achieves an AP of 16.894% while the 4-channel and 4-to-3 Mapping models achieve

AP of 14.358% and 16.458%, respectively. Likewise, Mask RCNN trained with only

RGB images achieves an AP of 14.215% while the 4-channel and 4-to-3 Mapping

models achieve AP of 14.210% and 13.473%, respectively. This tendency indicates

that deep learning-based instance segmentation models intrinsically estimates and ex-

ploits depth information, and explicitly using them do not provide any improvement.

To sum up, the conducted experiments show that state-of-the-art deep learning-based

instance segmentation models extract and exploit the monocular dense-depth infor-

mation from an input image, and do not require to be explicitly fed with such input

data. However, state-of-the-art deep learning-based object detection models do not

implicitly perform depth estimation and supplying any kind of depth data, e.g. esti-

mated or acquired from a sensor, helps them improve their performances.

7.2 Future Works

In this thesis, only early fusion-based fusion modules are proposed and tested. As

future work, late fusion or deep fusion-based fusion modules can be studied. As

for the late fusion technique, two parallel networks of the same model can be used

to train on RGB images and depth maps independently, and the output features of

these branches can be fused for classification and localization layers. Likewise, as

for the deep fusion technique, two parallel networks can be used to train on RGB

images and depth maps independently, and the output features of these branches can

60

be fused and fed to a third CNN which also handles localization and classification

at its last layer. Furthermore, more complex functions can be used in fusion module,

e.g., element-wise multiplication followed by square-root operation, or depth map can

be integrated into an attention mechanism which enhances certain features in certain

regions and yield to better performances. Last but not least, multi-task learning can

be employed instead of learning one specific task such as object detection or instance

segmentation. Depth estimation, object detection, and instance segmentation tasks

are not completely independent of each other, and they can benefit from the high

performance of the other. Therefore, one may achieve an overall higher performance

in each of these tasks when a common architecture is trained to learn how to carry out

these tasks simultaneously instead of focusing on only one of them.

61

62

APPENDIX A

CATEGORY-BASED TEST RESULTS

A.1 Object Detection Test Results on SUN RGBD: Faster RCNN

Table A.1: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 20.026 floor 30.361 cabinet 15.687 bed 24.406

chair 25.796 sofa 23.204 table 20.460 door 20.150

window 13.126 bookshelf 20.821 picture 27.166 counter 17.980

blinds 17.984 desk 10.484 shelves 0.977 curtain 18.666

dresser 23.439 pillow 21.926 mirror 12.193 floormat 4.280

clothes 3.745 ceiling 23.742 books 5.495 fridge 16.003

tv 16.491 paper 6.659 towel 5.807 showercurtain 8.726

box 5.026 whiteboard 28.721 person 7.249 nightstand 29.305

toilet 30.815 sink 21.747 lamp 20.477 bathtub 15.570

bag 3.248

63

Table A.2: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 19.903 floor 31.369 cabinet 16.530 bed 27.006

chair 25.567 sofa 23.842 table 21.021 door 17.704

window 10.927 bookshelf 19.441 picture 24.364 counter 19.004

blinds 16.637 desk 12.086 shelves 0.790 curtain 20.855

dresser 20.409 pillow 24.674 mirror 12.959 floormat 6.969

clothes 4.699 ceiling 18.797 books 4.709 fridge 20.343

tv 17.762 paper 6.858 towel 6.856 showercurtain 7.958

box 6.090 whiteboard 26.433 person 5.492 nightstand 28.245

toilet 31.330 sink 25.175 lamp 19.456 bathtub 21.185

bag 3.198

Table A.3: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 18.459 floor 29.474 cabinet 15.276 bed 26.661

chair 24.470 sofa 22.728 table 20.054 door 16.884

window 9.703 bookshelf 20.177 picture 22.798 counter 18.582

blinds 16.026 desk 11.396 shelves 0.948 curtain 18.132

dresser 19.319 pillow 23.903 mirror 11.983 floormat 4.305

clothes 3.346 ceiling 18.549 books 4.510 fridge 20.092

tv 16.888 paper 6.156 towel 7.914 showercurtain 9.558

box 4.121 whiteboard 27.488 person 6.188 nightstand 25.553

toilet 32.236 sink 23.884 lamp 18.649 bathtub 17.614

bag 3.082

64

A.2 Object Detection Test Results on MS-COCO Subset: Faster RCNN

Table A.4: Model: RGB Depth Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 18.860 bicycle 2.518 car 3.672 motorcycle 7.876

airplane 16.508 bus 22.418 train 20.657 truck 3.390

boat 0.725 trafficlight 0.852 firehydrant 26.831 stopsign 28.335

parkingmeter 10.625 bench 3.898 bird 3.945 cat 13.249

dog 6.537 horse 13.484 sheep 2.661 cow 9.082

elephant 15.934 bear 15.753 zebra 13.716 giraffe 21.807

backpack 0.378 umbrella 5.487 handbag 0.083 tie 0.549

suitcase 0.771 frisbee 1.579 skis 0.430 snowboard 0.267

sportsball 2.591 kite 1.477 baseballbat 1.791 baseballglove 1.673

skateboard 1.676 surfboard 3.223 tennisracket 3.826 bottle 2.548

wineglass 2.822 cup 4.979 fork 0.645 knife 0.034

spoon 0.814 bowl 4.443 banana 0.930 apple 0.321

sandwich 3.881 orange 3.232 broccoli 0.597 carrot 0.030

hotdog 1.223 pizza 9.316 donut 5.676 cake 2.488

chair 2.388 couch 9.543 pottedplant 1.139 bed 13.944

diningtable 12.316 toilet 19.585 tv 8.813 laptop 13.071

mouse 3.092 remote 0.031 keyboard 2.548 cellphone 0.963

microwave 1.790 oven 2.732 toaster 0.891 sink 3.602

refrigerator 9.801 book 0.127 clock 1.418 vase 4.415

scissors 0.268 teddybear 9.164 hairdrier 0.000 toothbrush 0.796

65

Table A.5: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 43.594 bicycle 19.820 car 32.716 motorcycle 27.510

airplane 42.012 bus 48.167 train 42.792 truck 18.537

boat 12.623 trafficlight 18.575 firehydrant 48.694 stopsign 53.377

parkingmeter 22.996 bench 11.600 bird 19.544 cat 38.120

dog 32.715 horse 38.411 sheep 29.747 cow 32.013

elephant 41.915 bear 48.630 zebra 54.978 giraffe 54.506

backpack 6.537 umbrella 17.291 handbag 4.520 tie 18.674

suitcase 10.974 frisbee 47.880 skis 12.128 snowboard 14.634

sportsball 34.842 kite 29.720 baseballbat 14.172 baseballglove 18.746

skateboard 28.562 surfboard 19.705 tennisracket 28.677 bottle 23.158

wineglass 20.631 cup 25.509 fork 10.977 knife 5.109

spoon 3.071 bowl 25.722 banana 10.004 apple 4.543

sandwich 19.039 orange 15.316 broccoli 11.125 carrot 8.950

hotdog 12.923 pizza 38.473 donut 19.275 cake 15.231

chair 11.222 couch 22.716 pottedplant 11.183 bed 27.587

diningtable 16.673 toilet 41.809 tv 38.732 laptop 40.235

mouse 41.498 remote 12.729 keyboard 32.352 cellphone 18.405

microwave 33.584 oven 15.697 toaster 7.996 sink 19.943

refrigerator 23.895 book 6.866 clock 38.559 vase 18.384

scissors 3.691 teddybear 26.381 hairdrier 0.192 toothbrush 4.266

66

Table A.6: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 43.692 bicycle 17.268 car 33.164 motorcycle 29.124

