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ABSTRACT

STOCHASTIC ANALYSIS AND ADAPTIVE CONTROL STUDIES IN
LEGGED SYSTEMS

ER, Güner Dilşad

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert ANKARALI

Co-Supervisor: Prof. Dr. Uluç SARANLI

June 2022, 106 pages

Underactuated legged robots depict highly nonlinear and complex dynamical behav-

iors that create significant challenges in accurately modeling system dynamics using

both first principles and system identification approaches. Hence, the design of sta-

bilizing controllers becomes more challenging due to inaccurate modeling. Suppose

physical parameters on mathematical models have miscalibrations due to uncertainty

in identifying and modeling processes. In that case, designed controllers could per-

form poorly or even result in unstable responses. Moreover, these parameters can

change over time due to operation and environmental conditions. In that respect,

analogous to a living organism modifying its behavior in response to novel condi-

tions, adapting/updating system parameters, such as spring constant to compensate

for modeling errors, could provide the advantage of constructing a stable gait level

controller without needing “exact” dynamical parameter values. The first part of this

thesis presents an online, model-based adaptive control approach for an underactuated

planar hexapod robot’s pronking behavior adopted from antelope species. Systematic

simulation studies show that the adaptive control policy is robust to high levels of pa-
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rameter uncertainties compared to a non-adaptive model-based dead-beat controller.

In the second part of the study, an efficient estimation method based on unscented

transformation is proposed to quantify the stochastic stability characteristics of meta-

stable legged systems. Unlike previous methods requiring high-dimensional state

space discretization for a broad set of initial conditions to estimate the stability char-

acteristics, this study aims to assess controller performances and analyze parametric

dependencies with fewer experiments. In the proposed approach, the unscented trans-

formation is employed because it utilizes prior knowledge of the noise statistics, and

provides informed choices of initial conditions for the experiments, thus, reducing the

computational complexity significantly. Additionally, it allows dealing with multiple

sources of uncertainties and high-dimensional system dynamics. Finally, the capabil-

ity of the proposed method is shown via analyzing a one-dimensional hopper and an

underactuated bipedal walking simulation with a hybrid zero dynamics controller.

Keywords: legged robots, pronking, adaptive control, unscented transformation, stochas-

tic stability, metastability
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ÖZ

BACAKLI SİSTEMLERDE STOKASTİK ANALİZ VE ADAPTİF KONTROL
ÇALIŞMALARI

ER, Güner Dilşad

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert ANKARALI

Ortak Tez Yöneticisi: Prof. Dr. Uluç SARANLI

Haziran 2022 , 106 sayfa

Eksik tahrikli bacaklı robotlar, hem temel prensipleri hem de sistem tanımlama yak-

laşımlarını kullanarak sistem dinamiklerini doğru bir şekilde modellemede önemli

zorluklar yaratan oldukça doğrusal olmayan ve karmaşık dinamik davranışları tasvir

eder. Bu nedenle, hatalı modelleme nedeniyle stabilize edici kontrolcülerin tasarımı

daha zor hale gelir. Matematiksel modellerdeki fiziksel parametrelerin, tanımlama

ve modelleme süreçlerindeki belirsizlik nedeniyle yanlış kalibrasyonlara sahip oldu-

ğunu varsayalım. Bu durumda, tasarlanan kontrolcüler kötü performans gösterebilir

ve hatta kararsız tepkilere neden olabilir. Ayrıca bu parametreler çalışma ve çevre ko-

şulları nedeniyle zaman içinde değişebilir. Bu bağlamda, yeni koşullara tepki olarak

davranışını değiştiren canlı bir organizmaya benzer şekilde, modelleme hatalarını te-

lafi etmek için yay sabiti gibi sistem parametrelerini uyarlamak/güncellemek, "kesin"

dinamik parametre değerlerine ihtiyaç duymadan kararlı bir yürüyüş seviyesi kontrol-

cüsü oluşturma avantajı sağlayabilir. Bu tezin ilk bölümü, antilop türlerinden uyarla-

nan, eksik tahrikli bir düzlemsel hexapod robotun pronking davranışı için çevrimiçi,
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model tabanlı bir adaptif kontrol yaklaşımı sunar. Sistematik simülasyon çalışmaları,

bu adaptif kontrol politikasının, adaptif olmayan model tabanlı ölü vuruşlu denetle-

yiciye kıyasla, yüksek düzeyde parametre belirsizliklerine karşı dayanıklı olduğunu

göstermektedir.

