GENERATING THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE BY TWO ELEMENTS OR BY THREE INVOLUTIONS

TÜLín ALTUNÖZ, MEHMETCİK PAMUK, AND OĞUZ YILDIZ

Abstract

We prove that, for $g \geq 19$ the mapping class group of a nonorientable surface of genus $g, \operatorname{Mod}\left(N_{g}\right)$, can be generated by two elements, one of which is of order g. We also prove that for $g \geq 26, \operatorname{Mod}\left(N_{g}\right)$ can be generated by three involutions if $g \geq 26$.

1. Introduction

The mapping class group $\operatorname{Mod}\left(N_{g}\right)$ of closed connected nonorientable surface N_{g} is defined to be the group of the isotopy classes of all self-diffeomorphisms of N_{g}. In this paper, we are interested in finding generating sets for $\operatorname{Mod}\left(N_{g}\right)$ consisting of least possible number of elements. Since this group is not abelian, a generating set must contain at least two elements. Szepietowski [11] proved that $\operatorname{Mod}\left(N_{g}\right)$ is generated by three elements for all $g \geq 3$. Our first result (see Theorem 3.1) answers Problem 3.1(a) in [3, p.91] (cf Problem 5.4 in [6]).

Theorem A. For $g \geq 19$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ is generated by two elements.

The next aim of the paper is to find an answer Problem $3.1(b)$ in [3, p.91]. Szepietowski showed that $\operatorname{Mod}\left(N_{g}\right)$ can be generated by involutions [10] and later he showed that $\operatorname{Mod}\left(N_{g}\right)$ can be generated by four involutions if $g \geq 4$ [11]. One can deduce that it can be generated by three involutions by the work of Birman and Chillingworth [2] if $g=3$. It is known that any group generated by two involutions is isomorphic to a quotient of a dihedral group. Thus the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ cannot be generated by two involutions. This implies that any generating set consisting only involutions must contain at least three elements. In this direction, we get the following result (see Theorem 4.1 and Theorem 4.2):

Theorem B. For $g \geq 26$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ can be generated by three involutions.

Let us also point out that $\operatorname{Mod}\left(N_{g}\right)$ admits an epimorphism onto the automorphism group of $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$ preserving the $(\bmod 2)$ intersection pairing [9] and this group is isomorphic to (see [4] and [12])

$$
\begin{cases}S p\left(2 h ; \mathbb{Z}_{2}\right) & \text { if } g=2 h+1 \\ S p\left(2 h ; \mathbb{Z}_{2}\right) \ltimes \mathbb{Z}_{2}^{2 h+1} & \text { if } g=2 h+2\end{cases}
$$

2000 Mathematics Subject Classification: 57N05, 20F38, 20F05
Keywords: Mapping class groups, nonorientable surfaces, involutions

Hence, the action of mapping classes on $H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)$ induces an epimorphism from $\operatorname{Mod}\left(N_{g}\right)$ to $S p\left(2\left\lfloor\frac{g-1}{2}\right\rfloor ; \mathbb{Z}_{2}\right)$, which immediately implies the following corollary:

Corollary C. The symplectic group $\operatorname{Sp}\left(g-1 ; \mathbb{Z}_{2}\right)$ can be generated by two elements for every odd $g \geq 19$ and also by three involutions for every odd $g \geq 27$. Similarly, the group $S p\left(g-2 ; \mathbb{Z}_{2}\right) \ltimes \mathbb{Z}_{2}^{g-1}$ can be generated by two elements for every even $g \geq 20$ and also by three involutions for every even $g \geq 26$.

Acknowledgments. The first author was partially supported by the Scientific and Technologic Research Council of Turkey (TUBITAK)[grant number 120F118].

2. Preliminaries

Let N_{g} be a closed connected nonorientable surface of genus g. Note that the genus for a nonorientable surface is the number of projective planes in a connected sum decomposition. We use the model for the surface N_{g} as a sphere with g crosscaps represented shaded disks in all figures of this paper. Note that a crosscap is obtained by deleting the interior of such a disk and identifying the antipodal points on the resulting boundary. The mapping class group $\operatorname{Mod}\left(N_{g}\right)$ of the surface N_{g} is the group of the isotopy classes of self-diffeomorphisms of N_{g}. We use the functional notation for the composition of two diffeomorphisms; if f and g are two diffeomorphisms, the composition $f g$ means that g is applied first.

