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ABSTRACT 
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High computation costs imposed by a large number of degrees of freedom hamper 

the vibration analysis for blade disk systems. Moreover, mistuning, which 

necessitates the solution of the problem numerous times, and contact surfaces which 

require displacement data on shroud Degrees of Freedom (DOFs) with high 

accuracy, highlight the demand for an efficient reduced-order model. Consequently, 

aiming at deriving results with acceptable accuracy while minimizing computational 

cost, researchers have proposed different reduction techniques. In this context, 

Component Mode Synthesis (CMS) methods that follow the famous divide and 

conquer theory are approved to be very effective. In this study, first, the most famous 

reduction techniques based on CMS, namely, Rubin, Hurty/Craig-Bampton, Dual 

Craig-Bampton, and Mixed interface methods, are implemented for reducing the 

computational cost of an academic bladed disk system with shrouds. A new 

reduction method is proposed by capitalizing on the information derived from the 

proceeding comparison study, which is a generalized case for Rubin and 

Hurty/Craig-Bampton methods. Subsequently, the efficiency of the proposed 

method is compared with its rivals available in the literature in both tuned and 
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mistuned case studies. It is concluded that the proposed method can provide superior 

accuracy while maintaining a relatively low computational cost when appropriately 

used with the cyclic symmetry property and Rubin method for a tuned bladed disk 

system. For the mistuned case, the reduction of the blade sector is analogous to the 

tuned case. Therefore, special attention is paid to the disk assembly for the mistuned 

case. Three different reduction approaches are proposed for the disk segment. 

Moreover, an interface reduction method is implemented to reduce the size of the 

model further. Finally, each of these methods is implemented on the disk sector and 

coupled with the reduced blade segment to create a reduced-order model of the entire 

bladed disk assembly. The Reduced Order Model (ROM) performance is 

investigated for different mistuning patterns. It is concluded that the reduction 

measure proposed in this work can bring excellent results and drastically reduce the 

computational time for the analysis of mistuned bladed disk. 

 

Keywords: Reduced-Order Modeling, Component Mode Synthesis (CMS), Bladed 

Disk Systems, Mistuning, Shrouds 
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ünlü indirgeme teknikleri, yani Rubin, Hurty/Craig-Bampton, Dual Craig-Bampton 

-Bampton 

düzenli 
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sektörünün azalm

olarak, bu yöntemlerin her biri disk sektörü üzerinde 
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CHAPTER 1  

1 INTRODUCTION 

The first chapter briefly introduces the vibration analysis for the bladed disk systems 

along with the problems hampering the way. Subsequently, possible methodologies 

to tacked the problems are reviewed. Finally, a description of the following chapters 

of the thesis is provided. 

1.1 Vibration Analysis for Bladed Disk Systems 

The design of bladed disk systems is a challenging task for engineers due to the harsh 

working conditions and various types of static and dynamic forces in their operating 

environment. Bladed disk systems typically suffer from high cyclic fatigue failure 

(HCF) caused by large deformation concentrated on some blades [1]. From the 

strategies to tackle the energy concentration on blades, the approach to dissipate this 

unwanted energy through friction has been widely used in industry. Different types 

of friction contact elements have been introduced to the literature, i.e., shrouds, 

contact between blade-to-disk interface, under-platform dampers, ring dampers, and 

wedge dampers. The problem of making a balance between the safety and efficiency 

of the bladed disks is an ongoing topic of research among scientists. A sophisticated 

understanding of the physics of bladed disk components and forces applied to them 

in their working condition is the first step toward finding a solution. 

Numerical investigation of the bladed disk systems is a tedious task. Due to their 

elaborate geometry, a fine mesh is required to predict their behavior accurately, so 

they usually are represented by enormous FEM models. In addition, a statistical 

investigation may be required due to the mistuning phenomenon [2]. That is to solve 
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the problem millions of times to gather the required information to account for the 

random nature of the mistuning patterns. In addition, the presence of nonlinear 

elements in the model obligates a precise prediction of the displacements for the 

contact elements [3]. In order to alleviate the high computational cost imposed by 

the circumstances mentioned above and simultaneously provide accurate results, 

researchers have introduced reduced-order modeling techniques. These methods aim 

to facilitate the act of deriving the vibration characteristics of the structure. They 

accelerate the investigation process and allow the scientist to conduct parametric 

analyses, which are invaluable in the design stage. 

 

1.2 CMS Methods 

The computational burden of the analysis can be alleviated by several methods, one 

of which is the dynamic substructuring or Component Mode Synthesis (CMS). As 

the name implies, the primary procedure in this technique is analogous to the famous 

divide and conquer approach [4]. That is to reduce a large system by dividing it into 

its components, and after reducing the size of each component, reassemble them 

again to reach the reference structure. After the reduction procedure, the final degrees 

of freedom will be some generalized coordinates on each component, interfaced 

DOFs, and DOFs of which physical information, like displacement or force, is 

required. The Component-Mode Synthesis (CMS) methods have been known to be 

very useful in dealing with extensive finite element problems [5]. 

Although they are similar in the main procedure, reduction techniques based on 

substructuring, or CMS, fall into different categories regarding how they describe 

each substructure's interface. According to these criteria, two distinct methodologies 

are introduced, namely: fixed-interface methods and free-interface methods. A 

combination of dynamic and static modes composes the reduction basis for these 

methods. While the interface DOFs are held fixed in calculating the vibration modes 
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in the fixed-interface methods [6], they are left free in the derivation of the vibration 

modes in the free-interface methods [7]. The static modes of each method are derived 

accordingly, i.e., static constraint modes for fixed-interface methods and flexibility 

modes for the free-interface method [8]. A detailed description of all the static and 

dynamic modes used in the reduction basis is presented in the proceeding sections. 

Reduction techniques based on substructuring have long been introduced to the 

literature. The advent of dynamic substructuring or component-mode synthesis 

(CMS) can be traced back to the mid-1960s when Hurty [9] introduced a reduction 

technique based on fixed-interface modes. The proceeding paper by Craig and 

Bampton [10] was the cornerstone in the development of the CMS methods. Their 

work, which indeed was originated by Hurty, further popularized the fixed-interface 

reduction technique in the world of dynamic substructuring. For the following years, 

CMS methods attracted the attention of scientists. As an alternative to the fixed-

interface method, several scientists explored the free-interface methods, which 

culminated in the introduction of MacNeal [11], Rubin [7], and Hintz [12] methods. 

A detailed review of the works done in the 20th century can be found in [13]. Both 

fixed and free-interface approaches have their advantages and disadvantages, 

highlighting the question, "Which method servers best for a specific geometry?" 

In 1982, Irretier first implemented the CMS methods for analyzing mistuned bladed 

disk systems [14]. Later Chun et al. [15] used CMS methods to investigate the 

vibration of blisks mounted on a flexible rotor. Reduced-order modeling of the 

bladed disk with shrouds was introduced by Bladh et al. [16]. They further published 

a two-parted paper on the theoretical background and application of the CMS method 

for mistuned blade disk systems [17], [18]. CMS method subsequently expanded to 

mitigate the high computational cost stemming from the nonlinearities introduced 

mainly by contact frictions. In recent years, researchers have explored different 

characteristics of the CMS methods to build an efficient reduction basis for bladed 

disk systems. A comparative study by Mashayekhi et al. [19], [20] examined the 

most recent reduction techniques and their efficiency. They also came up with a 

hybrid technique for a mistuned bladed disk with friction contact [21]. By 
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considering the blade-disk interaction, Pourkiaee and Zucca proposed a method to 

reduce the size of a bladed disk with shrouds [22][23][24]. They took advantage of 

the Loaded Interface (LI) modes shapes [25] to further reduce the size of interface 

DOFs. In [26], Yuan et al. proposed an adaptive reduction method. Quaegebeur et 

al. [27][28] introduced a novel two-stage reduction that implements the cyclic 

symmetric property. 

1.3 Thesis Statement and Chapter Review 

Despite the extensive research conducted on the reduced-order modeling of the 

bladed disk systems with shrouds, the need for an efficient ROM capable of reducing 

the size of the problem and paving the way for parametric analysis and, at the same 

time providing accurate predictions of the displacements at shrouds DOFs is still 

persisting. Thus, this thesis is dedicated to developing an efficient ROM for the 

specific geometry of bladed disk systems with shrouds that can bring the 

characteristics required. 

An outline of the following chapters is presented as follows. 

Chapter two represents the fundamental methodologies required for the reduced-

order modeling of the bladed disk systems and modal analysis of cyclic structures. 

The chapter is composed of a comprehensive formulation of the real and complex 

form of cyclic symmetry with a brief mode shape interpretation. Subsequently, 

reduction techniques based on Component Mode Synthesis (CMS) are formulated. 

In this section, a new mixed interface reduction technique is proposed. The proposed 

method is the fruit of the novel perspective on the modal contribution of the 

substructures to the final vibration state of the bladed disk system. Furthermore, an 

enhanced interface reduction method is formulated to expand the compatibility of 

the current interface reduction method with both free and fixed interface reduction 

techniques. Finally, mistuning modeling is given. The last section answers the 
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question of how mistuning is projected on different blades when reduction is applied 

to the system. 

In chapter three, case studies to implement different reduction methods are given. In 

order to validate the reduction methods, an elaborate finite element model is created. 

Chapter three describes the model and introduces the tuned and mistuned bladed disk 

systems. 

Almost all of the reduction methods based on component modes synthesis are 

included in this study. Moreover, a compatible combination of the CMS methods 

and cyclic symmetry analysis is implemented for both tuned and mistuned cases. The 

results of the methods are given in chapter four. Besides, a discussion and assessment 

of the efficiency of the methods are provided in this chapter. 

Eventually, chapter five concludes all the results and findings in the previous 

chapters. 
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CHAPTER 2  

2 METHODOLOGY 

Reduced-order modeling of bladed disk systems can become arduous due to large 

finite element models and numerous components. Thus, it is necessary to implement 

a combination of different reduction techniques since neither single one of the 

methods can bring sufficiently reduced models. In particular, when mistuning exists, 

it is desirable to use cyclic symmetry property compatible with 

hypothesis. This chapter discusses the fundamentals of mathematical models and 

reduction procedures required for the reduced-order modeling of bladed disk 

systems. It should be noted that cyclic symmetry is included in this chapter since it 

is used as means of model reduction.  

This chapter starts by exploring the cyclic symmetry property, which is vital for the 

vibration analysis of turbomachinery. Both real and complex formulation of the 

cyclic symmetry analysis is given, along with a brief subsection about mode 

anticipation for real and complex cyclic formulation. Subsequently, reduction 

methods are investigated based on Component Mode Synthesis (CMS). First, a 

definition of different dynamic and static modes is given. The mentioned modes are 

the main ingredients of the reduction basis. Next, conventional fixed and free 

interface methods are described. Notably, the well-known Craig-Bampton (CB) 

method is included in this study from fixed interface methods. The powerful Rubin 

and Dual Craig-Bampton (DCB) methods are selected from the free interface 

methods. In addition to the conventional methods, a more recent technique, called 

the mixed-interface method (MXD), which is a generalization of Craig-Bampton, 

and Dual Craig-Bampton methods, are also formulated. 
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One of the original contributions of this work is to introduce a Modified Mixed 

interface Method (MMXD) to the specific geometry of the bladed disk systems. The 

method is a generalization of the Rubin and Craig-Bampton method. 

