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Abstract. We prove that, for g ≥ 19 the mapping class group of a nonori-
entable surface of genus g, Mod(Ng), can be generated by two elements, one of

which is of order g. We also prove that for g ≥ 26, Mod(Ng) can be generated

by three involutions if g ≥ 26.

1. Introduction

The mapping class group Mod(Ng) of closed connected nonorientable surface Ng
is defined to be the group of the isotopy classes of all self-diffeomorphisms of Ng.
In this paper, we are interested in finding generating sets for Mod(Ng) consisting
of least possible number of elements. Since this group is not abelian, a generating
set must contain at least two elements. Szepietowski [11] proved that Mod(Ng)
is generated by three elements for all g ≥ 3. Our first result (see Theorem 3.1)
answers Problem 3.1(a) in [3, p.91] (cf Problem 5.4 in [6]).

Theorem A. For g ≥ 19, the mapping class group Mod(Ng) is generated by two
elements.

The next aim of the paper is to find an answer Problem 3.1(b) in [3, p.91].
Szepietowski showed that Mod(Ng) can be generated by involutions [10] and later
he showed that Mod(Ng) can be generated by four involutions if g ≥ 4 [11]. One
can deduce that it can be generated by three involutions by the work of Birman
and Chillingworth [2] if g = 3. It is known that any group generated by two
involutions is isomorphic to a quotient of a dihedral group. Thus the mapping class
group Mod(Ng) cannot be generated by two involutions. This implies that any
generating set consisting only involutions must contain at least three elements. In
this direction, we get the following result (see Theorem 4.1 and Theorem 4.2):

Theorem B. For g ≥ 26, the mapping class group Mod(Ng) can be generated by
three involutions.

Let us also point out that Mod(Ng) admits an epimorphism onto the automor-
phism group of H1(Ng;Z2) preserving the (mod 2) intersection pairing [9] and this
group is isomorphic to (see [4] and [12]){

Sp(2h;Z2) if g = 2h+ 1,

Sp(2h;Z2) n Z2h+1
2 if g = 2h+ 2.
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Hence, the action of mapping classes on H1(Ng;Z2) induces an epimorphism from

Mod(Ng) to Sp
(
2bg − 1

2
c;Z2

)
, which immediately implies the following corollary:

Corollary C. The symplectic group Sp
(
g−1;Z2

)
can be generated by two elements

for every odd g ≥ 19 and also by three involutions for every odd g ≥ 27. Similarly,
the group Sp

(
g − 2;Z2

)
n Zg−1

2 can be generated by two elements for every even
g ≥ 20 and also by three involutions for every even g ≥ 26.

Acknowledgments. The first author was partially supported by the Scientific and
Technologic Research Council of Turkey (TUBITAK)[grant number 120F118].

2. Preliminaries

Let Ng be a closed connected nonorientable surface of genus g. Note that the
genus for a nonorientable surface is the number of projective planes in a connected
sum decomposition. We use the model for the surface Ng as a sphere with g
crosscaps represented shaded disks in all figures of this paper. Note that a crosscap
is obtained by deleting the interior of such a disk and identifying the antipodal
points on the resulting boundary. The mapping class group Mod(Ng) of the surface
Ng is the group of the isotopy classes of self-diffeomorphisms of Ng. We use the
functional notation for the composition of two diffeomorphisms; if f and g are two
diffeomorphisms, the composition fg means that g is applied first.

A simple closed curve on a nonorientable surface Ng is one-sided if its regular
neighbourhood is a Möbius band and two-sided if it is an annulus. If a is a two-
sided simple closed curve on Ng, to define the Dehn twist ta about the curve a,
we need to choose one of two possible orientations of its regular neighbourhood (as
we did for the curves in Figure 1). Throughout the paper, the right-handed Dehn
twist ta about the curve a will be denoted by the corresponding capital letter A.
In our notation, both the curves on Ng and self-diffeomorphisms of Ng shall be
considered up to isotopy. In the following we shall make repeated use of some basic
relations in Mod(Ng): for two-sided simple closed curves a and b on Ng and for any
f ∈ Mod(Ng),

• Commutativity: If a and b are disjoint, then AB = BA.
• Conjugation: If f(a) = b, then fAf−1 = Bε, where ε = ±1 depending

on the orientation of a regular neighbourhood of f(a) with respect to the
chosen orientation.

