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ABSTRACT 

 

OPTIMIZATION OF VARIABLE STIFFNESS 

CURVED COMPOSITE PANELS UTILIZING NURBS REFERENCE 

PATHS 

 

 

Çimen, Kaan 

Master of Science, Aerospace Engineering 

Supervisor: Prof. Dr. Altan Kayran 

 

 

May 2022, 157 pages 

 

 

Variable stiffness composite structure concept has been studied since 1972; however, 

this concept is stepped into a new age after the automated fiber placement 

manufacturing machines are started to be used in industry. This study presents an 

optimization method for three-dimensional (3D) variable stiffness composite 

structures. The main contribution of the current study is the definition of the 

reference lay-up path by Non-Uniform Rational B Splines (NURBS) in 3D. The 

methodology is based on defining a reference path by NURBS and optimizing the 

NURBS parameters by using the Particle Swarm Optimization (PSO) method to 

minimize the total strain energy and maximize buckling load of the 3D curved 

composite panel utilizing unconstrained and constrained optimization. The results 

show that the reference lay-up path defined by NURBS is successfully optimized 

such that the total strain energy and the buckling load of the final design are 

minimized.  
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ÖZ 

 

 

NURBS REFERANS YOLLARINI KULLANAN DEĞİŞKEN SERTLİKLİ 

KAVİSLİ KOMPOZİT PANELLERİN 

OPTİMİZASYONU 

 

 

 

Çimen, Kaan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. Altan Kayran 

 

 

 

Mayıs 2022, 157 sayfa 

 

Değişken rijitlikli kompozit yapı konsepti 1972 yılından beri çalışılmaktadır, ancak 

bu konsept, otomatik fiber yerleştirme imalat makinelerinin sanayide kullanılmaya 

başlanmasıyla yeni bir çağa adım atmıştır. Bu çalışmada, üç boyutlu (3B) değişken 

rijitlikli kompozit yapılar için optimizasyon yöntemi sunulmaktadır. Mevcut 

çalışmanın önceki çalışmalardan temel farkı, referans yerleşim yolunun üç boyutlu 

(3B) düzgün olmayan rasyonel eğriler (NURBS) tarafından tanımlanmasıdır. 

Metodoloji, NURBS tarafından bir referans yolunun tanımlanmasına ve NURBS 

parametrelerinin, kısıtsız ve kısıtlı optimizasyon kullanarak toplam gerinim 

enerjisini ve 3B eğri kompozit panelin burkulma yükünü en aza indirmek için 

Parçacık Sürü Optimizasyonu (PSO) yöntemini kullanarak optimize etmeye 

dayanmaktadır. Sonuçlar, NURBS tarafından tanımlanan referans yerleştirme 

yolunun, nihai tasarımın toplam gerinim enerjisi ve burkulma yükünü en aza 

indirecek şekilde başarıyla optimize edildiğini göstermektedir. 
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CHAPTER 1  

1 INTRODUCTION 

Composite means “made up of distinct parts or elements.” In engineering, composite 

material is used for two or more materials league together to form a new material 

that has powerful material properties [1]. One special type of composite named 

prepreg is made from strong straight fibers placed within a polymeric matrix. 

Prepregs are either in the form of sheet bobbins or tow bobbins, as shown in Figure 

1.1. Prepregs are widely used in engineering to manufacture composite structures. In 

the aerospace industry, structures are desired to be lightweight, and they should be 

able to operate under heavy loading conditions. These design constraints cannot be 

met by metals easily; however composite materials have a high strength-to-weight 

ratio. This property makes composite materials one of the best choices to design and 

manufacture aerospace structures. Another advantageous property of the composite 

structures, especially prepregs, is the ability to tailor composite material to provide 

optimum resistance to different load cases. Thin layers of laid up prepreg, which 

consists of fiber and resin mixtures, are named as ply. By arranging the number of 

plies and/or arranging the layup angle sequence of the plies, composite structures 

can be made stronger against the loading conditions. Although these arrangements 

can be done by traditional manufacturing methods and they give good results, the 

development of Automated Fiber Placement (AFP) machine changed the design of 

composites aerospace structures by introducing more design parameters to obtain the 

desired structural properties. 
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Figure 1.1 Prepreg sheet bobbin and tow bobbin [2] 

 

AFP enables to modify the in-plane layup path which cannot be obtained utilizing 

straight fiber path. By using AFP, in plane variations of the fiber direction can be 

achieved. This variation causes composite layer to have variable stiffness in its plane. 

By optimizing the fiber path definition, variable stiffness composite (VSC) structures 

become more efficient. To carry out the optimization, the path of the fiber should be 

defined mathematically. This path can be defined with a smooth antisymmetric 

function with respect to one of the axis of the composite structure to be optimized 

and it passes through the origin of the cartesian coordinate frame [3]. This method is 

efficient and easy to use for defining a path on a flat surface [4]. To manufacture 

curved surfaces with variable stiffness, either the layup path should be defined in 

three dimensions by splines, or the curved surfaces would be manufactured by 

bending the straight panels. The mathematical equation of the path depends on 

several variables and these variables should be optimized to achieve the optimized 

variable stiffness composite structure. To define the path in three dimensions, Non-

Uniform Rational B Splines (NURBS) with control points, knots and weights as the 

design variables can be used. Various optimization methods can be used for 

optimizing the path. There are gradient based optimization and gradientless 

optimization methods. However, gradientless methods like genetic algorithm or 
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particle swarm optimization are easier to use for composite structures’ optimization. 

Because they do not need the gradient information [5]. 

1.1 Motivation of the Study 

This thesis aims to study the effectiveness of NURBS based fiber path definition to 

construct variable stiffness composite structures in 3D. Previous studies have shown 

that variable stiffness composite (VSC) structures are superior to the constant 

stiffness straight fiber path composite structures since the variable stiffness concept 

allows the definition of more design variables to tailor the stiffness of the composite 

structure with respect to the loads applied. Variable stiffness concept is a relatively 

new topic because of the manufacturing techniques are developed in the last decades. 

Most of the studies about variable stiffness composites are performed on two-

dimensional plate-like structures. 

 In the thesis contrary to the previous studies on VSC structures, a 3D path definition 

is made on a curved surface and the fiber path defined by NURBS is optimized 

according to the selected objective functions. As for the objective functions, 

minimization of total strain energy optimization and maximization of  buckling load 

factors are selected. Furthermore, unconstrained and constrained optimization 

studies are performed with these objective functions. In most of the studies 

encountered in the literature, are done on flat surfaces and paths are defined in 2D. 

However, in this study the goal is to define a 3D NURBS path on a 3D panel and 

optimize the fiber path according to the objective function by obeying the 

constraints. 

The concentration of this work is on developing a structural optimization 

methodology for the definition of the fiber path on curved composite panels. For this 

purpose, to define the reference path on a curve surface, NURBS based Rhinoceros 

software [6] is used.  Optimization process involves structural modelling, structural 

analysis, and design variable optimization steps. To create the finite element model 

(FEM), MSC. Patran is used, and as the finite element solver MSC. Nastran is used. 
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Optimization of the NURBS parameters, modelling the VSC structure and finite 

element analysis of the model is automatized via a code developed in MATLAB. 

With the developed tool, reference fiber path can be defined and optimized directly 

on the curved panel as a spline. 

1.2 Scope of the Study 

This thesis is organized as seven chapters.  

Chapter 1 is the introduction chapter which introduces the variable stiffness concept, 

and the motivation of the study is explained. 

Chapter 2 includes the literature survey on the variable stiffness concept and 

optimization studies conducted on variable stiffness composites. In this chapter the 

methods to create variable stiffness composites are explained, alternative fiber path 

definitions  are discussed.  Automated Fiber Placement (AFP) concept is explained, 

and the flow chart of the AFP manufacturing process is presented. Lastly, analysis 

of variable stiffness composites structures, and their optimization are reviewed.  

Chapter 3 focuses on the fiber path definition method. The theory and background 

information about the NURBS is given. Formulation of the NURBS curve is 

explained in detail. 

Chapter 4 is about the optimization method; Particle Swarm Optimization (PSO). 

The penalty approach to solve the constrained optimization problem with the PSO is 

explained. Verification of the PSO code and the penalty approach are done for a 

generic optimization problem.  

Chapter 5 gives the details of the optimization process and the algorithm.  Creation 

of VSC panels and fiber path definition method on a curved panel are explained. The 

optimization parameters, constraints and objective functions used are defined and 

the optimization scheme is given. Details of the generation of the finite element 

model, coupling of the finite element solver MSC. Nastran and the PSO algorithm 

via the interface code developed in MATLAB are given. 
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Chapter 6 gives the optimization results of different geometries and load cases. 

Based on the numerical results, conclusions are drawn. Initially, flat panel 

optimization results for strain energy minimization and failure index minimization 

are presented. Then, unconstrained, and constrained strain energy minimization and 

buckling load maximization of curved panel has been performed and results are 

presented. In strain energy minimization of flat panel, the analysis is done for one 

layered panel and four layered panel. Following to that four layered panels are used 

for failure index minimization of flat panel. Lastly, unconstrained, and constrained 

strain energy minimization and buckling load factor maximization of curved panels 

are examined . 

Chapter 7 is the conclusion of  the thesis study and gives information about further 

discussions on the whole study. It is the summary chapter of the study and the 

potential further studies about the topic are also discussed in this chapter. 
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CHAPTER 2  

2 LITERATURE SURVEY 

2.1 Methods to Create Variable Stiffness Composites 

The composite laminates used in the industry consist of stacked plies. Traditionally, 

each ply has a constant fiber orientation angle throughout the layer. The ply has 

straight fibers stacked in different angles, typically 0, 90,+/-45 degrees, to construct 

the laminate [7], and each ply has specific material properties and thickness. The 

mechanical strength of the ply in the fiber direction is very high. In the traditional 

method, plies with constant fiber angles are stacked up in different angles to handle 

various loading conditions. For multi-axial load conditions, intended for the 

composite structure to be stronger in the high stress areas, variable stiffness 

composite (VSC) concept is proposed in the literature. Variation of the stiffness can 

be achieved by various ways. Dropping plies in the laminate, variation of the fiber 

volume fraction in a ply or changing the fiber orientation within a layer are some of 

these approaches in creating variable stiffness composites. However, creating 

variable stiffness composite is not limited to these approaches [4]. 

DiNardo [8] worked on the internally dropped plies in his thesis. The representation 

of dropped ply can be seen in Figure 2.1 and Figure 2.2. In the study, variation of the 

stiffness provided by the dropped plies are examined for plates loaded in 

compression. In this method, in addition to the change of elastic properties, an 

eccentricity in loading is introduced and it is concluded that changes in the elastic 

properties have reduced the buckling loads [8]. This reduction is caused by the mid-

plane change, and it is not related to the introduced eccentricity of the loading [4]. 
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Figure 2.1 Representation of internally dropped ply [4] 

 

Figure 2.2 Internally dropped ply, from Langley [4] 

 

As an example for providing variable stiffness in the ply by changing the volume 

fraction, the study conducted by Leissa and Martin [9] can be given. In this study, 

volume fraction of the straight and parallel fibers is increased continuously towards 

the one end of the ply as seen in Figure 2.3 [3]. The buckling and vibration response 

of a rectangular ply, which has variable fiber density is examined in this study.  

Because the fiber volume fraction varies from one edge to other edge of the ply as 

seen in Figure 2.3, the material is considered as nonhomogeneous. Variation of fiber 

volume fraction causes the stiffness properties and constants of governing elasticity 

equations to vary  to vary[10]. This variation makes the problem hard to solve 
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analytically; thus, Ritz method is used to solve the in-plane elasticity problem. It is 

seen that in some cases, there are 38 % increase in the critical buckling load and 21% 

improvement in the fundamental frequency of vibration [10].  However, in some 

cases deterioration of both parameters is seen [9] . 

 
Figure 2.3 Ply with variable fiber volume fraction [4]  

 

The third method to manufacture variable stiffness composite structures is spatially 

varying the orientation of fibers in a layer of the composite structure. By 

continuously placing the composite prepreg tows over the surface following a curved 

reference path, VSC structures can be manufactured. To manufacture variable 

stiffness composite by this method, layup process must be very sensitive; thus, 

automatized. Cooper [11] in 1972 proposed a computer-aided laying system for 

analogue fiber lay-up. This is the very first study for VSC with computer based 

automatized lay-up system. 

 

Hoff and Muser [12]  worked on the design problem of a circular plate with a circular 

hole loaded uniaxially, as seen in in Figure 2.4. They performed the closed form 

solution of the stress concentration factor of the circular plate with the circular hole. 

According to their study, arranging the fiber layup around the hole can result in 

significant reduction in the stress concentration factor.  
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Figure 2.4 Loaded circular plate with a circular hole at the center [12] 

 

Although there are some studies about increasing the performance of composite 

structures by tailoring the ply, curvilinear fiber format is first proposed by Hyer and 

Charette in 1989 [13] . They claim that aligning the fibers parallel to each other in 

straight lines is not the best way to use fiber reinforced composites [13]. In their 

study, unidirectionally loaded plate with a hole problem seen in Figure 2.5 is 

examined. In the hole in a plate problem, there is a discontinuity in the plate which 

causes stress concentration.  To handle this discontinuity, it is proposed that 

curvilinear continuous fibers can be passed around the hole to eliminate discontinuity 

and decrease the stress concentration.  
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Figure 2.5 Loaded rectangular plate with a circular hole at the center [13] 

 

In theeir study, 16 layered quarter plate with 18 elements is used. To make 

comparison quasi-isotropic ply [±45 /0/90]s sequence is examined in terms of tensile 

load capacity and buckling response and they are taken as datum. While constructing 

the variable stiffness laminate top and bottom two plies (±45° plies) are used to 

enhance the structure against unwanted shear failure. Middle 12 plies are used in a 

curvilinear fashion to optimize composite plate in terms of loading capacity and the 

buckling response.  This study is one of the very first studies on the VSC. It is 

discussed that manufacturing of curvilinear plies is considered as a drawback. 

However, besides the practical manufacturing related considerations, theoretically it 

is seen that loading capacity has risen in curvilinear stacking compared to the quasi-

isotropic stacking [13]. 

 

Following the study of Hyer and Charette, Hyer and Lee [14] studied on the 

improvement of the buckling response of a compressively loaded plate with a hole 

by using continuous fiber placement. In this study, they have used a gradient search 

method to maximize the buckling load factor by optimizing the fiber orientation 
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angles in the ply [14]. They found out that by optimizing the fiber path, it is possible 

to distribute load from the hole to the edges of the plate. The results show that 

buckling load factor increased 2.96 times compared to the quasi -isotropic layup 

taken as datum [14]. 

 

Spatially varying fiber angle concept for manufacturing VSC is studied in several 

research. However, until Gürdal and Olmedo’s work [3],   there were not any solid 

path definition technique to introduce the layup paths mathematically. In this study, 

they defined the continuous lay-up path that varies only with respect to one of the 

coordinates. This is because of the practical limitations in manufacturing. In such a 

definition, the lay-up path passes through the origin of the cartesian coordinate frame 

and defined as a smooth antisymmetric function of the x coordinate [3]. This path 

definition has minimum number of variables for the layup path in a rectangular panel 

[15]. Spatial variation of the layup path also changes the mechanical properties of 

the ply. This is because prepregs are fiber reinforced composites and their material 

properties are different in the fiber direction and in the transverse direction.  In the 

Figure 2.6 spatially varying fiber path is depicted. 
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Figure 2.6 Spatially varying fiber paths with the fiber angle varying with respect to 

x coordinate only 

In this method, the fiber path angle (𝜃) is defined by three parameters. T1 is the angle 

of the fiber at a characteristic distance away from the center of the panel and T0 is 

the angle of the fiber path at the center of the panel and, ∅ is the variation angle at 

the center of the panel giving the rotation of the tow placement axis (see Figure 2.7).  

 

Figure 2.7 Definition of fiber path angles 
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 A linear variation of the fiber orientation along the x coordinate is obtained if the 

fiber orientation is defined by Equation.(2.1) [3].   

 
𝜃(𝑥) =

2(𝑇1 − 𝑇0)

𝑎
𝑥 + 𝑇0 

 (2.1) 

The fiber angle starts with T0 at the panel’s center and reaches the angle T1 at the 

panel’s edge. The variation angle ∅ is assumed to be zero. The most basic function 

of variation of the y coordinate with respect to the x is given by Eqns.(2.2) and (2.3). 

 

 
𝑦 =

𝑎

2(𝑇1 − 𝑇0)
{− ln [cos (𝑇0 +

2(𝑇1 − 𝑇0)𝑥

𝑎
)] + ln[cos(𝑇0 )]} 

0 ≤  𝑥 < 𝑎/2 

 (2.2) 

 

 
𝑦 =

𝑎

2(𝑇1 − 𝑇0)
{ln [cos (𝑇1 +

2(𝑇1 − 𝑇0)𝑥

𝑎
)] − ln [cos(𝑇1)]} 

−𝑎/2 ≤  𝑥 < 0 

 (2.3) 

In Figure 2.8 the effect of the rotation angle ∅ on the composite laminate can be seen. 

In Figure 2.9 a fiber path for T0=0°, T1=45° and ∅ = 0°  shown 

 

Figure 2.8 Effect of adding ∅ on the reference path (1) ∅ = 0, (2) ∅ = 45 and (3) 

∅ = 90 [4] 
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Figure 2.9 Fiber path definition for T0=0° , T1=45° and ∅ = 0°  [10] 

In more general case the, when there is rotation of axis such that  ∅ ≠ 0, the fiber 

path angle (𝜃) and the y coordinate of the fiber path with respect to the x are defined 

by Equation (2.4), Equation (2.5) and Equation (2.6). 

𝑦′(𝑥′) 
=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑎

2(𝑇0 − 𝑇1)
{ln [𝑐𝑜𝑠𝑇0]  − 2ln [𝑐𝑜𝑠𝑇1] + ln [𝑐𝑜𝑠 (−𝑇0 + 2𝑇1 +

2(𝑇1 − 𝑇0)

𝑎
 𝑥′)]} 

𝑓𝑜𝑟 − 𝑎 ≤ 𝑥′ ≤ −
𝑎

2
 

𝑎

2(𝑇0 − 𝑇1)
{−ln [𝑐𝑜𝑠𝑇1] + ln [cos (𝑇1 +

2(𝑇1 − 𝑇0)

𝑎
 𝑥′)]} 

𝑓𝑜𝑟 −
𝑎

2
≤ 𝑥′ ≤ 0 

𝑎

2(𝑇0 − 𝑇1)
{−ln [𝑐𝑜𝑠𝑇0] + ln [cos (𝑇0 +

2(𝑇1 − 𝑇0)

𝑎
 𝑥′)]}  

𝑓𝑜𝑟 0 ≤ 𝑥′ ≤
𝑎

2
𝑎

2(𝑇1 − 𝑇0)
{ln [𝑐𝑜𝑠𝑇0]  − 2ln [𝑐𝑜𝑠𝑇1] + ln [𝑐𝑜𝑠 (−𝑇0 + 2𝑇1 +

2(𝑇1 − 𝑇0)

𝑎
 𝑥′)]} 

𝑓𝑜𝑟
𝑎

2
 ≤ 𝑥′ ≤ 𝑎

 

 

(2.4) 
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𝜃(𝑥′) 
=

{
 
 
 

 
 
 ∅ +

2

𝑎
(𝑇1 − 𝑇0)𝑥

′ + 𝑇0 − 2(𝑇0 − 𝑇1), 𝑓𝑜𝑟 − 𝑎 ≤ 𝑥′ ≤ −
𝑎

2

∅ +
2

𝑎
(𝑇0 − 𝑇1)𝑥

′ + 𝑇0, 𝑓𝑜𝑟 −
𝑎

2
≤ 𝑥′ ≤ 0

∅ +
2

𝑎
(𝑇1 − 𝑇0)𝑥

′ + 𝑇0, 𝑓𝑜𝑟 0 ≤ 𝑥′ ≤
𝑎

2

∅ +
2

𝑎
(𝑇0 − 𝑇1)𝑥

′ + 𝑇0 − 2(𝑇0 − 𝑇1), 𝑓𝑜𝑟 𝑎/2 ≤ 𝑥′ ≤ 𝑎

 

 

(2.5) 

 𝑥′ = 𝑥𝑐𝑜𝑠(∅) + 𝑦 sin (∅)    

(2.6) 

 

The formulation to define fiber path with a smooth antisymmetric function of x, is 

very efficient and easy to use for defining the fiber path on a flat surface [4]. 

