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Covering Radius of Melas Codes
Minjia Shi & Tor Helleseth & Ferruh Özbudak & Patrick Solé

Abstract—We prove that the covering radius of the
Melas code M(m, q) of length n = qm − 1 over Fq

is 2 if q > 3. We also prove that the covering radius
of M(m, 3) is 3 is m ≥ 3, the covering radius of
M(2, 3) is 4, and the covering radii of M(1, 2) and
M(1, 3) are 1.

Index Terms—Melas code, covering radius, finite
fields.

I. INTRODUCTION

THE covering radius of a code is one of
the fundamental properties of codes (see, for

example, [6]). It has applications in data compres-
sion, testing, write-once memories, decoding of
errors and erasures. It is also interesting for its
own sake [2], [3], [4], and [5].

Let Fq be a finite field with q elements. Let
n be a positive integer. Let C ⊆ Fnq be a q-
ary code of length n. The covering radius of C
is the maximum distance of any vector x ∈ Fnq
to the code C. Here the distance of x ∈ Fnq to
C is d(x,C) = min {wH(x− c) : c ∈ C}, where
wH(·) is the Hamming weight. Equivalently the
covering radius of C is the smallest integer r such
that the Hamming balls of radius r centered at the
codewords of C cover Fnq , namely

Fnq ⊆
⋃
c∈C

B(c; r),
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where B(c; r) =
{
x ∈ Fnq : wH(x− c) ≤ r

}
.

The problem of finding the covering radius of a
given code is very hard in general [8]. In general,
most of the results give bounds on the covering
radii rather than exact values [1], [11], [17], [18],
[21]. There are only a few classes of codes in
which the covering radii are known [8], [9].

For an integer m ≥ 1, there exists a finite
field Fqm with qm elements such that Fqm is a
field extension of degree m over Fq . Moreover the
multiplicative group of Fqm has qm − 1 elements
and this group is cyclic. A generator of this
cyclic group is called a primitive element of order
qm−1. We refer, for example, to [13], for further
background in finite fields.

The Melas codes were introduced by C. M.
Melas [14]. Let α be a primitive element of order
n = qm − 1. The Melas code M(m, q) of length
n = qm − 1 over Fq has parity check matrix

H =

[
1 α α2 · · · αq

m−2

1 α−1 α−2 · · · α−(q
m−2)

]
. (1)

Here the representation of the parity check matrix
is in short. In fact we choose an arbitrary Fq-linear
bijective map φ : F2×1

qm → F2m×1
q and we consider

each column
[

αj

α−j

]
in H as φ

([
αj

α−j

])
for 0 ≤ j ≤ qm−2. Therefore M(m, q) has
dimension n−2m except the degenerate cases that
M(1, 2) and M(1, 3). In these degenerate cases
the dimensions are 0 and 1, respectively.

It is well known that the covering radius ρ(m, q)
of the Melas code M(m, q) can also be defined
as follows: Let H1, H2, . . . ,Hn ∈ F2×1

qm be the
column vectors of H in (1). The covering radius
ρ(m, q) is the smallest integer ρ such that every
column vector in F2×1

qm is a linear combination of
at most ρ of H1, H2, . . . ,Hn (see, for example,
[3, Theorem 2.1.9] for q = 2, and [11, Lemma
1.1] for q arbitrary).

In [7, Theorem 2] (see also [16]), the covering
radius of M(m, 2) is shown to be 3 if m ≥ 2. Let
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p be an odd prime. In [22], the covering radius
of M(m, p) is shown to be at most 3 if pm > 36
using methods from [17]. In the main result of
[12], the authors stated that the covering radius of
M(m, q) is 3 if Fq is a finite field of characteristic
2, where q > 8. Unfortunately, in this paper we
show that this statement of [12] is wrong.

In this paper we exactly determine the covering
radii of Melas codes complementing all of the
cases after [7, Theorem 2], i.e. all positive integers
m and all finite fields Fq . In particular we develop
new techniques very different from the ones in
[17]. We use rather different methods in the even
and odd characteristics. We present a simple and
beautiful proof in the case of even characteristic.
The case of odd characteristic is much more
involved. We first give a characterization result
(see Theorem II.1 and Remark II.2). This gives
a connection of the covering radius of M(m, q)
to evaluations over Fqm of certain quadratic poly-
nomials over Fq and quadratic residues in Fqm ,
when the characteristic is odd and q > 3. Then
we develop further techniques involving detailed
structure of some subsets of Fqm related to cer-
tain quadratic polynomials over Fq and quadratic
residues in Fqm . Our proofs for the remaining case
M(m, 3) use some results on elliptic curves and
Hasse-Weil inequality.

This paper is organized as follows. Section
II gives an important characterization result for
the odd characteristic, except q = 3. We obtain
the covering radius of all Melas codes in even
characteristic in Section III, except q = 2. The
case of Melas codes over F3 requires different
methods, which we present in Section IV. Using
our characterization in Theorem II.1 and Remark
II.2, we first complete the covering radius of all
Melas codes over F5 using new methods in Sec-
tion V. These methods do not generalize directly
to all finite fields with q > 5. In particular we need
some stronger results than the covering radius is
2 when m = 1 and q > 5. This is accomplished
in Section VI. Using results of earlier sections
we complete the covering radius problem for all
Melas codes M(m, q) with m ≥ 1 and q > 5 in
Section VII. Section 8 concludes the paper.

Throughout the paper the multiplicative group
of Fq (resp. Fmq ) is denoted as F∗q (resp. F∗qm ).

II. A CHARACTERIZATION OF THE COVERING
RADIUS IN ODD CHARACTERISTIC

In this section we give a necessary and sufficient
condition that the covering radius is 2 if the
characteristic of the field Fq is odd and q > 3.
In Sections V and VII, using this characterization,
we show that the covering radius is 2 if the
characteristic of the field Fq is odd and q > 3.
Note that this characterization gives a link of the
covering radius of these codes to the solutions
of certain quadratic polynomials over finite fields.
Throughout this section we assume that Fq is a
finite field of odd characteristic.

Recall that A ∈ Fq is a square if there exists
a ∈ Fq such that A = a2. Note that A = 0 is a
square and hence the number of squares in Fq is
exactly (q + 1)/2. Similarly z ∈ Fqm is a square
if there exists y ∈ Fqm such that z = y2.