Chapter two introduces interface reduction methods. The interface reduction 

becomes especially important in reducing the disk sector when the disk to disk 

interface possesses a large number of DOFs. 

Finally, the last section gives instructions on the modeling of the mistuning. The 

mistuning in this study and most of the literature is considered on the blade sector 

only. 

2.1 Cyclic Symmetry 

Cyclic symmetry property is a well-known concept in turbomachinery. Extensive 

research has been dedicated to the analysis of the cyclic symmetric structures. 

Moreover, commercial finite elements software guidelines like MSC/NASTRAN 

[29] on the vibration analysis of the cyclic symmetric analysis. However, the cyclic 

symmetry plays such a prominent role in the reduced-order modeling of the bladed 

disk systems that a brief review of the concept is desirable [30] [34]. 

2.1.1 Fundamental Concepts 

In this subsection, the fundamental concepts of the cyclic symmetry analysis are 

given. The concepts of interest are Kronecker Product, coordinate transformation in 

cylindrical framework, Circulant Matrices, Fourier Matrices, and Engine Order 

Excitation. 
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Kronecker Product 

Kronecker product is a unique multiplication technique that facilitates the 

multiplication of large matrices and eliminates the need for a for loop in the 

algorithms. Throughout this thesis, the Kronecker product is shown with  symbol. 

In order to illustrate the multiplication scheme by the Kronecker operator, let us 

assume , and , to be two matrices of arbitrary size, then  

  2.1 

Some essential characteristics of the Kronecker products are as follows: 

 The multiplication is not invertible 

  2.2 

 A scaler is distributive into the product 

  2.3 

 Associative 

  2.4 

 If both , and  are invertible 

  2.5 

  2.6 

Transformation in the Cylindrical Framework 

one fundamental transformation that can be considered a prerequisite for the cyclic 

analysis is the transformation of the dependent DOFs of the right neighbor of the 

fundamental sector to the coordinates system of the fundamental sector. If we 

consider our system to be rotationally periodic along the z-axis, then the mentioned 

transformation can be done according to the following formulation. 
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  2.7 

 is the transformation matrix for a point on the Cartesian framework, which rotates 

the point on the x-y plane and around the z-axis for  rad. In the cyclic analysis, the 

 angle is referred to as the inter-blade phase angle or inter-blade angle. 

  2.8 

Where  is the total number of blades in the bladed disk assembly. In order to 

transform all the dependent DOFs on the right neighbor of the fundamental sector, 

the Kronecker product is used. The procedure starts by first partitioning the 

coordinates into the dependent, independent, and normal coordinates, as illustrated 

below. 

  2.9 

In the above equation,  denotes the dependent DOFs,  represents the independent 

DOFs, and all other DOFs are in the  subscript. The dependent DOFs can be 

transformed into the new coordinate system by rotating them around the z-axis. 

  2.10 

In the above equation,  are the transformed dependant DOFs in the fundamental 

coordinate system. The overall transformation matrix will take the form 

  2.11 

the  matrix is the total transformation matrix on which one may project the mass 

and stiffness matrices. 

  2.12 
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The projection of the mass and stiffness matrices onto the transformation matrix are 

as follows 

 2.13 

And the transformation of the mass matrix is exactly the same. 

One critical issue that may occur, which is very confusing, is that this vital 

transformation becomes redundant on some special occasions this occurs in 

dealing with finite element data. As usually, for validation purposes, one wishes to 

perform cyclic symmetry on a commercial finite element model and do the same 

from the cyclic formulation. Mass and stiffness matrices are obtained from the finite 

element software in such situations. Suppose a cyclic analysis is carried out on the 

finite element software prior to the extraction of the element matrices. In that case, 

the transformation mentioned above is automatically imposed on the extracted 

matrices. Even after turning off the cyclic option, the matrices derived from the 

software are already transformed, and a repetition of this transformation gives wrong 

results. 
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Figure 2.1. Rotation of the fundamental sector around the z-axis to make the left 

and right neighbor sectors 

Circulant Matrices 

Circulant matrices are encountered in many disciplines [35], one of which is the 

structural analysis of the cyclically symmetric structures. This happens because the 

cyclic structure can be assumed as a chain of lumped mass and stiffness where the 

last mass is also coupled with the first one. This unique symmetry builds matrices of 

the shape below 

  2.14 
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As it can be understood from the above expression, the circulant matrix is created by 

moving a set of  scalers along the rows. The  by  CM matrix can be built out 

of a set of scaler values  

For the case of lumped parameter modeling, it can be shown easily that the mass and 

stiffness matrices will take the form 

  2.15 

However, for the case of finite element models, the concept of circulant matrices is 

extended to block circulant matrices 

  2.16 

In contrast to the circulant matrix built from the scaler values, in the block diagonal 

form, the generating elements are matrices of size . Consequently, the product 

of the block circulant matrix is a  by  matrix where its elements are the 

matrices of size . 

For the case of bladed disk systems, if each sector's mass and stiffness matrices are 

presented in its local coordinate system, the resulting matrices will be in the shape 

of a circulant matrix. The mentioned notion is of especial importance for two 

reasons: being in the shape of a circulant matrix is very advantageous sine Fourier 

matrices can easily diagonalize circulant matrices. Second, the matrix will take the 

circulant form only when all the sectors are described in their local coordinate 

systems. The latter is essential to note later in the back transformation of the cyclic 

coordinates to physical coordinates. 
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Fourier Matrices 

As asserted in the previous section, circulant matrices can be diagonalized using 

Fourier matrices [33]. It is vital to diagonalize the circulant matrices corresponding 

to the bladed disk systems. Diagonalization provides the possibility to break down 

the large element matrices into several (equal to the number of harmonic indices) 

smaller matrices. 

There are real and complex forms of the Fourier used for the real and complex 

formulation of the cyclic symmetry correspondingly. Both formulations are given 

below. 

  2.17 

In the above equation ,  , and m and n are the row and column 

indices, respectively.  

The real form of the Fourier matrix introduces the concept of single and double 

harmonies. Although their complex counterpart, real and complex harmonies, have 

almost equivalent properties, they do not interfere with the calculation of the 

complex form. As a result, the implementation of the complex formulation is more 

convenient. The downside of using the complex form is dealing with complex 

matrices. Nevertheless, for the case of the real formulation, the formulation needs to 

be applied on single and double harmonics separately. Thus, the formulation and 

coding process is a bit more cumbersome for the real form of the cyclic formulation. 

The definition of the single and double harmonies finds their origin in the vibration 

pattern of the cyclic symmetry analysis. Single harmonies refer to the vibration 

pattern at which all the blades vibrate in the same phase or precisely in the opposite 

phase. Since in the case that the bladed disk assembly is composed of an odd number 

of blades, all the blades cannot vibrate in out of phase mode, for the systems with an 

odd number of blades, there is only one single harmonic. Consequently, the number 

and type of the harmonies are as follows 



 
 

15 

  2.18 

 is the set of harmonic indices, and  is its maximum value. 

  2.19 

 

  2.20 

In the above expression, , and  are the set of single and double harmonies. 

Now that a description of single and double harmonies is illustrated, the real form of 

the Fourier matrix can be easily derived as follows 

  2.21 

 

  2.22 

 

 

 

2.23 

In the above equation,  is the row indices that take values from 1 to . It should be 

noted that the  vector exists only in case of  to be even. The matrix illustration 

of both real and complex form of the Fourier matrices are given below. 

  2.24 
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2.25 

In the real formulation expression,  is the harmonic index number which also 

corresponds to the column index of the matrix, and . 

When circulant matrices are projected on the Fourier matrices, diagonal or block-

diagonal matrices are obtained. 

  2.26 

For single harmonic indices ( ) as described earlier the  elements in the above 

equation will be real-valued. For the double harmonic indices, on the other hand,  

will be complex. 

For the real case: 

  2.27 

Where, 

  2.28 
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2.1.2 Real Form of Cyclic Symmetry Formulation 

In order to apply cyclic symmetry on the bladed disk system, the mass and stiffness 

matrices of the fundamental sector are extracted from the commercial finite element 

software. Next, according to the equation sort information, the coordinates are 

reordered in the following format. 

  2.29 

The formulation is the same for the mass matrix unless otherwise mentioned. 

As mentioned previously, a vital rotation is needed for the dependent coordinates to 

be transformed into the independent coordinates. 

  2.30 

 

After the rotation, the element matrices are ready to be coupled for each harmonic 

index. The coupling procedure will follow the conventional approach of satisfying 

the compatibility condition of the cyclic interfaces. The critical issue here is to 

consider double matrices for the double harmonies. Consequently, the element 

matrices can be obtained as follows. 

  2.31 

 

  2.32 
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in the above equation  are the element matrix representation required for the 

coupling process. The  symbol is used to distinguish the matrices before and after 

the coupling process and to avoid any misunderstanding. The compatibility 

equations can be written. 

For single harmonies, i.e.,  

  2.33 

And for the double harmonies, i.e.,  

 
 

 
2.34 

In the above equations,  is the phase angle corresponding to the harmonic number 

( ). 

The coupling procedure for the single and double harmonies can be conducted 

through matrix multiplication. 

For single harmonies, i.e.,  

  2.35 

And for double harmonies, i.e.,  

 

 

2.36 
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After this final coupling process, the mass and stiffness matrices for the coupled 

system for each harmonic index can be found by projecting the matrices onto the 

cyclic coupling basis, i.e. , and  

 
 

 

2.37 

 

2.1.3 Complex Form of Cyclic Symmetry Formulation 

The complex form of the cyclic symmetry formulation is more straightforward than 

the real form. The coordinate transformation of the dependent and independent DOFs 

is also required here, and the procedure is the same as the real form. Therefore, the 

formulation here is based on the matrices derived from Eq. 2.30. 

In contrast to the real form, there is no distinction between the single and double 

harmonies. This facilitates the coding and mathematical representation of the 

formulation.  

  2.38 

The coupling procedure will take the following form. 

  2.39 

It can be understood from the above equation that, depending on the value of the 

The resulting coefficient may become a complex number. More precisely, the 

coefficient for the double harmonies will become complex, while the single 

harmonic indices will result in a real coefficient. 

The coupling procedure can be achieved by the matrix multiplication as follows. 
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  2.40 

 

  2.41 

It is also worth mentioning that the  is a complex conjugate transpose operator. 

