
1

The Secret Arithmetic of Patterns: A General
Method for Designing Constrained Codes Based

on Lexicographic Indexing
Ahmed Hareedy, Member, IEEE, Beyza Dabak, and Robert Calderbank, Fellow, IEEE

Abstract

Constrained codes are used to prevent errors from occurring in various data storage and data transmission systems. They
can help in increasing the storage density of magnetic storage devices, in managing the lifetime of electronic storage devices,
and in increasing the reliability of data transmission over wires. Over the years, designing practical (complexity-wise) capacity-
achieving constrained codes has been an area of research gaining significant interest. We recently designed various constrained
codes based on lexicographic indexing. We introduced binary symmetric lexicographically-ordered constrained (S-LOCO) codes,
q-ary asymmetric LOCO (QA-LOCO) codes, and a class of two-dimensional LOCO (TD-LOCO) codes. These families of codes
achieve capacity with simple encoding and decoding, and they are easy to reconfigure. We demonstrated that these codes can
contribute to notable density and lifetime gains in magnetic recording (MR) and Flash systems, and they find application in other
systems too. In this paper, we generalize our work on LOCO codes by presenting a systematic method that guides the code
designer to build any constrained code based on lexicographic indexing once the finite set of data patterns to forbid is known.
In particular, we connect the set of forbidden patterns directly to the cardinality of the LOCO code and most importantly to
the rule that uncovers the index associated with a LOCO codeword. By doing that, we reveal the secret arithmetic of patterns,
and make the design of such constrained codes significantly easier. We give examples illustrating the method via codes based
on lexicographic indexing from the literature. We then design optimal (rate-wise) constrained codes for the new two-dimensional
magnetic recording (TDMR) technology. Over a practical TDMR model, we show notable performance gains as a result of solely
applying the new codes. Moreover, we show how near-optimal constrained codes for TDMR can be designed and used to further
reduce complexity and error propagation. All the newly introduced LOCO codes are designed using the proposed general method,
and they inherit all the desirable properties in our previously designed LOCO codes.

Index Terms

Constrained codes, lexicographic ordering, general method, lexicographic indexing, data storage, two-dimensional magnetic
recording, isolation patterns, reconfigurable codes.

I. INTRODUCTION

In 1948, Shannon was the first to represent an infinite sequence in which certain data patterns are not allowed by a finite-state
transition diagram (FSTD) [1]. He also used Perron-Frobenius theorem [2] to introduce the notion of capacity, which is the
highest achievable rate of a code constrained by forbidding certain patterns, as the graph entropy of the FSTD. As was the
case with his result on error-correcting codes, Shannon was so far ahead of his time that his result on constrained codes stayed
away from the spotlight until the late 1960s and the early 1970s. By that time, Tang and Bahl [3] and Franaszek [4] were
among a number of researchers who introduced an important family of constrained codes, named run-length-limited (RLL)
codes. Since then, a plethora of research works have investigated constrained codes and their applications.

Mass data storage started with magnetic recording (MR) devices, i.e., hard disk drives (HDDs). Early MR devices adopted
peak detection to read the data, where inter-symbol interference (ISI) due to insufficient separation between consecutive
transitions is a principal source of error. Binary RLL codes offer control over the minimum and maximum separation between
consecutive 1’s in a stream of bits [3]. Associated with transition-based signaling, where a 0 results in no transition while a
1 results in a transition (− to + or + to −), binary RLL codes can be used to control the separation between consecutive
transitions [3]. IBM capitalized on this observation, and employed RLL codes in their early HDDs in the 1970s and the
1980s to notably increase the storage density by mitigating ISI and also to maintain self-calibration of the system [5], [6].
Modern one-dimensional MR devices adopt sequence detection to read the data, and their underlying channels are modeled
as partial-response (PR) channels with certain PR equalization targets [7]–[9]. Constrained codes are still being employed in
these modern MR systems to improve performance and increase density [10], [11].

The introduction of Flash memory by Toshiba in the 1980s as a form of electronic storage eventually changed the landscape of
mass data storage since electronic storage is notably faster, albeit more expensive, than magnetic storage. Flash memory devices
are currently winning the storage density competition against MR devices. In Flash memory systems, parasitic capacitances
within and across floating-gate transistors result in charge propagation during the programming phase [12]. This charge
propagation in turn results in inter-cell interference (ICI), which is a principal source of error in Flash memory systems. Various
works introduced constrained codes to forbid data patterns resulting in having an unprogrammed/erased cell surrounded by

The authors are with the Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail: ahmed.hareedy@duke.edu;
beyza.dabak@duke.edu; robert.calderbank@duke.edu). This research was supported in part by NSF under Grant CCF 1717602 and in part by AFOSR under
Grant FA 9550-17-1-0291.

ar
X

iv
:2

01
0.

10
68

6v
1

 [
cs

.I
T

]
 2

1
O

ct
 2

02
0

2

two adjacent cells programmed to the highest charge level [13], [14]. More recent research demonstrated that even patterns
resulting in the middle cell being programmed to a level less than the highest in the same setup should be forbidden [15], [16].
As the Flash device ages, the set of forbidden patterns gets bigger as charges can propagate across non-adjacent cells [17],
[18]. Constrained codes for Flash memories are typically associated with level-based signaling, where a codeword symbol is
translated to a physical level in the system, e.g., a charge level in Flash.1 Constrained codes can improve the performance and
the lifetime management of Flash devices [15], [18].

Two-dimensional magnetic recording (TDMR) [19]–[21] is a technology that enables magnetic storage to stay competitive
with respect to storage density. In TDMR, down (horizontal) tracks are squeezed and are not isoltaed from each other [21],
which enables a storage density of 10 terabits per square inch [19], [22]. This density is about double the maximum achievable
density via modern one-dimensional magnetic recording devices [23]. Consider a 3× 3 grid in a TDMR system; data patterns
resulting in isolating the bit at the center of this grid should be forbidden [24]. In particular, patterns having a bit surrounded by
8 complements–we call them square isolation (SIS) patterns–should be forbidden. Moreover, patterns having a bit surrounded
by 4 complements after ignoring the bits at the 4 corners–we call them plus isolation (PIS) patterns–should also be forbidden.
These patterns significantly exacerbate two-dimensional interference (along down (horizontal) track and cross (vertical) track
directions). Preventing the PIS patterns is also called the no-isolated-bit (NIB) constraint [24], [25]. In the literature, there are
works about two-dimensional RLL codes [25], [26] and other works about two-dimensional (TD) codes preventing isolation
patterns [24], [27], [28], which offer notably higher code rates for TDMR systems.

There are also other applications for constrained codes in data storage and data transmission. In data storage, constrained
codes find application in optical recording systems [29]. In data transmission, constrained codes are used to mitigate crosstalk
between wires or through-silicon vias (TSVs) in integrated circuits [30]. Additionally, constrained codes are used in standards
such as the universal serial buses (USB) and the peripheral component interconnect express (PCIe) [31], [32]. The primary
goals of constrained codes in these standards are to suppress power at frequency zero (at DC), i.e., achieve balancing, and
maintain self-calibration of the system, i.e., achieve self-clocking.

Even though designing constrained block codes based on lexicographic indexing started with Tang and Bahl in 1970 [3],
the coding theory community deviated from this approach and invested more into designing these codes based on finite-state
machines (FSMs). Franaszek introduced the method of state-sequence coding to design FSM-based constrained codes [4], and
many researchers adopted similar ideas in the following years. In 1983, Adler, Coppersmith, and Hassner introduced the method
of state splitting and merging, which provided a systematic approach to convert an FSTD into an encoding-decoding FSM of
a constrained code [33]. Examples of FSM-based constrained codes can be found in [5], [6], and [10]. FSM-based constrained
codes typically have a notable gap to capacity, and designing FSM-based codes with rates ≥ 0.9 gets quite complicated and
requires massive storage. Recently, researchers started to look again into lexicographic indexing, especially with the quite
high constrained-code rates achievable for modern Flash and TDMR systems [16], [18], [28]. In 1973, Cover introduced an
important result for indexing a sequence within a set of lexicographically-ordered sequences [34]. Later, this result inspired
Immink and others to design enumerative constrained codes [35], [36]. This result of Cover will play a fundamental role in
the general method for designing constrained codes based on lexicographic indexing we present in this paper.

In 2019, we presented binary symmetric lexicographically-ordered constrained (S-LOCO) codes [11] to control the separation
between consecutive transitions, and thus mitigate ISI and prevent short pulses in MR systems. By protecting only the parity bits
of a high performance spatially-coupled (SC) low-density parity-check (LDPC) code designed as in [9], we showed significant
density gains over a practical MR model, with quite limited rate loss [11]. Next, we designed binary asymmetric LOCO
(A-LOCO) codes [17] and then q-ary asymmetric LOCO (QA-LOCO) codes [18] to minimize charge propagation, and thus
mitigate ICI among adjacent and non-adjacent cells, in Flash systems. QA-LOCO codes can contribute to the protection of a
Flash device having q ≥ 4 levels per cell with < 5% redundancy [18]. Furthermore, we recently introduced non-binary LOCO
codes as TD-LOCO codes for TDMR systems to prevent SIS patterns, and thus enhance the reliability of the device [28]. The
idea of all our LOCO codes can be briefly summarized as follows: include all the codewords satisfying a constraint, enumerate
them recursively, then find a bijective rule to relate a codeword to its lexicographic index, which we call the encoding-decoding
rule.2 The encoding-decoding rule, which is the core of the code design, allows us to have all the codewords, yet avoid using
lookup tables. At most two codewords are then removed from a LOCO code to satisfy self-clocking, which means LOCO
codes are capacity-achieving. The encoding-decoding rule is just a summation over cardinalities, which implies simplicity. This
property itself also means the codes are reconfigurable; that is, the same hardware can be used to support multiple LOCO
codes if the right cardinalities are used as inputs, which is quite helpful to manage the device lifetime. All our LOCO codes
are associated with level-based signaling, and more details about them can be found in [11], [18], and [28]. The power spectral
analysis of S-LOCO and A-LOCO codes can be found in [37].

In this paper, we present a general systematic method for designing constrained codes based on lexicographic indexing,
i.e., for designing families of LOCO codes. The method works for any one-dimensional finite set of forbidden patterns, and
it directly relates this set to the encoding-decoding procedures. In particular, we start with partitioning the codewords of a
LOCO code into groups based on the forbidden patterns, and using these groups, we obtain the recursive formula of cardinality

1The word “symbols” subsumes binary “bits” when discussing a generic code.
2For brevity, we call all our constrained codes LOCO codes upon collectively discussing them.

3

(size). Next, and given the forbidden patterns, we determine different cases of existence of a non-zero LOCO codeword symbol
according to the adjacent, more significant symbols. For each of these cases, we specify the contribution of a non-zero symbol
of a codeword to the index of the codeword through cardinalities via the result of Cover in [34], i.e., we derive the encoding-
decoding rule of the code. Once the rule is identified, writing the encoding and decoding algorithms becomes a simple task.
The details of this direct link between the set of forbidden patterns and the encoding-decoding procedures are the secret
arithmetic of patterns in constrained codes. We illustrate how the method works on two example codes from the literature:
binary lexicographically-ordered RLL (LO-RLL) codes and binary symmetric LOCO (S-LOCO) codes.

Moreover, we present new LOCO codes to enhance the performance of TDMR devices. We adopt a TDMR model where
the read head is wide, and thus it reads data from three adjacent down tracks simultaneously [20], [21], [28]. The codes
we present are non-binary LOCO codes, associated with certain mapping-demapping and level-based signaling, designed to
prevent the SIS and PIS patterns. While there are efficient TD constrained codes in the literature [24]–[27], they either are not
customized for TDMR systems, are not systematic, or do not exploit the nature of wide read heads. First, we introduce optimal
codes, with respect to the rate, that prevent the SIS and PIS patterns, and we call them optimal square LOCO (OS-LOCO) and
optimal plus LOCO (OP-LOCO) codes. We demonstrate notable performance gains by applying OS-LOCO and OP-LOCO
codes over a practical TDMR model that is designed based on [24]. Next, we show how to further reduce complexity and
also error propagation by designing coding schemes that incur a minor capacity loss for the same purpose. We call the codes
adopted by these schemes near-optimal square LOCO (NS-LOCO) and near-optimal plus LOCO (NP-LOCO) codes. All the
new LOCO codes we propose for TDMR are simple and reconfigurable.3 The new optimal (resp., near-optimal) LOCO codes
are capacity-achieving (resp., capacity-approaching) with respect to the system constraint.

The rest of the paper is organized as follows. In Section II, we describe the new general method in steps. In Section III,
we provide examples from the literature to illustrate the method. In Section IV, we present our optimal constrained codes
for TDMR. In Section V, we show the performance gains in a practical TDMR system. In Section VI, we introduce our
near-optimal codes to further reduce complexity. In Section VII, we conclude the paper.

II. STEPS OF THE GENERAL METHOD

In this section, we describe the general, systematic method we propose for designing constrained codes based on lexicographic
indexing. The method directly links the set of forbidden patterns to the encoding-decoding procedures. We start off with the
list of steps, and then we discuss them in detail. The steps of our general method are:

1) Use the forbidden patterns to determine a group structure for the code.
2) Derive the code cardinality formula using the inherent recursion of the groups and subgroups.
3) Specify the codeword patterns that represent special cases given the forbidden patterns.
4) Find the contribution of a non-zero codeword symbol to the codeword index in each special/typical case.
5) Merge the contributions for all cases in one index equation, which is the encoding-decoding rule.
6) Develop the encoding and decoding algorithms of the code based on this rule.

In order to discuss these six steps in detail, we first introduce some notation. Let T be a finite set of forbidden patterns.
Denote a Galois field of size q ≥ 2 by GF(q), with α being a primitive element of GF(q). Thus,

GF(q) , {0, 1, α, α2, . . . , αq−2}. (1)

In the binary case, q = 2 and GF(2) = {0, 1}. Let c be a symbol in GF(q). The integer level-equivalent of c is L(c), which
is the index of the actual level after signaling is applied, and it is defined as follows: L(c) , gflogα(c) + 1 if c 6= 0, and
L(c) , 0 if c = 0. The function gflogα(·) returns the power of the GF element in its argument. The level-equivalent of GF(q)
is {0, 1, 2, 3, . . . , q − 1}.

A set of sequences is said to be lexicographically ordered if its sequences are ordered ascendingly following the rule
0 < 1 < α < α2 < · · · < αq−2 and the symbol significance gets smaller from left to right. In particular, for the two distinct
sequences cu and cv , we say that cu < cv , and thus cu is ordered before cv , if at the first position starting from the left where
the two sequences differ, the symbol of cu is less than the symbol of cv .

We also define a generic LOCO code.

Definition 1. A generic lexicographically-ordered T -constrained code, or in short a generic LOCO code, Cqm with q ≥ 2 and
m ≥ 1 is defined by the following properties:

1) Codewords in Cqm are defined over GF(q) and are of length m symbols.
2) Codewords in Cqm are ordered lexicographically.
3) A codeword in Cqm does not have any pattern in T .
4) All codewords satisfying the above properties are included.

3NS-LOCO codes are the same codes we recently introduced in [28]. The main modification here is that we simplify their encoding-decoding rule via
applying the proposed general method.

4

Different families of LOCO codes can be reached according to the set of forbidden patterns T . Let Nq(m) be the cardinality
of the LOCO code Cqm. Define a codeword c in Cqm as follows: c , cm−1cm−2 . . . c0, with ci = z′ for i ≥ m, where z′

represents out of codeword bounds. The integer level-equivalent of a LOCO codeword symbol ci, 0 ≤ i ≤ m− 1, is ai, i.e.,
ai , L(ci). Denote the lexicographic index of a codeword c among all codewords in the LOCO code Cqm by gq(m, c), which
is typically shorthanded to g(c) when the context is clear. In general, g(c) is in {0, 1, . . . , Nq(m)− 1}.

The principal goal of the above six steps is to find a formula for the lexicographic index g(c) as a function of the codeword
symbols and code cardinalities, which is the coding rule. This is what we already did for certain codes recently [11], [17],
[18], [28], but now we aim at doing it in a systematic and general way. Next, we discuss the six steps in detail.

Step 1) Group Structure: We first partition the LOCO codewords of Cqm into groups based on the set of forbidden patterns
T . For ease of analysis, we adopt contiguous partitioning. That is, all codewords belonging to the same group have consecutive
lexicographic indices. Let nf , |T |, and consider the following generic form of T :

T , {tj,pj−1tj,pj−2 . . . tj,0 | 1 ≤ j ≤ nf}. (2)

Each forbidden pattern of index j, 1 ≤ j ≤ nf, is of length pj , 1 ≤ pj ≤ m. For simplicity, we refer to both groups and
subgroups as groups in this discussion, and we assume that m is greater than or equal to the maximum length of a pattern in
T . We order the forbidden patterns ascendingly according to their lengths, and we access them one by one. For each forbidden
pattern tj,pj−1tj,pj−2 . . . tj,0 of index j, for all j according to the order, initial groups are specified as follows:
• There is an initial group having all the codewords starting with cm−1cm−2 . . . cm−pj+1 = tj,pj−1tj,pj−2 . . . tj,1 and
cm−pj 6= tj,0 from the left, i.e., at their left-most symbol (LMS).

• There is an initial group or more (only for non-binary) having all the codewords starting with cm−1cm−2 . . . cm−pj+2

= tj,pj−1tj,pj−2 . . . tj,2 and cm−pj+1 6= tj,1 from the left, i.e., at their LMSs.
• There is an initial group or more having all the codewords starting with cm−1cm−2 . . . cm−pj+3 = tj,pj−1tj,pj−2 . . . tj,3

and cm−pj+2 6= tj,2 from the left, i.e., at their LMSs.
• This procedure continues for the rest of symbols in the forbidden pattern until its LMS. For this symbol, there is an initial

group or more having all the codewords starting with cm−1 6= tj,pj−1 from the left, i.e., at their LMS.
In order to determine the final groups, we need to collectively process these initial groups. If the LMSs of an initial group

contain a forbidden pattern in T , this group will be eliminated. If the LMSs defining an initial group appear in one or more
other initial groups that have more LMSs defining them, the first group will also be eliminated. In other words, we go with the
finer partitioning. If two or more initial groups specified through different patterns end up being identical, only one of them
will be left. Handling new forbidden patterns may result in splitting an initial group into multiple final groups. Multiple initial
groups forming a contiguous list, with respect to the lexicographic indices of their codewords, can be merged into one final
group. Many checks can be performed during the execution of the procedure. The remaining groups at the end are the final
ones. We will provide detailed examples in the next section.

Step 2) Code Cardinality: Next, we use the (final) group structure determined in Step 1 to derive the cardinality of the
code Cqm, which is Nq(m). Observe that the codewords in different groups have a recursive nature. In other words, if some
or all of the LMSs the codewords in a specific group start with are eliminated, the resulting sequence is itself another LOCO
codeword in Cqm′ , m′ < m, satisfying the same constraint.

Let Nq,i(m) be the cardinality of the group of codewords in Cqm that is indexed by i. Let also the total number of groups be
ng and the maximum length of a forbidden pattern be pmax. The typical way of deriving Nq(m) is to express the cardinality
of each group as a linear combination with coefficients ζ`,i, for all possible ` and i, using recursion as follows:

Nq,i(m) =

pmax∑
`=1

ζ`,iNq(m− `). (3)

Consequently, we get:

Nq(m) =

ng∑
i=1

Nq,i(m) =

ng∑
i=1

pmax∑
`=1

ζ`,iNq(m− `) =
pmax∑
`=1

ζ ′`Nq(m− `), (4)

which means Nq(m) is a linear combination of the cardinalities of LOCO codes with lengths smaller than m. Observe that the
coefficient ζ ′` can be zero or negative for certain cardinalities depending on T [11], [18]. Observe also that the maximum value
of ` determines how much we need to go back, i.e., for smaller lengths, to get Nq(m), the cardinality of Cqm. As expected,
this maximum value is the maximum length of a forbidden pattern, which is pmax.