Theorem II.1. Assume that char Fq is odd
and q > 3. Let m ≥ 1 be an integer. Then the
covering radius of M(m, q) is 2 if and only if
the following condition holds:

For each z ∈ Fqm \ {c2 : c ∈ Fq},there
exist squaresA,B in Fq with A 6= B and
(z −A)(z −B) is a square in Fqm .

(2)

Proof: We need to show that given α, β ∈
Fqm there exist x, y ∈ F∗qm with x 6= y and a, b ∈
Fq such that the system

ax+ by = α,

a
1

x
+ b

1

y
= β

(3)

holds. If (α, β) = (0, 0), then we can choose a =
b = 0 and x, y ∈ F∗qm arbitrarily with x 6= y.
Hence we assume that (α, β) 6= (0, 0) from now
on in this proof.

If α = 0 and β 6= 0, then let a, b ∈ F∗q with
a2 6= b2. Note that this is possible as q > 3.
Moreover, put

x =
a2 − b2

aβ
and y =

−a
b
x.

Note that x 6= y, x, y ∈ F∗qm and the system in (3)
is satisfied by these choices. Hence the covering
radius statement is satisfied in this case as well.

If α 6= 0 and β = 0, then the covering
radius statement is satisfied by symmetry using
the arguments of the previous paragraph.
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Next we consider the case that α 6= 0, β 6=
0 and αβ is a square in Fq (hence αβ ∈ Fq in
particular). We choose a ∈ Fq with a2 = αβ. Put

x =
α

a
and b = 0.

By choosing y ∈ F∗qm anything with x 6= y we
observe that the system in (3) is satisfied by these
choices. Hence the covering radius statement is
satisfied in this case.

From now on we assume that α 6= 0, β 6= 0
and αβ 6= c2 for any c ∈ Fq in this proof. Note
that if there exist a, b ∈ Fq , x, y ∈ F∗qm such that
the system in (3) holds, then the following holds:
• a 6= 0, b 6= 0 and x 6= y: Otherwise αβ is a

square in Fq , which is a contradiction to the
assumption above.

Assume that there exist a, b ∈ Fq , x, y ∈ F∗qm
such that the system in (3) holds. This implies that

y =
−ax
b

+
α

b
.

Putting this value into the system (3) we obtain

x2 + x

(
b2

aβ
− α

a
− a

β

)
+
α

β
= 0. (4)

Note that x 6= 0 as α/β 6= 0. As the characteristic
is odd the equation in (4) is equivalent to(

x+
1

2

(
b2

aβ
− α

a
− a

β

))2

=
1

4

((
b2

aβ
− α

a
− a

β

)2

− 4
α

β

)
. (5)

Considering the right hand side of (5) we conclude
that x ∈ F∗qm if and only if(

b2 − αβ − a2
)2 − 4αβa2

is a square in Fqm . Put z = αβ ∈ Fqm \ {c2 : c ∈
Fq}. Hence x ∈ F∗qm if and only if

(b2 − z − a2)2 − 4za2

is a square in F∗qm . We observe that(
b2 − z − a2

)2 − 4za2

=
(
z − (a− b)2

) (
z − (a+ b)2

)
.

Let ψ : Fq×Fq → Fq×Fq be the map defined as
ψ(a, b) = (a− b, a+ b). Note that ψ is bijective.

Moreover if ψ(a, b) = (µ, ν), then it is easy to
observe that

a = 0 ⇐⇒ µ = −ν

and

b = 0 ⇐⇒ µ = ν.

Hence we have that

a 6= 0 and b 6= 0 ⇐⇒ µ2 6= ν2.

Put A = (a − b)2 and B = (a + b)2. These
arguments complete the proof.

Remark II.2. Under the notation and assumptions
of Theorem II.1, assume further that z ∈ {c2 : c ∈
Fq}. If z = 0, then choosing A = 0 and B = 1
we obtain that (z−A)(z−B) is a square in Fqm .
If z = c2 with c ∈ F∗q , then choosing A = 0 and
B = c2 we obtain that (z−A)(z−B) is a square
in Fqm . Hence the condition (2) is equivalent to
the following condition, which we will use in the
proofs below:

For each z ∈ Fqm , there exist squares A,B in Fq
with A 6= B and (z −A)(z −B) is a square in
Fqm .

III. THE COVERING RADIUS IN EVEN
CHARACTERISTIC

In this section we give a simple and beautiful
proof that the covering radius is 2 if the charac-
teristic of the field Fq is 2 and q > 2.

Theorem III.1. Assume that char Fq is 2 and q >
2. Let m ≥ 1 be an integer. Then the covering
radius of M(m, q) is 2.

Proof: The arguments in the beginning of the
proof of Theorem II.1 is independent from char-
acteristic. We need to show that given α, β ∈ Fqm
there exist x, y ∈ F∗qm with x 6= y and a, b ∈ Fq
such that the system

ax+ by = α,

a
1

x
+ b

1

y
= β

(6)

holds. If α = 0, β = 0 or αβ = c2 for some c ∈
Fq , then it is easy to show existence of x, y ∈ F∗qm
with x 6= y and a, b,∈ Fq such that the system (6)
holds as these arguments in the proof of Theorem
II.1 hold in even characteristic as well. Hence we
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assume that α 6= 0, β 6= 0 and αβ 6= c for any
c ∈ Fq from now on in this proof.

Following the arguments in the beginning of the
proof of Theorem II.1, it remains to show that the
equation

x2 + x

(
b2

aβ
+
α

a
+
a

β

)
+
α

β
= 0 (7)

has a solution x ∈ Fqm . Put

A =
b2

aβ
+
α

a
+
a

β
and B =

α

β
.

As a2 + b2 = (a+ b)2, by our assumption above
in this proof, we have that A 6= 0. The equation
in (7) is equivalent to the equation( x

A

)2
+
x

A
=

B

A2
. (8)

Let Tr : Fqm → F2 be the absolute trace map.
Using Hilbert’s Theorem 90 it remains to show
that we can choose a, b ∈ F∗q so that Tr

(
B
A2

)
= 0.

Note that

B

A2
=

a2αβ

a4 + b4 + α2β2
.