Nagendra et al. [16] worked on a different method to define the fiber path on 

surfaces. In this work, the focus is optimizing the fiber paths which can easily be 

manufactured by AFP [16].  To define the fiber path, Nonuniform Rational B Splines 

(NURBS) is used. It should be noted that NURBS has superior control capability of 

the spline and flexibility since it is used in commercial design tools [17]. In the study, 

a plate with a central hole and an engine blade in Figure 2.10 are used as geometries. 

The design objective is to optimize the buckling loads of the variable stiffness 

composite structures utilizing fiber paths which are defined by NURBS. The NURBS 

parameters are optimized to find best fiber path against buckling. By utilizing the 

NURBS, the best fiber path that is manufacturable by the AFP machine with active 

manufacturing constraints is determined. The manufacturing constraints come from 

the limits of the 7-axis AFP machine developed by Cincinnati Milacron Inc. they 

have used. 
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Figure 2.10 Composite engine fan blade [16] 

 

NURBS curves are splines defined on either on flat surfaces or curved surfaces. This 

is main advantage when manufacturing constraints are considered. Because the 

multi-axis layup machines work in 3D space and defining the fiber layup path in 

three dimensions is advantageous in terms of sensitivity and accuracy of the layup. 

Another way of defining the fiber path is in 2D and after optimizing the fiber path 

defined in 2D, the real 3D shape is manufactured. The laminate optimized in 2D is 

placed on a mold to give the wanted 3D shape. However, with NURBS one can 

define 3D fiber path, optimize it to design a manufacturable structure in 3D. 
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After the reference fiber path is defined, AFP machine covers the whole geometry 

using this fiber path definition. Waldhart proposed two methods to manufacture 

variable stiffness composite structures [4].  The first method is the shifted reference 

path method in which the reference path is shifted along one of the axis; it could be 

x or y (see Figure 2.11). In Waldhart’s study the shift axis is taken as the y direction 

of global coordinate axis as shown in Figure 2.11. In this method, the distance 

between two shifted paths differs according to the position as seen in Figure 2.11(a). 

The other method is the parallel fiber method. In this method, new layup paths, which 

are parallel to the reference path, are defined. In this method the distance between 

two paths perpendicular to the path itself does not change by the position, as seen in 

Figure 2.11 (b). In Figure2.11, the thicker solid lines are the fiber path of the center 

of the prepreg tow and thinner dashed lines are the edges of the prepreg material. 

 

 (a)Shifted Fiber Method   (b)Parallel  Fiber Method 

Figure 2.11 Shifted and parallel fiber methods [10] 

When these two methods are compared, the shifted fiber method is more effective in 

terms of the redistributing the loads. This causes more improvement in the buckling 

loads [18].  When the manufacturability is compared, since in parallel method the 

shape of the layup path changes, there can be problems associated with 

manufacturability [15], and the minimum turning radius constraint of the prepreg 

tows may not be satisfied. 
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2.2 Automated Fiber Placement Machine 

With the advent in composite technology and increasing usage of composite 

materials, automation becomes more and more necessary in manufacturing of 

composite products. Automated Fiber Placement Machines (AFP) are designed for 

this purpose increasing the speed and quality of the composite layup process. The 

most time consuming and expensive part of composite production is the layup 

process. Automation of this process increases the production speed and the quality 

as well as allowing more complex geometries to be produced. The automation in 

production is achieved by Automated Fiber Placement machines (AFP).  

In the industry, AFP machines first went into action in 1980s. AFP appeared 

commercially as the combination of automated tape laying (ATL) and filament 

winding [19]. AFP is basically a composite part manufacturing technique by using 

six or seven axes CNC controlled machines. These machines increase the speed of 

production, enable high volume production, increase reliability, and in the long-term 

cost effectiveness because of the reduction of waste [7].    

Modern AFP machine heads (Figure 2.12) can lay up to 32 prepreg tows collaterally 

in a controlled manner. The CNC control enables the tows to follow up a defined 

path [6]. The capabilities of the machine head allow it to cover all surfaces of the 

geometry [19]. They use prepreg tows with varying widths from 1/8” to 1” [15]. The 

layup material is not only the thermoset prepreg tow, but also thermoplastic 

composites can also be used. Some AFP machines can store the material in a special 

cabinet and feed the prepreg tow from this cabinet (Figure 2.13). However, in some 

AFP machines, material is loaded to the AFP machine head and machine feeds the 

prepreg tow from its head as seen in Figure 2.12. There are two different head 

designs, one is mounted on a gantry and can have 6 axis movement and there are 

also robot heads that are cable of laying up to manufacture more complex shapes. 
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Figure 2.12 AFP machine head with multiple tows 

 

Figure 2.13AFP machine with storage cabinet (a) cabinet (b) feeding system (c) 

layup head 
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There are several processes that an automated fiber placement machine should be 

capable of no matter how the machine is designed. These processes are given in 

Figure 2.14.  

 

Figure 2.14 Flow chart of the chosen concept 

An AFP machine should be able to hold the material that will be used for lay-up. 

Composite material should be unwound, and this process should be done by applying 

tension to the composite in a certain range. Measurement system should be used to 

keep the tension in this acceptable range such that the tension will not harm the 

material. After the unwinding operation, the material enters the functional head. 

Functional head should be capable of four main functions; restart feed, cut 

mechanism, heating and compaction system. These functions are necessary for the 

lay-up process. When the composite material is cut to start a new ply (lay-up), due 

to the tension material tries to go back to the tow holder; hence to prevent the material 

leaving the functional head, a mechanism should hold the material just after the 

cutting operation. Moreover, after the cutting operation, the material should be fed 

to the compaction roller for the start of the next lay-up which is done by the restart 

feed mechanism. In addition, the material should be laid-up with a certain pressure 

applied against the surface. This pressure is obtained by compressing the material 

between a roller, called the compaction roller, and the surface area. Finally, heating 

system is used to cure the thermoset/thermoplastic material after the lay-up. A 

conceptual design of an AFP machine head is illustrated in Figure 2.15. 

 



 

 

22 

 

Figure 2.15 Conceptual design showing the separated parts of an AFP (Automated 

Fiber Placement) machine 

There are several critical capabilities and constraints in AFP processes. First one is 

called as the tow pay. Tow pay is the difference of the tow feed speed in radial layups. 

It should be noted that tows are laid up on the mold surface and when the surface has 

a curvature, the inner tow feed speed must be slower than the outer tow feed speed. 

As shown in Figure 2.16, for radial paths, tow path A’s tow feed speed must be 

higher than the tow path B’s tow feed speed. This is controlled by the machine 

automatically [4]. 

 

Figure 2.16 Differential tow pay illustration [4] 
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 In AFP machines, machine head must have the capability of cutting and restarting 

each tow to enable layup on complex surfaces with holes and edges. Figure 2.17 

illustrates the cut and restart capability of AFP machines. 

 

Figure 2.17 Cut and restart ability of AFP machines [4] 

 

When laying up the tows on a curved path, there could be some wrinkles due to the 

forced in-plane deformation [15]. The reason for this is that tow’s inner radius is 

smaller than the tow’s outer radius when laying up tows on curved paths. Hence, 

there is a minimum turning radius constraint for AFP machines. In Figure 2.18 

examples of straight, curved, and wrinkled tow are represented. The wrinkling 

lowers the laminate quality and can cause early ply failures [15]. 

 

Figure 2.18 Straight, curved, and wrinkled tows 
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In automatic fiber placement, due to the non-straight fiber paths fiber angle 

variations occur. These variations cause gaps and overlaps on the ply course, as 

shown in Figure 2.19. These gaps and overlaps change the thickness of the composite 

structure spatially. If the gaps and overlaps are considered when designing and 

optimizing the VSC structure, there would be thickness differences in the 

manufactured structure [14]. 

 

Figure 2.19 Examples of gapped and overlapped layups  

 

Another constraint related with the gap and overlap issue is the coverage parameter. 

When the coverage parameter changes from 0% to 100%, the gaps between the tow 

courses get close and overlaps start to appear. This coverage parameter affects the 

strength of the structure. If is the coverage parameter is 0%, the structure is at its 

weakest state, however if the coverage parameter is 100% this causes low surface 

quality.  In Figure 2.20, a composite laminate with 0% coverage is shown. It should 

be noted that if the coverage parameter is high, although the surface quality decreases 

the overlap regions could act as like stiffeners and this can increase the strength of 

the composite structure. 
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Figure 2.20 Layup with 0% coverage parameter 

 

Minimum cut length is another constraint in the AFP layup process. It is the 

minimum tow length that must be laid down on the surface that the AFP machine is 

able to cut the tow properly and continue the lay down process. Due to the minimum 

cut length constraint at the corners of the parts the tow laid down more than the 

corner’s length. The excessive parts of the tow are then trimmed. Minimum cut 

length constraint varies according to the fiber placement head, and in the literature, 

minimum cut length is seen to be between 63 -152 mm. [15]. 

In recent years, demand for composite structures in the industry has rapidly 

increased. From military applications to communication antennas, from automotive 

to marine structures composites are widely used.  In such applications, especially in 

military and aerospace structures, there are many parts which are manufactured by 

the AFP process. This process became a standard manufacturing process for 

aerospace companies like Airbus, Boeing Lockheed Martin etc. In Figure 2.21, 

fuselage section of Airbus A350 which is manufactured by the AFP is given. 
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Figure 2.21 AFP manufacturing of the fuselage section of Airbus A350 

2.3 Optimization of the VSC Structures 

The first studies on the variable stiffness composite structures focused on different 

manufacturing methods instead of structural optimization and analysis of VSC 

structures.  The optimization of AFP manufactured VSC structures is mainly studied 

in the last 20 years. In most of the studies, there are significant improvements for 

different geometries achieved by using different optimization techniques. 

In 2008, Tatting and Gürdal [18] worked on rectangular variable stiffness composite 

panels to optimize the buckling and in-plane responses of two distinct cases of 

stiffness variation. In the first case stiffness varies along the direction of loading.  In 

this case, small improvements in the buckling load of some panels have been 

obtained. This improvement is due to the redistribution of transverse stresses over 

the panel. The improvement in the buckling load is determined to be about 19%. In 

the second case study, variation of stiffness is perpendicular to the loading direction 

and in this case 80% increase has been obtained in the normalized critical buckling 

load [18]. 

In 2012, Inci [7] studied variable stiffness rectangular flat plates. Different 

techniques have been used for optimization in his study.  In the thesis study, 
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Nastran’s gradient-based optimization solver and genetic algorithm are used for 

discrete fiber angle optimization. In addition, for continuous fiber layup path 

optimization genetic algorithm is used. Two different cases are studied; one is a 

cantilevered plate and the other one is a quarter of a rectangular panel with a central 

hole. For different loading conditions strain energy minimization and maximization 

of first buckling load are studied. For discrete optimization, theoretically good results 

are obtained; however, they are practically not applicable since in every element a 

different fiber angle is defined. The practical/manufacturable case is the continuous 

fiber layup case for this study. In the continuous fiber path case  with the curvature 

constraint imposed, 30% of increase in the first buckling load is obtained compared 

to the zero-degree straight fiber path. 

Following this study, Güldü [15] has worked on  the optimization of cylindrical shell. 

In this study, particle swarm optimization technique is used to optimize the buckling 

load factor of cylindrical shells. In his study, minimum turning radius and gaps and 

overlaps are also taken into account.  The exceptional result in the study is obtained 

in the case of axially variable stiffness cylinder compared to the baseline constant 

stiffness cylinder. In this case, 37 % increase in the specific buckling load factor  is 

achieved, and it is concluded that stiffness variation proved to be beneficial for the 

structural performance of variable stiffness composite cylinders [15]. 

It is validated by an experimental study that performance increases in the variable 

stiffness composite is a crystal-clear fact. In 2021 Matsuzaki et al. [20] worked on 

the optimization of variable stiffness quarter composite panel with a central hole. 

They worked on open hole tension model, and they have verified the analysis results 

by testing the manufactured prototypes. They have used multi-objective optimization 

using fracture criterion and mean curvature as objective functions. It is shown by the 

experiments that strength of the plate with a hole is increased by 34.4% [20]. 

In 2019 Hao et al. [21]  has tried to optimize VSC structures by using isogeometric 

analysis. They developed a multistage design method to overcome the non-convexity 

of the design space. First, they optimized the stiffness of the composite plate by 
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gradient based optimization, then by using evolutionary algorithm fiber angles are 

optimized, and lastly fiber path design is constructed. Manufacturing constraints are 

used as constraint for the objective function. To design the stiffness and to find out 

the optimum spatial distribution of  lamination parameters, they used B Splines 

surfaces. This method is used because the strong convex-hull property of the B 

Splines overcome the nonconvexity. By using the lamination parameters obtained, 

realistic fiber paths that obey the manufacturing constraint are then constructed. To 

do that uniformly, distributed grid is constructed on a rectangular plate and the 

corresponding fiber angles  from the lamination parameters obtained before are 

determined by the evolutionary algorithm.  In the study fully simply supported 

boundary conditions are used on a rectangular plate and maximum buckling load of 

the structure is increased by 30%. 

Lately in 2022 Coskun and Turkmen [22] has worked on Multi-Objective  Genetic 

Algorithm (MOGA) based optimization of VSC structures. The objective of the 

study is to maximize the buckling load and the stiffness. Also, in the study minimum 

allowable curvature is used as constraint. In this study, fiber path is defined using 

parametric Bezier curves on flat rectangular panels by three parameters. These 

parameters affect the shape of the curve and by optimizing these three parameters, 

best objective value is sought for. These parameters are the segment (n) parameter 

that divide the structure as many segments as the parameter value, angle of each 

segment (𝜃) with respect to the selected axis  and the segment width multiplier (c) 

used for changing the width of each segment (Figure 2.22). Optimization results 

show that buckling load is increased by 103% while 44% decrease in equivalent 

stiffness is obtained compared to the quasi-isotropic laminate. Although the 

increment in the buckling load is very high, they stressed out that the buckling 

performance is highly dependent on the boundary conditions. In the study, 103% 

buckling load  increase is achieved for simply supported plates and it is mentioned 

that clamped plates give least gain due to the additional constraints on the edges. 
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Figure 2.22 Optimization parameters for MOGA optimization of VSC [22] 

 

Previous studies showed that VSC structures are superior to the constant stiffness 

straight fiber path composite structures. The development of AFP machines enabled 

to manufacture the of VSC structures. However, in most studies, optimization of 

VSC structures is done on flat surfaces, and paths are defined in 2D. This study aims 

to show the effectiveness of NURBS based fiber path definition in constructing 

variable stiffness composite structures in 3D. Therefore, in this study, a structural 

optimization methodology for defining the fiber path on curved composite panels 

utilizing the control points of NURBS as design variables is developed. 
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CHAPTER 3  

3 NON-UNIFORM RATIONAL BASIS SPLINES 

The Non-Uniform Rational B Splines (NURBS) are generated from Bezier curves 

developed  by Pierre Bezier in late 1960s. Bezier Curve is a special case of NURBS. 

The pioneering work of Bezier constitute a basis for B Splines and the NURBS [23]. 

NURBS are very powerful to represent curves and surfaces. They have great 

flexibility and precision to represent  conic curves and surfaces. They can also 

represent  straight lines, flat planes, precise circles, and spheres as well as intricate 

piecewise sculptured surfaces [23]. Hence, the exact geometry can be represented 

very successfully in all kinds of computer aided design programs [17].  

NURBS has a very deep mathematical background. Therefore, an introduction to  B 

Splines and NURBS  is given in this Chapter. 

3.1 Parametric Representation and Bezier Curves 

There are two common methods to represent curves and surfaces mathematically in 

geometric modelling. They are parametric function or implicit equation 

representations. 

Implicit equations are in the form of f(x,y,z)=0. For instance, implicit equation for a 

unit sphere is given by Equation (3.1). 

 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑧2 − 1 = 0   (3.1) 

 

In parametric form, each of the coordinates of a point on the curve is represented 

separately  as an explicit function of  independent parameters as shown in Equation 

(3.2). 
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 𝐶(𝑢, 𝑣) = 𝑥(𝑢, 𝑣) + 𝑦(𝑢, 𝑣) + 𝑧(𝑢, 𝑣) = 0        𝑎 < 𝑢, 𝑣 < 𝑏   (3.2) 

Accordingly, C(u,v) is vector-valued function of the independent variables, u, and v  

and parameters u and v are limited in an arbitrary interval “a” and “b”. In general, 

the limits of the interval are usually normalized.   

One quarter of the unit sphere can be parametrically written as follows. 

 𝑥(𝑢, 𝑣) = sin (𝑢) cos(𝑣)

𝑦(𝑢, 𝑣) = sin(𝑢) sin (𝑣)

𝑧(𝑢, 𝑣) = cos (𝑢)

      0 ≤ 𝑢 ≤
𝜋

2
 

0 ≤ 𝑣 ≤ 2𝜋

  (3.3) 

 

Two parameters are needed to describe a surface whereas if we want to represent a 

planar shape one parameter is enough. By holding u fixed and varying v, latitudinal 

lines are generated, for longitudinal lines vice versa is valid. However, in the 

parametric form there are some difficulties like determining a point on the surface 

and there can be some other parametric anomalies. Therefore, “Power Basis” form 

given by Equation (3.4) is used to overcome these problems [24]. In Equation (3.4), 

an nth degree curve defined with “Power Basis” form is given. In the Power Basis 

form,  a well-known function class, polynomials, are used and by their help curves 

can be represented better. 

 
𝑪(𝑢) = (𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢)) =∑𝒂𝒊𝑢

𝑖

𝑛

𝑖=0

        0 ≤ 𝑢 ≤ 1  (3.4) 

 

In Equation (3.4), coefficients are the coefficients of polynomials of each coordinate 

axis  and given by Equation (3.5). 

 
𝑥(𝑢) =∑𝒙𝒊𝑢

𝑖

𝑛

𝑖=0

     𝑦(𝑢) =∑𝒚𝒊𝑢
𝑖

𝑛

𝑖=0

      𝑧(𝑢) =∑𝒛𝒊𝑢
𝑖

𝑛

𝑖=0

  (3.5) 
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Index “i” represents the degree of the polynomials and during the calculation it goes 

up to the polynomial degree of n of the “Power Basis” form. Bezier curve is 

mathematically same as the power basis form. Polynomials are used to represent 

their coordinate functions. However, Bezier form is better than the power basis. 

Bezier form is more useful for geometric modelling because they can represent 

geometric information much better. Power basis polynomials are processed 

algebraically not geometrically, and power basis method has higher rounding errors 

[23], [24]. Bezier curve is defined by Equation (3.6), 

  

𝑪(𝑢) =∑𝐵𝑖,𝑛(𝑢)

𝑛

𝑖=0

𝑷𝒊        0 ≤ 𝑢 ≤ 1 

  

(3.6) 

 

 

where Bi,n is the Bernstein basis polynomial defined by Equation (3.7).  

 

 
𝐵𝑖,𝑛(𝑢) =

𝑛!

𝑖! (𝑛 − 𝑖)!
𝑢𝑖(1 − 𝑢)𝑛−𝑖       (3.7) 

 

Index “n” represents the degree of the polynomial and 𝑖 ≤ 𝑛. In Equation (3.6) 𝑷𝒊 

values are the control points of the curve. Control points are main parameters that 

govern the shape of the Bezier curve. They are represented by the coordinates in 

three-dimensional space. It should be noted that Equation (3.6) can also be 

represented as Equation (3.8). 

  

𝑪(𝑢) =∑𝐵𝑖,𝑛(𝑢)

𝑛

0

(𝒙𝒊, 𝒚𝒊, 𝒛𝒊)       0 ≤ 𝑢 ≤ 1 

 

(3.8) 

 

 

For a value of the parameter u, Equation (3.8) returns the x, y, and z coordinates of 

a particular point on the Bezier curve corresponding to the parameter value u. As the 
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parameter u varies between 0 and 1, the collection of points whose x, y, z coordinates 

are calculated by Equation (3.8) forms the Bezier curve. Bezier Curve defined in 

Equation (3.6) is constructed by the (n-1)th degree interpolation between the control 

points, respectively. The degree of the curve (n) is one less than the number of control 

points. 

