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Towards Zero-shot Sign Language Recognition
Yunus Can Bilge, Ramazan Gokberk Cinbis, and Nazli Ikizler-Cinbis

Abstract—
This paper tackles the problem of zero-shot sign language recognition (ZSSLR), where the goal is to leverage models learned over the
seen sign classes to recognize the instances of unseen sign classes. In this context, readily available textual sign descriptions and
attributes collected from sign language dictionaries are utilized as semantic class representations for knowledge transfer. For this novel
problem setup, we introduce three benchmark datasets with their accompanying textual and attribute descriptions to analyze the
problem in detail. Our proposed approach builds spatiotemporal models of body and hand regions. By leveraging the descriptive text
and attribute embeddings along with these visual representations within a zero-shot learning framework, we show that textual and
attribute based class definitions can provide effective knowledge for the recognition of previously unseen sign classes. We additionally
introduce techniques to analyze the influence of binary attributes in correct and incorrect zero-shot predictions. We anticipate that the
introduced approaches and the accompanying datasets will provide a basis for further exploration of zero-shot learning in sign
language recognition.

Index Terms—Sign language recognition, zero-shot learning.
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1 INTRODUCTION

S IGN language recognition (SLR) is among the open prob-
lems with great practical importance in computer vision.

One of the factors that render SLR a unique problem is
the fact that although most signs have clear-cut definitions,
most of them have only subtle visual differences across them
[1], [2]. Therefore, towards turning SLR into a ubiquitous
technology, fundamental progress in modeling and recog-
nizing fine-grained spatiotemporal patterns expressed by
the movement of hands with various shapes, orientations,
and locations, as well as body posture, and non-manual
features, such as facial expressions, are needed. Besides,
the photometric and geometric factors, such as viewpoint
changes [3], variations in sign languages across regions
[4], and the fact that sign languages embrace significant
variations over time [5] render the task more challenging.

The existing SLR approaches typically require a large
number of annotated examples for each sign class of in-
terest [6], [7], [8], [9], [10]. This dependency means that one
presumably needs to collect annotated samples for all signs
in all sign languages of interests, including variations ex-
pressed by multiple persons per sign under various record-
ing conditions. Noting that over 140 sign languages and
many more dialects are estimated to exist around the world
[11], with typically 2500 to 5500 signs per language [12],
[13], [14], the need for supervised examples create a data
bottleneck problem in scaling up SLR. Towards bypassing
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this problem, we explore the possibility of recognizing sign
classes with no annotated visual examples, purely based
on existing definitions, which we call zero-shot sign language
recognition (ZSSLR). Unlike the traditional supervised SLR,
where training data is needed for all classes of interest, in
ZSSLR, the aim is to recognize novel sign classes that do not
have any visual training samples. We additionally introduce
the problem of generalized zero-shot sign language recognition
(GZSSLR), which allows joint evaluation of the ability of a
model to generalize out of the training set for classes with
training samples and recognize novel classes.

In order to transfer knowledge across classes, we use
textual descriptions of signs taken from a sign language
dictionary, together with attribute descriptions gathered
from a sign hand shapes dictionary. Using a sign language
dictionary for obtaining the class representations has two
significant advantages for being (i) readily available, and
(ii) prepared by the sign language experts in a detailed way.
In this manner, we explore the expressive power of both
the textual sign language descriptions and the attributes
acquired from dictionaries to form the auxiliary information
that is required for recognizing novel sign language classes.
Note that, since this auxiliary data is acquired from dictio-
naries, there is no need for any ad-hoc manual annotations.

To study the ZSSLR problem, we introduce three bench-
mark datasets. We obtain the first one, ASL-Text , by adapt-
ing the ASLLVD dataset [3]. We define the next two ones,
MS-ZSSLR-C and MS-ZSSLR-W, by adjusting and manually
filtering the MS-ASL [15] dataset. We augment all three
datasets with textual and attribute-based class descriptions
based on sign language dictionaries.

To tackle the ZSSLR problem, we propose an
embedding-based framework that consists of two main
components. The first component aims to capture the tem-
poral and spatial patterns, for which we offer alternative
architectures based on 3D-CNN, LSTM, and the recently
introduced shift-based CNN [16] modules. This component
operates over the body and hand regions extracted from
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Fig. 1. Illustration of the proposed zero-shot sign language recognition (ZSSLR) approach. Two separate streams are used for both visual and
auxiliary class representations. Visual representation is obtained by encoding body and estimated hand streams through spatiotemporal deep
architectures. Class embeddings are obtained by encoding textual dictionary definitions and attribute combinations. We learn a compatibility function
that links the visual representation to the auxiliary class embeddings for zero-shot recognition.

videos in parallel. The second component, i.e., zero-shot
learning (ZSL) component, learns a scoring function for
measuring the compatibility between a given visual repre-
sentation and text and/or attribute-based sign description.
We provide an overview in Figure 1. We rigorously evaluate
our approach on our three benchmark datasets for both
ZSSLR and GZSSLR problems and analyze the results.

A preliminary version of this work has previously ap-
peared in [17], where ZSSLR problem was first formulated
and the benchmark dataset ASL-Text was defined. The ap-
plied model in [17] was based on 3D-CNNs and LSTMs, the
benchmark results were presented on ASL-Text. This work
extends it in multiple ways: first, we improve the semantic
embeddings of sign classes by collecting new attribute-
based representations and show that our attribute-based
class definitions yield significant empirical improvements,
mainly when used in combination with textual descriptions.
Second, we add new temporal shift modules to improve
the spatiotemporal video representation. Third, we extend
our study by introducing the GZSSLR problem in addi-
tion to ZSSLR. Fourth, we introduce two new (G)ZSSLR
benchmark datasets. Fifth, we extend our empirical analyses
with additional insights into the ZSSLR problems over the
three benchmarks, i.e. ASL-Text, MS-ZSSLR-W, MS-ZSSLR-
C. Finally, we propose two new techniques for analyzing
the impact of binary attribute definitions of unseen classes
to help us gain insights about attribute-based correct and
incorrect zero-shot predictions, respectively.

The remainder of the paper is organized as follows. We
start by reviewing the related literature in Section 2. We
explain the proposed ZSSLR benchmarks in Section 3. We
present our approach to the problem and the attribute anal-
ysis technique in Section 4. We present a detailed evaluation
and analysis of our models in Section 5. We conclude the
paper in Section 6.

2 RELATED WORK

2.1 Sign Language Recognition (SLR)
SLR is a major computer vision task that has been studied
for more than three decades [18]. The mainstream SLR
approaches can be grouped into two categories: (i) isolated
SLR [19], where a single sign is recognized at a time, and
(ii) continuous SLR [6], where one or more sentences are
recognized over the streaming input. Our work belongs to
isolated SLR category as we opt to focus on the study sign
recognition with incomplete supervision, isolated from the
orthogonal challenges of recognition on streaming data.

Early SLR methods mostly use hand-crafted features in
combination with a classifier like support vector machine
[18], [20], [21], [22], [23]. Hidden Markov Models (HMM),
Conditional Random Fields and neural network based ap-
proaches have also been explored to model the temporal
patterns [24], [25]. Recently, several deep learning based SLR
approaches have been proposed [26], [27], [28].

Despite the relative popularity of the topic, the problem
of annotated data scarcity has been seldomly addressed in
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TABLE 1
Statistics of the origin datasets; ASLLVD and MS-ASL.

Dataset Classes Signer Videos Videos per Class Controlled

RWTH-Boston-50 [22] 50 3 201 4 3
Purdue ASL [40] 104 14 1834 18 3
SIGNUM [41] 450 25 12150 27 3
LSA64 [42] 64 10 3200 50 3
GSL Corpus [43] 981 2 9810 10 3
DEVISIGN [44] 2000 8 24000 12 3
ASLLVD [3] 3300 1-6 9800 3 3
MS-ASL [15] 1000 11-45 25513 25 7

SLR research. Farhadi and Forsyth [29] are the first to study
the alignment of sign language video subtitles and signs in
action to overcome annotation difficulty. Similarly, [30] pro-
poses to transfer large amounts of labeled avatar data with
few labeled human signer videos to spot words in videos.
Buehler et al. [31] aim to reduce the annotation effort by
using the subtitles of British Sign Language TV broadcasts.
The idea is to apply Multiple Instance Learning (MIL) to
recognize signs out of TV broadcast subtitles. There are also
other studies that utilizes the subtitles of TV broadcasts [32],
[33]. Pfister et al. [33] differ from the two aforementioned
MIL studies as these studies track the co-occurrences of lip
and hand movements to reduce the search space for visual
and textual content mapping. Nayak et al. [34] propose to
locate signs in continuous sign language sentences using
iterated conditional modes. Pfister et al. [35] define each
sign class with one strongly supervised example and train
an SVM based detector out of these one-shot examples.
The resulting detector is then used to acquire more training
samples from another weakly-labeled data. Koller et al. [9]
propose a combined CNN and HMM approach to train a
model with large but noisy data. Koller et al. [36], [37] later
suggest using CNN-HMM with LSTM for weakly-labeled
noisy data. Albanie et al. [38] underline the difficulty in
collecting sign language data and propose to extract annota-
tions using keyword spotting in interpreted TV broadcasts.
The key idea behind this approach is that signers mostly
mouth the words they are signing. Recently, Momeni et
al. [39] propose a unified Multiple Instance Learning sign
spotting framework in continuous sign language videos
and evaluate the model in low-shot settings. None of the
aforementioned models approach the problem of annotated
data scarcity from a zero-shot learning perspective, which
can potentially play a central role in modeling larger vocab-
ularies and a large number of languages.

2.2 Sign language datasets

There are many SL datasets available for both isolated [3],
[15], [22], [40], [41], [42], [43], [44] and continuous sign
language recognition [38], [41], [45], [46], [47]. Table 1 sum-
marizes the details of the currently available public datasets
that include isolated sign data to the best of our knowledge.
ASLLVD [3] includes the most class count while MS-ASL
[15] includes the most in-class sample count. As opposed
to most of the available isolated sign language datasets
that their recordings are performed in a controlled labora-
tory environment, MS-ASL [15] covers unconstrained sign
recordings concerning large variation in signer, background
and positioning. We have chosen ASLLVD [3] and MS-ASL
[15] a basis for constructing our zero-shot oriented datasets

because of their large class count with challenging real-life
recording conditions.