Put z = αβ ∈ Fqm , which is nonzero by our
assumption in this proof above. Hence we need to
show existence of a, b ∈ F∗q such that

Tr

(
z

a4 + b4 + z2

)
= 0.

Firstly, we assume that there exist a, b ∈ F∗q such
that

a4 + b4 = 0. (9)

Secondly, we assume that there exist a, b ∈ F∗q
such that

a4 + b4 = 1. (10)

We will prove that these assumptions hold at the
end of this proof.

If Tr
(
1
z

)
= 0, then we choose a, b ∈ F∗q

satisfying a4 + b4 = 0. This implies that

Tr

(
z

a4 + b4 + z2

)
= Tr

(
1

z

)
= 0.

If Tr
(
1
z

)
= 1, then we choose a, b ∈ F∗q

satisfying a4 + b4 = 1. Note that Tr
(

1
1+z

)
=

Tr
(

1
1+z2

)
. These imply that

Tr

(
z

a4 + b4 + z2

)
= Tr

(
z

1 + z2

)

= Tr

(
z

1 + z2

)
+ Tr

(
1

1+z2

)
+Tr

(
1

1+z

)
= Tr

(
1 + z

1 + z2

)
+Tr

(
1

1 + z

)

= Tr

(
1

1 + z

)
+Tr

(
1

1 + z

)
= 0.

Finally we show that the assumptions (9) and (10)
hold. Choosing a = b = 1 we show that the
assumption in (9) holds. Choosing a ∈ Fq \ F2

and b ∈ Fmq with b4 = a4 + 1 we show that the
assumption in (10) holds.

We consider the degenerate case of character-
istic 2, which happens only when q = 2, in the
following remark.

Remark III.2. For m = 1 and q = 2, the Melas
code M(1, 2) is degenerate as the parity check
matrix H = [1] has rank 1. It is clear that for any
given a ∈ F2, we have a · 1 = a, and hence the
covering radius of M(1, 2) is 1.

IV. THE COVERING RADIUS OVER F3

In this section we determine the covering radius
of the Melas code M(m, 3), see Theorem IV.3 be-
low. We prove that the covering radius of M(m, 3)
is 3 if m ≥ 3 and the covering radius of M(2, 3)
is 4. We consider the degenerate case M(1, 3) in
Remark IV.4 below.

We first consider a special case in the proof of
Theorem IV.3.

Lemma IV.1. For m ≥ 2, there exist x, y, z ∈
F3m \ {0} which are mutually distinct and

x+ y + z = 0,

1

x
+

1

y
+

1

z
= 1.

Proof: Let γ ∈ F3m \ {0} such that

Tr

(
1

γ

)
= 0. (11)
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The equation

T 3 − T +
1

γ
= 0 (12)

has 3 distinct nonzero solutions in F3m by
Hilbert’s Theorem 90 (see [13, Theorem 2.25])
and (11). Let x

γ , y
γ and z

γ be the roots of the
equation in (12). Then we have

T 3 − T +
1

γ
=

(
T − x

γ

)(
T − y

γ

)(
T − z

γ

)
.

Considering the coefficients of T 2, T and 1 in
both sides we obtain that

x+ y + z = 0,

1

x
+

1

y
+

1

z
= 1.

Note that the polynomial T 3 − T + 1
γ ∈ F3m [T ]

is square-free and hence the elements x, y, z ∈
F3m \ {0} are mutually distinct.

The next proposition corresponds to another
special case in the proof of Theorem IV.3. We use
elliptic curves and Hasse-Weil bound in its proof.

Proposition IV.1. Assume that β ∈ F3m \ {0, 1}.
If m ≥ 3, then there exists y ∈ F3m such that

y 6∈
{
0,

1

β
, 1

}
, y2 + y +

1

β
6= 0, (13)

and the equation

w2 =
y

(y − 1)(βy − 1)
+ 1 (14)

has a solution w ∈ F3m \ {0,−1, 1}.

Proof: Let F = F3m(y)(w) be the algebraic
function field given by the Kummer extension

w2 =
y

(y − 1)(βy − 1)
+ 1 =

β
(
y2 − y + 1

β

)
(y − 1)(βy − 1)

of the rational function field F3m(y). Note that
the polynomials y2 − y + 1

β and (y − 1)(βy − 1)
in F3m [y] are coprime. There are two rational
places of F3m(y) corresponding to the zeroes of
y2 − y + 1

β if this polynomial splits in F3m .
Otherwise there is a unique place of degree 2 of
F3m(y) corresponding to the zero of y2 − y + 1

β .
Hence the genus of F is 1 by [19, Proposition
3.7.3].

The place of F3m(y) corresponding to the zero
of y − 1 is totally ramified in F/F3m(y). Hence
there is exactly one rational place of F with
coefficients y, w such that y = 1.

The place of F3m(y) corresponding to the zero
of βy− 1 is totally ramified in F/F3m(y). Hence
there is exactly one rational place of F with
coefficients y, w such that y = 1

β .
If the polynomial y2−y+ 1

β splits in F3m , then
there are exactly two rational places of F with
coefficients y, w such that w = 0. Otherwise there
is no rational place of F with coefficients y, w
such that w = 0.

Next we consider the polynomial y2 + y + 1
β .

There are at most 4 rational places of F with
coefficients y, w such that y2 + y + 1

β = 0. This
happens only if this polynomial splits in F3m and
both of the places of F3m(y) corresponding to
the zeroes of this polynomial totally split in the
extension F/F3m(y).

Finally we consider the rational place P∞ of
F3m(y) corresponding to the pole of y. There are
at most 2 rational places of F over P∞. This
happens if and only if −β is a square in F3m .

Let N(F ) denote the number of rational places
of F . Combining the arguments in the previous
paragraphs we conclude that if

N(F ) > 1 + 1 + 2 + 4 + 2 = 10, (15)

then there exists a rational place of F such that
the corresponding coefficients y, w ∈ F3m satisfy
(13) and (14).

It remains to prove (15). Using Hasse-Weil
inequality [19, Theorem 5.2.3], as the genus of
F is 1, we have

N(F ) ≥ 3m + 1− 2 · 3m/2. (16)

Note that

3m + 1− 2 · 3m/2 ≥ 11 (17)

for m ≥ 3. Combining (16) and (17) we prove
(15), which completes the proof.