A simple closed curve on a nonorientable surface N_{g} is one-sided if its regular neighbourhood is a Möbius band and two-sided if it is an annulus. If a is a twosided simple closed curve on N_{g}, to define the Dehn twist t_{a} about the curve a, we need to choose one of two possible orientations of its regular neighbourhood (as we did for the curves in Figure 1). Throughout the paper, the right-handed Dehn twist t_{a} about the curve a will be denoted by the corresponding capital letter A. In our notation, both the curves on N_{g} and self-diffeomorphisms of N_{g} shall be considered up to isotopy. In the following we shall make repeated use of some basic relations in $\operatorname{Mod}\left(N_{g}\right)$: for two-sided simple closed curves a and b on N_{g} and for any $f \in \operatorname{Mod}\left(N_{g}\right)$,

- Commutativity: If a and b are disjoint, then $A B=B A$.
- Conjugation: If $f(a)=b$, then $f A f^{-1}=B^{\varepsilon}$, where $\varepsilon= \pm 1$ depending on the orientation of a regular neighbourhood of $f(a)$ with respect to the chosen orientation.
Consider the Klein bottle K with a hole in Figure 2. We define a crosscap transposition u as the isotopy classes of a diffeomorphism interchanging two consecutive crosscaps as shown on the left hand side of Figure 2 and equals to the identity outside the Klein bottle with one hole K. The effect of the diffeomorphism $y=A u$ on the interval c as in Figure 2 can be also constructed as sliding a Möbius band once along the core of another one and keeping each point of the boundary of K fixed. This is a Y-homeomorphism [8] (also called a crosscap slide [5]). Note that $A^{-1} u$ is a Y-homemorphism i.e. the other choice of the orientation for a neighbourhood of the curve a also gives a Y-homeomorphism. We also note that y^{2} is a Dehn twist about ∂K.

It is known that $\operatorname{Mod}\left(N_{g}\right)$ is generated by Dehn twists and a Y-homeomorphism (one crosscap slide) [8]. We remark that crosscap transpositions can be used instead

Figure 1. The curves $a_{1}, a_{2}, b_{i}, c_{i}, \alpha_{i}, \beta_{i}$ and γ_{i} on the surface N_{g}, where $g=2 r$ or $g=2 r+2$. Note that we do not have the curve c_{r} when g is odd.

Figure 2. The homeomorphisms u and $y=A u$.
of crosscap slides since a crosscap transposition equals to the product of a Dehn twist and a crosscap slide.

Before we finish Preliminaries, let us state a theorem which is used in the proofs of following theorems. We work with the model in Figure 3 in such a way that the surface is obtained from the 2 -sphere by deleting the interiors of g disjoint disks which are in a circular position and identifying the antipodal points on the boundary. Moreover, note that the rotation T by $\frac{2 \pi}{g}$ about the x-axis maps the crosscap \mathcal{C}_{i} to \mathcal{C}_{i+1} for $i=1, \ldots, g-1$ and \mathcal{C}_{g} to \mathcal{C}_{1}.

Theorem 2.1. For $g \geq 7$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ can be generated by the elements $T, A_{1} A_{2}^{-1}, B_{1} B_{2}^{-1}$, and a Y-homeomorphism (or a crosscap transposition).
Proof. Let G be the subgroup of $\operatorname{Mod}\left(N_{g}\right)$ generated by the set $\left\{T, A_{1} A_{2}^{-1}, B_{1} B_{2}^{-1}\right\}$. Szepietowski [11, Theorem 3] showed that A_{1}, A_{2}, B_{i} and C_{i} as shown in Figure 1, together with a Y-homeomorphism generate $\operatorname{Mod}\left(N_{g}\right)$. Therefore, it is enough to prove that the elements A_{1}, A_{2}, B_{i} and C_{i} are contained in G for $i=1, \ldots, r$.