2.2 Reduction Based on CMS Methods 

In this section, a comprehensive description of the mathematical formulation of the 

different reduction techniques is provided. Subsequently, the novel modified mixed 

method (MMXD) is formulated. All the reduction methodologies follow the same 

reduction pattern. That is to divide the fundamental sector into a blade, and disk 

components reduce the size of each component and finally assemble them again to 

reach the fundamental sector. The procedure of coupling sectors to build the entire 

bladed disk system (which in this model is composed of 26 sectors) is carried out 

using the cyclic symmetry property Figure 2.1. Thus, the boundary DOFs of the 

neighbor sectors are not included in the final DOFs. 
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Figure 2.2. Reduction procedure for the tuned bladed disk system

2.2.1 Static and Dynamic Modes Required for the Reduction Basis

Both fixed and free-interface reduction methods use two sets of vectors to 

approximate the mass and stiffness matrices of a substructure, namely static and 

dynamic vectors. Static vectors are the static deformation shape of the structure to 

some external loading. On the other hand, dynamic modes are the vibration modes 

shapes of the structure. Free-interface reduction methods use attachment modes and 

free-interface vibration modes, whereas fixed-interface reduction methods use 

constraint modes and fixed-interface vibration modes.

Static Constraint Modes

Static constraint modes ( ) are derived by neglecting the dynamic motion of the 

system. The modes are physically perceived to be the deformation shape of the 

structure while unit displacement is applied to one of the boundary DOFs, whereas 

Reduction Coupling

Cyclic 
Symmetry Decoupling
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other boundary DOFs are held fixed. The first step in calculating the static constraint 

modes is dividing the component DOFs into internal ( ) and interface or boundary 

( )DOFs. 

  2.42 

 

 , 2.43 

Where  and  are displacement vectors of interior and boundary DOFs, 

respectively, and  is the stiffness matrix of the fundamental sector.  is the 

static condensation matrix introduced in [36]. The constraint modes can also be 

calculated around a specific frequency (see [37]). 

Attachment and Residual Attachment Modes: 

As a counterpart of the constraint modes, the attachment modes are a static set of 

vectors that, along with the free-interface vibration modes, build the reduction basis 

for the so-called free-interface reduction methods. The calculation of the attachment 

modes and the free-interface vibration Modes does not include partitioning DOFs of 

a substructure. Consequently, free-interface reduction methods are generally of great 

interest for experimental analysis since their validation is much easier [38].  

In order to calculate the attachment modes, boundary forces are added to the set of a 

 

  2.44 

Where  is the vector of boundary forces. The static equation of motion can be 

derived as follows:  

  2.45 

In the above equation,  is the stiffness matrix of the component, and  is a Boolean 

matrix picking the boundary DOFs from the total DOFs of the component. By 
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considering no external forces (other than boundary forces, i.e.,  = 0), the 

displacement field of the structure can be calculated in terms of a part of the 

flexibility matrix and interface forces: 

  2.46 

It is noteworthy that the calculation of the  is the main culprit of the high 

computational cost of the free-interface methods. Since there are no displacement 

constraints on the stiffness matrix, it will become semi-positive definite in some 

scenarios, and its determinant will become zero, making the direct inversion nearly 

impossible. A method to calculate the  matrix when rigid body modes are present 

is given in [38]. 

Attachment modes can be refined by subtracting the information included in the 

corresponding vibration modes. The idea becomes apparent by expanding the 

flexibility matrix by the modes shapes of the system. This can be achieved by setting 

the  term in the receptance matrix to zero: 

  2.47 

 

  2.48 

 is the number of retained vibration modes. Despite the normal attachment modes, 

the residual attachment modes are orthogonal to the retained vibration modes.  

Vibration Modes 

In order to account for the dynamic motion of the structures, vibration modes are 

added to the reduction basis. The actual means of reduction takes place in including 

vibration modes, where a modal truncation is applied to include a much smaller set 

of vibration modes. This eventually reduces the size of each component.  
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Vibration modes are, in fact, eigenvectors of a generalized eigenvalue problem of  

and  matrices: 

  2.49 

Fixed-interface vibration modes ( ) are calculated with the fixed displacement 

boundary DOFs of the substructure, whereas the free-interface vibration modes ( ) 

are derived with free displacement boundary DOFs. One crucial problem here is the 

computation of the rigid body modes. If the substructure, other than the boundary 

with the neighbor substructure, has no other ground connection, then the calculation 

of the free-interface vibration modes includes the computation of the rigid body 

modes. Rigid body modes are the eigenvectors corresponding to the zero eigenvalues 

in the mentioned generalized eigenvalue problem however, calculating the 

eigenvalue problem when rigid body modes exist can be time-consuming. A 

computationally friendly method to calculate the rigid body modes can be found in 

[38]. 

2.2.2 Reduction Methods Based on CMS 

Craig-Bampton Method: 

In the Craig-Bampton method, the procedure begins with partitioning the 

displacement DOFs of the substructure to the boundary and inner DOFs. Considering 

the basic vibration equation of a component as  

  2.50 

Subsequently, as described in [6], the inner DOFs are approximated as follows: 

  2.51 

Therefore, the Craig-Bampton (CB) reduction matrix can be derived by adding the 

boundary displacement DOFs to the above equation. 
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  2.52 

In the above equation,  is a truncated set of fixed-interface vibration modes as 

described previously.  

The reduced mass and stiffness matrices of the substructure can be derived by 

projecting the mass and stiffness matrices to the reduction basis. 

  2.53 

The mass matrix will be projected to the reduction basis just like the stiffness matrix. 

Finally, Eq. (2.44) becomes:  

  2.54 

After reducing each component, the retained displacement boundary DOFs of each 

component can be used to reconnect the component. The assembly procedure in the 

Craig-Bampton method follows a very straightforward superelement procedure 

typical of finite element analysis. The reason is the availability of the displacement 

DOFs of each component at the interface. This feature makes the use of the Craig-

Bampton method user-friendly, an advantage that draws the attention of many 

scientists. On the other hand, it can be understood from the formulation that if one 

wishes to change the boundary DOFs, the whole eigenvalue problem (which is the 

most time-consuming part of the calculation) should be calculated again. Another 

downside of Craig-Bampton is the difficulties in the experimental validation of the 

fixed-interface vibration modes. 

Rubin Method: 

Rubin's method belongs to the free-interface reduction group. It will be shown that 

free-interface vibration modes and residual attachment modes are going to be 

implemented to build the reduction matrix in this method, and the displacement of 

the structure is represented by a combination of static and dynamic motion. The static 

motion stems from the deformation of the structure due to the external forces applied 
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at the boundaries ( ); the dynamic motion is derived by a modal superposition of 

the free-interface vibration modes of the substructure. 

The procedure starts with adding a set of static equations to the vibration equation of 

motion. 

  2.55 

Now the intact displacement field of the substructure can be approximated as 

  2.56 

In the above equation,  is the retained number of the vibration modes. Finally, the 

first Rubin reduction matrix can be calculated as: 

  2.57 

At this point, one may realize that displacement boundary DOFs are not explicitly 

available after the modal truncation. Instead, boundary forces provide the 

information required at the boundaries. Although the coupling of the structure by the 

use of the boundary forces is applicable at this point, in the Rubin method, a second 

transformation is proposed to reintroduce the displacement boundary DOFs. 

Considering Eq. (2.48), one can write: 

  2.58 

By calculating the  term and reinterring it to the Eq. (2.49), the second Rubin 

transformation matrix is derived: 
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  2.59 

Finally, one can write 

 

 

2.60 

After the second transformation, the coupling procedure will follow the 

straightforward superelement method, well known in finite element analysis. 

Dual Craig-Bampton Method 

As mentioned in the previous section, one may wish to couple the structures using 

the interface forces. This is the main idea of the Dual Craig-Bampton method [39].  

The principal reduction and approximation are the same as the Rubin method, but an 

equation is added to the second row of Eq. (2.43). Adding the mentioned row of the 

equations enhances symmetry and enforces compatibility during assembly[38].  

  2.61 

The assembly of the substructure through the boundary forces is achieved utilizing 

from 

the standard primal assembly is given in [40].  

In the first step, the signed Boolean matrices ( ) should be derived for each 

component (see [40]). Subsequently, mass and stiffness matrices of the substructures 

are mounted in the following manner: 

  2.62 
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Subscripts in the above equation indicate the blade and disk components. Finally, the 

DCB transformation matrix can be derived. 

 

 

2.63 

In Eq. (2.55), the  term stands for the global forces at the boundary. The final step 

is to project the mentioned stiffness and mass matrices in Eq. (2.43) into the DCB 

reduction basis. 

  2.64 

The mass matrix is also projected to the reduction basis in the same manner as the 

stiffness matrix.  

Mixed-Interface Method 

- [38] is intended 

here, which is a mixture of the Craig-Bampton (as a fixed-interface) method and the 

Dual Craig-Bampton (as a free-interface) method. The motivation behind the 

introduction of a Mixed-interface method is the fact that, for whatever reason, one 

may wish to use free and fixed-interface methods simultaneously to reduce the size 

of a component. That is to implement fixed-interface static modes to represent a part 

of the boundary and free-interface static modes for the other part. 

In this section, the criteria behind the selection of the fixed and free interface DOFs 

are the convenient coupling and elimination of the rigid body modes of the blade 

sector. Also, for comparing the forced vibration response of the structures in the 

shrouds section, the displacement of the shrouds DOFs are required. As a result, the 
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interface boundary between the blade and disk is represented by the free interface 

method (Dual Craig-Bampton in this case), whereas the shrouds DOFs are held fixed. 

To begin with, the displacement field of the substructure is partitioned into two sets: 

fixed boundaries ( ) and others ( ), boundary DOFs that are going to be 

represented by the Dual Craig-Bampton method are a subset of the ( ) since there 

is no need to partition the DOFs in the free-interface methods. Analogous to the Dual 

Craig-Bampton method, interface forces corresponding to the free boundaries ( ) 

are added to the total DOFs of the substructure: 

  2.65 

By adding the static equation of the motion to the dynamic set as the Dual Craig-

Bampton routine, the equation of the motion can be written as: 

 

 

2.66 

 in the above equation is the Boolean matrix picking the free-interface boundary 

DOFs from the set of  DOFs. Finally, the approximation will be carried out on 

the  DOFs. 

  2.67 

It can be seen that a combination of the flexibility ( ) and constraint ( ) static 

modes are used to build the reduction basis. The calculation of the modes follows 

the same procedure in the previous section. According to Eq. (2.59), the Mixed-

interface reduction matrix ( ) can be derived. 
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  2.68 

Since the blade-to-disk interfaces on both components were reduced in the same 

manner (Dual Craig-Bampton), the coupling procedure is the same as the Dual 

Craig-Bampton method. 

It should be noted that, by fixing the blade section from the shrouds, the component 

is no longer free-flowing, making the calculation of the reduced method much faster, 

as shown in the proceeding sections. 