The next proposition is a continuation of Propo-
sition IV.1.

Proposition IV.2. Assume that m ≥ 3 and
β ∈ F3m \ {0, 1}. Let y, w ∈ F3m obtained by
Proposition IV.1 satisfy the conditions (13) and
(14). Put x, z ∈ F3m defined as

x = (y − 1)(w + 1) and z = 1− y − (y − 1)(w + 1).
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Then the followings hold:
1) x+ y + z = 1, 1

x + 1
y + 1

z = β.
2) xyz 6= 0.

3) x, y, z are mutually distinct.

Proof: Note that

x+ y + z = (y − 1)(w + 1)

+ y + 1− y − (y − 1)(w + 1)

= 1.

Moreover we have
1

x
+

1

y
+

1

z
=

1

(y − 1)(w + 1)
+

1

y

+ 1
1−y−(y−1)(w+1)

=
1

(y − 1)(w + 1)

+ 1
y
+ 1

(y−1)(1−w)

=
1

(y − 1)(w2 − 1)
+

1

y

=
1

(y − 1)
· (y − 1)(βy − 1)

y
+

1

y

= β.

Next we consider item 2). Note that y 6= 0,
y 6= 1 and w 6= −1 by Proposition IV.1 and hence
xy 6= 0. Assume that z = 0. Then we get

1− y = (y − 1)(w + 1) and hence w + 1 = −1.

As w 6= 1 by Proposition IV.1, we get a contra-
diction. This shows that xyz 6= 0.

Finally we prove item 3). Assume that x = y.
Then w + 1 = y

y−1 and hence w = 1
y−1 . Using

(14) we obtain that

1

(y − 1)2
=

y

(y − 1)(βy − 1)
+ 1.

This implies that

βy3 + βy2 + y = 0.

As y 6= 0 and β 6= 0 we conclude that

y2 + y +
1

β
= 0,

which is a contradiction to (13). This shows that
x 6= y.

Assume that x = z. Then 2x+ y = 1. As x =
(y − 1)(w + 1) we obtain that

2(y − 1)(w + 1) + y = 1.

This implies that either y = 1 or w = 0, both are
contradictions to Proposition IV.1. This shows that
x 6= z.

Assume that y = z. Then x+ 2y = 1. As x =
(y − 1)(w + 1) we obtain that

(y − 1)(w + 1) + 2y = 1.

This implies that w = 1
1−y . Using (14) we obtain

that

1

(1− y)2
=

y

(y − 1)(βy − 1)
+ 1.

As y 6= 0 and β 6= 0 we conclude that

y2 + y +
1

β
= 0,

which is a contradiction to (13). This shows that
y 6= z. This completes the proof.

The following example refers to the covering
radius of M(2, 3), which is different from the
covering radius of M(m, 3) for m ≥ 3.

Example IV.2. For m = 2, let w ∈ F32 be a
primitive element with w2 + 2w + 2 = 0. For
each 1 ≤ i ≤ 8 with i 6= 5 and i 6= 7, there exist
1 ≤ i1 < i2 < i3 ≤ 8 such that x = wi1 , y = wi2 ,
z = wi3 and a, b, c ∈ F3 satisfying

ax+ by + cz = 1,

a
1

x
+ b

1

y
+ c

1

z
= wi.

However for w5 and w7 there does not exist such
three mutually distinct elements x, y, z ∈ F3m and
a, b, c ∈ F3 satisfying these conditions. Instead for
w5 we have

x+ y + z + t = 1,

1

x
+

1

y
+

1

z
+

1

t
= w5,
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with x = w3, y = w5, z = w6 and t = 1.
Similarly for w7 we have

x+ y + z + t = 1,

1

x
+

1

y
+

1

z
+

1

t
= w7,

with x = w, y = w2, z = w7 and t = 1.

Now we are ready for the main result of this
section.

Theorem IV.3. Let q = 3 and m ≥ 2 be an
integer. Then the covering radius of M(m, 3) is
3 if m ≥ 3. Moreover the covering radius of
M(2, 3) is 4.

Proof: Recall that the covering radius of
M(m, 3) is the smallest integer ρ such that every
column vector in F2×1

3m is an F3-linear combi-
nation at most ρ columns in the parity check
matrix H of M(m, 3) given in (1). Choosing an
F3-linear combination of 3 columns of H with
nonzero coefficients so that the linear combina-
tion is

[
α
β

]
∈ F2×1

3m means choosing mutually

distinct x, y, z ∈ F3m \ {0} such that

x+ y + z = α, and

1

x
+

1

y
+

1

z
= β.

The methods in Section 2 show that the cover-
ing radius of M(m, 3) is at least 3 for m ≥ 2. We
will use the following assertions:

i) There are mutually distinct x, y, z ∈ F3m \
{0} such that

x+ y + z = 1, and

1

x
+

1

y
+

1

z
= 0.

ii) For given β ∈ F3m \ {0}, there are mutually
distinct x, y, z ∈ F3m \ {0} such that

x+ y + z = 1, and

1

x
+

1

y
+

1

z
= β.

It is not difficult to observe that the proofs of
items i) and ii) imply that the covering radius of
M(m, 3) is 3.

Note that item i) is equivalent to the following
assertion:

iii) There are mutually distinct x, y, z ∈ F3m \
{0} such that

x+ y + z = 0, and

1

x
+

1

y
+

1

z
= 1.

We prove item iii) for any m ≥ 2 by Lemma
IV.1. We prove item ii) for any m ≥ 3 by
Proposition IV.2. This completes the proof of the
statement that the covering radius of M(m, 3) is
3 for m ≥ 3. For the case M(2, 3) we also use
Example IV.2. This completes the proof.

We consider the degenerate case of F3 in the
following remark.

Remark IV.4. For m = 1, the Melas code
M(1, 3) is degenerate as the parity check matrix
H = [1 2] has rank 1. It is clear that for any given
a ∈ F3, we have a ·1 = a, and hence the covering
radius of M(1, 3) is 1.

V. THE COVERING RADIUS OVER F5

In this section we prove that the covering radius
of the Melas code is 2 if q is 5, see Theorem
V.4 below. We use the characterization in Section
2 and rather detailed counting arguments using
quadratic forms over finite fields.