There are also some ideas that can be helpful in deriving Nq(m) in certain cases:
• In cases where the LOCO code is symmetric, i.e., the number of codewords starting with any symbol in GF(q) from the

left is the same for all symbols, it is useful to just derive the cardinality of the group of codewords starting with 0 (for
example) from the left, and multiply by q to find Nq(m).

• In cases where q is more than 2, it can be useful to divide groups into subgroups, and find the cardinalities of groups via
their subgroups. If a group is symmetric, this can also simplify the calculations.

5

• In cases where the normalized capacity approaches 1.00 (very few or lengthy patterns are forbidden), it might be useful
to combine different groups together, and then find Nq(m) by subtracting the number of eliminated sequences from the
much bigger cardinality of the less restrictive case.

Finally in Step 2, we determine the defined cardinalities, i.e., cardinalities that cannot be derived using the group structure.
Some defined cardinalities are directly known or obvious given T . For example, if the shortest forbidden pattern in T is
of length 3, it is known that Nq(1) = q and also Nq(2) = q2 regardless from the constraint itself. The unknown defined
cardinalities, e.g., Nq(0), are obtained from the known cardinalities, the known group cardinalities, and (4).

Remark 1. The length m of the LOCO code starting from which the group structure is defined is the smallest length at which
different groups can be distinguished. The cardinalities at all lengths smaller than that length are defined cardinalities.

Step 3) Special Cases: The contribution of a LOCO codeword symbol ci to the overall codeword index g(c) depends on ci
and the preceding symbols. Here, we specify the different cases of existence of a codeword symbol based on such preceding
symbols in order to calculate the symbol contribution in the following step.

Consider the set of forbidden patterns T in (2). We again access the forbidden patterns one by one. For each forbidden
pattern tj,pj−1tj,pj−2 . . . tj,0 of index j, for all j, initial special cases are specified as follows:
• The case that ci+pj−1ci+pj−2 . . . ci+1 = tj,pj−1tj,pj−2 . . . tj,1 and ci > tj,0 according to the lexicographic ordering

definition, i.e., L(ci) > L(tj,0), represents an initial special case unless tj,0 = αq−2 (1 in binary).
• The case that ci+pj−2ci+pj−3 . . . ci+1 = tj,pj−1tj,pj−2 . . . tj,2 and ci > tj,1, i.e., L(ci) > L(tj,1), represents an initial

special case unless tj,1 = αq−2 (1 in binary).
• The case that ci+pj−3ci+pj−4 . . . ci+1 = tj,pj−1tj,pj−2 . . . tj,3 and ci > tj,2, i.e., L(ci) > L(tj,2), represents an initial

special case unless tj,2 = αq−2 (1 in binary).
• This procedure continues until the symbol to the right of the LMS of the pattern. For this symbol, the case that ci+1 =
tj,pj−1 and ci > tj,pj−2, i.e., L(ci) > L(tj,pj−2), represents an initial special case unless tj,pj−2 = αq−2 (1 in binary).

The case that ci and the preceding symbols (if any) do not satisfy any of the above conditions in the initial special cases
for all patterns in T is called the typical case, which is usually the simplest.

Afterwards, we collectively process these initial special cases to reach the final special cases. Initial special cases implying
that a forbidden pattern appears on codeword symbols will be either eliminated or modified such that the sequences where
a forbidden pattern appears are eliminated. If there are two special cases characterized by two sequences where one of them
is a subsequence of the other starting from the right (from ci), the priority will be given to the special case with the longer
sequence. The special case with the shorter sequence will be modified accordingly. Handling new patterns may result in merging
multiple initial special cases either partially or totally. Many checks can be performed during the execution of the procedure.
The resulting cases at the end are the final special cases.

The goal of specifying these special cases is to appropriately capture the effect of eliminating sequences that violate the
constraint by containing forbidden patterns on the contribution of the symbol ci to the overall index g(c).

Step 4) Symbol Contribution: Next, we find the contribution of each symbol ci 6= 0, m − 1 ≥ i ≥ 0 to the index of the
LOCO codeword g(c). Obviously, this contribution is always 0 for ci = 0. We denote this contribution by gi(ci). Recall the
codeword c , cm−1cm−2 . . . c0 in Cqm. We define Nsymb(m, s) as the number of LOCO codewords in Cqm that start with the
sequence s from the left.

According to Cover in [34], the contribution of a symbol ci 6= 0 of c to the index g(c) is the number of codewords in Cqm
starting with the same symbols prior to ci, i.e., cm−1cm−2 . . . ci+1, from the left and preceding the first codeword starting with
cm−1cm−2 . . . ci+1ci according to the lexicographic ordering. In other words, this contribution is the number of codewords in
Cqm starting with cm−1cm−2 . . . ci+1c

′
i, for all c′i such that c′i < ci according to the lexicographic ordering definition, i.e., for

all c′i such that L(c′i) < L(ci).
Consequently, and using the aforementioned definition of Nsymb(m, s), we can mathematically formulate the contribution

gi(ci) as follows:
gi(ci) =

∑
c′i<ci

Nsymb(m, cm−1cm−2 . . . ci+1c
′
i). (5)

Now, we can see that the subscript “symb” in Nsymb(m, s) refers to “symbol” contribution. Additionally, in the binary case,
i.e., q = 2, (5) reduces to:

gi(ci) = Nsymb(m, cm−1cm−2 . . . ci+10), ci = 1. (6)

More details can be found in [34].
Looking from the right, Nsymb(m, cm−1cm−2 . . . ci+1c

′
i), for all c′i such that c′i < ci, can be seen as the number of LOCO

codewords of length i + 1 in Cqi+1 that can be concatenated from the right to cm−1cm−2 . . . ci+1 to generate valid LOCO
codewords of length m in Cqm. Let the total number of (final) special cases from Step 3 be nc−1, i.e., we have nc (final) cases
in total after adding the typical case. Denote the contribution of symbol ci to g(c) in the case indexed by ic, 1 ≤ ic ≤ nc,

6

by gi,ic(ci). Based on the observation in this paragraph, gi,ic(ci) can then be written as an arithmetic function, particularly a
linear combination, of cardinalities of LOCO codes having lengths at most i+ 1 from Step 2. This means:

gi,ic(ci) =
∑
c′i<ci

Nsymb,ic(m, cm−1cm−2 . . . ci+1c
′
i) =

pmax∑
`=0

ζ ′′`,icNq((i+ 1)− `). (7)

The reason is that the number of codewords in Cqi+1 we are after can be expressed in a way similar to that of Nq(m) in
(4). Observe that the coefficient ζ ′′`,ic can be zero or negative for certain cardinalities in certain cases depending on T . Most
important, this coefficient ζ ′′`,ic has to be a function of L(ci) , ai for one of the cardinalities in all cases.

The end product of this step is gi,ic(ci) expressed as a linear combination of cardinalities, as in (7), for all the nc cases.

Step 5) Encoding-Decoding Rule: We are now ready to derive the encoding-decoding rule of the LOCO code Cqm, which
uncovers the index g(c) associated with a codeword c. First, we need to merge different expressions of gi,ic(ci), ci 6= 0, for
all existence cases into one unified expression representing the contribution gi(ci) to the index g(c).

In order to perform such merging, we introduce some merging variables. The aim of these merging variables is to switch
on the contribution of a specific case and switch off the contributions of all the other cases in the unified expression of gi(ci)
given ci and the preceding symbols (which determine the case to switch on). Observe that the number of (final) merging
variables to be used can be notably less than nc. The reason is that it can happen that the symbol contributions for multiple
cases end up being the same, especially if the LOCO code is symmetric, resulting in the same merging variable to switch
these contributions on/off in the encoding-decoding rule.

Define fmer
` (·) as the merging function for the cardinality Nq((i+1)−`) in the unified expression representing the contribution

gi(ci) to the index g(c) (see (7)). Let the merging variables of symbol ci be yi,1, yi,2, . . . , yi,ny , where ny is the number of
merging variables with ny < nc. It is clear that the arguments of fmer

` (·) are yi,1, yi,2, . . . , yi,ny and ζ ′′`,1, ζ
′′
`,2, . . . , ζ

′′
`,nc

. Note
that the merging variables are determined via ci and its preceding symbols in c. The unified expression for gi(ci) can then be
written as follows:

gi(ci) =

pmax∑
`=0

fmer
` (yi,1, yi,2, . . . , yi,ny , ζ

′′
`,1, ζ

′′
`,2, . . . , ζ

′′
`,nc

)Nq((i+ 1)− `). (8)

Once we find fmer
` (·), for all `, merging is complete, and the encoding-decoding rule of the LOCO code Cqm becomes:

g(c) =

m−1∑
i=1

gi(ci) =

m−1∑
i=1

∑
c′i<ci

Nsymb(m, cm−1cm−2 . . . ci+1c
′
i)

=

m−1∑
i=1

pmax∑
`=0

fmer
` (yi,1, yi,2, . . . , yi,ny , ζ

′′
`,1, ζ

′′
`,2, . . . , ζ

′′
`,nc

)Nq((i+ 1)− `). (9)

Equation (9) is a recap of both Step 4 and Step 5, showing how we employ the result of Cover in [34] to reach the
encoding-decoding rule. Further simplifications to (9) can be performed. The procedure discussed in these two steps serves as
a direct proof of the rule. Another way to prove the rule is induction, which is what we followed in [11], [17], and [18].

Step 6) Code Algorithms: Before we discuss how the encoding and decoding algorithms are developed, we briefly discuss
bridging and self-clocking. Bridging is the process of adding few symbols between each two consecutive LOCO codewords
written or transmitted in a stream such that forbidden patterns in T do not appear at the transition from a codeword to the
next one. Bridging solely depends on T . Self-clocking is the process of maintaining self-calibration in the system during
reading or receiving the data. For a self-clocked LOCO code, long same-symbol sequences in a stream of LOCO codewords
after signaling are not allowed. Self-clocking depends on the GF size q and also on the used bridging. Sometimes one or two
codewords need to be removed from the LOCO code to achieve self-clocking. Other times, smart bridging suffices to achieve
self-clocking, and no codewords need to be removed. We will discuss both situations in this paper.

For simplicity, assume that no codewords are removed from Cqm to achieve self-clocking. Thus, the size of messages Cqm
encodes is s = blog2Nq(m)c in binary bits (see also [18]), where Nq(m) is derived in Step 2. The idea of the encoding and
decoding algorithms was first introduced by Tang and Bahl for RLL codes in [3]. A conceptually connected idea is in [38].

The encoding algorithm executes the reverse procedure of the encoding-decoding rule in (9). For each incoming binary
message of length s bits, the encoder performs binary to decimal conversion to get the index g(c). This index is the initial
value of a variable named residual. At each index i, m− 1 ≥ i ≥ 0, the merging function fmer(·) is set-up using the encoded
symbols at positions prior to i. For convenience, only here we write gi(ci) as gi(L(ci)) = gi(ai). Next, the variable residual
is compared with different values of gi(ai), ai ∈ {1, 2, 3, . . . , q − 1}, computed according to (8).
• If residual < gi(ai = 1), then ci is encoded as 0.
• If residual ≥ gi(ai = q − 1), then ci is encoded as αq−2 and residual is reduced by gi(ai = q − 1).
• Otherwise, the comparisons go on until the variable residual satisfies:

gi(ai) ≤ residual < gi(ai + 1). (10)

7

TABLE I
ALL THE CODEWORDS OF FIVE BINARY (d,∞) LO-RLL CODES, RC2m,1 , m ∈ {1, 2, . . . , 5}. THE TWO DIFFERENT GROUPS OF CODEWORDS ARE

EXPLICITLY ILLUSTRATED FOR THE CODE RC25,1 . THE TWO GROUPS CAN BE DISTINGUISHED STARTING FROM m = 1.

Codeword index g(c)
Codewords of the code RC2m,1

m = 1 m = 2 m = 3 m = 4 m = 5
0 0 00 000 0000 00000

Group 1

1 1 01 001 0001 00001
2 10 010 0010 00010
3 100 0100 00100
4 101 0101 00101
5 1000 01000
6 1001 01001
7 1010 01010
8 10000

Group 2
9 10001
10 10010
11 10100
12 10101

Code cardinality N2(1, 1) = 2 N2(2, 1) = 3 N2(3, 1) = 5 N2(4, 1) = 8 N2(5, 1) = 13

In this case, ci is encoded as L−1(ai) and residual is reduced by gi(ai), where L−1(·) is the inverse function of L(·).
This process continues until all codeword symbols are encoded. Then, bridging is performed, and the process is repeated again
for the next binary message.

The decoding algorithm executes the same procedure of the encoding-decoding rule in (9). For each incoming codeword
of length m, the decoder accesses its symbols one by one. The variable temp_index is initialized by 0. For each symbol ci,
m− 1 ≥ i ≥ 0, the merging function fmer(·) is set-up using ci and the symbols preceding ci. Next, the variable temp_index
is increased by gi(ci) (or gi(ai)) computed according to (8). This process continues until all codeword symbols are decoded,
and then temp_index becomes g(c). The decoder performs decimal to binary conversion to get the message from the index
g(c). Then, the decoder skips the few bridging symbols, and the process is repeated again for the next codeword.

This general method with its six described steps reveals the secret arithmetic of patterns. In particular, the method reveals
how the arithmetic of the allowed patterns in a LOCO codeword, which leads to the index of the codeword, is controlled by the
forbidden, or unseen, patterns in T . Observe that with the exception of the codewords removed for self-clocking (if any), all
LOCO codewords are included in the code. Moreover, the number of symbols used for bridging does not grow with the length
m. Thus, our LOCO codes are capacity-achieving. Additionally, having an encoding-decoding rule that is just a summation as
shown in (9) guarantees both simplicity and reconfigurability. With the right cardinalities used as inputs to the adder, the same
hardware can support multiple LOCO codes [11], [18]. Machine learning algorithms can be used to reconfigure the constrained
coding hardware by collecting errors and learning the changes on the set of patterns to forbid, which contributes to increasing
the lifetime of the storage device.

III. EXAMPLES FROM EXISTING CODES

In this section, we provide examples from constrained codes already existing in the literature to illustrate how the general
method described in Section II works. We will apply the steps of the general method one after another, and demonstrate that
the end result is the same as what we know from the literature.

We look at LO-RLL codes and S-LOCO codes as examples. Applying the general method for QA-LOCO codes [18] is left
to the interested reader for brevity, and it can build insights regarding merging groups and special cases during the procedures
of their respective steps. These insights will also appear in the next section.

A. Lexicographically-Ordered RLL Codes

Here, we discuss binary (d,∞) LO-RLL codes introduced in [3], where the constraint is that two 1’s must be separated by
at least d 0’s. Denote a (d,∞) LO-RLL code of length m by RC2m,d. The definition of the code is exactly the definition of a
generic LOCO code, which is Definition 1, with q = 2, Cqm = RC2m,d, and T given by:

T = R2
d , {11, 101, 1001, . . . , 10d−11}, (11)

where the notation wr refers to a sequence of r consecutive w symbols. Both c in Cqm = RC2m,d and g(c) are used as they
were in Section II (actually throughout the paper). The cardinality of RC2m,d is Nq(m) = N2(m, d). Table I shows multiple
(d,∞) LO-RLL codes with d = 1 and m in {1, 2, . . . , 5}.

Now, we will apply the steps of the general method to find out how to encode and decode (d,∞) LO-RLL codes using a
simple encoding-decoding rule. We will go through the steps of the method in detail for LO-RLL codes.

Step 1) Using the patterns in R2
d, we determine initial groups of RC2m,d as follows:

8

• For the pattern 11, there is an initial group having all the codewords starting with 10 from the left. Then, there is another
initial group having all the codewords starting with 0 from the left.

• For the pattern 101, there is an initial group having all the codewords starting with 100 from the left. There does not
exist a group with codewords starting with 11 from the left since this is a forbidden pattern. Then, there is another initial
group having all the codewords starting with 0 from the left.

• This procedure continues for the rest of patterns in R2
d until the pattern 10d−11. For this pattern, there is an initial group

having all the codewords starting with 10d−10 = 10d from the left. There does not exist any group with codewords
starting with 10d

′
1, for d− 2 ≥ d′ ≥ 0, from the left since these are all forbidden patterns. Then, there is another initial

group having all the codewords starting with 0 from the left.
After eliminating all redundant groups and less restrictive groups, we end up with only two (final) groups covering all the

LO-RLL codewords in RC2m,d: Group 1, which contains all the codewords starting with 0 from the left, and Group 2, which
contains all the codewords starting with 10d from the left. The groups are defined for m ≥ 1. The two groups are illustrated
for the code RC25,1 in Table I.

Step 2) As for Group 1 of RC2m,d, each codeword in this group corresponds to a codeword in RC2m−1,d (of length m− 1)
such that they share the m− 1 right-most bits (RMBs). Since this correspondence is bijective, the cardinality of Group 1 is:

N2,1(m, d) = N2(m− 1, d). (12)

As for Group 2 of RC2m,d, each codeword in this group corresponds to a codeword in RC2m−d−1,d (of length m − d − 1)
such that they share the m− d− 1 RMBs. Since this correspondence is also bijective, the cardinality of Group 2 is:

N2,2(m, d) = N2(m− d− 1, d). (13)

From (12) and (13), the cardinality of the code RC2m,d is given by:

N2(m, d) =

2∑
i=1

N2,i(m, d) = N2(m− 1, d) +N2(m− d− 1, d), m ≥ 1. (14)

As for the defined cardinalities, we know that the cardinality of Group 2 for 1 ≤ m ≤ d + 1 is always 1. This means using
(13), N2(m− d− 1, d) = 1, for 1 ≤ m ≤ d+ 1. Consequently, the defined cardinalities are:

N2(m, d) , 1, − d ≤ m ≤ 0. (15)

With that, we managed to use the inherent recursion of the groups of the (d,∞) LO-RLL code to compute its cardinality. The
result in (14) and (15) is consistent with [3] and [11]. The cardinalities of RC2m,1, m ∈ {1, 2, . . . , 5}, are given in the last row
of Table I.

Step 3) We now specify the special cases. Using the patterns in R2
d, we determine initial special cases for RC2m,d as follows:

• For the pattern 11, there does not exist any special cases since there does not exist a symbol greater than 1 in GF(2)
according to the lexicographic ordering definition.

• For the pattern 101, following the same logic in the previous item results in that the only initial case to investigate is for
11. However, 11 is a forbidden pattern, which means there does not exist any special cases.

• This procedure continues for the rest of patterns in R2
d until the pattern 10d−11. For this pattern, following the same

logic in the previous items results in that the initial cases to investigate are for 10d
′
1, for d− 2 ≥ d′ ≥ 0. However, all

of these patterns are forbidden patterns, which means there does not exist any special cases.
Based on the above discussion, we do not have special cases in (d,∞) LO-RLL codes. Thus, we only have one (final)

case that is the typical case. In other words, all 1’s, i.e., all non-zero symbols here, will have the same contribution to g(c)
regardless from the preceding bits in c.

Steps 4 and 5) Since we do not have any special cases, there will be no need for a merging function as we have a single
expression for gi(ci). Consequently, Step 5 will be straightforward, and can be combined with Step 4.