Let \mathcal{S} denote the finite set of isotopy classes of two-sided non-separating simple closed curves appearing throughout the paper with chosen orientations of neighborhoods. Define a subset \mathcal{G} of $\mathcal{S} \times \mathcal{S}$ as

$$
\mathcal{G}=\left\{(a, b): A B^{-1} \in G\right\}
$$

Using the similar arguments in the proof of [7, Theorem 5], the set \mathcal{G} satisfies

- if $(a, b) \in \mathcal{G}$, then $(b, a) \in \mathcal{G}$ (symmetry),
- if (a, b) and $(b, c) \in \mathcal{G}$, then $(a, c) \in \mathcal{G}$ (transitivity) and
- if $(a, b) \in \mathcal{G}$ and $H \in G$ then $(H(a), H(b)) \in \mathcal{G}$ (G-invariance).

Thus, \mathcal{G} defines an equivalence relation on \mathcal{S}.
We begin by showing that $B_{i} C_{j}^{-1}$ is contained in G for all i, j. It follows from the definition of G and from the fact that $T\left(b_{1}, b_{2}\right)=\left(c_{1}, c_{2}\right)$, we have $C_{1} C_{2}^{-1} \in G$ (here, we use the notation $f(a, b)$ to denote $(f(a), f(b))$). Also, by conjugating $C_{1} C_{2}^{-1}$ with powers of T, one can conclude that G contains the elements $B_{i} B_{i+1}^{-1}$ and $C_{i} C_{i+1}^{-1}$. Moreover, the transitivity implies that the elements $B_{i} B_{j}^{-1}$ and $C_{i} C_{j}^{-1}$ are in G. To start with, since $B_{2} B_{3}^{-1} \in G$ and it is easy to verify that

$$
B_{2} B_{3}^{-1} A_{2} A_{1}^{-1}\left(b_{2}, b_{3}\right)=\left(a_{2}, b_{3}\right)
$$

so that $A_{2} B_{3}^{-1} \in G$. Then, we have

$$
\left(A_{1} A_{2}^{-1}\right)\left(A_{2} B_{3}^{-1}\right)\left(B_{3} B_{2}^{-1}\right)=A_{1} B_{2}^{-1} \in G
$$

since G contains each of the factors. Thus, $T\left(a_{1}, b_{2}\right)=\left(b_{1}, c_{2}\right)$ implies that $B_{1} C_{2}^{-1}$ is also in G. Moreover, G contains the element

$$
B_{1} C_{1}^{-1}=\left(B_{1} C_{2}^{-1}\right)\left(C_{2} C_{1}^{-1}\right)
$$

Thus, $B_{i} C_{i}^{-1} \in G$ by conjugating with powers of T for all $i=1, \ldots, r-1$. Again, the transitivity implies that $B_{i} C_{j}^{-1} \in G$. Note that, we have

- $\left(A_{1} B_{2}^{-1}\right)\left(B_{2} C_{1}^{-1}\right)=A_{1} C_{1}^{-1} \in G$,
- $\left(C_{1} A_{1}^{-1}\right)\left(A_{1} A_{2}^{-1}\right)=C_{1} A_{2}^{-1} \in G$ and
- $\left(C_{2} C_{1}^{-1}\right)\left(C_{1} A_{1}^{-1}\right)=C_{2} A_{1}^{-1} \in G$
from which it follows that the elements $A_{1} C_{1}^{-1}, C_{1} A_{2}^{-1}$ and $C_{2} A_{1}^{-1}$ are all in G.
It can also be verified that

$$
\left(A_{1} B_{2}^{-1}\right)\left(A_{1} C_{1}^{-1}\right)\left(A_{1} C_{2}^{-1}\right)\left(A_{1} B_{2}^{-1}\right)\left(a_{2}, a_{1}\right)=\left(d_{2}, a_{1}\right)
$$

so that $D_{2} A_{1}^{-1} \in G$. Also, the element $D_{2} C_{2}^{-1}=\left(D_{2} A_{1}^{-1}\right)\left(A_{1} C_{2}^{-1}\right)$ is in G. It can also be shown that

$$
\left(C_{2} B_{1}^{-1}\right)\left(C_{2} A_{1}^{-1}\right)\left(C_{2} C_{1}^{-1}\right)\left(C_{2} B_{1}^{-1}\right)\left(d_{2}, c_{2}\right)=\left(d_{1}, c_{2}\right)
$$

which implies that G contains $D_{1} C_{2}^{-1}$. Thus, G contains the element

$$
D_{1} A_{1}^{-1}=\left(D_{1} C_{2}^{-1}\right)\left(C_{2} A_{1}^{-1}\right)
$$

