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ABSTRACT

OBJECT AUGMENTATION FOR OUT-OF-CONTEXT OBJECT
RECOGNITION

Eryüksel, Oğul Can

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sinan Kalkan

May 2022, 42 pages

The visual context in an image contains rich information about and between fore-

ground objects and the background. Deep learning models learn contextual informa-

tion implicitly in general. However, since training datasets generally do not include

all possible contexts, deep models tend to memorize contextual details. This can

lead to poor recognition performance when models are deployed in real-world appli-

cations since objects may appear in unexpected contexts or places. These types of

objects are called out-of-context objects. In this work, we propose an object-level

augmentation framework for more robust recognition of out-of-context objects. Our

proposed augmentation methodology applies object removal and object placement

operations to images during the training phase. Moreover, we proposed a contrastive

learning pipeline using object-level augmentations to increase performance further.

Our results show that, by using object-level augmentations and contrastive learning,

the out-of-context recognition performance of models can increase without losing

performance on regular images. To analyze the effectiveness of the proposed method,

we conducted a series of experiments for a multi-label image classification problem

on the MS COCO dataset. Moreover, we provide a tool to generate images with
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out-of-context objects using the proposed augmentation framework.

Keywords: Deep learning, Computer Vision, out-of-context objects, object removal,

object placement, augmentation, multi-label classification
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ÖZ

BAĞLAM DIŞI NESNE TANIMA İÇİN NESNE ÇEŞİTLİLİĞİ ARTIRIMI

Eryüksel, Oğul Can

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Mayıs 2022, 42 sayfa

Bir görüntüdeki görsel bağlam, ön plan nesneleri ve arka plan hakkında ve bunlar

arasında zengin bilgiler içerir. Derin öğrenme modelleri, genel olarak bağlamsal bil-

gileri dolaylı olarak öğrenir. Bununla birlikte, eğitim veri kümeleri genellikle tüm

olası bağlamları içermediğinden, derin modeller bağlamsal ayrıntıları ezberleme eği-

limindedir. Bu, nesneler beklenmedik bağlamlarda veya yerlerde görünebileceğinden,

modellerin gerçek dünya uygulamalarında düşük tanıma performansına yol açabilir.

Bu tür nesnelere bağlam dışı nesneler denir. Bu çalışmada, bağlam dışı nesnelerin

daha gürbüz bir şekilde tanınması için nesne düzeyinde bir çeşitleme çerçevesi öne-

riyoruz. Önerilen çeşitleme metodolojimiz, eğitim aşamasında görüntülere rastgele

nesne kaldırma ve nesne yerleştirme işlemleri uygular. Ayrıca, performansı daha da

artırmak için nesne düzeyinde çeşitleme kullanan bir karşılaştırmalı öğrenme hattı

önerdik. Sonuçlarımız, nesne düzeyinde çeşitleme ve karşılaştırmalı öğrenme kulla-

nılarak modellerin bağlam dışı tanıma performansının normal görüntülerde perfor-

mans kaybetmeden artırılabileceğini göstermektedir. Önerilen yöntemin etkinliğini

analiz etmek için, MS COCO veri setinde çok etiketli bir görüntü sınıflandırma prob-

lemi için bir dizi deney yapılmıştır. Ayrıca, önerdiğimiz nesne çeşitliliğini artırma
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yöntemlerini kullanarak bağlam dışı nesnelerle görüntüler oluşturmak için bir araç

sağlıyoruz.

Anahtar Kelimeler: Derin öğrenme, Bilgisayarlı Görü, bağlam dışı nesneler, nesne

çıkarma, nesne ekleme, çeşitleme, çok etiketli sınıflandırma
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CHAPTER 1

INTRODUCTION

1.1 Motivation: Out-of-Context Object Recognition

In computer vision problems, the importance of visual context in scene interpretation

tasks is well-understood [9]. Unfortunately, to what extent image recognition mod-

els (should) rely on context to produce predictions is unclear. An image recognition

model can easily be fooled when the context of a scene is different from the distribu-

tion of the training data (see Figure 1.1 for some examples). Therefore, it is crucial

to determine these contextual dependencies to better apply our models in real-world

scenarios.

The problem of poorer performance in situations such as those listed in Figure 1.1 can

be attributed to out-of-context data distribution. These types of data generally may not

be present in the training data. Furthermore, out-of-context data are not easy to find

in public datasets or may be hard to collect. Although we can increase the amount of

out-of-context data, finding data for all out-of-context scenarios is not possible.

Some examples for out-of-context images can be seen in Figure 1.1. In these out-of-

context examples, the trained models manifest the memorized object-scene relations.

For example, the couch and bed are misclassified as benches since they are in an

outdoor context. However, beds and couches are mostly found in indoor environments

in the training dataset.
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Figure 1.1: Out-of-context image samples [2]. Under each image, multi-label classi-

fication model, that trained without augmentations, predictions are placed.