Given all the bits prior to ci, i.e., cm−1cm−2 . . . ci+1, we already know that gi(ci), ci = 1, is the number of codewords in
RC2m,d starting with cm−1cm−2 . . . ci+10 from the left. Looking from the right, this number can be seen as the number of
LO-RLL codewords of length i+1 in RC2i+1,d that can be concatenated from the right to cm−1cm−2 . . . ci+1 to generate valid
LO-RLL codewords of length m in RC2m,d. These codewords in RC2i+1,d are all the codewords starting with 0 from the left,
and thus are all the codewords in Group 1 of RC2i+1,d. The reason is that prior to ci = 1, there must be a (guaranteed) run
of d consecutive 0’s, i.e., 0d, in c because of the constraint, resulting in no limitations on the codewords starting with 0 from
the left in RC2i+1,d for the concatenation. Consequently,

gi(ci) = N2,1(i+ 1, d) = N2(i, d), ci = 1, (16)

where (12) was used to get N2,1(i+ 1, d).

9

TABLE II
ALL THE CODEWORDS OF FIVE BINARY S-LOCO CODES, SC2m,2 , m ∈ {1, 2, . . . , 5}. THE FOUR DIFFERENT GROUPS OF CODEWORDS ARE

EXPLICITLY ILLUSTRATED FOR THE CODE SC25,2 THE FOUR GROUPS CAN BE DISTINGUISHED STARTING FROM m = 2.

Codeword index g(c)
Codewords of the code SC2m,2

m = 1 m = 2 m = 3 m = 4 m = 5
0 0 00 000 0000 00000

Group 11 1 01 001 0001 00001
2 10 011 0011 00011
3 11 100 0111 00111
4 110 1000 01110 Group 4
5 111 1100 01111
6 1110 10000 Group 3
7 1111 10001
8 11000

Group 29 11100
10 11110
11 11111

Code cardinality N2(1, 2) , 2 N2(2, 2) = 4 N2(3, 2) = 6 N2(4, 2) = 8 N2(5, 2) = 12

To account also for the case of ci = 0 (then gi(ci) = 0), we use ai, which is L(ci), as follows:

gi(ci) = aiN2(i, d). (17)

The encoding-decoding rule of a binary (d,∞) LO-RLL code of length m is then:

g(c) =

m−1∑
i=0

gi(ci) =

m−1∑
i=0

aiN2(i, d). (18)

The result in (18) is also consistent with [3].

Example 1. Consider the LO-RLL code RC25,1 (m = 5 and d = 1) given in Table I. Using (14) and (15), we get N2(0, 1) , 1,
N2(1, 1) = 2, N2(2, 1) = 3, N2(3, 1) = 5, and N2(4, 1) = 8. Consider the codeword c = 10101 in RC25,1. Using (18), we
get:

g(c = 10101) =

4∑
i=0

aiN2(i, 1) = N2(4, 1) +N2(2, 1) +N2(0, 1)

= 8 + 3 + 1 = 12,

which is consistent with the index in the table.

Step 6) We bridge in (d,∞) LO-RLL codes as follows. Between each two consecutively written or transmitted codewords
in RC2m,d, we write or transmit d consecutive 0’s, i.e., the bridging pattern is 0d. As for self-clocking, recall that (d,∞)

LO-RLL codes are followed by transition-based signaling. Thus, the only codeword that should be removed from RC2m,d is
0m, and by doing so, a transition is guaranteed for each codeword after signaling.

The rate of a self-clocked (d,∞) LO-RLL code of length m is blog2(N2(m, d)− 1)c/(m+ d). We follow the procedures
described in Step 6 in Section II to develop the encoding and decoding algorithms based on the rule in (18). These algorithms
can be found in [3].

B. Binary Symmetric LOCO Codes

Here, we discuss binary symmetric LOCO (S-LOCO) codes introduced in [11], where the minimum separation between two
consecutive transitions, 0 − 1 or 1 − 0, is controlled by x. Denote an S-LOCO code of length m and having parameter x
by SC2m,x. The definition of the code is exactly the definition of a generic LOCO code, which is Definition 1, with q = 2,
Cqm = SC2m,x, and T given by:

T = S2x , {010, 101, 0110, 1001, . . . , 01x0, 10x1}. (19)

Both c in Cqm = SC2m,x and g(c) are used as they were in Section II. The cardinality of SC2m,x is Nq(m) = N2(m,x). Table II
shows multiple S-LOCO codes with x = 2 and m in {1, 2, . . . , 5}.

Now, we will apply the steps of the general method to find out how to encode and decode S-LOCO codes using a simple
encoding-decoding rule.

Step 1) Using the patterns in S2x, we determine initial groups of SC2m,x as follows:
• For the pattern 010 (resp., 101), there is an initial group having all the codewords starting with 011 (resp., 100) from the

left. There is another initial group having all the codewords starting with 00 (resp., 11) from the left. There is a third
initial group having all the codewords starting with 1 (resp., 0) from the left.

10

• For the pattern 0110 (resp., 1001), there is an initial group having all the codewords starting with 013 (resp., 103) from
the left. There is another initial group having all the codewords starting with 00 (resp., 11) from the left. There is a third
initial group having all the codewords starting with 1 (resp., 0) from the left.

• This procedure continues for the rest of patterns in S2x until the patterns 01x0 and 10x1. For the pattern 01x0 (resp.,
10x1), there is an initial group having all the codewords starting with 01x+1 (resp., 10x+1) from the left. There is another
initial group having all the codewords starting with 00 (resp., 11) from the left. There is a third initial group having all
the codewords starting with 1 (resp., 0) from the left.

After eliminating all redundant groups and less restrictive groups, we end up with four (final) groups covering all the S-
LOCO codewords in SC2m,x: Group 1, which contains all the codewords starting with 00 from the left, Group 2, which contains
all the codewords starting with 11 from the left, Group 3, which contains all the codewords starting with 10x+1 from the left,
and Group 4, which contains all the codewords starting with 01x+1 from the left. The groups are defined for m ≥ 2. The four
groups are illustrated for the code SC25,2 in Table II.

Step 2) Observe that the symmetry of S2x implies the symmetry of the code SC2m,x. Thus, the number of codewords starting
with 0 from the left equals the number of codewords starting with 1 from the left.

We follow the same logic adopted in the previous subsection for LO-RLL codes to derive the cardinalities of groups. The
details of this part can be found in [11]. The cardinality of Group 1 is:

N2,1(m,x) =
1

2
N2(m− 1, x). (20)

The cardinality of Group 4 is:

N2,4(m,x) =
1

2
N2(m− x− 1, x). (21)

From (20), (21), and symmetry, the cardinality of the code SC2m,x is given by the recursive formula:

N2(m,x) =

4∑
i=1

N2,i(m,x) = N2(m− 1, x) +N2(m− x− 1, x), m ≥ 2. (22)

As for the defined cardinalities, it is clear that N2(1, x) , 2. We also know that the cardinality of Group 4 for 2 ≤ m ≤ x+2
is always 1 (the group can be distinguished but not enough bits to have more than 1 codeword in it). This means using (21),
N2(m− x− 1, x) = 2, for 2 ≤ m ≤ x+ 2. Consequently,

N2(m,x) , 2, 1− x ≤ m ≤ 1. (23)

The result in (22) and (23) for S-LOCO codes is consistent with [11]. The cardinalities of SC2m,2, m ∈ {1, 2, . . . , 5}, are given
in the last row of Table II.

Step 3) We now specify the special cases. Using the patterns in S2x, we determine initial special cases for SC2m,x as follows:
• For the pattern 010, the only initial special case is ci+2ci+1ci = 011. For the pattern 101, the only initial special case is
ci+1ci = 11.

• For the pattern 0110, the only initial special case is ci+3ci+2ci+1ci = 013. For the pattern 1001, the only initial special
case is ci+1ci = 11.

• This procedure continues for the rest of patterns in S2x until the patterns 01x0 and 10x1. For the pattern 01x0, the only
initial special case is ci+x+1ci+x . . . ci = 01x+1. For the pattern 10x1, the only initial special case is ci+1ci = 11.

After removing the redundant initial special cases, we end up with x+ 2 (final) cases for ci based on ci and its preceding
bits. These cases are: 011, 013, . . . , 01x+1, and 11, which are the special cases described above, in addition to the typical
case. The typical case is the case of ci = cm−1 = 1 (1 at the LMB) or ci+1ci = 01. The priority increases as the sequence
length increases, e.g., the case of ci+1ci = 11 is activated only if there does not exist any 0 in the x+ 1 positions prior to ci.

Step 4) We start off with the typical case, where ci = cm−1 = 1 or ci+1ci = 01. We index this case by ic = 1. The
contribution of ci to g(c) in this case is either the number of codewords in SC2m,x starting with 0 from the left if i = m− 1

or the number of codewords in SC2m,x starting with cm−1cm−2 . . . ci+200 from the left if i < m− 1. Thus, in both situations
and using symmetry, the contribution is:

gi,1(ci) =
1

2
N2(i+ 1, x). (24)

The first special case of existence for ci = 1 is ci+2ci+1ci = 011. The contribution of ci to g(c) in this case is the number
of codewords in SC2m,x starting with cm−1cm−2 . . . ci+3010 from the left. This number is 0 since 010 is a forbidden pattern
in S2x. This is also true for the case of ci+3ci+2ci+1ci = 013. In fact, this is true for all the cases of 011, 013, . . . , and 01x+1,
which we index by ic = 2, 3, . . . , and x+ 1, respectively. Consequently, we get:

gi,ic(ci) = 0, 2 ≤ ic ≤ x+ 1. (25)

11

The last case of existence for ci = 1 is ci+1ci = 11 such that there does not exist any 0 in the x+ 1 positions prior to ci.
We index this case by ic = x + 2. The contribution of ci to g(c) in this case is the number of codewords in SC2m,x starting
with cm−1cm−2 . . . ci+210 from the left. In order to satisfy the constraint, this 10 must be followed by 0x in c. Thus, the
number we are after is the number of codewords in SC2m,x starting with cm−1cm−2 . . . ci+210

x+1 from the left. Looking from
the right, this number is the number of codewords in SC2i+1−x,x starting with 0 from the left. Thus, and using symmetry, the
contribution is:

gi,x+2(ci) =
1

2
N2(i+ 1− x, x). (26)

Step 5) Since we have three expressions for gi,ic(ci), we need only two merging variables: yi,1, for the cases indexed by
ic ∈ {2, 3, . . . , x+1}, and yi,2, for the case indexed by ic = x+2. If the two variables are zeros, the typical case contribution
is switched on. These merging variables are set as follows:

yi,1 = 1 if ci+x′+1ci+x′ . . . ci = 01x
′+1, 1 ≤ x′ ≤ x, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+1ci = 11 s.t. yi,1 = 0, and yi,2 = 0 otherwise. (27)

Recall Step 5 in Section II. Now, we pick the merging function fmer
0 (·) = 1

2 (ai− yi,1− yi,2) for N2(i+1, x). This function
results in 1/2 only if ai = 1, i.e., ci = 1, and yi,1 = yi,2 = 0 (the case indexed by 1). Otherwise, the function results in 0.
We also pick the merging function fmer

x (·) = 1
2yi,2 for N2(i+1−x, x). This function results in 1/2 only if yi,2 = 1 (the case

indexed by x + 2). Otherwise, the function results in 0. If yi,1 = 0, then yi,2 = 0 automatically from (27), resulting in both
fmer
0 (·) and fmer

x (·) being zeros (the rest of cases).
Using these two merging functions, the unified expression representing the contribution of a bit ci to the codeword index

g(c) can be written as:

gi(ci) =
1

2
(ai − yi,1 − yi,2)N2(i+ 1, x) +

1

2
yi,2N2(i+ 1− x, x). (28)

This can be further simplified if yi,2 is used inside the cardinality argument as follows:

gi(ci) =
1

2
(ai − yi,1)N2(i+ 1− yi,2x, x). (29)

The formula in (29) also accounts for the case of ci = 0. The encoding-decoding rule of a binary S-LOCO code is then:

g(c) =

m−1∑
i=0

gi(ci) =
1

2

m−1∑
i=0

(ai − yi,1)N2(i+ 1− yi,2x, x). (30)

Example 2. Consider the S-LOCO code SC25,2 (m = 5 and x = 2) given in Table II. Using (22) and (23), we get N2(−1, 2) , 2,
N2(0, 2) , 2, N2(1, 2) , 2, N2(2, 2) = 4, N2(3, 2) = 6, N2(4, 2) = 8, and N2(5, 2) = 12. Consider the codeword c = 01111
in SC25,2. Using (30), we get:

g(c = 01111) =
1

2

4∑
i=0

(ai − yi,1)N2(i+ 1− 2yi,2, 2)

=
1

2
[N2(4, 2) + 0 + 0 +N2(−1, 2)] =

1

2
[8 + 2] = 5,

which is consistent with the index in the table.

The only remaining question will be about why the rule in (30) looks different from the one in [11], which is:

g(c) =
1

2

[
am−1N2(m,x) +

m−1∑
i=0

aiN2(i+ 1− x, x)

]
. (31)

Clearly, for ci = cm−1 = 1, gi(ci) derived from both equations is the same, which is 1
2N2(i+1, x). Moreover, for ci+1ci = 11

such that there does not exist any 0 in the x + 1 positions prior to ci, gi(ci) derived from both equations is also the same,
which is 1

2N2(i+1− x, x). The first difference appears for ci+1ci = 01, since gi(ci) from (30) is 1
2N2(i+1, x), while gi(ci)

from (31) is 1
2N2(i + 1 − x, x). The second difference appears for ci+x′+1ci+x′ . . . ci = 01x

′+1, 1 ≤ x′ ≤ x, , since gi(ci)
from (30) is 0, while gi(ci) from (31) is still 1

2N2(i+ 1− x, x). Thus, if we can prove that the contribution of the left-most
1 in the pattern 01x+1 to g(c) from (30) is the sum of the contributions of all 1’s in the same pattern from (31), we will
demonstrate that the two rules result in exactly the same g(c). This proof goes as follows using (22):

N2(i+ 1, x) = N2(i, x) +N2(i− x, x) = N2(i− 1, x) +N2(i− x, x) +N2(i− x− 1, x)

= N2(i− 2, x) +N2(i− x, x) +N2(i− x− 1, x) +N2(i− x− 2, x) . . .

= N2(i− x+ 1, x) +N2(i− x, x) +N2(i− x− 1, x) + · · ·+N2(i− 2x+ 1, x)

=⇒ N2(i+ 1, x) =

i∑
i′=i−x

N2(i
′ + 1− x, x), (32)

12

0

0

0

0

1

0

0

0

0

1

1

1

1

0

1

1

1

1

Fig. 1. The detrimental square isolation patterns (shaped as a square). An error is highly likely to happen on the circled bit at the center.

⋅

0

⋅

0

1

0

⋅

0

⋅

⋅

1

⋅

1

0

1

⋅

1

⋅

Fig. 2. The detrimental plus isolation patterns (shaped as a plus sign). An error is highly likely to happen on the circled bit at the center.

which completes our demonstration.

Step 6) We bridge in S-LOCO codes as follows. Between each two consecutively written or transmitted codewords in SC2m,x,
we do bridge with x consecutive no-writing or no-transmission symbols, i.e., the bridging pattern is zx, where z denotes the
no-writing or no-transmission symbol. Other bridging methods are also possible as shown in [11]. As for self-clocking, recall
that S-LOCO codes are followed by level-based signaling. Thus, the two codewords that should be removed from SC2m,x are
0m and 1m, and by doing so, a transition is guaranteed for each codeword after signaling.

The rate of a self-clocked S-LOCO code of length m and having parameter x is blog2(N2(m,x)− 2)c/(m+x). We follow
the procedures described in Step 6 in Section II to develop the encoding and decoding algorithms based on the rule in (30) or
(31). These algorithms can be found in [11].

IV. OPTIMAL CONSTRAINED CODES FOR TDMR
In this section, we introduce new optimal (rate-wise) LOCO codes for TDMR systems. The new codes prevent certain

error-prone patterns from being written on the TDMR medium, increasing the reliability of the system.
We discuss two sets of 3×3 detrimental patterns: the set of square isolation (SIS) patterns and the set of plus isolation (PIS)

patterns. SIS patterns are 3× 3 patterns having the (isolated) bit at the center surrounded by 8 complementary bits. There are
only 2 SIS patterns as shown in Fig. 1. PIS patterns are 3 × 3 patterns having the (isolated) bit at the center surrounded by
4 complementary bits at the positions with Manhattan distance 1 from the center, i.e., non-corner positions. There are 32 PIS
patterns as shown in Fig. 2 since a “·” in Fig. 2 means 0 or 1, which means there are 24 patterns with the central bit being 1
(left panel of Fig. 2) and 24 patterns with the central bit being 0 (right panel of Fig. 2).

Since level-based signaling is adopted here, a 0 is converted into −A, indexed by L(0) = 0, and a 1 is converted into
+A, indexed by L(1) = 1, upon writing. Consequently, the problem with SIS and PIS patterns is that the level at the center
becomes highly likely to change its sign due to two-dimensional interference (along both track directions), resulting in an error
during reading. SIS patterns are the most detrimental subclass of PIS patterns. However, they are less likely to occur under
unbiased writing since they are 2 patterns out of 512 possible ones for the 3× 3 grid. PIS patterns subsume SIS patterns, and
they were introduced because of the fact that bits at the corners cause less interference than bits at positions with Manhattan
distance 1 from the center [24], [25]. PIS patterns are also 16 times more likely to occur compared with SIS patterns under
unbiased writing. However, preventing PIS patterns results in some rate loss compared with preventing SIS patterns. That is
why we introduce codes preventing SIS patterns and codes preventing PIS patterns in this section and in Section VI. Error
statistics demonstrating the harmfulness of SIS and PIS patterns in a practical TDMR system are presented in Section V.

As mentioned in the introduction, the practical TDMR model we use adopts a wide read head that reads data from 3 adjacent
down tracks at the same time [20], [21], [28]. Suppose that the indices of down tracks in the TD grid are 0, 1, 2, 3, . . . ,
D − 1, where D is the number of down tracks in the TD grid and 3 | D. Then, with that TDMR model, we can partition
them into groups, each with 3 adjacent down tracks to be read together. These groups have the tracks indexed by (0, 1, 2),
(3, 4, 5), (6, 7, 8), . . . , (D − 3, D − 2, D − 1). Interference in the cross-track direction from a group into another group is
negligible [20], [28]. Thus, we can now convert the two-dimensional binary constrained coding problem into a one-dimensional
non-binary constrained coding problem. In the new problem, a symbol in GF(8) represents a column with 3 bits to be written
on 3 adjacent down tracks in the same group. We use the following standard mapping-demapping:

13

0←→ [0 0 0]T, 1←→ [0 0 1]T,

α←→ [0 1 0]T, α2 ←→ [0 1 1]T,

α3 ←→ [1 0 0]T, α4 ←→ [1 0 1]T,

α5 ←→ [1 1 0]T, α6 ←→ [1 1 1]T, (33)

We are now ready to build non-binary constrained codes defined over GF(8) for TDMR systems. In this section, we introduce
OS-LOCO and OP-LOCO codes.

Remark 2. While the NIB constraint forces the elimination of PIS patterns everywhere in the TD grid, our OP-LOCO codes
achieve rate gain by focusing only on the PIS patterns within the same group of down tracks as interference in the cross-track
direction from a group into another group is of limited significance.

A. Optimal Square LOCO Codes

We start with our optimal square LOCO (OS-LOCO) codes, which are codes preventing the SIS patterns shown in Fig. 1
within each group of three adjacent down tracks. From (33), these two SIS patterns map to the two GF(8) patterns 0α0 and
α6α4α6, which have the level-equivalent patterns 020 and 757. The FSTD of an infinite 8-ary constrained sequence in which
these two patterns are prevented along with the adjacency matrix are in [28]. The capacity C, in input bits per coded symbol,
and the normalized capacity Cn, according to the same reference, are:

C = 2.9944 and Cn =
1

log2 8
C =

1

3
C = 0.9981. (34)

Denote an OS-LOCO code of length m by OSC8m. The definition of the code is exactly the definition of a generic LOCO
code, which is Definition 1, with q = 8, Cqm = OSC8m, and T given by:

T = OS8 , {0α0, α6α4α6}. (35)

Both c in Cqm = OSC8m and g(c) are used as they were in Section II. The cardinality of OSC8m is Nq(m) = N8(m). We could
not provide a table as an example listing all the codewords of specific codes because there are way too many codewords for
any length m ≥ 4. However, we will provide an example illustrating the encoding-decoding rule of the code.