Modified Mixed-Interface Method 

The introduction of the mixed-interface method paves the way to be more selective 

in choosing the reduction basis. One important criterion that can be considered in 

choosing the reduction basis is the vibration mode shape of the structure. It can be 

understood from the vibration behavior of the bladed disk assembly that the blade 

segment is more flexible than the disk segment. This phenomenon can be seen clearly 

in Figure 2.2 when the bulk of the energy and thus displacement is concentrated in 

the blade segment when the whole assembly vibrates in the first three natural 

frequencies. Consequently, the bladed disk system vibrates as if the disk segment 

vibrates with the free blade-to-disk interfaces, and the blade segment vibrates as if it 

is cantilevered from the blade root. Then it can be naturally desirable to reduce the 

disk segment as if no external force is exerted on it from the blade segment and, on 

the contrary, reduce the blade segment with its blade to disk interface held fixed [38]. 

In addition to the above-mentioned criterion, the assembly procedure and the 

availability of the displacements on shrouds DOFs are also of importance. A mixed 

reduction technique of the Rubin and Craig-Bampton method can meet all the 

aforementioned standards. A general combination of the Rubin and Craig-Bampton 

method has been introduced in the literature [41], and the formulation in this section 

is similar to the one mentioned. 
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Figure 2.3. First three vibration mode for tuned bladed disk system

Similar to the Rubin method described earlier, the transformation matrix here is 

composed of two steps. The first transformation is the same as the Mixed-interface 

method of the previous section. For the second step, the forces at the free interface 

boundaries are going to be transformed back to the displacement in a way that is 

explained in the Rubin method.

2.69

2.70

According to the Eq. (2.61) the second transformation matrix can be written as:

First mode Second mode Third mode
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 2.71 

 

  2.72 

 

  2.73 

 

  2.74 

 

  2.75 

Since the degrees of freedom in the blade to disk interface are transformed to the 

displacement DOFs (like the Rubin method), the coupling procedure of the 

component can be carried out in its standard superelement manner. 

 

2.2.3 Interface Reduction 

The previous chapter explains how components of a structure are reduced and then 

assembled again to build a reduced twin of the structure. One should note that the 

interface DOFs are all retained in the final product of the reduction technique 

regardless of the type of reduction method. Occasionally, components are coupled 

through large interface surfaces, including numerous interface DOFs. The interface 
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DOFs lose their importance after the coupling process, and keeping these DOFs 

becomes an unwanted effort, which decreases the efficiency of the reduction method. 

To address this problem, interface reduction techniques are mainly used to eliminate 

or at least reduce the interface DOFs.[42], [43] Thus, building more efficient 

reduction techniques which only carry the essential DOFs and some modal 

coordinates. The interface reduction techniques are usually used as a second 

reduction step in the reduction procedure of structures. 

Principally, interface reduction can be applied both on the substructure level and 

after the coupling of substructures [44]. Since the interface behavior is dependent on 

all components that it connects, it is evident that a priori interface reduction on the 

component level, in general, gives far less accurate results than when information 

from the assembled structure is used to reduce the interface DOF. Even worse, 

component-level interface reduction gives rise to non-conforming interfaces, similar 

to non-matching element shape functions, which in turn can cause so-called interface 

locking if the reduction bases are poor [44]. Hence, the component level reduction is 

not considered in this thesis.  

For the case of interface reduction after coupling components, there exist some 

alternatives as described below: 

 The most rudimentary approach is to consider the interface to act rigidly. 

Thus, its motion is going to be approximated by local rigid motion. The 

method, ,

deformation of the interface surface, making it possible to describe the 

interface by just six degrees of freedom [43], [44] 

 As an extension to the interface rigidification, one can use some vibrational 

mode shapes instead of a rigid shape in cases when the deformation shape of 

the interface is indispensable. The method is referred to as modal reduction 

of the interface, and it includes an eigenvalue problem that derives the 

vibration modes on the interface area. Subsequently, a truncated number of 

vibration modes are used to describe the interface motion. It should be noted 
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that the vibration modes are derived after the coupling of two substructures 

from the interested interface area in order to have a better approximation of 

the interface motion. At the same time, the interface rigidification method is 

more suitable for conducting on the component level. 

For the reasons given above and for the sake of brevity, only modal reduction of the 

interface is presented here. The interested reader, however, is encouraged to 

investigate the following articles for a more comprehensive description [45] [47]. 

 

2.2.3.1 Modal Reduction of the Interface 

The interface rigidification method may be sufficient for some unique geometries 

but generally is not accurate due to the oversimplification of the interface motion. In 

order to account for the interface deformation shape, a set of truncated static modes 

can be used instead of a rigid surface. The idea comes from observing that 

determining the interface behavior does not require in-depth insight into the 

[48]. Therefore, interface modes are calculated from the 

coupled systems' vibration analysis while a static condensation is made on the 

interface DOFs [46], [49]. 

To begin with, consider the vibration equation of motion after coupling two reduced 

components. 

  2.76 

In the above equation, subscript  denotes the DOFs on the interface, and  denotes 

the other degrees of freedom on the two substructures. Subsequently, the equation of 

motion is condensed on the interface DOFs by taking the interface portion of the 

equation. 

  2.77 
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It can be shown mathematically that,  and  are the static condensations for 

Rubin and Craig-Bampton methods [46]. This can be extended to the MMXD 

method case, sine the MMXD method is actually a generalization of Rubin and 

Craig-Bampton methods. Concretely, the interface modes are either static constraint 

modes or attachment modes. The above equation can be considered the assembled 

system interface while no vibration modes are included. The reason is that each 

component interface is actually computed using static interface modes. Therefore, 

the equation can be used to derive the interface's behavior by assuming zero external 

forcings. 

  2.78 

Here,  is the frequency, and  is the interface displacement mode. In line with all 

CMS reduction methods, the reduction is obtained by truncating the number of 

interface modes shapes. 

  2.79 

The interface reduction basis will take the form: 

  2.80 

The above formulation is the conventional interface reduction method by using 

modal truncation. However, one may notice that the interface reduction eliminates 

the coupling between the interface DOFs and the rest. In case that there is no actual 

coupling between these coordinates, the method gives accurate results (like the case 

in the Craig-Bampton method). However, if the coupling terms exist, the 

conventional formulation results in rigidification and increased natural frequencies 

[50]. Consequently, an improved formulation is given in this section based on fixed 

interface reduction that works well for all the reduction techniques. The proposed 

interface reduction method can be considered as an enhanced modal interface 

reduction method. 
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In this new formulation, the approximation for the interface behavior is derived using 

the approximation made in the Craig-Bampton method. By doing so, the 

intercoupling terms can be preserved on the final reduction product. 

  2.81 

 

  2.82 

By using the new approximation, the enhanced interface reduction basis can be 

derived as 

  2.83 

In the above equation,  superscripts denote the new interface reduction basis to 

distinguish from the conventional one. During this thesis, the proposed interface 

reduction is used for all of the interface reduction procedures. 

 

2.3 Mistuning Modeling 

In realistic turbomachinery systems, there are minor deviations in the geometrical 

properties of the sectors from the nominal designed system. These differences are 

mainly due to inevitable tolerances in manufacturing, non-uniform operational wear, 

and inhomogeneous material properties [51]. The mentioned circumstances cause 

mistuning phenomena, which means that the sector is not ideally tuned, and there are 

some discrepancies between them. 

Mistuning phenomena is of immense importance since it causes localization. In 

tuned systems where the sectors are ideally identical, the system poses multiple 

natural frequencies. This means that the energy will scatter among the sectors 

equally. The uniform distribution reduces the amount of energy concentration on a 
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single sector, and as a result, a lower deformation is imposed on each sector. 

Mistuning, on the other hand, breaks the symmetry down. In the mistuned systems, 

there exist one or some blades that are more flexible than the others. Thus, their 

vibration energy level place lower than the others. Consequently, vibration energy 

concentrates on the mentioned sectors, and higher deformation is imposed on a small 

number of blades. Localization phenomena can be hazardous when mistuning is not 

taken into consideration in the design process. 

 

Figure 2.4. Localization phenomena in mistuned bladed disk systems 

In order to build a more realistic model of the turbomachinery, mistuning should be 

included. There are several drawbacks of including mistuning to the equation of 

motion: 

 Including mistuning means that cyclic symmetry is no longer valid. With 

cyclic symmetry, the convenience it brought in terms of computational time 

and required storage is also gone for the mistuned analysis. 
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 Mistuning by nature is a random phenomenon. Randomness makes the 

modeling of the mistuning much more difficult. Typically, a statistical 

analysis like Monte-Carlo is carried out to account for the randomness in the 

mistuning patterns. Such statistical investigations usually require the solution 

of the problem millions of times for different mistuning patterns [52], [53]. 

The factors mentioned above make the reduced-order modeling much more 

demanding for the mistuned case. Therefore, more sophisticated reduction 

techniques are implemented to create efficient reduced-order models for mistuned 

cases. 

There are different methods to model mistuning [54], [55]. In fact, there are different 

mistuning patterns, some more severe than the others [56]. In this thesis and most of 

the research in the literature, mistuning is modeled as a structural modification to the 

tuned system [57] [59]. Specifically, for small mistuning, this geometrical 

modification is done by perturbating The multiplication of the 

stiffness matrix can imply perturbation on the E modulus by the ratio of change in 

the E modulus. Alternatively, this can be done by perturbing the natural frequency 

values correspondingly for modal reduction techniques. 

It should also be noted that mistuning is applied on the blade sector only, since the 

disk sector is usually one bulky structure and is less prone to the mistuning 

phenomena.  

Two randomly distributed mistuning patterns are considered in this study, namely 

, and . The former is a random mistuning pattern with a uniform distribution, 

and the latter is a random pattern with a normal distribution. The values of each 

pattern can be found in the below table. 
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Table 2.1 Young modulus ratio for two different mistuning patterns 

Pattern #1  Pattern #2 

Blade# ratio Blade# ratio  Blade# ratio Blade# ratio 

1 1.0980 14 0.9220  1 0.9285 14 1.0791 

2 0.8750 15 1.0030  2 1.1351 15 0.8668 

3 1.0750 16 1.0040  3 0.9775 16 0.7670 

4 0.8730 17 1.1270  4 0.9411 17 0.8551 

5 0.9470 18 1.1180  5 0.9706 18 1.0333 

6 1.0500 19 1.0580  6 0.9152 19 1.0391 

7 1.1120 20 0.9510  7 0.8879 20 1.0452 

8 0.8320 21 1.1250  8 1.2526 21 0.9869 

9 1.1720 22 1.0130  9 1.1655 22 1.0148 

10 1.110 23 0.9400  10 1.0307 23 0.9524 

11 0.9950 24 1.1760  11 0.8742 24 1.0862 

12 0.9740 25 1.1510  12 0.9134 25 0.8638 

13 0.9790 26 1.0200  13 0.9823 26 1.0455 

 

modulus to the E modulus of the tuned system. Since the stiffness matrices for each 

blade are in hand after the reduction procedure, the ratio will be multiplied directly 

by the stiffness matrix of each blade. 