Çalışmanın ikinci bölümünde, yarı kararlı bacaklı sistemlerin stokastik kararlılık özel-

liklerini ölçmek için sigma bazlı dönüşüme dayalı etkin bir kestirim yöntemi öneril-

miştir. Kararlılık özelliklerini tahmin etmek için geniş bir başlangıç koşulları kümesi

için yüksek boyutlu durum uzayı kesiklileştirilmesini gerektiren önceki yöntemle-

rin aksine, bu çalışma, daha az deneyle kontrolcü performanslarını değerlendirmeyi

ve parametrik bağımlılıkları analiz etmeyi amaçlamaktadır. Önerilen yaklaşımda, gü-

rültü istatistiklerine ilişkin ön bilgileri kullandığı ve deneyler için başlangıç koşul-

larının bilinçli seçimlerini sağladığı ve bu sayede hesaplama karmaşıklığını önemli

ölçüde azalttığı için sigma bazlı dönüşüm kullanılmıştır. Ek olarak, birden fazla be-

lirsizlik kaynağı ve yüksek boyutlu sistem dinamikleri ile başa çıkmayı sağlar Son

olarak, önerilen yöntemin kabiliyeti, tek boyutlu bir zıplama mekanizmasının ve bir

eksik tahrikli iki ayaklı yürüme simülasyonu analiz edilerek gösterilmiştir.

Anahtar Kelimeler: bacaklı robotlar, pronklama, adaptif kontrol, sigma bazlı trans-

form, stokastik kararlılık, yarı kararlılık
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CHAPTER 1

INTRODUCTION

When the real systems operating outdoors are employed with the controllers working

perfectly in the lab environment, the main obstacle encountered is nature itself. The

cumulative effect of different internal and external discrepancies should be accounted

for in the systems’ analysis, design, and control. This thesis compiles different per-

spectives on legged locomotion in this manner. Hereby, the objectives of the studies

compiled in this thesis are twofold. The first one is whether it is possible to com-

pensate for the errors and maintain the locomotion by adding a layer of adaptation

just like in animals’ adaptation traits if an existing controller structure is vulnerable

to discrepancies in the modeling step. Second, if there are inevitable uncertainties in

the environment, the way to conduct the stability and return map analyses is inves-

tigated. The methodology for the stochastic analysis of legged systems is improved

and presented with the underlying literature.

1.1 The Outline of the Thesis

This thesis consists of two separate research subjects related to different discrepancies

that can be observed in actual physical systems.

First, in Chapter 2, an adaptive controller is designed as a middle layer for the hexa-

pedal pronking platform. In Section 2.2, the existing dead-beat controller and the

hexapedal system are presented. In Section 2.3, miscalibrations and modeling errors

are discussed, and an indirect adaptive control scheme is presented. The proposed

method is applied to the nonlinear simulation of planar hexapod platform RHex. An

adaptive law is implemented inside the existing dead-beat controller to handle the
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miscalibration problem. Later in Section 2.4, the performance of the middle layer

controller is investigated, and in Section 2.5 stability of the closed-loop system with

the adaptive controller is discussed with supporting results from the numerical stabil-

ity analysis.

Next, in Chapter 3, an estimation method is proposed to extract the stochastic prop-

erties of the metastable dynamical systems and analyze the stochastic return maps.

In Section 3.1, the existing approach to conducting stochastic analysis and the fun-

damental knowledge of borrowed tools are presented. Then, Section 3.2 introduces

the stochastic analysis methodology. The proposed method is based on unscented

transformation borrowed from Kalman Filters and compared with existing methods

such as Monte Carlo simulations and a linearization-based estimation. After the in-

troduction of literature and novel methodology, two different systems with different

properties are investigated in Sections 3.3 and 3.5.
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CHAPTER 2

ADAPTIVE CONTROL OF UNDERACTUATED PLANAR PRONKING

HEXAPOD

2.1 Introduction

Underactuated legged platforms have various motion capabilities than the wheeled

robots that preceded them with added mobility such as running, pronking [4], flip-

ping [5], and self-righting [6]. They use their natural dynamics to reach high speed,

efficiency, and robustness performance. In return for this mobility, complex hard-

ware structure and controller design arise as challenges. Marc Raibert decreased this

complexity using dynamic modes of locomotion [7] in his runners first. Since 1970,

Raibert’s work has inspired researchers to establish a large new field of study on

legged robots [8, 9, 10, 11].