Note that the set of squares in F5 is {0, 1, 4}.
We define subsets B(0, 1), B(0, 4) and B(1, 4) of
F5m as follows:

• B(0, 1) = {z ∈ F5m : z(z −
1) is a square in F5m}.

• B(0, 4) = {z ∈ F5m : z(z −
4) is a square in F5m}.

• B(1, 4) = {z ∈ F5m : (z − 1)(z −
4) is a square in F5m}.

Note that using Theorem II.1 and Remark II.2
we obtain that the covering radius of the Melas
code M(m, 5) is 2 if and only if

F5m = B(0, 1) ∪B(0, 4) ∪B(1, 4).
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Note that

B(0, 1) ∩ F5 = {0, 1, 3},
B(0, 4) ∩ F5 = {0, 2, 4},

and B(1, 4) ∩ F5 = {0, 1, 4}.

Let B(0, 1)∗ = B(0, 1)\F5, B(0, 4)∗ = B(0, 4)\
F5 and B(1, 4)∗ = B(1, 4) \ F5.

Hence it is enough to prove that the cardinality
|B(0, 1)∗∪B(0, 4)∗∪B(1, 4)∗| = 5m−5 in order
to show that the covering radius is 2. We will use
some inclusion-exclusion principle together with
some counting arguments and quadratic forms
over finite fields in the proof below.

We start with a simple but useful lemma.

Lemma V.1. We have that

(B(0, 1)∗ ∩B(0, 4)∗) \B(1, 4)∗ = ∅,
(B(0, 1)∗ ∩B(1, 4)∗) \B(0, 4)∗ = ∅, and
(B(0, 4)∗ ∩B(1, 4)∗) \B(0, 1)∗ = ∅.

Proof: Let x ∈ (B(0, 1)∗ ∩B(0, 4)∗). Then
there exist y1, y2 ∈ F∗qm such that x(x− 1) = y21
and x(x − 4) = y22 . Multiplying both sides
we obtain that (x − 1)(x − 4) =

(
y1y2
x

)2
.

This completes the proof of the statement that
(B(0, 1)∗ ∩B(0, 4)∗) \ B(1, 4)∗ = ∅. The proofs
of the other statements are similar.

The proof of the following lemma uses, for
example, the map x 7→ 1

x . This map is useful in
order to decide whether images of quadratic map
x(x − 1) are squares. Indeed after this bijective
map on F5m \ {0, 1}, the image becomes image
of a linear map, which is easy to decide.

Lemma V.2. We have that

|B(0, 1)| = |B(0, 4)| = |B(1, 4)| = 5m + 1

2
.

Proof: We present the proof of the statement
|B(0, 1)| = 5m+1

2 and the proof of the other state-
ments are similar. Let µ : F5m \ {0} → F5m \ {1}
be the bijective map µ(x) = 1− 1

x . Note that the
number of y ∈ F5m such that y is in the image of
µ and y is a square in F5m is

1 +

(
5m − 1

2
− 1

)
− 1 =

5m − 1

2
.

Here the first summand 1 refers to y = 0 and the
second summand

(
5m−1

2 − 1
)
− 1 refers to the

number of all nonzero squares in F5m except 1,

which is not in the image of µ. The cardinality
|B(0, 1)| is given by

|{x ∈ F5m : x(x− 1) is a square in F5m}|

=

∣∣∣∣{x ∈ F∗
5m :

x(x− 1)

x2
is a square in F5m

}∣∣∣∣+ 1

=

∣∣∣∣{x ∈ F∗
5m :

(
1− 1

x

)
is a square in F5m

}∣∣∣∣+ 1

= |{y ∈ F5m \ {1} : y ∈ Imµ, and y is a square in F5m}|

+1

=
5m − 1

2
+ 1 =

5m + 1

2
.

This completes the proof.
The following lemma is used in the proof of

Theorem V.4 below.

Lemma V.3. We have that
|B(0, 1)∗ \B(0, 4)∗| = |B(0, 1)∗ ∩B(0, 4)∗| ,
|B(0, 4)∗ \B(1, 4)∗| = |B(0, 4)∗ ∩B(1, 4)∗| , and
|B(1, 4)∗ \B(0, 1)∗| = |B(1, 4)∗ ∩B(0, 1)∗| .

Proof: In this proof we use the following
relation notation: For α, β ∈ F5m \F5, the relation
α ∼ β means that α/β is a square in F5m .

Let µ : F5m \ F5 → F5m \ F5 be the bijection
given by µ(x) = 1

x−1 . As µ is a bijection, we
have equivalent definitions

B(0, 1)∗ \B(0, 4)∗ =



x ∈ F5m \ F5 :
µ(x) (µ(x)− 1)
is a square,

and

µ(x) (µ(x)− 4)
is not a square


, (18)

and

B(0, 1)∗ ∩B(0, 4)∗ =



x ∈ F5m \ F5 :
µ(x) (µ(x)− 1)
is a square,

and

µ(x) (µ(x)− 4)
is a square


. (19)

For x ∈ F5m \ F5 we have

µ(x) (µ(x)− 1) =
1

x− 1

(
1

x− 1
− 1

)
∼ 1− (x− 1) ∼ x− 2, (20)
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and

µ(x) (µ(x)− 4) =
1

x− 1

(
1

x− 1
− 4

)
∼ 1− 4(x− 1) ∼ (x− 1)− 4 ∼ x, (21)

where we use that 4 is a square in F5m .
Using (18) and (20) we obtain that

B(0, 1)∗ \B(0, 4)∗ =

 x ∈ F5m \ F5 : (x− 2)
is a square,and
x is not a square

 .

Using (19) and (21) we obtain that

B(0, 1)∗ ∩B(0, 4)∗ =

 x ∈ F5m \ F5 : (x− 2)
is a square, and
x is a square

 .

For x ∈ F5m , note that x − 2 is a square and x
is a square if and only if there exist y1, y2 ∈ F5m

such that

x− 2 = y21 and x = y22 .

This observation implies that

|{x ∈ F5m : (x− 2) is a square and x is a square}|

=
1

4

∣∣{(y1, y2) ∈ F5m × F5m : y21 + y22 = 2
}∣∣ .

Moreover we observe that{
(y1, y2) ∈ F5 × F5 : y21 + y22 = 2

}
=

{(1, 1), (1,−1), (−1, 1), (−1,−1)},

in particular its cardinality is 4. Let N be the
number of (y1, y2) ∈ F5m × F5m such that

y21 + y22 = 2.