In the Equation (3.6), Bezier curve defined as a function of the independent 

parameter, u. The parameter u is defined in the interval [0,1]. This means that when 

the parameter u=0, consequently C(u)=C(0) and Equation (3.6) must give the 

coordinates of the  starting point. Accordingly, when u=1, consequently C(u)=C(1) 

and Equation (3.6) must give the coordinates of the end point of the curve. In 

addition, the values of the parameter u between “0” and “1” must be on the Bezier 

curve.  

As an example, a 3rd  degree Bezier Curve with  control points P0[1,1],  P1[2,3], 

P2[4,3], P3[3,1] is constructed via Equation (3.9).  

 
𝐵0,3(𝑢) =

3!

0! (3 − 0)!
𝑢0(1 − 𝑢)3−0 = (1 − 𝑢)3     

 (3.9a) 

 
𝐵1,3(𝑢) =

3!

1! (3 − 1)!
𝑢1(1 − 𝑢)3−1 = 3𝑢(1 − 𝑢)2     

 (3.9b) 

 
𝐵2,3(𝑢) =

3!

2! (3 − 2)!
𝑢2(1 − 𝑢)3−2 = 3𝑢2(1 − 𝑢)     

 (3.9c) 

 
𝐵3,3(𝑢) =

3!

3! (3 − 1)!
𝑢3(1 − 𝑢)3−3 = 𝑢3     

 (3.9d) 

 𝑪(𝑢) = (1 − 𝑢)3[1,1] + 3𝑢(1 − 𝑢)2  [2,3] + 3𝑢2(1 − 𝑢)[4,3]

+ 𝑢3[3,1]   

 (3.9e) 

 𝑥(𝑢) = (1 − 𝑢)3 ∗ 1 + 3𝑢(1 − 𝑢)2 ∗ 2 + 3𝑢2(1 − 𝑢) ∗ 4 + 𝑢3 ∗ 3    (3.9f) 

 𝑦(𝑢) = (1 − 𝑢)3 ∗ 1 + 3𝑢(1 − 𝑢)2 ∗ 3 + 3𝑢2(1 − 𝑢) ∗ 3 + 𝑢3

∗ 31   

(3.9g) 

 

In Equation (3.9e), when u=0 the C(u)=C(0)=[1,1] is the coordinate of the starting 

point and first control point of the curve in the two-dimensional coordinate space. 
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The same case is valid for end point of the curve. For  u=1 that C(u)=C(1)=[3,1] and 

this is the end point also the coordinate of the last control in the two-dimensional 

space.  

Figure 3.1 represents the Bezier curve drawn according to Equation (3.9e).  

 

Figure 3.1 Representation of Bezier Curve in Equation (3.9)  

3.2 B Splines 

 Bernstein basis has some disadvantages in terms of the ability to make local changes 

on the shape of the curve. One disadvantage is that the order of the Bernstein 

polynomials can be changed only by decreasing or increasing the number of control 

points. When there is high number of controls points, the degree of the curve 

increases but this is very inefficient. Other disadvantage is that control points have a 

dominant effect on the overall shape of the curve. Polynomial is not defined in a 

piecewise manner; hence modification of the local points affects the whole curve. In 
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Figure 3.2 difference between a Bezier curve and B-Spline curve with same control 

points is presented. 

 

Figure 3.2 Bezier and B-Spline curves with the same control points [25] 

In Basis Splines (B-Splines), curves are defined by piecewise polynomials such that 

the disadvantages of Bezier curves can be overcome. The curve is divided into pieces 

by the knot values which are defined in the knot vector. In B-Splines definition, knot 

vector is used to construct the B-Spline’s Basis functions. Knot vector and Basis 

functions are explained in the following sections. 

 A pth degree B-Spline is defined by Equation (3.10),  

 
𝑪(𝑢) =∑𝑁𝑖,𝑝(𝑢)

𝑚

𝑖=0

𝑷𝒊        𝑎 ≤ 𝑢 ≤ 𝑏  (3.10) 

 

where 𝑷𝒊  are the control points and 𝑁𝑖,𝑝(𝑢) are pth degree B Spline basis functions 

defined on the non-periodic knot vector limited by “a” and “b” given in Equation 

(3.11).  A knot vector (U) has multiplicity of knot values at each end and the 

multiplicity value is equal to the degree of the B-spline basis function (p), plus one 

(p+1).Knot vector has m+1 knot values, and m is the last index of the knot vector 

which is equal to the length of the knot vector minus 1.  

 𝑈 = {𝑢0, … , 𝑢𝑚} = {𝑎, … , 𝑎, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 𝑏, … , 𝑏}      (3.11) 

                                          p+1      p+1 
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3.2.1 Knot Vector 

Knot vector divides the parametric space into the pieces, referred to as knot spans. 

Knot vector U={u0,…,um} is a non-decreasing sequence of parameters which control 

where and how the control points affect the curve. The knot vector divides the 

parametric space in the interval. To control the curve in a piecewise fashion, as the 

knot value increases throughout the knot vector and enters a new knot span, a new 

control point gets active, and it enables to control the shape of the curve locally.  

The number of knots is always equal to the number of control points (n) plus degree 

of the curve (p) and plus one (n+p+1).  There are evenly spaced knot vectors called 

uniform knot vectors and there are non-uniform knot vectors. Non-uniform knot 

vectors are spaced unevenly, and one knot value can repeat itself. If there are p+1 

“a” and “b” which are the end points of a knot vector, the knot vector is named as 

open knot vector, otherwise knot vector is named as periodic. As mentioned, a knot 

vector has multiplicity of knot values at each end (first and last values of the interval) 

and the multiplicity value is equal to the degree of the B-spline basis function and 

plus one (p+1). Lastly, unless otherwise specified a=0 and b=1 is used for the end 

points of the knot span. Otherwise,  end points “a” and “b” of the knot vector can be  

normalized [23]. 

3.2.2 Basis Functions of B-splines 

To calculate the Basis Functions of B-splines, Cox-de Boor [26,27] recursion 

formula is used. In Equation (3.12), the formulation for the B spline basis functions 

is given. 

 
𝑁𝑖,0(𝑢) = {

       1,  𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3.12.a) 

 
𝑁𝑖,𝑝(𝑢) =

(𝑢 − 𝑢𝑖)

𝑢𝑖+𝑝 − 𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

(𝑢𝑖+𝑝+1 − 𝑢)

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢)  (3.12.b) 
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In Equation (3.12), 𝑁𝑖,𝑝(𝑢) are piecewise polynomials defined in the interval [u0,um] 

with the u0 being the starting value of the knot vector, um is the end value of the knot 

vector and [ui,ui+1) is the knot span. It should be noted that the recursion formula for  

𝑁𝑖,𝑝(𝑢) depends on the lower degree basis functions down to p=1. This dependence 

creates a triangular pattern as shown in Figure 3.3. The number of basis functions 

for degree p, is p+1 less than the length of knot vector. This is because of the 

recursive structure of the basis functions [18]. This recursive structure ensures that 

the number of control points and the number of basis functions are equal for degree 

p. 

 

Figure 3.3 Triangular pattern of basis functions 

3.2.2.1 An Example of Calculation of the Basis Function 

Consider a knot vector u=[0,0,0,0.5,1,1,1] and a second order B-Spline (p=2). The 

knot vector has p+1 repeating knot values at each end. This repetition comes from 

the definition of the knot vector. In the following, basis functions of degrees 0,1 and 

2 are calculated utilizing Equation (3.12).  

For p=0 there are 6 (7-1) basis functions, and they are calculated by Equation (3.13).  

From Equation (3.11) one can see that u0= u1= u2=0, u3=0.5 and, u4=u5=u6=1 and 

m=6. For i=0, u0=0 and u0+1= u1=0 and for i=1 u1=0 and u1+1= u2=0. 
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From Equation (3.12a) second condition is valid; hence the first two basis functions 

become equal to zero.  

 𝑁0,0(𝑢) = 0,𝑁1,0(𝑢) = 0    (3.13.a) 

For i=2 and i=3 basis functions are calculated by Equation (3.13). 

𝑁2,0(𝑢) = {
1,  0 ≤ 𝑢 ≤ 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    
 (3.13.b) 

𝑁3,0(𝑢) = {
1,  0.5 ≤ 𝑢 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    
 (3.13.c) 

For i=4, u4=1 and u4+1= u5=1 and for  i=5 u5=1 and u5+1= u6=1.From  Equation (3.12a) 

second condition is valid and the last two basis functions becomes equal to zero. 

 𝑁4,0(𝑢) = 0,𝑁5,0(𝑢) = 0    (3.13.d) 

For p=1, there are 5 (7-2) basis functions, and they are calculated by Equation (3.14). 

 
𝑁0,1(𝑢) =

(𝑢 − 𝑢0)

𝑢1 − 𝑢0
𝑁0,0(𝑢) +

(𝑢2 − 𝑢)

𝑢2 − 𝑢1
𝑁1,0(𝑢) = 0   

 (3.14.a) 

 
𝑁1,1(𝑢) =

(𝑢 − 𝑢1)

𝑢2 − 𝑢1
𝑁1,0(𝑢) +

(𝑢3 − 𝑢)

𝑢3 − 𝑢2
𝑁2,0(𝑢) =

0,5 − 𝑢

0,5
𝑁2,0(𝑢)

= (1 − 2𝑢)𝑁2,0(𝑢) = {
1 − 2𝑢,  0 ≤ 𝑢 < 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (3.14.b) 

 
𝑁2,1(𝑢) =

(𝑢 − 𝑢2)

𝑢3 − 𝑢2
𝑁2,0(𝑢) +

(𝑢4 − 𝑢)

𝑢4 − 𝑢3
𝑁3,0(𝑢)

=
𝑢

0,5
𝑁2,0(𝑢) +

1 − 𝑢

1 − 0,5
𝑁3,0(𝑢)

= {
2𝑢,  0 ≤ 𝑢 < 0.5
2 − 2𝑢     0.5 ≤ 𝑢 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (3.14.c) 

 
𝑁3,1(𝑢) =

(𝑢 − 𝑢3)

𝑢4 − 𝑢3
𝑁3,0(𝑢) +

(𝑢5 − 𝑢)

𝑢5 − 𝑢4
𝑁4,0(𝑢)

=
𝑢 − 0,5

1 − 0,5
𝑁3,0(𝑢) +

1 − 𝑢

1 − 1
𝑁4,0(𝑢)

= {
2𝑢 − 1,  0.5 ≤ 𝑢 ≤ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (3.14.d) 
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𝑁4,1(𝑢) =

(𝑢 − 𝑢4)

𝑢5 − 𝑢4
𝑁4,0(𝑢) +

(𝑢6 − 𝑢)

𝑢6 − 𝑢5
𝑁5,0(𝑢) = 0 

 (3.14.e) 

 

For p=2, there are 4 basis functions, and they are calculated by Equation (3.15). 

 
𝑁0,2(𝑢) =

(𝑢 − 𝑢0)

𝑢2 − 𝑢0
𝑁0,1(𝑢) +

(𝑢3 − 𝑢)

𝑢3 − 𝑢1
𝑁1,1(𝑢)

= {
(1 − 2𝑢)2,  0 ≤ 𝑢 < 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (3.15.a) 

 
𝑁1,2(𝑢) =

(𝑢 − 𝑢1)

𝑢3 − 𝑢1
𝑁1,1(𝑢) +

(𝑢4 − 𝑢)

𝑢4 − 𝑢2
𝑁2,1(𝑢)

= 2𝑢 {
1 − 2𝑢,  0 ≤ 𝑢 < 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+ (1 − 𝑢) {
2𝑢,  0 ≤ 𝑢 < 0.5
2 − 2𝑢     0.5 ≤ 𝑢 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= {
4𝑢 − 6𝑢2,  0 ≤ 𝑢 < 0.5

2(1 − 𝑢)2     0.5 ≤ 𝑢 < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (3.15.b) 

 
𝑁2,2(𝑢) =

(𝑢 − 𝑢2)

𝑢4 − 𝑢2
𝑁2,1(𝑢) +

(𝑢5 − 𝑢)

𝑢5 − 𝑢3
𝑁3,1(𝑢)

= {
2𝑢2,                 0 ≤ 𝑢 < 0.5

−6𝑢2 + 8𝑢 − 2     0.5 ≤ 𝑢 < 1
0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (3.15.c) 

 
𝑁3,2(𝑢) =

(𝑢 − 𝑢3)

𝑢5 − 𝑢3
𝑁3,1(𝑢) +

(𝑢6 − 𝑢)

𝑢6 − 𝑢4
𝑁4,1(𝑢)

= {
(2𝑢 − 1)2,  0.5 ≤ 𝑢 < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (3.15.d) 

 

Once all the basis functions are calculated, Equation (3.10) is used to determine the 

equation of the B-spline. To do that the control points must also be defined. 

 
𝑪(𝑢) =∑𝑁𝑖,𝑝(𝑢)

𝑚

𝑖=0

𝑷𝒊 = ∑𝑁𝑖,𝑝(𝑢) [

𝑥𝑖
𝑦𝑖
𝑧𝑖
]

𝑚

𝑖=0

      𝑎 ≤ 𝑢 ≤ 𝑏 
 (3.16) 
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B splines have some important properties which are summarized below [23], [24]: 

• If  m in the definition is equal to p (degree), this is a Bezier curve. 

• 𝑪(𝑢) is piecewise polynomial since its basis functions 𝑁𝑖,𝑝(𝑢) are piecewise 

polynomials. 

• The degree p, length of knot vector m+1 and number of control points (n) 

satisfy the relation m+1=p+n+1 == m=p+n. 

• Starting point and end points of the spline are the first and the last control 

points, respectively. However, except for the straight lines other control 

points serve  for creating the convex hull of the curve and generally they are 

not on the curve.  

• B  spline has strong convex hull property which means that  the B-spline 

curve is contained in the convex hull of its control polyline, as shown  in 

Figure 3.4. 

 

Figure 3.4 Control polyline (dashed line) and convex hull (in gray) of a B-Spline 

curve [28] 

 

For the given knot vector u=[0 0 0 0.5 1 1 1] and control points P=([-1,0], [-1,1], 

[1,1],  [1,0]),  a semicircle B spline is drawn in Figure 3.5. 
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Figure 3.5 B-Spline semicircle 

3.3 NURBS 

B-splines are the non-rational (polynomial) curves, and their basis functions are non-

rational (polynomial). However, conical shapes can be represented in an exact 

manner by rational curves [17]. Therefore, non-uniform rational B-splines (NURBS) 

with rational basis functions are introduced. The weights defined for each control 

point (wi) make the basis functions rational. Weights provide more control on the 

shape of the curve without increasing the number of control points. Therefore, exact 

representation of shapes is accomplished. In many computer aided design (CAD) 

applications and data transfer format such as in IGES, STEP, etc. NURBS have been 

used as a standard since 1983. 

Mathematically, NURBS are the projection of polynomial B-spline curves defined 

in the four-dimensional homogenous coordinate space (projective space) onto the 

three-dimensional physical space as shown in Figure 3.6. NURBS are defined with 
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three parameters [23].They are the weight (wi), knots (u), and control points (Pi) 

which are used to construct the NURBS control polygon. NURBS curve (C(u)) is 

defined by Equation (3.17), 

 𝐶(𝑢) =
∑ 𝑁𝑖,𝑝(𝑢)𝑤𝑖𝑷𝑖

𝑚

𝑖=0

∑ 𝑁𝑖,𝑝(𝑢)𝑤𝑖
𝑚

𝑖=0

 𝑎 < 𝑢 < 𝑏  (3.17) 

where “a” and “b” are the limit values of the knot vector and  𝑁𝑖,𝑃(𝑢) is the ith basis 

function and “a” and “b” are taken as 0 and 1 unless otherwise specified [24]. The 

rational part in Equation (3.17) can be written as, 

 
𝑅𝑖,𝑝 =

𝑁𝑖,𝑝(𝑢)𝑤𝑖

∑ 𝑁𝑖,𝑝(𝑢)𝑤𝑖
𝑚

𝑖=0

                 (3.18) 

Hence, the NURBS formulation can be rewritten as, 

 
𝐶(𝑢) =∑𝑅𝑖,𝑝(𝑢)𝑷𝑖

𝑚

𝑖=0

  (3.19) 

 

 

Figure 3.6 B-spline (polynomial curve) defined in homogeneous coordinates given 

by blue  and its projection on gray plane yields NURBS curve  given by red 
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The most dominant parameter to control the shape of the NURBS is the control 

points as shown in Figure 3.7. Weight and the knots can also change the shape of the 

NURBS as shown in Figure 3.8 and Figure 3.9. By modifying the knot vector 

significant shape changes can be achieved [29]. However, their effect on the shape 

control of NURBS is more limited than the effect of the control points.  

 

Figure 3.7 Splines with two different P4 control points[24] 
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Figure 3.8 Splines with two different knot values in possible NURBS envelope[29] 

 

Figure 3.9 Splines with different weights for the same control point[24]  

 

For a given knot vector u=[0 0 0 0.5 1 1 1], control points P=([-1,0], [-1,1], [1,1],  

[1,0])  and weights w= [1 ½ ½  1], Figure 3.10 shows the resultant semicircle. To 

plot the semicircle thousand parameter values in the range of [0,1] is calculated. To 
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make a comparison, in Figure 3.9 B-Spline and NURBS with same control points 

and knot vector are plotted. 

In Figure 3.10, the data points of analytically calculated semi-circle are shown with 

black circles, green line behind the black circles is the semi-circle created by NURBS 

and the pink line is the semi-circle created by B-spline. Figure 3.10 shows that 

NURBS is much better in approximating the analytical semi-circle. This is because 

of the ability of NURBS in representing the conical shapes more closely than the B-

splines by its definition.  

 

Figure 3.10 Semicircle Drawn by NURBS,  B Spline and, Analytical Calculation 
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CHAPTER 4  

4 PARTICLE SWARM OPTIMIZATION 

There are various optimization methods in the literature. One of the primary 

considerations when choosing an optimization method is to determine the needs of 

the problem and choose a suitable method for it. Because each iteration has a process 

time cost, and this cost needs to be minimized. The variable type, type of search 

space, objective function, and other problem parameters are the factors for choosing 

a suitable optimization method. 

In many studies on developing optimization techniques, simulations have been 

carried out by modeling the animal population problem-solving strategies and group 

intelligence. These simulations have shown that the behavior of a group of animal’s 

ways of problem-solving can be used as a metaheuristic optimization method. Such 

kind of optimization techniques is named as Swarm Intelligence [30]. 

In this thesis, Particle Swarm Optimization (PSO) method is used to optimize the 

objective function of the optimization problems. PSO is a metaheuristic global 

optimization method that can also be defined as a population-based stochastic search 

algorithm [31]. It is used for complex non-linear optimization problems [5]. The 

method was developed by Eberhart and Kennedy [32] in 1995; the animals' social 

behavior inspired them. They see that birds, fish, and ant flocks can find food or the 

best migration route by each flock member sharing their knowledge with the other 

individuals in the flock. The animals are in a big search space, and members do not 

know the best way to go; however, if any member can find a better way to follow, it 

shares this information with others to follow this path. To find the best way, 

individual's knowledge, and groups knowledge reshared iteratively on the road. The 

group knowledge and individual knowledge act in harmony to find the best way [5]. 
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PSO is studied on continuous variable problems, and its performance is comparable 

to another metaheuristic method, the Genetic Algorithm. PSO has been applied 

successfully to a wide variety of problems. In structural optimization, it is used for 

shape optimization,  sizing optimization, and topology optimization. It is also used 

in the training of neural networks for the identification of Parkinson's disease, image 

recognition, etc. There are also various other implementations in different subjects 

like electrical engineering and biomedical engineering [5]. 