If second-order dynamics are appropriately designed and tuned, the model can achieve

a wide range of behaviors despite the underactuated nature of many of the legged

robotic platforms. However, as the systems become more agile and faster, substan-

tial challenges and problems arise when controlling robot dynamics. Template-based

control is an approach to isolate and "independently" control the degrees of freedom

relevant to the task [12, 13, 14, 15]. In literature, researchers developed template-

based control methods for a variety of robots and motions. Saranli and Koditschek ap-

plied template-based control for a running hexapod [14]. Oehlke et al. used template-

based hopping control in their research on a bio-inspired segmented robotic leg [13].

Peekema introduced the template-based control of the bipedal robot ATRIAS in his

work [12]. Furthermore, in recent studies, Kurtz et al. proposed a template-based

whole-body controller and simulated it on the 30-DOF Valkyrie humanoid model
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[15].

This study focuses on the pronking behavior on a planar dynamic model of the RHex

platform [16]. RHex is a structurally simple and yet highly mobile hexapod robot with

a single rotary actuator on each hip and capable of executing various gaits [16]. There

are contralateral legs that can be used in synchrony for some behaviors. Figure 2.1

shows some examples of previously built RHex robots having different capabilities

such as pronking, stair climbing, navigation on rough terrains, and swimming.

Figure 2.1: Variety of hexapedal RHex platforms such as RHex 0.8, RHex 1.1 (with

camera), Aqua [1] and X-RHex [2]

Pronking behavior represents leaping in the air with an arched back and stiff legs, as

shown in Figure 2.2, and it is a gait adopted by legged animals such as springbok or

other antelope to show their strength to their predators. It is an example of honest

signaling in zoology [17]. While pronking, animals use their legs in synchrony, and

a flight phase follows the stance phase, as depicted in Figure 2.3. Pronking gives

robots the advantage of considerable jumping heights requiring little ground contact

during locomotion. Jumping higher could help them overcome different obstacles and

traverse rough terrain. This advantage appealed to scientists to apply controllers to

analyze and perform pronking [18]. Moreover, this is still a living research topic for

robots having different types and numbers of legs [4, 19, 20, 21]. In this thesis, a new

method is proposed to improve the pronking motion of the hexapedal RHex platform.
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Figure 2.2: Pronking of a springbok [3]

Figure 2.3: Pronking behavior of planar hexapedal robot

Although legged robots are advantageous in agility, complex nonlinear dynamics of

legged locomotion create substantial challenges to the control policy design. Indeed,

the complexity of the problem is much deeper than just dealing with complex non-

linear computations to generate control actions. The challenge in designing legged

locomotion behavior starts with the designing control target itself and developing as-

sociated performance metrics, which are relatively trivial in non-legged robotic plat-

forms, such as wheeled systems and aerial platforms. This fact pushed the researchers

to inspire from nature and adopt bio-inspired design and control strategies. One of

the most famous examples of bio-inspiration in legged locomotion is the adoption of

the SLIP model in the design of legged platforms and control policies. Numerous

studies [22] reported that the SLIP model (and its variants) could accurately capture
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the center of dynamics and the rhythmic interchange between kinetic and potential

energy in running animals by studying biomechanical data [23]. This discovery led

the roboticists to develop a number of robotic systems based on the core mechanical

principles of the SLIP model [24, 25, 26]. In connection with these developments,

several researchers utilized the SLIP model as a high-level control interface for de-

signing control policies for more complex legged platforms [27, 28, 29].