2.3 Zero-Shot Learning (ZSL)
ZSL problems have received significant attention over the
past several years, following the pioneering works of Lam-
pert et al. [48] and Farhadi et al. [49]. The main goal in ZSL
is learning to generalize a recognition model for identifying
unseen classes. Most of the ZSL approaches rely on trans-
ferring semantic information from seen to unseen classes
utilizing auxiliary information. Among the possible sources
of auxiliary information, attributes and textual representa-
tions stand out as powerful and practical options, for which
we present a brief overview in the following.

Attribute-based ZSL. Attribute-based ZSL approaches in
computer vision rely on class representations based on the
information about the relevance of each visual attribute
for each class. Attribute information can take many forms,
including binary [50], continuous [51] or relative [52]. At-
tributes have been used for image classification [48], [53],
image description [49], [50], object detection [54], [55], and
caption generation [56], [57]. We use attributes for high level
representation of the sign classes.

Earlier zero-shot recognition approaches use attribute
prediction [48], [49], where each attribute is learned inde-
pendently. More recent works typically focus on directly
modeling relations between image features and class at-
tributes, see, e.g. [53]. Jayaraman et al. [51] propose to
model attribute relationships. In recent studies [58], [59],
deep learning based approaches to learn visual attributes
is proposed.

Text-based ZSL. In text-based ZSL, the semantic space and
the representation of a class are constructed out of textual
descriptions. Semantic word/sentence vectors and concept
ontologies have been studied in this context [60], [61],
[62], [63]. Label embedding models are explored to make
a connection between seen and unseen classes via semantic
representations [53], [64], [65], [66]. Textual descriptions are
acquired from various resources; such as Wikipedia [67].
In our case, we use a sign language dictionary as the
textual information source. In order to utilize these textual
resources, various unsupervised embedding models exist,
such as word2vec [68], GloVe [69], and BERT [70].

Zero-shot action recognition. In relation to SLR, ZSL of
human actions has been studied. Liu et al. [71] are the
first to propose attribute based model for recognizing novel
actions. Jain et al. [72] propose a semantic embedding based
approach using commonly available textual descriptions,
images, and object names. Xu et al. [73] propose a regression
based method to embed actions and labels to a common
embedding space. Xu et al. [74] also use word-vectors as
a semantic action embedding space in a transductive set-
ting. Wang et al. [75] exploit human actions via related
textual descriptions and still images, where the idea is to
improve word vector semantic representations with addi-
tive information. Habibian et al. [76] also propose to learn
semantic representations of videos with freely available
video and relevant descriptions. Qin et al. [66] use error-
correcting output codes to overcome the disadvantages of
attributes and/or semantic word embeddings of actions.
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Hahn et al. [77] explore the idea of learning a cross-modal
embedding space for textual features of class labels and
spatiotemporal features of action videos.

Compared to action recognition, in SLR, even a subtle
change in motion and/or handshape can change the en-
tire meaning, which makes SLR a different problem that
requires specialized methods for zero-shot recognition. Rel-
atively speaking, gesture recognition is a problem with more
similarities to SLR. While there are a couple of recent meth-
ods on zero-shot gesture recognition, these methods are
limited to either gestures for human-robot interaction [78],
or, few classes, e.g., 10 hand gesture classes [79]. In this
work, we introduce and work on much larger-scale and
comprehensive datasets for sign language recognition and
incorporate both textual and attribute-based sign represen-
tations to our study.

Understanding the influence of class attributes. Recently,
there has been a great interest in developing techniques
for producing explanations of predictions made by deep
architectures. Most main-stream works introduce methods
that can be used to estimate the importance of input fea-
tures, such as LIME [80], DeepSHAP [81], [82], and Grad-
CAM [83]. Only very few recent works introduce explana-
tion approaches for zero-shot learning models: Selvaraju et
al. [84] define a method towards associating neurons with
attributes and uses the associations learnt by the model to
determine attributes with largest influence on the result-
ing class scores. Liu and Tuytelaars [85] propose a ZSL
model that can produce visual and textual explanations
for recognition results. In our work, we are interested in
understanding the role of binary class attributes on zero-
shot predictions. We note that this differs from analyzing
input feature dimensions as attributes can be considered as
auxiliary model parameters that are used to infer the class
predictors, as opposed to being instance-specific input data.

3 PROPOSED DATASETS

Since there is no available dataset for ZSSLR, we repurpose
two existing supervised sign language datasets to create
three ZSSLR benchmarks: ASL-Text, MS-ZSSLR-W and MS-
ZSSLR-C. These datasets jointly provide a rich experimental
setup thanks to significant differences across them, e.g., in
terms of per-class sample counts and embracing controlled
or uncontrolled recording setups. We provide the details of
the datasets in the following paragraphs, followed by the
explanations about the way we obtain the text-based and
attribute-based class definitions.

3.1 ASL-Text dataset
To the best of our knowledge, the ASLLVD dataset [3] is the
largest isolated sign language recognition dataset available
in vocabulary size. We select the top 250 sign classes, ranked
by the number of samples and number of signers per class.
We then augment this dataset with the textual definitions
of the signs from Webster American Sign Language Dic-
tionary [86] and attribute definitions from American Sign
Language Handshape Dictionary [87]. We refer to this new
benchmark dataset as ASL-Text. Example frames and their
textual descriptions from the ASL-Text dataset are presented
in the upper half of Figure 2.

In this dataset, the average sequence length for a video
sample is 33 frames. While splitting the dataset into three
disjoint train, validation and test sets, the classes with the
most signer variations, and in-class samples are assigned
to the training set. The remaining classes with relatively
fewer visual examples are allocated into the validation and
test sets to obtain a more realistic experimental setup. The
average length of a textual description is 30 words, where
the total vocabulary includes 154 distinct words. With only
6.3 samples per class, the dataset provides considerably
few training samples, in comparison to commonly used
zero-shot image classification datasets, such as aPY [49]
and AWA-2 [88], which contain approximately 630 and 750
samples per training class, respectively.

3.2 MS-ZSSLR-W/C datasets
We construct our other ZSSLR benchmarks by adapting the
recently introduced MS-ASL large-scale dataset [15]. The
MS-ASL dataset provides a compelling collection of videos
with challenging and realistic sign language sequences.

The dataset is originally collected from public videos
with manual captions, descriptions, titles, and subtitles.
These videos are processed using automated techniques
such as Optical Character Recognition (OCR) to capture
the labels of longer video clips, title extraction to be used
as the label in the short ones. As a result of these semi-
automatic procedures, the dataset contains some artifacts,
such as repetitive signs in some single-sign sequences. In
addition, most sign classes do not include the standard sign
examples but also their sign dialects as well.

We construct two separate benchmarks based on MS-
ASL: (i) MS-ZSSLR-W(ild), which can be seen as an in-the-
wild test bed and (ii) MS-ZSSLR-C(lean), which provides
a more controlled and cleaner benchmark. For both, we
first select the largest 200 of the available sign classes
in MS-ASL, ranked by the number of samples per class.
We then augment the dataset with textual and attribute-
based descriptions as we do for constructing the ASL-Text
benchmark. We define the resulting dataset, with minimal
modifications 1, as the MS-ZSSLR-W benchmark.

The fact that MS-ASL contains language dialect vari-
ations, in addition to the within-language variations (e.g.
photometric, geometric, and person-to-person differences),
is considered as an advantage for supervised sign recogni-
tion purposes. However, these lingual variations can equally
be regarded as label noise that reduces the quality of the
experimental setup for ZSL purposes: each dialect should
typically be accompanied by its own sign class definitions.
For instance, there are multiple ways of signing pizza in
ASL, varying across geographical regions [89]. One popular
variation of pizza sign mimics shoving a piece of pizza
in your mouth, while another highly used variation use
Double-Z and A handshape in conjunction sequentially,
which corresponds to completely different signs.2 Since we
have neither the dialect annotations in MS-ASL videos and

1. As an exception, four of the top-200 (out/outside, bus, light and born)
classes are replaced with top-250 (money, wife, week, old) counterparts
due to the mismatch between visual sign execution and relevant textual
and attribute dictionary descriptions.

2. Variations of the pizza sign can be observed in http://www.
lifeprint.com/asl101/pages-signs/p/pizza.htm.

http://www.lifeprint.com/asl101/pages-signs/p/pizza.htm
http://www.lifeprint.com/asl101/pages-signs/p/pizza.htm
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TABLE 2
Statistics of the proposed ZSSLR benchmark datasets.

Dataset Class
Count

Train
Count

Val.
Count

Test
Count

Total
Count

Avg. per
Class

Frame
Count

Con-
trolled?

ASL-Text 250 1188 151 259 1598 6.3 54,151 3
MS-ZSSLR-W 200 5862 1153 1846 8861 44.3 922,962 7
MS-ZSSLR-C 200 7303 1368 1779 10,450 52.2 688,118 7

nor the per-dialect sign definitions, the ZSL experimental
results based on reference sign class definitions mixed with
non-compliant sign examples can be misleading.

Based on these observations, we construct a second MS-
ASL based benchmark with minimal data and label noise.
For this purpose, we have manually verified each video
sample and excluded the dialects, and retained only the
sign samples that adhere to the reference. We have also split
the repetitive sequences into multiple sequences to be used
as separate samples. This constitutes our third benchmark,
MS-ZSSLR-C. The number of frames per video in these MS-
ZSSLR-W/C datasets range from 4 to 298.

A summary of the dataset statistics is provided in Ta-
ble 2. It can be seen that ASL-Text has the highest class count
(250) but the smallest number of samples per class on aver-
age (6). MS-ZSSLR-W/C datasets both have 200 classes with
44 and 52 average sample counts per class, respectively,
which are approximately 7 times higher than that of ASL-
Text. Overall, therefore, MS-ZSSLR-W/C provides a larger
number of samples taken in an uncontrolled setting for each
class while ASL-Text provides fewer per-class samples taken
in a laboratory environment, for a relatively larger number
of classes. The dataset splits are explained in Section 5.1.