1.2 Proposed Methods and Models

Robustness against out-of-context data is an important challenge for many real-world

applications. To address this for object recognition, we propose a method that can

automatically remove and add random objects to the scenes, unlike image-level aug-

mentations that perform transformations at the image level. With these augmenta-

tions, we can increase the generalization performance of a Deep Learning Model

without sacrificing performance on original scenes.

Object-level augmentations consist of two object-level transformations:

1. Object Removal: Object removal augmentation is applied with a user-defined

randomization probability as follows:

(a) Extract the segmentation map and select the segment of an object.

(b) Then remove corresponding pixels of the selected object from the scene.

(c) Apply an image in-painting method to fill in the deleted pixels according

to the background and the other objects in the scene.

2. Object Placement: Object placement augmentation is applied again with a user-

defined probability as follows:

(a) Take a segment for an object from a random image in the dataset.

(b) Then paste the pixels of the selected object to a random location in the

target image.
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(c) Optional: While pasting objects, apply scaling, rotation or color change

on the object pixels.

To evaluate the effectiveness of our method, we conduct experiments with a multi-

label classification (object recognition) problem. For this, we have used the MS

COCO Dataset [10]. To be able to conduct extensive experiments, we have utilized

a mini version of the COCO Dataset [11], which is a carefully chosen subset of the

original dataset that reflects the methods’ performances on the original dataset. We

have converted the COCO mini-train dataset to a multi-label classification dataset,

having a label (tag) for each object category in the scene.

1.3 Contributions of the Thesis

Our contributions are as follows:

• Object-level augmentation for increasing the generalization performance of

deep networks for out-of-context object recognition examples. Although ob-

ject removal [12] and object placement augmentations [7], [13] are used in the

literature separately, their combinations are not investigated for object recogni-

tion in the literature to the best of our knowledge.

• Applying geometric (rotation, flipping, translation etc.) and color (Gaussian

blur, channel shuffle, color modifications etc.) transformations for object-level.

• A contrastive learning approach using our object-level augmentations to learn

more robust representations for better performance on out-of-context objects.

• A new dataset of out-of-context images, constructed from the MS COCO vali-

dation 2017 dataset using our object placement augmentations.

1.4 The Outline of the Thesis

Chapter 2 reviews the related work and provides the background for the thesis re-

search problem. In Chapter 3, we present our object-level augmentation pipeline in
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detail. Furthermore, the details of the multi-label classification model are explained

in Chapter 3. Then Chapter 4 describes our experimental setup, the experiments, and

the results. Finally, Chapter 5 concludes the thesis with a summary and a discussion

of limitations.

4



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Out-of-Context Object Recognition

Visual context is a rich source of information about how the scene and objects are

related. This relationship can be between the relative positions of objects or where

they are located in the scenes. Some objects may be more likely to coexist in the same

environment, e.g., trees and birds. Furthermore, particular objects are more likely to

coexist with a special relationship in specific environments, like cars on the road.

Objects that are in different environments or in combination with different objects

than they usually should be are called “out-of-context” objects [3]. Recognizing out-

of-context objects is generally more challenging than recognizing in-context objects

since recognition models “learn” relations between context and objects. Increasing

the recognition performance on out-of-context objects provides an important step for

solving real-world problems more efficiently.

Deep neural network models can quickly memorize information between objects and

the scene context. Furthermore, they tend to memorize contextual information be-

tween objects that are seen together often. Object removal augmentations may help

models overcome these types of situations. For example, Shetty et al. [12] showed

that the object removal approach could increase the robustness of model predictions

in out-of-context object conditions.

There have been many studies focusing on out-of-context object recognition. For

example, Choi et al. [3] proposed a method to identify out-of-context objects and

scenes. Their method relies on using contextual relationships between objects. They

have created a scene-object relation graph for each scene and built a model that can
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use such a graph, as seen in Figure 2.1.

Figure 2.1: Scene-object context relation graph mechanism of Choi et al. [3] (Image

taken from [3]).

Shetty et al. [12] used data augmentation based on object removal to investigate the

nature of context relation of objects for semantic image segmentation and classifica-

tion problems. Their approach showed that object removal-based data augmentation

could increase accuracy on out-of-context conditions without compromising perfor-

mance on common data scenarios.

Divornik et al. [13] utilize instance segmentation annotations in the augmentation

pipeline. They used visual contextual information in an image to find an appropriate

location while placing an object. They show that with the help of visual contex-

tual modeling, object placement augmentations can increase mean average precision

(mAP) for object detection problems.

Ghiasi et al. [7] proposed a simple copy-and-paste data augmentation scheme to

increase accuracy, for instance segmentation problems. Their method copies random

instances to the target image. By applying these augmentations, they have improved

the mean average precision (mAP) score on the MS COCO dataset.