Consider the Klein bottle K with a hole in Figure 2. We define a crosscap trans-
position u as the isotopy classes of a diffeomorphism interchanging two consecutive
crosscaps as shown on the left hand side of Figure 2 and equals to the identity out-
side the Klein bottle with one hole K. The effect of the diffeomorphism y = Au on
the interval c as in Figure 2 can be also constructed as sliding a Möbius band once
along the core of another one and keeping each point of the boundary of K fixed.
This is a Y -homeomorphism [8] (also called a crosscap slide [5]). Note that A−1u is
a Y -homemorphism i.e. the other choice of the orientation for a neighbourhood of
the curve a also gives a Y -homeomorphism. We also note that y2 is a Dehn twist
about ∂K.

It is known that Mod(Ng) is generated by Dehn twists and a Y -homeomorphism
(one crosscap slide) [8]. We remark that crosscap transpositions can be used instead
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Figure 1. The curves a1, a2, bi, ci, αi, βi and γi on the surface Ng,
where g = 2r or g = 2r + 2. Note that we do not have the curve
cr when g is odd.

Figure 2. The homeomorphisms u and y = Au.

of crosscap slides since a crosscap transposition equals to the product of a Dehn
twist and a crosscap slide.

Before we finish Preliminaries, let us state a theorem which is used in the proofs
of following theorems. We work with the model in Figure 3 in such a way that
the surface is obtained from the 2-sphere by deleting the interiors of g disjoint
disks which are in a circular position and identifying the antipodal points on the
boundary. Moreover, note that the rotation T by 2π

g about the x-axis maps the

crosscap Ci to Ci+1 for i = 1, . . . , g − 1 and Cg to C1.

Theorem 2.1. For g ≥ 7, the mapping class group Mod(Ng) can be generated by

the elements T , A1A
−1
2 , B1B

−1
2 , and a Y -homeomorphism (or a crosscap transpo-

sition).

Proof. LetG be the subgroup of Mod(Ng) generated by the set {T,A1A
−1
2 , B1B

−1
2 }.

Szepietowski [11, Theorem 3] showed that A1, A2, Bi and Ci as shown in Figure 1,
together with a Y -homeomorphism generate Mod(Ng). Therefore, it is enough to
prove that the elements A1, A2, Bi and Ci are contained in G for i = 1, . . . , r.

Let S denote the finite set of isotopy classes of two-sided non-separating simple
closed curves appearing throughout the paper with chosen orientations of neigh-
borhoods. Define a subset G of S × S as

G = {(a, b) : AB−1 ∈ G}.
Using the similar arguments in the proof of [7, Theorem 5], the set G satisfies
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• if (a, b) ∈ G, then (b, a) ∈ G (symmetry),
• if (a, b) and (b, c) ∈ G, then (a, c) ∈ G (transitivity) and
• if (a, b) ∈ G and H ∈ G then (H(a), H(b)) ∈ G (G-invariance).

Thus, G defines an equivalence relation on S.
We begin by showing that BiC

−1
j is contained in G for all i, j. It follows from the

definition of G and from the fact that T (b1, b2) = (c1, c2), we have C1C
−1
2 ∈ G

(here, we use the notation f(a, b) to denote (f(a), f(b))). Also, by conjugating
C1C

−1
2 with powers of T , one can conclude that G contains the elements BiB

−1
i+1

and CiC
−1
i+1. Moreover, the transitivity implies that the elements BiB

−1
j and CiC

−1
j

are in G. To start with, since B2B
−1
3 ∈ G and it is easy to verify that

B2B
−1
3 A2A

−1
1 (b2, b3) = (a2, b3),

so that A2B
−1
3 ∈ G. Then, we have

(A1A
−1
2 )(A2B

−1
3 )(B3B

−1
2 ) = A1B

−1
2 ∈ G,

since G contains each of the factors. Thus, T (a1, b2) = (b1, c2) implies that B1C
−1
2

is also in G. Moreover, G contains the element

B1C
−1
1 = (B1C

−1
2 )(C2C

−1
1 ).

Thus, BiC
−1
i ∈ G by conjugating with powers of T for all i = 1, . . . , r−1. Again,the

transitivity implies that BiC
−1
j ∈ G. Note that, we have

• (A1B
−1
2 )(B2C

−1
1 ) = A1C

−1
1 ∈ G,

• (C1A
−1
1 )(A1A

−1
2 ) = C1A

−1
2 ∈ G and

• (C2C
−1
1 )(C1A

−1
1 ) = C2A

−1
1 ∈ G

from which it follows that the elements A1C
−1
1 , C1A

−1
2 and C2A

−1
1 are all in G.