Now, we will apply the steps of the general method to find out how to encode and decode OS-LOCO codes using a simple
encoding-decoding rule.

Step 1) Using the patterns in OS8, we determine initial groups of OSC8m as follows:
• For the pattern 0α0, there is an initial group having all the codewords starting with 0αβ1, β1 ∈ GF(8)\{0}, from the left.

There are seven more initial groups having all the codewords starting with 0β2, a group for each β2 ∈ GF(8) \ {α}, from
the left. There are seven more initial groups having all the codewords starting with β1, a group for each β1 ∈ GF(8)\{0},
from the left. Group merging will be performed.

• For the pattern α6α4α6, there is an initial group having all the codewords starting with α6α4β3, β3 ∈ GF(8) \ {α6},
from the left. There are seven more initial groups having all the codewords starting with α6β4, a group for each β4 ∈
GF(8) \ {α4}, from the left. There are seven more initial groups having all the codewords starting with β3, a group for
each β3 ∈ GF(8) \ {α6}, from the left. Group merging will be performed.

After operating on these initial groups, we end up with three (final) groups covering all the OS-LOCO codewords in OSC8m:
Group 1, which contains all the codewords starting with 0 from the left, Group 2, which contains all the codewords starting
with β5, β5 ∈ GF(8) \ {0, α6}, from the left, and Group 3, which contains all the codewords starting with α6 from the left.
The groups are defined for m ≥ 2.

Group 1 is further partitioned into three subgroups: Subgroup 1.1, which contains all the codewords starting with 0β′2,
β′2 ∈ {0, 1}, from the left, Subgroup 1.2, which contains all the codewords starting with 0αβ1 from the left, and Subgroup 1.3,
which contains all the codewords starting with 0β′′2 , β′′2 ∈ {α2, α3, . . . , α6}, from the left.

Group 2 is further partitioned into six subgroups: Subgroup 2.v, v ∈ {1, 2, . . . , 6}, contains all the codewords starting with
αv−1 from the left. Observe the symmetry of Group 2; all subgroups within Group 2 have the same size.

Group 3 is further partitioned into three subgroups: Subgroup 3.1, which contains all the codewords starting with α6β′4,
β′4 ∈ {0, 1, . . . , α3}, from the left, Subgroup 3.2, which contains all the codewords starting with α6α4β3 from the left, and
Subgroup 3.3, which contains all the codewords starting with α6β′′4 , β′′4 ∈ {α5, α6}, from the left.

Step 2) Theorem 1 gives the cardinality of an OS-LOCO code.

Theorem 1. The cardinality of an OS-LOCO code OSC8m is given by:

N8(m) = 8N8(m− 1)−N8(m− 2) + 6N8(m− 3), m ≥ 2, (36)

where the defined cardinalities are:

14

N8(−2) ,
1

36
, N8(−1) ,

1

6
, N8(0) , 1, and N8(1) , 8. (37)

Proof: We first derive recursive cardinality formulae for the three groups of OSC8m.
As for Group 1 of OSC8m, each codeword in this group is related to a codeword in OSC8m−1 such that they share the

m− 1 right-most symbols (RMSs). This relation is injective. In order to create a bijective correspondence, all the codewords
in OSC8m−1 that start with α0 from the left have to be omitted since 0α0 is a forbidden pattern in OS8. Since the number of
these codewords to be omitted from OSC8m−1 for bijective correspondence is the number of codewords starting with 0 from
the left in OSC8m−2, the cardinality of Group 1 is:

N8,1(m) =

3∑
i=1

N8,1.i(m) = N8(m− 1)−N8,1(m− 2), (38)

where N8,1.i(m) is the cardinality of Subgroup 1.i.
As for Group 2 of OSC8m, we can just study one subgroup because of symmetry. For Subgroup 2.1 of OSC8m, each codeword

in this group corresponds to a codeword in OSC8m−1 such that they share the m− 1 RMSs. This correspondence is bijective.
Consequently, and using symmetry, the cardinality of Group 2 is:

N8,2(m) =

6∑
i=1

N8,2.i(m) = 6N8,2.1(m) = 6N8(m− 1), (39)

where N8,2.i(m) is the cardinality of Subgroup 2.i.
As for Group 3 of OSC8m, it is straightforward to show that its cardinality is exactly the same as the cardinality of Group 1

of OSC8m. Thus,
N8,3(m) = N8,1(m) = N8(m− 1)−N8,1(m− 2). (40)

Next, from (38), (39), and (40), we conclude that the cardinality of OSC8m is:

N8(m) =

3∑
i=1

N8,i(m) = 8N8(m− 1)− 2N8,1(m− 2). (41)

The only remaining step is to find 2N8,1(m− 2). We can write N8(m− 2) as:

N8(m− 2) =

3∑
i=1

N8,i(m− 2) = 2N8,1(m− 2) +N8,2(m− 2), (42)

where the second equality is reached using (40). Using (39), we get:

2N8,1(m− 2) = N8(m− 2)− 6N8(m− 3). (43)

Substituting (43) in (41) gives the final recursive formula for cardinality, which is (36):

N8(m) = 8N8(m− 1)−N8(m− 2) + 6N8(m− 3), m ≥ 2.

As for the defined cardinalities, it is clear that N8(1) , 8. We also know that N8(2) = 82 = 64 since the length of a SIS
pattern is 3, i.e., no sequences to eliminate at that length. Consequently, and using the proved (36),

8 = 8N8(0)−N8(−1) + 6N8(−2), and (44)

64 = 8× 8−N8(0) + 6N8(−1). (45)

Furthermore, we know that only two sequences, which are 0α0 and α6α4α6, out of 83 GF(8) sequences are eliminated to
arrive at the OS-LOCO code OSC83. Consequently, and again using (36),

N8(3) = 83 − 2 = 8× 64− 8 + 6N8(0), (46)

resulting in N8(0) , 1. Substituting this result in (45) gives N8(−1) , 1/6. Substituting that in (44) gives N8(−2) , 1/36,
which completes the proof.

Step 3) We now specify the special cases. Using the patterns in OS8, we determine initial special cases for the OS-LOCO
code OSC8m as follows:
• For the pattern 0α0, one initial special case is ci+2ci+1ci = 0αβ1, β1 ∈ GF(8) \ {0}. Another initial special case is
ci+1ci = 0β′′2 , β′′2 ∈ {α2, α3, . . . , α6}. Case merging was performed.

• For the pattern α6α4α6, observe that there is no symbol greater than α6 according to the lexicograohic ordering definition.
Thus, the only initial special case is ci+1ci = α6β′′4 , β′′4 ∈ {α5, α6}. Case merging was performed.

15

Since there are no redundant initial special cases, we end up with four (final) cases for ci based on ci and its preceding
symbols. These cases are the three special cases stated above and the typical case. The typical case is simply the case when
neither of the three special cases is enabled and ci 6= 0. As usual, the priority of a case increases as its sequence length
increases. However, there does not exist a sequence characterizing a special case that is a subsequence (starting from the right)
in a longer sequence characterizing another special case here.

Steps 4 and 5) Theorem 2 gives the encoding-decoding rule of an OS-LOCO code OSC8m. Recall that ai , L(ci).

Theorem 2. Let c be an OS-LOCO codeword in OSC8m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[(
ai − yi,1 −

1

2
yi,2

)
N8(i) + θi(1− yi,1)

((
3yi,2 −

1

2

)
N8(i− 1) + 3N8(i− 2)

)]
, (47)

where yi,1, yi,2, and θi are specified as follows:

yi,1 = 1 if ci+2ci+1ci = 0αβ1, β1 ∈ GF(8) \ {0}, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+1ci = 0β′′2 , β
′′
2 ∈ {α2, α3, . . . , α6}, else,

yi,2 = 1 if ci+1ci = α6β′′4 , β
′′
4 ∈ {α5, α6}, and yi,2 = 0 otherwise,

θi = 1 if ci 6= 0, and θi = 0 otherwise. (48)

Proof: First, we perform Step 4 of the method. We aim at computing the contribution of each OS-LOCO codeword symbol
ci to the codeword index g(c) for the four final cases, i.e., gi,ic(ci) for all ic.

We start off with the typical case, which we index by ic = 1. The contribution of ci to g(c) in this case is the number of
codewords in OSC8m starting with cm−1cm−2 . . . ci+1c

′
i from the left such that c′i < ci according to the lexicographic ordering

definition. As usual, the typical case is the unrestricted case. Thus, this number is the number of codewords in OSC8i+1 starting
with c′i, for all c′i < ci, from the left. Consequently, we can write gi,1(ci) as:

gi,1(ci) = N8,1(i+ 1) +

ai−1∑
j=1

N8,2.j(i+ 1) = N8,1(i+ 1) + (ai − 1)N8,2.1(i+ 1), (49)

where the second equality in (49) follows from that N8,2.j(i+ 1) is the same for all j. Recall the codeword correspondence
in the proof of Theorem 1. Substituting from (39) and (43) in (49) gives:

gi,1(ci) =
1

2
N8(i+ 1)− 3N8(i) + (ai − 1)N8(i) =

1

2
N8(i+ 1) + (ai − 4)N8(i). (50)

This can be further expanded using (36) as follows:

gi,1(ci) = 4N8(i)−
1

2
N8(i− 1) + 3N8(i− 2) + (ai − 4)N8(i)

= aiN8(i)−
1

2
N8(i− 1) + 3N8(i− 2). (51)

Next, we study the special case characterized by ci+2ci+1ci = 0αβ1, β1 ∈ GF(8) \ {0}, which we index by ic = 2. The
contribution of ci to g(c) in this case is the number of codewords in OSC8m starting with cm−1cm−2 . . . ci+30αc

′
i from the

left such that c′i < ci = β1 according to the lexicographic ordering definition. This number is the number of codewords in
OSC8i+1 starting with c′i, for all c′i < ci such that c′i 6= 0, from the left. Observe that the codewords starting with 0 from the
left in OSC8i+1 must be omitted from the count since ci+2ci+1ci = 0α0 is not allowed in c. Consequently, and using (39), we
can derive gi,2(ci) as follows:

gi,2(ci) =

ai−1∑
j=1

N8,2.j(i+ 1) = (ai − 1)N8(i). (52)

Next, we study the special case characterized by ci+1ci = 0β′′2 , β′′2 ∈ {α2, α3, . . . , α6}, which we index by ic = 3. The
contribution of ci to g(c) in this case is the number of codewords in OSC8m starting with cm−1cm−2 . . . ci+20c

′
i from the left

such that c′i < ci = β′′2 according to the lexicographic ordering definition. This number is the number of codewords in OSC8i+1

starting with c′i, for all c′i < ci, from the left except for those starting with α0 from the left. Observe that the codewords
starting with α0 from the left in OSC8i+1 must be omitted from the count since ci+1cici−1 = 0α0 is not allowed in c. The
number of these codewords to be omitted is N8,1(i). Consequently, we can write gi,3(ci) as:

gi,3(ci) = N8,1(i+ 1) +

ai−1∑
j=1

N8,2.j(i+ 1)−N8,1(i). (53)

Substituting from (39) and (43) first, and then from (36) in (53) gives:

16

gi,3(ci) =
1

2
N8(i+ 1)− 3N8(i) + (ai − 1)N8(i)−

1

2
N8(i) + 3N8(i− 1)

= 4N8(i)−
1

2
N8(i− 1) + 3N8(i− 2) +

(
ai −

9

2

)
N8(i) + 3N8(i− 1)

=

(
ai −

1

2

)
N8(i) +

5

2
N8(i− 1) + 3N8(i− 2). (54)

As for the special case characterized by ci+1ci = α6β′′4 , β′′4 ∈ {α5, α6}, which we index by ic = 4, it can be shown that
the contribution gi,4(ci) has the exact same expression as that of gi,3(ci) in (54) because of the symmetry between Group 1
and Group 3 in the OS-LOCO code OSC8m.

Now, we are ready to perform Step 5 of the method. We want to combine the different contributions for all cases into one
expression, which is the OS-LOCO encoding-decoding rule.

Since we have three expressions for gi,ic(ci), we need only two merging variables: yi,1, for the case indexed by ic = 2, and
yi,2, for the cases indexed by ic ∈ {3, 4}. If the two variables are zeros, the typical case contribution is switched on. These
merging variables are set as shown in (48).

Now, we pick the merging function fmer
1 (·) = ai − yi,1 − 1

2yi,2 for N8(i). This function results in ai for the case indexed
by ic = 1, results in ai − 1 for the case indexed by ic = 2, and results in ai − 1

2 for the cases indexed by ic ∈ {3, 4}.
We also pick the merging function fmer

2 (·) = θi(1−yi,1)(3yi,2− 1
2) for N8(i−1), where θ is specified in (48) as an indicator

function of ci not being 0. This function results in − 1
2 for the case indexed by ic = 1, results in 0 for the case indexed by

ic = 2, and results in 5
2 for the cases indexed by ic ∈ {3, 4}.

We finally pick the merging function fmer
3 (·) = 3θi(1− yi,1) for N8(i− 2). This function results in 3 for the case indexed

by ic = 1, results in 0 for the case indexed by ic = 2, and results in 3 for the cases indexed by ic ∈ {3, 4}.
Observe that the values of these merging functions at different cases are quite consistent with (51), (52), and (54). Observe

also that if ci = 0, this means ai = θi = yi,1 = yi,2 = 0, which in turn means fmer
1 (·) = fmer

2 (·) = fmer
3 (·) = 0.

Using these three merging functions, the unified expression representing the contribution of a symbol ci to the codeword
index g(c) can be written as:

gi(ci) = fmer
1 (·)N8(i) + fmer

2 (·)N8(i− 1) + fmer
3 (·)N8(i− 1)

=

(
ai − yi,1 −

1

2
yi,2

)
N8(i) + θi(1− yi,1)

((
3yi,2 −

1

2

)
N8(i− 1) + 3N8(i− 2)

)
. (55)

The encoding-decoding rule of an OS-LOCO code is then:

g(c) =

m−1∑
i=0

gi(ci) =

m−1∑
i=0

[(
ai − yi,1 −

1

2
yi,2

)
N8(i) + θi(1− yi,1)

((
3yi,2 −

1

2

)
N8(i− 1) + 3N8(i− 2)

)]
,

which completes the proof.

Example 3. Consider the OS-LOCO code OSC85 (m = 5). Using (36) and (37), we get N8(−2) , 1/36, N8(−1) , 1/6,
N8(0) , 1, N8(1) , 8, N8(2) = 64, N8(3) = 510, and N8(4) = 4064. Consider the codeword c = c4c3c2c1c0 = 0αα6α5α4

(level-equivalent 02765) in OSC85. The case indexed by ic = 1 (the typical case) applies for c3 and c0, which means y3,1 =
y3,2 = y0,1 = y0,2 = 0. The case indexed by ic = 2 applies for c2, which means y2,1 = 1 and y2,2 = 0. The case indexed by
ic = 4 applies for c1, which means y1,2 = 1 and y1,1 = 0. Consequently, and using (47), we get:

g(c = 0αα6α5α4) =

[
2N8(3)−

1

2
N8(2) + 3N8(1)

]
+
[
6N8(2)

]
+

[
11

2
N8(1) +

5

2
N8(0) + 3N8(−1)

]
+

[
5N8(0)−

1

2
N8(−1) + 3N8(−2)

]
= 1012 + 384 + 47 + 5 = 1448,

which is consistent with the codeword index produced by the program we wrote to exhaustively generate and lexicographically
order all OS-LOCO codewords in OSC8m, with m = 5 here. It corresponds to the binary message 00010110101000 (s = 14).

Step 6) We bridge in OS-LOCO codes with one GF(8) symbol, i.e., one column of three bits, between each two consecutively
written codewords as follows:
• If the RMS of a codeword and the LMS of the next codeword are both α2’s, bridge with α3.
• If this is not the case, bridge with α2.

The mapping-demapping in (33) illustrates what exactly is written for bridging. This bridging is efficient in terms of low added
redundancy, and optimal in terms of maximum protection of edge symbols. Other bridging methods are also possible.

In our TDMR system, a transition is counted on the level of the 3 × 1 column after signaling. With our bridging, the
maximum number of consecutive 3× 1 columns with no transition after writing via an OS-LOCO code OSC8m is m+1. This

17

TABLE III
RATES, NORMALIZED RATES, AND ADDER SIZES OF OS-LOCO CODES OSCm FOR DIFFERENT VALUES OF m. THE CAPACITY IS 2.9944, AND THE

NORMALIZED CAPACITY IS 0.9981.

m ROS-LOCO Rn
OS-LOCO Adder size

13 2.7143 0.9048 38 bits
18 2.7895 0.9298 53 bits
23 2.8333 0.9444 68 bits
39 2.9000 0.9667 116 bits
53 2.9259 0.9753 158 bits
89 2.9556 0.9852 266 bits

Algorithm 1 Encoding OS-LOCO Codes
1: Input: Incoming stream of binary messages.
2: Use (36) and (37) to compute N8(i), i ∈ {2, 3, 4, . . . }.
3: Specify m, the smallest i in Step 2 to achieve the desired rate. Then, s = blog2N8(m)c.
4: for each incoming message b of length s do
5: Compute g(c) = decimal(b).
6: Initialize residual with g(c) and ci with z′ for i ≥ m. (z′ indicates out of codeword bounds)
7: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
8: Initialize symbol_found with 0.
9: Initialize y1,i(ai), y2,i(ai), and contrib(ai) with 0’s for ai ∈ {1, 2, . . . , 7}.

10: if (ci+2 = 0) ∧ (ci+1 = α) then
11: Set y1,i(ai) = 1 for ai ∈ {1, 2, . . . , 7}.
12: end if
13: if (ci+1 = 0) then
14: Set y2,i(ai) = 1 for ai ∈ {3, 4, . . . , 7}.
15: elseif (ci+1 = α6) then
16: Set y2,i(ai) = 1 for ai ∈ {6, 7}.
17: end if
18: for ai ∈ {1, 2, . . . 7} do
19: contrib(ai) =

(
ai − y1,i(ai)− 1

2y2,i(ai)
)
N8(i) + (1− y1,i(ai))

[(
3y2,i(ai)− 1

2

)
N8(i− 1) + 3N8(i− 2)

]
.