  2.84 

In the above equation,  denotes the E modulus ratio given in Table 2.1. The  

subscript indicates the blade number. 
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CHAPTER 3  

3 CASE STUDIES 

In this chapter, first, a description of the finite element model is provided upon which 

the reduction procedure will be implemented. Subsequently, a reduction procedure 

is described for a bladed disk assembly where the cyclic symmetry property is held 

on both disk and blade segments. For the case of a tuned bladed disk system, different 

reduction methods are implemented to reduce the size of the system. In a later 

chapter, a comparative investigation of these methods is given. Finally, the last 

section is devoted to the mistuning case, where the cyclic symmetric property does 

not hold for the blade segments. The mistuning effect significantly increases the 

computational burden highlighting the need for a more sophisticated reduction 

strategy. For this case, a combination of all the methods seen in the previous chapter 

is capitalized on, to reduce the size of the problem efficiently. Assimilate to the tuned 

case, different strategies are implemented to this end, and a comparison study on the 

approaches is provided in the next chapter. 

3.1 Finite Element Model 

In order to implement the methods, a rather elaborate finite element model of a 

bladed disk system is created on a commercial finite element software. As depicted 

in Figure 3.1, the model includes 26 blades, and each is in contact with both adjacent 

blades (left and right) through the shroud sections. This contact area is especially of 

importance for energy dissipation and reduction of unwanted vibration amplitude of 

the blades.  
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Figure 3.1. Nodal information and interface description for fundamental sector 

The information on the model's element and material properties can be found in  

Table 3.1 Nodal information of the fundamental sector 

Model Bladed disk system with shrouds (number of blades = 26) 

Sector 
B-D 

interface 
shrouds 

D-D 

interface 

single 

blade 

single 

disk 

fundamental 

sector 

full 

model 

Size 

(DOFs) 
42 96 354 2,010 2,478 4,446 106,392 

 

After creating the model in the commercial finite element software, mass and 

stiffness matrices of the fundamental sector are extracted. It should be noted that 

mass and stiffness matrices are extracted in Harwell-Boeing format. Moreover, a 

mapping matrix is extracted along with the matrices, which indicates the order of the 

degrees of freedom in the extracted mass and stiffness matrices. A computer code is 

developed to read all this information and provide the fundamental sector's mass and 

stiffness matrices.  

shroud contact surface

blade to disk interface

complete bladed disk assembly fundamental sector

left cyclic DOFs, also 
disk to disk interface
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Figure 3.2. First twenty modes of the cantilever blade 
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Figure 3.3. First twenty modes of the disk 
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3.2 Tuned Bladed Disk System

For the case of the tuned system, cyclic symmetry plays a prominent role in the 

reduced-order modeling of the system. The cyclic symmetric assumption not only 

reduces the modeling burden of the system but also provides the possibility to reduce 

the computational cost even further in the case of engine order excitation. As shown 

in the second chapter, if a cyclic symmetric structure is exposed to a type of 

excitation called engine order excitation, which is the typical excitation for 

turbomachinery systems, only one of the harmonic indices is going to have a nonzero 

contribution. Therefore, the size of the problem reduces to the calculation of a single 

harmonic index. Regardless of the excitation force, the reduction problem in this 

section is confined to reduced-order modeling of the fundamental sector due to the 

cyclic symmetry. 

Figure 3.4. Reduction procedure based on CMS for tuned bladed disk system

To this end, all the reduction methodologies based on CMS are implemented in a 

procedure illustrated in Figure 3.2. That is to first reduce the entire bladed disk 

system (with 26 blades) to one fundamental sector for each harmonic of interest. 

Subsequently, reduce the size of the blade and disk component, which are 

represented in cyclic coordinates. Finally, the reduced components are assembled 

again to create the reduced fundamental sector. The procedure of coupling sectors to 

build the entire bladed disk system (which in this model is composed of 26 sectors) 

is carried out using the cyclic symmetry property (see Figure 3.2). Thus, the 

Reduction CouplingDecoupling
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boundary DOFs of the neighbor sectors (disk to disk interface) are not included in 

the final DOFs. 

Table 3.2 Reduction algorithm for tuned case 

Algorithm TUNED SYSTEM REDUCTION 

Input: mass and stiffness of fundamental blade and disk:  

Step 1: cyclic symmetry on disk:   

Step 2: reduce disk and blade segments by CMS: 

 

Step 3: coupling and analysis on harmonic level:  

 

 

3.2.1 Disk 

As it has been asserted, cyclic symmetry plays an important role in the reduction 

procedure of the tubed bladed disk systems. Thus, the first step toward the reduced-

order modeling of the disk sector is applying cyclic symmetry. In order to do so, 

first, the single disk sector coordinates are reordered in the manner shown below. 
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Figure 3.5. Disk segment of the fundamental sector 

  3.1 

Then, coordinates on the dependent cyclic segment should be transformed on the 

independent coordinates through a rotational transformation in the cartesian frame. 

  3.2 

Subscript  denotes the transformed dependent coordinates. The transformation 

matrix takes the form: 

  3.3 

In the above equation, the  operator corresponds to the Kronecker product, and  

is the rotation matrix in cartesian coordinates, both of which are described in chapter 

two. 

Independent nodes dependent nodes 
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Finally, the total transformation of the mass and stiffness matrices will be as follows 

  3.4 

Where the total transformation matrix will have the form 

  3.5 

And the mass and stiffness matrices can be projected by the transformation matrix 

as follows 

  3.6 

 

The next step is to couple the disk sector through different harmonies. Following the 

description given in the cyclic symmetry analysis, this procedure includes coupling 

dependent and independent boundaries for each harmonic index. In our case, since 

we have 26 cyclic sections, meaning that our entire model is comprised of 26 

identical sectors, we are going to have 14 different harmonies. For the sake of simple 

presentation, the complex form of the cyclic modeling is implemented here; 

however, the method is compatible with the real-valued counterpart. In contrast to 

the real-valued cyclic formulation where single and double harmonies exist, the 

formulation does not change for the single and double harmonies in the complex 

form. However, the matrices are going to be complex for double harmonies. 

  3.7 

In the above equation,  denotes the harmonic index and  is the phase angle 

corresponding the  harmonic. 

The coupling procedure can be implemented through a proper matrix projection. In 

that case, the projection matrix will take the following form 
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  3.8 

By projecting the transformed mass and stiffness matrices by the cyclic 

transformation matrix, 14 sets of mass and stiffness matrices are derived for each 

harmonic index. 

  3.9 

In this step, reduction methods based on CMS are going to be implemented for each 

harmonic index. The procedure starts by partitioning the disk sector into the disk-

blade interface and all other DOFs. Then, reduction methods based on CMS are 

implemented such that the blade to disk interface DOFs are considered the master 

DOFs. 

  3.10 

In the above equation, subscript  indicates the reduced coordinates, and  is the 

reduction basis derived by a CMS method. The resulting coordinate may differ based 

on the CMS method selection. In particular,  corresponds to displacement 

coordinates and  corresponds to forces on the blade to disk interface. A detailed 

description of the CMS methods and reduction basis is given in chapter two.  

Finally, for the disk sector, we are going to be left with a set of mass and stiffness 

matrices for each harmonic index which is reduced by a specific method. Later we 

will see how each method performs to describe the behavior of the disk sector. 

 

3.2.2 Blades 

reduction procedure for the blade section will follow exactly the same as the disk 

with one significant difference. That is, the cyclic analysis yield no change in the 
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blade sector. The reason is that there is no direct coupling between the blades, there 

will be no dependent and independent coordinates, and thus the cyclic transformation 

matrix will turn into an identity matrix. As a result, the mass and stiffness matrices 

for each harmonic index will equal the mass and stiffness matrices of the single 

sector. 

 

 

Figure 3.6. Blade segment of the fundamental sector 

 

Analogous to the disk section, the process of reducing the blade sector starts with 

CMS reduction.  

 

 

3.11 

shrouds

blade to disk interface
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Finally, after both blade and disk are reduced, they can be coupled by satisfying 

compatibility conditions on the blade to disk interface. The coupling will follow the 

description given in the second chapter. 

  3.12 

Mass matrix will follow the exact same procedure. 

 

3.3 Mistuned Bladed Disk System 

In the dynamic analysis of turbomachinery systems, one conventional assumption is 

to assume that all the components of the structure are ideally identical. The cyclic 

symmetry property provides a considerable reduction in computational burden. As 

we saw in chapter 1, assuming that cyclic symmetry holds, vibration analysis of the 

bladed disk assembly can be confined to a single cyclic sector. This means that the 

matrix size is divided by the number of blades in the system. Unfortunately, previous 

research has shown that analysis assuming cyclic symmetry struggles to provide 

accurate results in practice [60]. The reason is the slight deviation in material or 

geometrical properties of different sectors due to manufacturing defects. These small 

variations are especially important in the delicate blade parts and are usually referred 

to as blade mistuning. The mistuning phenomena destroys the cyclic symmetric 

property and results in different vibrational behavior of the bladed disk systems than 

the one predicted by the analysis considering cyclic symmetry. In particular, the 

differences in the physical properties of blades lead to slightly different vibration 

energy levels. Therefore, the vibration of the system may confine to one or two 

sectors and cause much large deformation in the mentioned sectors than the one 

predicted by the cyclic symmetric system. The mentioned phenomenon is called 

localization, and it is investigated extensively in the literature[61], [62]. 

Consequently, it stands to reason that the mistuning effect must be included in the 

analysis if realistic results are demanded. 
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Mathematical modeling of the mistuning phenomena and their pattern is arduous due 

to the random nature of mistuning. As a result, scientists conduct statistical analysis 

like Monte Carlo, which requires solving the problem millions of times with different 

random mistuning patterns to derive statistical data of the system response. The 

acquired data is further processed to safely predict the response of the mistuned 

bladed disk system. The required time and storage to handle a computation of such 

size are huge, indicating a need for an efficient means of reduction to be implemented 

on the mistuned bladed disk assembly model.  

 

Figure 3.7. Finite element model of the mistuned bladed disk 

In order to alleviate the high computational cost imposed by the circumstances 

mentioned above and simultaneously provide accurate results, all of the reduction 

methods and their combinations are considered to build an efficient reduction basis. 

The efficiency criteria in this study are accuracy and computational burden. Thus, 
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all the methods are going to be compared from two distinct perspectives, 

computational cost and accuracy in predicting modal characteristics of the system. 

Considering the specific geometry of the bladed disk systems, it is more efficient to 

decouple the blade and disk sector for two reasons. One, the disk sector still poses 

cyclic symmetry property, which can be capitalized on to reduce the computational 

burden of the disk segment. Two, the mistuning is implemented only on the blade, 

and a bladed disk assembly results in large redundant matrices. Consequently, the 

reduction is going to be implemented through the following procedure. 

 

Figure 3.8. Main reduction procedure for mistuned blade disk systems 

As illustrated in Figure 3.6, the entire bladed disk assembly is divided into a disk 

assembly that contains all disk sectors and a blade assembly that contains all the 

blade sectors. Subsequently, each assembly is reduced by means of CMS methods, 

and finally, the reduced substructures are coupled to build the reduced bladed disk 

model. In the proceeding section, the reduction procedure of each substructure is 

discussed. 