Ntvalies et al. [14] proposed a framework for semantic scene editing to add, manip-

ulate or erase objects. Their method depends on Generative Adversarial Networks

(cGANs) to edit images. This type of image editing is getting more and more widely

used.
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2.2 Deep Image Classification

Image classification is one of the most known and studied problems in Computer Vi-

sion. The image classification task aims to recognize the foreground objects in the

scene. Deep Learning based approaches have become very popular and dominant in

Computer Vision after the seminal AlexNet model [15] achieved incredible perfor-

mance improvement on ImageNet Classification Challenge [16]. After the extraor-

dinary success of the AlexNet, better, more complex, and more robust Deep Neural

Network architectures are proposed. Even today, new architectures appear in litera-

ture, pushing the state-of-the-art performance on the ImageNet challenge. However,

out-of-context prediction problems have not been sufficiently studied or addressed,

even with the most complex model architectures.

2.2.1 Multi-label Image Classification

In conventional image classification, images contain only one label. On the other

hand, scenes may have more than one label in multi-label image classification. There-

fore, multi-label classification can be considered an extended version of the classifica-

tion problem. Although the same network architectures may be used for multi-label

classification, some changes need to be applied in practice: For example, the loss

function and the evaluation metrics should be changed for multi-label classification.

2.3 Image Augmentation

Deep Neural Networks have accomplished astonishing results in Computer Vision

tasks. However, they generally depend on big data to achieve remarkable perfor-

mance. Unfortunately, a limited amount of labeled data is available for some Com-

puter Vision tasks. Also, it can be tricky (or impossible sometimes) to increase la-

beled data. To overcome these issues, data augmentation methods are generally used.

Moreover, data augmentation is a beneficial method to increase the generalization

of deep models. With data augmentation, Deep Neural Networks can perform more

robustly in real-world conditions [17].
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In this section, different image augmentation strategies are explained.

2.3.1 Image-Level Augmentations

Image-level augmentations are transformations that modify color, orientation, size,

etc. Examples include horizontal/vertical flip, rotation, random cropping, color space

transformations, noise addition, etc. Image-level augmentations are very popular and

widely applied in Computer Vision problems. They are accommodated to increase

data diversity and generalization. In Figure 2.2, various widely-used image-level

augmentations are visualised.

Figure 2.2: Some image-level augmentation examples (Image taken from [4]).
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2.3.2 Patch-Level Augmentations

Patch-level augmentations aim to alter or transform patches in images. Erasing ran-

dom patches from an image [5], and copying & pasting random patches to an image

[6] are just two examples of patch-level augmentations. Patch-level augmentations

are successful in reducing model overfitting. Also, they are beneficial in increasing

the robustness of occluded objects. In Figure 2.3, various types of patch erasing aug-

mentation scenarios are visualized. For particular types of problems, different erasing

strategies may be applied.

Figure 2.3: Different type of patch erasing augmentations (Image taken from [5])

Copying and pasting random patches are useful to increase model accuracy for clas-

sification problems. Moreover, they are beneficial in making models more robust

to adversarial attacks. Examples of copy-paste patch augmentations can be seen in

Figure 2.4.

Figure 2.4: Resulting examples for copy-paste patch examples (Image taken from [6])
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2.3.3 Copy-Paste Object Augmentations

Copy-paste object augmentations differ from patch-level augmentations in that copy-

paste augmentations focus on the objects to augment. They do not copy-paste random

patches but random objects to scenes. Ghiasi et al. [7] used copy-paste object aug-

mentations for instance segmentation problem. They showed that copy-paste object

augmentations are extremely useful for increasing rare class prediction accuracy. In

Figure 2.5, their proposed copy-paste augmentations scheme can be seen.

Figure 2.5: Object copy-paste augmentations (Image taken from [7])

2.3.4 Object Removal Augmentations

Object removal augmentations can be considered a combination of two tasks: Extract-

ing the desired object area from the image and in-painting the pixels of the removed

object in the image [12]. Segmentation (or instance segmentation) models can be

used to extract a desired object’s pixels. Also, if dataset annotations contain seg-

mentation maps, they can be used directly. On the other hand, filling the gaps in the

image after object removal is a more challenging task. Gaps must be filled realisti-

cally. Otherwise, some bizarre artifacts may occur in the scene, leading to undesired

performances for a model. To address in-painting, several network architectures are

proposed in the literature [18, 19, 20, 21].
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2.4 Discussion

As seen in the detailed literature review above, object-level augmentation strategies

are not exploited sufficiently well for computer vision problems. Object-removal [12]

and simple object placement [7] augmentations were utilized but only independently.

However, to the best of our knowledge, no work has addressed combining both object-

level augmentations – see Table 2.1 for a comparison. In this thesis, we studied the

effects of object-level removal and placement augmentations separately and together.

Moreover, we integrated image-level augmentations into object-level while applying

placement augmentations. Furthermore, we proposed a contrastive learning approach

to utilize object-level augmentations more effectively.

Table 2.1: Comparison between applications of different types of augmentations.

Image Level, Obj. Rem., Obj. Place., Obj. Trans. columns are explain image level,

object removal, object placement and object-level transformation augmentations are

used or not respectively.

