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ABSTRACT 

 

AN ANALYSIS OF STEREO DEPTH ESTIMATION UTILIZING 

ATTENTION MECHANISMS, SELF-SUPERVISED POSE ESTIMATORS 

& TEMPORAL PREDICTIONS 

 

 

 

Oğuzman, Utku 

Master of Science, Electrical and Electronic Engineering 

Supervisor : Prof. Dr. Abdullah Aydın Alatan 

 

 

May 2022, 111 pages 

 

By the recent success of deep learning, real-world applications of stereo depth 

estimation algorithms attracted the interest of many researchers. Using the available 

datasets, synthetic or real-world, the researchers begin analyzing their ideas for 

practical applications. In this thesis, a thorough analysis is performed of such an aim. 

The state-of-the-art stereo depth estimation algorithms are tried to be improved by 

incorporating attention mechanisms to the current networks and better initialization 

strategies in time. For this purpose, different amounts of attention modules are 

applied to one of the most successful stereo depth estimator networks. The 

performance of the proposed attention-based neural networks that is trained with the 

synthetic stereo datasets under a supervised setting is compared against the 

performance of a baseline algorithm and it yielded superior results. When these 

neural networks are finetuned using a small annotated real-world dataset, the 

baseline algorithm had a better performance. Secondly, the temporal information 

available in the synthetic datasets is leveraged by teaching the proposed neural 

network how to initialize the current iteration by using the previous predictions. 

Finally, in order to finetune the neural network better for real-world use with the 

temporal information, a large unannotated real-world dataset is utilized under a self-
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supervised training setting using ego-pose estimation and optical flow networks. In 

general, it is observed that these settings yield better results against state-of-the-art 

methods in the synthetic-to-real world supervised training settings, and they are 

comparable after the finetuning operation. 

 

Keywords: Stereo Depth Estimation,  Attention Modules, Self-supervised Learning, 

Finetuning 
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ÖZ 

 

DİKKAT MEKANİZMALARINI, KENDİ-KENDİNİ DENETLEMEYLE 

ÖĞRENİLMİŞ POZ KESTİRİCİLERİ VE ÖNCEKİ TAHMİNLERİNİ 

KULLANAN STEREO DERİNLİK KESTİRİCİLERİN BİR ANALİZİ 

 

 

 

Oğuzman, Utku 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Abdullah Aydın Alatan 

 

 

Mayıs 2022, 111 sayfa 

 

Derin öğrenmenin yakın tarihteki başarısıyla birlikte, stereo derinlik kestirme 

algoritmalarının gerçek dünya uygulamaları birçok araştırmacının ilgisini çekmeyi 

başarmıştır. Kullanıma hazır olan birçok sentetik ve gerçek dünya veri seti sayesinde, 

araştırmacılar fikirlerini pratik uygulamalar için analiz etmeye başlamıştır. Bu tezde 

benzer bir yaklaşım için dikkatli bir analiz gerçekleştirmiştir. En gelişmiş stereo 

derinlik algoritmaları, dikkat mekanizmalarının ve daha iyi başlatma stratejilerinin 

dahil edilmesiyle birlikte iyileştirilmeye çalışılmıştır. Bu amaç için, en başarılı stereo 

derinlik algılama ağlarından birine farklı miktarlarda dikkat modülleri eklenmiştir. 

Tasarlanan dikkat-tabanlı nöral ağın denetimli öğrenme yöntemiyle ve sentetik veri 

setleri kullanılarak eğitilmesiyle birlikte ortaya koyduğu performans baz alınan 

algoritmalarla karşılaştırılmıştır, daha iyi sonuçlar elde edilmiştir. Bu nöral ağların 

ince ayarını yapmak için küçük, etiketlenmiş ve gerçek-dünyaya ait görseller 

bulunduran bir veri seti kullanıldığında baz alınan algoritmanın daha iyi sonuçlar 

ortaya koyduğu gözlemlenmiştir. İkinci olarak, veri setinde var olan zamansal 

bilgilerden, nöral ağa şu anki özyinelemesini önceki tahminlerini kullarak 

başlatmasını öğretmek yoluyla istifade edilmeye çalışılmıştır. Son olarak, gerçek 

dünya uygulamaları için ve tasarlanan nöral ağın ince ayarını daha iyi yapabilmek 
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için, bir poz kestirme ve optik akı ağı ve büyük bir etiketlenmemiş gerçek-dünya veri 

seti kullanılıp bir denetimsiz öğrenme ince ayar operasyonu gerçekleştirilmiştir. 

Genel olarak, sentetik görsellerle eğitip gerçek dünya işlerinde denenen test 

yapılarında ağlarımız baz alınan ağdan daha iyi performans göstermiştir. İnce ayarlar 

sonunda ise sonuçlar karşılaştırabilir düzeylerde kalmıştır. 

 

Anahtar Kelimeler: Stereo Derinlik Kestirimi, Dikkat Modülleri, Kendi Kendini 

Denetimli Öğrenme, İnce-ayar 
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CHAPTER 1  

1 INTRODUCTION 

One of the most impressive capabilities some animals developed for survival is depth 

perception. Vision is an inseperable part of tool usage, exploration, locomotion, 

planning and understanding many concepts. Computer vision started as a research 

field to reverse engineer this capability for robotic applications. From the famous 

1966 Summer Vision Project [1] where initial researchers thought it could be 

achieved within a summer, to today, researchers frequently come up with many novel 

methods and build upon many different vision ideas. From SfM methods to SVMs, 

and even early neural network ideas, researchers were after the quality and the 

quantity of the vision humans possess using engineering methods. 

1.1 Motivation and Problem Definition 

After the prominent work of Hinton [2] in 2012, deep networks that are trained with 

supervised targets, optimized through backpropagation and methods such as 

convolution [3], became suddenly popular due to the limited computation 

opportunity it provides. This opportunity let many researchers start working on the 

problem of vision without much effort. A considerable portion of this research 

focuses on the stereo dense depth estimation problem, which is the problem of 

estimating depth of each pixel with respect to one of the cameras. 

With the rise of deep learning, utilizing these calculations for practical real-life 

purposes became plausible. Depth estimation is a prime necessity when it comes to 

AR/VR applications, drones with autonomous capabilities and most importantly 

autonomous cars. Autonomous car applications are the most serious daily robotic 

application that needs to be 100% safe in order not to danger any bystander's life. 
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Hence, datasets that focus on road scenarios such as KITTI[4] and ETH3D[5] have 

been gathered together and shared as open-source for the research communities.  The 

computer vision research community utilizes these famous datasets frequently. 

Some significant attempts to estimate a dense depth map from stereo images include 

[4], [5]. They require a dense depth label as the ground truth signal, which is hard to 

obtain in the necessary amount. Therefore, self-supervised training methods are 

preferred in some phases, for finetuning a self-supervised network or training them 

from the start, such as [6]. 

This thesis focuses on improving stereo depth estimation, especially one of the 

current best stereo depth estimation system RAFT-Stereo [4].  Finetuning a pre-

trained stereo network offers great flexibility to make accurate inferences for dense 

depth estimations without a large real-world ground truth dataset. 

1.2 Scope of the Thesis 

This study aims to improve the performance of a stereo depth estimation with various 

attentional and temporal techniques. First, the effects of adding various attention 

modules are investigated to the RAFT-Stereo algorithm, specifically changing the 

correlation volume with attention modules. Attention modules have the ability to 

shuffle the context around them. The hypothesis for this work is that they have the 

ability to in-paint the textureless patches in high dimensional space to match them 

more precisely, even though those areas considered alone lack features. Hence the 

effect they pose against the textured areas will be investigated as well. Second,  

effects of various temporal information are investigated in RAFT-Stereo algorithm. 

Previous frames have valuable information when it comes to depth estimation and 

the supervised training methods for stereo networks. One can extract important 

information by trying to predict an input from the other inputs via the intermediate 

concepts like depth, ego-pose estimation, and optical flow.  
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All of the work in this thesis is based on RAFT-Stereo [4] algorithm, since it is one 

of the best and up-to-date stereo depth estimation methods of stereo matching. 

Although RAFT-Stereo is on the top 3 of the Middlebury 2014 stereo leaderboards, 

it still has some room for improvement. All of the codes developed in this thesis 

available will also be available on Github soon. 

1.3 Methodological Contribution of the Thesis 

To sum up, the main contributions of this study can be expressed as follows: 

• An assessment of the effect of various attention modules to improve the 

stereo depth estimation, 

• An inspection of the utilization of various past disparity estimates to improve 

the stereo depth estimation performance. 

• An inspection of the effect of a self-supervised finetuning procedure using 

the temporal information of ego-pose estimation, optical flow, and previous 

predictions. 

1.4 Outline of the Thesis 

This thesis work consists of 5 chapters. Chapter 1 introduces the motivation and 

contributions. Chapter 2 presents relevant stereo geometry subjects, namely pinhole 

cameras, stereo depth, disparity, and relevant deep learning subjects, namely 

convolutions and attention modules. Chapter 3 informs the reader about the current 

literature and approaches to supervised depth estimation, self-supervised depth 

estimation, and vision transformers. Chapter 4 explains the proposed models, tests, 

and results. Chapter 5 finalizes the thesis by stating the conclusion drawn from the 

experimental analysis.  
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CHAPTER 2  

2 FUNDEMENTALS OF STEREO GEOMETRY, CONVOLUTIONS AND 

ATTENTION MODULES 

The self-supervised stereo depth estimation methods that will be discussed in 

Chapter 3 rely on some key concepts of the fundamentals of stereo geometry and 

deep learning. Those concepts are covered in this chapter. 

2.1 Notation 

The general notation that persists in this thesis is that matrices are denoted with bold 

letters, and vectors are indicated with a bar on top: 

𝐸𝑥: 𝑨�̅� = �̅� 

2.2 Pinhole Models 

A camera can be modeled as an optical device that maps the electromagnetic 

radiation bouncing from the surfaces residing in the 3D world into a 2D image plane 

made of a light-sensitive sensor array. This thesis section discusses the mostly 

linearized geometric calculations under this setting and uses rectified stereo images. 

Suppose that a camera projection is performed on the plane where 𝑧 = 𝑓. That plane 

at f is called image plane, and f is called focal length. The camera center is the origin 

of this coordinate system. The center of the image plane is called the principal point. 

The line that goes through the camera center and the principal point is called the 

principal axis. The plane parallel to the image plane and goes through the camera 

center is called the principal plane. The projection of a 3D point �̅� can be computed 

as the intersection of the corresponding line, which passes through the camera center 

and �̅� and the image plane (Figure 2.1). 
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Figure 2.1 Pinhole camera setting [7] 

2.2.1 Projection Using the  Homogenous  Coordinates 

The pinhole projection can be expressed as follows: 

 (𝑋, 𝑌, 𝑍)𝑇 → (𝑓
𝑋

𝑍
, 𝑓

𝑌

𝑍
)𝑇 (1) 

However, this is a nonlinear operation and cannot be represented with simple 3 by 3 

matrix transformations due to the division operation. Hence the homogenous 

coordinate system is utilized to represent this projection as a linear mapping. 

Every point in this coordinate system has an additional dimension now: (𝑋, 𝑌, 𝑍, 1)𝑇 

The transformations within this space are done using a 4D transformation matrix. 

The representation of a standard 3D point after the conversion to the homogenous 

transform can be acquired by this linear multiplication now: 

 

 [
𝑓𝑋
𝑓𝑌
𝑍

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (2) 
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The 3 by 4 matrix on the right-hand side of the equation is called camera projection 

matrix and it is shortened by P: 

 �̅� = 𝑷�̅� (3) 

The pinhole camera equation defined in equation (3) and Figure 2.1 assumes that the 

origin of the image plane is at the principal point. But this may not be true in all 

cases. There may be an offset between the two. Hence equation (3) must be corrected 

as:  

 (𝑋, 𝑌, 𝑍)𝑇 → (
𝑓𝑋

𝑍
+ 𝑐𝑥,

𝑓𝑌

𝑍
+ 𝑐𝑦)𝑇 (4) 

Hence, equation  (2)  can also be corrected as: 

 [
𝑓𝑋
𝑓𝑌
𝑍

] = [
𝑓 0 𝑐𝑥 0
0 𝑓 𝑐𝑦 0

0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (5) 

If one has been given a rectified & vertically aligned stereo image couple where a 

certain 3D point is marked in both images, the difference in the x-axis of those 2 

points gives the disparity. Baseline is the given distance between 2 cameras. With 

all that knowledge, one could infer the depth of that 3D point with respect to the 

principal plane: 

 𝑑𝑒𝑝𝑡ℎ =
𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑥 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

|𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦|+(𝑐𝑥,𝑙−𝑐𝑥,𝑟)
 (6) 

2.3 Convolutions 

Convolutions in deep neural networks are almost the most common module when 

vision tasks are considered. The convolution layers are essentially filters that perform 

convolution operations as it scans the input image (I), scanning through its height 

(H) and width (W) dimensions and finally a nonlinear function is applied to the 

result. The hyperparameters of a filter include filter size (F) and stride (S). The 

resulting output (O) is called feature map or 1 layer of the feature map, to be exact. 



 

 

8 

When applied at the same layer, many of these filters create whole feature maps with 

the channel size (C). These features calculated for a specific location in the image 

can be used to correlate certain parts of the stereo image pairs. Some similarity 

metrics applied at the resultant feature maps can help us match most of the pixels in 

the images. This method assumes the occlusion areas are negligible, however it aims 

to fill those areas using the context in both images.  

 

Figure 2.2 The convolution filter operating on a layer [125] 

2.3.1 Pooling Layers 

Pooling is a down-sampling operation, typically applied after a convolution, it is a 

spatially-equivariant operation, it is not a learnable filter. The most common pooling 

operations are max pooling (where the filter applies a max operation in its receptive 

field) and average pooling (where the filter averages every entry in its receptive 

field). Max pooling preserves most of the detected features, while average pooling 

is used to down-sample the feature map for computational costs reasons. 

 

Figure 2.3 (a) Max pooling, (b) average pooling operations [125] 
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2.3.2 Filter Hyperparameters 

These convolution filters have many hyperparameters that affect the course of the 

convergence process of the neural network. The important ones are these: 

Channel Dimension: A standard convolutional filter is a 3D filter. Its height & width 

are equal to each other. Applying K many of them to the (C, H, W) dimensions of 

the previous layer makes them a 3D filter (C by F by F). The channel dimension of 

the layer is determined by the number of 3D filters that transformed the 

representation of the previous layer in every layer. 

 

Figure 2.4 K many convolution filters that belongs to one layer [125] 

Stride: Stride S is the number of pixels that the convolution filter jumps in the height 

and width axis after it finishes its previous convolution operation. There is usually 

no stride in the channel dimension. 

 

Figure 2.5 Stride operation shown in a 1D tensor for the sake of simplicity [125] 

Zero-Padding: Zero-padding is the process of adding P number of zeroes to each side 

of the feature map. It is usually used to match the new feature maps’ height and width 

size to the specified/required input size for a specific architectural selection. 
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Figure 2.6 Zero-padding of the feature map with the required number of zeroes 

[125] 

Normalization: Normalization is the act of calculating the average and the variance 

of some data points along a dimension and then normalizing those data points by 

subtracting the average from every data point and dividing every data point by the 

square root of the variance. The type of normalization indicates which data points 

are included in the normalization calculation and along which dimensions they 

calculated. 

• Batch normalization: Batch normalization focuses on standardizing every 

input in the mini-batch direction during training. Hence for every input of 

shape (N,C,H,W) entering the network, the normalization process is 

conducted along the mini-batch direction N (Figure 2.7). 