Figure 2 presents example sign sample frames and the
corresponding text and attribute-based descriptions for the
ASL-Text and MS-ZSSLR-W/C datasets. It can be observed
how textual descriptions and attributes can be complimen-
tary to each other for characterizing signs in terms of hand-
shapes, hand locations, hand movements, palm orientations,
combined with some additional details. Our experimental
results on ZSSLR and GZSSLR in Section 5 confirm this
observation.

3.3 Textual descriptions
We augment all datasets with the textual sign descriptions
that are gathered from Webster American Sign Language
Dictionary [86]. The textual descriptions of the proposed
datasets include the detailed instructions of signs with an
emphasis on four basic elements: handshape (A-hand, S-
hand, 5-hand, etc.), the orientation of the palms (forward,
backward, etc.), movements of the hands (right, left, etc.),
and the location of hands concerning to the body (in front
of the chest, each side of the body, right shoulder, etc.). Some
descriptions additionally include non-manual cues such as
the facial expressions, head movement , and body posture.
The average length of a textual description is 30 words with
a vocabulary of 154 words and 29 words with a vocabulary
of 274 words in the MS-ASL and MS-ZSSLR-W/C datasets,
respectively.

Example textual descriptions can be found in Figure 2.
Note that hand shapes are described with a specialized
vocabulary that involves the terms F-hand, A-hand, S-hand, 5-
hand, 8-hand, 10-hand, open-hand, bent-v hand, flattened-o hand

[86]. From the example hand shapes shown in Figure 2, it
can be seen that the textual sign language descriptions are
indeed quite indicative of the ongoing gesture.

3.4 Attribute descriptions
We further annotate the datasets with high-level attributes
that are gathered from American Sign Language Hand
Shape Dictionary [87]. The attributes highlight four basic
features; hand shape (A-hand, S-hand, 5-hand, etc.), palm
orientation (in, out, up, down, left, or right),
hand location (neutral, chest, on the shoulder,
mouth/nose, on forehead/eyes, ear/temple),
and movement (up, down, left, right, inward,
outward, circular, wrist movement, finger
movement). We additionally include two relevant attributes:
repetition indicates whether the hand movement repeats
or not, and one-hand indicates whether the sign is made
by a single hand or both hands. In combination, we obtain
a 53-dimensional attribute-based class representations. As
can be seen in Figure 2, these selected attributes provide
an expressive medium to represent sign characteristics.
For instance, bicycle sign is described to have S-hand
handshape with palms down, natural hand locations,
and circular movements. Additionally, circular
movement is repeated and both hands are used in the
making of the sign.

4 METHODOLOGY

In this section, we first give a formal definition of the
problem and then explain the components of the proposed
approach. Finally, we present our binary attribute analysis
techniques.

Problem definition. In ZSSLR, there are two sources of
information: (i) the visual domain V, which consists of sign
videos, and, (ii) the auxiliary information domain T, which
includes the class embeddings based on textual descriptions
and/or attributes. At training time, the videos, labels and
the sign descriptions are available only for the seen classes,
Cs. In ZSSLR, at test time, our goal is to correctly classify
the examples of novel unseen classes, Cu, which are distinct
from the seen classes. GZSSLR is essentially the same as
ZSSLR except that at test time, the goal expands to correctly
classifying the novel examples of both unseen classes Cu,
and the seen classes Cs. In our explanations of the approach
below, we focus on the ZSSLR case for simplicity.

The training set Str = {(vi, ci)}Ni=1 consists ofN samples
where vi is the i-th training video and ci ∈ Cs is the
corresponding sign class label. We assume that we have
access to the textual and/or attribute descriptions of each
class c, represented by τ(c). The goal is to learn a zero-shot
classifier that can correctly assign each test video to a class in
Cu, based on the auxiliary information. We aim to construct
a label embedding based zero-shot classification model. For
this purpose, we define a compatibility function F (v, c) as
a mapping from an input video and class pair to a score
representing the confidence that the input video v belongs
to the class c. Given the compatibility function F , the test-
time zero-shot classification function f : V → Cu is defined
as:

f(v) = argmax
c∈Cu

F (v, c). (1)
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ASL-Text Dataset
BICYCLE EAT ALONE LIBRARY

Move both S hands in alternating forward circles,
palms facing down, in front of each side of the body.

Handshape: S hand

Orientation: Palms Down

Location: Neutral

Movement: Circular
Others: Repeats, Two-hand sign

Bring the fingertips of the right flattened O hand,
palm facing in, to the lips with a repeated movement.

Handshape: Flattened O hand

Orientation: Palm In

Location: Cheek/Chin/Mouth/Nose

Movement: Towards Body
Others: Repeats, One-hand sign

With the right index finger extended up, move the
right hand, palm facing back, in a small repeated
circle in front of the right shoulder.

Handshape: 1 hand

Orientation: Palm In

Location: Shoulder

Movement: Circular
Others: Repeats, One-hand sign

Move the right L hand, palm facing forward, in a
circle in front of the right shoulder.

Handshape: L hand

Orientation: Palm Out

Location: Neutral

Movement: Circular
Others: Repeats, One-hand sign

MS-ZSSLR-W(ild)/C(lean)
BOOK HORSE ORANGE FISH

Beginning with the palms of both open hands
together in front of the chest, fingers angled forward,
bring the hands apart at the top while keeping the
little fingers together.

Handshape: Open B hand

Orientation: Palm Up

Location: Neutral

Movement: Wrist Movement
Others: No Repeat, Two-hand sign

With the extended thumb of the right U hand against
the right side of the forehead, palm facing forward,
bend the fingers of the U hand up and down with a
double movement.

Handshape: H hand

Orientation: Palm Out

Location: Temple or Ear

Movement: Finger Movement
Others: Repeats, One-hand sign

Beginning with the right C hand in front of the
mouth, palm facing left, squeeze the fingers open
and closed with a repeated movement, forming an S
hand each time.

Handshape: C and S hand

Orientation: Palm Left

Location: Cheek/Chin/Mouth/Nose

Movement: Finger Movement
Others: Repeats, One-hand sign

While touching the wrist of the right open hand,
palm facing left, with the extended left index finger,
swing the right hand back and forth with a double
movement.

Handshape: Open-B hand

Orientation: Palm In and Palm
Left

Location: Neutral

Movement: Move Away and
Wrist Movement
Others: No Repeat, Two-hand sign

Fig. 2. Example sequences and corresponding textual descriptions from the ASL-Text (upper half) and MS-ZSSLR-W/C (bottom half) datasets. For
visualization purposes, only the person regions of the videos are shown.

In this way, we leverage the compatibility function to rec-
ognize novel signs at test time. In the case of GZSSLR, the
argmax operator runs over Cu ∪ Cs instead.

The performance of the resulting zero-shot sign recog-
nition model directly depends on three factors: (i) video
representation, (ii) class representation, and, (iii) the model
used as the compatibility function F . An overview of our
approach for addressing these issues is shown in Figure 1,
and the details are presented in the following sections.

4.1 Spatiotemporal video embedding

In this work, we explore two approaches for obtaining
video representations. The first one is by extracting short-
term spatiotemporal features using ConvNet features of the
video snippets, and then capturing longer-term dynamics
through recurrent models. The second approach is captur-
ing spatiotemporal features through the recently proposed
temporal shift module (TSM) [16] in an end-to-end manner.
We improve the video representation by extracting features
in two separate streams: the full frames and hand regions.

Short-term spatiotemporal representation. Short-term spa-
tiotemporal representation is obtained by first splitting each
video into 8 frames long snippets and then extracting their
features using the pre-trained I3D model [90], a state-of-
the-art 3D-ConvNet architecture. I3D model is obtained by
adapting a pre-trained Inception model [91] to the video
domain and then fine-tuning on the Kinetics dataset. The

final video representation is obtained by temporally average
pooling the resulting snippet features.

Modeling longer-term dependencies. Average pooling the
3D-CNN features is a well-performing technique for the
recognition of non-complex (singleton) actions. Signs, on
the contrary, tend to portray more complex patterns that
are composed of sequences of multiple basic gestures. In
order to capture the transition dynamics and longer-term
dependencies across the snippets of a video, we use re-
current models that take an I3D representation sequence as
input, and, provide an output embedding. For this purpose,
we use a bidirectional LSTM (bi-LSTM) [92] model, and,
compare it against the average pooling, LSTM [93] and GRU
[94] models.

Temporal shift module. Apart from modeling both short-
term and longer-term dependencies in conjunction, we
adapt Temporal Shift Module (TSM) [16] to our proposed
model as a spatiotemporal video representation module.
TSM [16] aims to achieve 3D CNN performance with 2D
CNN complexity for large scale video understanding. The
module basically shifts information on channels along the
temporal dimension in forward and backward to aid infor-
mation exchange with neighboring frames. For instance, a
given 1-D input X with infinite length and a kernel size of
3 with weights of (w1, w2, w3), the shift operation can be
defined as:

X−1i = Xi−1, X
0
i = Xi, X

+1
i = Xi+1 (2)
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FRIEND

HAMBURGER

COMB

BOSS

MOSTOBSCURE

Beginning with the left 5 hand in front of the 
chest, palm facing in, and the right 5 hand by 
the right side of the body, palm facing 
forward, bring the right hand in an arc past 
the left hand, ending with the wrists crossed.

Hook the bent right index finger, 
palm facing down, over the bent left 
index finger, palm facing up. Then 
repeat, reversing the position of the 
hands.

Clasp the right curved hand, palm 
facing down, across the upturned left 
curved hand. Then flip the hands 
over and repeat with the left hand on 
top.

Tap the fingertips of the right curved 
5 hand on the right shoulder with a 
repeated movement.

Drag the fingertips of the right 
curved 5 hand through the hair on 
the right side of the head with a short 
double movement.

Beginning with the palm sides of 
both 10 hands together in front of the 
chest, bring the right hand upward, 
ending with the right hand in front of 
the right shoulder, palm facing left.