Augmentation Type

Study Image Level Obj. Rem. Obj. Place. Obj. Trans.

Krizhevsky et al. [15] ✓ ✗ ✗ ✗

Shetty et al. [12] ✗ ✓ ✗ ✗

Ghiasi et al. [7] ✗ ✗ ✓ ✗

Ours ✗ ✓ ✓ ✓
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CHAPTER 3

PROPOSED METHOD: OBJECT-LEVEL AUGMENTATION

Object-level augmentations have been attracting increasing attention in the literature.

These augmentations can increase the generalization of deep learning models in Com-

puter Vision. Moreover, they can be used to increase the amount of training data,

where there are a limited amount of labeled data in some cases. In this work, we used

object-level augmentations: Object Removal and Object Placement.

3.1 Overview

Under this section, details of the Object-Level Augmentation methodology are ex-

plained. Our proposed object-level augmentation workflow is explained in Figure

3.1. Even though we follow the MS COCO dataset format, it is possible to use these

augmentations for other dataset formats. Object removal augmentations must be ap-

plied in our proposed pipeline before object placement augmentations, otherwise,

some of the placement augmentations may disappear. In other words, augmentations

may cancel out each other. It is important to apply object removal augmentations at

first not to decrease the effect of augmentations.

3.2 Object Removal Augmentation

We have created a pipeline to generate object removal augmentations. The object

removal augmentation pipeline can be seen in Figure 3.2. In this pipeline, we have

used the Mask R-CNN [22] instance segmentation model trained on the MS COCO

dataset. However, it is possible to use any other segmentation model. Moreover,
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Figure 3.1: The proposed pipeline for Object-Level Augmentations.

ground truth segmentation maps can be used if available.

For in-painting, we have tried two different models. The first one is the pre-trained

EdgeConnect in-painting model [18]. The second one is the pre-trained LaMa model

[19]. The LaMa in-painting model provided visually more pleasing in-painting and

more robust results in our experiments. Therefore, we decided to use the LaMa in-

painting model in our object removal augmentation pipeline.

Moreover, we have designed a modular object removal pipeline. Thus, it is possible

to use any other in-painting model inside the object removal pipeline. Some example

results for object removal augmentations can be seen in Figure 3.3.

Before applying object removal augmentations, we used some predefined rules to get

more feasible results:

• If the target scene does not contain more than two different object categories,

we do not use object removal augmentation to avoid creating images with no

objects.
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Figure 3.2: The proposed pipeline for object removal augmentations.

• For an object to be deleted, we are limited to the area of the object. If the

object we are trying to remove occupies more than 75% of the image, we do

not remove this object. Since in-painting models fail to fill large areas in the

scene, we want to prevent strange in-painting results.

• Sometimes, removing an object results in the deletion of another object from

the scene. This can happen when objects overlap. To overcome this problem,

we have placed back any other objects that are deleted unintentionally.

3.3 Object Placement Augmentation

Our object placement augmentation pipeline can be seen in Figure 3.4. We use the

same pre-trained instance segmentation model used in the Object Removal pipeline.
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Figure 3.3: Object removal samples. The first line: the original images. The second

line: Images with an object removed.

We first extract a segmentation map from a random image in the dataset to apply

object placement augmentation. After, we use this segmentation map to place objects

in the target image. Figure 3.5 displays some output images that are created using our

object placement pipeline.

3.4 Contrastive Learning

Contrastive learning is one of the popular methods for learning robust representations

by contrasting similar and dissimilar samples. Chopra et al. [23] suggested a con-

trastive training method to use in-face verification problems. This was the first usage

of contrastive learning in deep learning. After this work, many methods have been

proposed for contrastive learning [24, 25, 26]. Contrastive learning approaches can

be useful if the amount of labeled data is limited. Moreover, it can be used to increase

generalization performance for supervised learning tasks.

Traditional contrastive learning methods use negative and positive samples during

training for image classification. However, our problem, i.e. multi-label image clas-

sification, is not suitable for traditional methods that rely on making feature embed-

dings closer or distant: While augmenting, we are adding or removing some objects
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Figure 3.4: The proposed pipeline for object placement augmentations.

from the scene. Since this alters the labels of the original image, it is not feasible to

directly formulate a contrastive objective based on visual feature vectors.

We have proposed a training pipeline with a contrastive loss term to facilitate con-

trastive learning. Details of our contrastive learning pipeline can be seen in Figure

3.6. Our contrastive learning pipeline uses both original image and its corresponding

object-level augmented image. Both images are fed to a ResNet-50 model. Sigmoid

output vector of both images used to compute loss with respect to their corresponding
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Figure 3.5: Object placement sample results. First line: The original images. Second

line: Images with additional objects.
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Figure 3.6: Proposed contrastive learning pipeline.

ground truth label, LOriginal and LAugmented respectively. We added a new contrastive

loss term called LContrastive to facilitate contrastive learning. To compute this loss

first, we get the intersection of ground truth labels of the original image and aug-

mented image. Then, output vector values (for both original and augmented) are

filtered using these intersected ground truth labels. Finally, we computed BCE loss

between these filtered output vectors. In the last step, we have summed up these

losses, LOriginal, LAugmented, and LContrastive, to create the final loss. After backprop-

agation is applied with using this final loss. With the help of the contrastive loss term,
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we are able to make a closer prediction of two images on the same labels.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, our experimental setup and experiments are presented.