 

Disk assembly

Blade assembly

decoupling reduction coupling
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3.3.1 Blades 

Since there is no direct coupling between the blades, the reduction procedure will be 

the same as the tuned case. For the sake of brevity, here we use the results of the 

previous section. In the previous section, we saw that CMS methods are applied on 

the blade segment to provide a reduced twin model. Thus, in this section, the blades 

are reduced by the CMS method. 

  3.13 

The next step is to copy each blade sector to its position in the global cartesian 

framework. In this step, mistuning is going to be imposed on the blade segments. 

After the mentioned step, the total mistuned blade substructure is going to be 

available in global cartesian coordinates. 

  3.14 

The mass and stiffness matrices for the total blade substructure are going to be in a 

block diagonal form as follows: 

  3.15 

 

  3.16 

Note that in the above equation,  is the perturbation of the th blade stemming from 

mistuning.  is the transformation matrix, which transforms each blade from its 

location in the local coordinates to global coordinates. 
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3.3.2 Disk

In contrast to the blade segment, cyclic symmetry still holds for the disk sector. 

Taking advantage of the cyclic symmetry property is vital because it provides 

considerable reduction without introducing any error to the equation. For the 

reduction of the disk sector, three different approaches are proposed, each of which 

is going to be elaborated on in the following.

Figure 3.9. Different reduction procedures for the disk segment

The first approach is the most straightforward and conventional one. In this method, 

first, the vibration equation of the disk substructure is transformed on the cyclic 

coordinates, as it is described in chapter one. Concretely, by applying cyclic 

symmetry, the vibration problem of a single large disk substructure is going to be 

reduced to several much small vibration problems corresponding to each harmonic 

index as described in the cyclic symmetry chapter. One should note that coupling of 

the disk sector is carried out in cyclic analysis, and the harmonic indices do not 

correspond to the individual disk sectors. Subsequently, for each harmonic index, 

reduction

reduction

reduction

cyclic

cyclic

cyclic

coupling

coupling

coupling
Interface 
reduction
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reduction by CMS is implemented. For this part, both fixed and free interface 

methods are used as a means of reduction. Finally, the matrices of the disk sector for 

each harmonic index are assembled and transformed back to physical coordinates. 

Table 3.3 algorithm to reduce the disk sector 

Algorithm  

Input: mass and stiffness matrices of a single disk sector 

Step 1: cyclic symmetry:   

Steo 2: CMS reduction:  

Step 3: coupling and transforming back to physical coordinates: 

 

 

One drawback of the first method is that it becomes computationally expensive in 

the mistuning case. The critical point here is that, in contrast to tuned vibration, 

where only one harmonic index contributes to the structure's forced response when 

exposed to engine order excitation, for the mistuned case, all of the harmonic indices 

do contribute to the forced vibration of the system. Thus, one needs to reduce all 

harmonic indices and include all, to be able to derive realistic solutions. Since the 

size of the disk sector is relatively large, and reduction should be applied on all the 

harmonic indices, one may consider reducing the disk sector prior to the cyclic 

symmetry implementation. The mentioned notion is the main idea of the second and 

third approaches. 

 

For the second approach, first, the sector is reduced by CMS methods to be left with 

disk-to-disk interface DOFs, disk-to-blade interface DOFs, and modal DOFs. For the 

second and third approaches, fixed, free, and nixed-interface methods are used as a 
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means of reduction. Afterward, cyclic symmetry is carried out on the reduced disk 

sector, and finally, all harmonic indices of cyclic analysis are coupled and 

transformed back to physical coordinates. 

 

Table 3.4 algorithm to reduce the disk sector 

Algorithm  

Input: mass and stiffness matrices of a single disk sector 

Step 1: CMS reduction:  

Step 2: cyclic symmetry:   

Step 3: coupling and transforming back to physical coordinates: 

 

 

The drawback of the second approach is that, since CMS reduction is applied before 

cyclic analysis, the dispensable disk-to-disk DOFs are left on the final system. The 

unwanted interface DOFs hamper the approach's final step, which is coupling all the 

harmonic indices. Consequently, in the third approach, the enhanced interface 

reduction method introduced in chapter two is going to be implemented to reduce 

the disk-to-disk interface. 

 

Approach three follows the same steps as approach two until assembling all 

harmonies and transforming back to physical coordinates. Before the last step of 

approach two, the disk-to-disk interface is reduced by using the enhanced interface 

reduction technique in approach three.  
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Table 3.5 algorithm to reduce the disk sector 

Algorithm  

Input: mass and stiffness matrices of a single disk sector 

Step 1: CMS reduction:  

Step 2: cyclic symmetry:   

Step 3: perform interface reduction:  

Step 4: coupling and transforming back to physical coordinates: 

 

 

By introducing the interface reduction, the disadvantage of approach two is solved. 

The third approach is sought to be very efficient in terms of reduction. The 

performances of each approach are going to be tested in the next chapter. It should 

be noted that all the methods are compatible with all of the CMS reduction 

techniques. 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

In the previous chapter, the fundamental mathematics required for the reduction 

procedure of the structure are provided. Moreover, we have seen the different 

strategies to implement different reduction techniques on the specific geometry of 

the bladed disk system. 

In this chapter, a comparison is given for all the methods and approaches mentioned 

in the previous chapter. First, the cyclic symmetric formulation is put on a test. The 

results generated by the given formulation are compared with those derived from a 

commercial finite element software. The following section is dedicated to the results 

for the tuned bladed disk system. The focal point of this section is to make an 

assessment of the efficiency of different reduction methods. Finally, performances 

of different approaches, given in the previous chapter, are compared for the case of 

the mistuned bladed disk system. The reduction procedure is much more demanding 

for the mistuned bladed disk system, requiring a set of reductions in several stages 

and interface reduction. 

Table 4.1 Interface description by the CMS methods 

Method 

Blade disk 

B-D 

interface 
Shrouds 

B-D 

interface 

D-D 

interface 

CB Fixed Fixed Fixed Fixed 

DCB Free Free --- --- 

Rubin Free Free Free Free 

Mixed Free Fixed --- --- 

Modified Mixed Fixed Free Free Fixed 
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The reduction procedures mentioned in the previous chapter will be applied to the 

system substructure as follows.

The interface surfaces mentioned in Table 4.1 are demonstrated in the figure below

Figure 4.1. Disk to disk, shrouds, and blade to disk interface of the bladed disk 

assembly

In order to investigate the performance of the reduction techniques, the mass and 

stiffness matrices derived from each method are used for modal analysis. Natural 

frequencies, mode shapes, and acceptance are derived for each reduction approach 

in the manner described in the following.

Eigenvalue problem for the systems can be given as

4.1

In the above equation, is the natural frequency, and is the mode shape vector. 

The receptance matrix is derived by the modal superposition

4.2

Disk to Disk
interface Blade to Disk 

interface

Shrouds
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In the above equation, is the frequency at which acceptance is calculated, is the 

structural damping coefficient. The structural damping coefficient ( ) is sought to be 

0.01 throughout this thesis.

For the comparison of the mode shapes, MAC numbers are calculated as shown 

below.

4.3

4.1 Cyclic Symmetry Validation

In order to validate cyclic symmetry formulation, the cyclic analysis is carried out 

both on finite element software by using cyclic modeling and on MATLAB via the 

code generated following the given formulation. Figure 4.2 illustrates the natural 

frequency provided by two methods. The first ten natural frequencies for each 

harmonic index are derived to evaluate the cyclic symmetry formulation. The 

corresponding natural frequencies in each harmonic index are connected to each 

other to form the family modes.

Figure 4.2. Comparison of the natural frequencies obtained from cyclic formulation 

and finite element model

* FEM
O cyclic model on MATLAB
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It should be noted that cyclic symmetry does not introduce any approximation to the 

problem. As a result, natural frequencies obtained from the cyclic symmetry analysis 

exactly match the ones from FEM results. 

4.2 Tuned Bladed Disk System 

In this section, all the methods mentioned previously are implemented to reduce the 

size of an academic tuned bladed disk system. 

In the first step, a perception of the computational burden of each method is provided. 

As shown in Table 4.2, the computational burden of the RUBIN and DCB methods 

is significantly higher than other methods. One very important issue in the 

calculation of the reduction basis is the matrix inversion for deriving the static 

modes. As mentioned in the Attachment Modes section, in the case of a free-floating 

substructure, the computation of  would be computationally expensive. It should 

be noted that the disk component is fixed from the rotor connection DOFs, so even 

if the blade-to-disk connection DOFs are free (the case with Rubin, DCB, MXD, and 

MMXD methods), the substructure is not free-floating. However, the blade segment 

is supported only from the blade-to-disk interface. Thus, in the case of the Rubin and 

the DCB methods specifically, the inversion of the blade stiffness matrix is 

cumbersome. Consequently, the computation time for the Rubin and DCB methods 

is significantly higher than the others. Also, it should be noted that the calculation of 

the rigid body modes is required if a component is free-floating. Either directly from 

the eigenvalue problem or separately, the rigid body modes should also be calculated, 

which again increases the calculation burden for Rubin and DCB methods. In this 

study, the calculation of the rigid body modes is carried out by the eigensolver 

(which in this study is the ARPACK that is used by MATLAB software). 
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Table 4.2 Error criteria and computational time for different reduction techniques for 

tuned bladed disk system

Method Modes
Error% 

(1stfreq)

Error% 

(6thfreq)

Error% 

(9thfreq)

Comp.

Time

CB

B:12/D:1 3.14e-4 1.42e-1 5.22e-1

6.67s

B:12/D:3 2.28e-4 6.82e-2 4.53e-1

DCB

B:12/D:1 1.14e-3 4.86 10.6

45.35s

B:12/D:3 1.23e-3 1.6e-3 1.40e-2

RUBIN

B:12/D:1 1.22e-3 7.91e-2 8.49e-2

47.56s

B:12/D:3 1.21e-3 4.54e-4 2.31e-3

MXD

B:12/D:1 3.61e-4 4.87 10.8

6.57s

B:12/D:3 3.50e-4 7.04e-2 7.01e-1

MMXD

B:12/D:1 1.22e-3 8.10e-2 8.34e-2

6.78s

B:12/D:3 1.21e-3 2.32e-3 8.28e-4

For the second step, the modal information provided by each reduction method is 

going to be compared. The objective is to compare the accuracy of the methods in 

predicting the natural frequency and mode shapes of the system and the effect of 

using different dynamic and static modes on the reduction basis. Figure 4.3 depicts 

the accuracy of different methods in calculating the natural frequency of the system. 

The effect of adding more vibration modes to the reduction basis can be observed. It 
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can be seen that the first and third natural frequencies are not affected by the disk 

segment. However, as we move to the higher frequencies, adding more vibration 

modes to the disk sector results in more accurate solutions.