(here, the curves d_{1} and d_{2} are shown in [1, Figure 4]). By similar arguments as in the proof of [1, Lemma 5], for $g \geq 7$ the lantern relation implies that

$$
A_{3}=\left(A_{2} C_{1}^{-1}\right)\left(D_{1} C_{2}^{-1}\right)\left(D_{2} A_{1}^{-1}\right)
$$

Since G contains each factor on the right hand side, $A_{3} \in G$. It follows from the diffeomorphism $A_{3}\left(B_{3} B_{1}^{-1}\right)$ maps the curve a_{3} to b_{3} that

$$
B_{3}=A_{3}\left(B_{3} B_{1}^{-1}\right) A_{3}\left(B_{1} B_{3}^{-1}\right) A_{3}^{-1} \in G
$$

By conjugating B_{3} with the powers of T, we conclude that $A_{1}, B_{1}, C_{1}, \ldots B_{r-1}, C_{r-1}$ and B_{r} are all in G. Moreover,

$$
A_{2}=\left(A_{2} A_{1}^{-1}\right) A_{1} \in G
$$

Therefore, the Dehn twist generators are contained in G. This finishes the proof.

3. A generating set for $\operatorname{Mod}\left(N_{g}\right)$

In this section, we work with the model in Figure 3. Let us denote by u_{i} the crosscap transposition supported on the one holed Klein bottle whose boundary is the curve α_{i} shown in Figure 1. Note that the rotation T takes α_{i} to α_{i+1} and the $\operatorname{crosscap} \mathcal{C}_{i}$ to \mathcal{C}_{i+1}, which implies that $T u_{i} T^{-1}=u_{i+1}$.

Figure 3. The rotation T and the curves c_{2}, γ_{10} and α_{g-1}.

Theorem 3.1. For $g \geq 19$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ is generated by $\left\{T, u_{g-1} \Gamma_{10} C_{2}^{-1}\right\}$.
Proof. Let $F_{1}=u_{g-1} \Gamma_{10} C_{2}^{-1}$ and let us denote by G the subgroup of $\operatorname{Mod}\left(N_{g}\right)$ generated by T and F_{1}. It follows from Theorem 2.1 that it suffices to prove that the subgroup G contains the elements $A_{1} A_{2}^{-1}, B_{1} B_{2}^{-1}$ and u_{g-1} to prove that $G=\operatorname{Mod}\left(N_{g}\right)$.

Let F_{2} denote the conjugation of F_{1} by T^{-4}. It follows from T^{-4} maps the curves $\left(\alpha_{g-1}, \gamma_{10}, c_{2}\right)$ to $\left(\alpha_{g-5}, \gamma_{6}, a_{1}\right)$ that

$$
F_{2}=T^{-4} F_{1} T^{4}=u_{g-5} \Gamma_{6} A_{1}^{-1}
$$

is contained in G. Let F_{3} denote the element $\left(F_{2} F_{1}^{-1}\right) F_{2}\left(F_{2} F_{1}^{-1}\right)^{-1}$ that is contained in G. Hence

$$
F_{3}=\left(F_{2} F_{1}^{-1}\right) F_{2}\left(F_{2} F_{1}^{-1}\right)^{-1}=u_{g-5} C_{2} A_{1}^{-1}
$$

Since we have similar cases in the remaining parts of the paper, let us give some details before we proceed. It can be verified that the diffeomorphism $F_{2} F_{1}^{-1}$ send the curves $\left(\alpha_{g-5}, \gamma_{6}, a_{1}\right)$ to the curves $\left(\alpha_{g-5}, c_{2}, a_{1}\right)$. Then, we get

$$
\begin{aligned}
F_{3} & =\left(F_{2} F_{1}^{-1}\right) F_{2}\left(F_{2} F_{1}^{-1}\right)^{-1} \\
& =\left(F_{2} F_{1}^{-1}\right) u_{g-5} \Gamma_{6} A_{1}^{-1}\left(F_{2} F_{1}^{-1}\right)^{-1} \\
& =u_{g-5} C_{2} A_{1}^{-1} .
\end{aligned}
$$

Thus, we have the elements $F_{2} F_{3}^{-1}=\Gamma_{6} C_{2}^{-1}$ and $T^{4}\left(\Gamma_{6} C_{2}^{-1}\right) T^{-4}=\Gamma_{10} C_{4}^{-1}$, which are both contained in G.