The spring-loaded inverted pendulum (SLIP) model [30], which consists of a point

mass attached to a free rotating massless leg equipped with a linear spring-damper

pair, is a fundamental and straightforward model to understand fundamental princi-

ples in legged locomotion. It is widely used to describe many kinds of robots’ leg be-

havior and brings the advantage of using existing control methods through analytical

return maps [31, 32]. This thesis’ proposed scheme is based on analytical approxi-

mations to SLIP dynamics [32], which will be briefly discussed later. Following the

introduction of the extended SLIP model with torque actuation at the hip (SLIP-T),

the model named Slimpod is developed as a simpler model of hexapedal pronking

robot and utilized with an embedded dead-beat controller to realize the pronking mo-

tion [4].

The aforementioned embedded controller is sensitive to the changes inside the ap-

proximate analytical map. Parameters inside the approximate map are fixed but might

have deviations from their measured/estimated values on some variables, such as the

position of the center of mass, stiffness of the spring, damping, etc. These discrepan-

cies may result from many reasons, such as measurement errors, corrosion, dirt, and

fatigue. In this context, model parameters could adapt to internal or external changes

to sustain a stable and robust pronking motion, which is the fundamental starting

point of this study.

Adaptation to external influence is a broad and essential subject for robotics studies.

Especially in physical systems, many sources lead the identification of inner system

parameters’ to be inaccurate. Even if the measurement accuracy is nearly perfect dur-

ing the initial calibration phase, updating the parameters automatically as time goes

by or the control task changes can still be necessary. In literature, there are many

examples where the adaptive control framework is utilized as an adaptive locomotion
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control [33, 34] and for interlimb coordination [35]. Besides, some precedents com-

bining with different approaches borrowed from other engineering applications exist,

such as adaptive control of a legged robot using an artificial neural network [36], or

a combination of evolutionary and adaptive control strategies for a quadruped robot

[37].

Adaptive control strategies centers around different approaches on legged robots [35,

33, 36, 37, 38]. In this study, unlike the previous work in literature [38], the intention

is not an accurate system identification or an estimation of the environmental effects

[39]. The main goal is to enhance the controller performance for varied circumstances

by adding an extra layer to the structure. This strategy evocates the term adaptability

for biological organisms [40]. Robots are desired to inherit the organisms’ ability

to modify their behavior in response to novel conditions. This ability may lead to a

possible change in neural control circuits while meaning a change in inner controller

parameters in the robotic systems. Also, prior adaptive controller studies [39, 38]

had focused on simple template models. Unlike the previous literature work, a more

complex anchor multi-legged model is adopted in this thesis.

An unknown plant’s adaptive control can be carried out by directly adjusting control

parameters in a feedback loop based on the error between plan and model outputs,

known as direct control. An alternative method is to estimate the plant parameters

and to adjust the control parameters based on such estimates described as indirect

control [41]. Proposed adaptation indirectly affects the dead-beat controller output

by amending the chosen parameter in the approximate map used in the embedded

dead-beat controller.

Motivated by the previous work in literature [4], this study presents an adaptive con-

trol method for a pronking hexapedal robot with a spring-loaded inverted pendulum

template-based controller. The controller with the proposed adaptation scheme is

expected to work better than classical dead-beat controllers thanks to reducing the

modeling error. In some sense, adaptive controllers correct approximation errors and,

consequentially, provide better tracking of desired height and desired velocity.

The organization of this chapter will be as follows. The model dynamics and con-

trol section presents the basis model SLIP and its variations. Adaptive control of
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Slimpod section introduces the structure of the indirect adaptive control utilized on

the objective system. The performance analysis part addresses the simulation results,

comparisons, and stability analysis. Finally, the last section closes the work with a

conclusion.

2.2 Model Dynamics and Control

As previously stated in the introduction section, the proposed method is implemented

on a validated planar hexapod model, namely, Slimpod [4]. This section presents an

overview of underlying models for the application.

2.2.1 Dynamics and Control of SLIP Template

This section refers to the prior SLIP model in order to build a template for the con-

troller. Spring Loaded Inverted Pendulum Model is composed of a point mass m, a

massless leg with length r, and angle θ. The leg is equipped with a passive linear

spring-damper structure of stiffness k and viscous damping d. Figure 2.4 depicts the

SLIP model.

Figure 2.4: The Spring-Loaded Inverted Pendulum template

Throughout locomotion, the SLIP model has successive phases named stance and

flight. The discrete transitions between those phases are called events, and four im-

portant events are touchdown, bottom, lift-off, and apex, as shown in Figure 2.5.