4.1 Experiment and Training Details

To evaluate the effectiveness of our methodology, we follow a multi-label image clas-

sification setting.

4.1.1 Network Architecture and Training Details

There are many deep learning models in the literature that we can use for image

classification. In our experiments, we chose the ResNet-50 [27] architecture since it

is considerably straightforward, easy to use, and widely used. We have modified the

original network architecture to make it suitable for a multi-label image classification

problem. The Adam optimizer [28] is chosen for training the networks with its default

parameters. We have trained our models for a maximum of 10 epochs with early

stopping using the validation loss.

4.1.2 Datasets

We chose to use the MS COCO dataset [10] for our experiments. For training, to

be able perform more extensive experiments, a small version of the training dataset,

called COCO mini-train [11], is used. The mini-train dataset has 25k images with 80

object categories. For validation, we created a new dataset from samples not included
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in mini-train. For testing, we used the original MS COCO val2017, which contains

5k images with 80 object categories.

The MS COCO dataset is commonly used for object detection and instance segmen-

tation problems. We have converted this dataset to a multi-label classification format:

For each image, the labels are the labels of the bounding boxes in the image.

4.1.3 UnRel Dataset

Peyre et al. [8] proposed a weakly-supervised method to learn visual relations be-

tween pairs of objects. To demonstrate their methodology’s effectiveness, they re-

leased a dataset named UnRel. This dataset contains 1000 images with unusual ob-

ject relations. Although this dataset may not be perfect for out-of-context scene con-

ditions, it is advantageous to investigate out-of-context object relations. Since Deep

Neural Networks also tend to memorize contextual information between objects in

the scene, the UnRel dataset is highly beneficial for investigating this problem for

trained models. Therefore, we have also decided to use the UnRel dataset to evaluate

our augmentations’ impact. In Figure 4.1, example images from the UnRel dataset

are displayed.

4.1.4 Out-of-Context Object Placements Dataset

We have created a new dataset using our Object Placement augmentations on the MS

COCO Validation 2017 dataset to evaluate out-of-context recognition performance.

This dataset contains 1000 images with 77 object categories. While creating this

dataset, contextual scene information has been used from the MS COCO Validation

2017 dataset. Placement probabilities are highly increased for vehicle objects (car,

train, truck, bus, etc.) for in-door scenes and sky. Furthermore, placement probabili-

ties for wild animals (horse, zebra, elephant, etc.) increased for targeting city scenes

and in-door places. The resulting examples of our new created out-of-context dataset

can be seen in Figure 4.2.
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Figure 4.1: Sample images from the UnRel dataset [8].

4.1.5 Evaluation Measures

Many measures are used in multi-label classification, extending binary classification

evaluation measures. F1, Precision, Recall, Accuracy measures are widely used

in binary classification problems. In multi-label classification, those metrics are com-

puted via macro averaging and micro averaging. Macro averaging is performed by

computing a measure on individual class labels and then averaging the values over

all classes. On the other hand, micro averaging calculates the measure globally on

all instances and all class labels [29]. The measures obtained by micro-averaging and
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Figure 4.2: Sample images from our out-of-context dataset, created using object

placement augmentations on the MS COCO Validation 2017 dataset.

macro-averaging are defined as follows (definitions are adapted from [29]):
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1
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Precision: Pmacro =
1

k

k∑
i=1

P λ
macro, (4.5)

Recall: Rmacro =
1

k

k∑
i=1

Rλ
macro, (4.6)

F1−macro =
1

k

k∑
i=1

F λ
1−macro, (4.7)

where λ denotes a class, k is the number of samples, n is the number of labels, Yi is

the set of predicted labels for a sample and Zi is the set of true labels for a sample.

In our experiments, we decided to use F1−macro and Accuracy scores as they capture

the different aspects of classification performance and are widely used. The accuracy

measure is slightly different for multi-label classification problems. In multi-label

classification, accuracy is calculated as in Equation 4.1 and named Hamming Score.

4.1.6 Implementation Details

In general, augmentations are applied on-the-fly while training a model. However,

it was not feasible in our case because of the high computational requirements of

our object-level augmentations. For example, object removal augmentations may in-

crease the training time for epoch up to 10 times in our training set (changes with

augmentation probability). Therefore, we first created the datasets with different aug-

mentations and then trained models on these augmented datasets.