Moreover, we have the following elements

$$
\begin{aligned}
& F_{4}=\left(C_{4} \Gamma_{10}^{-1}\right) F_{1}=u_{g-1} C_{4} C_{2}^{-1} \\
& F_{5}=T^{-1} F_{4} T=u_{g-2} B_{4} B_{2}^{-1} \text { and } \\
& F_{6}=\left(F_{4} F_{5}\right) F_{3}\left(F_{4} F_{5}\right)^{-1}=u_{g-5} B_{2} A_{1}^{-1}
\end{aligned}
$$

all of which are contained in the subgroup G. From this, we get the element $F_{6} F_{3}^{-1}=B_{2} C_{2}^{-1} \in G$. Also, we have $T\left(B_{2} C_{2}^{-1}\right) T^{-1}=C_{2} B_{3}^{-1} \in G$, which gives rise to

$$
B_{2} B_{3}^{-1}=\left(B_{2} C_{2}^{-1}\right)\left(C_{2} B_{3}^{-1}\right) \in G
$$

This implies that $T^{-2}\left(B_{2} B_{3}^{-1}\right) T^{2}=B_{1} B_{2}^{-1}$ is in G. We also have the elements

$$
\begin{aligned}
T^{2}\left(C_{2} B_{3}^{-1}\right) T^{-2} & =C_{3} B_{4}^{-1} \in G \text { and } \\
T^{-2}\left(\Gamma_{10} C_{4}^{-1}\right) T^{2} & =\Gamma_{8} C_{3}^{-1} \in G,
\end{aligned}
$$

implying that $\Gamma_{8} B_{4}^{-1}=\left(\Gamma_{8} C_{3}^{-1}\right)\left(C_{3} B_{4}^{-1}\right) \in G$. The conjugation of the element $\Gamma_{8} B_{4}^{-1}$ by T^{-7} is the element $\Gamma_{1} A_{1}^{-1}=A_{2} A_{1}^{-1}$ which is contained in G. By the proof of Theorem 2.1, the subgroup G contains the elements A_{1}, A_{2}, B_{i} and C_{i} for $i=1, \ldots, r$. Then, in particular we have the elements $T^{9} A_{2} T^{-9}=\Gamma_{10} \in G$ and $C_{2} \in G$. We conclude that $u_{g-1}=F_{1}\left(C_{2} \Gamma_{10}^{-1}\right) \in G$, which completes the proof.

4. Involution generators for $\operatorname{Mod}\left(N_{g}\right)$

In the first part of this section, where the genus of the surface N_{g} is even, we refer to Figure 4 for the involution generators ρ_{1} and ρ_{2} of N_{g}. The elements ρ_{1} and ρ_{2} are reflections about the indicated planes in Figure 4 in such a way that the rotation T, depicted in Figure 3, is given by $T=\rho_{2} \rho_{1}$.

Figure 4. The reflections ρ_{1} and ρ_{2} for $g=2 r+2$.

Theorem 4.1. For $g=2 r+2 \geq 26$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ is generated by the involutions ρ_{1}, ρ_{2} and $\rho_{2} A_{2} B_{r} B_{3} u_{r+3}$.

Proof. Consider the surface N_{g} as in Figure 4. It follows from

$$
\rho_{2}\left(a_{2}\right)=a_{2} \text { and } \rho_{2}\left(b_{r}\right)=b_{3}
$$

and also ρ_{2} reverses the given orientation of a neighbourhood of a two-sided simple closed curve that

$$
\rho_{2} A_{2} \rho_{2}=A_{2}^{-1} \text { and } \rho_{2} B_{r} \rho_{2}=B_{3}^{-1}
$$