Fig. 3. t-SNE visualization of sign descriptions using BERT- [70] embeddings. Nearby descriptions typically correspond to visually similar signs.
Best viewed in color, with zoom.

by shifting the input by -1, 0, +1 in a bidirectional way. In or-
der to get a spatiotemporal video representation, φ(v), with
shifted input, the following multiply-accumulate operation
is performed to acquire a visual representation;

φ(v) = w1 ·X−1 + w2 ·X0 + w3 ·X+1 (3)

Intuitively, the module first shifts the data and then perform
2D convolution operation. The advantage is that such a
shift based approach can be incorporated into any 2D CNN
model.

Two-stream video representation. Hands play a central
role in expressing signs. In order to encode details of the
hand movement, we detect and crop the hand regions using
OpenPose [95] and form a hand-only sequence correspond-
ing to each video snippet. As a result, two separate streams
are defined, including either TSM [16] or I3D and bi-LSTM
networks, over whole video frames and hand regions. The
resulting video representations coming from each stream are
then concatenated to obtain the final video representation,
as illustrated in Figure 1. Note that, both streams are trained
together with the compatibility function in an end-to-end
fashion.

4.2 Auxiliary knowledge modeling
We use the auxiliary information needed for zero-shot
recognition via two main sources; textual descriptions and
attributes. The descriptions are both based on sign language
dictionaries and include rich information about the signs.
We explore the utilization of concatenated textual and at-
tribute descriptions apart from individual usages of them.

Text-based class embeddings. We extract contextualized
language embeddings from textual sign descriptions using
the state-of-the-art language representation model BERT
[70]. BERT architecture basically consists of a stack of en-
coders; specifically, multi-layer bidirectional transformers
[96]. The model’s main advantage over the word2vec [68]

and glove [69] representations is that BERT model is contex-
tual and the extracted representations of the words change
with respect to other words in a sentence. Figure 3 shows
the t-SNE visualization of all sign class BERT embeddings.
A close inspection to this feature space reveals that classes
that appear closer in t-SNE embeddings have indeed similar
descriptions. For instance, friend and hamburger signs are
composed of similar motions with different handshapes,
obscure and most signs have similar hand movements but
different hand shapes and directions, and, comb and boss
signs include the same repeated movement with different
handshape and locations with respect to the body.

Attribute-based class representation. As the attribute based
class representations, we use binary attributes such that each
class c has fixed-length binary attribute vectors; α(c) =
[ac1, a

c
2, ..., a

c
53] to describe the classes. These attributes are

defined based on a handshape dictionary for each sign class
that emphasizes four points; handshapes, hand location,
palm orientation, hand movement to describe sign making.
Figure 2 presents sample attribute based representations. To
the best of our knowledge, this is the first study that uses
attributes as a common space for sign language recognition.

We also utilize both attributes and textual descriptions
in conjunction as the auxiliary information source. To have
a more compact representation, we first transform 768
dimensional textual feature vectors into a dt-dimensional
embedding space using a linear layer. We then concatenate
the 53 dimensional attribute and dt dimensional textual
feature vectors into k + 53 dimensional vectors to represent
sign classes. We fix dt = 64 based on the validation set
results of ASL-Text dataset. In Section 5.2, we evaluate
the corresponding ablation studies using these different
information sources and provide details of the dt tuning
experiments.
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4.3 Zero-shot learning model
In our work, we adapt a label embedding [53], [97] based
formulation to tackle the ZSSLR and GZSSLR problems.
More specifically, we use a bi-linear compatibility function
that evaluates a given pair of video and class representa-
tions:

F (v, c) = φ(v)TWρ(c) (4)

where φ(v) is the d-dimensional embedding of the video
v, W is the d×t compatibility matrix, and ρ(c) is the t-
dimensional class embedding. The class embedding can be
the per-class attribute vector, reduced BERT embedding or
their concatenation.

In order to learn this compatibility matrix, we use cross
entropy loss with `2-regularization:

min
W
− 1

N

N∑
i=1

log
exp{F (vi, ci)}∑

cj∈Cs
exp{F (vi, cj)}

+ λ‖W‖2 (5)

where λ is the regularization weight. This core formulation
is also used in [98], in a completely different ZSL problem.
Since the objective function is analogous to the logistic
regression classifier, we refer to this approach as logistic label
embedding (LLE).

In addition to LLE, we also adapt the embarrassingly sim-
ple zero-shot learning (ESZSL) [65] and semantic auto-encoder
(SAE) [99] formulations as baselines. The ESZSL formula-
tion utilizes a regression-based loss function in combination
with multiple ZSL-specific regularization terms to learn a
bi-linear compatibility model between the image and class
embeddings. The SAE approach embraces an auto-encoding
principle that aims to project image embeddings to the
semantic space, and reconstruct back from it. Compared
to these two alternatives, LLE takes a more discrimina-
tive learning approach simply based on regularized cross-
entropy loss over the compatibility scores.

4.4 Analysing binary attribute based class definitions
In our experimental results, presented in the next section,
we observe that the auxiliary knowledge based class rep-
resentations greatly affect the ZSSLR results. To better un-
derstand the role of auxiliary knowledge in ZSSLR, binary
attributes are particularly valuable for being visually and
semantically distinct entities [100]. We note that the case
of using dictionary-based binary attributes in ZSSLR dif-
fers from the commonly studied case in zero-shot image
classification benchmarks, e.g. aPY, AWA1, AWA2, CUB and
SUN datasets [88], where the class attributes are typically
continuous and obtained by averaging per-image manual
annotations for experimental purposes. In contrast, we focus
on a more realistic setting where the attribute annotations
are derived directly from the canonical definitions of signs,
without relying on visual sample annotations (of unseen
classes). To this end, we aim to evaluate how associating
(or not) a class with a binary attribute affects the unseen
class predictions. For this purpose, below, we present two
techniques for analysing correct and incorrect zero-shot
recognition results.

Analysing correct confidence scores. On correct predic-
tions, we aim to understand the relation between the con-
fidence scores and the binary attribute based definitions of

classes. Had attributes been continuous entities, we could
straightforwardly evaluate the impact of the relation be-
tween the k-th attribute and c-th class in terms of partial
derivatives:

dp(c|v)
dac,k

(6)

where ac,k is the representation of class c in terms of the
k-th attribute and p(c|v) is the posterior probability of class
c for the input v. We note that F , used in the definition of
p(c|v), depends on ac,k through the use of class embedding
function ρ(c). However, since we are interested in binary
attribute definitions of sign classes, we cannot directly com-
pute partial derivatives. As a remedy, we define the flip-
difference operator∇c,k, analogous to the backward difference
based derivative approximations:

∇c,k[p(v|c)] = p(c|v)− p(c|v; ac,k) (7)

where we use the notation p(c|v; ac,k) to express posterior
probability of class c for input v when the k-th attribute of
the c-th class is flipped (positive to negative, or vice versa)
at inference time.

Intuitively, we expect a significant drop in posterior
probability when an informative attribute is flipped. There-
fore, a relatively large ∇c,k[p(v|c)] value can be interpreted
as the higher importance of the corresponding class attribute
relation for some particular input v. To estimate the class-
level importance, we take the correctly classified test exam-
ples y of some unseen class c, and, average the result of
Eq. 7 over the test samples for each attribute separately,
resulting in estimated importance scores of attributes in
making correct zero-shot predictions.

Analysing zero-shot misclassifications. To better under-
stand incorrect zero-shot predictions, we again use a flip-
difference operator based approach to estimate the effect
of each attribute. However, in this case instead of simply
computing the influence of attributes on posterior proba-
bilities (of wrongly predicted classes), we want to more
explicitly answer the question why some other class is being
predicted instead of the correct one. For this purpose, we
focus on log-derivative of class posterior probabilities given
by the ZSL model. More specifically, analogous to partial
derivative of log ratios with respect to attributes, we apply
the flip-difference operator on the ratios:

∇c,k[r(c
?, co, v)] = r(c?, co, v)− r(c?, co, v; ac?,k) (8)

where r(c?, co, v) denotes the log-ratio of some (incorrect)
class c? probability over the correct class co for the input v:

r(c?, co, v) = log
p(c?|v)
p(co|v) . (9)

Similarly, r(c?, co, v; ac?,k) denotes the log ratio when poste-
rior probabilities are computed by flipping the k-th attribute
in the definition of the c-th class:

r(c?, co, v; ac?,k) = log
p(c?|v; ac?,k)
p(co|v; ac?,k)

. (10)

Overall, by definition, a large drop in log-ratio value in-
dicates that the probability will shift more quickly from
the incorrectly predicted class to the correct one. Therefore,
larger influence values in this definition can be interpreted
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TABLE 3
Comparison of ZSL models on ASL-Text. I3D [90] features are

extracted over the whole frames (i.e. body stream) only.

Method visual rep. Val (30 Classes) Test (50 Classes)
top- 1 top-1 top-2 top-5

Random - 3.3 2.0 4.0 10.0
SAE body 10.6 8.0 12.0 16.0
ESZSL body 12.0 16.9 26.0 44.4
LLE body 14.1 11.4 21.2 41.1

as the dominant sources of corresponding misclassifications.
To obtain confusion-level attribute influence scores, we find
the most commonly occurring class confusions, and average
the values obtained via Eq. 8 over the test samples of each
predicted and ground-truth class tuple.

5 EXPERIMENTS

In this section, we first describe the implementation details
and the experimental setup. 3 Then we present and discuss
our experimental results on (G)ZSSLR. Finally, we present
our attribute analysis results in Section 5.3.

5.1 Experimental setup and implementation details
We evaluate our models on the proposed zero-shot sign
language datasets; ASL-Text, MS-ZSSLR-W, and MS-ZSSLR-
C. In our experiments, we fix the number of video frames
of each sign video to 32. For LSTMs, we extract 1024-d
features from the last average pooling layer of the I3D model
using a stride of 4 using every consecutive 8 frames. When
modeling the longer temporal context, we set LSTM’s or bi-
LSTM’s initial hidden and cell states to the average pool of
each sequence during training.

In this work, we opt to utilize a bidirectional-TSM
module with the ResNet-34 backbone [101] pretrained on
ImageNet. We utilize TSM architecture by removing its last
fully-connected layer and use the output of its preceding
the average-pooling layer as the video representation. One
of the trade-offs of TSM is that data movement highly
increases memory usage, and therefore, we reduce each
video sample frame count to 4 frames. We train the TSM
model in conjunction with our label embedding approach
in an end-to-end manner.