PSO has the following advantages and disadvantages[5]: 

• Insensitive to scaling of design variables  

• Simple implementation  

• Derivative free 

• Has very few algorithms parameters 

• A very efficient global search algorithm 

• However, local search ability is very weak 

4.1 Basic PSO Algorithm 

In particle swarm optimization, there are  “n” number of candidate solutions, called 

as particles, in real valued “d” dimensional search space “X”. Equation (4.1) is a 

generic optimization statement.  

 min
𝒙∈𝑋

𝑓(𝒙)  (4.1) 

where; 

 𝑋 = [𝑥1
𝑚𝑖𝑛, 𝑥1

𝑚𝑎𝑥]… [𝑥𝑑
𝑚𝑖𝑛, 𝑥𝑑

𝑚𝑎𝑥] ⊂ ℝ𝑑         (4.2) 

In Equation (4.2), 𝒙𝑖 is the current position of particles in the search space “X” and  

𝒙𝑖
𝑚𝑎𝑥 and 𝒙𝑖

𝑚𝑖𝑛 are the boundaries of the search space in the ith coordinate direction 

of the search space. 
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Particles search for the best solution in the search space X by iteratively changing 

their position. Two information determine the new position of each particle. First, 

each particle keeps its best position information up to the current iteration in its 

memory during the iteration. Each particle tries to change its position towards there. 

At the same time, the swarm keeps track of the best position determined by any 

particle in the swarm. All particles are also influenced by the swarm’s best position 

information and try to change their position towards this potential best position. This 

two information simultaneously affect the new position of each particle. Let A 

denote the particles and assume that there are n number of particles in a swarm P, as 

described by Equation (4.3). 

 𝑃 = {𝐴1, 𝐴2, … 𝐴𝑛}  (4.3) 

 

For the iteration number t, each particle Ai is defined with four vectors given by 

Equation (4.4),. 

 𝐴𝑖 = 〈𝒙𝑖
(𝑡), 𝒗𝑖

(𝑡), 𝒑𝑖
(𝑡), 𝒑𝑔𝑖

(𝑡)〉    𝑖 ∈ 𝐼   (4.4) 

where I={1,2,…,n} is the set of indices of the particles. The first vector 𝒙𝑖
(𝑡)

 is the 

position vector of the ith particle defined in Equation (4.5). This vector gives the 

position of the ith particle in iteration t with all its components in the d dimensional 

space.  

 𝒙𝑖
(𝑡) = (𝑥𝑖1

(𝑡), 𝑥𝑖2
(𝑡), … , 𝑥𝑖𝑑

(𝑡))   ∈ 𝑋  (4.5) 

The second vector 𝒗𝑖
(𝑡)

 is the velocity vector of the ith particle defined in Equation 

(4.6). This vector gives the velocity of the ith particle in iteration t with all its 

components in the d dimensional space. The velocity vector is responsible for the 

motion of the particles in the search space. 

 𝒗𝑖
(𝑡) = (𝑣𝑖1

(𝑡), 𝑣𝑖2
(𝑡), … , 𝑣𝑖𝑑

(𝑡))  (4.6) 

Velocity of a particle also has limits. The user defined value 𝑣(max ) is  equal to the 

difference of boundaries of the search space along the jth coordinate direction. This 
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limitation is done for disabling the arbitrary growth of the velocities and disabling 

the violation of the boundaries of the search space. The boundaries of the search 

space along the jth coordinate direction is defined as 𝑥𝑗
𝑚𝑎𝑥 and 𝑥𝑗

𝑚𝑖𝑛, respectively.   

For the generic optimization problem defined in Equation (4.1) and its boundaries, 

the maximum velocity would be set as in Equation (4.7) and Equation (4.8) with µ 

being a user defined coefficient. The coefficient µ is used because in case of 

extremely large number of minimizers or very narrow regions of attraction around 

them, smaller velocities can offer better search accuracy [30].  

  𝑣𝑗
(𝑚𝑎𝑥) = µ𝑗(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)         𝑗 ∈ 𝐷 𝑎𝑛𝑑   µ𝑗 ∈ (0,1)     (4.7) 

 𝑣𝑗
(𝑚𝑖𝑛) = −𝑣𝑗

(𝑚𝑎𝑥)
  (4.8) 

In Equation (4.7), D={1,2,…,d} is the set of the coordinate directions. 

The third vector 𝒑𝑖
(𝑡)

 is the  best position vector of the ith particle in Equation (4.9). 

This vector gives the best position of the ith particle ever visited in the search space 

X until the tth iteration.  For the generic problem defined by Equations (4.1) and (4.2), 

it is the position with the minimum objective value that is reached during the travel 

of the ith particle in the search space. 

 𝒑𝑖
(𝑡) = (𝑝𝑖1

(𝑡), 𝑝𝑖2
(𝑡), … , 𝑝𝑖𝑑

(𝑡))  ∈ 𝑋  (4.9) 

Although each particle knows its best position ever visited in search space; solely, 

this is not enough to find the best objective function solution, because there is a risk 

of getting stuck in the local best position. Therefore, in addition to particles’ 

discovery in the search space, there is an implicit communication mechanism that all 

members in the swarm exchange information with others and try to move through 

the best solution found ever by any particle in the swarm. This is the global best 

value vector in Equation (4.10). 

 𝒑𝑔𝑗
(𝑡) = (𝑝𝑔1

(𝑡), 𝑝𝑔2
(𝑡), … , 𝑝𝑔𝑑

(𝑡))  (4.10) 

The basic concept of PSO is to direct each particle toward its best position  𝒑𝑖
(𝑡)

and 

the swarm’s best position 𝒑𝑔𝑗
(𝑡)

 , with a random acceleration in each iteration. 
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Equation (4.11) and Equation (4.12) are the governing equations of the PSO 

algorithm for (t+1)th iteration.  

 𝑣𝑖,𝑗
(𝑡+1)

= 𝑤 ∗ 𝑣𝑖,𝑗
(𝑡)
+ 𝑐1𝑟1 (𝑝𝑖,𝑗

(𝑡)
− 𝑥𝑖,𝑗

(𝑡)
) + 𝑐2𝑟2 (𝑝𝑔𝑗

(𝑡)
− 𝑥𝑖,𝑗

(𝑡)
)   (4.11) 

 𝑥𝑖,𝑗
(𝑡+1)

= 𝑥𝑖,𝑗
(𝑡)
+ 𝑣𝑖,𝑗

(𝑡+1)
  (4.12) 

Equation (4.11) is the update equation of the velocity of the ith particle in the  jth 

coordinate direction for the (t+1)th  iteration, and Equation (4.12) is the update 

equation of the position of the ith particle in the  jth coordinate direction for the (t+1)th  

iteration.  

Figure 4.1 shows the geometric illustration of the PSO update scheme in a two-

dimensional search space. 

 

Figure 4.1 Geometric illustration of the PSO update scheme 
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Terms of the equations (Equation (4.11) and Equation (4.12)) are explained  below.      

• 𝑥𝑖,𝑗
(𝑡)

      : Particle’s current location 

• 𝑥𝑖,𝑗
(𝑡+1)

    : Particle’s modified location 

• 𝑣𝑖,𝑗
(𝑡)

      : Particle’s current velocity  

• 𝑣𝑖,𝑗
(𝑡+1)

    : Particle’s modified velocity 

• 𝑐1𝑟1(𝑝𝑖,𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡)) :Personal (cognitive) velocity influence 

• 𝑐2𝑟2(𝑝𝑔𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡)) : Social velocity influence 

The multiplier parameters of particle’s current velocity, personal (cognitive) velocity 

influence and social velocity influence terms of the update Equation (4.11) and 

Equation (4.12) are given below. 

• 𝑐1, 𝑐2 - cognitive and social parameters, respectively 

• 𝑟1, 𝑟2 - random numbers from uniform distribution between 0 and 1. 

• 𝑤 - inertia weight factor for the velocity 

The first difference term (𝑝𝑖,𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡)) in Equation (4.11) is cognitive term because 

it contains only the particle’s own information. The 𝑐1 is a stochastic parameter 

named as  “cognitive parameter” because it is a multiplier of the cognitive difference 

term. The second difference term (𝑝𝑔𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡)) in Equation (4.11) is social term 

because it contains information from other particles. The 𝑐2 is a stochastic parameter 

named as  the “social parameter” because it is a multiplier of the social difference 

term [30].  

Velocity is limited by the limits of the search space in Equation (4.7) and Equation 

(4.8). Although this limitation is effective to hinder divergence, it is proven that  

limiting the velocity is insufficient to produce convergent behavior of the particles 

[30]. Gradual decrease of the velocity term is needed to converge a point  in the 

search space. This is achieved by introducing an inertia weight factor (𝑤) to the 

velocity update equation (Equation (4.11)) [30]. 
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The selection of the PSO parameters is critical to have a good convergence rate and 

optimization performance [15].  Social  and cognitive parameters 𝑐1, 𝑐2 in Equation 

(4.11) usually take values around 1.5 and 2.5 to ensure not to overfly  the target and 

to make the algorithm stable [15], [30]. Parsopoulos recommends taking them as 1.5 

[30]. However, 1.5-2.5 range is good to set as the value for these parameters.  

Furthermore, the weight factor “w” should be appropriately set to decrease the 

previous velocity effect during iterations [30]. This value can be a fixed value 

between (0,1); however, it is preferred to decrease the weight factor between two 

values by using a reduction factor (α). This is done as described in Equation (4.13) 

for having better optimization performance. In the equation the limits of the weight 

factor can be taken as  𝑤𝑚𝑖𝑛 = 0 and 𝑤𝑚𝑎𝑥 = 1. The reduction factor 𝛼 can be taken 

as 𝛼 = 0.99 [15], [30]. 

 
𝑤 = {

𝑤𝑚𝑖𝑛 , 𝑤 < 𝑤𝑚𝑖𝑛
𝑤𝑚𝑎𝑥 ∗ 𝛼                     

  (4.13) 

The convergence criterion used in this thesis is that the distance of all particles to the 

best objective valued particle must be less than the set value. The user determines 

the set value at the beginning of the optimization process as an input parameter. Such 

a convergence criterion ensures that if the number of particles is set wisely, almost 

all search space is scanned, and getting stuck in the local optimum is prevented. 

Steps of the PSO optimization algorithm are given below. 

1. Create a ‘population/swarm’ of agents (called particles) uniformly 

distributed over search space X. 

2. Initialize particles’ positions and velocities. 

3. Evaluate each particle’s position according to the objective function. 

4. If a particle’s current position is better than its previous best position, update 

it. 

5. Determine the best particle (according to the particle’s previous best 

positions). 

6. Update particles’ velocities according to Equation (4.11). 
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7. Move particles to their new positions according to Equation (4.12) 

8. Go to step 3 until the stopping criterion is satisfied. 

4.2 Constrained Optimization Problems and Penalty Function Approach 

In optimization problems, there may be constraints that the design variables must 

satisfy. Constraints limit the values that design variables can take; therefore, 

constraints limit the search space to a feasible region [30].  This type of optimization 

problem is named as constrained optimization problem. PSO method does not handle 

the constraints by itself. However, the constraints can be satisfied by using the 

penalty function approach [15]. 

Constrained optimization problems are defined as follows. 

 min
𝒙∈𝑋

𝑓(𝒙) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝐶𝑖(𝒙) ≤ 0   𝑖 = 1,2, … , 𝑘   

 (4.14) 

 

where, 𝐶𝑖(𝒙) ≤ 0  are the constraints of the optimization problem that the solutions 

during the iterations must satisfy.  If any of these solutions do not satisfy the 

constraint, this solution counts as infeasible. Optimization continues until an 

optimum feasible solution that satisfies the constraints is found. Constraints can be 

equality and inequality constraints, and they put limits on the optimization problem.  

In optimization problems, penalty functions are widely used to penalize the solutions 

that are not in the feasible region. Utilizing the penalty function method, optimization 

iterations are not allowed to continue in the infeasible region. Using the penalty 

function method infeasible solutions are determined and they are penalized such that 

it is ensured that these solutions cannot be selected as the best solution for the particle 

and the swarm up to the current iteration. For constrained optimization problems, 

Equation (4.14) is modified to include the penalty function as given in Equation 

(4.15), 
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 min
𝒙∈𝑋

𝑓(𝒙) + 𝑃(𝒙)  (4.15) 

 where the penalty function is defined in Equation (4.16).  

 
𝑃(𝒙) = {

𝛾 > 0, 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡  𝑓𝑜𝑟  𝑜𝑛𝑒 𝑖 𝐶𝑖(𝒙) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 (4.16) 

As defined in Equation (4.16), the penalty function is usually a number that is 

sufficiently high or low to penalize the infeasible solution. Thus, infeasible solutions 

are precluded from being selected as the particle’s or swarm’s best solution during 

the iterations. In the use of penalty functions, it is recommended to incorporate 

weight functions to change the penalty’s weight to understand the degree of violation 

or how far  away the  solution is from the feasible region [30]. Via the weight 

functions, time varying penalty functions, or penalty functions that get more strict or 

looser, can be defined. 

 min
𝒙∈𝑋

𝑓(𝒙) + ℎ(𝑡)𝐻(𝒙) (4.17) 

Equation (4.17)   represents an optimization problem with a weighted penalty 

function h(t)H(x). In Equation (4.17) 𝐻(𝒙) is the penalty function and h(t) is a weight 

function that can be changed during the iterations for the purpose of controlling the 

impact of the penalty function. 

4.3 Verification of the PSO Code 

In this thesis, to optimize the layup angle of variable stiffness composite structures, 

PSO is used as an optimizer. The basics of the PSO are given above, and definitions 

of the variables and functions that are used are explained in detail. This part of the 

chapter is for verification of the written optimization code by using a simple test 

problem which is taken from Güldü [15].  

The test problem is illustrated in Figure 4.3. The objective is to minimize the function 

defined. The test problem (Equation (4.18)) has two variables X1 and X2 which are 

limited by the constraint in Equation (4.19). The search space of the variables is 

limited by  Equation (4.20). 
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 𝑓(𝑋1, 𝑋2) = 0.25 ∗ 𝑋1
4 − 3 ∗ 𝑋1

3 + 11 ∗ 𝑋1
2 − 13 ∗ 𝑋1 + 0.25 ∗ 𝑋2

4

− 3 ∗ 𝑋2
3 + 11 ∗ 𝑋2

2 − 13 ∗ 𝑋2 

 (4.18) 

 𝑔(𝑋1, 𝑋2) = 4 − 𝑋1 − 𝑋2 ≤ 0  (4.19) 

 0 < 𝑋1, 𝑋2 < 6 (4.20) 

 

Figure 4.2 Test problem illustration taken from Güldü [15] 

The PSO parameters are given in Table 4.1.  

Table 4.1 PSO parameters 

PSO Parameters  Value 

c1 cognitive parameter 1.5 

c2 social parameter 2.0 

wmax inertia weight factor 1 

µ user defined velocity clamping coefficient  0.1 

α reduction factor 0.99 

𝛾 penalty value 1028 
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In Equation (4.21) penalty function is added to the objective function, and the penalty 

condition is defined by Equation (4.22). Hence, the constrained optimization 

problem is converted into an unconstrained optimization problem. 

 

 𝐹(𝑋1, 𝑋2, 𝛾) = 𝑓(𝑋1, 𝑋2) + 𝑃(𝑋1, 𝑋2, 𝛾)  (4.21) 

 
𝑃(𝑋1, 𝑋2, 𝛾) = {

0, 𝑖𝑓  𝑔(𝑋1, 𝑋2) = 4 − 𝑋1 − 𝑋2 ≤ 0 
𝛾, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.22) 

The exact solution of the problem can be determined using calculus. For a function 

that has two variables z = f(x, y) the potential minimum and maximum points can 

be found by taking the derivatives with respect to each variable and finding the roots 

of the equations as shown in Equation (4.23). 

 𝑓𝑥(𝑎, 𝑏) = 0 𝑎𝑛𝑑 𝑓𝑦(𝑎, 𝑏) = 0  (4.23) 

 where 𝑓𝑥 and 𝑓𝑦 are the first derivatives of the function 𝑓(𝑥, 𝑦) with respect to x and 

y. Then, D-test is applied as follows. 

 𝐷 = 𝑓𝑥𝑥(𝑎, 𝑏) ∗ 𝑓𝑦𝑦(𝑎, 𝑏) − [𝑓𝑥𝑦(𝑎, 𝑏)]
2
  (4.24) 

• If  D>0, then f(x, y) has a maximum if 𝑓𝑥𝑥(𝑎, 𝑏) < 0 and a minimum if 

𝑓𝑥𝑥(𝑎, 𝑏) > 0 

• If D< 0, then f(x, y) has neither a maximum or minimum 

• If D=0, then the test fails 

By applying this method, the exact result is found, and it is given in Table 4.2. 

The problem has been solved by the developed PSO code, and the results of PSO 

code and the exact values are compared in Table 4.2. Variation of the best objective 

function value with the iterations during the optimization is shown in Figure 4.3. 
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Table 4.2 Comparison of the optimization results obtained by the PSO and exact 

solution 

 Exact solution Current PSO solution 

X1 5.33 5.33 

X2 5.33 5.32 

Objective Value -18.568 -18.568 

 

Figure 4.3 Variation of the best value of the objective function with the iteration 

number 

 

As shown in Table 4.2, optimum values of the variables X1 and X2 are very close to 

the exact values, and the objective function value is identical to the exact value of 

the objective function at the optimum point. This example shows that the PSO 

algorithm developed works fine and can be used for further optimization of the fiber 

angle in variable stiffness composite structures. 
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CHAPTER 5  

5 MODELLING AND OPTIMIZATION OF VARIABLE STIFFNESS COMPOSITE 

CURVED PANELS 

Optimizing the response of variable stiffness composite structures to different 

loading conditions is a highly complex task; because it is impossible to analytically 

solve the response of a structure having spatially varying fiber orientations to a 

loading.  Such an optimization study requires the definition of a layup path and 

iterative finite element analysis. In every iteration, a new path must be defined and 

introduced to the analysis model, and the analysis results should be processed to get 

a better result in each iteration. In this thesis study, different software and theoretical 

methods are used to achieve this, and a practical method is developed. 

In this chapter, path creation technique utilizing NURBS, discussed in chapter 3, and 

the Particle Swarm Optimization (PSO), discussed in chapter 4, are combined to 

come up with a methodology for the optimization of variable stiffness composite 

curved panels. 

One of the main differences of the present method from most of the studies 

performed in the literature is defining a NURBS based reference layup path on a 

curved 3D surface. Unlike the 2D fiber path definition methods used in the literature, 

defining the fiber path in 3D makes a difference. Defining a 3D path on a 3D surface 

is the most direct way to analyze the structure and optimize the path. Especially, 

NURBS is a straightforward way to define the path if the curvature is multi-

directional. 

In the present study, the design variables are selected from the parameters used in 

the definition of the NURBS reference fiber path and they are optimized via the PSO 

algorithm. Both unconstrained and constrained optimization problems are defined 
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and with different objective functions, and optimum solutions for the reference paths 

defined in terms of NURBS parameters are determined. 

In the thesis study, flat panels, and curved panels, which are manufactured utilizing 

variable stiffness concept, are investigated. To define an initial NURBS path, Rhino 

[6] software is used. MATLAB is used for constructing the NURBS paths 

mathematically, running the PSO algorithm, and coupling the MSC. Nastran FEA 

software, which is used as the solver, with the PSO algorithm.  

5.1 Creation of Variable Stiffness Composite Structure 

To create variable stiffness composite structures, continuous paths are defined in  

AFP machines.  There are different methods to do that as mentioned before. 

However, in this study NURBS are used for the layup path definition. By using the 

NURBS based computer aided design software Rhino, an initial random NURBS 

path is created. Then, an initial NURBS is created in MATLAB environment. To 

create the NURBS in MATLAB, NURBS toolbox developed by D.M. Spink [33] is 

used. Furthermore, some new functions are added according to the aim of this study. 

Specifically, NURBS curvature calculation and NURBS plotting functions are added 

to the toolbox.  The reason for creating the initial NURBS in Rhino environment is 

that in Rhino software the curved panel geometry can also be modelled, and a 

reference NURBS layup path can easily be defined. Rhino software also generates a 

table which gives the NURBS parameters.  

5.1.1 NURBS Path Creation in Rhino 

Rhino is a commercial computer aided design and computer graphics software. It 

uses NURBS to model complex shapes. One of the advantages of the program is that 

it allows the users to visually see and change the shape of spline. The position of 

control points is also visualized, and via the commands one can easily change the 

knots and the weights. As an example, a curved panel and a NURBS layup path with 
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control points are shown in Figure 5.1. Table 5.1 gives the contents of an example 

information card of the NURBS definition in the relevant interface in Rhino. 