 

Figure 2.7 Four types of normalization operations [125] 
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• Layer normalization: Layer normalization is calculated over the whole 

(C,H,W) dimensions instead. Different samples do not affect other samples' 

normalization parameters (Figure 2.7). 

• Instance normalization: Instance normalization is calculated per channel 

along the H & W axis. Every sample in the minibatch is independent of each 

other in terms of calculating their normalization parameters (Figure 2.7). 

• Group normalization: Group normalization is similar to the instance 

normalization, however instead of calculating it on only one channel, it 

includes some nearby channel groups. Hence, this method is naturally 

between the Instance Normalization method and Layer Normalization 

method (Figure 2.7). 

2.4 Attention Modules 

The aim of the attention mechanisms in general is to make the computations focus 

only on the parts of the input that matter by making the network pick some 

representations of the data over others. In computer vision, especially in feature 

matching problems, the issues around textureless areas can benefit from these 

concepts. Attention mechanisms can force textureless areas to attend to nearby 

textured areas to anchor themselves. Gathering weighted V vectors in this manner 

can create echoes of the textured areas into the textureless areas in terms of edges 

and contours. These echoes may create in-paintings of the textureless areas and raise 

the opportunity for a more precise disparity map regarding feature correlations 

between stereo image pairs.  

The attention modules are another mechanism to be utilized in this thesis. The 

ultimate purpose of attention modules in vision tasks is to blend certain types of 

features together [8]. Basically, an attention module takes a set of embeddings (H.W 

many vectors, with C embedding dimensions). It first applies 3 different learnable 

linear transformations WK, WQ, WV on the initial vector set to get the new K, Q & V 

vector sets, and it treats them as continuous key, query, and value tuples in a database.  
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Just like querying a database, there are many values (V) in the database; those values 

have corresponding keys (K) to search the database quickly and access the necessary 

values. The key is the most similar to the current query (Q) becomes the result. 

However instead of calculating the results in a discrete/hard fashion, attention 

modules use a soft output, meaning the resultant answer for the query is the weighted 

combination of the V vector sets according to how much their K and the Q vectors 

matched up. 

 

Figure 2.8 (a) Transformers architecture, (b) an attention module, (c) one head [8] 

Implementation details are explained in Chapter 3.4. After the original vector set is 

transformed into Q, K & V vector sets, Q and K sets are multiplied. Every vector in 

Q is multiplied with every vector in K by the dot-product. Using the dot-product as 

the similarity metric, vectors in Q can attend to any other vector in K, no matter 

where they are located. Then, the module composes the output by using the vectors 

in V, first turning the dot-product result into probabilities (with the help of a softmax 

operation) and multiplying the V vectors with the softmax result. Its implementation 

includes the following other details. 
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2.4.1 Scale Operation 

By the heuristic exploration, Vaswani et al. [8] observed that they need to scale the 

resultant attention matrix by the square root of the number of embedding dimensions 

(d) to prevent the exploding and vanishing of the gradients. With this operation, the 

resultant vector from the multiplication is always scaled to have norm of √𝑑 at most. 

2.4.2 Masking Operation 

If the architecture requires specific locations to be unattendable, such as causality 

constraints or stereo matching scenarios, masking the weights of unattendable 

locations via multiplying them by -∞ makes their softmax output 0, and the final 

softmax still sums up to 1. 

2.4.3 Addition & Normalization Operation 

The Addition is a ResNet [9] style skip connection technique to prevent gradients 

from exploding or vanishing. Also, layer normalization after the Addition is most 

common. 

2.4.4 Concatenation Operation 

Vaswani [8] introduces the idea of heads (h). The idea is that one can divide the 

embedding dimension into h heads and process them in a parallel fashion to speed 

up the process. In theory, the system can still discover some features which are 

independent of other features. This idea is mainly favored due to the data 

parallelization opportunities in GPUs. After these separate head calculations, the 

results of each head are concatenated into one vector. 
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2.4.5 Linear Layer 

A final linear transformation is observed to stabilize the training. It prepares the 

output for the next layer and gives the network more expressive power. 

2.4.6 Positional Encoding Module 

Suppose positional encoding techniques are not utilized in Transformers. In that 

case, no matter where a vector is located in the V, K, and Q vector sets, the attention 

vector it produces will always be the same. Positional encodings try to inject a sense 

of position into attention modules either by summing specific sine functions [8], 

adding them into the product of Q and K [11]–[14], or to the product of the softmax 

and V vectors [14]. They can be learned [12] or fixed [10], [11]. The equations 

regarding the relative positional encoding method have been explained in Equation 

23 in Chapter 3.4. 
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CHAPTER 3  

3 RELATED WORKS ON LEARNING-BASED STEREO DEPTH 

ESTIMATION 

In this chapter, the related works from the literature are briefly explained. 

3.1 Introduction 

The task of disparity prediction between rectified stereo image pairs is an essential 

problem in computer vision. It is a challenging task due to the non-ideal conditions 

in the image pairs, such as occlusions, textureless areas, reflective areas, transparent 

areas, thin structures, repetitive textures, and noise. Matching cost aggregations are 

also unfortunately often ambiguous. In naïve implementations, erroneous matches 

might have a lower cost than the correct ones due to the mentioned disturbances 

above. Moreover, the error in the disparity term affects different depths with different 

ratios, the further the region of interest, the smaller the error should be. A taxonomy 

for stereo depth estimation can be seen in Figure 3.1. 

3.1.1 Traditional Methods 

Traditionally there are four steps in stereo feature matching: feature extraction, cost 

aggregation and regularization, disparity estimation, post-processing. 

Feature Extraction: The traditional methods, like SGM [16] and cost filtering [17], 

are robust and efficient cost aggregation methods. They are not differentiable; 

therefore, they cannot be trained to increase their performance. They do not need the 

ground truth depth labels, however when ground truths are available, the traditional 

methods like [18]–[20] can learn the hyperparameters. 
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Figure 3.1 Taxonomy of the network architectures for stereo-based disparity 

estimation, focusing on different component of the pipeline (Revised from [15]) 

Naturally, the pixels in one image should not be matched to multiple pixels in the 

other image. This geometric constraint can be helpful in resolving some ambiguities. 

Ohta et al. [21] was the first attempt to use dynamic programming where intra and 

inter-epipolar line information are combined with a uniqueness constraint. This 

constraint is missing in most learning-based methods due to the shortcomings of the 

current view of stereo matching methods that construct a cost volume, which will be 

explained later. The approaches that consider the disparity prediction from a 

sequence-to-sequence matching can avoid this issue. 

Cost aggregation and Regularization: Early traditional work in the field mainly 

focused on designing better matching costs [22], [23]. Commonly used methods 

included mutual information [16], normalized cross-correlation [24], Census 

transforms followed by Hamming distance [25]. 
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Local methods, such as [26] and [27] try to find the matching points within a pre-

defined window. There are algorithms that use handcrafted schemes to find local 

correspondences [16], [17], [28], [29]. Desirable disparities might have either the 

lowest matching costs (sum of absolute differences, SAD) or the highest correlation 

costs (normalized cross-correlation, NCC). The optimization strategies utilized in 

the local algorithms are denoted as winner-takes-all (WTA) algorithms [30]. Global 

algorithms formulate the stereo matching problem as energy minimization problems, 

utilizing algorithms like MRF-based optimization methods. Global methods 

generally achieve better performance; however, they have NP-hard complexities. 

Klaus et al. [31] use belief propagation to solve it, Kolmogorov et al. [32] use graph-

cut to get suboptimal results. Utilization of the spatial context in the scene [33] is 

common practice. Semi-Global Matching (SGM) [16] approximates the MRF-based 

methods by performing a cost aggregation in all directions to improve the accuracy 

and efficiency [34]. However, traditional methods still suffer from inaccuracy (local 

algorithms) or high computational costs (global algorithms). 

Disparity Estimation: Early work also focused on efficient inference algorithms [35]. 

There are parametric models, such as slanted plane [36], that aim to reduce the 

optimization parameters. There are other algorithms to avoid the full disparity space 

using PatchMatch [37] and super-pixels [38]. Some approaches use random forests 

and decision trees to converge to a solution quickly [39]–[42]. Hierarchical 

algorithms [43]  use slanted support windows to amortize the matching cost 

computation in tiles. These methods require camera-specific learning or serious post-

processing on their results. 

Post-processing: Given a set of noisy matches, the cost optimization stage aims to 

recover a consistent depth map, subjected to geometric constraints, such as 

smoothness and planarity. These constraints can be naturally formulated as an 

optimization problem, maximizing some visual similarity measure subject to these 

constraints. Geometric constraints, such as occlusion and matching uniqueness, led 

to the success of non-learning-based methods [16], and it is mostly missing in the 
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learning-based techniques. For the occluded regions, pixels do not have a disparity 

by definition. 

3.1.2 Deep Learning 

The favorite method of most contemporary computer vision researchers' favorite 

methods are deep learning methods since Hinton et al. successfully trained a 

convolutional neural network with backpropagation via AlexNet in 2012. There are 

many computer vision tasks that deep learning helps, such as object detection [44] 

panoptic segmentation [45]; optical flow [46]; super-resolution [47] and generative 

networks [48]. After deep convolutional networks proved helpful, the computer 

vision field rarely used classical methods for the above tasks[49].  

The most straightforward solution for a dense depth estimation task is to predict 

depth values for every pixel on the left image of the stereo pair. There are many 

setups for this task, such as semi-supervised monocular estimation [50], supervised 

stereo estimation [51] or supervised multi-view estimation [52]. There are also self-

supervised counterparts of those setups [6], [53]. 

3.1.2.1 Supervised Deep Learning 

The research of stereo matching with supervised deep learning can be mainly 

categorized into four categories: better feature matching [54], [55], better 

regularization  [56], [57], learning all the depth estimation steps in an end-to-end 

fashion [57], [58] or refining the computed disparity [58]. The first category replaces 

the handcraft features with learned deep features. The second category learns to 

regularize the matching cost aggregation, such as spatially variant penalty 

parameters. The third category formulates the stereo matching problem as a 

supervised regression task that implements a combination of these different steps in 

a deep learning pipeline, hence one optimization signal flow optimizes the whole 
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architecture, rather than individual modules. Finally, the fourth category iteratively 

refines the solution. 

Better feature matching: PSMNet [59] extended the matching accuracy of the 

previous work with pyramid feature extractions and stacked hourglass blocks. It 

increased the 3D convolutions layers to 25 for the matching cost aggregations. 

However, these changes increased the memory usage, and the computational cost, 

which is mitigated by down-samplings, and this action causes an inevitable loss of 

precision. The use of explicit matching cost volume results in more accurate 

prediction on the datasets such as KITTI [60] and FlyingThings3D [58]. 

Nevertheless, this increases the computational cost significantly and sometimes 

limits the operation resolution. 

Another challenge of these cost volume systems is their limited disparity range. 

Disparity values, in theory, can range from zero to the image width, which can 

depend on the resolution of the images, the baseline distance of the cameras, and the 

distance of the object to the camera pair. The best works that use cost volumes are 

typically constrained with a maximum of 192 pixels [15]. This constraint is 

necessary to implement a memory-feasible method, however, is not flexible to the 

properties of the physical scene or camera setup. The close objects, potentially closer 

than the disparity of 192 pixels, may be essential in most robotic applications. STTR 

[61] removes this constraint to better estimate the depths of close objects. 

Some readers might argue that these techniques are having difficulty generalizing 

outside the domain they were trained in; hence they cannot be readily used on 

datasets that do not have ground truth training data. There have been several efforts 

to improve the generalization ability of deep stereo networks, such as adding new 

network components [62] or generating additional data [63]. DSMNet [62] tries to 

improve the generalization ability of GA-Net architecture by normalizing the 

features used to construct the cost volume and utilizing a non-local graph-based 

filtering approach that reduces dependence of GA-Net on local patterns. DSMNet 

achieves better generalization than the prior work, however it still uses 3D 
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convolutions in its architecture design. This high computational cost limits the 

operation resolution of DSMNet. MADNet [64] tries to solve this domain adaptation 

problem with its MAD algorithm, which independently trains sub-portions of the 

network. 

Some of the recent works [42], [43], [65] increased the efficiency of the disparity 

estimation while maintaining accuracy. They are based on three major ideas: sparse 

features for high resolution matching cost computation, efficient disparity 

optimization schemes that do not use explicit matching cost volumes, and iterative 

image warps using slanted planes to minimize image pair dissimilarity. HITNet [5] 

leveraged the planar geometry of the scene as a geometrical constraint in the network 

design by guiding the stereo predictions using those predicted tiles. In the forward 

pass, tile method of HITNet must decide, if each pixel lies on a plane. To learn this 

behavior, they impose several additional loss terms on the angle of the tiles and the 

decision weights. 

STTR [66] utilizes Transformer with self and cross-attentions combined with the 

optimal transport theory to avoid using cost volumes. This design selection lets them 

match pixels explicitly and densely while imposing a uniqueness constraint. 

After the success of Vaswani [8] in the field of NLP in 2017, researchers started 

working for more efficient architectures that can perform the same outcome to 

increase the adaptability of the new architectures. The researchers looked for hashing 

algorithms [14], hierarchical structures [107], methods to make the attention 

modules converge easier [11], or alter how the attention process works completely 

to run them faster [12]. This interest has carried over to the computer vision field, 

and researchers started looking for a way to implement such Transformers for 

computer vision tasks. Liu et al. [10] experimented with hierarchical transformers 

using shifting windows to ensure the Transformer architecture blends the context 

efficiently. Fan et al. [108] researched ways of reducing the quadratic requirements 

of the Transformers by processing the information in multiple scales, as in 

convolutions. El-Nouby et al. [109] looked for a way to faster Transformers by 
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transposing the Q, K & V vectors to reduce the required computational cost. Xiao et 

al. [110] experimented with the effect of using convolutions and transformation in 

the same architecture and concluded attention modules require early convolutions to 

converge easier. 

Better Regularization: Deep learning was initially applied to improve matching costs 

in a stereo pipeline. Zbontar and LeCun [71] are the first to propose a network for 

evaluating a match score between image pairs. Their matching costs are processed 

using traditional methods such as semi-global matching, consistency checking, and 

filtering. Early works [55], [71]–[73] also trained Siamese networks to extract 

pairwise features or predict matching costs. 

In stereo depth estimation research, the predominant approach has been the usage of 

3D convolutional neural networks (ConvNet). First, a 3D cost volume is built by the 

enumeration of integer disparities, and then a 3D ConvNet was then utilized to filter 

the cost volume [59], [62], [74]–[77]. This enumeration could be a search range over 

the scanline on rectified stereo pairs or all possible disparity matches using plane 

sweep algorithms [78]. Filtering and regularization are usually applied to cost 

volumes next.  

Some follow-up works [79], [80] focused on a down-sampled version of the cost 

volume to provide a trade-off between speed and accuracy. Fast approaches down-

sample the cost volume in spatial and disparity space. Such algorithms attempt to 

recover fine details by edge-aware up-sampling layers. They can perform in real-

time, however thin structures and depth edges create problems. There are also 

cascaded models [59], [77], [81]–[84] to search the disparity space in a coarse-to-

fine fashion. [83] uses multiple residual blocks to improve the disparity prediction. 

[84] relies on a hierarchical cost volume, and with that, the network can be trained 

on high-resolution images and generate different resolution outputs on demand. 