As our text representation, we use the BERTBASE model
[70] and extract 768-dimensional sentence-based features.
Following the description in [70], we concatenate the fea-
tures from the last four layers of the pretrained Transformer
of BERTBASE and l2-normalize them.

We evaluate the models in both the zero-shot learning
(ZSL) and generalized zero-shot learning (GZSL) settings.
To create dataset splits, we use the largest classes, ranked by
the number of in-class samples, for training and the smallest
ones for testing. In the ZSL setting, we use 170 classes of
ASL-Text and 120 classes of MS-ZSSLR-W/C as the training
classes. In all three datasets, the validation and test sets
contain 30 and 50 classes, respectively. In the GZSL setting
of ASL-Text, train, validation, and test splits contain 170, 200

3. Datasets and source code is available at https://ycbilge.github.io/
towardszslsign.html.

TABLE 4
Evaluation of two-stream spatiotemporal representation on ASL-Text.

body denotes full frame stream, hand denotes estimated hand stream.
Average pooling is used for aggregating short-term video

representations.

Method visual rep. Val (30 Classes) Test (50 Classes)
top- 1 top-1 top-2 top-5

Random - 3.3 2.0 4.0 10.0

ESZSL
body 12.0 16.9 26.0 44.4
hand 13.3 11.6 19.6 33.7
body + hand 14.6 17.1 25.7 43.0

LLE
body 14.1 11.4 21.2 41.1
hand 15.0 12.6 19.8 37.8
body + hand 16.2 18.0 27.4 43.8

and 250 classes, respectively. Similarly, the train, validation,
and test splits of MS − ZSSLR − W/C datasets contain
120, 150, and 200 classes in the GZSL setting, respectively.

We repeat each experiment 5 times and report the aver-
age results. We use top-n accuracy scores normalized by the
class sizes. We compute random baseline scores based on
10000 random prediction trials.

5.2 Experimental results
In the following, we first present our main ZSSLR results,
including a through evaluation with ablative studies on
the ASL-Text and MS-ZSSLR-C datasets. In Section 5.2.2,
we then present additional results on the use of in-the-
wild benchmark MS-ZSSLR-W(ild) for test-only or train
and test purposes, with comparisons to the results on the
cleaned version MS-ZSSLR-C(lean). Finally, in Section 5.2.3,
we present our generalized zero-shot learning results.

5.2.1 Main results and ablative studies
ZSL formulation. We evaluate three simple and widely
used ZSL formulations, namely SAE [99], ESZSL [65], and
LLE. In this comparison, for simplicity, we use the average
pooled 3D-CNN features of complete frames only as our
the video representation and use the ASL-Text dataset. We
compare methods in terms of top-1 validation accuracy and
top-1, top-2, and top-5 test accuracy scores.

The results are presented in Table 3. We observe that
the best performing formulations on the validation and
test sets are LLE and ESZSL, respectively. SAE performs
worse in all metrics, which can possibly be explained by the
fact that SAE incorporates an auto-encoding loss function
that aims to reconstruct from video to semantic space with
the purpose of reconstructing back from semantic space
to video. Such a reconstruction based formulation possibly
behaves sub-optimally in the case of high in-class variance
and few per-class train samples. Based on these results, we
drop SAE from our following experiments.

Two stream representation. In our next experiments, we
introduce the second stream based on estimated hand posi-
tions and evaluate the effect of using a two-stream represen-
tation. For this purpose, we compare three representations
obtained by using body, i.e., the full-frame input stream,
hand, or both. The results on the ASL-Text dataset given
in Table 4 show that using the two streams in conjunction

https://ycbilge.github.io/towardszslsign.html
https://ycbilge.github.io/towardszslsign.html
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TABLE 5
Evaluation of two-stream spatiotemporal representation on

MS-ZSSLR-C. body denotes full frame stream, hand denotes
estimated hand stream. Average pooling is used for aggregating

short-term video representations.

Method visual rep. Val (30 Classes) Test (50 Classes)
top - 1 top-1 top-2 top-5

Random - 3.3 2.0 4.0 10.0

LLE
body 10.8 5.54 9.55 19.5
hand 10.0 4.05 7.12 15.7
body + hand 11.7 5.74 10.0 19.7

TABLE 6
Comparison of different temporal units with LLE method on ASL-Text

and MS-ZSSLR-C datasets. Body and hand streams are used in
conjunction, and the textual descriptions are used as auxiliary data.

Temporal ASL-Text Dataset MS-ZSSLR-C Dataset
top-1 top-2 top-5 top-1 top-2 top-5

AvePool 18.0 27.4 43.8 5.74 10.0 19.7
LSTM 18.2 28 47.2 6.02 10.1 19.7
GRU 19.7 31.8 50.0 6.04 10.5 19.2
bi-LSTM 20.9 32.5 51.4 6.65 10.4 19.9
TSM 16.8 23.2 38.2 7.01 11.5 22.1

improves the top-1 scores on validation and test sets for
both ESZSL and LLE formulations. We also observe that LLE
outperforms ESZSL using the two-stream representation
consistently in all metrics. Due to its greater validation set
performance, we fix our ZSL formulation to LLE in the
remainder of our experiments.

In Table 4, we also observe that using the body-only
representation, while LLE performs better on the validation
set, ESZSL outperforms on the test set. This is in contrast
to the consistently better performance of LLE over the
combined body and hand representation. We believe that
this is primarily due to the nature of ZSSLR, where the
characteristics of the sign classes can greatly vary between
the train, validation, and test sets, which consist of mutually
exclusive classes. Despite such performance fluctuations
across the ZSL formulations, we, in principle, expect higher
correct recognition rates over richer visual representations
due to fine-grained distinctions across many sign classes.
For example, friend and hamburger signs are very sim-
ilar in terms of their overall motion; the hand shape is the
only factor that differentiates these two signs. In this respect,
richer visual representation based on separate body and
hand encoding is expected to be beneficial, which may also
contribute to more stable ZSL results.

In Table 5, we present the evaluation of two-steam
representation on the MS-ZSSLR-C dataset. The results con-
sistently show that using body and hand stream repre-
sentations jointly improves the results over body-only and
hand-only results, on both validation and test sets. Overall,
the results on both datasets confirm that hand and body
streams provide complementary information for zero-shot
recognition of signs.

Temporal models. We further evaluate the effect of sequen-
tial temporal modeling using recurrent architectures and the
TSM model [16], and compare to the simple temporal aver-
age pooling scheme. As the recurrent model alternatives, we

TABLE 7
Evaluation of auxiliary knowledge sources on ASL-Text and

MS-ZSSLR-C datasets, using LLE model with body and hand streams.

Temporal Auxiliary
knowledge

ASL-Text MS-ZSSLR-C
top-1 top-2 top-5 top-1 top-2 top-5

bi-LSTM
Text 20.9 32.5 51.4 6.65 10.4 19.9
Attr 23.7 38.6 59.2 12.9 22.4 41.8
Attr + Text 31.3 46.8 66.0 13.5 24.1 45.2

TSM
Text 16.8 23.2 38.2 7.01 11.5 22.1
Attr 21.8 32.2 55.7 13.1 23.3 41.4
Attr + Text 25.6 37.8 57.8 14.7 24.6 43.4

32 64 128 256 768
Dimension

0

5

10

15

20

25

30

35

Va
lid

at
io

n 
Ac

cu
ra

cy

35.1 35.5

31.8

27.6
26.3

24.6 25.3 24.3
22.6

20.0

LLE with bi-LSTM
LLE with TSM

Fig. 4. ASL-Text validation set accuracy as a function of textual em-
bedding dimensionality, in the case of combined text and attribute class
embeddings. The 768 bin corresponds using the original textual embed-
dings, without applying a reduction layer.

experiment with LSTM [93], GRU [94], and bi-LSTM [92]
based temporal models. For all cases, we use both hand
and body video streams, textual description based class
embeddings, and the LLE model.

The results for both ASL-Text and MS-ZSSLR-C are
presented in Table 6. Overall, we observe that, compared
to temporal average pooling, the framework benefits from
the introduction of explicit temporal models. On ASL-Text,
the best performing model is bi-LSTM, and TSM-based
temporal model does not generalize well. In contrast, on
MS-ZSSLR-C, we observe that TSM performs the best in
all metrics. These results suggest that TSM performs better
in the presence of a larger training set, which is probably
related to the fact that the TSM representation is learned in
an end-to-end fashion, without utilizing a pre-trained I3D
model as in bi-LSTM.

Our overall proposed framework reaches a top-1 nor-
malized accuracy of 20.9 and 7.01, and top-5 normalized
accuracy of 51.4 and 19.9 on the test set of the ASL-Text and
MS-ZSSLR-C datasets, respectively.

Auxiliary class knowledge. In our final analysis, we ex-
plore the options for auxiliary class knowledge sources. We
evaluate models using textual descriptions, attributes, or
both jointly as class embeddings. We evaluate each option
with bi-LSTM and TSM temporal models, following our
observations in the preceding experiments.

The empirical comparison of class embedding options
is presented in Table 7. We first observe that attribute
embeddings perform significantly better than the textual de-
scriptions, for both bi-LSTM and TSM based results on both
datasets, in all metrics. We also observe that using attributes
and textual descriptions jointly improves attribute-only and
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ASL-Text
Correctly Predicted Label: STRANGE
Move the right C hand from near the right side of
the face, palm facing left, downward in an arc in
front of the face, ending near the left side of the
chin, palm facing down.

Correctly Predicted Label: AHEAD
Beginning with the palm sides of both A hands
together, move the right hand forward in a small
arc.

MS-ZSSLR-C
Correctly Predicted Label: HOMEWORK
Touch the fingertips of the right flattened O hand
to the right cheek, palm facing down. Then move
the right hand down while changing into an S
hand and tap the base of the right S hand on the
back of the left S hand held in front of the chest,
palm facing down.

Correctly Predicted Label: MY
Place the palm of the right open hand on the chest,
fingers pointing left.

ASL-Text
Predicted Label: BREAK-DOWN
Beginning with the fingertips of both curved 5
hands touching in front of the chest, palms fac-
ing each other, allow the fingers to loosely drop,
ending with the palms facing down.
Correct Label: MEETING
Beginning with both open hands in front of the
chest, palms facing each other and fingers point-
ing up, close the fingers with a double movement
into flattened O hands while moving the hands
together.