It can also be verified that

(A1B
−1
2 )(A1C

−1
1 )(A1C

−1
2 )(A1B

−1
2 )(a2, a1) = (d2, a1)

so that D2A
−1
1 ∈ G. Also, the element D2C

−1
2 = (D2A

−1
1 )(A1C

−1
2 ) is in G. It can

also be shown that

(C2B
−1
1 )(C2A

−1
1 )(C2C

−1
1 )(C2B

−1
1 )(d2, c2) = (d1, c2),

which implies that G contains D1C
−1
2 . Thus, G contains the element

D1A
−1
1 = (D1C

−1
2 )(C2A

−1
1 )

(here, the curves d1 and d2 are shown in [1, Figure 4]). By similar arguments as in
the proof of [1, Lemma 5], for g ≥ 7 the lantern relation implies that

A3 = (A2C
−1
1 )(D1C

−1
2 )(D2A

−1
1 ).

Since G contains each factor on the right hand side, A3 ∈ G. It follows from the
diffeomorphism A3(B3B

−1
1 ) maps the curve a3 to b3 that

B3 = A3(B3B
−1
1 )A3(B1B

−1
3 )A−1

3 ∈ G.

By conjugatingB3 with the powers of T , we conclude that A1, B1, C1, . . . Br−1, Cr−1

and Br are all in G. Moreover,

A2 = (A2A
−1
1 )A1 ∈ G.

Therefore, the Dehn twist generators are contained in G. This finishes the proof.
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3. A generating set for Mod(Ng)

In this section, we work with the model in Figure 3. Let us denote by ui the
crosscap transposition supported on the one holed Klein bottle whose boundary is
the curve αi shown in Figure 1. Note that the rotation T takes αi to αi+1 and the
crosscap Ci to Ci+1, which implies that TuiT

−1 = ui+1.

Figure 3. The rotation T and the curves c2, γ10 and αg−1.

Theorem 3.1. For g ≥ 19, the mapping class group Mod(Ng) is generated by

{T, ug−1Γ10C
−1
2 }.

Proof. Let F1 = ug−1Γ10C
−1
2 and let us denote by G the subgroup of Mod(Ng)

generated by T and F1. It follows from Theorem 2.1 that it suffices to prove
that the subgroup G contains the elements A1A

−1
2 , B1B

−1
2 and ug−1 to prove that

G = Mod(Ng).
Let F2 denote the conjugation of F1 by T−4. It follows from T−4 maps the

curves (αg−1, γ10, c2) to (αg−5, γ6, a1) that

F2 = T−4F1T
4 = ug−5Γ6A

−1
1

is contained in G. Let F3 denote the element (F2F
−1
1 )F2(F2F

−1
1 )−1 that is con-

tained in G. Hence

F3 = (F2F
−1
1 )F2(F2F

−1
1 )−1 = ug−5C2A

−1
1 .

Since we have similar cases in the remaining parts of the paper, let us give some
details before we proceed. It can be verified that the diffeomorphism F2F

−1
1 send

the curves (αg−5, γ6, a1) to the curves (αg−5, c2, a1). Then, we get

F3 = (F2F
−1
1 )F2(F2F

−1
1 )−1

= (F2F
−1
1 )ug−5Γ6A

−1
1 (F2F

−1
1 )−1

= ug−5C2A
−1
1 .

Thus, we have the elements F2F
−1
3 = Γ6C

−1
2 and T 4(Γ6C

−1
2 )T−4 = Γ10C

−1
4 , which

are both contained in G.
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Moreover, we have the following elements

F4 = (C4Γ−1
10 )F1 = ug−1C4C

−1
2 ,

F5 = T−1F4T = ug−2B4B
−1
2 and

F6 = (F4F5)F3(F4F5)−1 = ug−5B2A
−1
1 ,

all of which are contained in the subgroup G. From this, we get the element
F6F

−1
3 = B2C

−1
2 ∈ G. Also, we have T (B2C

−1
2 )T−1 = C2B

−1
3 ∈ G, which gives

rise to

B2B
−1
3 = (B2C

−1
2 )(C2B

−1
3 ) ∈ G.