airplane 43.635 bus 47.359 train 44.601 truck 19.531

boat 14.543 trafficlight 18.088 firehydrant 50.027 stopsign 55.492

parkingmeter 27.292 bench 13.379 bird 16.722 cat 44.121

dog 40.639 horse 39.769 sheep 30.971 cow 33.197

elephant 42.709 bear 51.758 zebra 54.498 giraffe 52.118

backpack 7.128 umbrella 16.398 handbag 6.783 tie 23.187

suitcase 14.316 frisbee 47.073 skis 12.099 snowboard 16.330

sportsball 35.322 kite 24.874 baseballbat 14.287 baseballglove 22.142

skateboard 32.857 surfboard 20.405 tennisracket 29.801 bottle 21.777

wineglass 21.685 cup 26.255 fork 13.606 knife 4.636

spoon 4.072 bowl 25.179 banana 10.065 apple 3.854

sandwich 20.219 orange 17.370 broccoli 11.131 carrot 9.696

hotdog 14.329 pizza 39.604 donut 21.091 cake 16.793

chair 12.647 couch 23.705 pottedplant 11.595 bed 29.493

diningtable 18.526 toilet 43.510 tv 36.734 laptop 43.075

mouse 42.416 remote 13.806 keyboard 34.225 cellphone 20.519

microwave 33.608 oven 17.258 toaster 26.403 sink 22.344

refrigerator 31.999 book 5.799 clock 37.233 vase 18.110

scissors 10.797 teddybear 28.928 hairdrier 0.000 toothbrush 7.752

67

Table A.7: Model: 6-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 44.363 bicycle 17.325 car 32.911 motorcycle 28.832

airplane 44.964 bus 47.721 train 43.180 truck 20.684

boat 14.361 trafficlight 19.483 firehydrant 49.693 stopsign 54.041

parkingmeter 28.838 bench 13.247 bird 18.317 cat 40.757

dog 35.332 horse 39.534 sheep 29.938 cow 32.728

elephant 43.362 bear 46.946 zebra 53.478 giraffe 54.597

backpack 6.206 umbrella 19.250 handbag 5.595 tie 22.158

suitcase 12.424 frisbee 45.255 skis 10.736 snowboard 19.251

sportsball 35.095 kite 24.475 baseballbat 14.585 baseballglove 20.748

skateboard 30.699 surfboard 20.377 tennisracket 29.311 bottle 23.174

wineglass 20.579 cup 26.888 fork 12.492 knife 4.533

spoon 2.976 bowl 26.227 banana 11.595 apple 5.129

sandwich 21.598 orange 19.116 broccoli 13.579 carrot 10.318

hotdog 16.678 pizza 38.817 donut 21.346 cake 18.525

chair 12.827 couch 24.012 pottedplant 11.542 bed 30.739

diningtable 19.105 toilet 41.258 tv 39.620 laptop 40.987

mouse 43.499 remote 12.978 keyboard 33.230 cellphone 20.234

microwave 33.033 oven 17.239 toaster 21.485 sink 24.129

refrigerator 29.535 book 6.488 clock 38.027 vase 17.590

scissors 8.772 teddybear 26.042 hairdrier 0.000 toothbrush 4.779

68

Table A.8: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 40.649 bicycle 17.590 car 29.981 motorcycle 25.301

airplane 41.735 bus 46.944 train 39.034 truck 17.509

boat 11.857 trafficlight 15.850 firehydrant 47.499 stopsign 53.220

parkingmeter 23.837 bench 10.989 bird 16.426 cat 41.349

dog 33.975 horse 35.017 sheep 24.028 cow 29.400

elephant 37.149 bear 47.462 zebra 47.665 giraffe 49.608

backpack 6.750 umbrella 16.336 handbag 4.215 tie 20.105

suitcase 8.795 frisbee 37.645 skis 9.230 snowboard 11.449

sportsball 28.170 kite 22.445 baseballbat 12.357 baseballglove 16.960

skateboard 29.186 surfboard 16.812 tennisracket 26.288 bottle 20.393

wineglass 19.881 cup 23.569 fork 9.066 knife 4.300

spoon 2.558 bowl 24.643 banana 8.633 apple 3.630

sandwich 14.419 orange 12.910 broccoli 9.527 carrot 5.150

hotdog 10.515 pizza 34.170 donut 15.846 cake 12.587

chair 10.817 couch 21.862 pottedplant 7.801 bed 30.439

diningtable 17.920 toilet 39.278 tv 35.047 laptop 38.791

mouse 42.736 remote 9.904 keyboard 34.065 cellphone 16.925

microwave 30.934 oven 14.981 toaster 9.505 sink 19.958

refrigerator 27.402 book 5.632 clock 35.427 vase 14.868

scissors 8.162 teddybear 23.190 hairdrier 0.000 toothbrush 2.394

69

Table A.9: Model: 6-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 41.818 bicycle 17.904 car 30.500 motorcycle 25.650

airplane 40.605 bus 47.375 train 38.741 truck 17.011

boat 12.720 trafficlight 16.349 firehydrant 46.620 stopsign 53.841

parkingmeter 23.134 bench 11.392 bird 19.187 cat 39.985

dog 34.040 horse 36.883 sheep 28.135 cow 33.571

elephant 42.111 bear 44.671 zebra 50.826 giraffe 52.727

backpack 6.097 umbrella 18.323 handbag 3.338 tie 20.824

suitcase 11.015 frisbee 39.055 skis 9.675 snowboard 12.527

sportsball 25.814 kite 20.124 baseballbat 12.651 baseballglove 18.746

skateboard 27.962 surfboard 19.460 tennisracket 26.592 bottle 22.172

wineglass 19.564 cup 25.664 fork 9.810 knife 2.977

spoon 2.569 bowl 25.952 banana 8.402 apple 6.570

sandwich 15.037 orange 14.404 broccoli 10.742 carrot 6.234

hotdog 12.289 pizza 33.769 donut 19.323 cake 14.696

chair 12.526 couch 20.490 pottedplant 7.966 bed 28.953

diningtable 18.521 toilet 39.685 tv 35.771 laptop 41.228

mouse 42.695 remote 10.946 keyboard 32.224 cellphone 18.512

microwave 32.314 oven 15.727 toaster 10.594 sink 19.765

refrigerator 26.058 book 5.940 clock 37.301 vase 17.001

scissors 10.662 teddybear 25.762 hairdrier 0.000 toothbrush 2.242

70

A.3 Object Detection Test Results on SUN RGBD: Mask RCNN

Table A.10: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 20.387 floor 30.920 cabinet 16.678 bed 25.084

chair 26.188 sofa 23.617 table 21.164 door 21.047

window 13.189 bookshelf 19.984 picture 27.262 counter 18.273

blinds 19.381 desk 10.312 shelves 0.811 curtain 19.928

dresser 25.240 pillow 22.013 mirror 12.171 floormat 4.549

clothes 4.193 ceiling 24.218 books 5.724 fridge 16.352

tv 17.934 paper 6.518 towel 6.634 showercurtain 7.083

box 5.513 whiteboard 28.448 person 7.272 nightstand 29.724

toilet 29.790 sink 21.725 lamp 21.405 bathtub 16.226

bag 3.964

71

Table A.11: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 20.241 floor 31.735 cabinet 16.984 bed 27.215

chair 25.954 sofa 24.259 table 21.530 door 18.485

window 11.431 bookshelf 20.664 picture 24.223 counter 18.546

blinds 17.294 desk 11.882 shelves 0.975 curtain 21.039

dresser 20.493 pillow 24.468 mirror 14.740 floormat 5.321

clothes 5.150 ceiling 20.158 books 5.094 fridge 17.946

tv 17.065 paper 7.014 towel 6.032 showercurtain 9.963

box 6.021 whiteboard 27.061 person 6.259 nightstand 28.382

toilet 33.314 sink 24.667 lamp 20.101 bathtub 21.282

bag 3.666

Table A.12: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 19.435 floor 29.923 cabinet 15.471 bed 27.185