However, all these methods are trained with expensive matching cost volumes or 

multiple refinement layers that prevent real-time performance. 
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GANet [77] introduced the SGA and LGA layers. SGA implements a differentiable 

version of SGM to improve matching cost aggregation, especially on occluded, 

textureless, and reflective areas. LGA aims to improve the disparity prediction on 

the objects' thin structures and depth edges to recover the loss of precision during 

down-sampling. SGM-Net [85] tries to enhance the performance of the traditional 

cost aggregations by predicting the penalty parameters of SGM using a neural net 

where [86] learned to fuse proposals by optimization in stereo matching. [87] looks 

at aggregating costs using a minimum span tree. 

Most stereo matching networks can also be categorized as either 2D or 3D 

convolutions. ES-Net [88] adopts the ideas from PWC-Net [89] (an optical flow 

algorithm) to the stereo depth estimation problems. Given that warping images may 

introduce potential errors at low resolutions, ES-Net constructs a multi-scale cost 

volume at a higher resolution, which leads to better performance. 

End-to-end Training: Mayer et al. [58] proposed the first end-to-end trainable stereo 

matching network based on FlowNet architecture [90]. They released a large 

synthetic dataset that made training convolutional networks for stereo possible. End-

to-end networks are proposed to learn all steps jointly, yielding more accurate results 

[58], [91]–[93]. Some end-to-end methods, such as DispNet, link the matching and 

disparity prediction, and it directly computes the correspondence field between 

stereo images by minimizing a regression loss. 

The efforts, as in GC-Net [75], have suggested incorporating explicit matching cost 

volumes that encode the cost of assigning a disparity for a pixel. It was the first 

algorithm that corporates the 3D convolutions in the pipeline. In this setting, 3D 

convolutions are used as a differentiable approximation of the classical filtering 

algorithms such as SGM. GCNet incorporates feature extraction, matching cost 

aggregation, and disparity prediction into a single end-to-end training. Stereo images 

are first mapped through concatenation or correlation operator [74]. 3D convolutions 

layers then filter the cost volume before being mapped to a pixel-wise depth estimate 

through a differentiable argmin indexing operator. 
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Refining Disparity: In contrast, RAFT-Stereo uses only 2D convolutions and a cost 

volume by a single matrix multiplication and avoids 3D convolutions. Additionally, 

they introduced multi-level GRU units that maintain hidden states at multiple 

resolutions with cross-connections, however it still generates a single high-resolution 

disparity update. 

Another line of work has looked at replacing the more costly components of the 3D 

networks with more lightweight modules. Liang et al. [82] first proposed a 2-stage 

refinement method for stereo. Bi3D [94] proposed estimating depth with a series of 

binary classification stages. Rather than calculating if an object is at a specific depth 

D, as current stereo methods do, Bi3D classifies areas as being closer than depth D 

or farther than depth D. When a longer time or more computational budget is 

available, it can compute depth queries with various levels of quantization.  

To refine the disparity prediction, [83] uses a 2-stage ConvNet by first estimating 

the disparity prediction and then refining it. FADNet [95] also uses a 2-stage network 

design as well; similarly, the second one is used to refine the disparity prediction 

from the first  network. 

On the other hand, Lipson [4] suggested a multi-level correlation and refinement 

procedure that finds correlations between the stereo image couple and calculates the 

depth in a supervised way. 

3.1.2.2 Self-Supervised Deep Learning 

Since the ground truth data is, most of the time, hard to obtain (usually by other 

sensors like LIDAR or depth camera) or hard to annotate (both in terms of human 

perception and the tools available), to abandon the tedious task of gathering dense 

depth ground truths, self-supervised and weakly supervised methods are explored 

widely in the community. Research on self-supervised training usually explores three 

main elements: better architectures, loss functions, or image warping models. 
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Better Architectures: Zhong [96] suggested a self-supervised learning method for 

stereo matching using feature volumes. Many relevant works extend these ideas to 

valuable different directions [8], [24], [30]. 

Caron et al. [44] used self-supervision techniques similar to [111] to turn the 

attention maps into a semantic segmentation mask. Moreover Li et al. [66] used the 

default dense transformer modules to calculate an attention map, which they utilized 

as the cost matrix of an optimum transport problem to solve the stereo feature 

matching task. 

PVStereo proposes a new ConvNet architecture, denoted as OptStereo, inspired by 

the traditional optimization-based methods. OptStereo first builds multi-scale cost 

volumes and uses an RNN unit to refine disparity predictions at high resolutions 

iteratively. This architecture avoids the error accumulation problem in the coarse-to-

fine methods. PVM creates semi-dense disparity predictions, and the generated 

disparity images are used to supervise DCNN training. 

Loss Functions: MonoDepth2 [6], despite its name, contains a stereo training 

procedure in the existence of stereo image pairs. They proposed a novel minimum 

reprojection loss designed to handle occlusions robustly. After the reprojection is 

applied, if there is an occlusion at the previous frame and no occlusion at the next 

frame in a specific pixel location, they ignore the greater loss created by the 

occlusion. They also propose an auto-masking loss to ignore training pixels that 

violate the assumption of the camera motions. 

Moreover, Liu et al. [99] proposed Flow2Stereo, which leverages the geometric 

constraints behind stereoscopic videos, all relations between two consecutive frames 

and stereo image pairs, to predict disparity and optical flow estimation in a self-

supervised manner. Tulyakov et al. [100] prepared a method to generate disparity 

estimations in a weakly-supervised way. 
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Zhong et al. [96] proposed a self-supervised stereo matching approach. It uses a 

novel training loss to exploit the loop constraint in the image warping process and 

improve the predictions in textureless areas. 

Image Warping: Zhong et al. [96] aim to solve the stereo matching problem using 

warped images. They show that warping an input image to mimic its pair using depth 

as an intermediate variable is enough to converge the neural nets. To overcome the 

fact that multiple solutions satisfy this setup, they develop a 3D regularization 

method that pushes the trivial solutions in the high dimension feature volume. Their 

feature matching method chooses the disparity that minimizes both the appearance 

space and the high dimensional feature volume. They use the left-right consistency 

check loss function to handle the textureless areas better. 

Deep3D [101] proposed a model with discretized depth to effectively utilize the 

novel view synthesis methods. [57] improved this approach by predicting continuous 

disparities, and [102] improved the results by including a left-right depth consistency 

term. Self-supervised training methods are extended with other consistency terms 

[103], semi-supervised data [104], [105], GANs [106], [107], and temporal 

formation [103]–[105]. 

Self-supervised training typically relies on making assumptions about the 

appearance of object properties (brightness consistency) and surface properties (e.g., 

Lambertian) between consecutive frames. The method in [111] shows a local 

structure-based appearance loss [54] significantly improves the depth estimation 

performance compared to a simple pairwise pixel difference [57], [101], [112]. The 

method in [113] extended this approach to include an error-fitting term. [114] 

combined it with an adversarial-based loss to drive the network to produce realistic-

looking warped predictions. 

The following research topics will be examined in the upcoming sections since 

therefore utilized during the proposed technique: 
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1. Self-supervised depth estimation methods with an ego-pose estimator 

network, 

2. Stereo depth estimation methods using iterative refinements, 

3. Stereo depth estimation methods using attention mechanisms. 

3.2 Self-Supervised Depth Estimation with an Ego-Pose Estimator Network 

The most famous self-supervised ego-pose and depth estimation examples are 

arguably MonoDepth2 [6]. The proposed technique has three different depth 

estimation methods: monocular, stereo, and monocular-stereo combination. For this 

thesis, the latter one is taken into the focus. 

In this approach, Godard et al. [6] presented three novel ideas: a minimum 

reprojection loss for appearance matching, a full resolution multi-scale sampling 

method that performs all image sampling at the input resolution, and a novel and 

simple auto-masking loss to ignore the occluded training pixels. 

Their self-supervised depth estimation method frames the estimation problem as a 

novel view-synthesis problem by training 2 networks to predict the appearance of a 

target image from the viewpoint of a source image. Godard et al. express the relative 

pose transformation for each source image 𝐼𝑡′ with respect to the target image 𝐼𝑡, as 

𝑇𝑡,𝑡’. Finally, the total loss they utilize can be written as:  

 𝐿 = 𝜇𝐿𝑝 + 𝜆𝐿𝑠 (7) 

The authors [6] predict a dense depth map 𝐷𝑡 that minimizes total photometric 

reprojection error 𝐿𝑝 where: 

 𝐿𝑝 = ∑ 𝑝𝑒(𝐼𝑡, 𝐼𝑡′→𝑡)𝑡′   (8)

 𝐼𝑡′→𝑡 = 𝐼𝑡′〈 𝑝𝑟𝑜𝑗(𝐷𝑡, 𝑇𝑡→𝑡′ , 𝐾) 〉 (9) 
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where 𝑝𝑒(. ) is photometric reprojection error using 𝐿1 distance in pixel space. 

𝑝𝑟𝑜𝑗(. ) is the resulting 2D coordinates of the projected depths 𝐷𝑡  in 𝐼𝑡’ and 〈 . 〉 is 

the sampling operator. 𝐾 is the pre-computed intrinsic matrix, 𝐼𝑡′→𝑡 is the warped 

image. 𝑝𝑒(. ) error is defined as, 

 𝑝𝑒(𝐼𝑎, 𝐼𝑏) =
𝛼

2
(1 − 𝑆𝑆𝐼𝑀(𝐼𝑎, 𝐼𝑏)) + (1 − 𝛼‖𝐼𝑎 − 𝐼𝑏‖1 (10) 

where 𝛼 is chosen to be 𝛼 = 0.85. Another loss metric they prefer is the edge-aware 

smoothness regularization. This metric is calculated as, 

 𝐿𝑠 = │𝜕𝑥𝑑𝑡
∗│𝑒−│𝜕𝑥𝐼𝑡│ + │𝜕𝑦𝑑𝑡

∗│𝑒−│𝜕𝑦𝐼𝑡│ (11) 

where 𝑑𝑡
∗ is the mean-normalized inverse depth, used to discourage the shrinking of 

the depth estimation. 

In stereo training, the stereo image pair is used as the source (left) and target image 

(right). In the monocular setting, relative poses are not already determined, so it is 

possible to train a self-supervised pose estimation network to predict the relative 

poses 𝑇𝑡→𝑡’ which is used in the 𝑝𝑟𝑜𝑗(. ) formula. During training, Godard et al. solve 

for the depth and ego-pose unknowns simultaneously. In the mixed setting of 

monocular and stereo, the source image set also includes temporally adjacent frames 

(future and past frames) and the opposite stereo image. 

They also suggest that instead of the 𝐿𝑝 equation above, a per-pixel minimum 

projection error would yield better results, since the existing self-supervised depth 

estimations average together the reprojection error into each of the available source 

images. If some pixels are visible in the target image, however not visible in the 

source image, this situation creates problems. In order to solve it, they use per-pixel 

Figure 3.2 (a, b) Two networks, (c) their appearance loss, (d) multi-scale loss [6] 
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mask µ. When the network tries to predict the correct depth for such a pixel, it will 

probably not match the target and that induce a high penalty during training. 

Therefore, averaging the photometric error overall source images at each pixel is not 

the best method in this case. However, using a minimum operation significantly 

reduces artifacts at the image border: 

 𝜇 = [min
t 

′
𝑝𝑒(𝐼𝑡, 𝐼𝑡′→𝑡) < min

t 
′

𝑝𝑒(𝐼𝑡, 𝐼𝑡′)] (12) 

3.3 Stereo Depth Estimation Methods Using Iterative Refinements 

Iterative refinements are a relatively new concept for stereo depth estimation. There 

were previous similar cascaded models [59], [81]–[83], however they rely on 

expensive cost-volume filtering operations using 3D convolutions. An iterative 

refinement method which is arguably easier to understand and easier to calculate is 

RAFT-Stereo [4]. The architecture of this paper will be the main baseline for the 

experiments conducted in this thesis. 

RAFT-Stereo has 4 main stages: Feature Encoder stage, Context Encoder stage, 

Correlation Pyramid stage, and Multi-Level Update Operator stage. The general 

architecture of RAFT-Stereo is shown below:   

 

Figure 3.3 RAFT-Stereo architecture is the architecture mainly used in the thesis [4] 
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Given a rectified stereo image pair 𝐼𝐿 and 𝐼𝑅, RAFT-Stereo extracts feature maps 

from the input images with convolution layers. Then the algorithm builds a 3D cost 

volume where the 3rd dimension is the disparity along the x-axis. Afterwards, it uses 

multi-level GRU [100] units to add incremental details to its disparity estimation 𝑑. 

Their loss function is a simple standard 𝐿1 loss. 

There are two different feature extractors in RAFT-Stereo: the feature encoder and 

the context encoder. Feature encoder is both applied to the left and right image. It 

builds a dense feature map that the correlation volume will use. The feature maps are 

1/8th of the input resolution in the H- and W-axis, every element has 256 channels, 

and instance normalization is the preferred normalization technique. The context 

encoder has almost the same design, except it has batch normalization, and it is only 

applied to the left image. The context encoder has three outputs injected into three 

GRUs separately; the same context outputs are used in every refinement iteration in 

the Multi-Level Update Operator stage. 

Lipson et al. built up a 3D correlation volume to build up the correlation pyramid. 

Using the dot-product as the similarity metric and 𝑓, 𝑔 𝜖 𝑅𝐻𝑥𝑊𝑥𝐷 feature maps 

extracted from the left and right images, the 3D correlation volumes are calculated 

as, 

 𝐶𝑖,𝑗,𝑘 = ∑ 𝑓𝑖𝑗ℎ  .  𝑔𝑖𝑘ℎℎ  (13) 

where  𝐶 𝜖 𝑅𝐻𝑥𝑊𝑥𝑊. The 3rd dimension of volume C is the disparity axis, the 

displacement along the horizontal axis W. Geometrically, from the left image to right 

image, all disparities must be positive. Hence, the correlation volumes are only 

calculated for the positive disparities. 

In order to finalize building the correlation pyramid by using 4 correlation volumes, 

they perform 1D average pooling on the 3D correlation volume along the disparity 

axis. The kth layer of the Correlation Pyramid is constructed via an average pooling 

layer with kernel size 2, stride 2. This operation results in a new lower-resolution 

volume 𝐶𝑘+1  with dimensions of 𝐻𝑥𝑊𝑥𝑊/2𝑘  . This means only the disparity 
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dimension is shrinking between the correlation volumes, which is a valuable 

outcome for estimating detailed and fast disparity maps. 

For indexing into this correlation pyramid, they use a correlation lookup operator 𝐿𝐶, 

similar to the one defined in RAFT[46]. Given the current estimate of disparity 𝑑 in 

a pixel location, they construct a 1D indexing grid along the disparity dimension, 

with integer offsets around the current estimate in each correlation volume, as it is 

illustrated in Figure 3.4. The grid is used to index the correlation pyramid in each 

four correlation volumes. The retrieved values are then concatenated into a single 

feature map. In each pixel location from each correlation volume, 2𝑟 + 1 many 

variables are indexed. 𝑟 is the correlation radius and by default, it is selected as 𝑟 =

4. Hence, the correlation feature is of size 𝐻𝑥𝑊𝑥(8𝑟 + 4). 

The Multi-Level Update Operator predicts a series of 2D disparity fields in each 

iteration for N times:  

 d = {d1, d2, . . . , dN} (14) 

starting from the initial 𝑑0 = 0 case. N is the iteration number, which can be any 

number as long as the execution time permits. In the original algorithm, this 

parameter is selected as 𝑁 = 32. They use the current disparity estimate in every 

pixel location during each iteration update to index the Correlation Pyramid and 

produce the new set of correlation features.  

Figure 3.4 The correlation lookup operation around current disparity estimate 
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The disparity features are passed down through 2 convolution layers (shown with the 

descending dashed arrow in Figure 3.5).  