MS-ZSSLR-C
Predicted Label: MONEY
Tap the back of the right flattened O hand, palm
facing up, with a double movement against the
palm of the left open hand, palm facing up.
Correct Label: COOKIE
Touch the fingertips of the right C hand, palm
facing down, on the upturned palm of the left
open hand. Then twist the right hand and touch
the left palm again.

Fig. 5. Correct (first four rows) and incorrect (last two rows) zero-shot
prediction examples on the ASL-Text and MS-ZSSLR-C datasets. The
textual descriptions of the predicted and ground-truth (separately for
incorrect predictions) classes are shown for each case.

text-only results significantly in all cases, reaching a top-
1 score of 31.3 on ASL-TEXT using bi-LSTM and 14.7 on
MS-ZSSLR-C using TSM. Similarly, using joint embeddings
instead of text-only embeddings, the best top-5 scores im-
pressively improves from 51.4 to 66.0 on ASL-Text and 19.9
to 45.2 on MS-ZSSLR-C.

These results indicate that the sign class attributes that
we define, carry valuable information and two auxiliary
knowledge sources are complementary to each other. The re-
sults also show the central importance of class embeddings
in zero-shot recognition. Therefore, a promising research
direction, in addition to representation and recognition
modeling, can be the exploration of new ways for obtaining
and leveraging auxiliary knowledge sources.

An important detail in the use combined class embed-
dings is the trainable linear layer that we use to trans-
form the original 768-dimensional textual embeddings into
smaller dt dimensional vectors, before concatenating with
the attribute embeddings. Figure 4 shows the effect of dt
choice on the ASL-Text validation scores, based on which
we set dt = 64. In the figure, the 768 bin corresponds using
the original textual embeddings directly. The results show
that the both LLE with bi-LSTM and LLE with TSM models
clearly benefit from the introduction of the transformation

layer and both models achieve the highest validation results
with dt = 64. With this setting, the accuracy scores of the
bi-LSTM and TSM based models improve from 26.3 to 35.5,
and from 20.0 to 25.3, respectively.

Qualitative results. Figure 5 presents several correct and
incorrect zero-shot prediction examples for the ASL-Text
and MS-ZSSLR-C datasets. Through the correct prediction
examples, we observe that the model is able to perform
well on sign classes with both simple and complex patterns
and descriptions. On the incorrect prediction examples, we
observe that the descriptions of the confused class pairs
are similar to each other, highlighting the difficulty of the
tackled problem.

5.2.2 Exploration of MS-ZSSLR-W(ild)

As explained in Section 3, we obtain MS-ZSSLR-C(lean)
by manually filtering samples from the MS-ZSSLR-W(ild)
dataset, according to their adherence to their canonical sign
definitions. While the variations of signs deserve an alter-
native definitions of the signs for a reliable analysis of the
ZSSLR models, MS-ZSSLR-W still provides an interesting
test bed for understanding the effects of such deviations
from the canonical sign definitions. For this reason, we
explore MS-ZSSLR-W through three new experimental pro-
tocols where we use MS-ZSSLR-W samples for training only,
testing only or for both training and testing, and compare
against the clean-only setting. For these experiments, we
use the configuration that yields the highest results on
MS-ZSSLR-C, i.e., LLE zero-shot learning formulation using
TSM as the visual representation and attributes+text embed-
dings as the class embeddings.

The corresponding results are presented in Table 8. We
observe that comparing Clean Train w/ Clean Evaluation
results to Clean Train w/Wild Evaluation results, the model
trained on clean samples, yields a lower accuracy on wild
samples. This is not surprising, since the wild samples
includes different dialects that are incompatible with the tex-
tual class definitions. Note that the results in Clean vs Wild
evaluation setups are not directly comparable, since these
tests sets are not identical. When we compare the Clean Train
w/Clean Evaluation versus Wild Train w/ Clean Evaluation, i.e.
the training set is switched to wild setting over the same
test set of clean examples, we observe that incorporating
dialects into the training harms the recognition performance
and the model trained on MS-ZSSLR-C dataset is more
successful. The results over the Wild Evaluation follows a
similar pattern, and the model trained on the clean samples
yields better performance.

These results show the importance of compatibility
across visual data and auxiliary representations for both
training and testing purposes. The samples incompatible
with the class definitions not only reduce the recognition
success rates when they appear during the test time, but
they also degrade the model quality when used as training
samples. As pointed out by these results, modeling sign
languages with dialects, especially in zero-shot setting, is
an important open problem. We believe that the MS-ZSSLR-
C/W dataset pair provides a valuable benchmark for future
research in this direction.
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TABLE 8
Evaluation over the MS-ZSSLR-C and MS-ZSSLR-W dataset combinations.

MS-ZSSLR-C MS-ZSSLR-C ∩MS-ZSSLR-W MS-ZSSLR-W MS-ZSSLR-W ∩MS-ZSSLR-C
Clean Train w/ Clean Evaluation Clean Train w/ Wild Evaluation Wild Train w/ Wild Evaluation Wild Train w/ Clean Evaluation

top-1 top-2 top-5 top-1 top-2 top-5 top-1 top-2 top-5 top-1 top-2 top-5

14.7 24.6 43.4 10.3 17.8 32.6 8.7 15.7 30.3 10.3 18.6 36.0

TABLE 9
Generalized zero-shot learning (GZSL) results on ASL-Text.

Method Auxiliary Val (200 Classes) Test (250 Classes)

top-1 top-1 top-2 top-5

Random - 0.66 0.5 1.0 2.5

f-clswgan [102]
Text 18.4 11.6 17.9 34.1
Attribute 27.8 21.5 29.4 44.9
Attribute + Text 28.2 24.8 37.0 50.5

tfvaegan [103]
Text 22.0 14.8 19.3 31.6
Attribute 25.4 24.1 31.8 46.4
Attribute + Text 26.8 26.2 34.9 53.0

LLE with bi-LSTM
Text 29.7 22.5 32.5 45.6
Attribute 30.5 23.5 33.8 48.4
Attribute + Text 38.4 26.9 39.5 55.8

TABLE 10
Generalized zero-shot learning (GZSL) results on MS-ZSSLR-C.

Method Auxiliary Val (150 Classes) Test (200 Classes)

top-1 top-1 top-2 top-5

Random - 0.66 0.5 1.0 2.5

f-clswgan [102]
Text 28.9 21.5 30.4 42.0
Attribute 32.0 29.8 38.0 49.3
Attribute + Text 33.4 31.0 39.5 51.6

tfvaegan [103]
Text 27.0 22.7 28.3 38.6
Attribute 33.5 32.6 40.4 51.7
Attribute + Text 34.5 34.2 41.9 52.2

LLE with TSM
Text 45.8 33.4 40.5 48.8
Attribute 45.7 33.9 42.2 52.9
Attribute + Text 46.3 34.7 42.6 53.4

5.2.3 Generalized-ZSSLR results

Finally, we present the results for generalized zero-shot
learning on the ASL-Text and MS-ZSSLR-C datasets. On
both datasets, we use the best-performing spatiotemporal
representation according to the ZSL results, i.e., bi-LSTM for
ASL-Text and TSM for MS-ZSSLR-C, with LLE formulation.
On both datasets, we evaluate attribute-only, text-only and
attribute-text combination based class embeddings. In ad-
dition, we also adapt and evaluate two recent generative
GZSL approaches, f-clswgan [102] and tfvaegan [103], as
generative approaches tend to yield more comparable seen
and unseen class scores for GZSL. The f-clswgan [102]
approach combines a Wasserstein GAN [104] with a classifi-
cation loss to learn a class embedding conditional feature
generating model. The tfvaegan [103] approach involves
learning a variational auto-encoder [105] with adversarial
training and a feedback mechanism, and similarly learns
a conditional feature generation model. To adapt both ap-
proaches, we use our pre-trained, best-performing models
to extract spatio-temporal representations, and train the con-
ditional generative models using these features. To obtain
the final classifier, we train supervised models over real and
generated examples following the implementation details of
[102] and [103].

The GZSL results in terms of top-k accuracy metrics for
ASL-Text and MS-ZSSLR-C are presented in Table 9 and
Table 10, respectively. On ASL-Text dataset, when using
only attribute based class embeddings, tfvaegan [103] yields
the highest accuracy scores. With text-only, and combined
embeddings, the LLE model outperforms the generative
approaches. Using the LLE formulation, we observe that text
and attribute-based class representations yield comparable
performance on the validation and test sets of both datasets,
with relatively better results for the attribute-based class
embeddings. We observe significant performance gains, es-
pecially on the ASL-Text dataset, when two embeddings are
used in combination in all formulations.

In the GZSL setting, the separate accuracy values on
the seen and unseen class samples are of interest. For this
reason, we present the seen and unseen top-k class accuracy
scores, and their harmonic means (adapted from [88]) on
ASL-Text and MS-ZSSLR-C test sets in Table 11. In these
results, we observe that unseen class accuracy values are
much lower that the seen ones, similar to the case in zero-
shot image classification benchmarks [88]. In contrast to the
image classification benchmarks, however, we do not see a
clear advantage of the generative approaches in terms of
unseen class recognition performances, with mixed results
across the datasets. These results suggest that the ZSSLR
problem has unique challenges, requiring dedicated efforts
for developing representation and recognition models.

5.3 Attribute usage analysis
Our experimental results show that the auxiliary class rep-
resentation has a major influence on the success of zero-
shot sign language recognition models. In this section,
we present the results of our attribute analysis techniques
defined in Section 4.4. Throughout this section, we use
the test set predictions on the MS-ZSSLR-C dataset using
LLE model based on TSM features and attribute-only class
representations. We present our observations for correct and
incorrect predictions in the following paragraphs.

Observations on correct zero-shot predictions. We present
binary attribute confidence scores for five randomly chosen
unseen classes in Figure 6. Here, we take the correctly
classified samples of these classes and compute the average
influence of each attribute according to Eq. 7. Each row
shows the influence scores of the attributes for one class.
By definition, the influence scores can be interpreted as the
degree of association between the attribute and class pairs.