chair 24.529 sofa 22.544 table 20.116 door 16.764

window 9.890 bookshelf 19.910 picture 22.958 counter 17.600

blinds 15.481 desk 10.555 shelves 0.591 curtain 18.090

dresser 20.863 pillow 23.592 mirror 12.406 floormat 3.962

clothes 3.836 ceiling 17.864 books 4.372 fridge 17.650

tv 18.077 paper 6.190 towel 7.910 showercurtain 17.643

box 4.656 whiteboard 27.796 person 6.667 nightstand 27.434

toilet 31.710 sink 25.143 lamp 18.193 bathtub 19.354

bag 3.849

72

A.4 Object Detection Test Results on MS-COCO Subset: Mask RCNN

Table A.13: Model: RGB Depth Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 20.921 bicycle 3.297 car 4.737 motorcycle 8.488

airplane 17.966 bus 25.287 train 23.690 truck 4.815

boat 1.180 trafficlight 0.956 firehydrant 24.711 stopsign 28.456

parkingmeter 10.824 bench 4.782 bird 4.069 cat 18.222

dog 10.246 horse 14.467 sheep 4.276 cow 10.749

elephant 14.706 bear 17.933 zebra 16.685 giraffe 24.690

backpack 0.181 umbrella 6.180 handbag 0.322 tie 1.204

suitcase 1.869 frisbee 3.632 skis 1.022 snowboard 0.871

sportsball 2.553 kite 2.371 baseballbat 3.666 baseballglove 1.642

skateboard 3.089 surfboard 4.768 tennisracket 6.030 bottle 3.567

wineglass 3.446 cup 6.310 fork 0.520 knife 0.098

spoon 0.072 bowl 6.516 banana 1.130 apple 0.789

sandwich 5.781 orange 4.389 broccoli 1.185 carrot 0.025

hotdog 1.320 pizza 11.780 donut 7.686 cake 2.823

chair 3.542 couch 10.303 pottedplant 0.841 bed 20.193

diningtable 12.993 toilet 24.954 tv 11.906 laptop 16.707

mouse 4.777 remote 0.064 keyboard 5.270 cellphone 1.456

microwave 5.634 oven 3.545 toaster 0.216 sink 6.170

refrigerator 11.676 book 0.427 clock 2.254 vase 3.905

scissors 1.099 teddybear 13.697 hairdrier 0.000 toothbrush 0.405

73

Table A.14: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 45.273 bicycle 18.461 car 33.672 motorcycle 28.759

airplane 43.304 bus 50.684 train 46.417 truck 19.261

boat 13.568 trafficlight 17.623 firehydrant 48.828 stopsign 55.307

parkingmeter 27.150 bench 12.813 bird 20.623 cat 39.825

dog 33.682 horse 39.329 sheep 30.600 cow 32.782

elephant 45.366 bear 47.807 zebra 54.513 giraffe 54.839

backpack 6.752 umbrella 19.551 handbag 5.546 tie 19.784

suitcase 11.152 frisbee 46.858 skis 12.824 snowboard 14.526

sportsball 35.857 kite 31.329 baseballbat 14.676 baseballglove 21.043

skateboard 31.495 surfboard 22.516 tennisracket 27.257 bottle 25.834

wineglass 22.813 cup 27.900 fork 11.501 knife 5.010

spoon 4.546 bowl 26.210 banana 9.777 apple 4.019

sandwich 21.288 orange 17.081 broccoli 11.231 carrot 9.758

hotdog 13.328 pizza 40.865 donut 19.668 cake 15.992

chair 13.068 couch 26.285 pottedplant 11.778 bed 30.115

diningtable 16.900 toilet 42.473 tv 39.710 laptop 42.593

mouse 42.572 remote 15.843 keyboard 31.511 cellphone 20.715

microwave 35.022 oven 17.030 toaster 19.211 sink 22.387

refrigerator 28.752 book 6.904 clock 37.636 vase 20.052

scissors 4.989 teddybear 28.602 hairdrier 0.696 toothbrush 5.874

74

Table A.15: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 45.285 bicycle 17.734 car 33.843 motorcycle 29.286

airplane 44.833 bus 49.698 train 46.273 truck 20.593

boat 15.060 trafficlight 19.114 firehydrant 51.606 stopsign 56.685

parkingmeter 24.723 bench 14.927 bird 17.468 cat 41.563

dog 35.219 horse 36.669 sheep 31.526 cow 31.014

elephant 43.160 bear 47.304 zebra 53.597 giraffe 55.139

backpack 5.821 umbrella 18.891 handbag 4.836 tie 22.354

suitcase 9.262 frisbee 45.515 skis 11.208 snowboard 16.604

sportsball 33.431 kite 24.596 baseballbat 13.565 baseballglove 20.305

skateboard 32.196 surfboard 19.696 tennisracket 28.119 bottle 23.384

wineglass 21.464 cup 26.040 fork 14.157 knife 5.214

spoon 3.574 bowl 25.524 banana 11.352 apple 3.836

sandwich 18.862 orange 17.932 broccoli 13.480 carrot 9.101

hotdog 15.073 pizza 38.356 donut 15.914 cake 15.545

chair 13.164 couch 25.831 pottedplant 10.567 bed 29.460

diningtable 18.514 toilet 45.321 tv 38.217 laptop 41.781

mouse 43.205 remote 13.340 keyboard 32.757 cellphone 17.745

microwave 28.941 oven 17.659 toaster 12.707 sink 20.509

refrigerator 30.934 book 6.158 clock 36.312 vase 19.575

scissors 8.868 teddybear 26.064 hairdrier 0.000 toothbrush 4.896

75

Table A.16: Model: 6-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 44.533 bicycle 17.936 car 33.609 motorcycle 30.074

airplane 46.428 bus 51.008 train 46.480 truck 20.556

boat 15.208 trafficlight 17.838 firehydrant 50.521 stopsign 53.911

parkingmeter 27.888 bench 13.900 bird 18.398 cat 44.972

dog 40.034 horse 39.059 sheep 31.087 cow 31.935

elephant 44.031 bear 47.132 zebra 54.478 giraffe 51.562

backpack 8.272 umbrella 18.432 handbag 6.536 tie 22.050

suitcase 13.593 frisbee 47.341 skis 12.738 snowboard 20.125

sportsball 36.574 kite 26.137 baseballbat 14.206 baseballglove 21.771

skateboard 31.238 surfboard 21.003 tennisracket 27.701 bottle 22.166

wineglass 21.721 cup 27.000 fork 14.056 knife 5.711

spoon 4.436 bowl 25.693 banana 9.233 apple 3.635

sandwich 20.630 orange 18.419 broccoli 12.399 carrot 10.592

hotdog 15.667 pizza 39.052 donut 20.127 cake 14.734

chair 12.652 couch 22.888 pottedplant 10.308 bed 29.808

diningtable 17.903 toilet 40.883 tv 37.287 laptop 43.416

mouse 43.221 remote 15.504 keyboard 35.329 cellphone 20.259

microwave 33.021 oven 17.321 toaster 20.238 sink 22.689

refrigerator 34.266 book 6.296 clock 34.609 vase 18.725

scissors 13.348 teddybear 27.022 hairdrier 0.000 toothbrush 7.680

76

Table A.17: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 43.161 bicycle 18.152 car 30.826 motorcycle 28.591