We have created 35 different datasets to examine the effectiveness of our object-level

augmentations. As a baseline dataset, we used the original coco-mini train without

object-level augmentations. Later, a new dataset is created for different object-level

augmentation probabilities. Augmentation probabilities range between 0.0 and 1.0,

where 0.0 means no augmentation, and 1.0 means 100% augmentation probability,

with an increase of 0.2 probability. This results in 35 different datasets.

• Coco Mini-Train: Original training dataset, without object-level augmenta-

tions. This dataset is used as a baseline.
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• Coco Mini-Train with Object Removal Augmentations: Only object removal

augmentations are applied.

• Coco Mini-Train with Object Placement Augmentations: Only object place-

ment augmentations are applied.

• Coco Mini-Train with Both Object Level Augmentations: Object placement

and removal augmentations are applied.

All experiments are trained for multi-label classification problems with the ResNet50

model. ResNet50 model is initialized with pre-trained ImageNet weights for all ex-

periments. Adam optimizer [28] is used with its default values in training. As a

validation dataset, we constructed a new dataset using randomly selected 5k samples

from the MS COCO dataset, that are not included in the COCO mini-train dataset.

Each model is trained for ten epochs, and the best model is saved using validation

loss calculated using our validation dataset.

4.2 Experiment 1: Object-Level Augmentations

In this section, we evaluate the effect of different object-level augmentations by vary-

ing their probabilities. We visualize our results in a heatmap over a 6x6 matrix in

Figure 4.3. We see that object-level augmentations significantly increase (61.50 vs.

60.10) in accuracy compared to the baseline (probability of 0 for both augmentations).

However, we note that increasing the augmentation probability after 0.4 results in a

poor accuracy score. Moreover, F1−macro scores are visualized in Figure 4.4, where

we see that augmentation probability of 0.4 provides the best performance.

4.2.1 Experiments with More Object-level Transformations

Geometric and color augmentations are extremely popular in computer vision prob-

lems. To increase data diversity, they are used to alter images. However, these aug-

mentations are applied on the image level. Here, we apply image-level augmentations

at the object level. In this way, we can increase the diversity of our object-level aug-

mentations. Although there are too many options for image augmentations, we chose
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Figure 4.3: Accuracy score comparison for COCO Validation 2017 dataset between

different probabilities of object-level augmentations.

a commonly used [17] subset of these augmentations to apply object-level. Chosen

augmentations are divided into two main categories: geometric transformations and

color transformations. Geometric transformations only alter geometric properties of

the object and we choose resize (make smaller or bigger), rotation, shear (similar to

rotation but includes stretching also), translation (place to a random location in image

space), flipping left-to-right and flipping upside-down. Results of geometric transfor-

mations on object-level can be seen in Figure 4.5. On the other hand, color augmen-

tations modify RGB values of objects. Applied color transformations are; Gaussian

blur (blurs the object using a Gaussian kernel), sharpen (increase details of the ob-

ject and color contrast), grayscale (converts objects from RGB to grayscale), channel

shuffle (randomly shuffles RGB channels of an object), gamma contrast (modifies the
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Figure 4.4: F1−macro score comparison for COCO Validation 2017 dataset between

different probabilities of object-level augmentations.

contrast of the object with given gamma value), multiply saturation (converts image

to HSV color space, and multiplies saturation channel with given value), add to hue

and saturation (converts image to HSV color space, and adds given value to both hue

and saturation channels). Sample results are provided in Figure 4.6. Imgaug library

[30] is utilized while implementing object-level transformation augmentations, ex-

cept for rotation and translation operations. Although rotation operation is included

in imgaug library, custom implementation is needed not to lose details of the object.

Moreover, since translation operation is not available in imgaug library, it is imple-

mented manually.

We conducted experiments to see the effects of object-level transformations. We in-

vestigated the impact of only geometric transformations, only color transformations,
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Table 4.1: Accuracy score comparison between different object-level transformation

augmentation applications on the dataset MS COCO Validation 2017.

Model Obj. Place. Geo. Trans. Color Trans. Accuracy

Baseline ✗ ✗ ✗ 0.6020

Place. only ✓ ✗ ✗ 0.6095

Place. + Geo. ✓ ✓ ✗ 0.6151

Place. + Color ✓ ✗ ✓ 0.6148

Place. + Geo. + Color ✓ ✓ ✓ 0.6186

and combinations of both augmentations. Figure 4.7 shows few resulting samples of

combination of augmentations.

Figure 4.5: Object-level geometric transformations.

Experiments have been conducted with different augmentation probabilities in the

range of 0 and 1 with an increasing step of 0.1. In all experiments, object place-

ment probability is kept fixed at 0.5, and only geometric, and color transformation

augmentation probabilities are altered. In these experiments, we have observed the

best results are obtained with a 0.5 augmentation probability for geometric and color

transformations. In Table 4.1, accuracy comparison of different object-level trans-
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Figure 4.6: Object-level color transformations.