Multi-Level Update Operator stage uses 3 GRUs that simultaneously operate on the 

disparity estimates at 1/8th, 1/16th, 1/32nd of the resolution of the input. GRUs are 

cross-connected and use each other’s hidden states as inputs.  Every GRU gets the 

context features, and every GRU gets the disparity features created by the current 

disparity estimate. But only the last GRU indexes the correlation pyramid and gets 

the correlation features as input. The GRUs update their corresponding hidden states, 

and the last GRU is used to predict the disparity update Δk. That Δk is simply added 

to the current disparity estimate 𝑑𝑘 to get the next estimate 𝑑𝑘+1. 

Note that the 1/8th resolution GRU has 4 times the parameter of the 1/16 resolution 

GRU and 16 times for the other. To increase the quality of the hidden states, the two 

lower resolution GRUs are updated several times with the same input before the 

higher resolution GRU is ready to calculate again.  

Because of this architecture, the predicted disparity field is calculated at 1/8th of the 

original input resolution. To obtain a disparity map with the same dimensions as the 

original input, they use a convex up-sampling method, the same one used in RAFT 

[46]. 

The loss metric of RAFT-Stereo is simply a standard 𝐿1 distance, 

 𝐿 = ∑ 𝛾𝑁−𝑖𝑁
𝑖=1 ‖𝑑𝑔𝑡 − 𝑑𝑖‖1

 (15) 

Figure 3.5 GRU modules in the Multi-Level Update Operator stage [4] 
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where 𝛾 is chosen as 𝛾 = 0.9. 

It should be noted that in this algorithm, there is no Fully Connected Network 

module. In every layer, only convolution filters are applied on the activation pattern 

of the previous layer. Hence this architecture can take inputs with any resolution. 

3.4 Stereo Depth Estimation Methods Using Attention Mechanisms 

Another state-of-the-art method that focuses on stereo matching problems is the 

STTR technique [66]. STTR uses Transformers [8] to relax the limitation of a fixed 

disparity range which is common in many convolutional correlation techniques. 

Instead of pixel-wise intensity correlation popular in classic stereo depth estimation 

methods, the authors use a customized Transformers attention mechanism with 

alternating between self and cross attention modules. Their method also identifies 

the occluded areas, provides a confidence map, and imposes uniqueness constraints 

for the stereo matching with the help of optimal transport calculations. STTR also 

provides a relative positional encoding for their customized attention mechanisms to 

define discriminative features during the matching process. Their architecture is 

shown below: 

The feature extractor of STTR is a standard hourglass network similar to [101]. The 

features on each pixel location are denoted as 𝑒𝐼 of size 𝐶𝑒. The resultant feature map 

is at the same resolution as the input image. 

The self-attention module computes the attention of every pixel only along the 

epipolar line in the same image. The cross-attention module performs a similar 

Figure 3.6 The STTR Architecture [61] 
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search; however, it searches on the other image. For N-1 layers, the authors compute 

self and cross attentions one after other. The Nth layer uses the most attended pixel 

in the attention map to estimate the raw disparity. There are exclusive operations for 

the last layer: optimal transport calculation for uniqueness constraint and attention 

mask for search space reduction. 

STTR utilizes multi-head attention modules. The original feature map input 𝑒 has a 

feature descriptor 𝑒𝐼 for every activation 𝐼. The multi-head module split the channel 

dimension 𝐶𝑒 of those feature descriptors 𝑒𝐼 into 𝑁ℎ heads, creating feature 

descriptors 𝑒ℎ,𝐼 of channel dimension 𝐶ℎ = 𝐶𝑒/𝑁ℎ per head. 

For each attention head ℎ, three sets of linear projections give the 𝑄ℎ,𝐼, 𝐾ℎ,𝐼 and 𝑉ℎ,𝐼 

vectors, this projection is repeated for every activation 𝐼 in the original feature map: 

 𝑄ℎ,𝐼 = 𝑊𝑄ℎ
𝑒ℎ,𝐼 + 𝑏𝑄ℎ

 (16) 

 𝐾ℎ,𝐼 = 𝑊𝐾ℎ
𝑒ℎ,𝐼 + 𝑏𝐾ℎ

 (17) 

 𝑉ℎ,𝐼 = 𝑊𝑉ℎ
𝑒ℎ,𝐼 + 𝑏𝑉ℎ

 (18) 

Then 𝑄ℎ,𝐼, 𝐾ℎ,𝐼 and 𝑉ℎ,𝐼 vectors for each row 𝑟 of the original feature map 𝑒 are 

simply concatenated to acquire 𝑄ℎ,𝑟
̅̅ ̅̅ ̅, 𝐾ℎ,𝑟

̅̅ ̅̅ ̅ and 𝑉ℎ,𝑟
̅̅ ̅̅ ̅ tensors. 

Figure 3.7 Alternating cross & self-attention modules in STTR architecture [61] 
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An attention map is calculated by first an outer-product and then a softmax operation. 

This calculation effectively multiplies every 𝑄ℎ,𝐼 with every other 𝐾ℎ,𝐼 to create 

attention matrix 𝛼ℎ,𝑟 per head ℎ for every row 𝑟. It should be noted that this softmax 

is the only nonlinearity step in this module: 

 𝛼ℎ,𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄ℎ,𝑟

𝑇  ̅̅ ̅̅ ̅̅ ̅.  𝐾ℎ,𝑟̅̅ ̅̅ ̅̅

√𝐶ℎ
) (19) 

The weighted 𝑉0,𝑟
̅̅ ̅̅ ̅ tensor is calculated by multiplying the attention matrix 𝛼ℎ,𝑟 with 

the 𝑉ℎ,𝑟
̅̅ ̅̅ ̅ tensors and concatenating of the 𝑁ℎ followed by a linear projection. This 

way we gathered a vector for every activation in the row 𝑟: 

 𝑉0,𝑟
̅̅ ̅̅ ̅ = 𝑊0𝑐𝑜𝑛𝑐𝑎𝑡(𝛼1,𝑟𝑉1,𝑟

̅̅ ̅̅̅, … , 𝛼𝑁ℎ,𝑟𝑉𝑁ℎ,𝑟
̅̅ ̅̅ ̅̅ ) + 𝑏0  (20) 

Then, the residual addition step is calculated by extracting the vector 𝑉0,𝐼,𝑟 from the 

𝑉0,𝑟
̅̅ ̅̅ ̅ tensor and adding it to the original feature descriptor 𝑒𝐼: 

 𝑒𝐼 ← 𝑒𝐼 + 𝑉0,𝐼,𝑟 (21) 

For self-attention modules, K, Q, and V vector sets are calculated from the same 

image, however the cross-attention module V is computed by the target image. Cross 

attention modules are connected bidirectionally. 

It should be noted that every feature 𝑒𝐼 belongs to one activation in the original 

feature map, the attention module processes information for every row in the original 

feature map separately from other rows and the I th slice of the processed information 

for row 𝑟 is then used to update the activation 𝑒𝐼. This is why the resolution of the 

original feature map can increase independently from the Transformer architecture.  

The authors’ relative positional encoding scheme try to resolve the ambiguities 

created by the pixel similarities in textureless places. Relative encoding forces the 

features in the image to anchor themselves to the nearest prominent features using 

the relative positional information. They chose to encode the relative pixel distance 

instead of an absolute position encoding scheme due to its shift-invariance abilities. 
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In the original transformer, the position embedding tensor was an absolute encoding 

tensor, and it was directly added to the input feature descriptor: 

 𝑒 = 𝑒𝐼 + 𝑒𝑝 (22) 

This selection makes the final values in the attention map: 

 𝛼𝑖,𝑗 = 𝑒𝐼,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝐼,𝑗 + 𝑒𝐼,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝑝,𝑗 +  𝑒𝑝,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝐼,𝑗 +  𝑒𝑝,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝑝,𝑗  (23) 

The last term is a  position-position term due to having 2 𝑒𝑝 terms. Such strategy 

makes it an absolute value in a particular pixel location. In order to make the position 

encoding relative, Li et al. excluded that term: 

 𝛼𝑖,𝑗 = 𝑒𝐼,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝐼,𝑗 + 𝑒𝐼,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝑝,𝑗 +  𝑒𝑝,𝑖
𝑇 𝑊𝑄

𝑇𝑊𝐾𝑒𝐼,𝑗 (24) 

Their optimal transport calculations use the negative of the attention map as the cost 

matrix 𝑀, computed by the Nth cross attention module without a final softmax, since 

optimal transport will normalize the attention values. Then, it aims to assign each 

pixel in the right image at most one pixel in the left image. For that purpose, they use 

an entropy regularized optimal transport setup [102]. 

Given a cost matrix 𝑀 and 2 marginal distributions 𝑎 and 𝑏 of length 𝐼𝑤 (a and b are 

the results of the cross attentions in both images at the same height), the optimal 

transport needs to find the optimal coupling matrix 𝑇: 

 𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑇𝜖𝑅𝐼𝑤𝑥𝐼𝑤 ∑ 𝑇𝑖𝑗𝑀𝑖𝑗 − 𝛾𝐸(𝑇)𝐼𝑤,𝐼𝑤
𝑖,𝑗=1  (25) 

𝑠. 𝑡. : 𝑇1𝐼𝑤
= 𝑎,  𝑇𝑇1𝐼𝑤

= 𝑏  

Figure 3.8 (a) Geometric constraints of stereo matching, (b) the attention mask [61]  
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𝐸(𝑇) is the entropy regularization term. This equation is solved for every line in the 

image. Li et al. [61] also masks the attention map such that any point in the left image 

cannot be matched to a pixel more right one in the other image. They use a lower 

triangular binary mask on the attention map to impose such constraints. 

The occlusion module uses disparity candidates in a modified winner-take-all 

(WTA) approach. The raw disparity is the most probable match 𝑘, acquired from the 

optimal transport matrix 𝑇. Then, the most probable match’s 3-pixel neighbors 

𝑁3(𝑘) and their probabilities are normalized such that the sum of their probabilities 

𝑡𝑙 sums to 1: 

  �̃�𝑙 =
𝑡𝑙

∑ 𝑡𝑙𝑙𝜖𝑁3(𝑘)
 (26) 

The authors weigh the candidate disparities 𝑑𝑙’s by the probabilities  �̃�𝑙 to get the raw 

disparities �̃�𝑟𝑎𝑤(𝑘): 

 �̃�𝑟𝑎𝑤(𝑘) = ∑ 𝑑𝑙 �̃�𝑙𝑙𝜖𝑁3(𝑘)  (27) 

They use the residual probabilities of the pixels that are outside of the 3-pixel 

boundary as the occlusion probability: 

 𝑝𝑜𝑐𝑐(𝑘) = 1 − ∑ 𝑡𝑙𝑙𝜖𝑁3(𝑘)  (28) 

The raw disparities �̃�𝑟𝑎𝑤(𝑘) and the occlusion probabilities 𝑝𝑜𝑐𝑐(𝑘) so far are 

calculated within a line, independent of other lines. Therefore, the disparities lack 

contextual cues. Content Adjustment Layer in Figure 3.6 uses convolutions to adjust 

the estimated values, conditioned on the input image globally. 

They use a Relative Responsive loss 𝐿𝑟𝑟 which is proposed in [101] on the 

assignment matrix 𝑇, for both sets of matched pixels 𝑀 and sets of unmatched pixels 

𝑈. The goal of the network is to maximize the attention on the actual target location. 

Since the disparity is subpixel, they use linear interpolation between the nearest 

integer pixels to find the matching probability 𝑡∗. For the ith pixel in the left image 

with ground truth disparity 𝑑𝑔𝑡,𝑖: 
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 𝑡𝑖
∗ = 𝑖𝑛𝑡𝑒𝑟𝑝(𝑇𝑖, 𝑝𝑖 − 𝑑𝑔𝑡,𝑖) (29) 

 𝐿𝑟𝑟 = −
1

𝑁𝑀
∑ log(𝑡𝑖

∗) +
1

𝑁𝑈
∑ log(𝑡𝑖,𝜙)𝑖𝜖𝑈𝑖𝜖𝑀  (30) 

The 𝑖𝑛𝑡𝑒𝑟𝑝(. ) is the linear interpolation and 𝑡𝑖,𝜙 is the unmatched probability. The 

first term on the right-hand side is the matched terms’ loss; the second is the 

unmatched pixel loss. They also use 3 other losses: smooth 𝐿1 loss on raw disparities, 

the smooth 𝐿1 loss on final disparities and the binary entropy loss and then sum them 

all up: 

 𝐿 = 𝑤1𝐿𝑟𝑟 + 𝑤2𝐿𝑑1,𝑟 + 𝑤3𝐿𝑑1,𝑓 + 𝑤4𝐿𝑏𝑒,𝑓 (31) 

3.5 Comparison of the Methods in the Literature 

The comparison of the stereo depth estimation performance of the methods explained 

in this chapter is provided in this section. The definitions of the metrics are explained 

below. 

3.5.1 Error Metrics for Stereo Depth Estimation 

The metrics below are the most commonly used metrics for stereo depth estimation 

(the lower number is better): 

• EPE (in pixels): The mean absolute disparity error. 

• 3 px error (%): It gives the percentage of pixels with a matching error of more 

than 3 px. This metric can also be used for 1 or 2 px. 

3.5.2 Depth Estimation Comparison 

The results of the depth estimation algorithms reported in Table 3.1. The reported 

results are based on their reports in their papers, other papers that replicated them 

[103], online benchmark sites of the datasets, and the tests in this thesis. When 
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conflicting results are found, the online benchmarks are assumed to be true. As one 

can see in Table 3.1, in all metrics, RAFT-Stereo and STTR achieves the best results, 

which is no surprise because they are the most recent papers in this table.  

Table 3.1 Comparison of the performance of 4 stereo depth estimation method 

 
Middlebury Q 

Dataset 
ETH3D 

Dataset 

Metric 2px (%) EPE (px) 1px (%) EPE (px) 

Monodepth2 30.76 7.94 12.56 0.60 

HITNET 12.80 3.29 3.11 0.22 

RAFT-Stereo 9.36 2.71 3.28 0.19 

STTR 8.51 2.33 4.98 0.37 
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CHAPTER 4  

4 EFFECTS OF ATTENTION MODULES, INITIALIZATIONS AND SELF 

SUPERVISED TRAINING ON STEREO DEPTH ESTIMATION 

Based on the literature survey, RAFT-Stereo is selected as a promising technique to 

examine. This algorithm has two main drawbacks, one of which is its performance 

in homogenous regions, whereas the other one is the lack of an initialization stage 

for better estimates. In this chapter, two primary analyses have been performed for 

the improvement of the state-of-the-art stereo depth estimation method, RAFT-

Stereo, by utilizing some design choices:  

• Analysis 1: The effects of adding various self & cross attention modules of 

Transformers into RAFT-Stereo depth estimation network. 

• Analysis 2: Initialize the RAFT-Stereo depth estimation network with 

various previous disparity predictions or use ego-pose estimation to finetune 

the pre-trained supervised RAFT-Stereo depth estimation network with a 

self-supervised method. 

4.1 Experimental Settings 

4.1.1 Selected Network Architecture 

RAFT-Stereo [4] is used to conduct all the experiments and to propose improvements 

for its estimation capabilities. The experiments are conducted by using the PyTorch 

[119] library (version 1.10). As it is explained in the related work section, RAFT-

Stereo has 4 stages: Feature Extractor, Context Extractor, Correlation Pyramids, and 

Multi-Level Update Operator. Some modifications have been made throughout this 
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thesis on Correlation Pyramids, Multi-Level Update Operator, or overall training 

method. 