airplane 43.648 bus 46.129 train 43.705 truck 19.350

boat 12.653 trafficlight 15.581 firehydrant 49.785 stopsign 52.382

parkingmeter 26.449 bench 10.638 bird 17.244 cat 40.435

dog 33.454 horse 35.085 sheep 27.707 cow 31.169

elephant 38.924 bear 44.197 zebra 50.785 giraffe 52.228

backpack 5.224 umbrella 17.308 handbag 4.861 tie 19.689

suitcase 9.830 frisbee 38.736 skis 9.471 snowboard 11.237

sportsball 28.368 kite 22.609 baseballbat 11.669 baseballglove 17.841

skateboard 26.568 surfboard 17.398 tennisracket 25.637 bottle 21.746

wineglass 21.169 cup 26.397 fork 9.791 knife 3.712

spoon 2.404 bowl 27.566 banana 5.776 apple 3.248

sandwich 14.552 orange 12.088 broccoli 10.295 carrot 6.480

hotdog 12.029 pizza 35.306 donut 14.626 cake 12.769

chair 12.341 couch 24.284 pottedplant 8.555 bed 28.356

diningtable 18.197 toilet 43.195 tv 37.138 laptop 41.095

mouse 41.987 remote 11.286 keyboard 32.802 cellphone 16.473

microwave 27.840 oven 16.425 toaster 10.662 sink 21.262

refrigerator 29.625 book 5.319 clock 35.882 vase 16.879

scissors 3.641 teddybear 24.781 hairdrier 0.125 toothbrush 1.508

77

Table A.18: Model: 6-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 42.150 bicycle 19.134 car 30.945 motorcycle 27.975

airplane 44.127 bus 50.004 train 39.752 truck 17.602

boat 13.592 trafficlight 16.356 firehydrant 47.414 stopsign 52.683

parkingmeter 27.055 bench 12.414 bird 19.597 cat 43.310

dog 33.896 horse 38.654 sheep 26.667 cow 30.022

elephant 42.221 bear 48.051 zebra 51.019 giraffe 53.625

backpack 6.106 umbrella 16.765 handbag 4.780 tie 19.708

suitcase 10.350 frisbee 43.642 skis 9.506 snowboard 15.835

sportsball 27.712 kite 22.178 baseballbat 11.944 baseballglove 17.666

skateboard 28.901 surfboard 18.308 tennisracket 26.732 bottle 20.888

wineglass 21.870 cup 25.144 fork 12.031 knife 4.955

spoon 2.324 bowl 25.842 banana 7.693 apple 4.523

sandwich 15.996 orange 15.135 broccoli 11.290 carrot 5.757

hotdog 11.339 pizza 35.578 donut 18.727 cake 14.232

chair 11.968 couch 22.627 pottedplant 8.517 bed 25.868

diningtable 18.407 toilet 40.949 tv 38.065 laptop 42.416

mouse 42.495 remote 11.388 keyboard 32.348 cellphone 19.926

microwave 32.873 oven 14.797 toaster 8.534 sink 20.086

refrigerator 30.949 book 6.149 clock 36.175 vase 14.881

scissors 7.746 teddybear 26.014 hairdrier 0.000 toothbrush 4.148

78

A.5 Instance Segmentation Test Results on SUN RGBD: Mask RCNN

Table A.19: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 18.719 floor 30.601 cabinet 13.998 bed 19.147

chair 18.533 sofa 16.610 table 11.044 door 17.025

window 11.754 bookshelf 15.495 picture 27.471 counter 10.187

blinds 19.651 desk 6.642 shelves 0.366 curtain 20.081

dresser 21.184 pillow 18.916 mirror 9.478 floormat 3.654

clothes 3.657 ceiling 20.739 books 5.087 fridge 14.400

tv 17.445 paper 5.303 towel 6.227 showercurtain 8.205

box 4.502 whiteboard 25.778 person 5.332 nightstand 23.719

toilet 24.904 sink 18.205 lamp 14.363 bathtub 13.816

bag 3.727

79

Table A.20: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 18.215 floor 31.018 cabinet 14.834 bed 21.075

chair 18.447 sofa 17.088 table 11.666 door 14.240

window 9.956 bookshelf 16.242 picture 24.066 counter 10.088

blinds 17.479 desk 7.811 shelves 0.473 curtain 20.115

dresser 17.238 pillow 20.854 mirror 10.973 floormat 3.123

clothes 3.963 ceiling 17.262 books 4.402 fridge 15.917

tv 16.884 paper 5.742 towel 5.942 showercurtain 10.515

box 4.997 whiteboard 24.325 person 5.633 nightstand 22.755

toilet 27.881 sink 20.207 lamp 13.814 bathtub 17.024

bag 3.514

Table A.21: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 17.159 floor 29.287 cabinet 12.975 bed 20.576

chair 17.409 sofa 15.958 table 10.514 door 12.647

window 8.659 bookshelf 15.104 picture 22.868 counter 8.773

blinds 15.564 desk 6.581 shelves 0.163 curtain 17.612

dresser 16.808 pillow 20.032 mirror 8.818 floormat 3.151

clothes 3.016 ceiling 15.182 books 3.893 fridge 15.151

tv 18.103 paper 4.892 towel 7.180 showercurtain 17.055

box 3.926 whiteboard 25.167 person 5.650 nightstand 21.340

toilet 27.060 sink 20.403 lamp 11.904 bathtub 14.553

bag 3.348

80

A.6 Instance Segmentation Test Results on MS-COCO Subset: Mask RCNN

Table A.22: Model: RGB Depth Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 16.381 bicycle 1.603 car 4.346 motorcycle 6.383

airplane 17.385 bus 27.744 train 27.406 truck 4.995

boat 1.284 trafficlight 1.272 firehydrant 26.556 stopsign 30.524

parkingmeter 14.584 bench 3.190 bird 4.332 cat 20.953

dog 10.160 horse 9.218 sheep 3.818 cow 9.327

elephant 13.240 bear 19.697 zebra 10.017 giraffe 17.754

backpack 0.064 umbrella 8.935 handbag 0.243 tie 0.461

suitcase 2.216 frisbee 4.068 skis 0.000 snowboard 0.892

sportsball 2.798 kite 1.884 baseballbat 1.779 baseballglove 1.616

skateboard 0.739 surfboard 3.253 tennisracket 8.409 bottle 3.682

wineglass 2.531 cup 6.773 fork 0.048 knife 0.082

spoon 0.025 bowl 6.478 banana 0.812 apple 0.895

sandwich 6.716 orange 4.882 broccoli 1.363 carrot 0.024

hotdog 0.597 pizza 11.878 donut 9.383 cake 3.162

chair 1.806 couch 7.740 pottedplant 0.812 bed 13.987

diningtable 6.124 toilet 27.720 tv 12.793 laptop 18.782

mouse 5.228 remote 0.018 keyboard 4.746 cellphone 1.731

microwave 6.364 oven 3.848 toaster 0.243 sink 6.687

refrigerator 12.506 book 0.370 clock 2.479 vase 4.226

scissors 0.155 teddybear 12.906 hairdrier 0.000 toothbrush 1.208

81

Table A.23: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 39.181 bicycle 10.194 car 31.444 motorcycle 20.506

airplane 34.987 bus 50.502 train 47.840 truck 19.572

boat 11.385 trafficlight 17.606 firehydrant 49.071 stopsign 57.654

parkingmeter 30.558 bench 8.832 bird 17.698 cat 45.304

dog 34.553 horse 28.662 sheep 26.554 cow 28.212

elephant 41.084 bear 48.239 zebra 46.640 giraffe 40.880

backpack 6.377 umbrella 27.285 handbag 6.416 tie 20.084

suitcase 11.918 frisbee 47.772 skis 0.760 snowboard 7.125

sportsball 36.305 kite 23.342 baseballbat 13.453 baseballglove 23.678

skateboard 15.679 surfboard 18.792 tennisracket 37.915 bottle 25.216

wineglass 19.726 cup 28.388 fork 4.575 knife 3.427

spoon 2.541 bowl 25.176 banana 7.513 apple 3.989

sandwich 22.904 orange 17.644 broccoli 11.061 carrot 9.095

hotdog 11.730 pizza 40.241 donut 19.663 cake 16.884

chair 8.071 couch 21.682 pottedplant 10.782 bed 21.585

diningtable 7.504 toilet 43.216 tv 42.298 laptop 43.750

mouse 44.505 remote 15.389 keyboard 31.088 cellphone 21.347

microwave 37.123 oven 15.890 toaster 21.381 sink 20.838

refrigerator 31.248 book 3.756 clock 38.368 vase 19.448

scissors 3.932 teddybear 26.277 hairdrier 0.743 toothbrush 4.636

82

Table A.24: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 38.679 bicycle 10.335 car 31.597 motorcycle 20.815