Following the creation of the NURBS curve, it can be exported as a step file. To 

construct the NURBS curve, the step file includes the control point, knot, the weight 

information, and other necessary information such as the degree of the curve. An 

example step file content exported from Rhino is given in Appendix A. Since the 

standard of step file is "ISO 10303 the STEP Standard for Product Data Exchange" 

to extract the information about the NURBS, this standard is used. The initial 

NURBS curve is created in Rhino, and the information about the NURBS parameters 

is transferred by extracting the NURBS curve information as a step file.

 

Figure 5.1 NURBS layup path with its control points 
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Table 5.1 Contents of the NURBS information card example in the Rhino interface 

Curve type Open NURBS curve 

Starting point (-800,0,500) 

Ending point (800,0,500) 

Degree of curve 3 

Control points type Non-rational 

Number of control points 9 

Knot type Non-uniform 

Knot domain (0,1886.8) 

5.1.2 NURBS Path Creation in MATLAB 

In this thesis, NURBS toolbox for MATLAB developed by Spink [33] is used to 

construct the NURBS curves in MATLAB environment. Firstly, the extracted step 

file is opened by MATLAB, and by using the information from ISO 10303, the 

related lines, and keywords for the parameters are determined. From the step file, 

NURBS parameters which are the degree of the curve, size of the knot vector, knot 

vector, weights, and coordinates of control points are extracted using the MATLAB 

command “regexp”. Then, the NURBS structure array is created and each NURBS 

parameter is stored in this structure array.  Basis functions are constructed utilizing 

Equation (3.12). Constructed basis functions, extracted control points and weights 

are implemented in Equation (3.17). An example NURBS curve created in Rhino is 

shown in Figure 5.2 and the parameters of the NURBS curve are given in Table 5.2. 

MATLAB representation of the NURBS curve is given in Figure 5.3. 
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Figure 5.2 Representation of the NURBS in Rhino 

Table 5.2 Parameters of the NURBS curve 

 Control Points 

X -

800.0

0 

-

774.8

6 

-

689.8

4 

-466.24 -20.59 181.4

5 

621.4

3 

741.5

1 

80

0 

Y 0 25.31 100.3

7 

231.25 298.8

5 

274.9

0 

138.1

9 

47.80 0 

Z 500 517.3

1 

455.8

0 

637.63 346.2

9 

569.6

1 

575.7

8 

439.7

9 

50

0 

Knots 

0 0 0 0 0.07 0.2

0 

0.43 0.76 0.89 1 1 1 1 

Weights 

1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure 5.3 MATLAB representation of the NURBS exported from Rhino 

5.1.3 Generation of the Geometry and the Finite Element Model 

In the thesis study, on the finite element modeling side, MSC. Patran [34] and MSC. 

Nastran [35] are used. MSC. Patran is the pre-post processor of MSC. Nastran and it 

is used to create the geometry and the finite element model. The analysis geometries 

are created in the MSC. Patran environment. Two different analysis geometries are 

used in the study. First one is a flat panel and the second one is a curved panel. The 

material properties of the plies of composite panels are defined as 2D orthotropic 

materials, and the composite laminate is created from this ply material. The panels 

are defined as laminated shell structures. The load and boundary conditions are 

defined in the preprocessor  MSC. Patran. The solver type is selected depending on 

the problem.  
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5.1.4 Defining Shifted Paths in the Analysis Geometry 

In the manufacturing of variable stiffness composite structures, reference fiber path 

method is commonly used in the literature. To cover the entire body, shifted and 

parallel fiber paths are generally used, as discussed before. In the present study, 

shifted fiber path method is used and the reference fiber path is shifted until the entire 

body is covered. An example for the reference fiber path is shown in Figure 5.4. 

Figure 5.5 shows the shifting of the reference fiber path for covering the entire panel. 

In this example, reference fiber path is shifted along the z direction of the global 

coordinate system shown in the lower left corner of Figure 5.5. It should be noted 

that this study deals with fiber path optimization, not tow path optimization. In tow 

placement, since tows have a finite width, gaps or overlaps may occur during the 

shifted path manufacturing technique, as opposed to manufacturing utilizing the 

parallel tow path placement method.  

 

Figure 5.4 An example for the reference fiber path 
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Figure 5.5 Shifting of the reference fiber path for covering the entire panel 

5.2 Optimization Parameters of VSC, Objective Functions and Constraints 

In the optimization of variable stiffness composite structures, finite element solution 

is required at each iteration of the optimization since fiber paths vary over the 

structure and fiber angles of each ply change from one finite element to another. In 

the iteration process of particle swarm optimization, at each iteration the value of the 

objective function solution is compared with the previous solutions and the particles 

move towards the better solution until they reach the optimum design.  

5.2.1 PSO Parameters 

Selection of the optimization parameters is very important for the success of the 

optimization. Parameters affect the performance of the optimization algorithm in 

finding the global optimum as well as the convergence speed in reaching the global 

optimum. The parameters of PSO used in the current study is presented in Table 5.1.  
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Table 5.3 PSO parameters used in the optimizations 

 

Besides the parameters in the basic PSO algorithm, for convergence a tolerance 

parameter is also defined. Convergence parameter is used terminate the optimization 

iterations once the specified criterion is met. For convergence to the global optimum, 

tolerance values are used. Until all particles converge within the specified tolerance, 

the algorithm continues to search the space for the optimum solution to prevent 

getting  stuck at a local optimum. 

In the literature for c1 (cognitive parameter) and c2 (social parameter) it is suggested 

to be around 1.5 to 2.5 [5], [30]. If the c2 (social parameter) is bigger number than 

c1, it is stated that optimization affected by the group. In contrast, for a case that c1 

is bigger than c2 particles affected by their own experience more[5] [36]. In this study 

c1 is selected as 1.5 and  c2 is selected as 2.0 in the literature it is stated that, if c2 is 

much bigger than c1 there is a risk to particles to run prematurely to the optima [5]. 

However, selecting c2 bigger than c1 speed up the optimization and decrease 

computation time. In this study defining a convergence tolerance  leads algorithm to 

scan the search space  even if a global optimum is found, disables particles to run 

prematurely to the optima and decrease the computation time. 

Population size is the number of particles n in the swarm. A big swarm generates 

larger parts of the search space to be covered per iteration. A big population may 

reduce the number of iterations needs to obtain a good optimization result. In 

PSO Parameter PSO Parameter Value [5], [30] 

c1 1.5 

c2 2.0 

wmax 1 

µ 0.1 

α 0.99 

γ 1028 

# of particles 25 



 

 

68 

contrast, huge amounts of particles rise the computational complexity per iteration 

and are more time-consuming. In the literature, empirical studies show that number 

of particles should be in an interval of 20 to 60  [5]. In this study, the number of 

particles selected as 25. Because different number of particles are tried, and it is seen 

that there is no need to choose a big swarm. 

In the algorithm, µ user defined velocity clamping coefficient is  0.1. As it is stated 

in Chapter 4 the coefficient µ is used because smaller velocities can offer better 

search accuracy [30]. The α reduction factor is used as  0.99 as it is proposed in a 

similar study of Güldü [15]. For the γ penalty value 1028  is selected as a very big 

value to penalize the infeasible solution. 

5.2.2 Optimization Variables 

An optimization variable is a symbolic object that enables one to create expressions 

for the objective function and the problem constraints in terms of the variable. 

Objective function value changes as the optimization variables change. In this study, 

according to the defined objective function NURBS layup path is optimized. It 

should be noted that any one of the NURBS parameters can be used as an 

optimization variable to optimize the layup path. These parameters are control 

points, knot vectors, and weights. In this study, control points are used as 

optimization variables. 

5.2.2.1 Control Points 

Control points are the main parameters that specify the characteristics of the NURBS 

curve. The change of the control points affects the shape of the curve significantly. 

Boundaries of the control points are limited to the geometry of the panel. Coordinate 

values of the edges of the panel specify the limits. Control points specify the control 

polygon of the NURBS, hence when the positions of these points change, this has a 

significant effect of the shape of the spline. An example of the effect of the control 
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points on the shape of the spline was given in Figure 3.4. It should be noted that in 

the current study, since shifted fiber path method is used in the manufacturing of 

variable stiffness composite panels, only one of the coordinates (x or y) of the 

NURBS is altered by the optimization algorithm. 

5.2.2.2 Knot Vectors 

Knot vector is one of the other design parameters of NURBS. Changing the knot 

vector also affects the shape of the NURBS, as shown in Figure 3.6. However, when 

changing the elements of the knot vector, the elements of the knot vector should be 

positioned in the knot vector in an increasing order. This condition can tighten each 

the search span of each element during the optimization process. Because the 

position of the design variable is updated during the optimization, the search space 

of each knot value changes. When the knot vector is updated, knot vector elements 

should be positioned in an increasing order. Knot vector must be updated in an order 

from the first value to last value one by one.  

5.2.3 Objective Functions 

Objective functions measure the merit of the different designs [35].[35].. There can 

be many design alternatives obtained  by changing the design variables; however, to 

understand which one is the one that designer wants is decided by the objective 

function. In optimization problems, objective function value is either minimized or 

maximized by changing the design variables. Depending on the minimization or a 

maximization process, objective function is named as cost function or profit 

function, respectively. By changing the design variables, objective function values 

must be changed, otherwise the design variable would not have a meaning [36].[36]..  

In this study, three different  objective functions are used. Total strain energy of the 

composite structure subject to a load and boundary condition set is one of the 

objective functions that is used in the optimization problem. In this case, the goal is 
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to minimize the total strain energy of the composite panel utilizing the optimized 

reference fiber path according to which the whole panel is covered with composite 

material. Hence, without changing the thickness of the composite panel, optimum 

stiffness distribution is achieved through the variable stiffness concept. The second 

objective function used in the thesis study is the failure index of the composite 

calculated according to one of the well-established composite failure theories. In this 

case, the goal is to maximize the failure index by altering the reference fiber path via 

the changes imposed on the NURBS parameters through the optimization process. 

The third objective function is the buckling load factor of the composite panel. In 

this case, the goal is to maximize the buckling load factor of the composite panel via 

the optimization of variable stiffness composite panel. 

5.2.3.1 Strain energy as the objective function 

Strain energy is the energy that material stores  internally  throughout its volume  

when it is deformed by an external loading [38]. In the following a general strain 

energy expression is derived for anisotropic materials. The generalized stress strain 

relation is given in Equation (5.1), where  𝜎𝑖 is the contracted form of the stress 

tensor and  𝜀𝑖 is the contracted form of the strain tensor and Cij are elements of the 

elastic coefficient matrix for anisotropic materials 

The inverse of the stiffness matrix C in Equation (5.1) is the compliance matrix “S” 

and Equation (5.2) gives the strain-stress relation. 
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  (5.2) 

Strain energy density (u) is expressed by Equation (5.3). 

 

𝑢 = ∫ 𝜎𝑖𝑑𝜀𝑖

𝜀𝑖𝑗

0

    (5.3) 

Utilizing the stress-strain relationship, one can express the total strain energy in an 

elastic body as in Equation (5.4). 

 
𝑈 = ∫ 𝑢𝑑𝑉 =

1

2
∫𝜎𝑖𝜀𝑖𝑑𝑉 =
 

𝑉

 

𝑉

1

2
∫𝑆𝑖𝑗𝜎𝑖𝜎𝑗𝑑𝑉
 

𝑉

 (5.4) 

For a specified external loading, in order to minimize the total strain energy in an 

elastic body, compliance matrix, hence the compliance of the body, must be 

minimized or the stiffness of the body must be maximized since the elastic 

coefficient matrix is the inverse of the compliance matrix.  

5.2.3.2 Failure criterion as the objective function 

A successful structural design requires safe and efficient use of material. Therefore, 

theories are developed to comment of the structural integrity of the design and to 

decide on if the design is safe or not [39]. For composite structures, different failure 

theories are developed. Some of the well-established failure theories are the 

maximum strain, maximum stress, Tsai-Hill, Hoffman, and Tsai-Wu failure theories.  

Finite element software MSC. Nastran calculates the stresses in every layer of each 

element in the fiber, transverse to the fiber and shear directions. These stresses can 

then be employed in a failure criterion to calculate the failure indices to predict 

failure in each layer. Furthermore, MSC. Nastran can supply the failure index of each 



 

 

72 

element for different failure theories. In this thesis, the failure index definition of the 

Tsai-Wu failure criterion is used as one of the objective functions. In this criterion, 

if the failure index reaches a value of 1.0 or higher, failure is assumed to occur. 

Hence, the failure index must be lower than 1.0 to have a safe design [39]. 

The Tsai-Wu failure theory is based on the total strain energy failure theory and 

applied to the laminae under plane stress [40].[40].. Tsai-Wu failure theory lets the 

failure strengths vary in tension and compression. The failure can happen due to a 

mixture of failure modes [39]. It is necessary to supply failure strengths in both 

compression and tension for the fiber and the transverse directions and the shear 

failure strength to the theory [15].[15].. The formulation of the criterion is presented 

in Equations (5.5)-(5.12). 

𝐹1 = (
1

𝑋𝑡
) − (

1

𝑋𝑐
) 

 (5.5) 

𝐹2 = (
1

𝑌𝑡
) − (

1

𝑌𝑐
) 

 (5.6) 

𝐹11 = (
1

𝑋𝑡
) ∗ (

1

𝑋𝑐
) 

 (5.7) 

𝐹22 = (
1

𝑌𝑡
) ∗ (

1

𝑌𝑐
) 

 (5.8) 

𝐹6 = (
1

𝑆2
) 

 (5.9) 

𝐹12 = −0.5(𝐹1 ∗ 𝐹2)
0.5  (5.10) 

𝐹𝐼 = 𝜎1 ∗ 𝐹1 + 𝜎2 ∗ 𝐹2 + 𝜎1
2 ∗ 𝐹11 + 𝜎2

2 ∗ 𝐹22 + 𝜎3
2 ∗ 𝐹6 + 2𝐹12 ∗ 𝜎1

∗ 𝜎2 

 (5.11) 

𝐹𝐼 < 1  (5.12) 
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In Equations (5.5)-(5.12), 

• 𝑋𝑡, 𝑋𝑐 are the ultimate tensile and compression strength in material direction 

1  

• 𝑌𝑡, 𝑌𝑐 are the ultimate tensile and compression strength in material direction 

2  

• 𝑆 is the shear strength of the material in the 1-2 direction 

• 𝐹𝐼  is the failure index 

With the Tsai-Wu failure criterion, different tensile and compressive strengths can 

be addressed, and all possible interactions are accounted for. 

5.2.3.3 Buckling load factor as the objective function 

One of the objective functions used in this thesis is the buckling load factor (BLF). 

Buckling load factor is described as a safety factor against buckling, and it is 

calculated by taking the ratio of the buckling load to the applied load. In this study, 

BLF is calculated by the finite element solver, MSC. Nastran directly using the Sol 

105 solution option. Table 5.2 gives the explanation of the BLF values [15].[15].. 
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Table 5.4 Explanation of the BLF  

BLF Buckling Status  Remark  

1 < BLF 
Buckling not 

predicted  

The applied loads are less 

than the critical loads.  

0 < BLF < 1 Buckling predicted  
The applied loads exceed 

the critical loads.  

BLF = 1 Buckling predicted  

The applied loads are 

exactly equal to the critical 

loads.  

BLF = –1 
Buckling not 

predicted  

The model is in tension and 

buckling is not expected.  

-1 < BLF < 0 
Buckling not 

predicted  

Buckling is predicted if 

you reverse all loads.  

BLF < –1 
Buckling not 

predicted  

Buckling is not expected 

even if you reverse all 

loads  

5.2.4 Optimization Constraints 

In this study, different constraints are used to limit the search space for feasible 

solutions. Minimum turning radius constraint and the failure criterion constraint are 

used as the constraints. When particles of a solution violate this constraint, the 

penalty function penalizes the objective function during iterations. If the constraint 

is violated, the penalty function ensures that the solution is infeasible. 

The minimum turning radius constraint concept is discussed in Chapter 2. This 

constraint is used to prevent the wrinkles in the tow due to the forced in-plane 

deformation. Minimum turning radius changes from one AFP machine to another; 

therefore, in this study, it is not defined as a constant but left to the user as an input.  
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The second constraint is the failure index criterion. In this study, failure index is used 

both as an objective function and constraint in different case studies. Failure index 

is also used as a constraint in some of the case studies to see its effect on the 

optimized solution.  

5.3 Optimization Scheme  

The optimization process consists of several steps. Input file manipulation of the 

finite element solver MSC. Nastran, extracting data from the output file of the finite 

element solver, setting the optimization parameters and calculation of the objective 

function are the main steps of the optimization. This sub-section describes the 

process in detail and provides a flowchart of the optimization process. As mentioned 

earlier, the input reference path is prepared in Rhino, and then the data is transferred 

to MATLAB. Furthermore, input file of the finite element model is prepared using 

the pre-processor MSC. Patran. 

For starting the optimization, the PSO parameters are set in the MATLAB script or 

entered as MATLAB input. MATLAB uses some information from MSC. Nastran 

input file as an input for the optimization. According to the optimization process, 

some design variables are changed and entered the MSC. Nastran input file. This 

process is described below. In the MSC. Nastran input file, there are element and 

grid information. This information is vital in finding the center points of the finite 

elements required for assigning the fiber orientation angle to the elements. 

Coordinates of the element centers are found from the grid information. Coordinates 

of the elements’ centers are compared with the coordinates of the reference NURBS 

path and the closest NURBS coordinates to the coordinates of the element center are 

determined and they are used to calculate fiber angles at the element centers. Figure 

5.6 shows an illustration of the method used in finding the fiber angle of finite 

elements utilizing the NURBS reference path.  It should be noted that NURBS is 

defined at predefined number of parametric coordinates. In this study, coordinates 

along the NURBS path are calculated at 106 parametric values between 0-1. Hence, 
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according to the coordinate axis established in Figure 5.6, the x-coordinate of the 

element center perpendicular to the shifting direction y (x if the shifting direction is 

y or y if the shifting direction is x) may not coincide exactly with an x-coordinate in 

the NURBS defined at 106 parametric values. However, since 106 number of 

coordinates are used in the definition of NURBS, NURBS x-coordinates, which are 

very close to the x-coordinates of the element centers, can be determined. Having 

determined the x-coordinates of the NURBS at the element centers, fiber angles at 

the element centers are determined utilizing the tangent information at the NURBS 

coordinate corresponding to the element center. Relevant field, for the fiber angles 

of the plies, of the input file of the finite element program MSC. Nastran is then 

updated. In the shifted path method, fiber angles of elements at different y-

coordinates are same if they have the same x-coordinates. 

 

Figure 5.6 Illustration of the method used in finding the fiber angle of finite 

elements utilizing the NURBS reference path 
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5.3.1 MSC. Nastran Input File Manipulation 

Input file of MSC. Nastran has element property information written for all elements 

line by line. The cards that describe the composite structure are the PCOMP cards in 

Nastran terminology and the number of element property cards is equal to the 

number of elements in the geometry. In the input file of Nastran, each card occupies 

certain number of lines with different fields which can be edited for modification 

purposes. Element property cards include information on the number of plies in each 

element, the ply thickness, and the fiber angle information of each ply in an element. 

While optimizing the layup path, the fields of the lines storing the fiber angles are 

modified according to the changes that occur in the NURBS based reference fiber 

path during the optimization process. Definition of the PCOMP card used for 

element property information in MSC. Nastran is given in Appendix B. 

5.3.2 MSC. Nastran Output File Evaluation 

When the layup path is described in the MSC. Nastran input file, MATLAB calls 

MSC. Nastran to analyze the created subcase. Following a finite element analysis, 

MSC. Nastran produces an output file from which the value of the objective function 

can be extracted. In the present study, the strain energy of the structure, buckling 

load factor, and failure index information all are provided in the output file, and they 

are used as the objective functions in different case studies. 

Rhino is not used in the optimization process after the first iteration, because it is 

only used to create a reference path. In the course of optimization, PSO changes the 

optimization variables, and new NURBS layup paths are created in the MATLAB 

environment. Every time a new reference fiber path is generated throughout the 

optimization process, fiber angles of each finite element are updated in the MSC. 