Touchdown and lift-off represent the events on the transition from flight to stance,
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stance to flight, respectively, and apex represents the event at the point where vertical

speed equals zero. Apex state includes the height and horizontal velocity (aX = [z, ẏ]).

Figure 2.5: Locomotion of SLIP template with phases and transition events

Throughout this study, the dimensionless formulation is adopted to parametrize the

problem and eliminate redundant parameters. Nondimensionalization is conducted

according to Table 2.1 retrieved from Ankarali’s study [42].

Table 2.1: Physical state variables and parameters with the definitions of their di-

mensionless counterparts. Variables with bars represent the physical quantities with

dimension.

Dimensionless Variables Definition Physical Quantity Description

t := t̄/λ Time (where λ :=
√

l0/g
)

[y, z] :=
[
ȳ/l0, z̄/l0

]
Body position

[r, θ] :=
[
r̄/l0, θ̄

]
SLIP leg length and leg angle[

za, ẏa
]

:=
[
z̄a/l0, ˙̄ya (λ/l0)

]
Apex height and velocity

ks := ks (l0/(mg)) SLIP leg spring stiffness

Flight and stance dynamics of SLIP model [43, 4, 44] obtained from Euler-Lagrange

formulation can be written in dimensionless coordinates as follows.
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Flight:

ÿ = 0

z̈ = −1
(2.1)

Stance:
r̈ = rθ̇2 − ks(r − 1) − cosθ − dṙ

θ̈ = −2ṙθ̇/r + sinθ/r
(2.2)

where y and z are the horizontal and vertical positions of the point mass in flight, and

r and θ are the leg length and leg angle in the stance phase. ks and d indicate the leg

spring stiffness and leg damping in the formulation, respectively. As can be deduced

from the system equations, the system has a simple projectile trajectory during flight.

At the same time, in the stance phase, the dynamics become more complex and, more

importantly, non-integrable. This non-integrability issue is critical and will appear

further in later sections.

The control inputs chosen for the SLIP template are leg touchdown angle θ together

with leg lengths at touchdown rtd and lift-off rlo. These control inputs make stance

dynamics passive and allow the stance dynamics to be embedded with the placement

of the virtual toe at touchdown into the planar hexapedal model.

The leg lengths at touchdown rtd and lift off rlo can be computed using the energy

difference between the current ([ẏa, za]) and desired apex state ([ẏ∗a, z∗a]).

∆E = (z∗a − za) +
1
2

(ẏ∗2a − ẏ2
a) (2.3)

where ẏa and za are the current apex height and horizontal velocity, whereas ẏ∗a and

z∗a are the desired apex height and horizontal velocity. Disregarding the damping in

the SLIP model, if the energy difference is positive (∆E > 0), the leg lengths become

as follows;

rtd = r0 −

√
2∆E

k

rlo = r0

(2.4)

But if the energy difference is negative (∆E > 0), the leg lengths become as follows;

rlo = r0 −

√
−2∆E

k

rtd = r0

(2.5)
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Analytical stance map introduced by Geyer et al. [31] and modified by Ankarali

et al. [32] with associated dead-beat controller proposed by Ankarali et al. [43, 4]

underlie this study. Thanks to the derivation of an accurate stance map, the leg angle at

touchdown can be calculated through the approximate expressions. In this modified

approximate analytical map, the leg is assumed to stay close to vertical so that the

effect of gravity during stance can be linearized. Linearization of gravity effect leads

to the assumption of constant angular momentum pθ and constant total mechanical

energy E. The stance trajectories can be expressed as in (2.6).

r(t) = 1 + a + bsin(ω̂0t)

θ(t) = θtd + pθ(1 − 2a)(t − ttd) +
2bpθ
ω̂0

(cos(ω̂0t) − cos(ω̂0ttd))
(2.6)

where pθ, ω̂0,a and b are defined as following

pθ = r2
tdθ̇td

ω̂0 =

√
k + 3p2

θ

a =
p2
θ − 1
ω̂2

0

b =

√
a2 +

2E − p2
θ − 2

ω̂2
0

(2.7)

This stance map calculation is combined with the descent and ascent equations, and

the combination yields the following analytical return map.

f̂ ([ẏa, za]k, [θ, rlo, rtd]) = [ẏa, za]k+1

f̂ (Xk, un) = Xk+1

(2.8)

This return map is not invertible in closed form but admits a numerical minimization

problem to find touchdown leg angle θ.