airplane 36.047 bus 50.660 train 48.146 truck 19.851

boat 12.357 trafficlight 18.598 firehydrant 52.262 stopsign 56.527

parkingmeter 26.498 bench 9.976 bird 15.420 cat 46.769

dog 34.547 horse 27.025 sheep 26.795 cow 27.177

elephant 39.500 bear 48.170 zebra 45.392 giraffe 39.685

backpack 5.201 umbrella 26.614 handbag 5.589 tie 20.863

suitcase 10.541 frisbee 46.419 skis 0.827 snowboard 9.353

sportsball 33.910 kite 18.187 baseballbat 11.538 baseballglove 23.466

skateboard 15.624 surfboard 16.802 tennisracket 37.558 bottle 22.827

wineglass 19.961 cup 26.843 fork 5.791 knife 3.364

spoon 2.278 bowl 23.393 banana 8.517 apple 3.675

sandwich 19.777 orange 17.906 broccoli 12.599 carrot 8.541

hotdog 13.870 pizza 37.601 donut 16.356 cake 16.782

chair 7.957 couch 20.987 pottedplant 9.995 bed 22.593

diningtable 8.300 toilet 46.239 tv 40.501 laptop 43.087

mouse 43.620 remote 13.928 keyboard 31.133 cellphone 20.032

microwave 29.880 oven 16.669 toaster 10.242 sink 19.756

refrigerator 33.404 book 3.063 clock 36.859 vase 18.939

scissors 6.330 teddybear 24.153 hairdrier 0.283 toothbrush 4.090

83

Table A.25: Model: 6-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 37.556 bicycle 10.438 car 30.799 motorcycle 22.111

airplane 34.685 bus 49.920 train 47.514 truck 20.698

boat 12.763 trafficlight 17.284 firehydrant 49.462 stopsign 52.980

parkingmeter 29.578 bench 9.308 bird 15.665 cat 47.777

dog 39.041 horse 27.947 sheep 26.641 cow 26.812

elephant 39.494 bear 48.397 zebra 45.166 giraffe 38.134

backpack 7.426 umbrella 27.300 handbag 6.489 tie 20.474

suitcase 14.735 frisbee 47.314 skis 0.893 snowboard 10.405

sportsball 36.188 kite 17.917 baseballbat 14.468 baseballglove 24.627

skateboard 15.280 surfboard 18.132 tennisracket 37.153 bottle 21.328

wineglass 19.400 cup 27.510 fork 6.187 knife 3.939

spoon 2.363 bowl 24.012 banana 6.679 apple 3.514

sandwich 20.931 orange 17.567 broccoli 12.299 carrot 9.875

hotdog 14.694 pizza 38.715 donut 20.853 cake 15.458

chair 7.522 couch 18.625 pottedplant 8.922 bed 20.904

diningtable 6.973 toilet 42.625 tv 38.994 laptop 43.075

mouse 42.960 remote 16.345 keyboard 33.675 cellphone 20.514

microwave 31.958 oven 15.786 toaster 22.139 sink 21.164

refrigerator 34.941 book 3.353 clock 35.126 vase 18.093

scissors 8.007 teddybear 23.613 hairdrier 0.000 toothbrush 4.980

84

Table A.26: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 36.788 bicycle 10.304 car 28.689 motorcycle 20.886

airplane 35.672 bus 47.284 train 46.698 truck 19.849

boat 11.076 trafficlight 15.054 firehydrant 50.999 stopsign 54.586

parkingmeter 28.533 bench 7.236 bird 14.999 cat 45.090

dog 32.799 horse 24.857 sheep 24.588 cow 26.890

elephant 36.736 bear 45.742 zebra 43.289 giraffe 38.426

backpack 5.270 umbrella 24.882 handbag 5.793 tie 18.958

suitcase 11.316 frisbee 38.526 skis 0.509 snowboard 5.880

sportsball 28.928 kite 15.943 baseballbat 10.648 baseballglove 19.674

skateboard 12.887 surfboard 14.190 tennisracket 35.943 bottle 22.193

wineglass 19.251 cup 27.111 fork 4.431 knife 2.936

spoon 1.393 bowl 25.286 banana 4.830 apple 3.279

sandwich 16.663 orange 12.406 broccoli 9.623 carrot 5.956

hotdog 10.663 pizza 35.325 donut 15.296 cake 13.734

chair 7.812 couch 20.231 pottedplant 8.251 bed 21.948

diningtable 9.454 toilet 45.711 tv 38.534 laptop 41.104

mouse 43.418 remote 11.330 keyboard 30.838 cellphone 17.338

microwave 30.662 oven 17.777 toaster 11.714 sink 20.593

refrigerator 31.455 book 2.484 clock 37.955 vase 16.103

scissors 1.702 teddybear 21.746 hairdrier 0.124 toothbrush 1.280

85

Table A.27: Model: 6-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 35.910 bicycle 10.834 car 28.312 motorcycle 20.145

airplane 35.978 bus 50.827 train 41.977 truck 17.744

boat 10.684 trafficlight 15.517 firehydrant 47.435 stopsign 53.979

parkingmeter 29.954 bench 8.208 bird 17.522 cat 47.205

dog 34.285 horse 26.513 sheep 23.033 cow 26.113

elephant 39.020 bear 49.040 zebra 43.042 giraffe 38.633

backpack 5.371 umbrella 23.349 handbag 4.777 tie 20.029

suitcase 10.401 frisbee 43.411 skis 0.465 snowboard 7.847

sportsball 27.999 kite 16.588 baseballbat 11.988 baseballglove 20.249

skateboard 13.995 surfboard 15.988 tennisracket 36.231 bottle 20.930

wineglass 20.356 cup 25.694 fork 4.588 knife 3.347

spoon 1.100 bowl 24.074 banana 5.809 apple 4.401

sandwich 17.481 orange 15.504 broccoli 10.650 carrot 5.663

hotdog 10.640 pizza 35.185 donut 19.348 cake 14.309

chair 7.770 couch 17.447 pottedplant 7.859 bed 17.158

diningtable 7.204 toilet 42.335 tv 39.295 laptop 43.962

mouse 42.340 remote 13.767 keyboard 31.911 cellphone 20.592

microwave 33.905 oven 16.173 toaster 8.704 sink 17.882

refrigerator 32.065 book 3.061 clock 36.475 vase 13.985

scissors 3.961 teddybear 22.948 hairdrier 0.043 toothbrush 4.381

86

A.7 Instance Segmentation Test Results on SUN RGBD: SOLOv2

Table A.28: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 23.641 floor 35.346 cabinet 16.331 bed 23.248

chair 20.937 sofa 21.601 table 17.009 door 19.373

window 13.232 bookshelf 15.847 picture 27.775 counter 14.906

blinds 23.421 desk 6.734 shelves 0.359 curtain 24.884

dresser 25.503 pillow 20.472 mirror 10.963 floormat 5.896

clothes 3.049 ceiling 25.425 books 4.146 fridge 17.114

tv 21.090 paper 4.906 towel 9.082 showercurtain 14.874

box 5.385 whiteboard 26.299 person 8.497 nightstand 26.359

toilet 29.946 sink 22.580 lamp 17.798 bathtub 16.759

bag 4.295

87

Table A.29: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 22.880 floor 35.697 cabinet 13.221 bed 23.973