Since $\rho_{2} u_{r+3} \rho_{2}=u_{r+3}^{-1}$, one can verify that the element $\rho_{2} A_{2} B_{r} B_{3} u_{r+3}$ is an involution. Let $H_{1}=A_{2} B_{r} B_{3} u_{r+3}$ and let H be the subgroup of $\operatorname{Mod}\left(N_{g}\right)$ generated by the set

$$
\left\{\rho_{1}, \rho_{2}, \rho_{2} H_{1}\right\}
$$

It is clear that H_{1} and $T=\rho_{2} \rho_{1}$ are contained in the subgroup H. By Theorem 2.1, we need to prove that the subgroup H contains the elements $A_{1} A_{2}^{-1}, B_{1} B_{2}^{-1}$ and u_{r+3}. Let H_{2} be the conjugation of H_{1} by T^{7}. Thus

$$
H_{2}=T^{7} H_{1} T^{-7}=\Gamma_{8} C_{2} C_{6} u_{r+10} \in H
$$

Let

$$
H_{3}=\left(H_{2} H_{1}\right) H_{2}\left(H_{2} H_{1}\right)^{-1}=\Gamma_{8} B_{3} C_{6} u_{r+10}
$$

which is also in H. From this, we get the element $H_{2} H_{3}^{-1}=C_{2} B_{3}^{-1} \in H$ implying that $T\left(C_{2} B_{3}^{-1}\right) T^{-1}=B_{3} C_{3}^{-1} \in H$. One can easily see that $B_{i} C_{i}^{-1} \in H$ by conjugating $B_{3} C_{3}^{-1}$ with powers of T. Also, since $T\left(B_{3} C_{3}^{-1}\right) T^{-1}=C_{3} B_{4}^{-1} \in H$, similarly $C_{i} B_{i+1}^{-1} \in H$ by conjugating $C_{3} B_{4}^{-1}$ with powers of T. Hence, we have the elements

$$
B_{i} B_{i+1}^{-1}=\left(B_{i} C_{i}^{-1}\right)\left(C_{i} B_{i+1}^{-1}\right)
$$

which are in H for all $i=1, \ldots, r-1$. Moreover, $B_{i} B_{j}^{-1} \in H$ by the transitivity. In particular $B_{1} B_{2}^{-1} \in H$. Now, we have the following elements

$$
\begin{aligned}
H_{4} & =\left(B_{7} B_{3}^{-1}\right) H_{1}=A_{2} B_{7} B_{r} u_{r+3} \text { if } r \neq 16,17,18 \\
\left(H_{4}\right. & \left.=\left(B_{9} B_{3}^{-1}\right) H_{1}=A_{2} B_{9} B_{r} u_{r+3} \text { if } r=16,17,18,\right) \\
H_{5} & =T^{6} H_{4} T^{-6}=\Gamma_{7} B_{10} B_{2} u_{r+9} \text { if } r \neq 16,17,18 \\
\left(H_{5}\right. & \left.=T^{6} H_{4} T^{-6}=\Gamma_{7} B_{12} B_{2} u_{r+9} \text { if } r=16,17,18,\right) \\
H_{6} & =\left(H_{5} H_{4}\right) H_{5}\left(H_{5} H_{4}\right)^{-1}=\Gamma_{7} B_{10} A_{2} u_{r+9} \text { if } r \neq 16,17,18 \\
\left(H_{6}\right. & \left.=\left(H_{5} H_{4}\right) H_{5}\left(H_{5} H_{4}\right)^{-1}=\Gamma_{7} B_{12} A_{2} u_{r+9} \text { if } r=16,17,18,\right)
\end{aligned}
$$

which are all contained in H. Thus, we get the element $H_{6} H_{5}^{-1}=A_{2} B_{2}^{-1} \in H$. On the other hand, since $C_{1} B_{2}^{-1}$ is contained in H, the subgroup H contains the following elements

$$
\begin{gathered}
T^{-2}\left(C_{1} B_{2}^{-1}\right) T^{2}=A_{1} B_{1}^{-1} \\
\left(A_{1} B_{1}^{-1}\right)\left(B_{1} B_{2}^{-1}\right)=A_{1} B_{2}^{-1} \\
\left(A_{2} B_{2}^{-1}\right)\left(B_{2} A_{1}^{-1}\right)=A_{2} A_{1}^{-1}
\end{gathered}
$$