θ = argmin
−π
2 <θ<

−π
2

(
ẏ∗a −

(
πẏao f̂

)
([ẏa, za]k, [θ, rlo, rtd])

)2
(2.9)

where πẏa is an operator to retrieve the horizontal velocity output of the analytical

map.

The dead-beat stride controller for the SLIP template grounds on this analytical return

map for high-level control of hexapedal pronking.
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2.2.2 Dynamics of Slimpod Model

The hexapedal model consists of a body and six legs in contralateral pairs; each has

a rotary actuator on its hips. Ankarali utilized a saggital planar model [4] using the

leg pairs synchronically for pronking behavior. The planar Slimpod model [45, 46],

illustrated in Figure 2.6, allows us to design a feedback controller.

Figure 2.6: Slimpod, a planar dynamic model underlying hexapedal RHex robot. Un-

like the generic drawing in this figure, legs are used synchronously during objective

pronking motion.

The Slimpod model consists of a rigid body with inertia I and mass m and three legs

representing contralateral pairs of RHex, each with a controllable torque. The legs are

considered massless during the stance phase, and each leg has a spring with stiffness

ki and viscous damping coefficient di. Also, a virtual leg is defined (illustrated in

Figure 2.6), extending from the body’s center of mass to a stationary point on the

ground.

A flight controller on a lower level drives all legs to their required positions. This

drive is based on SLIP control decisions by solving kinematic equations for all legs.

This inner controller realizes the desired control inputs by the placement of the virtual

leg. After the placement of this virtual toe, the stance controller mimics ideal SLIP

dynamics by choosing proper hip torque inputs for each leg of the Slimpod model.

Stance dynamics in virtual toe coordinates in 2.10 will be the same as SLIP dynamics
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(2.2).
r̈ = rθ̇2 − cos θ + Kr

θ̈ =
−2ṙθ̇ + sin θ

r
+ Kθ

α̈ =
Kα

j

(2.10)

where the forcing vector K values capture the effect of radial forces Fr,s and external

hip torques τs and can be represented as

K = [Kr,Kθ,Kα]T

= Jτs + B
(2.11)

where J = Dcφ and B = (Dcρ)Fr,s. Dcφ and Dcρ denotes the Jacobian matrices of leg

angles and leg lengths with respect to virtual toe coordinates.

The primary goal of the embedding controller is to find appropriate hip controls to

force the dynamics of Slimpod on (2.10) to the dynamics of simple SLIP on (2.2).

Investigating all four equations for dynamics, one can see that this match can only be

accomplished if K is determined as

K∗ = [U∗(r), 0,M∗
α] (2.12)

where U(r) is the desired radial potential law for the SLIP template. In order to

stabilize the pitch angle, M∗
α is chosen as

M∗
α = −Kαα − Kα̇α̇ (2.13)

If all legs are parallel, defined Jacobians will be noninvertible. In order to handle

the singularities, premature lift-off, and enforcing control input limits, Ankaralı et al.

[4] first assumed that the three legs were touching the ground and later included the

partial touchdown and lift-off event situations. With the all-in-contact assumption,

the radial component is excluded from the inversion, and consecutively, the inverse

dynamics controller attempts to simultaneously satisfy angular template dynamics

and pitch stabilization.

τψ,α(v) :=JT
ψ,α

(
Jψ,αJT

ψ,α

)−1
×

([
0M∗

α

]T
− Bψ,α

)
+ J⊥ψ,αv (2.14)

where J⊥ψ,α spans the nullspace of Jψ,α and v covers the remaining freedom.
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Real system applications are different from simulation studies. In a simulation, one

can apply infinite torques to ensure stability; however, motors on the actual robots

have limited torque ranges. That’s why enforcing control input constraints increases

the practical applicability of the designed controllers. Hip torques are constrained

based on RHex’s actuator torque-speed characteristics in this study. These constraints

are defined for each leg as a torque space.