chair 18.470 sofa 19.436 table 15.834 door 13.210

window 8.936 bookshelf 12.444 picture 24.573 counter 13.190

blinds 16.088 desk 6.427 shelves 0.444 curtain 17.958

dresser 18.659 pillow 19.341 mirror 10.786 floormat 6.457

clothes 2.275 ceiling 20.565 books 3.314 fridge 14.231

tv 19.215 paper 3.823 towel 6.732 showercurtain 11.488

box 3.421 whiteboard 22.285 person 3.046 nightstand 22.571

toilet 28.071 sink 19.574 lamp 13.079 bathtub 16.818

bag 2.724

Table A.30: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

wall 23.249 floor 35.653 cabinet 15.317 bed 25.673

chair 19.963 sofa 20.774 table 16.918 door 15.616

window 8.851 bookshelf 14.936 picture 25.483 counter 15.590

blinds 20.456 desk 6.786 shelves 0.420 curtain 22.174

dresser 20.554 pillow 22.729 mirror 13.242 floormat 5.339

clothes 3.125 ceiling 20.572 books 3.702 fridge 17.554

tv 22.340 paper 5.106 towel 9.435 showercurtain 23.474

box 5.052 whiteboard 24.910 person 4.221 nightstand 23.288

toilet 31.335 sink 23.254 lamp 16.878 bathtub 21.469

bag 3.490

88

A.8 Instance Segmentation Test Results on MS-COCO Subset: SOLOv2

Table A.31: Model: RGB Depth Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 14.710 bicycle 1.462 car 3.644 motorcycle 6.629

airplane 16.267 bus 26.674 train 25.959 truck 5.438

boat 0.720 trafficlight 1.203 firehydrant 26.687 stopsign 26.319

parkingmeter 10.252 bench 2.693 bird 3.343 cat 17.229

dog 5.919 horse 5.268 sheep 2.048 cow 5.474

elephant 13.975 bear 16.860 zebra 11.288 giraffe 15.299

backpack 0.022 umbrella 7.852 handbag 0.127 tie 0.534

suitcase 1.065 frisbee 2.482 skis 0.000 snowboard 0.454

sportsball 2.464 kite 1.605 baseballbat 2.169 baseballglove 1.663

skateboard 0.631 surfboard 1.034 tennisracket 8.142 bottle 2.988

wineglass 1.910 cup 5.998 fork 0.014 knife 0.006

spoon 0.183 bowl 4.063 banana 0.949 apple 0.978

sandwich 3.388 orange 3.828 broccoli 0.353 carrot 0.042

hotdog 1.622 pizza 9.958 donut 4.940 cake 2.568

chair 1.729 couch 10.261 pottedplant 0.265 bed 13.208

diningtable 4.452 toilet 25.767 tv 11.975 laptop 14.345

mouse 3.057 remote 0.085 keyboard 2.348 cellphone 2.152

microwave 1.523 oven 2.259 toaster 1.069 sink 3.939

refrigerator 8.750 book 0.121 clock 1.053 vase 2.921

scissors 0.324 teddybear 7.791 hairdrier 0.396 toothbrush 0.000

89

Table A.32: Model: RGB Image Only

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 38.589 bicycle 12.708 car 29.487 motorcycle 23.067

airplane 39.582 bus 52.147 train 48.890 truck 20.246

boat 12.529 trafficlight 16.209 firehydrant 48.951 stopsign 49.359

parkingmeter 21.162 bench 7.853 bird 17.445 cat 53.056

dog 39.124 horse 29.536 sheep 29.220 cow 29.667

elephant 49.196 bear 50.717 zebra 52.816 giraffe 50.646

backpack 6.600 umbrella 27.628 handbag 4.407 tie 17.065

suitcase 14.191 frisbee 45.892 skis 2.624 snowboard 8.077

sportsball 30.559 kite 22.261 baseballbat 13.455 baseballglove 21.190

skateboard 19.756 surfboard 14.200 tennisracket 39.535 bottle 20.719

wineglass 19.309 cup 25.134 fork 6.823 knife 3.827

spoon 2.612 bowl 21.824 banana 9.413 apple 3.821

sandwich 18.444 orange 20.155 broccoli 13.135 carrot 10.697

hotdog 12.241 pizza 37.014 donut 20.871 cake 13.259

chair 9.611 couch 22.563 pottedplant 10.999 bed 22.922

diningtable 8.362 toilet 48.438 tv 43.350 laptop 44.553

mouse 43.037 remote 12.311 keyboard 31.521 cellphone 20.718

microwave 38.446 oven 17.354 toaster 17.371 sink 21.475

refrigerator 31.960 book 1.643 clock 38.421 vase 19.000

scissors 4.413 teddybear 30.187 hairdrier 0.057 toothbrush 3.363

90

Table A.33: Model: 4-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 33.988 bicycle 10.186 car 24.466 motorcycle 19.101

airplane 37.383 bus 46.595 train 45.233 truck 18.325

boat 9.953 trafficlight 13.251 firehydrant 44.581 stopsign 52.197

parkingmeter 22.556 bench 6.260 bird 16.012 cat 50.365

dog 39.032 horse 27.320 sheep 24.123 cow 26.860

elephant 43.926 bear 52.978 zebra 47.180 giraffe 45.333

backpack 5.364 umbrella 24.684 handbag 3.121 tie 12.943

suitcase 10.692 frisbee 44.522 skis 1.171 snowboard 5.847

sportsball 28.372 kite 18.094 baseballbat 11.674 baseballglove 22.036

skateboard 17.243 surfboard 12.145 tennisracket 38.233 bottle 16.932

wineglass 15.983 cup 21.455 fork 3.644 knife 2.725

spoon 2.400 bowl 17.349 banana 7.222 apple 4.921

sandwich 22.809 orange 16.656 broccoli 11.163 carrot 6.582

hotdog 9.201 pizza 33.645 donut 19.044 cake 13.783

chair 7.318 couch 19.073 pottedplant 8.080 bed 20.675

diningtable 8.490 toilet 45.611 tv 40.930 laptop 39.331

mouse 39.980 remote 10.790 keyboard 31.244 cellphone 16.888

microwave 31.653 oven 14.729 toaster 8.294 sink 20.271

refrigerator 26.550 book 1.324 clock 34.567 vase 15.326

scissors 5.070 teddybear 24.732 hairdrier 0.781 toothbrush 5.736

91

Table A.34: Model: 6-channel Input

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 34.743 bicycle 9.965 car 24.763 motorcycle 20.375

airplane 36.808 bus 47.504 train 46.167 truck 18.765

boat 10.437 trafficlight 14.522 firehydrant 45.869 stopsign 52.559

parkingmeter 22.396 bench 5.522 bird 16.497 cat 49.754

dog 39.521 horse 27.51 sheep 23.521 cow 27.201

elephant 43.378 bear 54.37 zebra 47.116 giraffe 45.376

backpack 6.055 umbrella 26.147 handbag 3.33 tie 13.362

suitcase 10.913 frisbee 45.007 skis 2.304 snowboard 6.503

sportsball 29.713 kite 18.403 baseballbat 12.665 baseballglove 23.131

skateboard 16.916 surfboard 12.014 tennisracket 38.341 bottle 16.452

wineglass 16.059 cup 22.889 fork 4.511 knife 3.414

spoon 3.759 bowl 17.048 banana 8.651 apple 4.228

sandwich 23.394 orange 16.801 broccoli 10.659 carrot 7.865

hotdog 10.641 pizza 33.022 donut 19.588 cake 13.137

chair 6.835 couch 19.818 pottedplant 7.581 bed 20.661

diningtable 7.912 toilet 46.192 tv 41.343 laptop 39.43

mouse 40.76 remote 10.755 keyboard 32.021 cellphone 18.227

microwave 31.671 oven 14.808 toaster 9.221 sink 21.503

refrigerator 26.967 book 2.309 clock 35.442 vase 15.057

scissors 5.941 teddybear 25.704 hairdrier 0.508 toothbrush 5.785

92

Table A.35: Model: 4-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 36.134 bicycle 12.339 car 27.129 motorcycle 21.153