It follows from $T, A_{1} A_{2}^{-1}$ and $B_{1} B_{2}^{-1}$ are in H that the Dehn twists A_{1}, A_{2}, B_{i} and C_{i} are also in H for $i=1, \ldots, r$. This implies that

$$
u_{r+3}=\left(B_{3}^{-1} B_{r}^{-1} A_{2}^{-1}\right) H_{1} \in H
$$

which completes the proof.
In the second part of this section, where the genus of the surface N_{g} is odd, we refer to Figure 5 for the involution generators ρ_{1} and ρ_{2} of N_{g}. Similarly, the elements ρ_{1} and ρ_{2} are reflections about the indicated planes in Figure 5 such that the rotation T in Figure 3 is given by $T=\rho_{2} \rho_{1}$. In the proof of the following theorem, we use the crosscap transposition supported on the one holed Klein bottle

Figure 5. The reflections ρ_{1} and ρ_{2} for $g=2 r+1$.
whose boundary is the curve β_{i} shown in Figure 1. Let us denote this crosscap transposition by v_{i}. Note that the rotation T sends β_{i} to β_{i+1} and the crosscap \mathcal{C}_{i} to \mathcal{C}_{i+1}, which implies that $T v_{i} T^{-1}=v_{i+1}$.

Theorem 4.2. For $g=2 r+1 \geq 27$, the mapping class group $\operatorname{Mod}\left(N_{g}\right)$ is generated by the involutions ρ_{1}, ρ_{2} and $\rho_{2} A_{2} C_{r-1} B_{3} v_{r+2}$.
Proof. We will follow the proof of Theorem 4.1, closely. Let us consider the surface N_{g} as in Figure 5. Since

$$
\rho_{2}\left(a_{2}\right)=a_{2} \text { and } \rho_{2}\left(c_{r-1}\right)=b_{3}
$$

and also since ρ_{2} reverses the given orientation of a neighbourhood of a two-sided simple closed curve, we get

$$
\rho_{2} A_{2} \rho_{2}=A_{2}^{-1} \text { and } \rho_{2} C_{r-1} \rho_{2}=B_{3}^{-1}
$$

By the fact that $\rho_{2} v_{r+2} \rho_{2}=v_{r+2}^{-1}$, it can be easy to verify that the element $\rho_{2} A_{2} C_{r-1} B_{3} \phi_{r+2, r+4}$ is an involution. Let $E_{1}=A_{2} C_{r-1} B_{3} v_{r+2}$ and let K denote the subgroup of $\operatorname{Mod}\left(N_{g}\right)$ generated by the set

$$
\left\{\rho_{1}, \rho_{2}, \rho_{2} E_{1}\right\}
$$

It is easy to see that E_{1} and $T=\rho_{2} \rho_{1}$ are in K. By Theorem 2.1, we need to show that K contains the elements $A_{1} A_{2}^{-1}, B_{1} B_{2}^{-1}$ and v_{r+2}. Let E_{2} be the following:

$$
E_{2}=T^{7} E_{1} T^{-7}=\Gamma_{8} C_{2} C_{6} v_{r+9} \in K
$$

Consider the element

$$
E_{3}=\left(E_{2} E_{1}\right) E_{2}\left(E_{2} E_{1}\right)^{-1}=\Gamma_{8} B_{3} C_{6} v_{r+9}
$$

which belongs to K. One can conclude that the element $E_{2} E_{3}^{-1}=C_{2} B_{3}^{-1} \in K$, which implies that $T\left(C_{2} B_{3}^{-1}\right) T^{-1}=B_{3} C_{3}^{-1} \in K$. From this, we get the elements $B_{i} C_{i}^{-1} \in H$ by conjugating $B_{3} C_{3}^{-1}$ with powers of T. Also, since $T\left(B_{3} C_{3}^{-1}\right) T^{-1}=$ $C_{3} B_{4}^{-1} \in K, C_{i} B_{i+1}^{-1} \in K$ by again conjugating $C_{3} B_{4}^{-1}$ with powers of T. Thus, we get the elements

$$
B_{i} B_{i+1}^{-1}=\left(B_{i} C_{i}^{-1}\right)\left(C_{i} B_{i+1}^{-1}\right)
$$