20: end for
21: if residual ≥ contrib(7) then
22: Encode ci = α6 and set symbol_found = 1. (level ai = 7)
23: residual← residual− contrib(7).
24: else
25: for ai ∈ {6, 5, . . . , 1} do
26: if contrib(ai) ≤ residual < contrib(ai + 1) then
27: Encode ci = L−1(ai) and set symbol_found = 1. (level ai = L(ci))
28: residual← residual− contrib(ai).
29: break. (exit current loop)
30: end if
31: end for
32: end if
33: if symbol_found = 0 then
34: Encode ci = 0. (level ai = 0)
35: end if
36: if (not first codeword) ∧ (i = m− 1) then
37: Bridge with either α2 or α3 before cm−1 depending on the RMS of the previous codeword and cm−1.
38: end if
39: end for
40: end for
41: Output: Outgoing stream of 8-ary OS-LOCO codewords. (to be written on 3 adjacent down tracks in the TDMR device

after binary conversion and signaling)

18

Algorithm 2 Decoding OS-LOCO Codes
1: Inputs: Incoming stream of 8-ary OS-LOCO codewords, in addition to m and s. (stream after reading from 3 adjacent

down tracks in the TDMR device and 8-ary conversion)
2: Use (36) and (37) to compute N8(i), i ∈ {2, 3, 4, . . . ,m− 1}.
3: for each incoming codeword c of length m do
4: Initialize g(c) with 0 and ci with z′ for i ≥ m. (z′ indicates out of codeword bounds)
5: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
6: Initialize y1,i, y2,i, and θi with 0’s.
7: if (ci+2 = 0) ∧ (ci+1 = α) ∧ (ci ∈ {1, α, . . . , α6}) then
8: Set y1,i = 1.
9: end if

10: if (ci+1 = 0) ∧ (ci ∈ {α2, α3, . . . , α6}) then
11: Set y2,i = 1.
12: elseif (ci+1 = α6) ∧ (ci ∈ {α5, α6}) then
13: Set y2,i = 1.
14: end if
15: if ci 6= 0 then (same as ai 6= 0)
16: Set θi = 1.
17: end if
18: Set ai = L(ci).
19: g(c)← g(c) +

(
ai − y1,i − 1

2y2,i
)
N8(i) + θi(1− y1,i)

[(
3y2,i − 1

2

)
N8(i− 1) + 3N8(i− 2)

]
.

20: end for
21: Compute b = binary(g(c)), which has length s.
22: Ignore the next bridging symbol.
23: end for
24: Output: Outgoing stream of binary messages.

finite maximum is achieved without removing any codewords from the OS-LOCO code for self-clocking. Thus, an OS-LOCO
code associated with the aforementioned bridging is inherently self-clocked.

Given our bridging method, the rate, in input bits per coded symbol, and the normalized rate of an OS-LOCO code OSC8m
are:

ROS-LOCO =
s

m+ 1
=
bN8(m)c
m+ 1

, Rn
OS-LOCO =

1

3
ROS-LOCO =

bN8(m)c
3(m+ 1)

. (56)

It is easy to deduce that OS-LOCO codes are capacity-achieving. To demonstrate that, Table III gives the rates and normalized
rates of OS-LOCO codes with different lengths. Table III shows that the rates of OS-LOCO codes are close to capacity even
at moderate lengths. The table also shows that OS-LOCO codes incur very limited redundancy.

Next, we introduce the encoding algorithm of OS-LOCO codes, which is Algorithm 1, and the decoding algorithm of
OS-LOCO codes, which is Algorithm 2.

To reduce runtime processing, all the terms containing a factor multiplied by a cardinality in Algorithm 1 and Algorithm 2
are computed offline and stored in memory, for all possible factors except factors of the form 2 raised to some power (negative
or positive). The same applies for all same-symbol operations. Thus, the main runtime operations in both algorithms are
additions, subtractions, and comparisons, which are all performed by adders. That is the reason why the adder size governs
the complexity of the encoding and decoding procedures, demonstrating simplicity (see also Table III). Observe that both
complexity and storage overhead can be further reduced via arithmetic tricks [18]. These algorithms complete the process of
revealing the secret arithmetic of allowed and forbidden patterns in an OS-LOCO code.

Remark 3. While designing OS-LOCO codes, we opted to use simple bridging and not to use the bridging symbol/column to
encode information. It is important to note that it is possible to bridge for OS-LOCO codes with one symbol out of the set
{1, α2, α3, α5} that is picked based on two input bits. Thus, the following notable normalized rate gain can be achieved:

R
n
OS-LOCO −Rn

OS-LOCO =
2

3(m+ 1)
. (57)

Some changes for self-clocking and modifications to the encoding-decoding algorithms will be required.

B. Optimal Plus LOCO Codes

We now present our optimal plus LOCO (OP-LOCO) codes, which are codes preventing the PIS patterns shown in Fig. 2
within each group of three adjacent down tracks. From (33), these 32 PIS patterns map to the 32 GF(8) patterns β1αβ1, for all

19

𝐹1 𝐹2

𝐹3

0,1, 𝛼3, 𝛼4 𝛼, 𝛼2, 𝛼5, 𝛼6

𝛼

𝛼4

𝐹4 𝛼, 𝛼2, 𝛼5, 𝛼6

𝛼2, 𝛼5, 𝛼6

0,1, 𝛼3, 𝛼4

0,1, 𝛼3

Fig. 3. An FSTD representing an infinite OP8-constrained sequence (patterns in OP8 are prevented).

β1, β1 ∈ {0, 1, α3, α4}, and β2α
4β2, for all β2, β2 ∈ {α, α2, α5, α6}, which have the level-equivalent patterns L(β1)2L(β1),

for all L(β1),L(β1) ∈ {0, 1, 4, 5}, and L(β2)5L(β2), for all L(β2),L(β2) ∈ {2, 3, 6, 7}. The FSTD of an infinite 8-ary
constrained sequence in which these 32 patterns are prevented is in Fig. 3. The corresponding adjacency matrix is:

F =

4 3 0 1
3 4 1 0
4 0 0 0
0 4 0 0

 .
The capacity C, in input bits per coded symbol, and the normalized capacity Cn accordingly are:

C = log2(λmax(F)) = log2 7.5311 = 2.9129 and Cn =
1

3
C = 0.9710, (58)

where λmax(F) is the maximum real positive eigenvalue of F [1], [2].
Denote an OP-LOCO code of length m by OPC8m. The definition of the code is exactly the definition of a generic LOCO

code, which is Definition 1, with q = 8, Cqm = OPC8m, and T given by:

T = OP8 , {β1αβ1, β2α
4β2, ∀β1, β1 ∈ {0, 1, α3, α4} and ∀β2, β2 ∈ {α, α2, α5, α6}}. (59)

Both c in Cqm = OPC8m and g(c) are used as they were in Section II. The cardinality of OPC8m is Nq(m) = N8(m). Again, we
could not provide a table as an example listing all the codewords of specific codes because there are way too many codewords
for any length m ≥ 4. However, we will provide an example illustrating the encoding-decoding rule of the code.

Now, we will apply the steps of the general method to find out how to encode and decode OP-LOCO codes using a simple
encoding-decoding rule.

Step 1) Using the patterns in OP8, we determine initial groups of OPC8m as shown below. Observe that it is more convenient
here to perform some group merging during the procedure.
• For the patterns 0αβ1, β1 ∈ {0, 1, α3, α4}, there is an initial group having all the codewords starting with 0αβ2, β2 ∈
{α, α2, α5, α6}, from the left. There are seven more initial groups having all the codewords starting with 0β3, a group
for each β3 ∈ GF(8) \ {α}, from the left. There are seven more initial groups having all the codewords starting with
non-zero symbols, a group for each element in GF(8) \ {0}, from the left. We do the same for the patterns 1αβ1, the
patterns α3αβ1, and the patterns α4αβ1, β1 ∈ {0, 1, α3, α4}.

• For the patterns α6α4β2, β2 ∈ {α, α2, α5, α6}, there is an initial group having all the codewords starting with α6α4β1,
β1 ∈ {0, 1, α3, α4}, from the left. There are seven more initial groups having all the codewords starting with α6β4, a
group for each β4 ∈ GF(8) \ {α4}, from the left. There are seven more initial groups having all the codewords starting
with non-α6 symbols, a group for each element in GF(8) \ {α6}, from the left. We do the same for the patterns αα4β2,
the patterns α2α4β2, and the patterns α5α4β2, β2 ∈ {α, α2, α5, α6}.

After operating on these initial groups, we end up with eight (final) groups covering all the OP-LOCO codewords in OPC8m:
Group 1, which contains all the codewords starting with 0 from the left, Group 2, which contains all the codewords starting
with 1 from the left, Group 3, which contains all the codewords starting with α from the left, Group 4, which contains all the
codewords starting with α2 from the left, Group 5, which contains all the codewords starting with α3 from the left, Group 6,

20

which contains all the codewords starting with α4 from the left, Group 7, which contains all the codewords starting with α5

from the left, and Group 8, which contains all the codewords starting with α6 from the left. The groups are defined for m ≥ 2.
Group 1 is further partitioned into three subgroups: Subgroup 1.1, which contains all the codewords starting with 0β′3,

β′3 ∈ {0, 1}, from the left, Subgroup 1.2, which contains all the codewords starting with 0αβ2 from the left, and Subgroup 1.3,
which contains all the codewords starting with 0β′′3 , β′′3 ∈ {α2, α3, . . . , α6}, from the left. The same partitioning to subgroups
applies to Group 2, Group 5, and Group 6.

Group 8 is further partitioned into three subgroups: Subgroup 8.1, which contains all the codewords starting with α6β′4,
β′4 ∈ {0, 1, . . . , α3}, from the left, Subgroup 8.2, which contains all the codewords starting with α6α4β1 from the left, and
Subgroup 8.3, which contains all the codewords starting with α6β′′4 , β′′4 ∈ {α5, α6}, from the left. The same partitioning to
subgroups applies to Group 3, Group 4, and Group 7.

Step 2) Theorem 3 gives the cardinality of an OP-LOCO code.

Theorem 3. The cardinality of an OP-LOCO code OPC8m is given by:

N8(m) = 7N8(m− 1) + 4N8(m− 2), m ≥ 2, (60)

where the defined cardinalities are:
N8(0) , 2 and N8(1) , 8. (61)

Proof: We note that an OP-LOCO code OPC8m is symmetric, i.e., the cardinality of all eight groups in the code is the
same, because of the nature of forbidden patterns in OP8. Thus, we only derive a recursive cardinality formula for Group 1
of OPC8m, then multiply by 8. We work on Group 1 of OPC8m.

As for Subgroup 1.1, each codeword starting with 0β′3 from the left in this subgroup corresponds to a codeword in OPC8m−1
that starts with the same β′3 from the left such that they share the remaining m− 2 RMSs. This correspondence is bijective.
Since β′3 is in {0, 1} and the code OPC8m−1 is also symmetric, the cardinality of Subgroup 1.1 is:

N8,1.1(m) =
2

8
N8(m− 1) =

1

4
N8(m− 1). (62)

As for Subgroup 1.2, each codeword starting with 0αβ2 from the left in this subgroup corresponds to a codeword in OPC8m−2
that starts with the same β2 from the left such that they share the remaining m− 3 RMSs. This correspondence is bijective.
Since β2 is in {α, α2, α5, α6} and the code OPC8m−2 is also symmetric, the cardinality of Subgroup 1.2 is:

N8,1.2(m) =
4

8
N8(m− 2) =

1

2
N8(m− 2). (63)

As for Subgroup 1.3, each codeword starting with 0β′′3 from the left in this subgroup corresponds to a codeword in OPC8m−1
that starts with the same β′′3 from the left such that they share the remaining m− 2 RMSs. This correspondence is bijective.
Since β′′3 is in {α2, α3, . . . , α6} and the code OPC8m−1 is also symmetric, the cardinality of Subgroup 1.3 is:

N8,1.3(m) =
5

8
N8(m− 1). (64)

Using (62), (63), and (64), the cardinality of Group 1 in OPC8m then is:

N8,1(m) =

3∑
i=1

N8,1.i(m) =
7

8
N8(m− 1) +

1

2
N8(m− 2). (65)

From (65) and using the symmetry of the code, the cardinality of OPC8m is:

N8(m) =

8∑
i=1

N8,i(m) = 8N8,1(m) = 7N8(m− 1) + 4N8(m− 2), m ≥ 2.

As for the defined cardinalities, it is clear that N8(1) , 8. We also know that N8(2) = 82 = 64 since the length of a PIS
pattern is 3, i.e., no sequences to eliminate at that length. Consequently, and using the proved (60),

64 = 7× 8 + 4N8(0) =⇒ N8(0) , 2. (66)

Note that we can also compute N8(−1). However, it will never be used neither to compute cardinalities nor in the encoding
and decoding procedures as we shall see shortly. Computing the defined cardinalities completes the proof.

Step 3) We now specify the special cases. Using the patterns in OP8, we determine initial special cases for the OP-LOCO
code OPC8m as shown below. Observe that it is more convenient here to also perform some special case processing during the
procedure as we did for the groups.

21

• For the patterns 0αβ1, β1 ∈ {0, 1, α3, α4}, one initial special case is ci+2ci+1ci = 0αβ′2, β′2 ∈ {α, α2}. Another initial
special case is ci+2ci+1ci = 0αβ′′2 , β′2 ∈ {α5, α6}. A third initial special case is ci+1ci = 0β′′3 , β′′3 ∈ {α2, α3, . . . , α6}.
We do the same for the patterns 1αβ1, the patterns α3αβ1, and the patterns α4αβ1, β1 ∈ {0, 1, α3, α4}.

• For the patterns α6α4β2, β2 ∈ {α, α2, α5, α6}, one initial special case is ci+2ci+1ci = α6α4β′′1 , β′′1 ∈ {α3, α4}. Another
initial special case is ci+1ci = α6β′′4 , β′′4 ∈ {α5, α6}. We do the same for the patterns αα4β2, the patterns α2α4β2, and
the patterns α5α4β2, β2 ∈ {α, α2, α5, α6}.

After further processing, we end up with six (final) cases for ci based on ci and its preceding symbols: a special case for
ci+2ci+1ci = β1αβ

′
2, a special case for ci+2ci+1ci = β1αβ

′′
2 , a special case for ci+1ci = β1β

′′
3 , a special case for ci+2ci+1ci =

β2α
4β′′1 , a special case for ci+1ci = β2β

′′
4 , and the typical case. Recall that β1 ∈ {0, 1, α3, α4} and β2 ∈ {α, α2, α5, α6},

while the rest of variables are specified above. The typical case is simply the case when neither of the five special cases is
enabled and ci 6= 0. Observe that symmetry here enables merging special cases via their LMS, ci+2 or ci+1. As usual, the
priority of a case increases as its sequence length increases.

Steps 4 and 5) Theorem 4 gives the encoding-decoding rule of an OP-LOCO code OPC8m. Recall that ai , L(ci).

Theorem 4. Let c be an OP-LOCO codeword in OPC8m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[
1

8
(ai − 2yi,1 − 4yi,2 − yi,3)N8(i+ 1) +

1

2
yi,3N8(i)

]
, (67)

where yi,1, yi,2, and yi,3 are specified as follows:

yi,1 = 1 if ci+2ci+1ci = β1αβ
′
2, β1 ∈ {0, 1, α3, α4}, β′2 ∈ {α, α2}, else,

yi,1 = 1 if ci+2ci+1ci = β2α
4β′′1 , β2 ∈ {α, α2, α5, α6}, β′′1 ∈ {α3, α4}, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+2ci+1ci = β1αβ
′′
2 , β1 ∈ {0, 1, α3, α4}, β′′2 ∈ {α5, α6}, and yi,2 = 0 otherwise,

yi,3 = 1 if ci+1ci = β1β
′′
3 , β1 ∈ {0, 1, α3, α4}, β′′3 ∈ {α2, α3, . . . , α6} s.t. yi,1 = yi,2 = 0, else,

yi,3 = 1 if ci+1ci = β2β
′′
4 , β2 ∈ {α, α2, α5, α6}, β′′4 ∈ {α5, α6} s.t. yi,1 = yi,2 = 0, and yi,3 = 0 otherwise. (68)

Proof: First, we perform Step 4 of the method. We aim at computing the contribution of each OP-LOCO codeword symbol
ci to the codeword index g(c) for the six final cases, i.e., gi,ic(ci) for all ic.

We start off with the typical case, which we index by ic = 1. The contribution of ci to g(c) in this case is the number of
codewords in OPC8m starting with cm−1cm−2 . . . ci+1c

′
i from the left such that c′i < ci according to the lexicographic ordering

definition. As usual, the typical case is the unrestricted case. Thus, this number is the number of codewords in OPC8i+1 starting
with c′i, for all c′i < ci, from the left. Consequently, and using symmetry, we can write gi,1(ci) as:

gi,1(ci) =

ai∑
j=1

N8,j(i+ 1) = aiN8,1(i+ 1) =
1

8
aiN8(i+ 1). (69)

Next, we study the special case characterized by ci+2ci+1ci = β1αβ
′
2, β1 ∈ {0, 1, α3, α4} and β′2 ∈ {α, α2}, which

we index by ic = 2. The contribution of ci to g(c) in this case is the number of codewords in OPC8m starting with
cm−1cm−2 . . . ci+3β1αc

′
i from the left such that c′i < ci = β′2 according to the lexicographic ordering definition. This number

is the number of codewords in OPC8i+1 starting with c′i, for all c′i < ci such that c′i /∈ {0, 1}, from the left. Observe that the
codewords starting with 0 or 1 from the left in OPC8i+1 must be omitted from the count since β1α0 and β1α1 are forbidden
patterns (PIS patterns). Consequently, and using symmetry, we can derive gi,2(ci) as follows:

gi,2(ci) =

ai−2∑
j=1

N8,j(i+ 1) =
1

8
(ai − 2)N8(i+ 1). (70)

Next, we study the special case characterized by ci+2ci+1ci = β1αβ
′′
2 , β1 ∈ {0, 1, α3, α4} and β′′2 ∈ {α5, α6}, which

we index by ic = 3. The contribution of ci to g(c) in this case is the number of codewords in OPC8m starting with
cm−1cm−2 . . . ci+3β1αc

′
i from the left such that c′i < ci = β′′2 according to the lexicographic ordering definition. This number

is the number of codewords in OPC8i+1 starting with c′i, for all c′i < ci such that c′i /∈ {0, 1, α3, α4}, from the left. Observe
that the codewords starting with 0, 1, α3, or α4 from the left in OPC8i+1 must be omitted from the count since β1α0, β1α1,
β1αα

3, and β1αα
4 are forbidden patterns (PIS patterns). Consequently, and using symmetry, we can derive gi,3(ci) as follows:

gi,3(ci) =

ai−4∑
j=1

N8,j(i+ 1) =
1

8
(ai − 4)N8(i+ 1). (71)

22

Next, we study the special case characterized by ci+1ci = β1β
′′
3 , β1 ∈ {0, 1, α3, α4} and β′′3 ∈ {α2, α3, . . . , α6}, which

we index by ic = 4. The contribution of ci to g(c) in this case is the number of codewords in OPC8m starting with
cm−1cm−2 . . . ci+2β1c

′
i from the left such that c′i < ci = β′′3 according to the lexicographic ordering definition. Looking from

the right, these codewords correspond to codewords in OPC8i+1. We divide such codewords in OPC8i+1 into two portions. The
first portion has the codewords in OPC8i+1 starting with c′i, for all c′i < ci such that c′i 6= α, from the left. Let the number of
codewords in this portion be g′i,4(ci). Consequently, and using symmetry, we can derive g′i,4(ci) as follows:

g′i,4(ci) =

ai−1∑
j=1

N8,j(i+ 1) =
1

8
(ai − 1)N8(i+ 1). (72)

The second portion has the codewords in OPC8i+1 starting with c′i = α from the left. Let the number of codewords in this
portion be g′′i,4(ci). From the set of forbidden patterns OP8, we know that β1α in an OP-LOCO codeword has to be followed
by β2 ∈ {α, α2, α5, α6}. Recall the codeword correspondence in the proof of Theorem 3. Consequently, and aided by (63),
we can derive g′′i,4(ci) as follows:

g′′i,4(ci) =
4

8
N8(i) =

1

2
N8(i). (73)

Using (72) and (73), we get:

gi,4(ci) = g′i,4(ci) + g′′i,4(ci) =
1

8
(ai − 1)N8(i+ 1) +

1

2
N8(i). (74)

As for the special case characterized by ci+2ci+1ci = β2α
4β′′1 , β2 ∈ {α, α2, α5, α6} and β′′1 ∈ {α3, α4}, which we index

by ic = 5, it can be shown that the contribution gi,5(ci) has the exact same expression as that of gi,2(ci) in (70) because of
the symmetry of the OP-LOCO code OPC8m. As for the special case characterized by ci+1ci = β2β

′′
4 , β2 ∈ {α, α2, α5, α6}

and β′′4 ∈ {α5, α6}, which we index by ic = 6, it can be shown that the contribution gi,6(ci) has the exact same expression
as that of gi,4(ci) in (74) because of the symmetry of the OP-LOCO code OPC8m.