4.1.2 Optimization 

The default optimization method of RAFT-Stereo is AdamW [104] optimizer. In 

most of the tests, one-cycle learning rate schedule [105] with a maximum learning 

rate of 2.10-4 is used. Batch size is selected as 2 or 4, according to the memory 

requirements of avail GPU. Models are trained on synthetic data for 200.000 steps. 

The epoch size has been calculated accordingly using the parameters above. In the 

L1 loss scheme of RAFT-Stereo, the gamma value is left untouched 𝛾 = 0.9. 

4.1.3 Datasets 

The SceneFlow synthetic dataset, a combination of FlyingThings3D, Driving & 

Monkaa, is utilized during the supervised synthetic training. These are stereo image 

datasets from different domains, and the purpose of using images from different 

domains is to extract and expect some level of generalization. Since SceneFlow 

datasets have temporal continuation between many of its frames, these datasets are 

also used in the Analysis 2 where the proposed method aims to utilize previous 

frames’ disparity predictions. 

The raw KITTI dataset has 12919 unannotated real-world stereo images. In the self-

supervision experiments, this raw KITTI dataset is used as the primary training 

dataset since the self-supervised experiments converge relatively slowly and requires 

more example to extract useful information through the consistency. 
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Figure 4.11 An example from every dataset utilized in this thesis: The first row is 

an SceneFlow (FlyingThings3D and Monkaa) examples, the second row is ETH3D 

and Middlebury examples, the last row is a KITTI example 

The KITTI training dataset comprises only 200 stereo images with ground truth 

information. The number of images is enough for the validation purposes during the 

synthetic training phase. However, this number of images is not enough to separate 

this dataset into a training set and a validation set during the finetuning phase 

afterwards. Therefore, a 10-fold cross-validation scheme over this dataset is utilized 

during the finetuning phase.  

Middlebury 2015, ETH3D and KITTI training datasets are utilized as the validation 

datasets during all attention experiments, however due to their lack of temporal 

nature, the temporal information experiments use only the KITTI training dataset. 

Middlebury dataset has three resolutions: Middlebury-F is full resolution, 

Middlebury-H is half resolution, and Middlebury-Q is quarter resolution. The 

Middlebury-H and Middlebury-Q are utilized for all attention experiments. 
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Middlebury-F is not utilized because none of the networks in any experiment could 

fit into the VRAM of available GPU (Nvidia RTX 3090). 

In all supervised synthetic training experiments, 320x736 pixel crops have been 

used, same as the RAFT-Stereo algorithm. In the finetuning phase, the input images 

are cropped to 320x1024 pixels. This setting is different from the RAFT-Stereo 

algorithm as they use 320x1000 pixel crops during the finetuning phase. The reason 

is that RAFT-Stereo algorithm progressively decreases the size of the activations 

until it reaches to 1/8th resolution of the original input image, while the proposed 

networks in this work reach 1/16th resolution of the original input image. This is why 

the image width must be divisible by 16, and an image width of 1024 is selected for 

this purpose. 

Table 4.1 The tasks and the utilized datasets during those tasks are explained 

Tasks\
Datasets

 FlyingThings3D Driving Monkaa ETH3D Middlebury 

KITTI 

training 

dataset 

Training ✓ ✓ ✓    

Validation    ✓ ✓ ✓ 

Finetuning      

✓ 

(10-fold cross 

validation) 

 

In all supervised training experiments including the finetuning phase, the datasets 

have been augmented with various augmentation techniques. To be specific, the 

image saturation was adjusted between 0 and 1.4; the right image was perturbed to 

simulate imperfect rectification, which is common in datasets such as ETH3D and 

Middlebury. Moreover, the image and disparity data have been stretched by random 

factors in the range [2−0.2, 20.4] to simulate a range of disparity distributions. All these 

scenarios are explained in Table 4.1. 



 

 

43 

4.2 Analysis 1: Attention-based Improvements for RAFT-Stereo Algorithm 

Transformer architectures are generally composed of the self-attention and cross-

attention modules, as mentioned in Chapter 2. According to Li et al. [36], these 

networks can be quite beneficial for stereo disparity estimation. In STTR, these 

modules are believed to be creating echoes in the intermediate high-dimensional 

representation, especially in textureless areas. They gather echo-like in-paintings, 

and in theory, they can make the rest of the networks’ task somehow easier for the 

dense feature matching mechanism on the textureless areas. The reason for obtaining 

echoes in high dimensional space is the relative position encoder in the attention 

mechanism. The encoder makes it possible for an individual pixel attend to relative 

positions in a row, whenever a nearby edge pixel is attended in a layer, some of the 

feature of that edge pixel is included into the feature output for the original pixel due 

to the attention mechanism. When this process is repeated, the features of the edge 

pixel expand into the nearby homogenous regions in a periodic manner. This analysis 

begins with the hypothesis that this self and cross attention cascade can be a suitable 

replacement for the correlation volumes used in the more mature feature-matching 

methods. However, this idea might follow that, it can also be detrimental for the 

textured areas. Those echoes may decrease performance in the textured areas and 

most importantly, around the edges. Hence this hypothesis requires further 

investigation. 

Another interesting point is that according to the STTR algorithm, the in-painting 

effect is relatively less noticeable when the self-attention module processes 

information and relatively more pronounced when the cross-attention module 

processes information. There are other design choices for this task, such as using 

cross-attention modules only, or using the self-attention module except the last one. 

The reason to use only cross-attention modules is to make the in-painting effect more 

pronounced using the depth edges and the reason for using self-attention modules 

except the last one is to make the in-painting effect more pronounced using the edges 

in the same image. This analysis will investigate the results of these choices as well. 
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However, there is an important difference between this analysis and the original 

STTR method. STTR approach always uses the self and cross-attention modules one 

after another. Attention map of the last cross-attention module is the input of an 

optimal transport algorithm that tries to use this information such that the last 

attention map can be trained into a correlation volume module. In contrast, different 

combinations, and number of self and cross-attentions have been tested in this thesis, 

and no optimal transport algorithm has been used to sort the attention calculations. 

Instead, in this work the highest quality feature maps of the correlation-volume of 

RAFT-Stereo are changed with the transformers’ attention maps. This modification 

can be thought as bringing STTR algorithm into the end-to-end training category 

closer or making the correlation volume of RAFT-Stereo more learnable. 

In this stage, various combinations of the attention modules can be utilized: cross-

attention modules only, self-attention modules only, or both of them one after 

another. It should be reminded that the last attention module needs to be a cross-

attention module, since cross attention is the module where an attention calculation 

is produced by utilizing the information coming from the other image and not coming 

from the same image. 

For that purpose, in the Analysis 1, after the Feature Encoder of RAFT-Stereo, 

different amounts of cross & self-attention modules are placed, and the improvement 

opportunities that these attention modules pose are investigated. To keep the 

disparity index the GRUs use the same; the final attention map of the last cross-

attention is subsampled four times & turned into four Attention Volumes in an 

Attention Pyramid. It should be noted that, as explained in Chapter 3.3 and 3.4, the 

convolution and attention modules utilized in this thesis are flexible in terms of the 

resolution of the input. 
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Figure 4.2 General architecture of the Analysis 1 (Revised from [4]) 

The experiments performed in this part are: 

• Training a network with various numbers of self & cross-attention modules, 

• Training a network with various numbers of self-attention modules and one 

last cross-attention module, 

• Training a network with various numbers of cross-attention modules only. 

Every experiment has been conducted on a Nvidia RTX 3090 GPU. Every training 

lasted 3.5 days with a total of 200.000 steps in the end. In all of the experiments, the 

parameters of the RAFT-Stereo architecture have been initialized with the Kaiming 

initialization. The parameters of the attention modules have been initialized with the 

values of a pre-trained STTR network, deleting the unnecessary modules starting 

from the last. The N=12 networks have 12,401M parameters, N=8 networks have 

12,135M parameters and N=4 networks have 11,869M parameters.  

4.2.1 Hyperparameter Search 

Before starting the experiments, a quick hyperparameter search for the networks with 

attention modules is conducted. The initial trial and error phase shows that 4.10-3 is 

a quite aggressive learning rate for these tasks since the results were always inferior 

to other alternatives. On the other extreme, 1.10-5 was a small learning rate to finish 

training within 200.000 steps, therefore it is later used as the finetuning learning rate 
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parameter. The potential improvement by dropout was considered as well. Dropout 

rate of 0.15 is tested and at that dropout rate, the learning process was always affected 

negatively. The reason for considering the hyperparameter combination in Table 4.2 

is based on this observation. 

Table 4.2 The hyperparameter grid search combinations for networks with attention 

modules 

Dropout \ learning rate 2.10-4 11.10-5 2.10-5 

0.0 (0.0, 2.10-4) (0.0, 11.10-5) (0.0, 2.10-5) 

0.1 (0.1, 2.10-4) (0.1, 11.10-5) (0.1, 2.10-5) 

 

The hyperparameter combinations in Table 4.2 are used to train the networks 

explained in Figure 4.2. During the hyperparameter search N is always used 𝑁 = 8 

and use them for all the trainings because the architecture of the networks in this 

analysis are relatively similar. The networks are trained with the SceneFlow dataset 

and validated with the KITTI training dataset. Since these results are not finetuned, 

the respective baseline network for this case is the model denoted as raftstereo-

sceneflow in Table 4.3 from the RAFT-Stereo project page. 

Table 4.3 The result of the hyperparameter search, validated on KITTI training 

dataset. The traditional % error used for KITTI is considered to be the 3px % error 

Networks EPE 3px % error 

Network with (0.0, 2.10-4) 1.0431 4.8565 

Network with (0.0, 11.10-5) 1.0953 5.4873 

Network with (0.0, 2.10-5) 1.0641 5.1375 

Network with (0.1, 2.10-4) 1.0449 4.9220 

Network with (0.1, 11.10-5) 1.0402 4.7782 

Network with (0.1, 2.10-5) 1.0892 5.1496 

Baseline: raftstereo-sceneflow 1.1779 5.6985 
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As one can observe in Table 4.3, in the synthetic-to-real generalization phase, the 

proposed networks performed better in terms of both 3px % error and EPE errors. 

Examining the results, the rest of the experiments in this section is conducted with 

dropout rate of 0.1 and a learning rate of 11.10-5, which are shown by bold fonts in 

Table 4.3. 

4.2.2 Experiment 1 - Training the Network with Various Number of Self 

& Cross Attention Modules 

In this first experiment, different amounts of both self & cross attention module pairs 

are added to RAFT-Stereo (Figure 4.2). These attention modules (and the feature 

encoder that feeds them) are the modules defined in STTR algorithm [61]. The 

parameters on Github page of the authors are used to initialize the proposed 

networks. For this experiment, the total number of attention modules (N) is selected 

as N=4, N=8, N=12, as these different numbers will work as the ablation tests in this 

experiment. 

The attention stage starts with the self-attention module. The purpose of these 

choices of N is to understand the effects of these blocks of self and cross-attention 

cascades better. By stacking more (N=12) or less (N=4) of them, we effectively 

perform ablations tests on these blocks. 

 

Figure 4.3 A general architecture for  the first experiment of the Analysis 1 
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4.2.2.1 Synthetic-to-Real Generalization Performance 

The initial phase of the experiment is the synthetic-to-real generalization phase. A 

qualitative comparison regarding the three tests that is conducted is shown in Figure 

4.4. There are quite minor differences, however the proposed networks at this stage 

perform slightly better than the baseline. In the first row, please notice the trees; in 

the second row, please notice the indentations; and in the third row, please notice 

hand breaks. 

Table 4.4 Comparison of the networks that are trained with synthetic images only 

Datasets KITTI Middlebury ETH3D 

Networks trained 

with only synthetic 

images 

3px % 

error 

2px % error 

of half set 

2px % error 

of quarter set 

1px % 

error 

Cross & Self, N=4 5.3174 13.6253 10.6802 3.1843 

Cross & Self, N=8 4.7782 8.5712 7.4183 2.2652 

Cross & Self, N=12 4.9097 10.8557 8.1948 3.0630 

Baseline (raftstereo-

sceneflow) 
5.6985 12.59 9.36 3.28 

HD3 [122] 26.5 37.9 20.3 54.2 

Gwcnet [123]  22.7 34.2 18.1 30.1 

PSMNet [59] 16.3 25.1 14.2 23.8 

GANet [124] 11.7 20.3 11.2 14.1 

DSMNet [125] 6.5 13.8 8.1 6.2 

STTR [61] 6.74 13.9 8.51 4.98 

 

The quantitative results of the synthetic-to-real generalization phase and results of 

other competing algorithms are shown in Table 4.4. The proposed networks in this 

phase performed better than both the baseline network and other competing 
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algorithms in all datasets, when it comes to the percentage of the stereo disparity 

outliers. 

Baseline: raftstereo-

sceneflow [4] 
Cross & Self, N=4 Cross & Self, N=8 Cross & Self, N=12 Original Image 

     

     

     

Figure 4.4 Comparison of the baseline network with the proposed networks 
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4.2.2.2 Comparing Performance on Textured and Textureless Areas 

In this section, the performances of the proposed networks in the textured areas and 

textureless areas are investigated, the results are compared to the baseline network, 

for obtaining a thorough analysis. For determining the areas that are textured and 

textureless, a normalizing Laplacian filter is applied on the left images. The filter 

kernel size is heuristically selected as 33 and similarly the separation threshold that 

determines whether a place is textured or not is selected as 0.235. An example to 

understand the effect of such a filter is shown in Figure 4.5: 

 

Figure 4.5 A typical example of the effects of the Laplacian filter 

Then, EPE and 3px % error terms are calculated separately for each types of areas. 

Since original RAFT-Stereo paper did not share their final finetuned network for the 

KITTI dataset, which is understandable as it includes multiple folds of cross 

validation parameters, their raftstereo-sceneflow network, one only synthetically 

trained with SceneFlow dataset, is used for comparison. The quantitative results are 

shown in Table 4.5. 

The proposed synthetically trained networks performed better in all three conditions: 

in general, textured areas and textureless areas. However, one examines at how the 

network depth N changes the relative performance of these areas (the grey area in 

Table 4.5). It can be observed that, relatively speaking, as adding more attention 

modules affected the textured areas for the worse, however the textureless areas are 

affected for the better (maximizing at N=8). This is probably due to the in-painting 

effect that is hypothesized in STTR paper. In the high-dimensional space of the 

feature output of the transformers, an echo that is created by the relative positioning 



 

 

51 

encoding of the STTR algorithm can affect textureless areas relatively in a positive 

way, however the textured areas may be affected relatively in a negative way. 

Table 4.5 The synthetic-to-real experiments. The networks are only trained on 

SceneFlow datasets and validated with KITTI training dataset 

Networks 

trained with 

only 

synthetic 

images 

EPE in 

general 

3px % 

error in 

general 

EPE in 

textured 

areas 

3px % 

error in 

textured 

areas 

EPE in 

textureles

s areas 

3px % 

error in 

textureles

s areas 

Ratio of 

EPE in 

textured 

areas and 

EPE in 

general 

Ratio of 

3px % 

error in 

textured 

areas and 

3px % 

error in 

general 

Ratio of 

EPE in 

textureles

s areas 

and EPE 

in general 

Ratio of 

3px % 

error in 

textureles

s areas 

and 3px 

% error in 

general 

Baseline 

(raftstereo-

sceneflow) 

1.1779 5.6985 1.3867 7.6713 1.1345 5.421 1.1773 1.3462 0.9632 0.9513 

Cross & 

Self, N=4 
1.1931 5.3174 1.3112 7.3482 1.1528 5.03 1.0990 1.3819 0.9662 0.9460 

Cross & 

Self, N=8 
1.0402 4.7782 1.3001 7.2698 0.9967 4.4277 1.2499 1.5215 0.9582 0.9266 

Cross & 

Self, N=12 
1.0561 4.9097 1.2897 7.0589 1.0149 4.6074 1.2212 1.4377 0.9610 0.9384 

 

Even though the absolute performance is increased as one adds more attention 

modules, one can see there is a trade-off in the attention modules. In the original 

RAFT-Stereo algorithm, the relative ratios for 3px % errors are 

1.3462:0.9513=1.4151, for textured areas and textureless areas respectively. But in 

the N=8 network, the same ratio is 1.5215:0.9266=1.6420. This indicates that an 

algorithm that discriminates between the textured and textureless areas may improve 

the performance even more by using a suitable attention-based network for each 

types of areas. 