Nastran input file. Finite element analysis is performed utilizing the updated fiber 

angle information and corresponding objective function value is extracted. The 

process continues until the termination condition of the optimization process is 
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satisfied. In this study, the termination condition is the convergence tolerance. Until 

positions of all particles converge within the specified tolerance, the algorithm 

continues to search the space for the best solution. The flowchart of the optimization 

process is presented in Figure 5.7. In Appendix C, an example of explanation and 

results of the optimization process is given. 
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Figure 5.7 Optimization Flow Chart 
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CHAPTER 6  

6 RESULTS AND DISCUSSION ON THE ANALYSIS AND OPTIMIZATION 

RESULTS 

In the literature, many studies are performed on the optimization of variable stiffness 

composite structures[4], [10], [18], [40]–[42]. In these studies, significant 

improvements in the mechanical strength of the composite structures are achieved. 

In most of the studies, as the layup path definition, smooth antisymmetric function 

of x is used, as proposed by Gürdal and Olmedo in 1993 [3].  In this method layup 

path is defined on the x-y plane and the equation of the path is defined with respect 

to this coordinate frame. However, it is stated that  this layup path definition method 

is efficient for flat surfaces [4]. The NURBS is used in computer-aided design 

software to generate 3D shapes. Three dimensional shapes consist of curves and 

surfaces created by NURBS. Therefore, for three dimensional shapes such as curved 

panels, the layup path can be defined by NURBS, as described in Chapters 3 and 5. 

NURBS path definition is also used in the VSC optimization study [16]. In this part 

of the study, optimization results of the VSC flat and curved panels are presented. 

For this, the method described in the Chapter 5 is used.  

In this chapter firstly, strain energy minimization of a flat panel is performed to 

verify the algorithm and buckling analysis of an isotropic panel is done to show that 

the theoretical results and finite element analysis results are consistent. 

In the second part, four cases are studied. In this part, geometry is a flat panel and 

the cases studied are listed below. 

• One layered flat panel strain energy minimization 

• Four layered flat panel strain energy minimization 

• Four layered flat panel strain energy minimization constrained with failure 

index 
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• Flat panel failure index minimization 

In the third part, a VSC curved panel is optimized. Three cases are studied and they 

are listed below. 

• Four layered curved panel BLF maximization 

• Four layered curved panel strain energy minimization  

• Four layered curved panel strain energy minimization constrained with 

failure index 

 

The material properties of the composite material AS4/855-2, Graphite-Epoxy used 

in the panels are taken from Güldü’s work [15] and presented in Table 6.1. 

Table 6.1 Material properties of AS4/855-2, Graphite Epoxy y[34] 

Material Property  Value 

𝐸1 134 GPa 

𝐸2 16.75 GPa 

𝐺12 5.8625 GPa 

𝜈12 0.3 

𝑋𝑡 2070 MPa 

𝑋𝑐 1160 MPa 

𝑌𝑡 132.7 MPa 

𝑌𝑐 199.8 MPa 

𝑆 117.1 MPa 

 

As discussed before,  finite element models are created by using MSC. Patran and 

MSC. Nastran is used as the finite element solver. The consistent units used in the 

finite element analysis are given in Table 6.2. 

 

 



 

 

83 

Table 6.2 Unit consistency table of MSC. Patran 

Length Force 
Elastic 

Modulus 

Mass 

Density 
Acceleration Displacement Stress 

mm N MPa ton/Mg mm/s2 mm MPa 

 

For the optimization cases in this chapter, the PSO parameters given in Table  6.3 

are used. Optimization variables are the control points, and the convergence criterion 

is defined as 10 mm for all cases.  

Table 6.3 Optimization parameters for the strain energy minimization of the flat 

panel 

 

 

 

 

 

 

 

 

6.1 Verification of the Optimization Algorithm 

6.1.1 Flat Panel Strain Energy Minimization Verification Case 

In this section, verification of the optimization algorithm is performed for a flat panel 

shown in Figure 6.1. Flat panel has a length of 3000 mm and a height of 1000 mm. 

Ply material properties of the composite flat panel are given in Table 6.1. The flat 

PSO Parameter Name PSO Parameter Value 

c1 1.5 

c2 2.0 

wmax 1 

µ 0.1 

Α 0.99 

γ 1028 

# of particles 25 

Convergence tolerance 10 mm 
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panel consists of 4 layers with a ply thickness of 0.183 mm. The stacking sequence 

is shown in Figure 6.2 for the 4-layer panel. Boundary conditions and loading is 

presented in Figure 6.3. The panel is clamped from its center node and uniformly 

compressed by a distributed load of 200 kN/m from the two short edges. For the 

finite element analysis, 736 elements (46x16) are used. It is expected that with the 

referred boundary and loading conditions, the fiber path must converge to a straight 

line for maximum stiffness, hence minimum strain energy. 

 

Figure 6.1 Flat panel dimensions  

 

Figure 6.2 Stacking sequence of the four-layer flat panel  
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Figure 6.3 Boundary conditions and loading for the verification case  

 

For the PSO of the reference fiber path, first a reference fiber path is created in Rhino 

environment. The reference fiber path is given in  Figure 6.4. Control points of the 

NURBS curve are given in Table 6.4. Knot vector and weights are given below. 

U=[ 0 0 0 0 0.25 0.5 0.75 1 1 1 ]  w=1.0 

The reference fiber path is also created again in the MATLAB as shown in Figure 

6.5 by importing the NURBS curve properties from the created step file from the 

Rhino model. 

 

Table 6.4 Control points of the reference fiber path for the flat panel 

Control points 
x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 791.23 841.07 535.29 272.80 282.77 500 
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Figure 6.4 Rhino representation of the reference fiber path 

 

Figure 6.5 MATLAB representation of the reference fiber path 

 

For the PSO, control points are the optimization variables and convergence tolerance 

is set as 10 mm. All optimization parameters are given in Table 6.3.  

For the four-layer verification case, the optimized path is given in  Figure 6.6 as the 

purple line and the initial reference path is presented in the same figure as the green 

line. Optimized reference fiber path is shown on the flat panel in Rhino in Figure 6.7 

and control points given in Table 6.5. As it is expected, the optimized path converges 

to a straight line. 
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Figure 6.6 MATLAB representation of the reference fiber path (green) and the final 

optimized fiber path (purple) 

 

Figure 6.7 Rhino representation of the reference fiber path (yellow) and the final 

optimized fiber path (black) 

 

Table 6.5 Control points of final optimized fiber path for the verification case 

Control 

points 

x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 499.67 500.69 499.69 499.65 500.17 500 

 

Before starting the optimization,  a population with 25 particles are created by the 

algorithm. These particles consist of control point coordinates. One of these particles 
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has the control point information of  initial reference path created with Rhino, other 

24 is created randomly. The strain energy is reduced by 46.25 % compared to the 

strain energy of the best particle that is created in the first population. The strain 

energy of the flat panel with the reference fiber path of best particle of the initial 

population was 284.54 GJ and the strain energy of the flat panel with the optimized 

fiber path is 152.92 GJ. Figure 6.8 gives the variation of the strain energy with the 

iteration number for the four-layer flat panel of the verification case. The reason for 

why the optimization iterations continue  after the optimum result is reached is the 

specified convergence criterion. The optimization algorithm stops after all the 

particles convergence within the tolerance limit given in Table 6.3. 

 

Figure 6.8 Variation of the strain energy with the iteration number for the four-

layer flat panel of the verification case 
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6.1.2 Modelling and Buckling Analysis  of an Isotropic Panel with MSC. 

Patran and MSC. Nastran 

To verify the buckling analysis and buckling load factor calculation of MSC. 

Nastran, an  isotropic flat panel is modelled in MSC. Patran and buckling analysis is 

done by MSC. Nastran. The verification problem is taken from MSC. Patran 

Reference Manual Part 6 [43] . The problem asks to find the critical buckling edge 

load of the rectangular panel (16x4) inches given in Figure 6.9. 

 

Figure 6.9 Flat panel dimensions for the buckling analysis of an isotropic flat panel 

For simplicity, buckling analysis is done for a quarter of the panel. The boundary 

and load conditions are given in Figure 6.10. The panel is subject to biaxial load. For 

the quarter panel, at the left edge symmetry boundary conditions are imposed; 

displacement in the x-direction is zero (u=0), and rotations around the y-axis and z-

axis are equal to zero (Ry=Rz=0). At the bottom edge, symmetry boundary 

conditions are also applied; displacement in the y-direction is zero (v=0), and 

rotations around the x-axis and z-axis are equal to zero (Rx=Rz=0). The 

displacement in the z-direction is taken as zero (w=0) along the right and top edges. 

Compressive edge pressures are modeled as distributed edge loads equal to 100 

lb./inch. The panel material is an isotropic material, and the material properties are 

given in Table 6.6. 
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Figure 6.10 Quarter panel boundary conditions for the buckling analysis 

Table 6.6 Material properties of the isotropic panel  

E (Elastic  Modulus) 107 Psi 

𝜈 (Poisson Ratio) 0.33 

t(thickness) 0.1 inches 

 

The buckling load factor is extracted from the MSC. Nastran output file. According 

to the analysis, the BLF turns out to be 6.133. Hence, the buckling load is equal to 

the applied load multiplied by the buckling load factor 6.133 which is equal to 613.3 

lb/inch.  Considering that the panel has a thickness of 0.1 inches, the theoretical 

calculations in the  MSC. Patran Reference Manual Part 6  [43] yield that the panel's 

critical stress is 6133.13 Psi, which corresponds to a distributed edge load of 613.313 

lb/inch [43]. The critical edge pressure calculated theoretically and determined by 

finite element analysis by MSC. Nastran are compared in Table 6.7. 

Table 6.7 Comparison of the buckling stress calculated theoretically and by FEA in 

MSC. Nastran  

Theory 6133.13 psi 

MSC. Nastran 6133.25 psi 

 

This example analysis shows that MSC. Nastran calculates the BLF very accurately. 
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6.2 Flat Panel Optimization 

In this section, strain energy and failure index minimization of  a cantilever flat panel 

with the dimensions of 3000mm x 1000mm (see Figure 6.1) under distributed 

bending load is studied. In the forthcoming subsections, different constraints are used 

for the analysis. The load condition is a distributed load in the in-plane bending 

direction, and the panel is clamped at the left edge of the panel, as seen in Figure 

6.11. All rotations and translations are disabled on the left side of the panel. For the 

analyses, 736 elements (46x16) are used. The material properties of the composite 

material are given in Table 6.1. In the next subsections, 1 layered and 4 layered 

panels with a ply thickness of 0.183 mm are studied. 

 

Figure 6.11 Loading and boundary conditions of the flat panel 

 

For the flat panel cases, control points are the optimization variables and 

convergence tolerance are set as 10 mm. All optimization parameters are given in 

Table 6.3.  
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6.2.1 Strain Energy Minimization of the Flat Panel 

Strain energy minimization of the flat panel is studied under the defined boundary 

and loading conditions. In the analysis, the NURBS fiber path is constrained by the 

specified minimum curvature. The minimum curvature of the path is defined as 50 

mm. This value is defined as a generic value for showing the implementation of the 

curvature constraint is successful. Two distinct analyses with one layered and four-

layered panels are performed.  

For the PSO, first a reference fiber path is created in Rhino environment. Rhino 

representation of the reference fiber path is given in Figure 6.12. NURBS  path is 

then created again in MATLAB as seen in Figure 6.13 by importing the NURBS 

curve properties from the created step file from the Rhino model. 

 

Figure 6.12 Reference NURBS path for flat panel created by Rhino 

 

Figure 6.13 Flat panel reference path created by MATLAB 
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The NURBS reference path is defined by the knot vector and the weights given 

below, and control points are given in Table 6.8. 

U=[ 0 0 0 0 0.25 0.5 0.75 1 1 1 ]  w=1.0 

Table 6.8 Control points of the reference fiber path for the flat panel 

Control points 
x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 791.23 841.07 535.29 272.80 282.77 500 

6.2.1.1 One Layer Flat Panel Strain Energy Minimization 

The flat panel strain energy minimization for the one-layer design is studied. The 

loading magnitude is 1kN/m and the panel consist of 1 layer with  0.183 mm ply. In 

Figure 6.14, the optimized path is shown as the purple line, and the initial reference 

path is shown as the green line. In Figure 6.15, the Rhino representation of the 

optimized path on the flat panel is shown. The optimized NURBS path’s control 

points are given in Table 6.10. The fibers are tried to align in the loading direction 

at the right of the plate. Because maximum strain is expected to see at the free edge. 

 

Figure 6.14 Strain energy optimized fiber path for the one-layer flat panel; Matlab 

representation 
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Figure 6.15 Strain energy optimized fiber path for the one-layer flat panel; Rhino 

representation 

Table 6.9  Control points of  the strain energy optimized fiber path for the one-

layer flat panel 

Control points 
x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 486.82 495.77 473.71 438.06 65.52 500 

 

Before starting the optimization,  a population with 25 particles are created by the 

algorithm as it is mentioned in section 6.1.1. The strain energy is reduced by 30 % 

compared to the strain energy of the best particle that is created in the first 

population. The strain energy with the best reference fiber path of the first population 

was 1.13 kJ, and for the panel with the optimized fiber path, strain energy is 0.79 kJ. 

Strain energy versus the iteration number plot during the optimization is given in 

Figure 6.16. It should be noted that the resulting fiber path is very similar to the fiber 

orientation distribution obtained by  the discrete analysis done by the Setoodeh et 

al.[42]. Figure 6.17 shows the discrete fiber angle distribution obtained by cellular 

automata in the work of Setoodeh et al.[42]. However, since the present analysis is 

a continuous analysis and manufacturing constraint is used during the optimization, 

the optimized fiber path is smoother than the path found by the discrete analysis 

result in the study of Setoodeh et al. [42] in Figure 6.17. In PSO, again the iteration 

continues after the optimum result is reached until the specified convergence 
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criterion is satisfied. The algorithm stops after all particles converge within the 

tolerance limit given in Table 6.3.  

 

Figure 6.16 Strain energy versus the iteration number for the one-layer flat panel 

strain energy minimization problem  

 

Figure 6.17 Setodeeh et al.'s work for fiber angle optimization with cellular 

automata [42] 
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6.2.1.2 Four Layer Flat Panel Strain Energy Minimization  

In this case study, strain energy minimization of the flat panel is studied for a panel 

with 4-layers with a ply thickness of 0.183 mm. The loading magnitude is again 

1kN/m. The stacking sequence of the panel is same as the one shown previously in 

Figure 6.2.  

For the 4-layered panel, the initial reference fiber path is defined as same as shown 

in Figure 6.12 and Figure 6.13. For the four layered flat panel, the optimized fiber 

path is shown with the purple line, and the initial reference path is shown with the 

green line in Figure 6.18. Optimized opposite signed fiber paths are shown on the 

flat panel in Rhino in Figure 6.19. Control points of the optimized fiber path are 

given in Table 6.11. The fiber angles are aligned as like Figure 6.18 and Figure 6.19 

because this case is midplane symmetric case. When the paths put on top of the other 

with respect to stacking sequence it is seen that  fibers are tried to align in the loading 

direction.   

 

Figure 6.18 Strain energy optimized fiber path for the four-layer flat panel 
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Figure 6.19 Strain energy optimized fiber path for the four-layer flat panel; Rhino 

representation 

Table 6.10 Control points of  the strain energy optimized fiber path for the four-

layer flat panel 

Control points x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 638.94 786.72 1000 741.29 550.83 500 

 

In this case, the strain energy is reduced by 11.76 % compared to the flat panel with 

best reference fiber path in the initial population. The strain energy with the initial 

population’s best reference fiber  path was 170 J, and for the four-layered flat panel 

with the optimized fiber paths strain energy is 150 J. Variation of the strain energy 

with the iteration number is presented in Figure 6.20.  

It should be noted that for the four layered flat panel, since the loading condition is 

the same as the one-layer flat panel and the number of layers is more and there are 

layers with symmetric fiber angles, percent decrease of the strain energy is not very 

high compared to the one-layer flat plate case.  

 



 

 

98 

 

Figure 6.20 Strain energy versus the iteration number for the four-layer flat panel 

strain energy minimization problem 

 

This case is also examined with the reference fiber path definition method of Gürdal 

and Olmedo’s work [3]. Design variables are defined as T0=0° , T1=45° and ∅ = 0° 

initially. In this method only T0 and T1 are used as design variables and ∅ is taken as 

constant  (∅ = 0°) . In this method, fiber angle is zero degree (T0=0° ) at the center 

of the plate and changes linearly to T1=45° at the right edge with antisymmetric path 

definition towards the left edge of the flat panel. The strain energy of the flat panel 

with these variables (T0=0° , T1=45° ) is 220.71 J. After the initial population is 

randomly created in PSO, the strain energy of the panel with the best  fiber path (the 

one with minimum strain energy) is  152.5 J. The strain energy of the flat panel with 

the optimum fiber path is determined as 149.09 J. Figure 6.21 shows the variation of 

the strain energy values with to the iteration number. For the best fiber path, design 

variables are determined as; T0=15.83° , T1=16.94°. The resultant positive and 

negative angled fiber paths with these optimized variables are shown in  Figure 6.22. 
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When this result is compared with the optimum strain energy determined with the 

use of NURBS fiber path method that is used in this thesis, it is seen that the results 

are very close.  There is 0.06% difference between the two optimized results; 150 J 

for the NURBS fiber path method and 152.5 J for the fiber defined by T0 - T1 

definition. NURBS fiber path method gives slightly lower strain energy since more 

parameters (control points) exist in the path definition resulting in more design 

freedom. The T0 - T1 method described in Gürdal and Olmedo’s work [3] is used in 

different studies [4], [7], [10], [15], [44] for different geometries under different 

loading and boundary conditions. By comparing the strain energy values and fiber 

path shapes it can be said that presented method gives results as good as the method 

in Reference 3. It should be noted that in the T0 - T1 method, fiber path definition is 

anti-symmetric with respect to the center of the panel as Figure 6.22 clearly shows 

this. Hence, T0 - T1 reference fiber method is restrictive; NURBS fiber path definition 

presents alternative paths since the control points can be selected anywhere in the 

panel. In the defined strain energy problem, one cannot see a definite advantage of 

the NURBS fiber path method over the T0 - T1 method, most probably due to the load 

and boundary conditions imposed; cantilevered plate under in-plane bending load. It 

is deemed that the NURBS fiber path definition makes a difference in problems 

involving complex loading and boundary conditions; because in such problems load 

paths may change sharply in the panel and this necessitates similar change in the 

fiber path which is not possible to generate via the T0 - T1 method which is based on 

linear change of fiber path along one of the axis of the panel. 
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Figure 6.21 Strain energy versus the iteration number for the four-layer flat panel 

strain energy minimization problem solved with (T0 ,T1) fiber path definition 

method 

 

Figure 6.22 Strain energy optimized fiber path for the four-layer flat panel; solved 

with (T0 ,T1) fiber path definition method 
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6.2.1.3 Four Layered Flat Panel Strain Energy Minimization Constrained 

with Failure Index (FI) 

In this section, strain energy minimization of a 4-layered flat panel under failure 

index constraint is studied.  Tsai-Wu failure criterion is used as the FI constraint. The 

details of the Tsai-Wu criterion and failure index calculation is given in the section 

5.2.3.2. The ply thickness is 0.183 mm as in previous cases. For this analysis, the 

only constraint is the FI, and the geometry constraint is not applied to the NURBS 

fiber path. During the analysis, FI values of all elements are calculated, however 

from the output of the finite element analysis only the maximum FI is extracted. If 

the maximum FI is greater than 1, then the algorithm automatically penalizes the 

objective function and makes the solution infeasible. 

Again, the initial reference fiber path is same as defined in Figure 6.12 and Figure 

6.13. The boundary conditions are same as in previous case studies; however, in this 

case the loading is changed to 2 kN/m. The optimized fiber path is presented with 

the purple line and the initial reference fiber path is shown with the green line in 

Figure 6.23. Optimized opposite signed fiber paths are represented on the flat panel 

in Rhino in Figure 6.24. The control points of the optimized path are given in Table 

6.12. 