Tlim :=
{
τ | τi,min ≤ τi ≤ τi,max, 1 ≤ i ≤ 3

}
(2.15)

The intersection between (2.14) and (2.15) is utilized by the controller to compute hip

torques.
τs = arg min

τψ,α(v)∈Tlim

∥∥∥τψ,α(v)
∥∥∥ . (2.16)

For the particular situations in which those spaces in (2.14) and (2.15) do not intersect,

preservation of angular momentum is prioritized by the alternative solution.

τψ(ω) := JT
ψ

(
JψJT

ψ

)−1 ([
0 M∗

α

]T
− Bψ

)
+ J⊥ψω (2.17)

where J⊥ψ spans the nullspace of Jψ and w covers the remaining freedom. Then the

overall solution in (2.16) becomes

τs = arg min
τψ(w)∈Tlim

∥∥∥τψ(ω)
∥∥∥ . (2.18)

In summary, the assumption is that if the passive dynamics of the robot are appro-

priately chosen, they will approximately yield the desired result for the remaining

coordinate in the virtual leg coordinates. Further details of the embedding can be

found in Ankarali’s studies [4, 42, 43].

2.2.3 Gait-Level Template-Based Dead-beat Control

In this study, the template-based approximate dead-beat control strategy introduced

by Ankarali [4] is chosen as the baseline (non-adaptive) control strategy. The stiffness

and damping parameters are chosen as all legs in parallel.

d =

3∑
i=1

di

k =

3∑
i=1

ki

(2.19)
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According to control inputs from embedded SLIP [θ∗, r∗lo, r
∗
td], positions of toes (pi)

and target leg angles (φ∗i ) are given as

pi = [piy piz]T = r∗[sinθ∗ cosθ∗]T + R(αt)ai

φ∗i = arccos(piz) − αt

(2.20)

where pi are hip positions with respect to virtual toe, ai is position of the hips with

respect to body.

Slimpod has a gait level, embedded spring-mass hopper template dead-beat controller

to reach the desired apex state. The gait level behavior is summarized through the

Poincaré section of its trajectories at each apex point since running is a nonlinear

rhythmic motion. The touchdown angle, leg lengths at touchdown, and lift-off are ad-

justed to achieve the desired apex state. The hyperplane, called the Poincaré section,

can be considered passing through apex points where vertical velocity is zero (ż = 0).

The time-independent relation between two successive intersections can be defined

as a Poincaré map interpreted as

f (aXn) = aXn+1 (2.21)

Poincaré map and analytical approximations proposed by Ankarali et al. [32] allow

us to define a discrete return map f , and approximate return map indicated as f̂ ,

respectively. Note that the discrete return map f has all the information about the

physical system parameters accurately while f̂ knows these parameters provided in

the modeling step initially.

f̂ (aXn, un, p̂n) = aX̂n+1 (2.22)

The dead-beat controller relies on this approximate return map. In simple terms,

the map takes the current state and the next touchdown angle and outputs the next

state. Dead-beat controller seeks for touchdown angle and leg lengths at touchdown

and liftoff (u = [θ, rtd, rlo]) with given current apex state (aXn = [ẏa, za]) in order

to achieve desired apex height and horizontal velocity (aX∗ = [ẏa
∗z∗a]) in one step,

through optimization on the map. Indeed, this analytical map includes the system

parameters that should be regulated. A simple diagram for dead-beat stride control is

given in Figure 2.7.
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Figure 2.7: Gait-level open-loop dead-beat control scheme. The baseline controller

that is vulnerable to the parameter discrepancies inside Approximate Analytical Map

block

Previously designed gait-level dead-beat controllers do not consider the miscalibra-

tion or time-varying physical parameter case in the literature. On the contrary, they

assume a perfect match for the physical quantities in the existing system and the ap-

proximate map, making their analytical calculations for control input accordingly.

However, the physical parameters of the approximate analytical map inside the base-

line controller may be uncertain and time-varying due to various reasons, such as

variation in the environment or given task, effects of corrosion, and dust. These dis-

tortions and deformations cause extra difficulty in controlling the autonomous system.

Also, the measurement error itself arises as an issue, especially for stiffness and damp-

ing values. Since the controller performance is closely related to the accuracy of the

approximate predictive map, there can be many sources for discrepancies that cause

the previous controllers to fail. Therefore, the controller should be adjusted according

to the error in objective states in order to bring the system to a more practical side.