4.2.2.3 Finetuning the Networks 

In order to improve the results, the networks should be trained further by a similar 

dataset. Hence the next task is to finetune the networks using the KITTI training 

dataset. During this phase of the experiment, a 10-fold cross-validation method has 

to be applied, since this is a small dataset with only 200 annotated images. The 

learning rate is selected as 10-5, and data augmentations such as saturation and 
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stretches were applied. The raftstereo-sceneflow network is finetuned to acquire the 

unprovided finetuned RAFT-Stereo model’s results. 

The qualitative results of the finetuned networks are shown in Figure 4.6 and the 

quantitative results is shown in Table 4.6. After finetuning, the proposed networks 

have come close however failed to pass the performance of the baseline network 

RAFT-Stereo by only 0.01 difference. This result is somehow expected due to the 

fact that attention modules always require more training dataset than any other 

network architecture. However, it should be noted that the big poles’ shape in the 

first row and thin lines in the second row where the proposed network performed a 

little better. 

Table 4.6 The performance comparison of finetuned networks by KITTI training 

dataset 

Networks finetuned with 

KITTI training dataset 

3px % 

error 

Cross & Self, N=4 2.7601 

Cross & Self, N=8 1.9997 

Cross & Self, N=12 1.9777 

Baseline (RAFT-Stereo) [4] 1.96 

AcfNet [126] 1.89 

AMNet[127] 1.84 

GANet-deep [124] 1.81 

SUW-Stereo [128] 1.80 

GANet + DSMNet [125] 1.77 

CSPN [129] 1.74 

LeaStereo [130] 1.65 

STTR [61] 2.01 
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Baseline: raftstereo-

sceneflow [4] 
Cross & Self, N=4 Cross & Self, N=8 Cross & Self, N=12 Original Image 

     

     

Figure 4.6 Examples from finetuned networks in this experiment where the cascade 

of self and cross attention modules are utilized 

To conclude, after an initial hyperparameter search, the proposed networks have 

been tested, which are composed self and cross-attention modules instead of 

correlation volumes. It is observed that the proposed methods performed much better 

synthetic-to-real world generalization than both RAFT-Stereo and other competing 

algorithms compared in Table 4.4. However, it is failed to surpass any of them when 
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the networks are finetuned with the KITTI training dataset. With a deal of 

uncertainty, one can argue that this might be related to the existence of the attention 

modules in the proposed networks and the smaller number of training examples, 

however this question is left as a future work. As more attention modules are added, 

the additive modules generally increase the performance of the network up to a point, 

however relatively speaking, during those performance increases, a performance 

trade-off between the textureless areas and textured areas is observed clearly. 

4.2.3 Experiment 2 - Training the Network with Self-Attention Modules 

Only 

In the second experiment, all the cross-attention modules are removed, except the 

last module, since the attention calculation of the last cross attention module must be 

used for disparity search by the proceeding modules, instead of the original 

correlation-volume. This architecture is more similar to that of the original 

Transformer [8]. 

 

Figure 4.7 The general architecture of the second experiment (Revised from [4]) 

This experiment is required to understand the in-painting effects of the self-attention 

modules better. On the previous experiment regarding this topic, one could only 

conclude about the effect as an outcome of both of the attention modules. On the 

other hand, with this experiment and the next one, one can better understand the 

individual effects of the self and cross attention modules. During all tests, the 
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previous hyperparameter grid search results are used. Moreover, N has been chosen 

as N=4, N=8, and N=12, as these will work as the ablation tests during all tests. 

4.2.3.1 Synthetic-to-Real Generalization Performance 

The initial phase of the training is the synthetic-to-real generalization phase. The 

quantitative results of the synthetic-to-real experiments and results of other 

competing algorithms are shown in Table 4.7. In order to not populate this thesis 

with the same graph, only the best two closest algorithms are kept in the figures. 

The proposed networks only could surpass other networks in synthetic-to-real 

generalization cases for the KITTI dataset. In all other cases, self-attention modules 

were not more successful than the baseline. 

Table 4.7 The synthetic to real experiment with self-attention modules 

Datasets KITTI Middlebury ETH3D 

Networks trained with 

only synthetic images 

3px % 

error 

2px % error 

of half set 

2px % error 

of quarter set 

1px % 

error 

Self-attention only, N=4 5.5657 14.6747 11.3530 3.8603 

Self-attention only, N=8 5.5306 12.8250 10.9948 3.3309 

Self-attention only, N=12 5.7419 14.1663 11.8981 3.4133 

Baseline: raftstereo-

sceneflow [4] 
5.6985 12.59 9.36 3.28 

DSMNet [125] 6.5 13.8 8.1 6.2 

 

The qualitative results are shown in Figure 4.8. The proposed networks in this case, 

relatively speaking, struggle with holes and poles. 
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Baseline: raftstereo-

sceneflow [4] 

Self-attention only, 

N=4 

Self-attention only, 

N=8 

Self-attention only, 

N=12 
Original Image 

     

     

     

Figure 4.8 The qualitative results of the synthetic to real generalization test with 

self-attention modules 
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4.2.3.2 Comparing Performance on the Textured and Textureless Areas 

A similar analysis for the textured and textureless areas is also performed in this 

experiment. As shown in Table 4.8, 3px % error in general is minimum at the 

proposed network with N=8, EPE in general is minimum at the one with N=4. 

With the baseline network, the ratios of the textured and textureless areas start from 

the ratio 1.3462:0.9513=1.4151, and predictably, as more self-attention modules are 

added, at N=12, the ratio becomes 1.4836:0.9320=1.5918. This result is similar to 

the previous texture analysis. However, 3px % errors and EPE in textured areas 

decreased with N, while 3px % errors and EPE of textureless areas are roughly 

aligned with their in general counterparts. This observation suggests that either the 

increase of number of self-attention modules caused this decrease on the textured 

area performance or the lack of enough cross-attention modules caused this 

phenomena. This is why the further investigation, which focuses on building 

networks with cross-attention modules only, will improve our understanding. 

Table 4.8 The synthetic-to-real experiments with networks that is built with self-

attention modules. 

Networks 

trained with 

only 

synthetic 

images 

EPE in 

general 

3px % 

error in 

general 

EPE in 

textured 

areas 

3px % 

error in 

textured 

areas 

EPE in 

textureles

s areas 

3px % 

error in 

textureles

s areas 

Ratio of 

EPE in 

textured 

areas and 

EPE in 

general 

Ratio of 

3px % 

error in 

textured 

areas and 

3px % 

error in 

general 

Ratio of 

EPE in 

textureles

s areas 

and EPE 

in general 

Ratio of 

3px % 

error in 

textureles

s areas 

and 3px 

% error in 

general 

Baseline 

(raftstereo-

sceneflow) 

[4] 

1.1779 5.6985 1.3867 7.6713 1.1345 5.421 1.1773 1.3462 0.9632 0.9513 

Self-

attention 

only, N=4 

1.1130 5.5657 1.3973 8.1588 1.0677 5.2010 1.2554 1.4659 0.9593 0.9345 

Self-

attention 

only, N=8 

1.1807 5.5306 1.4158 7.9317 1.1351 5.1929 1.1991 1.4341 0.9614 0.9389 

Self-

attention 

only, N=12 

1.1301 5.7419 1.4276 8.5189 1.0816 5.3513 1.2633 1.4836 0.9571 0.9320 
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4.2.3.3 Finetuning the Networks 

The next task is finetuning the networks by using the KITTI training dataset. Again, 

during this phase, a 10-fold cross-validation method had to be applied because this 

is a small dataset with only 200 images. The learning rate is selected as 10-5, data 

augmentations such as saturation and stretches were applied. 

The qualitative results of the proposed finetuned networks are shown in Figure 4.9 

and the quantitative results are shown in Table 4.9. The finetuned raftstereo-

sceneflow network is used to acquire the unprovided finetuned RAFT-Stereo model 

and its output images. 

Table 4.9 The comparison between the proposed networks in experiment 2 and 

competing networks. 

Networks finetuned with 

KITTI training dataset 

3px % 

error 

Self-attention only, N=4 2.3907 

Self-attention only, N=8 2.4856 

Self-attention only, N=12 2.4722 

Baseline (RAFT-Stereo) [4] 1.96 

AcfNet [126] 1.89 

AMNet[127] 1.84 

GANet-deep [124] 1.81 

SUW-Stereo [128] 1.80 

GANet + DSMNet [125] 1.77 

CSPN [129] 1.74 

LeaStereo [130] 1.65 

STTR [61] 2.01 

 

After finetuning, one can observe in Table 4.9 that the proposed networks have 

undoubtably improved their results on KITTI training dataset, however they are not 
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better than the competing algorithms shown in Table 4.9. Qualitative results show 

similar indications as well. 

Baseline: raftstereo-

sceneflow [4] 

Self-attention only, 

N=4 

Self-attention only, 

N=8 

Self-attention only, 

N=12 
Original Image 

     

     

Figure 4.9 The qualitative results of the networks that have self-attention only and 

the baseline network 

To conclude, the proposed networks with self-attention modules are tested in terms 

of synthetic-to-real world generalization, and it is observed that they performed 

better synthetic-to-real world generalization on the KITTI training dataset than both 
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RAFT-Stereo and other competing algorithms, the proposed networks were only 

competitive on the other two datasets, unfortunately. During the texture analysis, a 

decrease of the absolute performance on textured areas (both EPE and 3px % error) 

is observed as  the number of self-attention module increases. And after the 

finetuning operation, the proposed networks stayed behind other networks. 

4.2.4 Experiment 3 - Training the Network with Cross-Attention Modules 

Only 

All the self-attention modules are removed in this final experiment, and 

computations are done with the cross-attention modules only. This experiment is 

conducted to understand the in-painting effects of the cross-attention modules in a 

complete manner. During all tests, the previous hyperparameter search results are 

used. During all tests, N is chosen as N=4, N=8, and N=12, as these will function as 

the ablation tests. 

 

Figure 4.10 The architecture of the network in Experiment 3 (Revised from [4]) 

4.2.4.1 Synthetic-to-Real Generalization Performance 

The initial phase of the training is the synthetic-to-real generalization training phase. 

The quantitative results of the synthetic-to-real experiments and results of other 

competing algorithms are shown in Table 4.10 and the qualitative results are shown 

in Figure 4.11. 
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Baseline: raftstereo-

sceneflow [4] 

Cross-attention only, 

N=4 

Cross-attention only, 

N=8 

Cross-attention only, 

N=12 
Original Image 

     

     

     

Figure 4.11 The synthetic-to-real generalization performance of the proposed 

networks and the baseline network [4] 

In the first row of Figure 4.11, straightness of the backplate of the closest car should 

be noted; in the second row, visibility of the indentations should be examined; and 

in the last row, similarly the thin rods on the upper shelf are critical.  
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In order to not populate this thesis with the same tables, only the closest two 

competing algorithms are kept in Table 4.10 and in the following tables. The 

proposed networks with cross-attention modules performed better on synthetic-to-

real generation task than the baseline and other competitor networks. 

Table 4.10 The synthetic to real generalization results, compared with the best 

competing algorithms 

Datasets KITTI Middlebury ETH3D 

Networks trained with only 

synthetic images 

3px % 

error 

2px % error 

of half set 

2px % error of 

quarter set 

1px % 

error 

cross-attention only, N=4 5.4873 9.6963 9.2349 2.8317 

cross-attention only, N=8 5.1884 11.564 8.7276 3.2366 

cross-attention only, N=12 5.1434 10.724 8.3792 2.6902 

Baseline (raftstereo-sceneflow) [4] 5.6985 12.59 9.36 3.28 

DSMNet [125] 6.5 13.8 8.1 6.2 

4.2.4.2 Comparing Performance on the Textured and Textureless Areas 

A similar experiment is performed for the textured and textureless areas. As shown 

in Table 4.11, in synthetic-to-real generalization tasks, the proposed networks, 

especially N=8 and N=12 perform the best. The network for N=12 performed better 

in both textured and textureless areas, which makes its general result the best among 

all. 

Examining at the ratios to speak relatively, one can see that the performance in 

textured areas is compromised percentage-wise for the improvement of the 

performance in the textureless areas percentage-wise. While the baseline has 

1.3462:0.9513=1.4151 ratio for the textured and textureless areas respectively, N=8 

networks performance percentage has shifted to 1.4838:0.932=1.5920. 

Considering the overall picture, one can argue that cross-attention modules increase 

the performance as their numbers increase, roughly speaking. However, EPE in 

textured areas stayed behind; this scenario does not happen in the case when both of 
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the attention modules are utilized before; however, a similar situation occurred in 

self-attention only network—indicating that for better EPE in textured areas 

performance, the interaction between the self and cross-attention modules is more 

useful. 

Table 4.11 Performance on the Textured and Textureless areas 

Networks 

trained with 

only 

synthetic 

images 

EPE in 

general 

3px % 

error in 

general 

EPE in 

textured 

areas 

3px % 

error in 

textured 

areas 

EPE in 

textureles

s areas 

3px % 

error in 

textureles

s areas 

Ratio of 

EPE in 

textured 

areas and 

EPE in 

general 

Ratio of 

3px % 

error in 

textured 

areas and 

3px % 

error in 

general 

Ratio of 

EPE in 

textureles

s areas 

and EPE 

in general 

Ratio of 

3px % 

error in 

textureles

s areas 

and 3px 

% error in 

general 

Baseline 

(raftstereo-

sceneflow) 

1.1779 5.6985 1.3867 7.6713 1.1345 5.421 1.1773 1.3462 0.9632 0.9513 

Cross-

attention 

only, N=4 

1.0953 5.4873 1.3255 7.5061 1.0532 5.2033 1.2102 1.3679 0.9616 0.9482 

Cross -

attention 

only, N=8 

1.0716 5.1884 1.3444 7.6988 1.0252 4.8354 1.2546 1.4838 0.9567 0.932 

Cross -

attention 

only, N=12 

1.0731 5.1434 1.3313 7.4694 1.0299 4.8162 1.2406 1.4522 0.9597 0.9364 

4.2.4.3 Finetuning the Networks 

In this section, the networks are finetuned by using the KITTI training dataset. As 

before, during this phase 10-fold cross-validation method is applied, since this is a 

small dataset with only 200 images. The learning rate is selected as 10-5, data 

augmentations such as saturation and stretches were applied. The qualitative results 

of the proposed finetuned networks are shown in Figure 4.12, and the quantitative 

results are shown in Table 4.12. 

The proposed networks as before failed to surpass the baseline after finetuning, one 

can hypothesize this might have to do with attention-modules being data-hungry than 

other types of networks. 
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Baseline: raftstereo-

sceneflow 

Cross-attention only, 

N=4 

Cross-attention only, 

N=8 

Cross-attention only, 

N=12 
Original Image 

     

     

Figure 4.12 The qualitative results of the finetuned networks and the baseline 

network 

To conclude, the proposed networks were tested in synthetic-to-real world 

generalization and observed that they all performed better synthetic-to-real world 

generalization in all datasets, better than RAFT-Stereo and other state-of-the-art 

algorithms. During the texture analysis, an increase in the performance of textured 

areas and textureless areas are observed. Still, the performance increase in the 
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textured areas was stagnant with the number of cross-attention modules. Our 

synthetic-to-real results improved naturally in the finetuning tests; however, they are 

not good enough to pass the performance of the baseline network. 