From the results, we observe that our model strongly
associates certain attributes with the relevant classes. For ex-
ample, chest attribute appears to have strong positive effects
on the my and love class predictions, and, negative effects
on the other classes, all of which are consistent with the
auxiliary knowledge on class-attribute relations. Similarly,
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TABLE 11
Generalized zero-shot learning accuracy statistics on ASL-Text and MS-ZSSLR-C test sets.

Method Dataset Overall Acc. Seen Unseen Harmonic

top-1 top-1 top-2 top-5 top-1 top-2 top-5 top-1 top-2 top-5

f-clswgan [102]
ASL-Text

24.8 33.3 48.2 64.6 6.7 13.2 20.7 11.1 20.7 31.3
tfvaegan [103] 26.2 35.2 45.8 66.8 7.1 11.5 23.5 11.8 18.3 34.7
LLE with bi-LSTM 26.9 37.0 53.3 72.4 5.5 10.4 20.3 9.5 17.4 31.7

f-clswgan [102]
MS-ZSSLR-C

31.0 49.2 60.9 75.1 3.8 7.4 16.2 7.0 13.1 26.6
tfvaegan [103] 34.2 54.2 63.8 74.4 4.3 8.9 18.8 7.9 15.6 30.0
LLE with TSM 34.7 54.6 64.6 76.2 4.8 9.7 19.1 8.8 16.8 30.5
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Fig. 6. Influence of the attributes on the confidence scores of correct classified samples of five randomly chosen classes. Each row corresponds to a
class and each column corresponds to an attribute. Shown numerical values indicate the average influence of an attribute on the corresponding class
confidence scores. Thick boxes show the positive attribute relations according to the attribute based class definitions. Lighter colors correspond to
higher values. Best viewed in color with zoom.
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Fig. 7. Influence of positive attributes on the confidence scores of cor-
rectly classified test samples, averaged over classes. Only the attributes
positively associated with at least 10 unseen classes are shown.

cheek and neutral attributes influence scores show consistent
patterns with the class-attribute relation definitions. The
influence scores also point to certain cases where the model
seems to make incorrect, or unexpected, associations be-
tween the visual patterns and class attributes. For example,
O-8 (stands for Open-8) and 8 appears to be negatively
correlated with the attribute definitions of the early class.
We believe that this is due to subtle differences, where the
model is prone to making incorrect generalizations.

To further understand the overall impact of the at-
tributes, for each attribute, we choose the unseen classes
that are positively affiliated with that attribute and average
the attribute influence values over these classes. In Figure 7,
we show the results for the subset of attributes where there
exists at least 10 such positively affiliated class according
to the class attribute definitions. Consistent with our afore-
mentioned observations, we observe that neutral appears to
be a strong positive contributor to the related correct class
confidence scores, similar to many other attributes such as
cheek (stands for cheek/chin/mouth/nose) and one hand sign.
While we would ideally expect to see only such positive
values for all attributes, few attributes, namely left and S
(and marginally repeat), negatively affect the predictions on
average. One of the factors in poor modeling of these at-

tributes is possibly their rarity among the training examples,
as left and S are affiliated respectively with only 8 and 10
classes, in contrast to 66 affiliations of neutral. Overall, these
analysis results show that the ZSSLR model tends to learn
meaningful relations, but there is room for improvement in
building more explainable and robust models.

Observations on zero-shot misclassifications. Finally, we
look into the influence of class-attribute definitions on zero-
shot misclassifications. For this analysis, we find four most
commonly confused ground-truth - predicted class tuples,
and compute the attribute influence scores based on log-
ratio of class posteriors, according to Eq. 8. We present the
results in Figure 8, where each row corresponds to a particu-
lar class confusion case. Thick boxes and circles indicate that
the corresponding attribute belongs to the corresponding
predicted and ground-truth classes, respectively. We note
that the influence scores here are based on the rate of prob-
ability transition from incorrectly predicted classes to the
correct ones. Therefore, a larger value indicates a relatively
bigger role of an attribute on the resulting misclassification.

In Figure 8, we observe large influence scores in some
attributes that are positively defined for both the predicted
and the ground-truth class, as expected. This is particularly
the case with the neutral attribute, which seems to be mod-
elled accurately according to our preceding observations, as
well. However, this is not always the case, which suggests
that the model suffers from poor (and unclear) attribute
recognitions in these problematic misclassification cases.
It is also noticeable that B-0, which stands for Baby 0, is
inactive for all classes, yet activating this attribute in the
definition of the assigned classes would yield great drops. It
turns out that this attribute is positively defined for only
one training class, explaining why the model might be
behaving instable as a function of this attribute. Overall,
these results suggest that building ZSL models with more
robust (implicit) attribute predictors can potentially be a
fruitful future research direction.
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Fig. 8. Influence of the attributes on the confidence scores of zero-shot misclassifications. Each row corresponds to a misclassification case,
denoted as ground-truth class → predicted class. Shown numerical values indicate the average influence score according to Eq. 8. Thick boxes
and circles indicate that the corresponding attribute belongs to the corresponding predicted and ground-truth classes, respectively. Lighter colors
indicate to higher values, colors in each row are predicted independently for better visualization. Best viewed in color with zoom.

6 CONCLUSION

This paper explores the problem of ZSSLR and GZSSLR.
We present three benchmark datasets for this novel problem
by augmenting two large ASL dataset with sign language
dictionary descriptions and attributes. Our proposed frame-
work builds upon the idea of using these auxiliary texts and
attributes as additional sources of information to recognize
unseen signs. We propose an end-to-end trainable ZSSLR
method that focuses hand and full body regions via several
temporal modeling approaches and learns a compatibility
function via label embedding. Overall, the experiments
yield promising results on zero-shot recognition of signs.
Nevertheless, the acquired accuracy levels are relatively low
compared to other ZSL domains, pinpointing a substantial
need for further exploration of this direction. The observa-
tions based on our binary attribute analysis methodologies
suggest that one of the fundamental challenges in ZSSLR is
to build models that accurately relate visual patterns to the
elements of class definitions, instead of relying on spurious
correlations, in making zero-shot predictions.

In our work, we observe two fundamental challenges
inherent to the (G)ZSSLR task. First, some of the differences
across sign descriptions are subtle, both visually and textu-
ally. Second, many dialects exists; even the same sign can
be expressed in many different forms. Future work should
try to address these issues, possibly by developing visual
representations and recognition models that can better cap-
ture fine details. Incorporation of additional visual cues, e.g.
facial expressions and pose information, are also likely to
be beneficial. We believe that (G)ZSSLR is an important
research direction towards building large-vocabulary sign
language recognition systems.
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APPENDIX

MS-ZSSLR-(W)ILD DATASET

MS-ASL [15] dataset contains significant variations due to
various dialects in sign languages, and the sign language
dictionaries do not comprehensively provide the dialect
descriptions, to the best of our knowledge. Based on the
MS-ASL [15] dataset, we have therefore created two sepa-
rate benchmarks: MS-ZSSLR-W(ild) and MS-ZSSLR-C(lean).
MS-ZSSLR-W contains the dialects, and MS-ZSSLR-C con-
tains only the samples where the textual descriptions are
inline with the visual descriptions of signs, as also explained
in the main paper.

For our MS-ZSSLR-C/W benchmarks, we collect text
and attribute based class definitions from Webster American
Sign Language Dictionary [86] and American Sign Lan-
guage Handshape Dictionary [87]. Figure 9 shows examples
for demonstrating the aforementioned variances of dialects,
and the problem of visual sign and definition mismatches.
The first column shows an example video that is inline with
the dictionary description. The remaining columns show
different visual variations. We observe that the differences
are mostly due to the variations in handshape, hand location
with respect to the body and hand movements in sign
making. Some signers execute the sign with two hands
while the sign is supposed to be executed with one hand
according to the textual definition or vice-versa. We also
observe variations due to left-handed signers in the dataset.

ATTRIBUTES

Attribute-based representations are defined with respect
to four main parameters: handshape, palm orientation, hand
location, hand movement. There are two other attributes de-
scribing whether the sign includes repeated movements,
and whether the sign is executed with a single hand. Below
is the list of attributes defined for ASL-Text dataset:

• Handshape: A, Open A, B, Baby 0, Bent B, V,
Bent V, Open B, C, D, E, F, G, H, I, K, L, M,
Flattened O, S, X, V, Y, 1, 3, 4, 5, Bent 5, 8, Open
8.

• Palm Orientation: in, out, up, down, left, right.
• Hand Location: neutral, chest, ear/temple,

cheek/chin/mouth/nose, forehead/eyes, on
shoulder.

• Hand Movement: move towards to the body,
move away from the body, up, down, left,
right, circular, internal movement at the
wrist, internal movement at the fingers.

• Others: movement repeats?, one-hand sign?.

As MS-ZSSLR-C/W datasets include different sign
classes, handshape attributes are slightly altered to define
new sign classes. The corresponding handshape attributes
that are used in MS-ZSSLR-C/W datasets are as follows:

• Handshape: A, Open A, B, Baby 0, Bent B, Open
B, C, D, F, G, H, K, L, Bent L, Open N, N, Flattened
O, Baby O, R, S, T, W, X, V , Y, 1, 5, Bent 5, 8, Open
8.

DATASET SPLITS

Figure 10 shows average sample count per train, validation
and test sets of ASL-Text, MS-ZSSLR-W and MS-ZSSLR-C
datasets. We provide per-dataset split details in the follow-
ing subsections.