These arguments imply that

|B(0, 1)∗ ∩B(0, 4)∗| = N − 4

4
. (22)

Moreover using Lemma V.2 and the fact that
B(0, 1) ∩ F5 = {0, 1, 3} we have

|B(0, 1)∗| = |B(0, 1)| − |B(0, 1) ∩ F5|

=
5m + 1

2
− 3 =

5m − 5

2
. (23)

Using [13, Theorem 6.26] we obtain that

N = 5m − 1. (24)

Combining (22),(23) and (24) we complete the
proof.

Now we are ready to present and to prove the
main result of this section.

Theorem V.4. Let q = 5. Let m ≥ 1 be an integer.
Then the covering radius of M(m, q) is 2.

Proof: Recall that using Theorem II.1, Re-
mark II.2, and the arguments above it is enough
to prove that |B(0, 1)∗ ∪ B(0, 4)∗ ∪ B(1, 4)∗| =
5m−5. Using (18) and Lemma V.2 we obtain that

|B(0, 1)∗| = |B(0, 4)∗| = |B(1, 4)∗|

=
5m + 1

2
− 3 =

5m − 5

2
. (25)

Using inclusion-exclusion principle and (25) we
obtain that
|B(0, 1)∗ ∪B(0, 4)∗ ∪B(1, 4)∗|

= 3
5m − 5

2
− |B(0, 1)∗ ∩B(0, 4)∗|

−|B(0, 4)∗ ∩B(1, 4)∗| − |B(1, 4)∗ ∩B(0, 1)∗|

+|B(0, 1)∗ ∩B(0, 4)∗ ∩B(1, 4)∗|.

(26)

Using Lemma V.1 we conclude that

B(0, 1)∗ ∩B(0, 4)∗ = B(0, 1)∗ ∩B(1, 4)∗

= B(0, 1)∗ ∩B(0, 4)∗ ∩B(1, 4)∗. (27)

Combining Lemma V.3, (25) and (27) we conclude
that

B(0, 1)∗ ∩B(0, 4)∗ = B(0, 1)∗ ∩B(1, 4)∗

= B(0, 1)∗ ∩B(0, 4)∗ ∩B(1, 4)∗

= 5m−5
4 .

(28)

Similarly we have

B(0, 4)∗ ∩B(1, 4)∗ =
5m − 5

4
. (29)

In summary we have the picture in Figure 1.
Combining (26), (28) and (29) we obtain that

|B(0, 1)∗ ∪B(0, 4)∗ ∪B(1, 4)∗|
= 3 5m−5

2 − 3 5m−5
4 + 5m−5

4 = 5m − 5.

This completes the proof.

VI. CASE m = 1 FOR q > 5 IN ODD
CHARACTERISTIC

In this section we prove a result, namely Theo-
rem VI.7, which is stronger than the statement that
the covering radius of M(1, q) is 2 for any finite
field Fq of odd characteristic and q > 5. Theorem
VI.7 is used in the next section in order to prove
that the covering radius of M(m, q) is 2 for any



10

m ≥ 1 and any finite field Fq of odd characteristic
such that q > 5.

Lemma VI.1. Assume that char Fq is odd and
q > 5. There exists α ∈ Fq \ {0, 1} such that both
α and α− 1 are squares in Fq .

Proof: Put α = x21 and α− 1 = x22. Then we
get that

x21 − x22 = 1. (30)

Note that the cardinality N of the set S =
{(x1, x2) ∈ Fq × Fq : x21 − x22 = 1} is q − 1
by [13, Theorem 6.26]. Here we use the facts
that the determinant of the quadratic form in (30)
is −1 and (−1)(−1) = 1 is a square in Fq .
Considering the solutions with non-zero coordi-
nates we obtain that the cardinality N∗ of the set
S∗ = {(x1, x2) ∈ F∗q × F∗q : x21 − x22 = 1} is{

q − 4 if q ≡ 1 mod 4,
q − 3 if q ≡ 3 mod 4.

This implies that N∗ ≥ 1 if q > 5 and q ≡ 1
mod 4. Also this implies that N∗ ≥ 1 if q > 3 and
q ≡ 3 mod 4. Choosing an element of (x1, x2) ∈
S∗ we obtain that α = x21 satisfies the conditions.

From now on we assume that char Fq is odd
and q > 5. Using Lemma VI.1 we choose and fix
α ∈ Fq \ {0, 1} such that both α and α − 1 are
squares in Fq .

As in Section V we define the subsets B(0, 1),
B(0, α) and B(1, α) of Fq as follows:

B(0, 1) = {z ∈ Fq : z(z − 1) is a square in Fq},
B(0, α) = {z ∈ Fq : z(z − α) is a square in Fq},
and B(1, α) = {z ∈ Fq : (z − 1)(z − α)
is a square in Fq}.

(31)

We start with an analog of Lemma V.2.

Lemma VI.2. We have that

|B(0, 1)| = |B(0, α)| = |B(1, α)| = q + 1

2
.

Proof: Note that the map µ : Fq \ {0} →
Fq \ {0} given by x 7→ 1/x is a bijection. Note
also that

0 ∈ B(0, 1). (32)

Using the bijection µ we observe that
B(0, 1) \ {0} = {x ∈ F∗

q : 1
x
( 1
x
− 1)

is a square in Fq}
= {x ∈ F∗

q : 1− x
is a square in Fq}.

(33)

It is clear that Fq = {1 − x : x ∈ Fq}. As the
number of squares in Fq is q+1

2 and 1− x = 1 is
a square for x = 0, using (33) we conclude that

|B(0, 1) \ {0}| = q + 1

2
− 1. (34)

Combining (32) and (34) we obtain that
|B(0, 1)| = q+1

2 . The proof of the statements
|B(0, α)| = q+1

2 and |B(1, α)| = q+1
2 are similar.

Under this choice of α, we have a complete
analog of Lemma V.1 for q ≡ 1 mod 4.

Lemma VI.3. Assume that q ≡ 1 mod 4. We
have

(B(0, 1) ∩B(0, α)) ⊆ B(1, α),
(B(0, 1) ∩B(1, α)) ⊆ B(0, α), and
(B(0, α) ∩B(1, α)) ⊆ B(0, 1).