This implies that T−2(B2B
−1
3 )T 2 = B1B

−1
2 is in G. We also have the elements

T 2(C2B
−1
3 )T−2 = C3B

−1
4 ∈ G and

T−2(Γ10C
−1
4 )T 2 = Γ8C

−1
3 ∈ G,

implying that Γ8B
−1
4 = (Γ8C

−1
3 )(C3B

−1
4 ) ∈ G. The conjugation of the element

Γ8B
−1
4 by T−7 is the element Γ1A

−1
1 = A2A

−1
1 which is contained in G. By the

proof of Theorem 2.1, the subgroup G contains the elements A1, A2, Bi and Ci for
i = 1, . . . , r. Then, in particular we have the elements T 9A2T

−9 = Γ10 ∈ G and
C2 ∈ G. We conclude that ug−1 = F1(C2Γ−1

10 ) ∈ G, which completes the proof.

4. Involution generators for Mod(Ng)

In the first part of this section, where the genus of the surface Ng is even, we
refer to Figure 4 for the involution generators ρ1 and ρ2 of Ng. The elements ρ1

and ρ2 are reflections about the indicated planes in Figure 4 in such a way that the
rotation T , depicted in Figure 3, is given by T = ρ2ρ1.

Figure 4. The reflections ρ1 and ρ2 for g = 2r + 2.

Theorem 4.1. For g = 2r+2 ≥ 26, the mapping class group Mod(Ng) is generated
by the involutions ρ1, ρ2 and ρ2A2BrB3ur+3.

Proof. Consider the surface Ng as in Figure 4. It follows from

ρ2(a2) = a2 and ρ2(br) = b3



GENERATING THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE 7

and also ρ2 reverses the given orientation of a neighbourhood of a two-sided simple
closed curve that

ρ2A2ρ2 = A−1
2 and ρ2Brρ2 = B−1

3 .

Since ρ2ur+3ρ2 = u−1
r+3, one can verify that the element ρ2A2BrB3ur+3 is an invo-

lution. Let H1 = A2BrB3ur+3 and let H be the subgroup of Mod(Ng) generated
by the set

{ρ1, ρ2, ρ2H1}.
It is clear that H1 and T = ρ2ρ1 are contained in the subgroup H. By Theorem 2.1,
we need to prove that the subgroup H contains the elements A1A

−1
2 , B1B

−1
2 and

ur+3. Let H2 be the conjugation of H1 by T 7. Thus

H2 = T 7H1T
−7 = Γ8C2C6ur+10 ∈ H.

Let

H3 = (H2H1)H2(H2H1)−1 = Γ8B3C6ur+10,

which is also in H. From this, we get the element H2H
−1
3 = C2B

−1
3 ∈ H implying

that T (C2B
−1
3 )T−1 = B3C

−1
3 ∈ H. One can easily see that BiC

−1
i ∈ H by

conjugating B3C
−1
3 with powers of T . Also, since T (B3C

−1
3 )T−1 = C3B

−1
4 ∈ H,

similarly CiB
−1
i+1 ∈ H by conjugating C3B

−1
4 with powers of T . Hence, we have the

elements

BiB
−1
i+1 = (BiC

−1
i )(CiB

−1
i+1)

which are in H for all i = 1, . . . , r − 1. Moreover, BiB
−1
j ∈ H by the transitivity.

In particular B1B
−1
2 ∈ H. Now, we have the following elements

H4 = (B7B
−1
3 )H1 = A2B7Brur+3 if r 6= 16, 17, 18,

(H4 = (B9B
−1
3 )H1 = A2B9Brur+3 if r = 16, 17, 18, )

H5 = T 6H4T
−6 = Γ7B10B2ur+9 if r 6= 16, 17, 18,

(H5 = T 6H4T
−6 = Γ7B12B2ur+9 if r = 16, 17, 18, )

H6 = (H5H4)H5(H5H4)−1 = Γ7B10A2ur+9 if r 6= 16, 17, 18,

(H6 = (H5H4)H5(H5H4)−1 = Γ7B12A2ur+9 if r = 16, 17, 18, )

which are all contained in H. Thus, we get the element H6H
−1
5 = A2B

−1
2 ∈ H.

On the other hand, since C1B
−1
2 is contained in H, the subgroup H contains the

following elements

T−2(C1B
−1
2 )T 2 = A1B

−1
1 ,

(A1B
−1
1 )(B1B

−1
2 ) = A1B

−1
2 ,

(A2B
−1
2 )(B2A

−1
1 ) = A2A

−1
1 .