airplane 39.509 bus 51.236 train 49.906 truck 20.046

boat 9.858 trafficlight 13.164 firehydrant 50.614 stopsign 51.051

parkingmeter 21.298 bench 8.089 bird 16.372 cat 49.343

dog 35.723 horse 27.613 sheep 28.565 cow 28.073

elephant 45.918 bear 53.265 zebra 49.153 giraffe 45.258

backpack 5.745 umbrella 27.095 handbag 4.223 tie 16.911

suitcase 11.775 frisbee 39.798 skis 1.834 snowboard 7.470

sportsball 28.236 kite 17.592 baseballbat 13.799 baseballglove 16.498

skateboard 17.933 surfboard 12.450 tennisracket 40.142 bottle 19.089

wineglass 17.746 cup 25.035 fork 5.729 knife 3.352

spoon 2.217 bowl 21.434 banana 7.054 apple 4.010

sandwich 19.443 orange 16.741 broccoli 11.209 carrot 4.985

hotdog 7.937 pizza 32.487 donut 20.099 cake 13.969

chair 9.544 couch 22.612 pottedplant 8.408 bed 25.596

diningtable 9.551 toilet 48.405 tv 38.704 laptop 42.707

mouse 48.285 remote 8.114 keyboard 32.000 cellphone 16.634

microwave 28.224 oven 17.870 toaster 9.594 sink 21.965

refrigerator 31.333 book 1.498 clock 35.479 vase 16.158

scissors 2.526 teddybear 26.165 hairdrier 0.000 toothbrush 2.795

93

Table A.36: Model: 6-to-3 Mapping

Class AP (%) Class AP (%) Class AP (%) Class AP (%)

person 37.404 bicycle 11.809 car 27.049 motorcycle 21.233

airplane 40.255 bus 51.118 train 50.012 truck 19.871

boat 9.239 trafficlight 13.003 firehydrant 51.619 stopsign 50.442

parkingmeter 21.7 bench 9.292 bird 17.16 cat 48.944

dog 36.887 horse 28.798 sheep 28.207 cow 29.151

elephant 46.462 bear 52.592 zebra 48.495 giraffe 46.103

backpack 5.043 umbrella 26.993 handbag 4.265 tie 16.91

suitcase 11.394 frisbee 40.614 skis 2.394 snowboard 8.005

sportsball 28.307 kite 18.468 baseballbat 14.87 baseballglove 17.377

skateboard 18.69 surfboard 12.027 tennisracket 41.535 bottle 19.867

wineglass 17.527 cup 24.496 fork 5.051 knife 2.864

spoon 1.596 bowl 22.329 banana 6.575 apple 3.703

sandwich 20.515 orange 17.338 broccoli 12.448 carrot 4.834

hotdog 9.353 pizza 33.521 donut 21.268 cake 15.073

chair 10.96 couch 23.974 pottedplant 9.454 bed 25.503

diningtable 9.824 toilet 48.933 tv 38.222 laptop 43.633

mouse 48.032 remote 7.469 keyboard 31.697 cellphone 17.621

microwave 27.53 oven 18.69 toaster 10.742 sink 23.196

refrigerator 31.756 book 2.411 clock 36.071 vase 16.049

scissors 2.124 teddybear 25.469 hairdrier -0.52 toothbrush 2.191

94

REFERENCES

[1] 2001 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR 2001), with CD-ROM, 8-14 December 2001, Kauai, HI,

USA. IEEE Computer Society, 2001.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic super-

pixels compared to state-of-the-art superpixel methods. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.

[3] M. W. Ayech and D. Ziou. Segmentation of terahertz imaging using k-means

clustering based on ranked set sampling. Expert Systems with Applications,

42(6):2959–2974, 2015.

[4] J. T. Barron, A. Adams, Y. Shih, and C. Hernández. Fast bilateral-space stereo

for synthetic defocus. In 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4466–4474, 2015.

[5] C. Cadena, Y. Latif, and I. D. Reid. Measuring the performance of single im-

age depth estimation methods. In 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 4150–4157, 2016.

[6] J. Canny. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986.

[7] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs. CoRR, abs/1606.00915, 2016.

[8] J. Choi, D. Chun, H. Kim, and H.-J. Lee. Gaussian yolov3: An accurate and

fast object detector using localization uncertainty for autonomous driving. 2019

IEEE/CVF International Conference on Computer Vision (ICCV), pages 502–

511, 2019.

95

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban

scene understanding. CoRR, abs/1604.01685, 2016.

[10] F. Da and H. Zhang. Sub-pixel edge detection based on an improved moment.

Image and Vision Computing, 28(12):1645–1658, 2010.

[11] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task

network cascades. CoRR, abs/1512.04412, 2015.

[12] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-

tion. 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), 1:886–893 vol. 1, 2005.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pages 248–255, 2009.

[14] A. Eitel, J. T. Springenberg, L. Spinello, M. A. Riedmiller, and W. Bur-

gard. Multimodal deep learning for robust RGB-D object recognition. CoRR,

abs/1507.06821, 2015.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[17] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained,

multiscale, deformable part model. In 2008 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8, 2008.

[18] W. Gao, X. Zhang, L. Yang, and H. Liu. An improved sobel edge detection.

In 2010 3rd International Conference on Computer Science and Information

Technology, volume 5, pages 67–71, 2010.

96

[19] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[20] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. CoRR, abs/1311.2524,

2013.

[21] C. Godard, O. M. Aodha, and G. J. Brostow. Unsupervised monocular depth

estimation with left-right consistency. CoRR, abs/1609.03677, 2016.

[22] C. Godard, O. M. Aodha, and G. J. Brostow. Digging into self-supervised

monocular depth estimation. CoRR, abs/1806.01260, 2018.

[23] B. Hariharan, P. Arbelaez, R. B. Girshick, and J. Malik. Simultaneous detection

and segmentation. CoRR, abs/1407.1808, 2014.

[24] B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for

object segmentation and fine-grained localization. CoRR, abs/1411.5752, 2014.

[25] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR,

abs/1703.06870, 2017.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-

tion. CoRR, abs/1512.03385, 2015.

[27] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector

machines. IEEE Intelligent Systems and their Applications, 13(4):18–28, 1998.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural net-

works for mobile vision applications. CoRR, abs/1704.04861, 2017.

[29] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wo-

jna, Y. Song, S. Guadarrama, and K. Murphy. Speed/accuracy trade-offs for

modern convolutional object detectors. CoRR, abs/1611.10012, 2016.

[30] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb

model size. CoRR, abs/1602.07360, 2016.

97

[31] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[32] P. Jaccard. Étude comparative de la distribution florale dans une portion des

alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles,

37:547–579, 1901.

[33] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang,

X. Wang, and W. Ouyang. T-CNN: tubelets with convolutional neural networks

for object detection from videos. CoRR, abs/1604.02532, 2016.

[34] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating

image descriptions. CoRR, abs/1412.2306, 2014.

[35] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, and M. Sittig.

Automatic scene inference for 3d object compositing. CoRR, abs/1912.12297,

2019.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60:84 – 90, 2012.

[37] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. CoRR,

abs/1808.01244, 2018.

[38] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–

444, 2015.

[39] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The

International Journal of Robotics Research, 34(4-5):705–724, 2015.

[40] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid ob-

ject detection. In Proceedings. International Conference on Image Processing,

volume 1, pages I–I, 2002.

[41] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár. Focal loss for dense object

detection. CoRR, abs/1708.02002, 2017.

[42] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Per-

ona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common

objects in context. CoRR, abs/1405.0312, 2014.

98

[43] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance

segmentation. CoRR, abs/1803.01534, 2018.