which belong to K for all $i=1, \ldots, r-1$. Also, using the transitivity $B_{i} B_{j}^{-1} \in K$. In particular $B_{1} B_{2}^{-1} \in K$. Moreover, we have the elements

$$
\begin{aligned}
E_{4} & =\left(B_{7} B_{3}^{-1}\right) E_{1}=A_{2} B_{7} C_{r-1} v_{r+2} \text { if } r \neq 16,17,18,19 \\
\left(E_{4}\right. & \left.=\left(B_{9} B_{3}^{-1}\right) E_{1}=A_{2} B_{9} C_{r-1} v_{r+2} \text { if } r=16,17,18,19,\right) \\
E_{5} & =T^{6} E_{4} T^{-6}=\Gamma_{7} B_{10} B_{2} v_{r+8} \text { if } r \neq 16,17,18,19, \\
\left(E_{5}\right. & \left.=T^{6} E_{4} T^{-6}=\Gamma_{7} B_{12} B_{2} v_{r+8} \text { if } r=16,17,18,19,\right) \\
E_{6} & =\left(E_{5} E_{4}\right) E_{5}\left(E_{5} E_{4}\right)^{-1}=\Gamma_{7} B_{10} A_{2} v_{r+8} \text { if } r \neq 16,17,18,19 \\
\left(E_{6}\right. & \left.=\left(E_{5} E_{4}\right) E_{5}\left(E_{5} E_{4}\right)^{-1}=\Gamma_{7} B_{12} A_{2} v_{r+8} \text { if } r=16,17,18,19,\right)
\end{aligned}
$$

which are all contained in the subgroup K. Thus, we conclude that the element $E_{6} E_{5}^{-1}=A_{2} B_{2}^{-1} \in K$.

Since the element $C_{1} B_{2}^{-1} \in K$, as in the proof of Theorem 4.1, one can conclude that the Dehn twists A_{1}, A_{2}, B_{i} and C_{j} are in K for $i=1, \ldots, r$ and $j=1, \ldots, r-1$. This implies that $v_{r+2}=\left(B_{3}^{-1} C_{r-1}^{-1} A_{2}^{-1}\right) E_{1} \in K$, which finishes the proof.

References

[1] R. İ. Baykur and M. Korkmaz: The mapping class group is generated by two commutators, J. of Algebra 574, (2021), 278-291.
[2] J. S. Birman and D. R. J. Chillingworth: On the homeotopy group of a non-orientable surface, Proc. Camb. Philos. Soc. 71, (1972), 437-448.
[3] B. Farb (Ed.): Problems on mapping class groups and related topics, Vol.74, (2006), American Mathematical Soc.
[4] M. Korkmaz: First homology group of mapping class group of nonorientable surfaces, Math. Proc. Camb. Phil. Soc. 123, (1998), 487-499.
[5] M. Korkmaz: Mapping class groups of nonorientable surfaces, Geometriae Dedicata 89(1), (2002), 107-131.
[6] M. Korkmaz: Minimal generating sets for the mapping class group of a surface, Handbook of Teichmüller spaces, Volume III, (2012), 441-463.
[7] M. Korkmaz: Mapping class group is generated by three involutions, Math. Res. Lett. 27, (4) (2020), 1095-1108.
[8] W. B. R. Lickorish: Homeomorphisms of non-orientable two manifolds, Proc. Cambridge Philos. Soc. 59, (2) (1963), 307-317.
[9] J. D. McCarthy, U. Pinkall: Representing homology automorphisms of nonorientable surfaces,Preprint, Max-Planck Inst. (1985).
[10] B. Szepietowski: Involutions in mapping class groups of non-orientable surfaces, Collect. Math. 55, (3) (2004), 253-260.
[11] B. Szepietowski: The mapping class group of a nonorientable surface is generated by three elements and by four involutions, Geom. Dedicata 117, (1) (2006), 1-9.
[12] B. Szepietowski: Low-dimensional linear representations of the mapping class group of a nonorientable surface, Algebr. Geom. Topol. 14, (4) (2014), 2445-2474.

Department of Mathematics, Middle East Technical University, Ankara, Turkey
Email address: atulin@metu.edu.tr
Email address: mpamuk@metu.edu.tr
Email address: oguzyildiz16@gmail.com