Figure 4.3. Accuracy comparison of different reduction techniques based on error 

criteria in predicting natural frequencies

One important phenomenon observed in this study is that the methods which describe 

the disk segment with fixed blade-to-disk boundary cannot improve their accuracy 

by adding more vibration modes to the reduction basis of the disk segment. This was, 

to some extent, expected since the vibration pattern of the disk segment in the entire 

system is closer to the vibration of the uncoupled disk segment, where it is free from 

the disk to blade interface. The latter can be observed by comparing the mode shapes 

of the disk component on both coupled and uncoupled systems. The same practice 

also gives invaluable information on the vibration pattern of the blade component. 
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As it is illustrated in Figure 4.4, in the first nine vibration modes, the disk sector is 

vibrating in a manner close to the first 3 to 4 vibration modes of the uncoupled disk 

with a free blade-to-disk interface. On the other hand, the vibration pattern of the 

coupled blade is better correlating with the vibration of the uncoupled blade, where 

the blade-to-disk interface is fixed. This information further cast light on the 

difference between the accuracy provided by the different methods. 

 

Figure 4.4. SUMAC comparison of the coupled bladed disk systems and blade nad 

disk sectors with fixed and free interfaces 

With a similar approach, the deformation shape of the shroud segment predicted by 

each method is compared. The mode shapes predicted by each method are compared 

in Figure 4.5. The MAC numbers are calculated on the shroud DOFs only. As a 
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result, the DCB method is not included in this comparison since shroud 

displacements are not included in its final DOFs (see the DCB section). From the 

Figure, it can be seen that the Rubin method outperforms all others. The MMXD 

method introduced in this paper performs better among the other three methods. 

 

Figure 4.5. Mode shape comparison of the different reduction techniques in terms of 

MAC number 

Finally, harmonic analysis is conducted to examine the accuracy of the reduction 

methods in predicting the Frequency Response Function (FRF). To this end, a unit 

harmonic force is applied to one of the shroud's DOFs. The response of the same 

DOFs to the external forcing is illustrated in Fig (6). It is evident from the figures 

that the MMXD method performs better than others in terms of FRF. 
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Figure 4.6. Frequency Response Function for a DOF on the shroud surface
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4.3 Mistuned Bladed Disk System 

For the mistuned case, as mentioned in the previous chapter, for the blade segment, 

only the MMXD method is used for reduction. However, since the performance of 

the MMXD method is not observed on the disk segment, all of the fixed, free, and 

mixed interface methods are used for the disk  reduction process. Specifically, this 

comparison study includes the Craig-Bampton, Rubin, and MMXD methods. The 

procedure that each reduction approach follows is depicted in the tables below step 

by step. 

Table 4.3 Computational time and the size of matrices for each step of 

 reduction 

 Time (s) Size (DOFs) 

Step 1: cyclic  70.25s 14*2478 

Step 2: CMS 
Rubin: 2,512s 

CB: 2,268s 
14*62 

Step 3: coupling 2s 1612 

 

Table 4.4 Computational time and the size of matrices for each step of 

 reduction 

 Time (s) Size (DOFs) 

Step 1: CMS 

Rubin: 8.76s 

CB: 5.46s 

MMXD: 4.68s 

770 

Step 2: cyclic 60s 14*416 

Step 3: Coupling 345.74s 10,816 
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Table 4.5 Computational time and the size of matrices for each step of 

APPROACH ( ) reduction 

 Time (s) Size (DOFs) 

Step 1: CMS 

Rubin: 8.76s 

CB: 5.46s 

MMXD: 4.68s 

770 

Step 2:cyclic 60s 14*416 

Step 3: IR 10.13s 14*72 

Step 4: coupling 4s 1,872 

 

For the first step, analogous to the tuned case, an implication of the total 

computational cost and the size of the final matrices of the different methods is 

provided. The final results are compared in Tabel 4.6. 

Table 4.6 Total computational cost and final size provided by the disk reduction 

methods 

Methods 
Total computational 

time (s) 
Final size (DOFs) 

 > 2,300s 1,612 

 

 R: 356.10 

10,812  CB:352.80 

 MMXD: 352.02 

 

 R: 22.33s 

1,872  CB: 19.03s 

 MMXD: 18.25s 

 

The above tables provide the computational cost required for each step. Moreover, 

the size and number of the matrices left after each step is given. For instance, in 
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, a cyclic analysis is first conducted, creating 14 matrices for each 

harmonic index. The total time for this process is around 70 seconds, and the final 

products are 14 sets of mass and stiffness matrices of size 2478 each. Subsequently, 

reduction based on CMS methods is used to reduce the size of every set of mass and 

stiffness matrices belonging to each harmonic index. Since the size of each set is 

relatively large (large for a single sector since no reduction has been made on it), the 

required time for this process is around 2,500 seconds. One crucial point here is that 

since the disk sector is not free-floating by nature (unlike the blade), the disadvantage 

of the free interface methods is alleviated. Concretely, free interface methods are not 

hampered by the rigid body modes and positive semi definiteness for the disk case. 

However, they still require more time than the fixed or mixed interface methods 

because they solve a larger eigenvalue problem (see chapter two). 

Figure 4.7. Accuracy comparison of the different reduction approaches for disk 

As it is evident in Figure 4.7. the interface reduction in the third approach does not 

introduce much error to the reductiobn basis and thus is very efficient. 

In Table 4.6, the total computational time and the final number of degrees of freedom 

are provided for each approach. These are critical information since an important 

part of the assessment is going to be determined based on this information. First, the 

computational cost of the first approach is incredibly high; however, this costly 

procedure is provided the best reduction, which means that this approach can be 

considered a reliable reference to calculate once and save the results. However, if a 
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modification is applied to the system recalculating the results using this method will 

become arduous. Next, the second method clearly can not compete with its rivals. It 

is apparent that this approach needs a more effective means of reduction. Finally, the 

third approach provides less computational time and acceptable final results. Matrix 

size is not as small as the first method but pretty close. Computational-wise, 

however, the third approach is by far more efficient. 

It should be noted that the desired output of the third approach comes with a price, 

and it is accuracy. More error is added to the equation since more reduction 

procedures are applied to the matrices. In the following subsections, the third 

approach's accuracy will be investigated. The reference for this investigation is the 

results from the first approach since only one step of the CMS reduction is applied 

in approach one, and this procedure has already been validated in the tuned bladed 

disk system section. 

Modal analysis is conducted to study the accuracy provided by the third approach. 

Mainly, the approach will be tested for the prediction of natural frequency, mode 

shapes, and receptance value. 

4.3.1 Zero Mistuning 

For the first step, no mistuning is applied to the matrices. In order to determine if the 

reduction procedure is valid for general cases without using mistuning. 

First, the natural frequencies provided by the reduction method are compared with 

the reference results. As mentioned, the reference results are derived from the first 

approach. As shown in Figure 4.7, overall, the  Rubin method provides slightly better 

results than MMXD and CB methods. Nevertheless, all three methods provide 

excellent accuracy such that the error criteria barely surpass the 1% error line in the 

first 800 natural frequencies. 
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Figure 4.8. Natural frequency comparison for the case with zero mistuning

Subsequently, mode shapes on the shrouded area are compared; these mode shapes 

are of special importance since they are required in the nonlinear analysis stemming 

from friction contact between shroud contact surfaces. 

Figure 4.9. Mode shape comparison for the case with zero mistuning

Below one can find the fist number of MAC number with the specified criteria. 
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Table 4.7 MAC number for the case with zero mistuning 

Method 0.99 0.95 0.9 0.75 0.5 

CB 79 137 137 191 191 

MMXD 79 137 137 192 495 

RUBIN 80 138 165 165 494 

 

The results of the mode shape comparison are depicted in Figure 4.8. In contrast to 

the typical structure, here, we observed a non-trivial pattern of the MAC numbers. 

Low MAC numbers tend to appear from lower mode shape numbers (but less 

frequently) to higher mode numbers. Whereas one expects to see a roughly uniform 

increase in the number of low MAC numbers, like in Figure 4.12. This happens as a 

result of the symmetry. It is of value to recall that the mode shapes considered in the 

reduction basis are derived from the vibration of a single sector, and truncation is 

made on them. Specifically for the disk sector where cyclic symmetry applies, modes 

shapes are derived for each harmonic index. When a mode shape of a complete 

system pertains to a harmonic index of higher modes than the one considered in the 

reduction, a low MAC number is derived. 

Finally, for the case with zero mistuning, receptance values are derived to visualize 

the reduced-order model's ability to derive the forced response function of the 

system. For this step, receptance is chosen over the conventional FRF plot to show 

that the reduction method is not dependent on the external forcing. That is to say 

that, no matter if the excitation is of the engine order type or any other form of 

harmonic excitation, the reduction method is capable of obtaining accurate results. 

Furthermore, since the mass and stiffness matrices are available after this reduction, 

any type of structural analysis can be applied to the reduced-order model. This can 

be considered an advantage for CMS methods over conventional modal reduction 

and superposition. One node is taken arbitrarily to drive the direct receptance 

coefficient for, as shown in Figure 4.9. 
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Figure 4.10. Node for which the receptance coefficient is calculated

The receptance results are shown in the below figure. As it can be seen, there is not 

a visible difference in the receptance results provided by the methods. 

Figure 4.11. Receptance comparison for the case with zero mistuning

For the following sections, different mistuning patterns will be applied to the blades, 

and the applicability of the reduction methods is going to be investigated.

Node to get receptance
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4.3.2 Mistuning Pattern #1

As for the case with zero mistuning, the investigation starts with comparing natural 

frequencies. Figure 4.11 illustrates the natural frequencies up to 800 provided by the 

three different reduction methods.

Figure 4.12. Natural frequency comparison for the case with mistuning pattern #1

At first glance, it can be concluded that all methods can accurately predict the natural 

frequencies of the mistuned bladed disk with perfect accuracy. However, the error 

criteria from the Rubin method remain under the two other methods for almost all of 

the natural frequencies. Another critical point is that the error criteria follow a steady 

increase along with the natural frequency number in contrast to the case with zero 

mistuning. The latter is customary for typical systems with no cyclic symmetry, 

suggesting that mistuning successfully has destroyed the cyclic symmetry. 

Subsequently, the mode shape comparison by means of MAC number is carried out. 

For this case, in line with the frequency error behavior, a steady decrease in the mac 

number along mode shape number is anticipated.
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Figure 4.13. Mode shape comparison for the case with mistuning pattern #1 

Table 4.8 MAC number for the mistuning pattern #1 

Method 0.99 0.95 0.9 0.75 0.5 

CB 581 710 767 767 767 

MMXD 581 689 773 774 790 

RUBIN 654 664 771 774 800 

 

The results shown in the figure above exactly match the anticipation made. As it is 

shown, the fluctuation of the MAC numbers is gone. Apart from this, the Rubin 

method outperforms others again in terms of mode shape accuracy. 

Finally, receptance values are derived. Figure 4.13 illustrates the results for the 

receptance matrices. It can be seen that for the mistuned case also, there are no visual 

differences between the reduced-order model results and reference values. 
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Figure 4.14. Receptance comparison for the case with mistuning pattern #1

4.3.3 Mistuning Pattern #2

Finally, another mistuning pattern is applied to the blades. This time a random 

mistuning with normal distribution is considered. A comprehensive description of 

each mistuning pattern is given in chapter two.