Figure 4.7: Object-level geometric and color transformation combinations.

formation augmentation results on the MS COCO 2017 Validation dataset are pre-

sented. Also, all hyperparameters are kept fixed rather than augmentation strategy

and probability.

From Table 4.1, it can be clearly inferred that object-level transformation augmenta-

tions (both geometric and color) is increasing accuracy on regular data. By combin-

ing geometric and color transformation augmentations on top of the object placement

augmentations, we have increased accuracy by almost 0.01 points.
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4.2.2 Experiments on Combining Object-Level Augmentations

Table 4.2: Accuracy score comparison between different object-level augmentation

applications on the dataset MS COCO Validation 2017.

Model Obj. Place. Obj. Rem. Obj. Trans. Accuracy

Baseline ✗ ✗ ✗ 0.6020

Place. only ✓ ✗ ✗ 0.6173

Rem. only ✗ ✓ ✗ 0.6142

Place. + Rem. ✓ ✓ ✗ 0.6196

Place. + Rem. + Trans. ✓ ✓ ✓ 0.6217

In this section, results for all object-level augmentations are presented. We combined

object removal, object placement, and object-level transformation augmentations. In

the previous section, we conducted an ablation study for object removal and place-

ment augmentation probabilities. We observed that accuracy is decreasing between

0.4 and 0.6 augmentation probabilities. Therefore, we also tried 0.5 object removal

and placement augmentation probability. By using 0.5 augmentation probabilities,

we get an even better accuracy score than 0.4 augmentation probabilities. Moreover,

in the experiments for object-level transformation augmentations, we concluded that

using 0.5 augmentation probability for geometric and color transformations results in

best accuracy scores. Thus, all reported results in this section are obtained using 0.5

object-level augmentation probability with each strategy.

In Table 4.2, results with different object-level augmentation strategies can be found.

It is clear that the model’s performance can be increased by combining all object-

level augmentation with optimum augmentation probabilities. By combining object

removal, object placement, and object-level transformations, we achieved to increase

accuracy score by almost 0.02 points.
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4.3 Experiment 2: Contrastive Learning with Object-Level Augmentations

In this section, we presented our experimental results for the proposed contrastive

learning approach. While training our contrastive learning pipeline, we tried to op-

timize hyper-parameters, like batch size, number of epochs, and learning rate. We

observed that the model generally overfits after the seventh epoch.

In Table 4.3 we presented accuracy comparison results with and without contrastive

learning. Accuracy values are computed on the MS COCO 2017 Validation dataset.

For object-level augmentations, we have chosen the best object-level augmentation

probabilities found in previous experiments. We see from the table that contrastive

learning without any tuning slightly increases accuracy.

Table 4.3: Accuracy score comparison for contrastive learning on the dataset MS

COCO Validation 2017.

Model Obj. Level Aug. Contrast. Learning Accuracy

Baseline ✗ ✗ 0.6020

Obj. Level Aug. ✓ ✗ 0.6217

Cont. Learning ✓ ✓ 0.6274

4.4 Experiment 3: Out-of-context Object Recognition

In this section, we evaluate our model on scenes with out-of-context objects. For

this, we use the UnRel dataset and our Out-of-Context Object Placements dataset

(described in Section 4.1.3). Since F1−macro and accuracy measure results have

similar score distribution across our experiments, only accuracy measure comparison

results are shared in this section. Moreover, only the best models from previous

experiments are used to simplify the analysis. The best models are chosen by looking

at accuracy scores on the MS COCO 2017 Validation dataset. In Table 4.4, at each

row, the same model is evaluated on different datasets.

In Table 4.4 we observe that all object-level augmentations result in better accuracy

scores for out-of-context datasets. We chose best model using regular dataset (MS
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Table 4.4: Accuracy score comparison between different augmentations on datasets

that are used for evaluation. COCOV al2017 is the original MS COCO 2017 dataset,

and OOCPlacement is our out-of-context object placement dataset.

Model COCO Val 2017 UnRel OOC Placement

Baseline 0.6020 0.5540 0.4305

Placement only 0.6173 0.5621 0.5090

Removal only 0.6142 0.5893 0.3987

Place. + Rem. 0.6196 0.6017 0.5219

Place. + Rem. + Trans. 0.6217 0.6158 0.5305

Cont. Learning 0.6274 0.6244 0.5428

COCO 2017 Validation), to not lose accuracy on ordinary data, while increasing

accuracy for out-of-context dataset.

In our experiments, we also observed that applying object-level augmentations more

aggressively (giving augmentation probability more than 50%) may increase accuracy

on out-of-context scenarios while decreasing accuracy on regular conditions. So,

there is an accuracy trade-off between regular and out-of-context scenarios after

some point. This means that if you want to gain more success on out-of-context

scenarios, you may lose some accuracy on ordinary data.

In Table 4.4, we see that the baseline model has the worst score for the UnRel dataset.

Moreover, applying a combination of object-level augmentations achieved better ac-

curacy than using a single object-level augmentation. With the combination of object-

level augmentations and contrastive learning, we have marginally increased accuracy

by 0.05 points without hyper-parameter tuning.