Now, we are ready to perform Step 5 of the method. We want to combine the different contributions for all cases into one
expression, which is the OP-LOCO encoding-decoding rule.

Since we have four expressions for gi,ic(ci), we need only three merging variables: yi,1, for the cases indexed by ic ∈ {2, 5},
yi,2, for the case indexed by ic = 3, and yi,3, for the cases indexed by ic ∈ {4, 6} (lower priority). If the three variables are
zeros, the typical case contribution is switched on. These merging variables are set as shown in (68).

Now, we pick the merging function fmer
0 (·) = 1

8 (ai− 2yi,1− 4yi,2− yi,3) for N8(i+1). This function results in 1
8ai for the

case indexed by ic = 1, results in 1
8 (ai − 2) for the cases indexed by ic ∈ {2, 5}, results in 1

8 (ai − 4) for the case indexed by
ic = 3, and results in 1

8 (ai − 1) for the cases indexed by ic ∈ {4, 6}.
We also pick the merging function fmer

1 (·) = 1
2yi,3 for N8(i). This function results in 0 for the cases indexed by ic ∈

{1, 2, 3, 5}, and results in 1
2 for the cases indexed by ic ∈ {4, 6}.

Observe that the values of these merging functions at different cases are quite consistent with (69), (70), (71), and (74).
Observe also that if ci = 0, this means ai = yi,1 = yi,2 = yi,3 = 0, which in turn means fmer

0 (·) = fmer
1 (·) = 0.

Using these two merging functions, the unified expression representing the contribution of a symbol ci to the codeword
index g(c) can be written as:

gi(ci) = fmer
0 (·)N8(i+ 1) + fmer

1 (·)N8(i)

=
1

8
(ai − 2yi,1 − 4yi,2 − yi,3)N8(i+ 1) +

1

2
yi,3N8(i). (75)

The encoding-decoding rule of an OP-LOCO code is then:

g(c) =

m−1∑
i=0

gi(ci) =

m−1∑
i=0

[
1

8
(ai − 2yi,1 − 4yi,2 − yi,3)N8(i+ 1) +

1

2
yi,3N8(i)

]
,

which completes the proof.

Example 4. Consider the OP-LOCO code OPC85 (m = 5). Using (60) and (61), we get N8(0) , 2, N8(1) , 8, N8(2) = 64,
N8(3) = 480, N8(4) = 3616, and N8(5) = 27232. Consider the codeword c = c4c3c2c1c0 = α3α3αα5α6 (level-equivalent
44267) in OPC85. The case indexed by ic = 1 (the typical case) applies for c4 and c2, which means y4,1 = y4,2 = y4,3 =
y2,1 = y2,2 = y2,3 = 0. The case indexed by ic = 4 applies for c3, which means y3,3 = 1 and y3,1 = y3,2 = 0. The case
indexed by ic = 3 applies for c1, which means y1,2 = 1 and y1,1 = y1,3 = 0. The case indexed by ic = 6 applies for c0, which
means y0,3 = 1 and y0,1 = y0,2 = 0. Consequently, and using (67), we get:

23

TABLE IV
RATES, NORMALIZED RATES, AND ADDER SIZES OF OP-LOCO CODES OPCm FOR DIFFERENT VALUES OF m. THE CAPACITY IS 2.9129, AND THE

NORMALIZED CAPACITY IS 0.9710.

m ROP-LOCO Rn
OP-LOCO Adder size

13 2.7143 0.9048 38 bits
18 2.7368 0.9123 52 bits
23 2.7917 0.9306 67 bits
39 2.8250 0.9417 113 bits
53 2.8519 0.9506 154 bits
89 2.8778 0.9593 259 bits

Algorithm 3 Encoding OP-LOCO Codes
1: Input: Incoming stream of binary messages.
2: Use (60) and (61) to compute N8(i), i ∈ {2, 3, 4, . . . }.
3: Specify m, the smallest i in Step 2 to achieve the desired rate. Then, s = blog2N8(m)c.
4: for each incoming message b of length s do
5: Compute g(c) = decimal(b).
6: Initialize residual with g(c) and ci with z′ for i ≥ m. (z′ indicates out of codeword bounds)
7: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
8: Initialize symbol_found with 0.
9: Initialize y1,i(ai), y2,i(ai), y3,i(ai), and contrib(ai) with 0’s for ai ∈ {1, 2, . . . , 7}.

10: if (ci+2 ∈ {0, 1, α3, α4}) ∧ (ci+1 = α) then
11: Set y1,i(ai) = 1 for ai ∈ {2, 3}, and set y2,i(ai) = 1 for ai ∈ {6, 7}.
12: elseif (ci+2 ∈ {α, α2, α5, α6}) ∧ (ci+1 = α4) then
13: Set y1,i(ai) = 1 for ai ∈ {4, 5}.
14: end if
15: if (ci+1 ∈ {0, 1, α3, α4}) then
16: Set y3,i(ai) = 1− (y1,i(ai) + y2,i(ai)) for ai ∈ {3, 4, . . . , 7}.
17: elseif (ci+1 ∈ {α, α2, α5, α6}) then
18: Set y3,i(ai) = 1− (y1,i(ai) + y2,i(ai)) for ai ∈ {6, 7}.
19: end if
20: for ai ∈ {1, 2, . . . 7} do
21: contrib(ai) = 1

8 (ai − 2yi,1(ai)− 4yi,2(ai)− yi,3(ai))N8(i+ 1) + 1
2yi,3(ai)N8(i).

22: end for
23: if residual ≥ contrib(7) then
24: Encode ci = α6 and set symbol_found = 1. (level ai = 7)
25: residual← residual− contrib(7).
26: else
27: for ai ∈ {6, 5, . . . , 1} do
28: if contrib(ai) ≤ residual < contrib(ai + 1) then
29: Encode ci = L−1(ai) and set symbol_found = 1. (level ai = L(ci))
30: residual← residual− contrib(ai).
31: break. (exit current loop)
32: end if
33: end for
34: end if
35: if symbol_found = 0 then
36: Encode ci = 0. (level ai = 0)
37: end if
38: if (not first codeword) ∧ (i = m− 2) then
39: Bridge with α2, α3, or z before cm−1 depending on the two RMSs of the previous codeword and cm−1cm−2.
40: end if
41: end for
42: end for
43: Output: Outgoing stream of 8-ary OP-LOCO codewords. (to be written on 3 adjacent down tracks in the TDMR device

after binary conversion and signaling)

24

Algorithm 4 Decoding OP-LOCO Codes
1: Inputs: Incoming stream of 8-ary OP-LOCO codewords, in addition to m and s. (stream after reading from 3 adjacent

down tracks in the TDMR device and 8-ary conversion)
2: Use (60) and (61) to compute N8(i), i ∈ {2, 3, 4, . . . ,m}.
3: for each incoming codeword c of length m do
4: Initialize g(c) with 0 and ci with z′ for i ≥ m. (z′ indicates out of codeword bounds)
5: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
6: Initialize y1,i, y2,i, and y3,i with 0’s.
7: if (ci+2 ∈ {0, 1, α3, α4}) ∧ (ci+1 = α) then
8: if ci ∈ {α, α2} then
9: Set y1,i = 1

10: elseif ci ∈ {α5, α6} then
11: Set y2,i = 1
12: end if
13: elseif (ci+2 ∈ {α, α2, α5, α6}) ∧ (ci+1 = α4) ∧ (ci = {α3, α4}) then
14: Set y1,i = 1.
15: end if
16: if (ci+1 ∈ {0, 1, α3, α4}) ∧ (ci = {α2, α3, . . . , α6}) then
17: Set y3,i = 1− (y1,i + y2,i).
18: elseif (ci+1 ∈ {α, α2, α5, α6}) ∧ (ci = {α5, α6}) then
19: Set y3,i = 1− (y1,i + y2,i).
20: end if
21: Set ai = L(ci).
22: g(c)← g(c) + 1

8 (ai − 2yi,1 − 4yi,2 − yi,3)N8(i+ 1) + 1
2yi,3N8(i).

23: end for
24: Compute b = binary(g(c)), which has length s.
25: Ignore the next bridging symbol.
26: end for
27: Output: Outgoing stream of binary messages.

g(c = α3α3αα5α6) =

[
1

8
× 4N8(5)

]
+

[
1

8
× 3N8(4) +

1

2
N8(3)

]
+

[
1

8
× 2N8(3)

]
+

[
1

8
× 2N8(2)

]
+

[
1

8
× 6N8(1) +

1

2
N8(0)

]
= 13616 + 1596 + 120 + 16 + 7 = 15355,

which is consistent with the codeword index produced by the program we wrote to exhaustively generate and lexicographically
order all OP-LOCO codewords in OPC8m, with m = 5 here. It corresponds to the binary message 11101111111011 (s = 14).

Step 6) Recall that β1 is in {0, 1, α3, α4}, β2 is in {α, α2, α5, α6}, β3 is in GF(8) \ {α}, and β4 is in GF(8) \ {α4}. We
bridge in OP-LOCO codes with one GF(8) symbol, i.e., one column of three bits, or one no-writing symbol z, i.e., one column
of three unmagnetized grid entries, between each two consecutively written codewords as shown below. We use the notation
“RMS(s)− LMS(s)” to represent the RMS(s) of a codeword and the LMS(s) of the next codeword for brevity.

• If the RMSs− LMSs are β1α− α4β2, bridge with one no-writing symbol z.
• Else if the RMS(s)− LMS(s) are β1α− α4β1, α− β4, β2α− α4β1, or α3 − α3, bridge with α2.
• Else if the RMS(s)− LMS(s) are β2α− α4β2, α4 − β3, or α2 − α2, bridge with α3.
• For any other scenario, bridge with α2.

Obviously, the second item above in italic could be removed as it is included it in the last item. However, we keep it because of
the importance of the stated RMS(s)−LMS(s). The mapping-demapping in (33) illustrates what exactly is written for bridging.
This bridging is optimal in terms of minimum added redundancy, and it offers near-maximum protection of edge symbols.
Other bridging methods are also possible.

Recall that a transition is counted on the level of the 3×1 column after signaling. With our bridging, the maximum number
of consecutive 3× 1 columns with no transition after writing via an OP-LOCO code OPC8m is m+ 1. This finite maximum
is achieved without removing any codewords from the OP-LOCO code for self-clocking. Thus, an OP-LOCO code associated
with the aforementioned bridging is inherently self-clocked.

25

Given our bridging method, the rate, in input bits per coded symbol, and the normalized rate of an OP-LOCO code OPC8m
are:

ROP-LOCO =
s

m+ 1
=
bN8(m)c
m+ 1

, Rn
OP-LOCO =

1

3
ROS-LOCO =

bN8(m)c
3(m+ 1)

. (76)

It is easy to deduce that OP-LOCO codes are capacity-achieving. To demonstrate that, Table IV gives the rates and normalized
rates of OP-LOCO codes with different lengths. Table IV shows that the rates of OP-LOCO codes are close to capacity even
at moderate lengths. The table also shows that OP-LOCO codes incur very limited redundancy, albeit a little bit more than the
redundancy incurred by OS-LOCO codes.

Next, we introduce the encoding algorithm of OP-LOCO codes, which is Algorithm 3, and the decoding algorithm of
OP-LOCO codes, which is Algorithm 4.

To reduce runtime processing, all the terms containing a factor multiplied by a cardinality in Algorithm 3 and Algorithm 4
are computed offline and stored in memory, for all possible factors except factors of the form 2 raised to some power
(negative or positive). The same applies for all same-symbol operations. Observe that a multiplication by 2−η (resp., 2η),
η ∈ {1, 2, 3, . . . }, is executed as a right-shift (resp., left-shift) by η. Thus, the main runtime operations in both algorithms
are also additions, subtractions, and comparisons, which are all performed by adders. That is the reason why the adder size
governs the complexity of the encoding and decoding procedures, demonstrating simplicity (see also Table IV). Observe that
both complexity and storage overhead can be further reduced via arithmetic tricks [18]. These algorithms complete the process
of revealing the secret arithmetic of allowed and forbidden patterns in an OP-LOCO code.

V. PERFORMANCE GAINS IN TDMR

In this section, we provide experimental results demonstrating the performance gains achieved by our optimal LOCO codes
described in Section IV in a practical TDMR system. We start off with defining some TDMR channel parameters.
• TW or track width is the width of the bit in the cross-track direction, i.e., the width of the down track.
• BP or bit period is the width of the bit in the down-track direction, i.e., the width of the cross track.
• PW50,CT is the TD read-head impulse response duration at half the amplitude in the cross-track direction.
• PW50,DT is the TD read-head impulse response duration at half the amplitude in the down-track direction.
• DTD is the TD channel density [21], which is given by:

DTD =
PW50,CT × PW50,DT

TW ×BP
. (77)

Increasing the TD channel density exacerbates TD interference, which is interference in both down and cross track
directions, resulting in degraded system performance.

• The TD channel (read-head) impulse response is a 3 × 3 matrix, which represents the intersection of 3 adjacent down
tracks in the same group with 3 consecutive cross tracks.

Next, we discuss our TDMR system setup. We have the writing setup, the channel setup, and the reading setup.
Writing setup: We generate random input messages. Then, we use Algorithm 1 or Algorithm 3 to encode each message b

into the corresponding 8-ary OS-LOCO or OP-LOCO codeword c, respectively. Each GF(8) symbol in the LOCO codeword
is converted into a 3 × 1 column of binary bits according to the mapping-demapping in (33). Consequently, a codeword of
length m will be written over a grid of size 3×m spanning 3 down tracks in the TDMR system. A bridging column separates
each two consecutive LOCO codewords. Before writing, level-based signaling is applied, which converts each 0 into −1, each
1 into +1, and each z into no magnetization or zero (handled in a special way). Upon writing, these −1 and +1 values will
be updated to values depending on TW and BP .

We use the following three LOCO codes in the simulations (see also Tables III and IV):
• The OS-LOCO code OSC823 with codeword length m = 23, message length s = 68, and normalized rate Rn

LOCO = 0.9444.4

• The OP-LOCO code OPC818 with codeword length m = 18, message length s = 52, and normalized rate Rn
LOCO = 0.9123.

• The OP-LOCO code OPC823 with codeword length m = 23, message length s = 67, and normalized rate Rn
LOCO = 0.9306.

In order to keep the energy per input message bit in the coded setting the same as it is in the uncoded setting, we obtain TW
and BP of the coded setting via scaling both TW and BP of the uncoded setting by

√
Rn

LOCO, respectively.
Channel setup: Our baseline channel model is the TDMR model in [24], which is a Voronoi model. Here, we only consider

media noise/interference (electronic noise is not included). We modify this model such that it is suitable for a wide read head
that reads data from 3 adjacent down tracks simultaneously. In particular, in each group of 3 adjacent down tracks, the upper
and lower tracks in our model have additional protection from interference in the cross track direction. Thus, only the middle
down track in each group suffers from notable interference from the two surrounding tracks [20], [28].

In the simulations, we sweep the TD channel density DTD given in (77). This is performed as follows. The parameters
PW50,CT and PW50,DT are fixed at 20.00 nm and 14.00 nm, respectively. The parameter TW is swept between 17.25 nm and

4We use a unified notation, Rn
LOCO, to express the normalized rate of an OS-LOCO or an OP-LOCO code for simplicity.

26

TABLE V
BIT ERROR STATISTICS OF THE UNCODED SETTING IN A TDMR SYSTEM AT DIFFERENT TD CHANNEL DENSITIES

TD density BER SIS errors PIS errors
1.2346 1.95× 10−2 4.6% 44.9%
1.1080 1.00× 10−2 5.6% 53.7%
1.0000 4.00× 10−3 7.8% 63.9%
0.9290 1.90× 10−3 9.3% 76.0%
0.8653 8.02× 10−4 10.0% 84.4%
0.8264 4.43× 10−4 16.5% 87.2%
0.7901 2.29× 10−4 20.2% 91.7%
0.7561 1.17× 10−4 18.9% 92.3%
0.7243 4.23× 10−5 21.4% 93.1%

24.50 nm, while the parameter BP is swept between 12.08 nm and 17.15 nm. We keep the ratio TW/BP the same at all
sweep points according to:

TW

BP
=
PW50,CT

PW50,DT
=

10

7
. (78)

Thus, and using (77), the TD density DTD is swept between 1.3437 and 0.6664 as shown in Table V, Fig. 4, Fig. 5, and the
following discussions. Observe that the range of the TD density simulated will be notably higher in a TDMR system with
equalization, detection, and most importantly, LDPC coding customized for magnetic recording [8], [9], [21], [39].

The input to the channel is 3 ×m grids of coded bits with their bridging columns after signaling is applied. The output
from the channel is these 3 × m grids with the bridging columns after Voronoi media noise/interference is applied, taking
into account the aforementioned protection of the upper and lower tracks in each group of 3 down tracks. Mathematically, the
channel effect is equivalent to applying the TD convolution between the 3 ×m input grids with their bridging columns and
the 3× 3 read-head impulse response with media noise incorporated.

Reading setup: For each 3 ×m grid out of the channel, where bridging columns are ignored, hard decision is performed
based on the value at each entry; if the value is less than or equal to zero, the bit is read as 0, while if the value is greater than
zero, the bit is read as 1. Each column of 3 bits is then converted into a GF(8) symbol according to the mapping-demapping
in (33). Each 8-ary sequence of length m is then checked for constraint satisfaction. If the constraint is violated, a frame error
is counted. Otherwise, the OS-LOCO or OP-LOCO codeword ĉ passes through Algorithm 2 or Algorithm 4 to decode the
corresponding binary message b̂. If g(ĉ) ≥ 2s, a frame error is counted. If b̂ 6= b (same as ĉ 6= c), a frame error is counted.

Remark 4. It is possible to use OS-LOCO and OP-LOCO codes to perform some error correction in a way similar to what
we did with LOCO codes in [11]. The idea is that if the received 8-ary sequence of length m violates the constraint, the bit
corresponding to the closest value to zero in the 3 ×m grid of the codeword is flipped. Then, after GF(8) conversion, the
constraint is checked again. If it is now satisfied, one-symbol error correction was performed.

Now, we discuss the bit error statistics of the uncoded setting. Table V shows the percentage of bit errors resulting from SIS
patterns and the percentage of bit errors resulting from PIS patterns out of all bit errors we collected at different TD channel
densities. The bit error rate (BER) is also shown in the table at each TD density point. The percentage of bit errors resulting
from SIS patterns, named SIS errors in the table, ranges between 4.6% to 21.4%. The percentage of bit errors resulting from
PIS patterns, named PIS errors in the table, ranges between 44.9% to 93.1%. At TD density DTD = 0.7901 and below, more
than 90% of the collected bit errors are PIS errors. Moreover, as the TD density decreases, the percentage of SIS errors (except
for one table point) and PIS errors consistently increases. Consequently, Table V further motivates introducing constrained
codes to eliminate SIS and PIS patterns in practical TDMR systems.

Next, we discuss the performance gains achieved by our LOCO codes. We start with OS-LOCO codes. OS-LOCO codes can
improve performance at lower TD channel densities. While OP-LOCO codes have a performance advantage over OS-LOCO
codes at all TD densities, OS-LOCO codes have a rate advantage over OP-LOCO codes at the same length. As mentioned
above, we use the OS-LOCO code OSC823 to improve performance in the TDMR system. According to our simulations, at
TD density DTD = 0.6664, the frame error rate (FER) = 6.66× 10−4 for the uncoded setting, while the FER = 5× 10−4 for
the setting adopting OSC823 to eliminate SIS patterns. The FER is measured from either the messages or the codewords.