Proof: Note that 0 ∈ B(0, 1) ∩ B(0, α)
trivially. Also for z = 0 we have (z−1)(z−α) =
(−1)(−α) = α is a square. Hence 0 ∈ B(1, α) as
well.

For x ∈ F∗q , if x ∈ B(0, 1) ∩ B(0, α), then
x(x−1) and x(x−α) are both squares. Multiply-
ing these we get that (x− 1)(x− α) is a square,
or equivalently x ∈ B(1, α). This completes the
proof of the statement that (B(0, 1) ∩B(0, α)) ⊆
B(1, α).

The proof of the statement
(B(0, 1) ∩B(1, α)) ⊆ B(0, α) is similar.
For z = 1 we have z(z−α) = 1(1−α) = 1−α,
which is a square as (α − 1) is a square by the
choice of α and −1 is a square by the assumption
q ≡ 1 mod 4. If x 6= 1, x(x− 1) is a square and
(x − 1)(x − α) is a square, then x(x − α) is a
square.

The proof of the statement
(B(0, α) ∩B(1, α)) ⊆ B(0, 1) is also similar.
For z = α we have z(z − 1) = α(α − 1) is a
square as both α and (α − 1) are squares by the
choice of α. The rest of the proof is similar.

Under this choice of α, there is a difference in
the following analog to Lemma V.1 for q ≡ 3
mod 4. Namely we need to exclude {1} in the
second item of the following lemma.

Lemma VI.4. Assume that q ≡ 3 mod 4. We
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have

(B(0, 1) ∩B(0, α)) ⊆ B(1, α),
(B(0, 1) ∩B(1, α)) \ {1} ⊆ B(0, α), and
(B(0, α) ∩B(1, α)) ⊆ B(0, 1).

Proof: Note that 1 6∈ B(0, α). Indeed for z =
1 we have z(z−α) = −(α−1), (α−1) is a square
by the choice of α and (−1) is not a square as q ≡
3 mod 4. The rest of the proof of the statement
(B(0, 1) ∩B(1, α)) \ {1} ⊆ B(0, α) is similar to
the proof of the statement (B(0, 1) ∩B(1, α)) ⊆
B(0, α) in Lemma VI.3.

The proofs of the statements
(B(0, 1) ∩B(0, α)) ⊆ B(1, α) and
(B(0, α) ∩B(1, α)) ⊆ B(0, 1) are the same
as the proof of Lemma VI.3.

We need the following lemma in the proof of
Theorem V.4 when q ≡ 1 mod 4.

Lemma VI.5. Assume that q ≡ 1 mod 4. We
have

|(B(0, 1) ∩B(0, α))| = q − 1

4
+ 1.

Proof: Note that 0 ∈ B(0, 1) ∩ B(0, α) and
we need to show that the cardinality N of the set

{x ∈ F∗q : x(x− 1) is a square and x(x− α)
is a square} (35)

is q−1
4 . The map µ : F∗q → F∗q given by x 7→ 1/x

is a bijection. For x ∈ F∗q we have

µ(x) (µ(x)− 1) =
1

x

(
1

x
− 1

)
=

1− x
x2

,

µ(x) (µ(x)− α) = 1

x

(
1

x
− α

)
=

1− αx
x2

.

Hence N , which is the cardinality of the set in
(35), is equal to the cardinality of the set

S∗ = {x ∈ F∗q : 1− x is a square and
1− αx is a square}.

Put 1− x = x21 and 1− αx = x22. We obtain that

αx21 − x22 = α− 1. (36)

The determinant of the quadratic form in (36) is
−α and (−1)(−α) = α is a square in Fq . Using
[13, Theorem 6.26] we obtain that the number of
solutions (x1, x2) ∈ Fq × Fq is q − 1.

If x1 = 0 (or equivalently x = 1), then there
are exactly two solutions in (36).

If x2 = 0 (or equivalently x = 1/α), then there
are exactly two solutions in (36).

Note that 1 ∈ S∗ and 1/α ∈ S∗.
If x = 0, then each element (x1, x2) ∈

{(1, 1), (1,−1), (−1, 1), (−1,−1)} gives a solu-
tion to (36).

There is a 4-to-1 correspondence between

T ∗ = {(x1, x2) ∈ Fq \ {0, 1,−1} × Fq \ {0, 1,−1} :
αx21 − x22 = α− 1}

and S∗ \ {1, 1/α} given by (x1, x2) 7→ 1− x21.
The arguments above imply that |T ∗| = q−1−

2− 2− 4 and hence

N − 2 =
q − 1− 8

4
.

This completes the proof.
We need the following lemma in the proof of

Theorem V.4 when q ≡ 3 mod 4.

Lemma VI.6. Assume that q ≡ 3 mod 4. We
have

|(B(0, 1) ∩B(0, α))| = q − 3

4
+ 1.

Proof: The proof is similar to the proof of
Lemma VI.5. We use the same arguments. The
first difference is the following:

If x1 = 0 (or equivalently x = 1), then there
are no solutions in (36). Indeed −(α− 1) is not a
square as −1 is not a square when q ≡ 3 mod 4.

This implies that |T ∗| = q − 1− 0− 2− 4 and
hence

N − 2 =
q − 1− 4

4
and N =

q + 1

4
=
q − 3

4
+ 1.

This completes the proof.
Now we are ready to prove the main result of

this section.

Theorem VI.7. Assume that char Fq is odd and
q > 5. There exists α ∈ Fq \ {0, 1} such that
both α and α− 1 are squares in Fq . Let B(0, 1),
B(0, α) and B(1, α) be the subsets of Fq defined
as in (31). We have that

Fq = B(0, 1) ∪B(0, α) ∪B(1, α).

In particular the covering radius of M(1, q) is 2.
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Proof: Assume that q ≡ 1 mod 4. See
Figure 2 for the details. Using Lemma VI.3 we
obtain that

B(0, 1) \ (B(0, α) ∪B(1, α))

= B(0, 1) \ {B(0, 1) ∩B(0, α) ∩B(1, α)} .
(37)

Hence using Lemma VI.5 we get that

|B(0, 1) ∩B(0, α) ∩B(1, α)| = q − 1

4
+ 1. (38)

Combining Lemma VI.2, Lemma VI.3 and
Lemma VI.5 we obtain that

|B(0, 1) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 1

4
+ 1

)
=
q − 1

4
.