[44] A. Mertan, D. J. Duff, and G. Unal. Single image depth estimation: An

overview. CoRR, abs/2104.06456, 2021.

[45] S. M. H. Miangoleh, S. Dille, L. Mai, S. Paris, and Y. Aksoy. Boosting monoc-

ular depth estimation models to high-resolution via content-adaptive multi-

resolution merging. 2021.

[46] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder. The mapillary vistas

dataset for semantic understanding of street scenes. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 5000–5009, 2017.

[47] J. Noordam, W. van den Broek, and L. Buydens. Geometrically guided fuzzy

c-means clustering for multivariate image segmentation. In Proceedings 15th

International Conference on Pattern Recognition. ICPR-2000, volume 1, pages

462–465 vol.1, 2000.

[48] T. Ophoff, K. Van Beeck, and T. Goedemé. Exploring rgb+depth fusion for

real-time object detection. Sensors, 19(4), 2019.

[49] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans-

actions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

[50] R. Padilla, S. L. Netto, and E. A. B. da Silva. A survey on performance metrics

for object-detection algorithms. In 2020 International Conference on Systems,

Signals and Image Processing (IWSSIP), pages 237–242, 2020.

[51] W. Pitts and W. S. McCulloch. How we know universals; the perception of

auditory and visual forms. The Bulletin of mathematical biophysics, 93:127–

47, 1947.

[52] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[53] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. CoRR,

abs/1612.08242, 2016.

99

[54] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR,

abs/1804.02767, 2018.

[55] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time

object detection with region proposal networks. CoRR, abs/1506.01497, 2015.

[56] A. Rosenfeld. The max roberts operator is a hueckel-type edge detector. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(1):101–

103, 1981.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[59] V. Sharma and R. N. Mir. A comprehensive and systematic look up into

deep learning based object detection techniques: A review. Comput. Sci. Rev.,

38:100301, 2020.

[60] Y. Shi, Z. Chen, Z. Qi, F. Meng, and L. Cui. A novel clustering-based image

segmentation via density peaks algorithm with mid-level feature. Neural Com-

puting and Applications, 28:29–39, 2016.

[61] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,

M. Cook, and R. Moore. Real-time human pose recognition in parts from single

depth images. Commun. ACM, 56(1):116–124, jan 2013.

[62] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1556, 2015.

[63] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding

benchmark suite. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 567–576, 2015.

[64] D. Stoyanov, M. V. Scarzanella, P. Pratt, and G.-Z. Yang. Real-time stereo re-

construction in robotically assisted minimally invasive surgery. Medical image

100

computing and computer-assisted intervention : MICCAI ... International Con-

ference on Medical Image Computing and Computer-Assisted Intervention, 13

Pt 1:275–82, 2010.

[65] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the

inception architecture for computer vision. CoRR, abs/1512.00567, 2015.

[66] D. Tian, Y. Han, B. Wang, T. Guan, H. Gu, and W. Wei. Review of object

instance segmentation based on deep learning. Journal of Electronic Imaging,

31(4):1 – 18, 2021.

[67] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for ob-

ject detection. 2009 IEEE 12th International Conference on Computer Vision,

pages 606–613, 2009.

[68] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li. SOLO: segmenting objects by

locations. CoRR, abs/1912.04488, 2019.

[69] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen. Solov2: Dynamic, faster and

stronger. CoRR, abs/2003.10152, 2020.

[70] Z. Wang and M. Yang. A fast clustering algorithm in image segmentation. In

2010 2nd International Conference on Computer Engineering and Technology,

volume 6, pages V6–592–V6–594, 2010.

[71] I. R. Ward, H. Laga, and M. Bennamoun. RGB-D image-based object detection:

from traditional methods to deep learning techniques. CoRR, abs/1907.09236,

2019.

[72] Q. Wu, C. Shen, A. van den Hengel, P. Wang, and A. R. Dick. Image caption-

ing and visual question answering based on attributes and their related external

knowledge. CoRR, abs/1603.02814, 2016.

[73] X. Wu, D. Sahoo, and S. C. H. Hoi. Recent advances in deep learning for object

detection. CoRR, abs/1908.03673, 2019.

[74] J. Xie, R. B. Girshick, and A. Farhadi. Deep3d: Fully automatic 2d-to-3d video

conversion with deep convolutional neural networks. CoRR, abs/1604.03650,

2016.

101

[75] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio. Show, attend and tell: Neural image caption generation with

visual attention. CoRR, abs/1502.03044, 2015.

[76] L. Yang, X. Wu, D. Zhao, H. Li, and J. Zhai. An improved prewitt algorithm

for edge detection based on noised image. In 2011 4th International Congress

on Image and Signal Processing, volume 3, pages 1197–1200, 2011.

[77] H. Ye and S. Yan. Double threshold image segmentation algorithm based on

adaptive filtering. In 2017 IEEE 2nd Information Technology, Networking, Elec-

tronic and Automation Control Conference (ITNEC), pages 1008–1011, 2017.

[78] J.-C. Yen, F.-J. Chang, and S. Chang. A new criterion for automatic multilevel

thresholding. IEEE transactions on image processing : a publication of the

IEEE Signal Processing Society, 4 3:370–8, 1995.

[79] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient

convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017.

[80] Z.-Q. Zhao, P. Zheng, S. tao Xu, and X. Wu. Object detection with deep learn-

ing: A review. IEEE Transactions on Neural Networks and Learning Systems,

30:3212–3232, 2019.

[81] Z. Zou, Z. Shi, Y. Guo, and J. Ye. Object detection in 20 years: A survey. CoRR,

abs/1905.05055, 2019.

102

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	The Scope of the Thesis
	The Outline

	Background
	Overview of Visual Recognition Problems
	Convolutional Neural Networks
	Backbone Architectures
	Feature Fusion Paradigms
	Same-scale Element-wise Operations
	Multi-scale Feature Learning
	Image Pyramid
	Integrated Features
	Pyramidal Features
	Feature Pyramid Network

	Object Detection for RGB & RGB-D Images
	Introduction
	Performance Metrics
	Datasets
	Pascal Visual Object Classes
	ILSVRC
	MS-COCO

	Traditional Object Detectors
	Deep Learning-Based Object Detection in RGB
	Two-Stage Detectors
	RCNN
	Fast RCNN
	Faster RCNN

	One-Stage Detectors
	YOLO
	YOLOv2
	YOLOv3

	Deep Learning-Based Object Detection in RGB-D
	Fusion Techniques
	Early Fusion
	Late Fusion
	Deep Fusion

	Datasets

	Instance Segmentation
	Introduction
	Performance Metrics
	Datasets
	Traditional Instance Segmentation Models
	Deep Learning-Based Instance Segmentation Models
	Mask RCNN
	PANet
	SOLO
	SOLOv2

	Deep Learning-Based Single Image Depth Estimation
	Introduction
	Performance Metrics
	Deep Learning-Based Single Image Depth Estimation Models
	Monodepth
	Monodepth2

	Proposed Methods
	Motivation
	Proposed Idea
	Proposed Models
	Fusion by Concatenation
	Convolutional Fusion

	Datasets
	Experiments
	Test Results
	Discussion
	Instance Segmentation
	Object Detection

	Conclusions & Future Works
	Conclusions
	Future Works

	CATEGORY-BASED TEST RESULTS
	Object Detection Test Results on SUN RGBD: Faster RCNN
	Object Detection Test Results on MS-COCO Subset: Faster RCNN
	Object Detection Test Results on SUN RGBD: Mask RCNN
	Object Detection Test Results on MS-COCO Subset: Mask RCNN
	Instance Segmentation Test Results on SUN RGBD: Mask RCNN
	Instance Segmentation Test Results on MS-COCO Subset: Mask RCNN
	Instance Segmentation Test Results on SUN RGBD: SOLOv2
	Instance Segmentation Test Results on MS-COCO Subset: SOLOv2

	REFERENCES