We then discuss the gains of OP-LOCO codes. We generate four performance plots, FER/BER versus TD channel density,
comparing the uncoded setting with the setting adopting OP-LOCO codes in the TDMR system. In Fig. 4, the OP-LOCO
code OPC818 (message frame length = 52 bits) is used, while in Fig. 5, the OP-LOCO code OPC823 (message frame length
= 67 bits) is used. The FER is measured from either the messages or the codewords as both give the same result. The BER
is measured directly at the output of the channel, i.e., right after applying the hard decision in the reading setup.

In Fig. 4, and at TD density 0.7243, the FER = 1.80 × 10−3 and the BER = 4.23 × 10−5 for the uncoded setting, while
the FER = 8.00 × 10−4 and the BER = 1.76 × 10−5 for the setting adopting the OP-LOCO code OPC818. This means we
have a performance gain of up to 0.35 (resp., 0.38) of an order of magnitude in FER (resp., BER) solely by applying OPC818.
In Fig. 5, and at TD density 0.7561, the FER = 5.30 × 10−3 and the BER = 1.17 × 10−4 for the uncoded setting, while

27

Fig. 4. FER (left) and BER (right) comparisons between the uncoded setting and the setting adopting the OP-LOCO code OPC818 (m = 18).

Fig. 5. FER (left) and BER (right) comparisons between the uncoded setting and the setting adopting the OP-LOCO code OPC823 (m = 23).

the FER = 1.20 × 10−3 and the BER = 3.22 × 10−5 for the setting adopting the OP-LOCO code OPC823. This means we
have a performance gain of up to 0.65 (resp., 0.56) of an order of magnitude in FER (resp., BER) solely by applying OPC823.
These gains are quite significant given that no error-correcting code, particularly no LDPC code, is applied in this system,
demonstrating the importance of applying high rate constrained codes eliminating PIS patterns in TDMR systems.

Additionally, there are two important observations from these two figures. First, the performance gain increases as the length
m of the OP-LOCO code increases. This is primarily because as the length increases the rate increases, which in turn increases
the energy per input message bit since we scale by

√
Rn

LOCO as mentioned in the writing setup. Second, the performance gain
increases as the TD density decreases. This is primarily because of the observation collected from Table V that the percentage
of PIS errors increases as the TD density decreases.

Remark 5. At high TD channel densities, errors may result from incomplete PIS (IPIS) patterns. These are patterns where
the complementary bits surround the central bit at only three out of the four positions with Manhattan distance 1 from the
center. While we can use the general method to design LOCO codes forbidding IPIS patterns along with PIS patterns, this
is not a recommended idea. The reason is that such codes will suffer from a notable rate loss while offering a quite limited
performance gain compared with OP-LOCO codes. The rate loss is attributed to the very high number of IPIS patterns, which
is 2

[(
4
3

)
× 24

]
= 2× 64 = 128 out of 512.

We end this section with a brief comparison with the available TD constrained codes in the literature. This comparison can
be summarized in the following points:

1) There are many papers in the literature discussing TD constrained coding. Bounds on the capacity of TD RLL codes
were discussed in [40] and [41]. Explicit coding techniques to stuff bits into a TD grid such that certain RLL constraints
are satisfied in both directions were presented in [25] and [26]. While such papers are dealing with an important technical
question, applying TD RLL codes to TDMR systems is quite inefficient rate-wise since many patterns forbidden by TD
RLL codes are not detrimental in such systems.

28

2) Coding techniques to stuff bits into a TD grid such that isolation patterns, particularly PIS patterns, are forbidden were
introduced in [24] and [27]. TD constrained codes resulting from these techniques offer notably higher code rates for
TDMR systems than TD RLL codes. However, these techniques are not customized for a TDMR system with a wide
read head such as the one we adopt [20], [21]. Wide read heads are attractive because they notably increase the speed
of reading. In this TDMR system, PIS patterns need to be removed only within each group of three down tracks. Thus,
while the highest achievable rate in [24] is 0.9238, the highest achievable normalized rate of an OP-LOCO code is
0.9710 from (58). To the best of our knowledge, our paper [28] was the first to present (NS-LOCO) codes for TDMR
systems with wide heads.

3) While coding techniques based on bit stuffing produce constrained codes with rates approaching or achieving capacity,
they have an important shortcoming. These techniques do not offer explicit ways to convert unconstrained input messages
into codewords, nor do they offer explicit ways to convert codewords back to the unconstrained messages [24], [26].
On the contrary, our LOCO codes for TDMR systems (like all our LOCO codes) offer a simple systematic mapping-
demapping from an unconstrained message to a constrained codeword via the integer index, and vice versa.

VI. IDEAS TO REDUCE COMPLEXITY

In this section, we introduce coding schemes adopting near-optimal (rate-wise) LOCO codes for TDMR systems to eliminate
the SIS and PIS patterns. In particular, the new coding schemes incur a small rate loss to achieve some complexity and error
propagation reduction compared with the optimal LOCO codes introduced in Section IV.

Because of their fixed length, LOCO codes do not suffer from codeword to codeword error propagation.5 However, error
propagation can happen on the input message level. In particular, one symbol error in the codeword may result in multiple
bit errors in the message because of the wrong index [11], which limits the performance gains of constrained coding on the
message BER level for large lengths at high densities. That is one reason why we used moderate message lengths for our
OS-LOCO and OP-LOCO codes in Section V.

The idea is simply to develop LOCO codes defined over GF(4) instead of GF(8), and we first introduced it in [28]. The
steps of our coding scheme adopting NS-LOCO (resp., NP-LOCO) codes, in brief, are:
• We specify a mapping-demapping between GF(8) and GF(4): 2 GF(8) symbols ←→ 1 GF(4) symbol.
• We design a LOCO code defined over GF(4) based on the set of forbidden patterns T and this mapping-demapping.
• While encoding, we divide the stream of input bits into chunks of length s+m+ 1 (resp., s+m) bits each.
• We encode each s bits (the message) in the chunk via the LOCO code into m 4-ary symbols (the codeword), and bridge

by 1 more symbol.
• We use the remaining m + 1 (resp., m) bits in the chunk to decide which 8-ary symbol to write for each 4-ary symbol

according to the mapping-demapping. This means 1/3 (resp., m/[3(m+1)], which is almost 1/3) of the data to be written
is unconstrained.

• The decoding is the same procedure performed in the reverse direction.
Having LOCO codes defined over GF(4) instead of GF(8) enables lower complexity [18], [28], and also enables lower error

propagation as smaller message lengths are possible. Since the LOCO codes are defined over GF(4) here, α will again be a
primitive element of GF(4) while ψ is defined in this section as a primitive element of GF(8). That is:

GF(4) , {0, 1, α, α2}, GF(8) , {0, 1, ψ, ψ2, . . . , ψ7}. (79)

The mapping-demapping between GF(8) symbols and 3 × 1 columns of bits to write in the TDMR grid is in (33) with ψ
replacing α.

A. Near-Optimal Square LOCO Codes

We start with our near-optimal square LOCO (NS-LOCO) codes, which are codes preventing the SIS patterns shown in
Fig. 1 (along with other patterns) within each group of three adjacent down tracks. These 2 SIS patterns map to the 2 GF(8)
patterns 0ψ0 and ψ6ψ4ψ6. We adopt the following GF(8) ←→ GF(4) mapping-demapping:

{ψ,ψ4} ←→ 0, {1, ψ5} ←→ 1,

{ψ2, ψ3} ←→ α, {0, ψ6} ←→ α2. (80)

Based on this mapping-demapping, an NS-LOCO code should forbid the pattern α20α2, which covers the 2 SIS patterns (and
more). The FSTD, adjacency matrix, and capacity derivations are in [28]. We care about the capacity of the coding scheme,
including the unconstrained part of data to be written. Thus, and using [28], the capacity C, in input bits per coded symbol,
and the normalized capacity Cn are:

C = 1.9780 + 1 = 2.9780 and Cn =
1

3
C = 0.9927, (81)

5Because of their fixed length, LOCO codes also allow parallel encoding and decoding, unlike FSM-based constrained codes [11].

29

which means that the capacity loss compared with the optimal case from (34) is 0.54%.
Denote an NS-LOCO code of length m by NSC4m. The definition of the code is exactly the definition of a generic LOCO

code, which is Definition 1, with q = 4, Cqm = NSC4m, and T given by:

T = NS4 , {α20α2}. (82)

Both c in Cqm = NSC4m and g(c) are used as they were in Section II. The cardinality of NSC4m is Nq(m) = N4(m).
Since NS-LOCO codes were already introduced in [28], we just state the outcome of each step of the general method.

Having said that, Steps 3, 4, and 5 give new insights about NS-LOCO codes.

Step 1) We end up with three (final) groups covering all the NS-LOCO codewords in NSC4m: Group 1, which contains all
the codewords starting with β1, β1 ∈ {0, 1, α}, from the left, Group 2, which contains all the codewords starting with α2β2,
β2 ∈ {1, α, α2}, from the left, and Group 3, which contains all the codewords starting with α20β1, β1 ∈ {0, 1, α}, from the
left. The groups are defined for m ≥ 2.

Step 2) The cardinality of an NS-LOCO code NSC4m is given by:

N4(m) = 4N4(m− 1)−N4(m− 2) + 3N4(m− 3), m ≥ 2, (83)

where the defined cardinalities are:
N4(−1) ,

1

3
, N4(0) , 1, and N4(1) , 4. (84)

Step 3) We end up with two (final) cases for ci based on ci and its preceding symbols: a special case for ci+1ci = α2β2
and the typical case. The typical case is the case when the special cases is not enabled and ci 6= 0.

Steps 4 and 5) Theorem 5 gives the encoding-decoding rule of an NS-LOCO code NSC4m. Recall that ai , L(ci).

Theorem 5. Let c be an NS-LOCO codeword in NSC4m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[(ai − yi,1)N4(i) + 3yi,1N4(i− 1)] , (85)

where yi,1 is specified as follows:

yi,1 = 1 if ci+1ci = α2β2, β2 ∈ {1, α, α2}, and yi,1 = 0 otherwise. (86)

Proof: The proof operates on the two cases in Step 3 to find the contribution gi(ci). The details are left to the interested
reader for brevity.

Step 6) Bridging here differs from [28]. We bridge in NS-LOCO codes with one GF(4) symbol, which is converted eventually
to one column of three bits, between each two consecutively written codewords as follows:
• If the RMS of a codeword and the LMS of the next codeword are both 1’s, bridge with α, i.e., ψ2 or ψ3 in GF(8).
• If this is not the case, bridge with 1, i.e., 1 or ψ5 in GF(8).

The mapping-demapping in (80) and that in (33) illustrate what is written for bridging. There are two available options for the
bridging column of three bits, and an input bit makes the selection in a way similar to what happens with codeword symbols.
This bridging is efficient in terms of low added redundancy, and optimal in terms of maximum protection of edge symbols.
With our bridging, the maximum number of consecutive 3× 1 columns with no transition after writing via the coding scheme
involving an NS-LOCO code NSC4m is m+ 1.

Given our bridging method, the rate of the coding scheme involving an NS-LOCO code NSC4m, in input bits per coded
symbol, and the normalized rate are:

Rsch
NS-LOCO =

s

m+ 1
+ 1 =

bN4(m)c
m+ 1

+ 1, Rsch,n
NS-LOCO =

1

3

[
bN4(m)c
m+ 1

+ 1

]
. (87)

It is easy to deduce that NS-LOCO codes achieve the capacity of an NS4-constrained code. Encoding and decoding algorithms
can be built in a way similar to what is in [28].

Remark 6. While designing NS-LOCO codes, we opted to use simple bridging. It is important to note that it is possible to
bridge for NS-LOCO codes with one symbol out of the set {1, α} that is picked based on one input bit. Thus, the following
notable normalized rate gain can be achieved:

R
sch,n
NS-LOCO −R

sch,n
NS-LOCO =

1

3(m+ 1)
. (88)

Some changes for self-clocking and modifications to the encoding-decoding algorithms will be required.

30

𝐹1 𝐹2

𝐹3

0,1 𝛼, 𝛼2

𝛼2

0

𝐹4 𝛼, 𝛼2

𝛼

0,1

1

Fig. 6. An FSTD representing an infinite NP4-constrained sequence (patterns in NP4 are prevented).

B. Near-Optimal Plus LOCO Codes

We move on to our near-optimal plus LOCO (NP-LOCO) codes, which are codes preventing the PIS patterns shown in
Fig. 2 (along with other patterns) within each group of three adjacent down tracks. These 32 PIS patterns map to the 32 GF(8)
patterns in (59). We adopt the following GF(8) ←→ GF(4) mapping-demapping:

{ψ3, ψ4} ←→ 0, {0, 1} ←→ 1,

{ψ5, ψ6} ←→ α, {ψ,ψ2} ←→ α2. (89)

As we shall see shortly, this mapping-demapping makes the analysis simpler. Based on this mapping-demapping, an NP-LOCO
code should forbid the 8 patterns β1α

2β1, for all β1, β1 ∈ {0, 1}, and β20β2, for all β2, β2 ∈ {α, α2}, which covers the 32
PIS patterns (and more). The FSTD of an infinite 4-ary constrained sequence in which these 8 patterns are prevented is in
Fig. 6. The corresponding adjacency matrix is:

F =

2 1 0 1
1 2 1 0
2 0 0 0
0 2 0 0

 .
We care about the capacity of the coding scheme, including the unconstrained part of data to be written. Thus, the capacity
C, in input bits per coded symbol, and the normalized capacity Cn are:

C = log2(λmax(F)) + 1 = log2 3.5616 + 1 = 2.8325 and Cn =
1

3
C = 0.9442, (90)

which means that the capacity loss compared with the optimal case from (58) is 2.76%.
Denote an NP-LOCO code of length m by NPC4m. The definition of the code is exactly the definition of a generic LOCO

code, which is Definition 1, with q = 4, Cqm = NPC4m, and T given by:

T = NP4 , {β1α
2β1, β20β2, ∀β1, β1 ∈ {0, 1} and ∀β2, β2 ∈ {α, α2}}. (91)

Both c in Cqm = NPC4m and g(c) are used as they were in Section II. The cardinality of NPC4m is Nq(m) = N4(m).
Now, we will apply the steps of the general method to find out how to encode and decode NP-LOCO codes using a simple

encoding-decoding rule.

Step 1) Using the patterns in NP4, we determine initial groups of NPC4m as shown below.
• For the patterns 0α2β1, β1 ∈ {0, 1}, there is an initial group having all the codewords starting with 0α2β2, β2 ∈ {α, α2},

from the left. There are three more initial groups having all the codewords starting with 0β3, a group for each β3 ∈ {0, 1, α},
from the left. There are three more initial groups having all the codewords starting with non-zero symbols, a group for
each β4 ∈ {1, α, α2}, from the left. We do the same for the patterns 1α2β1, β1 ∈ {0, 1}.

• For the patterns α20β2, β2 ∈ {α, α2}, there is an initial group having all the codewords starting with α20β1, β1 ∈ {0, 1},
from the left. There are three more initial groups having all the codewords starting with α2β4, a group for each β4 ∈
{1, α, α2}, from the left. There are three more initial groups having all the codewords starting with non-α2 symbols, a
group for each β3 ∈ {0, 1, α}, from the left. We do the same for the patterns α0β2, β2 ∈ {α, α2}.

31

After operating on these initial groups, we end up with four (final) groups covering all the NP-LOCO codewords in NPC4m:
Group 1, which contains all the codewords starting with 0 from the left, Group 2, which contains all the codewords starting
with 1 from the left, Group 3, which contains all the codewords starting with α from the left, and Group 4, which contains
all the codewords starting with α2 from the left. The groups are defined for m ≥ 2.

Group 1 is further partitioned into two subgroups: Subgroup 1.1, which contains all the codewords starting with 0β3 from
the left, and Subgroup 1.2, which contains all the codewords starting with 0α2β2 from the left. The same partitioning to
subgroups applies to Group 2. Additionally, Group 4 is further partitioned into two subgroups: Subgroup 4.1, which contains
all the codewords starting with α20β1 from the left, and Subgroup 4.2, which contains all the codewords starting with α2β4
from the left. The same partitioning to subgroups applies to Group 3.

Step 2) Theorem 6 gives the cardinality of an NP-LOCO code.

Theorem 6. The cardinality of an NP-LOCO code NPC4m is given by:

N4(m) = 3N4(m− 1) + 2N4(m− 2), m ≥ 2, (92)

where the defined cardinalities are:
N4(0) , 2 and N4(1) , 4. (93)

Proof: We note that an NP-LOCO code NPC4m is symmetric because of the nature of forbidden patterns in NP4. Thus,
we only derive a recursive cardinality formula for Group 1 of NPC4m, then multiply by 4. We work on Group 1 of NPC4m.

As for Subgroup 1.1, each codeword starting with 0β3 from the left in this subgroup corresponds to a codeword in NPC4m−1
that starts with the same β3 from the left such that they share the remaining m− 2 RMSs. This correspondence is bijective.
Since β3 is in {0, 1, α} and the code NPC4m−1 is symmetric, the cardinality of Subgroup 1.1 is:

N4,1.1(m) =
3

4
N4(m− 1). (94)

As for Subgroup 1.2, each codeword starting with 0α2β2 from the left in this subgroup corresponds to a codeword in
NPC4m−2 that starts with the same β2 from the left such that they share the remaining m− 3 RMSs. This correspondence is
bijective. Since β2 is in {α, α2} and the code NPC4m−2 is symmetric, the cardinality of Subgroup 1.2 is:

N4,1.2(m) =
2

4
N4(m− 2) =

1

2
N4(m− 2). (95)

Using (94) and (95), the cardinality of Group 1 in NPC4m then is:

N4,1(m) =

2∑
i=1

N4,1.i(m) =
3

4
N4(m− 1) +

1

2
N4(m− 2). (96)

From (96) and using the symmetry of the code, the cardinality of NPC4m is:

N4(m) =

4∑
i=1

N4,i(m) = 4N4,1(m) = 3N4(m− 1) + 2N4(m− 2), m ≥ 2.

As for the defined cardinalities, it is clear that N4(1) , 4. We also know that N4(2) = 42 = 16. Consequently, and using
the proved (92),

16 = 3× 4 + 2N4(0) =⇒ N4(0) , 2. (97)

Computing the defined cardinalities completes the proof.

Step 3) We now specify the special cases. Using the patterns in NP4, we determine initial special cases for the NP-LOCO
code NPC4m as shown below.
• For the patterns 0α2β1, β1 ∈ {0, 1}, the only initial special case is ci+2ci+1ci = 0α2β2, β2 ∈ {α, α2}. We do the same

for the patterns 1α2β1, β1 ∈ {0, 1}.
• For the patterns α20β2, β2 ∈ {α, α2}, the only initial special case is ci+1ci = α2β4, β4 ∈ {1, α, α2}. We do the same

for the patterns α0β2, β2 ∈ {α, α2}.
We end up with three (final) cases for ci based on ci and its preceding symbols: a special case for ci+2ci+1ci = β1α

2β2,
a special case for ci+1ci = β2β4, and the typical case. Recall that β1 ∈ {0, 1} and β2 ∈ {α, α2}, while the rest of variables
are specified above. The typical case is simply the case when neither of the two special cases is enabled and ci 6= 0. As usual,
the priority of a case increases as its sequence length increases.

Steps 4 and 5) Theorem 7 gives the encoding-decoding rule of an NP-LOCO code NPC4m. Recall that ai , L(ci).