For the OOC dataset, there is a similar trend with the UnRel dataset. However, this

time, applying only object removal augmentation has a negative impact on the ac-

curacy score. Otherwise, we can say that using object-level augmentations and con-

trastive learning marginally increase accuracy score by 0.11 point.

In Figure 4.8, example prediction results are visualized for the baseline model and the

best model with object-level augmentation (the combination of object removal, object
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Figure 4.8: Example prediction results with baseline model and object level augmen-

tation applied model. Under each image first line is the baseline model prediction

results, and second line is the object level augmentation applied model results.

placement with object-level transformations in Table 4.2). Although it still may fail

on some out-of-context scenarios (middle image in Figure 4.8), our proposed object-

level augmentations perform considerably better than the baseline on out-of-context

scenarios.

4.5 Experiment 4: Prioritizing Certain Classes During Augmentation

Class imbalance is a widespread problem in machine learning and long-tailed class-

sample distributions are a nuisance for object recognition and detection problems

in Computer Vision. Such a long-tailed distribution is illustrated in Figure 4.9 for

the COCO mini-train dataset. Since the number of categories (80) is too much to

visualize efficiently, we randomly selected 40 class categories. In Figure 4.9, it is

obvious that the “person” class is dominating the dataset, which causes a machine

learning method to focus more on learning the “person” class and provide sub-optimal

performance on other classes.

Oksuz et al. provided a detailed review of imbalance problems in object detection

[31]. They offered a comprehensive taxonomy that defines different types of im-

balance problems. According to their definition, we focus on solving foreground-

foreground class imbalance problems using object-level augmentations.

We conduct experiments by prioritizing augmentations for certain classes. To be
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Figure 4.9: The long-tailed distribution of the COCO Mini-train Dataset classes. For

the sake of clarity, randomly chosen 40 classes are visualized.

specific, we prioritized the removal of “person” objects and the placement of rare

classes during the augmentation phase. 10 rarest classes are chosen from the training

dataset: “toaster", “hair dryer", “parking meter", “scissors", “bear", “toothbrush",

“hot dog", “stop sign", “microwave" and “fire hydrant". To investigate the effects of

prioritizing certain classes during experiments, we trained three different models:

• Prioritizing removal of “person" classes: Object removal is applied with 90%

probability for the “person" class while this probability is 50% probability for

other classes.

• Prioritizing placement of rare classes: Object placement is applied with 80%

for rare classes, whereas it is 50% probability for other classes.

• Combination of both prioritization with object removal and object placement.

In Table 4.5, accuracy scores on the COCO Val 2017 dataset are presented. It can be

clearly seen that prioritizing the removal of the “person” class is decreasing accuracy

score for the “person” class as expected. However, prioritizing the removal of the
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Table 4.5: Accuracy score comparison between prioritizing different classes during

augmentation on the COCO Val 2017 dataset.

Model All Classes Person Rare Classes

Baseline 0.6010 0.8656 0.4439

Rem. Person 0.6129 0.8414 0.4481

Place. Rare Classes 0.6205 0.8622 0.4663

Rem. Person + Place. Rare Classes 0.6218 0.8567 0.4763

“person” class can increase the overall accuracy score compared to the baseline

model. As expected, prioritizing placement of rare classes increases the accuracy

score for rare classes and the overall accuracy score. Finally, with the combination

of both augmentations, we marginally increase the overall accuracy score by 0.02

points. Moreover, we gained a 0.032 increase for rare classes.

36



CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we have focused on the problem of recognizing out-of-context objects in

images. To this end, we have proposed an Object-Level Augmentation workflow and

a contrastive learning pipeline that uses the proposed object-level augmentations for

out-of-context object recognition. On various datasets, we have shown that, by plac-

ing objects with different color and geometric transformations or removing objects,

a deep network can be trained to perform better on out-of-context scenes. Moreover,

we have created a new dataset with out-of-context objects by applying our object

placement augmentation pipeline on an existing dataset with regular scenes.

5.1 Limitations and Future Work

Although we have reported promising results with our object-level augmentations,

there are certain limitations. For example, object removal can lead to visually un-

realistic results. Especially when a removed object occupies a significant portion of

the image, there may not be enough information (context) in the image to complete

the region of the removed object. Therefore, the object removal approach may not be

feasible for all vision problems.

Since creating object-level augmentations, especially the object removal process, are

very time-consuming, we generated augmented samples before the training phase.

Then used the same data for all epochs in training. Generally, augmentations are used

to increase the number of examples in the training dataset. However, in this work,

we used object-level augmentations to increase the variety of data. To extend our

approach, we plan to implement a new version of object-level augmentations that can
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be used while training deep learning models.

Finally, we plan to use the representations learned by the deep network trained with

our augmentation scheme for object detection and instance segmentation problems.

We believe that our augmentation scheme has a high potential for different computer

vision applications.
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