In line with the previous cases, first natural frequencies are compared in Figure 4.14. 

There is not a significant difference between this case and the previous one. Again, 

all reduction methods based on CMS can successfully determine the system's natural 

frequencies.

Figure 4.15. Natural frequency comparison for the case with mistuning pattern #2
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Figure 4.16. Mode shape comparison for the case with mistuning pattern #2 

 

The MAC number and receptance coefficient results are similar to the previous case 

and are illustrated below. These results, along with the ones obtained from the 

previous cases, testify to the validity of the reduced-order model. 

 

Table 4.9 MAC number for the mistuning pattern #2 

Method 0.99 0.95 0.9 0.75 0.5 

CB 547 761 766 766 800 

MMXD 547 561 562 784 792 

RUBIN 639 751 770 800 800 
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Figure 4.17. Receptance coefficient for the case with mistuning pattern #2 

From the obtained results, it can be concluded that the third approach is a valid 

reduced-order model for the system. For the disk segment, there were three options, 

as described at the beginning of this chapter. The results in this section suggest that 

the Rubin method outperforms others for the disk substructure. One reason for this 

behavior could be the large disk to disk interface. Since many DOFs are included in 

the disk to disk interface, fixing them results in inaccurate responses. 

The MMXD method has been shown to provide superior results for the blade sector. 

Thus, the third approach was coupled with a reduced blade system derived from the 

MMXD method. 

4.4 Monte-Carlo Simulation 

An efficient and accurate model for the mistuning bladed disk case is derived in the 

previous section. In this section, the reduced-order model is implemented in the 

Monte-Carlo simulation in order to identify the mistuning pattern and its effect on 

the deviation of the natural frequencies and receptance values. 

It should be noted that, since this analysis is only conducted to see the random nature 

of the mistuning phenomenon, only two nodes (6 DOFs) from the shroud surface are 

included in the final DOFs of the reduced model. Moreover, five modes from the 

blade substructure and two modes from the disk substructure are added to the 

reduction basis. This allows us to predict the results of the mistuned system up to 52 
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natural frequencies. Simultaneously, the size of the matrices is further reduced to 

enhance the computational process.

For a comprehensive statistical evaluation, two different patterns of the random 

numbers are considered. First, random numbers with uniform distribution with 

various deviation ranges. Second, random numbers with normal distribution and 

different standard deviations.

For each case of mistuning, a set of 26 random numbers (for each blade) are 

generated. Subsequently, mistuning is projected onto the blades according to the 

generated random numbers. A modal analysis is conducted to obtain the natural 

frequencies and the receptance values for the interested frequency range. The 

procedure is repeated for 100 different mistuning patterns to derive the statistical 

data.

Figure 4.18. Distribution of the first natural frequency of mistuned system with 

normal distribution
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Figure 4.19. Distribution of the first natural frequency of mistuned system with 

uniform distribution

For the first step, a histogram plot of the first natural frequency of the mistuned 

system is provided. As shown in Figure 4.17., the normal distribution of the 

mistuning pattern is also projected on the first natural frequencies of the mistuned 

case. The distribution pattern is also projected on the first natural frequency as 

expected for the uniform distribution Figure(4.18.).

It should be noted that the first 26 natural frequencies of the mistuned case indeed

pertain to the first natural frequency of the tuned systems since there is no longer 

symmetry in the system. Therefore there are 2600 values available for the natural 

frequencies.
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Figure 4.20. Probability distribution of the receptance values for mistuning pattern 

with normal distribution 

For the next step, the Mote-Carlo simulation is implemented to acquire a statistical 

sense of the receptance values around the first and the second tuned natural 

frequencies. To this end, the receptance value points are scattered on a plane with its 

x-axis containing the frequencies and its y-axis indicating the receptance values. 

Subsequently, a probability density function is fitted for the receptance values for 

each frequency step. Finally, a contour plot is derived, illustrating the concentration 

of the receptance values at specific points. 

Normal distribution with 1% SD

Normal distribution with 2% SD

Normal distribution with 3% SD
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Figure 4.21. Probability distribution of the receptance values for mistuning pattern 

with uniform distribution 

In order to better observe the mistuning phenomena, the receptance values around 

the first and second natural frequencies are plotted separately to avoid the gap 

between the frequencies. 

From Figures 4.19 and 4.20, it can be concluded that by increasing the SD values or 

the deviation range, the receptance values widely spread around the tuned case. The 

receptance points converge toward the tuned case solution by decreasing SD or 

tolerance. Moreover, it can be concluded from the plots that the vibrational behavior 

of the system around its tuned natural frequencies is more prone to perturbation with 

respect to mistuning. Conversely, the system tends to vibrate close to the tuned 

Uniform distribution with 1% tolerance

Uniform distribution with 2.5% tolerance

Uniform distribution with 5% tolerance



 
 

84 

vibration pattern in the frequency ranges away from the natural frequencies. 

Nevertheless, the range of deviation from the tuned case directly correlates with the 

values of SD or tolerance.  
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CHAPTER 5  

5 CONCLUSION AND FUTURE WORK 

In this study, reduced-order modeling for bladed disk systems is investigated. An 

outline for each chapter is presented below. 

Starting from chapter one, an introduction to the vibration analysis of bladed disk 

systems and a comprehensive literature survey on different approaches to tackle the 

problem of reduced-order modeling for both tuned and mistuned bladed disk systems 

are presented. 

Chapter two is dedicated to describing the different methodologies required for 

reduction procedures together with an instruction for mistuning modeling. First of 

all, the famous cyclic symmetry property is formulated. Both real and imaginary 

formulation of the cyclic symmetry is given together with a mode shape 

interpretation for both formulations. Afterward, the reduction techniques based on 

Component Mode Synthesis are described. Almost all of the conventional reduction 

techniques are formulated in this section, namely, Craig-Bampton, Rubin, Dual 

Craig-Bampton, and mixed interface. A new reduction setup is proposed for the 

specific geometry of bladed disk systems by comparing the reduction technique. The 

method is addressed as Modified Mixed Interface Method (MMXD). Moreover, a 

new interface reduction procedure is derived. The method extends the conventional 

 of interface DOFs,

more general case where there are DOFs other than interface in the matrices. Finally, 

the chapter includes mistuning modeling, which describes how mistuning is 

projected on the blade sectors. 

The next chapter mainly discussed the finite element model and the case studies. 

First, the properties of the finite element model for the bladed disk are given. 

Subsequently, a reduced-order model strategy for tuned bladed disk assemblies is 
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formulated. It is shown that the reduction procedure is confined to the reduction of 

the fundamental sector for the tuned bladed disk system since the expansion of the 

fundamental sector to the overall bladed disk assembly is carried out using the cyclic 

symmetry property. All of the CMS reduction methods are implemented to reduce 

the size of the fundamental sector, allowing to conduct a comprehensive comparison 

study. The following section is concentrated on the mistuned bladed disk assembly. 

For the specific case of mistuning where cyclic symmetry is no longer valid, the 

vibration analysis cost increases significantly; consequently, a much more 

sophisticated reduction procedure is required. The reduction of blades is analogous 

to the tuned case since there is no direct coupling between the blades. However, for 

the disk assembly, a combination of the cyclic symmetry property and CMS methods 

are considered to build an efficient reduction basis for the disk segment. 

Finally, results from modal analysis of both tuned and mistuned systems are 

presented in chapter 4. In addition, discussion and analytical intrepretation of the 

results are provided. For the tuned bladed disk system, an assessment is made of the 

most efficient reduction technique. Since the focal point of this research is to 

determine the extent of contribution of each substructure to the final vibration state 

of the assembly, a different number of modes are considered in the reduction basis. 

The following conclusions can be made from the comparative study of the tuned 

bladed disk system: 

 The type of vibration modes (whether they are derived with fixed or free 

interfaces), severely affects the final accuracy of a reduction technique. 

 Although the contribution of the disk vibration to the overall vibration of the 

system near its fundamental frequency is negligible; however, as soon as the 

6th or higher natural frequencies are reached, the effect of adding the vibration 

modes of the disk sector to the reduction basis can be clearly seen. 

 The free interface methods demonstrate outstanding accuracy; however, in 

the case of existing rigid body motion, the computational cost is significantly 

more. 
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Based on the observation from this part, a modified mixed interface method is 

proposed this new reduction setup consists of the conventional Rubin and Craig-

Bampton methods. The proposed method provides a possibility to include such 

vibration modes from both blade and disk sectors that can closely resemble the 

overall vibration pattern of the system and therefore build a more efficient reduction 

basis. It should be noted that including vibration modes into the reduction basis is 

the most straightforward way to increase the accuracy of the method. Thus, it is very 

important to consider such vibration modes that are better compatible with the 

physique of the geometry. The comparison studies showed that the Modified Mixed 

Method (proposed in this study) provides accurate results with relatively less 

computational effort. In particular, the mode shapes and frequency response 

functions on the shrouds DOFs which are of immense importance for nonlinear 

contact elements, are anticipated better by the proposed method. 

For the mistuned case, the blade segment is reduced by the MMXD method since it 

has been shown that the mode shapes considered by the MMXD method better 

resemble the vibration patted of the entire assembly. However, for the disk segment, 

three different reduction approach is proposed. It is shown that only one of the 

approaches is practically applicable for the reduction of the system, namely the third 

approach. This is mostly due to the fact that very large matrices are required when 

cyclic symmetry is no longer valid, and mistuning is taken into consideration. 

Consequently, more advanced reduction methodologies are needed to tackle the high 

computational cost. The third approach includes cyclic symmetry, CMS reduction, 

and a new interface reduction, all of which enable it to reduce the disk segment 

efficiently. The following are the most notable conclusions from the mistuned case 

study: 

 A proper combination of cyclic symmetry, CMS methods, and interface 

reduction can provide a very efficient reduced-order model that can reduce 

the computational time drastically while providing modal information with 

very high accuracy. 
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 For the disk sector, it is shown a prior that blade to disk interface is better to 

be reduced using free interface methods. In the mistuned case study, it turns 

out that the disk to disk interface is also better to be described with attachment 

modes. This conclusion came from the observation that the Rubin method 

performs better for the disk sector. 

 The reduction basis provided by the methods given can bring accurate results 

regardless of the mistuning type. 

 

5.1 Future Work 

In this thesis work, reduction methods based on CMS and their applicability to tuned 

and mistuned systems are tested. Here are some future works which can be done: 

 Rotodynamic effects, namely spin softening, stress stiffening, and Coriolis 

effect, can be included in the vibration analysis of the bladed disk system. 

Moreover, the vibration of the bladed disk mounted on a shaft can be 

considered for a more realistic vibration investigation. 

 The most time-consuming part of the vibration analysis is solving the 

generalized eigenvalue problem. A complementary part for the reduction 

measure is given in this thesis could be a more efficient algorithm to calculate 

the eigenvalue problem. 

 The modal results on the shroud surfaces provided by the reduction methods 

given in this thesis can be fed into a nonlinear solver in order to account for 

the nonlinearity of the contact surfaces. 
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