It follows from T , A1A
−1
2 and B1B

−1
2 are in H that the Dehn twists A1, A2, Bi

and Ci are also in H for i = 1, . . . , r. This implies that

ur+3 = (B−1
3 B−1

r A−1
2 )H1 ∈ H,

which completes the proof.

In the second part of this section, where the genus of the surface Ng is odd,
we refer to Figure 5 for the involution generators ρ1 and ρ2 of Ng. Similarly, the
elements ρ1 and ρ2 are reflections about the indicated planes in Figure 5 such that
the rotation T in Figure 3 is given by T = ρ2ρ1. In the proof of the following
theorem, we use the crosscap transposition supported on the one holed Klein bottle
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Figure 5. The reflections ρ1 and ρ2 for g = 2r + 1.

whose boundary is the curve βi shown in Figure 1. Let us denote this crosscap
transposition by vi. Note that the rotation T sends βi to βi+1 and the crosscap Ci
to Ci+1, which implies that TviT

−1 = vi+1.

Theorem 4.2. For g = 2r+1 ≥ 27, the mapping class group Mod(Ng) is generated
by the involutions ρ1, ρ2 and ρ2A2Cr−1B3vr+2.

Proof. We will follow the proof of Theorem 4.1, closely. Let us consider the surface
Ng as in Figure 5. Since

ρ2(a2) = a2 and ρ2(cr−1) = b3

and also since ρ2 reverses the given orientation of a neighbourhood of a two-sided
simple closed curve, we get

ρ2A2ρ2 = A−1
2 and ρ2Cr−1ρ2 = B−1

3 .

By the fact that ρ2vr+2ρ2 = v−1
r+2, it can be easy to verify that the element

ρ2A2Cr−1B3φr+2,r+4 is an involution. Let E1 = A2Cr−1B3vr+2 and let K denote
the subgroup of Mod(Ng) generated by the set

{ρ1, ρ2, ρ2E1}.

It is easy to see that E1 and T = ρ2ρ1 are in K. By Theorem 2.1, we need to show
that K contains the elements A1A

−1
2 , B1B

−1
2 and vr+2. Let E2 be the following:

E2 = T 7E1T
−7 = Γ8C2C6vr+9 ∈ K.

Consider the element

E3 = (E2E1)E2(E2E1)−1 = Γ8B3C6vr+9,

which belongs to K. One can conclude that the element E2E
−1
3 = C2B

−1
3 ∈ K,

which implies that T (C2B
−1
3 )T−1 = B3C

−1
3 ∈ K. From this, we get the elements

BiC
−1
i ∈ H by conjugating B3C

−1
3 with powers of T . Also, since T (B3C

−1
3 )T−1 =

C3B
−1
4 ∈ K, CiB

−1
i+1 ∈ K by again conjugating C3B

−1
4 with powers of T . Thus,

we get the elements

BiB
−1
i+1 = (BiC

−1
i )(CiB

−1
i+1),
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which belong to K for all i = 1, . . . , r− 1. Also, using the transitivity BiB
−1
j ∈ K.

In particular B1B
−1
2 ∈ K. Moreover, we have the elements

E4 = (B7B
−1
3 )E1 = A2B7Cr−1vr+2 if r 6= 16, 17, 18, 19,

(E4 = (B9B
−1
3 )E1 = A2B9Cr−1vr+2 if r = 16, 17, 18, 19, )

E5 = T 6E4T
−6 = Γ7B10B2vr+8 if r 6= 16, 17, 18, 19,

(E5 = T 6E4T
−6 = Γ7B12B2vr+8 if r = 16, 17, 18, 19, )

E6 = (E5E4)E5(E5E4)−1 = Γ7B10A2vr+8 if r 6= 16, 17, 18, 19,

(E6 = (E5E4)E5(E5E4)−1 = Γ7B12A2vr+8 if r = 16, 17, 18, 19, )

which are all contained in the subgroup K. Thus, we conclude that the element
E6E

−1
5 = A2B

−1
2 ∈ K.

Since the element C1B
−1
2 ∈ K, as in the proof of Theorem 4.1, one can conclude

that the Dehn twists A1, A2, Bi and Cj are in K for i = 1, . . . , r and j = 1, . . . , r−1.

This implies that vr+2 = (B−1
3 C−1

r−1A
−1
2 )E1 ∈ K, which finishes the proof.
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