32

Theorem 7. Let c be an NP-LOCO codeword in NPC4m. The relation between the lexicographic index g(c) of this codeword
and the codeword itself is given by:

g(c) =

m−1∑
i=0

[
1

4
(ai − 2yi,1 − yi,2)N4(i+ 1) +

1

2
yi,2N4(i)

]
, (98)

where yi,1 and yi,2 are specified as follows:

yi,1 = 1 if ci+2ci+1ci = β1α
2β2, β1 ∈ {0, 1}, β2 ∈ {α, α2}, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+1ci = β2β4, β2 ∈ {α, α2}, β4 ∈ {1, α, α2} s.t. yi,1 = 0, and yi,2 = 0 otherwise. (99)

Proof: First, we perform Step 4 of the method. We aim at computing the contribution of each NP-LOCO codeword symbol
ci to the codeword index g(c) for the three final cases, i.e., gi,ic(ci) for all ic.

We start off with the typical case, which we index by ic = 1. The contribution of ci to g(c) in this case is the number
of codewords in NPC4m starting with cm−1cm−2 . . . ci+1c

′
i from the left such that c′i < ci. This number is the number of

codewords in NPC4i+1 starting with c′i, for all c′i < ci, from the left. Thus, and using symmetry, we can write gi,1(ci) as:

gi,1(ci) =

ai∑
j=1

N4,j(i+ 1) = aiN4,1(i+ 1) =
1

4
aiN4(i+ 1). (100)

Next, we study the special case characterized by ci+2ci+1ci = β1α
2β2, β1 ∈ {0, 1} and β2 ∈ {α, α2}, which we index by

ic = 2. The contribution of ci to g(c) in this case is the number of codewords in NPC4m starting with cm−1cm−2 . . . ci+3β1α
2c′i

from the left such that c′i < ci = β2. This number is the number of codewords in NPC4i+1 starting with c′i, for all c′i < ci
such that c′i /∈ {0, 1}, from the left. Thus, and using symmetry, we can derive gi,2(ci) as follows:

gi,2(ci) =

ai−2∑
j=1

N4,j(i+ 1) =
1

4
(ai − 2)N4(i+ 1). (101)

Next, we study the special case characterized by ci+1ci = β2β4, β2 ∈ {α, α2} and β4 ∈ {1, α, α2}, which we index by
ic = 3. The contribution of ci to g(c) in this case is the number of codewords in NPC4m starting with cm−1cm−2 . . . ci+2β2c

′
i

from the left such that c′i < ci = β4. Looking from the right, these codewords correspond to codewords in NPC4i+1. We
divide such codewords in NPC4i+1 into two portions. The first portion has the codewords in NPC4i+1 starting with c′i, for all
c′i < ci such that c′i 6= 0, from the left. Let the number of codewords in this portion be g′i,3(ci). Thus, and using symmetry,
we can derive g′i,3(ci) as follows:

g′i,3(ci) =

ai−1∑
j=1

N4,j(i+ 1) =
1

4
(ai − 1)N4(i+ 1). (102)

The second portion has the codewords in NPC4i+1 starting with c′i = 0 from the left. Let the number of codewords in this
portion be g′′i,3(ci). From the set of forbidden patterns NP4, we know that β20 in an NP-LOCO codeword has to be followed
by β1 ∈ {0, 1}. Thus, and aided by (95), we can derive g′′i,3(ci) as follows:

g′′i,3(ci) =
2

4
N4(i) =

1

2
N4(i). (103)

Using (102) and (103), we get:

gi,3(ci) = g′i,3(ci) + g′′i,3(ci) =
1

4
(ai − 1)N4(i+ 1) +

1

2
N4(i). (104)

Now, we are ready to perform Step 5 of the method. We want to combine the different contributions for all cases into one
expression, which is the NP-LOCO encoding-decoding rule.

We need only two merging variables: yi,1, for the case indexed by ic = 2, and yi,2, for the case indexed by ic = 3 (lower
priority). If the two variables are zeros, the typical case contribution is switched on.

Now, we pick the merging function fmer
0 (·) = 1

4 (ai − 2yi,1 − yi,2) for N4(i + 1). We also pick the merging function
fmer
1 (·) = 1

2yi,2 for N4(i). Observe that the values of these merging functions at different cases are quite consistent with (100),
(101), and (104). Observe also that if ci = 0, this means ai = yi,1 = yi,2 = 0, which in turn means fmer

0 (·) = fmer
1 (·) = 0.

Using these two merging functions, the unified expression representing the contribution of a symbol ci to the codeword
index g(c) can be written as:

gi(ci) = fmer
0 (·)N4(i+ 1) + fmer

1 (·)N4(i)

=
1

4
(ai − 2yi,1 − yi,2)N4(i+ 1) +

1

2
yi,2N4(i). (105)

33

The encoding-decoding rule (98) of an NP-LOCO code follows from (105).

Step 6) We bridge in NP-LOCO codes with one GF(4) symbol, which is converted eventually to one column of three bits,
between each two consecutively written codewords as follows:
• If the RMSs− LMSs are β1α2 − 0β2, bridge with one no-writing symbol z, i.e., one 3× 1 column with no writing.
• Else if the RMS(s)− LMS(s) are β1α2 − 0β1, α2 − β4, β2α2 − 0β1, or 1− 1, bridge with α, i.e., ψ5 or ψ6 in GF(8).
• Else if the RMS(s)− LMS(s) are β2α2 − 0β2, 0− β3, or α− α, bridge with 1, i.e., 0 or 1 in GF(8).
• For any other scenario, bridge with α, i.e., ψ5 or ψ6 in GF(8).

The second item above in italic could be removed as it is included it in the last item. The mapping-demapping in (89) and
that in (33) illustrate what is written for bridging. There are two available options for the bridging column of three bits except
for the first case above. In (89), the left (resp., right) symbol is picked if the input bit is 0 (resp., 1). This bridging is optimal
in terms of minimum added redundancy, and it offers near-maximum protection of edge symbols. With our bridging, the
maximum number of consecutive 3×1 columns with no transition after writing via the coding scheme involving an NP-LOCO
code NPC4m is m. For this maximum to be achieved, the m additional bits in a relevant chunk of size s+m bits should be
all 0’s or all 1’s.

Given our bridging method, the rate of the coding scheme involving an NP-LOCO code NPC4m, in input bits per coded
symbol, and the normalized rate are:

Rsch
NP-LOCO =

s+m

m+ 1
=
bN4(m)c+m

m+ 1
, Rsch,n

NP-LOCO =
bN4(m)c+m

3(m+ 1)
. (106)

It is easy to deduce that NP-LOCO codes achieve the capacity of an NP4-constrained code. Encoding and decoding algorithms
can be built as shown in previous sections, and they are omitted for brevity.

Example 5. This example illustrates the decoding process of coding scheme adopting an NP-LOCO code. Consider a scheme
adopting the NP-LOCO code NPC46 (m = 6). Using (92) and (93), we get N4(0) , 2, N4(1) , 4, N4(2) = 16, N4(3) = 56,
N4(4) = 200, N4(5) = 712, and N4(6) = 2536. Consider the following read sequence after hard decision and 8-ary
conversion 0ψψ6ψ21ψ5 (level-equivalent 027316). The bridging column is ignored in NP-LOCO codes, and we assume the
sequence received is error-free. The first step in decoding is to decide the input bits used for selection along with the written
4-ary codeword. Using (89), we can deduce that the selection bits for 0ψψ6ψ21ψ5 are 001110, and that the written codeword
is c = c5c4c3c2c1c0 = 1α2αα21α in NPC46. The case indexed by ic = 1 applies for c5, c4, and c0. The case indexed by
ic = 2 applies for c3. The case indexed by ic = 3 applies for c2 and c1. Consequently, and using (67), we get:

g(c = 1α2αα21α) =

[
1

4
×N4(6)

]
+

[
1

4
× 3N4(5)

]
+

[
1

4
× 0×N4(4)

]
+

[
1

4
× 2N4(3) +

1

2
N4(2)

]
+

[
1

4
× 0×N4(2) +

1

2
N4(1)

]
+

[
1

4
× 2N4(1)

]
= 634 + 534 + 0 + 36 + 2 + 2 = 1208,

which is consistent with the codeword index produced by the program we wrote to exhaustively generate and lexicographically
order all NP-LOCO codewords in NPC4m, with m = 6 here. It corresponds to the binary message 10010111000 (s = 11).
Thus, the final decoded binary input stream is 10010111000 001110.

To demonstrate how near-optimal codes can be used to further reduce complexity and error propagation, we give an example.
Suppose that the required normalized rate is around 0.88, and we aim at eliminating PIS patterns in a TDMR system. The
OP-LOCO code with m = 10 and s = 29 achieves a normalized rate of 0.8788. On the other hand, a coding scheme adopting
the NP-LOCO code with m = 13 and s = 24 achieves a normalized rate of 0.8810 for the scheme. Thus, the scheme adopting
the NP-LOCO code achieves approximately the same rate at a reduced adder size, i.e., reduced complexity and reduced error
propagation, compared with the OP-LOCO code. Schemes adopting near-optimal codes lose this advantage as the rates get
higher, and they have a gap to capacity, which justifies why we present both optimal and near-optimal codes.

Remark 7. While our general method allows the code designer to build a LOCO code for any finite set of forbidden patterns, the
mapping-demapping used between binary and q-ary forbidden patterns may be used to simplify the analysis when applicable.
One example has already been given in the analysis of our NP-LOCO codes. Another example is for our NS-LOCO codes: we
can change the mapping-demapping in (80) such that the forbidden pattern is 0α20 while keeping the mapping-demapping in
(33) as it is. In this case, the analysis becomes simpler, and the encoding-decoding rule of the NS-LOCO code becomes:

g(c) =

m−1∑
i=0

(ai − yi,1)N4(i), (107)

where N4(i) is obtained recursively using (83), and yi,1 is specified as follows:

yi,1 = 1 if ci+2ci+1ci = 0α2β2, β2 ∈ {1, α, α2}, and yi,1 = 0 otherwise. (108)

34

However, we do not alter the mapping-demapping in certain cases either to demonstrate the strength of the general method
or for consistency with prior work like [28]. This has no effect on the complexity of the encoding-decoding algorithms.

Given the promising results presented in this paper regarding applying novel LOCO codes in TDMR systems, one interesting
future direction is pairing efficient multi-dimensional constrained codes with high performance multi-dimensional graph-based
(LDPC) codes [39] in modern storage devices to further increase density and lifetime gains. Observe that all the new LOCO
codes presented in this paper are reconfigurable.

VII. CONCLUSION

We introduced a general method to systematically design constrained codes based on lexicographic indexing, collectively
named LOCO codes. The method reveals the secret arithmetic of forbidden/allowed patterns in these constrained codes. In
particular, it starts from the finite set of forbidden patterns to find the cardinality of the code recursively and derive an encoding-
decoding rule that links the index to the codeword. We gave two examples from the literature to show how the general method
works. We used the general method to design optimal constrained codes preventing isolation patterns in TDMR systems,
named OS-LOCO and OP-LOCO codes. OS-LOCO and OP-LOCO codes are capacity achieving, are simple, and they notably
improve performance with very limited redundancy. We applied OP-LOCO codes to a practical TDMR system, and demonstrated
significant FER and BER gains even though no error-correcting code was applied. We introduced coding schemes adopting
near-optimal codes that can be used in TDMR systems to prevent isolation patterns and further reduce complexity. We suggest
that our general method will be a tool to support the evolution of modern, multi-dimensional magnetic and electronic storage
systems. Moreover, our method can also be valuable to various data transmission systems.

ACKNOWLEDGMENT

We would like to thank Mohsen Bahrami and Prof. Bane Vasic for providing the TDMR model that we modified and used
to generate the results in Section V.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. J., vol. 27, Oct. 1948.
[2] R. S. Varga, Matrix Iterative Analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1962.
[3] D. T. Tang and R. L. Bahl, “Block codes for a class of constrained noiseless channels,” Inf. and Control, vol. 17, no. 5, pp. 436–461, 1970.
[4] P. A. Franaszek, “Sequence-state methods for run-length-limited coding,” IBM J. Res. Dev., vol. 14, no. 4, pp. 376–383, Jul. 1970.
[5] P. Siegel, “Recording codes for digital magnetic storage,” IEEE Trans. Magn., vol. 21, no. 5, pp. 1344–1349, Sep. 1985.
[6] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299, Oct. 1998.
[7] B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic Recording Systems. CRC Press, 2005.
[8] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC codes for magnetic recording channels: Error floor analysis and optimized code

design,” IEEE Trans. Commun., vol. 64, no. 8, pp. 3194–3207, Aug. 2016.
[9] A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combinatorial approach to design high performance spatially-coupled codes,” IEEE Trans. Inf.

Theory, vol. 66, no. 8, pp. 4834–4852, Aug. 2020.
[10] R. Karabed and P. H. Siegel, “Coding for higher-order partial-response channels,” in Proc. SPIE Int. Symp. Voice, Video, and Data Commun., M. R.

Raghuveer, S. A. Dianat, S. W. McLaughlin, and M. Hassner, Eds., Philadelphia, PA, Oct. 1995, vol. 2605, pp. 115–126.
[11] A. Hareedy and R. Calderbank, “LOCO codes: Lexicographically-ordered constrained codes,” IEEE Trans. Inf. Theory, vol. 66, no. 6, pp. 3572–3589,

Jun. 2020.
[12] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash memory cell operation,” IEEE Electron Device Lett., vol. 23,

no. 5, pp. 264–266, May 2002.
[13] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate inter-cell interference in read/write cycles for flash memories,” IEEE J. Sel. Areas

Commun., vol. 32, no. 5, pp. 836–846, Apr. 2014.
[14] R. Motwani, “Hierarchical constrained coding for floating-gate to floating-gate coupling mitigation in Flash memory,” in Proc. IEEE Global Telecommun.

Conf. (GLOBECOM), Houston, TX, USA, Dec. 2011, pp. 1–5.
[15] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-cell interference mitigation in multi-level cell flash memories,” in Proc. IEEE Int.

Conf. Commun. (ICC), London, UK, Jun. 2015, pp. 271–276.
[16] Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K. Vu, “Capacity-achieving codes that mitigate intercell interference and charge

leakage in Flash memories,” IEEE Trans. Inf. Theory, vol. 65, no. 6, pp. 3702–3712, Jun. 2019.
[17] A. Hareedy and R. Calderbank, “Asymmetric LOCO codes: Constrained codes for Flash memories,” in Proc. 57th Annual Allerton Conf. Commun.,

Control, and Computing, Monticello, IL, USA, Sep. 2019, pp. 124–131.
[18] A. Hareedy, B. Dabak, and R. Calderbank, “Managing device lifecycle: Reconfigurable constrained codes for M/T/Q/P-LC Flash memories,” IEEE Trans.

Inf. Theory, to be published, doi: 10.1109/TIT.2020.3032407.
[19] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of magnetic recording at 10 terabits per square inch on conventional media,” IEEE

Trans. Magn., vol. 45, no. 2, pp. 917–923, Feb. 2009.
[20] K. S. Chan and M. R. Elidrissi, “A system level study of two-dimensional magnetic recording (TDMR),” IEEE Trans. Magn., vol. 49, no. 6, pp.

2812–2817, Jun. 2013.
[21] S. G. Srinivasa, Y. Chen, and S. Dahandeh, “A communication-theoretic framework for 2-DMR channel modeling: Performance evaluation of coding

and signal processing methods,” IEEE Trans. Magn., vol. 50, no. 3, pp. 6–12, Mar. 2014.
[22] R. H. Victora, S. M. Morgan, K. Momsen, E. Cho, and M. F. Erden, “Two-dimensional magnetic recording at 10 Tbits/in2,” IEEE Trans. Magn., vol.

48, no. 5, pp. 1697–1703, May 2012.
[23] M. Re, “Tech talk on HDD areal density,” Seagate, Aug. 2015. [Online]. Available: hdd_areal_density_seagate
[24] M. Bahrami, C. K. Matcha, S. M. Khatami, S. Roy, S. G. Srinivasa, and B. Vasic, “Investigation into harmful patterns over multitrack shingled magnetic

detection using the Voronoi model,” IEEE Trans. Magn., vol. 51, no. 12, pp. 1–7, Dec. 2015.
[25] A. Sharov and R. M. Roth, “Two-Dimensional Constrained Coding Based on Tiling,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1800–1807, Apr. 2010.

https://web.archive.org/web/20180528133250/https://www.seagate.com/www-content/investors/_shared/docs/tech-talk-mark-re-20150825.pdf

35

[26] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inf. Theory,
vol. 50, no. 5, pp. 824–838, May 2004.

[27] K. Pituso, C. Warisarn, D. Tongsomporn, and P. Kovintavewat, “An intertrack interference subtraction scheme for a rate-4/5 modulation code for
two-dimensional magnetic recording,” IEEE Magn. Letters, vol. 7, pp. 1–5, Jul. 2016.

[28] B. Dabak, A. Hareedy, and R. Calderbank, “Non-binary constrained codes for two-dimensional magnetic recording,” IEEE Trans. Magn., vol. 56, no.
11, pp. 1–10, Nov. 2020.

[29] K. A. S. Immink, “ Modulation systems for digital audio discs with optical readout,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Atlanta, Georgia, USA, Mar.–Apr. 1981, pp. 587–589.

[30] S. Sridhara and N.R. Shanbhag, “Coding for reliable on-chip buses: A class of fundamental bounds and practical codes,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 26, no. 5, pp. 977–982, May 2007.

[31] R. Walker and R. Dugan, “64b/66b low-overhead coding proposal for serial links,” IEEE 802.3 HSSG, Jan. 2000. [Online]. Available:
https://m.omnisterra.com/walker/pdfs.talks/dallas.pdf

[32] J. Saadé, A. Goulahsen, A. Picco, J. Huloux, and F. Pétrot, “Low overhead, DC-balanced and run length limited line coding,” in Proc. IEEE 19th
Workshop on Signal and Power Integrity (SPI), Berlin, Germany, May 2015, pp. 1–4.

[33] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding block codes–An application of symbolic dynamics to information theory,” IEEE
Trans. Inf. Theory, vol. 29, no. 1, pp. 5–22, Jan. 1983.

[34] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1, pp. 73–77, Jan. 1973.
[35] K. A. S. Immink, “A practical method for approaching the channel capacity of constrained channels,” IEEE Trans. Inf. Theory, vol. 43, no. 5, pp.

1389–1399, Sep. 1997.
[36] V. Braun and K. A. S. Immink, “An enumerative coding technique for DC-free runlength-limited sequences,” IEEE Trans. Commun., vol. 48, no. 12,

pp. 2024–2031, Dec. 2000.
[37] J. Centers, X. Tan, A. Hareedy, and R. Calderbank, “Power spectra of constrained codes with level-based signaling: Overcoming finite-length challenges,”

Oct. 2020. [Online]. Available: https://arxiv.org/abs/2010.04878
[38] R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of multidimensional constellations,” IEEE Trans. Inf. Theory, vol. 40, no. 4, pp.

1044–1056, Jul. 1994.
[39] A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the number of detrimental objects in multi-dimensional graph-based codes,” IEEE Trans.

Commun., vol. 68, no. 9, pp. 5299–5312, Sep. 2020.
[40] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1527–1540,

Jul. 1999.
[41] P. H. Siegel and J. K. Wolf, “Bit-stuffing bounds on the capacity of 2-dimensional constrained arrays,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Cambridge, MA, USA, Aug. 1998, pp. 323.

	I Introduction
	II Steps of the General Method
	III Examples From Existing Codes
	III-A Lexicographically-Ordered RLL Codes
	III-B Binary Symmetric LOCO Codes

	IV Optimal Constrained Codes for TDMR
	IV-A Optimal Square LOCO Codes
	IV-B Optimal Plus LOCO Codes

	V Performance Gains in TDMR
	VI Ideas to Reduce Complexity
	VI-A Near-Optimal Square LOCO Codes
	VI-B Near-Optimal Plus LOCO Codes

	VII Conclusion
	References