Table 4.12 Performance comparison of the networks finetuned with the KITTI 

dataset 

Networks finetuned with KITTI 

training dataset 

3px % 

error 

Cross-attention only, N=4 2.3816 

Cross-attention only, N=8 2.2678 

Cross-attention only, N=12 2.2324 

Baseline (RAFT-Stereo) 1.96 

AcfNet 1.89 

AMNet 1.84 

OptStereo 1.82 

GANet-deep 1.81 

SUW-Stereo 1.80 

GANet + DSMNet 1.77 

CSPN 1.74 

LeaStereo 1.65 

STTR [61] 2.01 

4.2.5 Discussion of the Analysis 1 

As a summary, all the results from the synthetic-to-real task are compiled in Table 

4.13. Additionally, all the results from the final finetuned tasks are also compiled in  

Table 4.14. 

The following conclusions can be stated based on the depth estimation performances 

observed in this analysis: 
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• In the synthetic-to-real world task, the best network was the version of the 

proposed networks that used both self and cross attention with N=8. It 

surpassed the baseline and the other competing networks. 

Table 4.13 The synthetic to real task with all of the proposed networks and the 

baseline network [4] 

Which 
modules 
are 
utilized 

How 
many is 

used 

EPE in 
general 

3px % 
error in 
general 

EPE in 
textured 

areas 

3px % 
error in 

textured 
areas 

EPE in 
textureless 

areas 

3px % 
error in 

textureless 
areas 

both N=4 1.1931 5.3174 1.3112 7.3482 1.1528 5.0317 

both N=8 1.0402 4.7782 1.3001 7.2698 0.9967 4.4277 

both N=12 1.0561 4.9097 1.2897 7.0589 1.0149 4.6074 

self N=4 1.1130 5.5657 1.3973 8.1588 1.0677 5.2010 

self N=8 1.1807 5.5306 1.4158 7.9317 1.1351 5.1929 

self N=12 1.1301 5.7419 1.4276 8.5189 1.0816 5.3513 

cross N=4 1.0953 5.4873 1.3255 7.5061 1.0532 5.2033 

cross N=8 1.0716 5.1884 1.3444 7.6988 1.0252 4.8354 

cross N=12 1.0731 5.1434 1.3313 7.4694 1.0299 4.8162 

Baseline network[4] 1.1779 5.6985 1.3867 7.6713 1.1345 5.4210 

 

• If the performance of the textured and textureless areas is examined 

separately, the attention modules increase the absolute performance in both 

textured and textureless areas. This result confirms the previous hypothesis 

that attention modules can be a good choice for textureless areas. In other 

words, they did not reduce the performance by the in-paintings they create, 

while the attention modules gather context around them (either context 

available from the same image or the other image). The best performance 

result occurs by using the self and cross-attention together. 

• None of the proposed finetuned networks could surpass the baseline network, 

even though one of them got close. This small failure might be dedicated to 

the fact that attention modules are generally more data-hungry or that since 

more parameters are added to the original baseline network, the training 

simply might need a larger annotated dataset.  
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Table 4.14 The results of the proposed finetuned networks and the finetuned 

baseline network [4] 

Validation Dataset KITTI training dataset 

Which 
modules are 
utilized 

How many is 
used 

EPE in general 
3px % error in 

general 

both N=4 0.7052 2.7656 

both N=8 0.6074 1.9997 

both N=12 0.5887 1.9777 

self N=4 0.6758 2.3907 

self N=8 0.6763 2.4856 

self N=12 0.6652 2.4722 

cross N=4 0.6454 2.3816 

cross N=8 0.6269 2.2678 

cross N=12 0.6243 2.2324 

finetuned baseline network[4] 0.5700 1.9600 

4.3 Analysis 2: Exploitation of Temporal Information in RAFT-Stereo 

Algorithm 

In this Analysis 2, the aim is to improve the depth estimation performance of RAFT-

Stereo algorithm by initializing its iterations with previously available information. 

RAFT-Stereo algorithm basically calculates the depth by refining its iterations up to 

a defined number (i=32), however it disregards the previous calculation at the start 

of each depth calculation. One can hypothesize in this analysis that in a dataset that 

have temporal continuation or in real world, that disregarded information can be in 

fact quite useful, and initialization of the iteration from a good enough solution might 

help the algorithm converge better and be faster. In this analysis, this hypothesis is 

going to be tested. 

Apart from initialization, one may also try to utilize the ego-pose estimation 

property, as it is a handy idea. 3D ego-pose estimation is usually calculated by taking 

adjacent images in time and calculating 6 degrees of freedom that express that 3D 

translation and 3D rotation between the previous frame and the next frame. When 
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combined with the depth calculations, the ego-pose estimation concept may even 

free the training algorithm from the supervised learning scheme. 

Additionally, the ego-pose estimation can be calculated by the intermediate concept 

of optical flow [131]. Optical flow algorithms are used for tracking motion, it can be 

the motion of other objects or the ego-motion of the vehicle the algorithm is running 

on. Hence, one can use optical flow algorithms like the original RAFT [46] in this 

task. 

Hence, the experiments performed in this analysis are: 

• Initialize the iterations of the RAFT-Stereo algorithm with the previous 

predictions in three different ways, 

• Finetune the RAFT-Stereo algorithm using an ego-pose estimation network 

and a self-supervision scheme. 

Every attention module experiment has been conducted with an Nvidia RTX 3090 

GPU. Every training lasted 3.5 days with 200.000 steps in the end. In all of the 

experiments, parameters of the RAFT-Stereo architecture have been started with the 

Kaiming initialization. The parameters of the original RAFT algorithm have been 

kept frozen. In the experiments, 320x720 pixel crops have been utilized for training. 

4.3.1 Experiment 1 - Using Previous Predictions and Optical Flow to 

Initialize RAFT-Stereo Algorithm 

In the first proposed experiment, different architectures are utilized to initialize the 

network. 

First, using previous predictions by simply one layer of CNN layer with 1x1 filter 

size is examined, as shown in Figure 4.13. In this analysis these networks are denoted 

as networks with 1x1 CNN filter. Utility of using different amounts of previous 

prediction is investigated as well. The version that utilizes three previous predictions 

has 11,241M parameters, the version that uses two previous predictions has 11,173M 
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parameters, the version that utilizes one previous prediction has 11,105M 

parameters. 

 

Figure 4.13 The architecture of the network with 1x1 CNN filter (Revised from 

[4]) 

Second, one may also try to utilize multiple previous predictions with deep U-Net 

blocks, as shown in Figure 4.14. Using different amounts of previous predictions in 

this network is tested as well. In this thesis, these networks are denoted as networks 

with U-Net. The version that utilizes three previous predictions has 18,879M 

parameters, the version that utilizes two previous predictions has 18,878M 

parameters and the version that utilizes one previous prediction has 18,878M 

parameters. 

The layer definition of the utilized U-Net is illustrated in Figure 4.15. This 

illustration is for the network that utilizes three previous predictions. Hence its input 

is denoted as 320x720x3, others naturally will have inputs of size 320x720x2 and 

320x720x1. In these proposed networks one, two and three previous predictions are 

utilized, to hopefully give the network a sense of velocity and acceleration, which 

requires at least two previous predictions and three previous predictions, 

respectively. 
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Figure 4.14 The architecture of the network with U-Net (Revised from [4]) 

 

Figure 4.15 The U-Net blocks utilized in the network with U-Net which utilizes 3 

previous predictions 
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Finally, the previous depth estimation on the image plane is shifted by using the 

optical flow output of the original RAFT algorithm, as depicted in Figure 4.16. Here 

the previous prediction and the previous optical flow data are utilized only. These 

networks are denoted as networks with optical flow in this thesis. 

Once the analysis of this training scheme is set, we realize some minor points in the 

dataset preparing step to be solved. First of all, ETH3D and Middlebury has no 

temporal continuation; hence one, unfortunately, cannot use them to validate the 

model. Thankfully, SceneFlow has many temporally-related image sequences. This 

opportunity dramatically helps with the training scheme, and to use this to its full 

advantage, the shuffle feature in the data loader is turned off. Moreover, if a new 

sequence begins, the previous prediction is simply reset to all zeros.  

 

Figure 4.16 The architecture of the network that utilizes optical flow (Revised from 

[4], [46]) 
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4.3.1.1 Hyperparameter Search 

Before starting the following experiments, a quick hyperparameter search for the 

network with 1x1 CNN filter and for the network with U-Net is conducted. This 

hyperparameter search is performed for the learning rate and dropout—the 

hyperparameter grid search combination in Table 4.15. 

Table 4.15 Hyperparameter grid search values 

Dropout \ learning rate 2.10-4 11.10-5 2.10-5 

0.0 (0.0, 2.10-4) (0.0, 11.10-5) (0.0, 2.10-5) 

0.1 (0.1, 2.10-4) (0.1, 11.10-5) (0.1, 2.10-5) 

 

The results for the network with 1x1 CNN filter utilizing three previous frames are 

shown in Table 4.16. Our primarily error metric is 3px % error. Hence, for the 

network with 1x1 CNN filter, the (0.0, 11.10-5) option is selected to be the best. The 

versions that utilize two previous predictions and one previous prediction are trained 

using these hyperparameters. 

Table 4.16 Results of hyperparameter search for the network with 1x1 CNN filter 

Validation Dataset KITTI 

Networks with 1x1 CNN filter EPE 3px % error 

Network with (0.0, 2.10-4) 1.0496 5.8256 

Network with (0.0, 11.10-5) 1.0471 5.7026 

Network with (0.0, 2.10-5) 1.1461 5.9029 

Network with (0.1, 2.10-4) 1.2040 6.6989 

Network with (0.1, 11.10-5) 1.1372 5.9883 

Network with (0.1, 2.10-5) 1.2370 5.9977 

Baseline: raftstereo-sceneflow [4] 1.1267 6.0991 
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The results for the network with U-Net are shown in Table 4.17. Looking at the 

results, the (0.1, 2.10-5) option is chosen for the network with U-Net. This means the 

versions that utilizes two previous predictions, and one previous prediction are 

trained using these hyperparameters. 

Table 4.17 The result of the hyperparameter search for the network with U-Net 

Validation Dataset KITTI 

Networks with U-Net EPE 3px % error 

Network with (0.0, 2.10-4) 1.1914 6.8479 

Network with (0.0, 11.10-5) 1.0695 5.8622 

Network with (0.0, 2.10-5) 1.1237 6.2052 

Network with (0.1, 2.10-4) 1.1379 6.3408 

Network with (0.1, 11.10-5) 1.0637 5.9385 

Network with (0.1, 2.10-5) 1.0472 5.4362 

Baseline: raftstereo-sceneflow [4] 1.1267 6.0991 

4.3.1.2 Synthetic-to-Real Generalization Performance  

During the validation process of the training phase with SceneFlow dataset, one 

cannot utilize every image pair of the KITTI training dataset, due to lack of temporal 

continuation between some of the image pairs in the dataset. Out of 200 KITTI 

training image pairs, only 126 image pairs have visible temporal continuation. 

Hence, in this experiment, the validation dataset is even smaller, and the validated 

performance of network (denoted as raftstereo-sceneflow) in this smaller dataset is 

different. To be more specific its 3px % error changes from 5.6985 to 6.0991 in this 

subset of the KITTI dataset. In this thesis, this subset of the dataset will be referred 

as KITTI 126 training subset. 

The quantitative results of the synthetic-to-real experiments and results of the 

baseline network are shown in Table 4.18. The proposed network performed better 
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than the baseline network. Networks with 1x1 CNN filter and the optical flow 

unfortunately performed worse than the baseline. 

In this table, one can observe that during this synthetic-to-real generalization task, 

the proposed 2 networks with U-Net performed better than the baseline network. 

Networks with 1x1 CNN filter and the optical flow are unfortunately worse than the 

baseline.  

Table 4.18 Quantitative comparison of the networks and the baseline network 

Validation Dataset KITTI 

Networks trained with only synthetic images EPE 3px % error 

Network with 1x1 filter, utilizing 3 previous predictions 1.0471 5.7026 

Network with 1x1 filter, utilizing 2 previous predictions 1.1215 6.2082 

Network with 1x1 filter, utilizing 1 previous prediction 1.1784 6.5437 

Network with U-Net, utilizing 3 previous predictions 1.0472 5.4362 

Network with U-Net, utilizing 2 previous predictions 1.0350 5.6088 

Network with U-Net, utilizing 1 previous predictions 1.0564 5.6059 

Network with optical flow 1.1586 6.2715 

Baseline: raftstereo-sceneflow [4] 1.1267 6.0991 

 

Qualitative results are shown in Figure 4.17, Figure 4.18 and Figure 4.19. The most 

successful proposed network in this phase is the network with U-Net utilizing 3 

previous predictions. In the first rows the T-shaped streetlamp, in the second rows 

the blue cars shape in general, and in the last rows the smoothness of the back of the 

red car should be noted. 

The proposed network with optical flow showed some noticeable problems where 

there appear to be holes inside moving objects. Between 1x1 filter group, U-Net 

group and the optical flow versions of the network, the most successful group is U-

Net, and the least successful one is the optical flow. 
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Baseline: raftstereo-

sceneflow [4] 

Network with 1x1 

filter, utilizing 3 

previous predictions 

Network with 1x1 

filter, utilizing 2 

previous predictions 

Network with 1x1 

filter, utilizing 1 

previous prediction 

Original Image 

     

     

     

Figure 4.17 Qualitative results of the networks with 1x1 CNN filter and the 

baseline network [4] 
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Baseline: raftstereo-

sceneflow [4] 

Network with U-Net, 

utilizing 3 previous 

predictions 

Network with U-Net, 

utilizing 2 previous 

predictions 

Network with U-Net, 

utilizing 1 previous 

prediction 

Original Image 

     

     

     

Figure 4.18 Qualitative results of the networks with U-Net and the baseline 

network [4] 
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Baseline: raftstereo-

sceneflow [4] 

Network with optical 

flow 
Original Image 

   

   

   

Figure 4.19 Qualitative results of the network with the optical flow and the baseline 

network 
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4.3.1.3 Finetuning the networks 

In this phase, the networks are finetuned using the KITTI 126 training subset. During 

this phase 9-fold cross-validation method is applied due to the fact this is a small 

dataset with only 126 images and 126 is divisible by 9. The learning rate is selected 

as 10-5, data augmentations such as saturation and stretches were applied. 

Quantitative results are shown in Table 4.19. The proposed networks have failed to 

surpass the baseline network in the finetuning phase again, even though some were 

more successful than the baseline network in the previous phase. Surprisingly, the 

network with optical flow show performance gain greater than others however it is 

not enough to surpass the baseline network. 

Table 4.19 The baseline network and the proposed networks finetuned with KITTI 

126 training subset 

Dataset KITTI 

Networks finetuned with KITTI 126 training subset EPE 3px % error 

Network with 1x1 filter, utilizing 3 previous predictions 0.9146 4.3818 

Network with 1x1 filter, utilizing 2 previous predictions 0.8107 4.6253 

Network with 1x1 filter, utilizing 1 previous prediction 0.8943 5.2571 

Network with U-Net, utilizing 3 previous predictions 0.7678 3.5201 

Network with U-Net, utilizing 2 previous predictions 0.7900 4.1905 

Network with U-Net, utilizing 1 previous prediction 0.9288 5.2251 

Network with optical flow 0.7387 2.8018 

Baseline: raftstereo-sceneflow [4] 0.6266 2.7084 

 

The qualitative results of the proposed finetuned networks are shown in Figure 4.20, 

Figure 4.21 and Figure 4.22. All of the proposed networks exhibit small certain 

unwanted elements, enough to stay behind the baseline network. Even though during 

the finetuning phase the results of the proposed networks improved naturally, the 

performance of the baseline network has improved more. According to these 
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observations, one can argue that original design is indeed an exemplary network 

architecture selection when it comes to finetuning phase. 