 

Figure 6.23 Strain energy optimized fiber path for the four-layer flat panel subject 

to FI constraint 
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Figure 6.24 Rhino representation of strain energy optimized fiber path (yellow) and 

its opposite signed path (black) for the four-layer flat panel subject to FI constraint 

 

Table 6.11 Control points of the strain energy optimized fiber path for the four-

layer flat panel 

Control points 
x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 609.916 920.63 486.18 1000 446.63 500 

 

In this optimization, the magnitude of the external load is tuned for the flat panel 

with the initial reference fiber path such that at least one element has a failure index 

greater than one (FI>1). The maximum FI in the initial population  1.72 and it is 

indicated in the FI plot in Figure 6.25. Maximum FI occurs in 1st ply in element 1 

which is at the bottom left corner of the geometry in Figure 6.25.  By making the 

maximum FI greater than 1 in the initial configuration, it aimed to see the algorithm's 

ability to penalize the infeasible design in terms of FI. After the optimization process, 

maximum FI reaches a value of FI=0.9756. Figure 6.26 gives the FI plot of the 

optimized configuration. The maximum FI after the optimization  occurs in the 1st 

ply in the bottom left corner element in Figure 6.24. It is guaranteed that all elements 

are in the safe zone, and their failure indices are below the critical value, which is 

"1". In this case, strain energy is reduced by 22.4% compared to the best reference 

fiber path of the initial population. The strain energy of the flat panel with the best 
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particle’s fiber path of the initial population was 0.7941 kJ, and the flat panel with 

the optimized fiber path has a strain energy of 0.616 kJ. Variation of the strain energy 

with the iteration number is presented in Figure 6.27. 

 

Figure 6.25 FI plot of the flat panel with the initial reference path under the given 

load and boundary conditions 

Figure 6.26 FI plot of the flat panel with the optimized fiber path under the given 

load and boundary conditions   
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Figure 6.27 Strain energy versus the iteration number for the four-layer flat panel 

strain energy minimization problem with FI constraint 

6.2.2 Failure Index (FI) Minimization of the Flat Panel 

In this case study, failure index minimization of the flat panel is studied. Finite 

element solution performed by MSC. Nastran gives the FI of all plies as output along 

with the maximum failure index in the finite element model. FI minimization is 

achieved by optimizing the reference fiber path. Besides the objective function, FI is 

also used as constraint to guarantee that FI is under 1. If the maximum FI is greater 

than 1, algorithm penalizes the objective function value and makes that solution 

infeasible. 

In the failure index minimization problem, the same flat panel with 4-layers is used 

as in section 6.2.1. The boundary conditions are the same as in section 6.2.1. 

However, the magnitude of the distributed load is changed to 2 kN/m. The initial 
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fiber path is the same as the one used in section 6.2.1, and it is given in Figure 6.12 

and Figure 6.13. 

The optimized fiber path for the failure index minimization problem of the 4-layer 

flat panel together with the initial reference fiber path is given in Figure 6.25. The 

purple line is the optimized fiber path, and the initial reference fiber path is presented 

as the green line in Figure 6.28. Figure 6.29 shows the optimized opposite signed 

fiber paths represented on the flat panel in Rhino. The control points of the optimized 

fiber path are given in Table 6.13. 

 

Figure 6.28 Failure index minimized fiber path for the four-layer flat panel; Matlab 

representation 

 

Figure 6.29 Failure index minimized fiber path for the four-layer flat panel; Rhino 

representation 
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Table 6.12 Control points of failure index minimized fiber path for the four-layer 

flat panel 

Control points x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 615.43 0 783.47 316.75 995.00 500 

 

 

In this case study, in the initial population the maximum failure index is 1.72. After 

the optimization process, the maximum FI reaches a value of FI=0.9517. It is 

guaranteed that all elements are in the safe zone, and their failure indices are under 

the critical value, which is “1”. In this case, there is a 44.6% reduction in the 

maximum FI value in the finite element model. Failure index variation with the 

iteration number for the four-layer flat panel is given in Figure 6.30.  

 

Figure 6.30 Strain energy versus the iteration number for the four-layer flat panel  
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6.3 Curved Panel Optimization 

In this section, Buckling Load Factor (BLF) maximization and strain energy 

minimization of a curved panel with the dimensions given in Figure 6.31 are studied. 

The panel is a 4-layered panel with a ply thickness of 0.183 mm, and the stacking 

sequence is same as shown in Figure 6.2. Load and boundary conditions of the 

buckling load factor maximization problem and the strain energy minimization 

problem are different. For each case, the load and boundary conditions are described 

in the relevant sections. For the finite element analysis, 736 elements (46x16) are 

used. The material properties of the composite ply of the curved panel are given in 

Table 6.1.  

 

Figure 6.31 Curved panel dimensions (mm) 

Before the optimization case studies, as in flat panel cases, a reference fiber path is 

created by using Rhino. The reference fiber path generated in Rhino is presented in 

Figure 6.32. The spline is created by projecting the 2D spline given in Figure 6.12 to 

the curved panel given in Figure 6.31. 
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Figure 6.32 Reference NURBS path for the curved panel created by Rhino 

The reference NURBS path has the control points given in Table 6.14. Knot vector 

and weights of the reference NURBS path are given below. 

U=[ 0 0 0 0 0.0780 0.202 0.437 0.765 0.890 1 1 1 1 ]   

w=1.0 
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Table 6.13 Control points of the reference fiber path for the curved panel  

Control Points 

x y z 

-800.00 0.00 500.00 

-774.86 25.31 468.01 

-689.84 100.37 424.30 

-466.24 231.25 427.59 

-60.479 330.94 487.75 

363.89 274.90 562.94 

659.88 122.99 578.87 

764.40 36.07 544.62 

800.00 0.00 500.00 

 

For the curved panel cases, control points are also taken as the optimization variables 

and convergence tolerance is set as 10 mm as the flat panel case. All optimization 

parameters are given in Table 6.3.  

6.3.1 Buckling Load Factor (BLF) Maximization of the Curved Panel 

The curved panel BLF maximization is done for the 4-layered composite laminate. 

Stacking sequence of the 4-layered composite curved panel is given in Figure 6.2. 

The load that is applied is a distributed load of 3.5 N/m as shown in Figure 6.33. The 

curved panel is clamped from the left side such that all rotations and translations are 

disabled on the left side of the panel.  
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Figure 6.33 MSC. Patran model of the curved panel for the BLF maximization case 

study 

The optimized fiber path for the configuration with the maximum BLF is given in 

Figure 6.34 as the yellow line, and the initial reference fiber path is presented in the 

figure as the black line. Control points of the optimized fiber path are given in Table 

6.14. 

 

Figure 6.34 BLF optimized fiber path for the four-layer curved panel 
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Table 6.14 Control points of the BLF optimized fiber path for the four-layer curved 

panel 

Control Points 

x y z 

-800.00 0.00 500.00 

-774.86 25.31 499.86 

-689.84 100.37 500.25 

-466.24 231.25 499.73 

-60.479 330.94 500.38 

363.89 274.90 499.37 

659.88 122.99 501.55 

764.40 36.07 497.96 

800.00 0.00 500.00 

 

In the optimized configuration, the BLF increased by 20.93% compared to the BLF 

of the curved panel with the initial reference fiber path. The maximum BLF among 

the  the initially created population’s reference paths is 0.9236, and with the 

optimized path, BLF is 1.1174. Variation of the BLF with the iteration number is 

given in Figure 6.35. In the optimized configuration, variation of the fiber angle of 

the continuous path is between 1.59° and -1.01°. The results show that fibers are 

aligned along the loading direction. This fiber path is expected because fibers are 

most powerful in the fibers’ longitudinal direction. The first buckling mode shape of 

the curved panel with the initial reference fiber path is given in Figure 6.36. In Figure 

6.37 gives the buckling mode shape of the curved panel with the optimized fiber 

path. It is noted that since the optimum fiber path aligns itself with the direction of 
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the loading, first buckling mode shape shows a symmetric deformation pattern with 

respect to the longer edge of the curved panel. 

 

Figure 6.35 Variation of the BLF with the iteration number for the BLF 

maximization of the curved panel 
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Figure 6.36 First buckling mode shape of the curved panel with the initial reference 

fiber path 

 

Figure 6.37 First buckling mode shape of the curved panel with the optimized fiber 

path 

Another curved panel BLF maximization is done for the 4-layered composite 

laminate with different boundary conditions. Stacking sequence of the 4-layered 
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composite curved panel is given in Figure 6.2. For defining load and boundary 

conditions cylindrical coordinate frame is used. The load that is applied is a 

distributed load of 1 kN/m as shown in Figure 6.38. The curved panel has following 

boundary conditions. On the right side all translations are disabled (uR = uT = uZ = 

0) and rotations are  disabled (RR = RT = RZ =0). On the curved sides of the panel 

only the T and Z  translation is disabled (uT = uZ = 0). All other translations and 

rotations are set free (uR = RR = RT = RZ ≠ 0). On the left side from where the load 

is applied, only the T and Z  translation is disabled (uT = uZ = 0)and rotation around 

R axis is disabled (RR=0). All other translations and rotations are set free (uR= RT = 

RZ ≠ 0). 

 

Figure 6.38 MSC. Patran model of the curved panel for the BLF maximization case 

study 
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The optimized fiber path for the configuration with the maximum BLF is given in 

Figure 6.39 as the yellow line, and the initial reference fiber path is presented in the 

figure as the black line. Control points of the optimized fiber path are given in Table 

6.15. 

 

 

Figure 6.39 BLF optimized fiber path for the four-layer curved panel 
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Table 6.15 Control points of the BLF optimized fiber path for the four-layer curved 

panel 

Control Points 

x y z 

-800.00 0.00 369.83 

-774.86 25.31 552.96 

-689.84 100.37 644.474 

-466.24 231.25 453.24 

-60.479 330.94 187.03 

363.89 274.90 374.51 

659.88 122.99 493.35 

764.40 36.07 489.34 

800.00 0.00 472.07 

 

In the optimized configuration, the BLF increased by 34.46% compared to the BLF 

of the curved panel with the initial reference fiber path. The best BLF value  of the 

curved panel with the initial population’s best particle’s reference path was 0.79and 

with the optimized path, BLF is 1.0623. Variation of the BLF with the iteration 

number is given in Figure 6.40. 
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Figure 6.40 Variation of the BLF with the iteration number for the BLF 

maximization of the curved panel 

6.3.2 Strain Energy Minimization of the Curved Panel 

In this section strain energy minimization is studied for the described curved panel 

in Figure 6.31. In this case, the panel is under variable pressure load from the concave 

face as shown in Figure 6.41. The pressure load increases linearly from 1 atm on the 

left edge to 10 atm at the centerline parallel to the z-axis and decreases from 10 atm 

to 1 atm at the right edge. On the right and left short sides all translations are disabled 

(uR = uT = uZ = 0) and  rotation around R axis is disabled (RR =0). On the curved 

sides of the panel only the T and Z  translation is disabled (uT = uZ = 0) and  rotation 

around T axis is disabled (Rt =0). All other translations and rotations are set free (uR 

= RR  = RZ ≠ 0).  
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Figure 6.41 MSC. Patran model of the curved panel for the strain energy 

maximization case study 

 

The reference fiber layup path is given in Figure 6.32. The control points are defined 

in Table 6.14. Correspondent knots and weights are same as in previous case studies. 

The optimized path of the curved panel with the minimum strain energy is shown in 

Figure 6.42 as the yellow spline, and the initial reference path is presented in the 

figure as the black spline. The control points of the optimized fiber path are given in 

Table 6.16. 
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Figure 6.42 Fiber paths for the curved panel; reference fiber path and the fiber path 

with minimum strain energy   

 

Table 6.16 Control points of fiber path for four-layer flat panel with minimum 

strain energy 

Control Points 

x y z 

-800.00 0.00 500 

-774.86 25.31 505.65 

-689.84 100.37 483.15 

-466.24 231.25 630.59 

-60.479 330.94 743.37 

363.89 274.90 689.87 

659.88 122.99 501.35 

764.40 36.07 498.00 

800.00 0.00 500 
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In this case study, the strain energy in the optimum configuration is reduced by 24.3 

% compared to the strain energy of the curved panel with the initial reference fiber 

path. The strain energy of the curved panel with the initial fiber path was 0.19 kJ, 

and the strain energy of the curved panel with the optimized fiber path is 0.143 kJ. 

Variation of the strain energy with the iteration number for the curved panel is given 

in Figure 6.43. 

. 

 

Figure 6.43 Variation of the strain energy with the iteration number for the curved 

panel strain energy minimization case study  
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6.3.3 Strain Energy Minimization of the Curved Panel with Failure Index 

(FI) constraint 

In this section for the same curved panel given in Figure 6.31, strain energy 

minimization of the curved panel is performed subject to FI constraint. The panel is 

four layered panel, and the stacking sequence is same as shown in Figure 6.2. The 

panel is under the effect of variable pressure load from the concave face. The 

pressure load increases linearly from 1.2 atm at the short edges and  12 atm at the 

center line (R=0) with symmetric behavior with respect the z axis passing from the 

center of the panel. The boundary conditions are same as previous case in section 

6.3.2. 

For this analysis the only constraint is the FI, and the geometry constraint is not 

applied to the NURBS fiber path.  If FI is greater than 1, objective function is 

automatically penalized by the algorithm and the solution is made infeasible. 

 

Figure 6.44 MSC. Patran model of the curved panel for the strain energy 

maximization case study constrained with FI 
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The reference fiber layup path is given in Figure 6.32 also the control points of the 

reference fiber path are defined in  Table 6.14 with the correspondent knots and 

weights defined as mentioned before.  

The optimized fiber path of the curved panel with FI constraint is given in Figure 

6.45 as the yellow line and the initial reference path is presented in the figure as the 

black line. Control points are given in Table 6.17. 

 

Figure 6.45 Rhino representation of the fiber paths for the four-layer curved panel ; 

reference fiber path and the fiber path with minimum strain energy   
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Table 6.17 Control points of the fiber path for four-layer curved panel with 

minimum strain energy subject to FI constraint 

Control Points 

x y z 

-800.00 0.00 500 

-774.86 25.31 490.10 

-689.84 100.37 530.64 

-466.24 231.25 373.65 

-60.479 330.94 320.24 

363.89 274.90 332.54 

659.88 122.99 486.02 

764.40 36.07 527.53 

800.00 0.00 500 

 

In this optimization, the magnitude of the external load is tuned for the curved panel. 

The load tuned as  at least one element of the created VSC structures with the initial 

populations candidate reference fiber paths has FI greater than one (FI>1). As it can 

be seen in Figure 6.46 the maximum FI in this case is 1.24 for the best fiber path in 

the initial population.  The maximum FI occurs in 46th  element of the mesh in the 

1st   ply.  By making the maximum FI greater than 1 in the initial configuration, it 

aimed to see the algorithm's ability to penalize the infeasible design in terms of FI. 

After the optimization process, maximum FI reaches a value of FI=0.31 at the 31st  

element’s 1st ply. Figure 6.47 gives the FI plot of the optimized configuration. In this 

case, the strain energy is reduced by of 24 % compared to the strain energy of the 

curved panel with the initial reference fiber path. The strain energy of the curved 

panel with the initial reference fiber path was 0.2724 kJ and the strain energy of the 

curved panel with the optimized fiber path is 0.2117 kJ.  Variation of the strain 

energy with the iteration number for the strain energy minimization of the curved 

panel with FI constraint is given in Figure 6.48. In Figure 6.48, it is seen that first 2 
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strain energy values are 0.2724 kJ.  This is because the reference fiber paths that do 

not violate the FI constraint is found after the 2nd  iteration. 

 

Figure 6.46 FI plot of the curved panel with the initial reference path under the 

given load and boundary conditions 

 

Figure 6.47 FI plot of the optimized curved panel under the given load and 

boundary conditions 

. 
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Figure 6.48 Variation of the strain energy with the iteration number for the strain 

energy minimization of the curved panel with FI constraint 

 

6.4 Discussions 

The developed method is verified for the strain energy minimization problem using 

a flat panel that is under compression. In the verification case with the referred 

boundary and loading conditions, it was expected that the optimum fiber path must 

converge to a straight line. This is because the maximum stiffness is achieved in the 

loading direction by the fibers parallel to the load.  By the alignment of fibers parallel 

to the loading direction, minimum strain energy is achieved.  

 

As outputs of the study firstly, flat panels are examined. For one layered and four 

layered flat panels strain energy minimization is studied. There are two constraints 

which are used separately to bound the feasible search space of the objective 

function. In the first case, strain energy minimization of one layered flat panel 
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constrained with fiber curvature is examined. The strain energy is reduced by 30 % 

compared to the best fiber path in the initial   population. This study shows that the 

fiber path is very similar to the discrete analysis done by Setoodeh et al. [42]. In this 

case fibers are aligned in the loading direction at the right of the plate. Because 

maximum strain is expected to occur near the free edge. Moreover, very similar 

behavior can be seen in the study of Setoodeh et al. [42]. 

In the work of Setoodeh et al. different mesh sizes are examined. In Figure 6.49, it 

is seen that the total variation of the fiber angle in discrete elements throughout the 

cantilever beam has not changed with the mesh size. For the developed method in 

this study, an optimization for finer mesh with a mesh of 301x101 is also performed. 

In this study, it is seen that the behavior of the optimized fiber layup path has not 

changed. The optimized strain energy values for the course mesh and fine mesh cases 

are also very close. This study with 301x101 mesh density is added to Appendix D. 

 

Figure 6.49 Short cantilever design with different meshes(a) Uniformly distributed 

loaded short cantilever beam; (b)46 x16 mesh; (c) 91 x31 mesh; (d) 301x101 mesh  

[42] 
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The second optimization case was the strain energy minimization of the flat panel 

composed of 4-layers with the same ply thickness and load and boundary conditions 

as the single layer flat panel. In this case 11.76% decrease in the strain energy is 

achieved as a result of fiber path optimization. It should be noted that compared to 

the one-layer flat plate case, since the number of layers is more and there are layers 

with symmetric fiber angles, percent decrease of the strain energy is not as high as 

the single layer case. The result in this case is compared with the result found by 

using the fiber path definition given in Reference 3 which is referred to as the T0 -T1 

method in this study. It is seen that the strain energy results of the panel with 

optimized paths are very close, and optimum fiber paths are very similar.  

 

Third case study was on the strain energy minimization of the 4- layered flat panel 

constraint by the FI. In this case, the magnitude of the distributed load is tuned such 

that at least one element in the flat panel with the initial reference fiber path has a FI 

greater than one (FI>1). The maximum FI in this case was 1.72 and maximum FI 

reaches a value of FI=0.9756 after the optimization. In this case, strain energy is 

reduced by 22.4% compared to the best fiber path configuration in the initially 

created swarm.  

 

Last case for flat panel optimizations is the FI minimization of the flat panel with 4-

layers. In this analysis, FI is in the objective function and in the constraint. In the 

initial configuration, the maximum failure index was greater than one (FI>1), and it 

was FI=1.72. After the optimization process, the maximum FI reaches a value of 

FI=0.9517. It is guaranteed that all elements are in the safe zone, and their failure 

index is under the critical value, which is “1”. In this case, 44% reduction is achieved 

in the maximum FI. 

 

To show that the developed optimization methodology is applicable to the curved 

panels, two objective functions are used.  For the four layered curved panel, buckling 

load factor maximization and strain energy minimization are studied. In these case 
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studies, two constraints are used separately to bound the feasible search space of the 

objective function. 

In the first case study of the curved panel, BLF of the curved panel is maximized 

when it is constrained with the fiber curvature. Two different curved panels with 

different boundary conditions are optimized. It is shown that for the first 

configuration the BLF increased by 20.93% compared to the BLF of the curved panel 

with the initial reference fiber path.  For the second configuration BLF increased by 

34.46% compared to the BLF of the curved panel with the best layup path in the 

initial population. 

Second case study of the curved panel is the strain energy minimization. The curved 

panel considered is subjected variable pressure load from the concave face. Under 

these conditions the strain energy in the optimum configuration is reduced by 24.3% 

compared to the strain energy of the curved panel with the best layup path in the 

initial population. 

The third case study of the curved panel is very similar to the second case except that 

in this case FI is the constraint of the optimization, and to make FI greater than 1 in 

the initial configuration the loading is tuned. In this case, the strain energy is reduced 

by of 22.4 % compared to the strain energy of the curved panel with the initial 

reference fiber path.  
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CHAPTER 7  

7 CONCLUSION AND FUTURE WORK 

This thesis presents a method that utilizes NURBS based fiber path to construct 

variable stiffness composite structures in 3D. In this study, structural optimization 

method is developed to optimize panels under the presented circumstances.  In this 

chapter the final words and lessons learned are discussed. 