(39)

Similarly we have

|B(0, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 1

4
+ 1

)
=
q − 1

4
,

(40)

and

|B(1, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 1

4
+ 1

)
=
q − 1

4
.

(41)

Combining Lemma VI.3, (38), (39), (40) and (41)
we obtain that

|B(0, 1) ∪B(0, α) ∪B(1, α)|
= |B(0, 1) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|
+ |B(0, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|
+ |B(1, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|
+ |B(0, 1) ∩B(0, α) ∩B(1, α)|

= 3
q − 1

4
+
q − 1

4
+ 1 = q.

This completes the proof of the case that q ≡ 1
mod 4.

Assume next that q ≡ 3 mod 4. See Figure 3
for the details. Using Lemma VI.4 we obtain that

B(0, 1) \ (B(0, α) ∪B(1, α))
= B(0, 1) \ {B(0, 1) ∩B(0, α) ∩B(1, α)} . (42)

Hence using Lemma VI.6 we get that

|B(0, 1) ∩B(0, α) ∩B(1, α)| = q − 3

4
+ 1. (43)

Combining Lemma VI.2, Lemma VI.4 and
Lemma VI.5 we obtain that
|B(0, 1) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 3

4
+ 1 + 1

)
=
q − 3

4
.

(44)

Similarly we have

|B(0, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 3

4
+ 1

)
=
q − 3

4
+ 1,

(45)

and
|B(1, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

=
q + 1

2
−
(
q − 3

4
+ 1 + 1

)
=
q − 3

4
.

(46)

Combining Lemma VI.4, (43), (44), (45) and (46)
we obtain that
|B(0, 1) ∪B(0, α) ∪B(1, α)|
= 1 + |B(0, 1) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|

+ |B(0, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|
+ |B(1, α) \ (B(0, 1) ∩B(0, α) ∩B(1, α))|
+ |B(0, 1) ∩B(0, α) ∩B(1, α)|

= 1 +
q − 3

4
+

(
q − 3

4
+ 1

)
+
q − 3

4
+

(
q − 3

4
+ 1

)
= 4

q − 3

4
+ 3 = q.

This completes the proof.

VII. GENERALIZATION TO ARBITRARY m FOR
q > 5 IN ODD CHARACTERISTIC

In this section, for any integer m ≥ 1, we prove
that the covering radius of M(m, q) is 2 for any
finite field Fq of odd characteristic and q > 5.
Our proof is a generalization of Theorem V.4 in
the following sense. First using Lemma VI.1 we
choose α ∈ Fq \ {0, 1} such that both α and α−
1 are squares in Fq . Using this α we define the
analogous subsets B(0, 1), B(0, α) and B(1, α)
in Fqm . An important technical step is to show
that the union of the sets B(0, 1)∩ Fq , B(0, α)∩
Fq and B(1, α) ∩ Fq cover Fq . This holds in F5

by direct observation. We use such a choice of α
and Theorem VI.7 for an arbitrary finite field Fq
of odd characteristic with q > 5. Then we use
analogous arguments as in the proof of Theorem
V.4 in order to show that the union of the subsets
B(0, 1), B(0, α) and B(1, α) cover Fqm .
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From now on we assume that char Fq is odd
and q > 5. Using Lemma VI.1 we choose and fix
α ∈ Fq \ {0, 1} such that both α and α − 1 are
squares in Fq .

We define subsets B(0, 1), B(0, α) and B(1, α)
of Fqm as follows:
• B(0, 1) = {z ∈ Fqm : z(z −

1) is a square in Fqm}.

• B(0, α) = {z ∈ Fqm : z(z −
α) is a square in Fqm}.

• B(1, α) = {z ∈ Fqm : (z − 1)(z −
α) is a square in Fqm}.

Note that using Theorem II.1 and Remark II.2
we obtain that the covering radius of the Melas
code M(m, q) is 2 if and only if

Fqm = B(0, 1) ∪B(0, α) ∪B(1, α).

Let B(0, 1)∗ = B(0, 1) \ Fq , B(0, α)∗ =
B(0, α) \ Fq and B(1, α)∗ = B(1, α) \ Fq .

It follows from Theorem VI.7 that

Fq = (B(0, 1) ∩ Fq) ∪ (B(0, α) ∩ Fq)
∪ (B(1, α) ∩ Fq) .

Hence it is enough to prove that the cardinality
|B(0, 1)∗∪B(0, α)∗∪B(1, α)∗| = qm−q in order
to show that the covering radius is 2.

We observe that the same methods of Section V
hold here. In particular the analogous statements
of Lemmas V.1, V.2 and V.3 obtained by replacing
4 to α and 5 to q hold.

The following is a completion of Theorems III.1
and V.4.

Theorem VII.1. Assume that char Fq is odd and
q > 5. Let m ≥ 1 be an integer. Then the covering
radius of M(m, q) is 2.

Proof: The proof of Theorem V.4 holds after
changing 4 to α and 5 to q.

VIII. CONCLUSION

In this paper we have completed the problem
of the determination of the covering radius for an
arbitrary Melas code M(m, q), where m ≥ 1 is
an arbitrary positive integer and Fq is an arbitrary
finite field (see (1)). This was known exactly
only for q = 2 and m ≥ 2. We introduce new

techniques especially when the characteristic is
odd.

It seems the techniques we develop are closely
related to connections of quadratic polynomials
and quadratic residues over finite fields. It would
be interesting to find analogs of these results to
higher degree polynomials and higher reciprocity
laws.

Of course, another open problem is the ex-
tension of these techniques to other classes of
codes in order to determine the covering radii
exactly. Some natural choices for further investiga-
tion would be Zetterberg codes and antiprimitive
BCH codes, some of their generalizations (see, for
example, [10], [15], [20],[23]) and the extensions
of the codes in [7].
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Fig. 1. The intersections of the sets in the proof of Theorem
V.4
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Fig. 2. The intersections of the sets in the proof of Theorem
VI.7 for the case that q ≡ 1 mod 4
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Fig. 3. The intersections of the sets in the proof of Theorem
VI.7 for the case that q ≡ 3 mod 4