Baseline: raftstereo-

sceneflow [4] 

Network with 1x1 

filter, utilizing 3 

previous predictions 

Network with 1x1 

filter, utilizing 2 

previous predictions 

Network with 1x1 

filter, utilizing 1 

previous prediction 

Original Image 

     

     

Figure 4.20 Qualitative results of the finetuned baseline network and the proposed 

finetuned networks with 1x1 filters 
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Baseline: raftstereo-

sceneflow [4] 

Network with U-Net, 

utilizing 3 previous 

predictions 

Network with U-Net, 

utilizing 2 previous 

predictions 

Network with U-Net, 

utilizing 1 previous 

prediction 

Original Image 

     

     

Figure 4.21 Quantitative results of the finetuned baseline network and the proposed 

finetuned networks with U-Net 

To summarize, again the proposed networks performed better at synthetic-to-real 

world tasks, however after the finetuning process, they stayed behind the 

improvement of the original network. 
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Baseline: raftstereo-

sceneflow [4] 

Network with optical 

flow 
Original Image 

   

   

Figure 4.22 Quantitative results of the finetuned baseline network and the proposed 

finetuned networks with optical flow 

4.3.2 Experiment 2 - Finetuning RAFT-Stereo Algorithm with Ego-Pose 

Estimation Network and Optical Flow Network 

In this experiment, other techniques to improve the performance of RAFT-Stereo 

algorithm with temporal information are tested. This time the temporal information 

in the form of an ego-pose estimation network and self-supervision method is 

utilized. 



 

 

82 

Pose estimation can be instrumental when it comes to learning depth, since in 

Euclidian geometry, depth of one scene and depth of the next scene can be related to 

each other by the concept of pose, a vector with 6 degrees of freedom, 3 for 

translation and 3 for rotation. For that relation, we require a constant called the 

intrinsic calibration matrix, K, of the camera. MonoDepth2 algorithm utilizes this 

fact in their network architecture, and they try to learn to depth in a self-supervised 

way by setting up an expectancy. 

In this self-supervised training setting, it is useful to consider depth and ego-pose as 

intermediate concepts. The network only takes stereo images through time, and this 

selection means it can only predict what its input will be upon a specific action. The 

network is primed to develop the depth concept by our pre-determined intermediate 

geometrical constraint. This intermediate geometrical constraint creates expectations 

for the next input, and it tells what depth will be experienced if the previous depth 

and predictions of the ego-pose network are correct. Next the original image is 

warped with this information to prepare what input is expected to get in the next 

frame. If the depth and ego-pose is calculated correctly, one can estimate what the 

inputs will be in the next frame. The inputs of the ego-pose estimator in this 

experiment are simply 2 images adjacent in time. 

As it can be observed, there is no need for annotation. For this experiment, this thesis 

hypothesizes that one can utilize the real-world data, skip the finetuning process, and 

perform similar or better than the annotated dataset. For this purpose, the raw KITTI 

dataset is preferred, similar to MonoDepth2 algorithm. 

This simple idea of MonoDepth2 is a powerful concept, however it is not as powerful 

as the RAFT-Stereo algorithm for depth estimation. However, this simple idea may 

be utilized to improve the finetuning process of the RAFT-Stereo algorithm. As 

mentioned before, RAFT-Stereo is finetuned for KITTI challenge by the help of the 

KITTI training dataset, this dataset has limited amount of annotated image pairs, 

only 200 of them. Moreover, among some of them there is no temporal continuation. 

This is where this self-supervision scheme can come in. With self-supervision one 
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could use the whole raw KITTI dataset composed of 12,919 stereo image pairs and 

improve the network performance with a larger dataset, without a 10-fold cross-

validation method in finetuning phase. 

The concept of optical flow also proved itself quite useful for calculating poses, 

whether it is ego-poses or poses of other objects. There are some recent papers that 

publish certain works on this idea [131]. The activity of tracking individual pixels 

along the pixel trajectory in image plane (not in a 3D geometry with depth), might 

give relevant information about the ego-motion. Hence in this experiment, a network 

that utilizes an ego-pose estimator network that uses the output of the original RAFT 

optical flow algorithm provides is tested as well, instead of simply taking the two 

images adjacent in time. 

The experiments performed in this section are: 

• Performing finetuning operation on the RAFT-Stereo algorithm with a 

standard 3D ego-pose estimator network in a self-supervised scheme, 

• Performing finetuning operation on the RAFT-Stereo algorithm with an ego-

pose estimator network that uses 2D optical flow information in a self-

supervised scheme, 

Every attention module experiment has been conducted with a Nvidia RTX 3090 

GPU. Every training lasted 25.000 steps in the end. Batch size has been selected as 

2. In both of the experiments, parameters of the RAFT-Stereo architecture have been 

started with the synthetically trained raftstereo-sceneflow network. The parameters 

of the original RAFT algorithm have been kept frozen. The parameters of the ego-

pose estimation network are initialized with the parameters provided by 

MonoDepth2 paper. Hyperparameters are not searched in this experiment because 

this last analysis is a finetuning process. Hence, the finetuning is performed with the 

same 10-5 learning rate previously used, without any dropouts. 
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4.3.2.1 Performing finetuning operation on the RAFT-Stereo algorithm 

with a standard ego-pose estimator 

The network architecture in this test is shown in Figure 4.23. In the proposed 

architecture the default RAFT-Stereo architecture and the default MonoDepth2 ego-

pose networks are used. When the next pair of images come, an ego-pose estimation 

is calculated using the current left frame and the next left frame; this calculation is a 

relative calculation. By the current depth and ego-pose estimates, an expected image 

is created by warping the original left image.  The difference between this warped 

image and the next left image becomes the photometric loss Lp. Ls is edge-aware 

smoothness loss, µ is per-pixel mask explained in Section 3.2 and λ is simply the 

loss hyperparameter (set to be 0.001). 

 

Figure 4.23 Architecture of the network with the standard ego-pose estimator 

(Revised from [4]) 

In the experiment, the trained mono+stereo 320x1024 network from MonoDepth2 is 

utilized as the ego-pose estimator, the parameters of this ego-pose estimator are not 

frozen, it is included in the finetune phase as well. 

The qualitative results are shown in Figure 4.24. One can observe some distortions 

on the qualitative results, probably due to the ambiguities of self-supervised learning.  
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Baseline: raftstereo-

sceneflow 

Network with standard 

ego-pose estimator 
Original Image 

   

   

   

Figure 4.24 Qualitative results of the network with the standard ego-pose estimator 

vs the finetuned baseline network 
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Looking at these results, one can conclude that self-supervised learning, even though 

helped the general error reduction in a small amount, created some problems that did 

not exist before. 

The quantitative results are shown in Table 4.20. Even though this finetuning process 

with 25000 steps increased the performance of the network some slight amount, it 

did not improve the results compared to the baseline network. This training method 

failed to perform better than the training method of the baseline network that uses 

the KITTI training dataset with 5000 steps and 10-fold cross validation. 

Table 4.20 Quantitative results of the network with the standard ego-pose estimator 

vs the finetuned baseline network 

Validation Dataset KITTI training 

Networks EPE 3px % error 

raftstereo-sceneflow (not finetuned) 1.1779 5.6985 

Network with standard ego-pose estimator 0.9377 5.4678 

Baseline: finetuned raftstereo-sceneflow [4] 0.5700 1.9600 

4.3.2.2 Performing finetuning operation on the RAFT-Stereo algorithm 

with an ego-pose estimator that uses optical flow information 

The network architecture in this test can be visualized, as shown in Figure 4.26. The 

default RAFT-Stereo architecture is used as the depth estimator network and an 

architecture close to Flowdometry algorithm [131] is used to turn the optical flow 

information into ego-pose estimation. For this purpose, the original RAFT optical 

flow algorithm is utilized as the optical flow network, whose optical flow output is 

half the original input images in H and W dimensions. The proposed ego-pose 

estimator network is illustrated in Figure 4.25. 

However, in order to use this untrained ego-pose network module for finetuning, first 

step is to need to make sure it is trained equivalently. For that purpose, the default 

MonoDepth2 architecture is utilized. Their pose encoder network is changed with an 
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original RAFT network (whose parameters have been kept frozen) and their pose 

decoder network is changed with the ego-pose estimation architecture depicted in 

Figure 4.25. Then the parameters of other modules in MonoDepth2 are loaded (same 

as the previous test) and the same MonoDepth2 training procedure is followed for 

20 epochs with batch size 12 to acquire the trained ego-pose estimator. 

 

Figure 4.25 The proposed ego-pose estimator architecture inspired by Flowdometry 

algorithm [131] 

 

Figure 4.26 Architecture of the network with an ego-pose estimator that uses 

optical flow information (Revised from [4]) 
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In this architecture when the next pair of images come, an ego-pose estimation is 

calculated by using the optical flow between current left frame and the next left 

frame. With the current depth estimation and the ego-pose estimation, a rendered 

image is created by warping the original left image. The difference between this 

warped image and the next left image becomes the photometric loss Lp. Ls is edge-

aware smoothness loss, µ is per-pixel mask explained in Section 3.2 and λ is simply 

the loss hyperparameter. 

The quantitative results are shown in Table 4.21. It showed some improvement with 

respect to the previous test, probably due to ego-pose estimator jobs getting easy due 

to the addition of optical flow. However, it is not better than training with the 

annotated KITTI training dataset. 

Table 4.21 Quantitative network results with an ego-pose estimator that uses 

optical flow vs the finetuned baseline network. 

Validation Dataset KITTI training 

Networks EPE 3px % error 

raftstereo-sceneflow (not finetuned) 1.1779 5.6985 

Network with an ego-pose estimator using optical flow 0.9117 5.3669 

Baseline: finetuned raftstereo-sceneflow [4] 0.5700 1.9600 

 

The qualitative results are shown in Figure 4.27. One can realize there is some 

pixelization introduced, for example, around the signs, cars, and thin objects. One 

can see some depth edges getting blurred. Also, some holes have been falsely 

registered as closed and closer surfaces. However, the performance of this finetuning 

on synthetically trained RAFT-Stereo is slightly better than the previous self-

supervision test. 
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Baseline: raftstereo-

sceneflow [4] 

Network with an 

ego-pose estimator 

using optical flow 

Original Image 

   

   

   

Figure 4.27 Qualitative results of the network with an ego-pose estimator that uses 

optical flow vs the finetuned baseline network 
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4.3.3 Discussion of the Analysis 2 

The following conclusions can be stated based on the depth estimation performances 

observed in the Analysis 2: 

• In the first experiment, the aim was to improve the performance of the RAFT-

Stereo algorithm by using temporal information available from the previous 

calculations, such as previous predictions and the optical flow estimations 

during the synthetic training phase with SceneFlow dataset. In this 

experiment, it is hypothesized that this information could improve the 

performance. It is observed that three networks in the U-Net family and one 

network in the 1x1 CNN filter family worked better than the baseline network 

in the synthetic training phase. The network with optical flow could not 

achieve this feat. Nevertheless, this confirmed the hypothesis for this 

experiment, which is previous predictions can improve the future 

calculations of an iterative network.  

• After the first experiment, all the proposed networks are then finetuned with 

the KITTI training dataset, and it is observed that they could not pass the 

performance of the finetuned baseline network [4]. 

• In the second experiment, the baseline network is finetuned with the 

unannotated raw KITTI dataset in a self-supervised scheme by using a 

standard ego-pose estimator. The hypothesis was with self-supervision, a 

large unannotated dataset could be good replacement for a small, annotated 

dataset. Even though this actually improved the synthetically trained 

networks, the annotated 200 images KITTI training dataset could achieve this 

much better, and this result disproved the hypothesis for this experiment.  

• The result is the same for the self-supervised scheme with an ego-pose 

estimator that uses optical flow. It improved the performance of the 

synthetically trained network, better than the standard ego-pose estimator 

however the annotated small KITTI dataset could do this much better, and 

this result disproved the hypothesis for this experiment again.  
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CHAPTER 5  

5 CONCLUSIONS 

This thesis investigated different aspects of improving the RAFT-Stereo algorithm, 

an end-to-end trainable algorithm in the top 3 of the Middlebury stereo leaderboards. 

Various types of experiments with attention mechanisms and temporal information 

utilization mechanisms are proposed to improve the performance of RAFT-Stereo 

algorithm. 

In the Analysis 1, the focus was on the attention mechanisms to improve the 

performance of RAFT-Stereo algorithm. It is observed that attention mechanisms, as 

opposed to correlation calculations, performed better synthetic-to-real 

generalization, better than the baseline network and other competing networks. We 

had hypothesized attention mechanisms could perform better than the alternative and 

this result confirmed the hypothesis for this experiment. With the results of these 

experiments, one can argue the attention mechanisms are valuable tools that can 

further assist researchers in the near future. 

The next focus was on the effects of the cross and self-attention modules on textured 

and textureless areas. The cascade of self and cross attention modules one after the 

other performed the best result and improved the absolute 3px % error in both 

textured areas and textureless areas. The regarding hypothesis was to see 

improvement in textureless areas. These results confirmed the hypothesis for this 

experiment. In almost every instance, the attention mechanism, as opposed to just 

correlations, performs with a little relative performance compromise among these 

areas, meaning its relative performance on textureless areas increases while its 

relative performance on textured areas decreases.  With the results of these 

experiments, one can argue that these compromise phenomena may be helpful if one 

tries to apply different networks onto areas with different texture distribution. 
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Even though some of the proposed finetuned networks come very close, they could 

not pass the performance of finetuned baseline network. One explanation might be 

that the attention modules might be more data-hungry, which would indicate a larger 

annotated KITTI dataset is required for the networks with attention modules. 

Another explanation might be that small training differences such as crops size can 

affect the training process. Further investigation of this phenomenon may prove 

helpful. 

In the first experiment of Analysis 2, the aim was to improve the performance of the 

RAFT-Stereo algorithm by using temporal information available from the previous 

calculations, such as previous predictions and the optical flow estimations during the 

synthetic training phase with SceneFlow dataset. 3 networks in the U-Net group and 

1 network in the 1x1 filter group performed better than the baseline network in the 

synthetic training phase. Our hypothesis was the previous calculations could be 

helpful in an iterative network, and the results confirmed the hypothesis for this 

experiment. After that, the proposed networks are finetuned with the KITTI training 

dataset and it is observed that they could not pass the performance of the baseline 

network. Further investigation of this phenomenon may shed light on this issue. 

In the second experiment of Analysis 2, the aim was to finetune the RAFT-Stereo 

algorithm in a self-supervised way.  An ego-pose estimator network enabled us to 

use the unannotated large raw KITTI dataset. Two types of ego-pose estimators are 

utilized: a standard network that takes two images adjacent in time, and a network 

that takes optical flow information instead. It is observed that even though this self-

supervised training scheme worked to improve the baseline network slightly, its 

effects were not as strong enough as the annotated small KITTI training dataset. We 

hypothesized that we could replace the annotated datasets, and this result disproved 

this hypothesis for this experiment. Even though this last experiment could not be as 

successful as hoped, this may be a worthy research area to look into further. 
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