Studies on the VSC structures started with research on different manufacturing 

techniques of VSC structures. Different methods are used to manufacture VSC 

composite structures. DiNardo [8] worked on the internally dropped plies. In the 

study conducted by Leissa and Martin [9] volume fraction of the straight and parallel 

fibers is increased continuously towards the one end of the ply. The third method to 

manufacture variable stiffness composite structures is spatially varying the 

orientation of fibers in a layer of the composite structure by continuously placing the 

composite prepreg tows over the surface following a curved reference path. 

Nagendra et al. [16] worked on a different method to define the fiber path on 

surfaces. To define the fiber path, NURBS is used. Because NURBS has superior 

control capability of the spline and flexibility, and it is used in commercial design 

tools [17]. The study of Nagendra et al. [16] is the inspiration of the work presented 

in this thesis. It is the first study that NURBS is used for constructing VSC 

composites. Theoretical and experimental studies showed that optimizing the lay-up 

path of the composite fibers increase the mechanical performance of VSC structures.  

 

In this thesis study, an optimization methodology utilizing the NURBS reference 

fiber path is developed. To define the NURBS path in 3D, basics of NURBS are 

reviewed. NURBS has superior ability to represent curves, hence CAD tools use 

NURBS as infrastructure to model geometries. In the third chapter ability of NURBS 

in representing the conical shapes is presented. For this reason, NURBS are used to 
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represent VSC fiber paths. In the fifth chapter, method to define NURBS fiber paths 

in the analysis model and optimization algorithm is presented. 

 

In addition to defining the fiber layup path and structural analysis of composite 

structures, this study includes optimization of the composite structure. Thus, one of 

the main parts of the study is utilizing an optimization method. PSO is chosen in this 

study because it is very efficient in global search. Furthermore, it is simple to 

implement and has very few algorithm parameters to tune. In the developed method, 

during the optimization iterations many structural analyses must be done; thus an 

optimization method that is time efficient and easy to apply is desired to be used for 

the optimization. 

 

In the developed method, reference fiber paths on the relevant geometries are created 

by the Rhino software. Creating the reference fiber path by Rhino was very practical 

for this study. In Rhino, the panels can be modelled easily, and the reference path 

can be drawn as a NURBS on the panel geometry. Defining the fiber path visually 

and seeing the locations of the control points helps to understand NURBS better. 

Besides the ease of visualization, Rhino also gives an output document which 

includes NURBS parameters. By using this file and extracting the data, suitable 

reference NURBS paths are easily created in MATLAB environment. 

 

In the developed optimization methodology, after creating the reference fiber path, 

all the processes to optimize the fiber path for the defined boundary and load 

conditions are automatized. Based on the objective function given as an input to the 

method, optimization process automatically starts. During the optimization, fiber 

angles are written to the analysis input file automatically. MSC. Nastran is 

automatically called by the developed algorithm and finite element analysis is 

performed. Outputs are taken from the MSC. Nastran’s output file for evaluation. 
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The results showed that fiber layup path optimization according to the objective 

function can be done by developed method for VSC structures. In the study, firstly, 

it is demonstrated that methodology is efficient in the fiber layup path optimization 

of VSC flat panels. The comparison between the fiber layup path of one layer flat 

panel strain energy minimization case and results of similar previous study overlaps. 

Moreover, a mesh dependence study has been conducted on this case and  results 

showed  that the fiber layup path is not dependent on the mesh size. For four layer 

flat panel strain energy minimization case, it is seen that the results of the current 

method and T0 - T1  method come out to be very close. This shows that even a definite 

advantage of the NURBS fiber path method cannot be seen; this is probably because 

of the used load and boundary conditions cantilevered plate under in-plane bending 

load. In the curved panel cases, as it is stated in the motivation of the study, the layup 

path is defined directly on the 3D surface by using the NURBS layup path definition. 

The optimization results show that used objective functions can be improved 

compared to the best particle that is created in the first population of the optimization 

cases. 

This study showed that NURBS can be utilized to optimize the VSC structures. It is 

possible to optimize a specific response or responses of a composite structure much 

more effectively than the straight fiber case. In the study it is shown that ccompared 

to the classical T0, T1 method NURBS reference path presents advantages in the 

optimization of VSC structures. The presented case studies show that the developed 

method optimizes VSC flat and curved panels effectively. In all cases, compared to 

the initial reference path, there is an upturn regarding the studied objective function. 

Defining the fiber layup path with NURBS to manufacture VSC has a great potential. 

It is thought that in the future, fiber placement technology will be the primary 

production method of composite structures. With the fiber placement machines, it is 

possible to optimize a specific response or responses of a composite structure much 

more effectively than the straight fiber case using the stacking sequence 

optimization. It is also very efficient because computer-aided design tools use 
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NURBS in their background. Adding the method that is presented in the study to the 

3D composite design tools defining the fiber paths can be very efficient. 

 

In the future, the current work can be improved in many ways. They are listed below: 

 

• In the future more NURBS parameters can be added to the optimization 

process. Besides the control points, knots and weights can be added to the 

optimization. During the development phase of the method, knot vector is 

also tried to be used as an optimization variable. However, due to the 

constraints of the knot values in the knot vector, it is seen that convergence 

to an optimum is computationally heavy. This problem can be solved by 

giving some basic constraint and penalties to the inappropriate knot values. 

• This study can be applied to the multiple curvature structures. Many 

structures in aerospace industry have multiple curvatures and it can be shown 

that the developed method can optimize mechanical properties of the 

structure by using NURBS easily. 

• By manufacturing the geometries with optimized paths, the finite element 

analysis results can be verified 
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9 APENDICES 

A. Example Rhino Step File  

ISO-10303-21; 

HEADER; 

/* Generated by software containing ST-Developer 

 * from STEP Tools, Inc. (www.steptools.com)  

 */ 

/* OPTION: using custom schema-name function */ 

FILE_DESCRIPTION( 

/* description */ (''), 

/* implementation_level */ '2;1'); 

FILE_NAME( 

/* name */ '3dcurve', 

/* time_stamp */ '2021-07-06T17:50:05+03:00', 

/* author */ (''), 

/* organization */ (''), 

/* preprocessor_version */ 'ST-DEVELOPER v16.5', 

/* originating_system */ '', 

/* authorisation */ ''); 

FILE_SCHEMA (('AUTOMOTIVE_DESIGN')); 
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ENDSEC; 

DATA; 

#10=SHAPE_REPRESENTATION_RELATIONSHIP('','',#33,#12); 

#11=GEOMETRIC_CURVE_SET('curve_set_0',(#14)); 

#12=GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTA

TION( 

'wireframe_rep_0',(#11,#35),#32); 

#13=PRESENTATION_LAYER_ASSIGNMENT('Default','',(#14)); 

#14=B_SPLINE_CURVE_WITH_KNOTS('',3,(#41,#42,#43,#44,#45,#46,#47,#48,

#49), 

 .UNSPECIFIED.,.F.,.F.,(4,1,1,1,1,1,4),(0.,147.304636887528,382.990865511633, 

825.393092062741,1444.88456930339,1680.57869626113,1886.79622641132),.U

NSPECIFIED.); 

#15=SHAPE_DEFINITION_REPRESENTATION(#16,#33); 

#16=PRODUCT_DEFINITION_SHAPE('Document','',#18); 

#17=PRODUCT_DEFINITION_CONTEXT('3D Mechanical Parts',#22,'design'); 

#18=PRODUCT_DEFINITION('A','First version',#19,#17); 

#19=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE('

A', 

'First version',#24,.MADE.); 

#20=PRODUCT_RELATED_PRODUCT_CATEGORY('tool','tool',(#24)); 

#21=APPLICATION_PROTOCOL_DEFINITION('Draft International Standard', 

'automotive_design',1999,#22); 
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#22=APPLICATION_CONTEXT( 

'data for automotive mechanical design processes'); 

#23=PRODUCT_CONTEXT('3D Mechanical Parts',#22,'mechanical'); 

#24=PRODUCT('Document','Document','Rhino converted to STEP',(#23)); 

#25=( 

LENGTH_UNIT() 

NAMED_UNIT(*) 

SI_UNIT(.MILLI.,.METRE.) 

); 

#26=( 

NAMED_UNIT(*) 

PLANE_ANGLE_UNIT() 

SI_UNIT($,.RADIAN.) 

); 

#27=DIMENSIONAL_EXPONENTS(0.,0.,0.,0.,0.,0.,0.); 

#28=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(

0.01745329252),#26); 

#29=( 

CONVERSION_BASED_UNIT('DEGREES',#28) 

NAMED_UNIT(#27) 

PLANE_ANGLE_UNIT() 

); 
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#30=( 

NAMED_UNIT(*) 

SI_UNIT($,.STERADIAN.) 

SOLID_ANGLE_UNIT() 

); 

#31=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.001),

#25, 

'DISTANCE_ACCURACY_VALUE', 

'Maximum model space distance between geometric entities at asserted c 

onnectivities'); 

#32=( 

GEOMETRIC_REPRESENTATION_CONTEXT(3) 

GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#31)) 

GLOBAL_UNIT_ASSIGNED_CONTEXT((#30,#29,#25)) 

REPRESENTATION_CONTEXT('ID1','3D') 

); 

#33=SHAPE_REPRESENTATION('Document',(#34,#35),#32); 

#34=AXIS2_PLACEMENT_3D('',#40,#36,#37); 

#35=AXIS2_PLACEMENT_3D('',#50,#38,#39); 

#36=DIRECTION('',(0.,0.,1.)); 

#37=DIRECTION('',(1.,0.,0.)); 

#38=DIRECTION('',(0.,0.,1.)); 
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#39=DIRECTION('',(1.,0.,0.)); 

#40=CARTESIAN_POINT('',(0.,0.,0.)); 

#41=CARTESIAN_POINT('',(-800.000000000001,0.,500.)); 

#42=CARTESIAN_POINT('',(-774.867490670939,25.3175694229778,468.01)); 

#43=CARTESIAN_POINT('',(-689.843902912201,100.370320585827,424.30)); 

#44=CARTESIAN_POINT('',(-466.247995835935,231.259369892784,427.59)); 

#45=CARTESIAN_POINT('',(-60.4793998790345,330.940396115973,487.75)); 

#46=CARTESIAN_POINT('',(363.898123597787,274.907293578569,562.94)); 

#47=CARTESIAN_POINT('',(659.88771881709,122.996240681861,578.87)); 

#48=CARTESIAN_POINT('',(764.405552511706,36.0760911057276,544.62)); 

#49=CARTESIAN_POINT('',(800.000000000002,0.,500.000000000001)); 

#50=CARTESIAN_POINT('',(0.,0.,0.)); 

#51=( 

GEOMETRIC_REPRESENTATION_CONTEXT(2) 

PARAMETRIC_REPRESENTATION_CONTEXT() 

REPRESENTATION_CONTEXT('pspace','') 

); 

ENDSEC; 

END-ISO-10303-21; 
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B. Nastran Input File  

Description of the MSC. Nastran input file which is prepared to perform 

mechanical optimization of composite panels’ .fiber path. 

 

The PCOMP property entry may be used when the element is a composite consisting of 

layers of unidirectional fibers. The information on the PCOMP entry includes the 

thickness, orientation, and material identification of each layer. The detail explanation of 

PCOMP card is given below. 
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MAT8 cards define the material properties. Each MAT8 cards refer to the MID 

number of the PCOMP cards layers. In this example there are 736 elements with 4 

layers. Thus, there are 2944 MAT8 cards are created. 

 

The CQUAD4 Cards refers to the elements of Finite Elements Analysis. 

EID is the element identification number (integer>0) 
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PID is identification number of a PSHELL or PCOMP property entry which is 

created for each element. 

GRID is the grid point identification numbers of connection points. 
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CQUAD4 card has information about, PCOMP card number. PCOMP card has 

information about the material, thickness, and orientation angle. MAT8 card is defined 

for the used material. 
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C. Example of an optimization iteration  

In this appendix, an optimization iteration is described in more detail to clarify the 

issues related with the use the NURBS and PSO parameters. The example is from 

the strain energy minimization of the flat panel which is under in-plane bending load.  

Figure C.1 shows the finite element model of the flat panel which is under in-plane 

bending load. 

 

Figure C.1 Finite element of the flat panel 

 

Figure C.2 shows the initial reference NURBS path created by Rhino for the flat 

panel given in Figure C.1. 

 

Figure C.2 Initial reference NURBS path created by Rhino for the flat panel  
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Coordinates of the control points of the initial reference fiber path are given in Table 

C.1.  

Table C.1 Coordinates of the control points of the initial reference fiber path 

Control 

points 

x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 791.23 841.07 535.29 272.80 282.77 500 

z 0 0 0 0 0 0 0 

 

In the shifted fiber path method,  only the y coordinates of the NURBS are changed 

since y is the shifting direction. Hence, all finite elements having element centers at 

a fixed x coordinate but different y coordinates have the fiber angle. Since the flat 

panel is on the x-y plane, z coordinates of the control points of the reference NURBS 

curve are all zero. In the PSO optimization, design variables are taken as the 

coordinates of the control points. Thus,  the  particles are matrices of order 3xm 

which include the  coordinates (xm ,ym,zm) of the m control points. In the particular 

example, number of control points is 7, hence order of the matrices, which are the 

particles in the PSO, is 3x7. 

The search space X for this optimization problem is the values that y coordinates can 

take, and the search space is bounded by the length of the short edge of the rectangle 

which is 1000 mm. So the y coordinates of the control points  can take values 

between [0,1000]. Since there is only a change in the y-direction, the dimension of 

the search space is 1 (d=1). 

As the first step in PSO, twenty five empty particles (n=25) are created and  the 

velocities of the particles and the objective functions (strain energy) are initialized. 

One of those particles in the initial population is initialized with the coordinates of 

the control points of the reference fiber path, and for the others, y coordinates of the 

particles are randomly created and x coordinates are taken as the x coordinates of the 

control points of the reference fiber path. So, in the initial population there are twenty 
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five 3x7 matrices (x,y and z coordinates of the control points) that store the 

coordinates of the control points. In iteration t, a particle is denoted as 𝒙𝑖
(𝑡)

with the 

subscript i denoting the particle number and in this problem range of i is 1-25. 

In the initialization process, each particle’s velocity vector is initialized as zeros 

vector of size 7. For each particle, through the course of the PSO run velocities are 

updated according to the Equation (C.1).  

 𝑣𝑖,𝑗
(𝑡+1) = 𝑤 ∗ 𝑣𝑖,𝑗

(𝑡) + 𝑐1𝑟1 (𝑝𝑖,𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡))+ 𝑐2𝑟2 (𝑝𝑔,𝑗
(𝑡) − 𝑥𝑖,𝑗

(𝑡))  (C.1) 

In the first iteration, for each particle (i=1-n)  objective functions are also initialized 

as zero. When the iterations start, according to positions of the particles, the objective 

functions are evaluated. 

In this problem, total strain energy of the flat panel, read from the output file of MSC. 

Nastran FE solver, is the objective function. This strain energy is calculated based 

on the loading applied to the panel and the created reference fiber path according to 

which fiber angle of each finite element is determined. So for each particle, one strain 

energy value is calculated, and since the population consists of 25 particles, there are 

25 objective function values in a population in iteration t.  𝒑
𝑖
(𝑡)

 is the position vector 

of the ith particle at the tth iteration. 

In each iteration, PSO algorithm uses the global best objective value ever visited in 

the search space. Since the example problem is a minimization problem, best value 

in the swarm is initialized as infinity and the particle positions are initialized as 

empty vector. After the first iteration, in each iteration, 25 strain energy values are 

calculated. Each objective function value (of m=25 particles) are compared with the 

previous global best value After this comparison, the minimum strain energy value 

is taken as the current global best and stored to use in the next iteration, and the 

corresponding position of this strain energy is taken as 𝒑𝑔
(𝑡+1). This global best value 

is stored and updated whenever better global best is found during the course of 

iterations. 
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In  Figure C.3, MATLAB structure after the termination of the optimization is given. 

“Fields” column is theparticle number from 1 to 25. “Position” column consists of 

position of each particle given as 3x7 matrices  (x,y and z coordinates of the control 

points). “Velocity” column is a vector of size 7 with first and last value being equal 

to 0. Since the positions of the first and last control points do not change, first and 

last values of the velocity vector are zero. The column named as “Best “contains 

MATLAB structure arrays that stores the best objective value and the corresponding 

position of each particle ever visited.   

In the optimization algorithm, a convergence tolerance is defined. PSO continues  

until all particles’ position vectors are within  a defined tolerance. The tolerance is 

10 mm in this example because control points are the optimization variables. 

Consequently, as seen in Figure C.3, after the termination of the optimization all 

objective values are very close to each other.  

In Figure C.4, MATLAB structure that contains the best position and cost after the 

termination of iterations is shown. 

.  This structure is updated if better results are found through the course of PSO. 
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Figure C.3 MATLAB  particle structure after the termination of optimization 

 

 

Figure C.4 MATLAB structure that contains the best position and cost after the 

termination of iterations 
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As an example of   position, cost and velocity fields of particle 6given in Figure C.3 

is presented i Table C.2.  

 

Table C.2 Position, cost and velocity fields for particle 6 in Figure C.3 

Final Optimization Results for Particle 6 

Position 

X 
0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

Position 

Y 
500 486.87 495.48 473.31 437.97 65.74 500 

Velocity 0 -0.13678 0.30317 -0.038994 -0.34049 -0.10588 0 

Cost 7.906665 x 105 

 

Best position and cost fields in Figure C.4 is presented in Table C.3  

 

Table C.3Position, cost and velocity fields for best solution in Figure c.4 

Best particle and thecorresponding cost  

Position 

X 
0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

Position 

Y 
500 486.82 495.77 473.71 438.06 65.52 500 

Cost 7.9067 x 105 
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D. One Layer Flat Panel Strain Energy Minimization with Fine Mesh 

In this appendix, results  one layer flat panel strain energy minimization is examined 

with fine mesh density.In the finite element model, a mesh of 301x101 mesh is used. 

The fiber layup path and the optimization iteration results are presented below. 

The loading magnitude is 1kN/m and the panel consists of 1 layer with  a 0.183 mm 

thick ply. In Figure D.1, the optimized path is shown as the purple line, and the initial 

reference path is shown as the green line. The optimized control points of NURBS 

path are given in Table D.1.  

 

Figure D.1 Strain energy optimized fiber path for the one-layer flat panel with 

301x101 mesh density; Matlab representation 

 

Table D.1Control points of  the strain energy optimized fiber path for the one-layer 

flat panel with 301x101 mesh density 

Control points 
x 0 515.48 1113.67 1519.77 1966.08 2549.32 3000 

y 500 486.52 493.89 474.01 488.06 57.32 500 

 

The strain energy is reduced by 50.48% compared to the strain energy of the best 

particle that is created in the first population. The strain energy with the best 

reference fiber path of the first population was 1.60 kJ, and for the panel with the 
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optimized fiber path, strain energy is 0.79 kJ. Strain energy versus the iteration 

number plot during the optimization is given in Figure D.2  

 

Figure D.2 Strain energy versus the iteration number for the one-layer flat panel 

strain energy minimization problem 301x101 mesh density 

When the results of the one layer flat panel strain energy minimization with fine 

mesh and the coarse mesh are compared, it is seen that in Table D.2 that y coordinates 

of control points of the fiber layup paths are slightly different. However, the values 

of the control points are very close, and the shape of the layup paths are very similar 

as it can be seen in the Figure D.3. Although the coordinates of the control points are 

changed, the final optimized strain energy values came out as same  (0.79 kJ).  
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Table D.2 Control points obtained with fine mesh and the coarse mesh for the one 

layer flat panel strain energy minimization problem 

x coordinates of 

the fiber path in 

both mesh sizes 

y coordinates of 

fiber path with 

fine mesh 

y coordinates of 

fiber path with 

coarse mesh 

0 500 500 

515.48 486.52 486.82 

1113.67 493.89 495.77 

1519.77 474.01 473.71 

1966.08 488.06 438.06 

2549.32 57.32 65.52 

3000 500 500 

 

 

Figure D.3 One layer flat panel strain energy minimization fiber paths a) fiber path 

after optimization with fine mesh b) fiber path after optimization with coarse mesh 