ASL-Text Dataset

ASL-Text dataset contains 170, 30, and 50 mutually exclusive
classes in train, validation and test sets. The class names are
listed below.
Training classes: Excuse, Include/Involve, Shelf/Floor, An-
swer, Boss, Dress/Clothes, Marry, Stand-Up, Disappoint,
Expert, Cancel/Criticize, Fed-Up/Full, Guitar, Emphasize,
Government, Look, Afraid, Court, Medicine, Hello, Con-
flict/Intersection, Less, Of-Course, Dismiss, Dark, Silly,
Home, Blue, Appointment, Disconnect, A-Lot, Enter, Mad,
Cold, Decide, Arrive, Inform, Proceed, Miss/Assume,
Letter/Mail, Keep, Fly-By-Plane, Deaf, High, Beautiful,
Again, Happen, Depress, Embarrass, Deposit, Drunk,
Develop, Over/After, Brave/Recover, Avoid/Fall-Behind,
Full, Blame, Goal, Art/Design, Allow, Live, Future, Boy,
Nice/Clean, Dry, Have, Take-Up, Heavy, Grow, Earth,
Friday, Down, Bore, Center, Cheap, Everyday, Divorce,
Forget, Awkward, Grandfather, Cruel, Graduate, Beer,
Leave-There, Any, Chemistry, Brown, Friend, Left, Free,
Freeze, Cannot, All, East, Give-Up, Family, Bad, Green,
Can, Learn, Coat, Drink, Head, Football, Lousy, Buy, Ex-
cited, Price, Enough, Grandmother, Lie, Sausage/Hot-Dog,
Thrill/Whats-Up, Shame, Same-Old, Messed-Up, Match,
Bar, Car, Helmet, Illegal, Merge/Mainstream, Chase, Work-
Out, Weekend, Dirty, How-Many/Many, Gone, Far, Head-
Cold, Chain/Olympics, Line, Go-Away, Collect, Set-Up,
Country, Really, Protest, Flat-Tire, Lungs, Paint, Inject,
Easy, Lip/Mouth, Nab, Fail, Fence, To-Fool, Gamble, Ba-
nana, Introduce, Mosquito, Lend, Finally, Halloween, Exact,
Hearing-Aid, Explain, Lecture, Bicycle, Magazine, Increase,
Disappear, Make, Lose-Competition, Experience, Expensive,
Girl, Accept, But.
Validation classes: Meet, Finish, Advise/Influence, Course,
Destroy, Cough, Alone, Bridge, Call-By-Phone, Hard, Idea,
Apple, Hospital, One-Month, Black, Grass, Borrow, Run-
Out, Bread, Monday, Library, One, Metal, Morning, Hit,
Most, Meat, Come-On, Not-Mind, Smooth.
Test classes: Generation, Half, Engagement, Break-Down,
Apply, Date/Dessert, Shape/Statue, Pass, Insult, Ham-
burger, Obscure, Like, Crush, Less-Than, Bawl-Out, Blind,
Paper-Check/Card, Get-Up, Place, Cooperate/Unite, Insur-
ance/Infection, Follow, Meeting, General, Autumn, Comb,
Experiment, Line-Up, Gas/Gas-Up, Grab-Chance, Permit,
Eat, Tough, Trash/Bag, Speech/Oral, Cherish, Strange, As-
sociation, Pull, Member, Ghost, Machine, Average, Act,
Ahead, Celebrate, Skin,Strong, Where, Concern.

MS-ZSSLR-C/W Dataset Zero-Shot Settings

MS-ZSSLR-C/W datasets contain 120, 30, and 50 mutually
exclusive classes in train, validation and test sets, respec-
tively. The corresponding class names are listed below.

Train classes: Again, Apple, Aunt, Bad, Bathroom, Beau-
tiful, Bird, Black, Blue, Book, Boring, Boy, Bread, Brother,
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MS-ZSSLR-W(ild)
COMPUTER Variation 1 Variation 2 Variation 3

Move the thumb side of the right C hand, palm
facing left, from touching the lower part of extended
left arm upward to touch the upper arm with a
repeated movement.

Different handshape and movement. Mainly wrist movement is executed.
Different handshape and movement.

COUSIN Variation 1 Variation 2 Variation 3

Move the right C hand, palm facing left, with
a shaking movement near the right side of the
forehead.

The sign is executed on the chin. Left hand is used. The sign is again executed on the chin.

HORSE Variation 1 Variation 2 Variation 3

With the extended thumb of the right U hand against
the right side of the forehead, palm facing forward,
bend the fingers of the U hand up and down with a
double movement.

Left hand is used. Both hands are used. The sign is executed on the cheek.

LOST Variation 1 Variation 2 Variation 3

Beginning with the fingertips of both flattened O
hands touching in front of the body, palms facing up,
drop the fingers quickly downward and away from
each other while opening into 5 hands, ending with
both palms and fingers angled downward.

Different handshape and movement. Different handshape and movement. Different handshape and movement.

NOTHING Variation 1 Variation 2 Variation 3

Move both flattened O hands, palms facing forward,
from side to side with repeated movement in front of
each side of the chest.

Sing hand sign, different handshape and movement. Sing hand sign, different handshape and movement. Different handshape and movement.

Fig. 9. Example in-class variations and corresponding textual descriptions from MS-ZSSLR-W(ild) dataset. The first column shows an example
video that is inline with the dictionary description. The remaining columns show different visual variations.

Brown, But, Call, Can, Cat, Cheese, Coffee, College, Color,
Cook, Dance, Daughter, Day, Doctor, Draw, Drink, Eat,
Family, Father, Fine, Finish, Fish, Forget, France, Friend,
Future, Girl, Go, Good, Grandfather, Grandmother, Green,
Have, Hearing, Hello, Help, Home, Horse, How-Many,
Hungry, Hurt, Jacket, Know, Learn, Like, Man, Me, Milk,
Mother, Must, Name, Nice, Night, No, Not, Nothing, Now,
Nurse, Old, Orange, Paper, Pencil, Pink, Play, Please, Pur-
ple, Read, Red, Room, Sad, School, See, Sell, Shirt, Shoes,
Sick, Sister, Sit, Slow, Sorry, Spring, Student, Sunday, Table,
Teach, Teacher, Thank-You, Time, Tired, Tomorrow, Under-
stand, Walk, Want, Water, What, When, Where, White, Who,
Woman, Work, Write, Wrong, Yellow, Yes, You.

Validation classes: Afraid, Bicycle, Buy, Class, Cousin,
Door, English, Hot, Late, Lost, Mad, Meet, Movie, Nephew,
Not-Know, Not-Like, Remember, Restaurant, Run, Same,

Sign, Son, Start, Tea, Week, Which, Why, Wife, Year, Your.
Test classes: All, Baby, Bed, Big, Boyfriend, Candy, Car,

Cold, Computer, Cookie, Deaf, Dentist, Divorce, Dog, Early,
Enjoy, Excited, Favorite, Germany, Happy, Here, Hotdog,
Homework, Hour, House, How, Kitchen, Library, Live,
Love, Mean, Money, More, My, Party, Practice, Ready, Right,
Sandwich, Saturday, Soccer, Soda, Study, Today, Turkey,
Ugly, Uncle, Watch, Wednesday, Yesterday.

ADDITIONAL QUALITATIVE RESULTS

Figure 11 and 12 present examples for correct and incor-
rect classifications. We observe that most confusions occur
across classes with similar hand movements and/or loca-
tions, highlighting the importance of handshape pattern
modeling. We also observe that class definitions also tend
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ASL-Text MS-ZSSLR-W MS-ZSSLR-C
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Fig. 10. Average sample count per train, validation and test sets for ASL-
Text, MS-ZSSLR-C, and MS-ZSSLR-W datasets.

MS-ZSSLR-C

MY
Place the palm of the right open hand on
the chest, fingers pointing left.

LOVE
With the wrists of both S hands crossed in
front of the chest, palms facing in, bring
the arms back against the chest.

DEAF
Touch the extended right index finger first
to near the right ear and then to near the
right side of the mouth.

HERE
Beginning with both curved hands in
front of each side of the body, palms
facing up, move the hands toward each
other in repeated flat circles.

HAPPY
Brush the fingers of the right open hand,
palm facing in and fingers pointing left,
upward in a repeated circular movement
on the chest.

FAVORITE
Touch the bent middle finger of the right
5 hand, palm facing in, to the chin with a
double movement.

SANDWICH
With the palms of both open hands to-
gether, right hand above left, bring the
fingers back toward the mouth with a
short double movement.

BIG
Move both L hands from in front of each
side of the chest, palms facing each other,
in large arcs beyond each side of the body.

DIVORCE
Beginning with the fingertips of both the
D hands touching in front of chest, palms
facing each other and index fingers point-
ing up, swing the hands away from each
other by twisting the wrists, ending with
the hands in front of each side of the body,
palms facing forward.

Fig. 11. Example predictions of the proposed model on the MS-ZSSLR-
C dataset. The first three rows show examples that are correctly pre-
dicted and the last three rows show incorrect predictions. For the correct
predictions, second column includes corresponding textual description.
For the incorrect predictions, the second column includes ground truth
textual descriptions and frames from an example video of the ground
truth class.

ASL-Text
STRONG
Move both S hands, palms facing in, for-
ward with a short deliberate movement
from in front of each shoulder.

PULL
Beginning with the right curved hand in
front of the body and the left curved hand
somewhat forward, both palms facing up,
bring the hands back toward the right
side of the body while closing them into
A hands.

AUTUMN
Brush the index-finger side of the right
B hand, palm facing down, downward
toward the elbow of the left forearm, held
bent across the chest.

CHERISH
Beginning with the right curved 5 hand
in front of the mouth, palm facing back,
slowly close the fingers into an S hand.

EAT
Bring the fingertips of the right flattened
O hand, palm facing in, to the lips with a
repeated movement.

BAWL-OUT
Beginning with the little finger of the
right S hand on the top of the index
finger side of the left S hand, flick the
hands forward with a deliberate double
movement while opening the fingers into
5 hands each time.

CRUSH
Beginning with the palms of both A
hands together in front of the chest, twist
the hands in opposite directions.

APPLY
Move the fingers of the right V hand,
palm facing forward, downward on each
side of the extended left index finger,
pointing up in front of the chest.

TOUGH
Beginning with both bent V hands in
front of the chest, right hand higher than
the left hand, palms facing in, move
the right hand down and the left hand
upward with an alternating movement,
brushing the knuckles of each hand as the
hands move in the opposite direction.

Fig. 12. Example predictions of the proposed model on the ASL-Text
dataset. The first three rows show examples that are correctly predicted
and the last three rows show incorrect predictions. For the correct
predictions, second column includes corresponding textual description.
For the incorrect predictions, the second column includes ground truth
textual descriptions and frames from an example video of the ground
truth class.

to be similar across the confused classes. These qualitative
examples further demonstrate that the problem domain
can benefit from more detailed visual and auxiliary data
representations.
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