So, an adaptive control scheme is introduced to deal with the miscalibration problem.

The adopted approximate dead-beat controller utilizes an approximate analytical map

based on known system parameters to optimize the control input. If those parame-

ters are miscalibrated, the dead-beat controller eventually will make inaccurate pre-

dictions and decisions. Moreover, even if there is a perfect match between all the

parameters on the map and the actual system parameters, there will always be some

discrepancies between the predictions of the map and actual system outputs due to

the approximate nature of the analytical map.
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Dynamics of pronking behavior of planar hexapod robot during stance phase (i.e.,

toe contact) [32] are non-integrable under the effect of gravity [47]. SLIP dynam-

ics, and also slimpod dynamics, during the stance phase, are related to the restricted

three-body problem [44]. Restricted three-body problems do not admit to a closed-

form solution [47]. Therefore, unlike many other adaptive controller applications,

[48], constructing a Lyapunov function and deriving adaptive laws for dynamics for

pronking motion with a hexapod robot is not reasonably possible.

2.3 Adaptive Control of Slimpod

This section addresses the proposed indirect adaptive dead-beat controller embedded

on the planar hexapedal system model Slimpod. Initially, the control scheme is pro-

posed. Then, the work is followed by the error definition and the parameter update

strategy.

Indirect adaptive control is chosen to implement because the existing dead-beat con-

troller is affected by the objective system parameter and calculates the plant input.

Figure 2.8 depicts the proposed controller scheme.

-

Figure 2.8: Gait-level adaptive dead-beat control scheme. The baseline controller

that is vulnerable to the parameter discrepancies inside Approximate Analytical Map

block. Blue parts are added according to the adaptive control strategy

As explained under the dynamics of the slimpod model subsection, the Poincaré map

and analytical approximations proposed by Ankarali [32] allow us to define a discrete

return map f , and approximate return map indicated as f̂ , respectively. Noting that the

17



approximate return map is constructed based on the inaccurate parameter estimates

for the spring’s stiffness, the prediction error is also given as

e := aXn+1 −
aX̂n+1

= f (aXn, un) − f̂ (aXn, un, p̂n)
(2.23)

The adaptive controller should ensure this error approaches zero. That means the

parameter update strategy should satisfy the condition that the model output and the

actual output would be equal without disturbing the system’s stability.

limn→∞(aXn+1 −
aX̂n+1) = 0 (2.24)

To decide how to update the parameter, the impact of miscalibration on the system

should be investigated. In this context, experiments are conducted with three dif-

ferent parameters. Figure 2.9 shows the resulting errors with respect to percentage

deviations from “true” values. Red marked points represent the experiments when

the system can reach a fixed point. The target scenario is to drive both the state error

values ez and their derivatives, eẏ, to zero.

As a result of these experiments, chosen parameter and corresponding apex state error

need to have a linear relation to proving the system’s stability through linearized

system matrices [49, 50]. However, deviations in damping (Figure 2.9) have more of

a quadratic behavior, and horizontal velocity state error eẏ is negative for all deviation

amounts regardless of its sign. Therefore, damping is not a proper candidate to adapt

in order to reduce absolute error.

Pursuing a consistent notation with the previous study of Ankarali [4], a dimension-

less formulation is adopted for the SLIP model and its variations. These dimen-

sionless expressions eliminate inessential parameters and advance powerful ways of

conducting the simulations as well as adapting the controllers to the real physical sys-

tems. The SLIP model’s dimensionless flight and stance dynamics obtained from the

Euler-Lagrange formulation are applied to the dynamics. Representation in dimen-

sionless coordinates converts the physical stiffness k̄s to the dimensionless version ks

with ks = k̄s(l0/(mg)) statement [4], l0 being the leg length in rest. Therefore, phys-

ical individual leg stiffness k̄s and physical body mass m affects the leg stiffness in

dimensionless coordinates. Due to dimensionless coordinates inside the controller,

stiffness and mass have similar but symmetric effects on state errors, as observed in
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Figure 2.9: State errors with respect to percentage deformation

Figure 2.9. Suppose only the points regarding the ability to reach a fixed point are

studied. In that case, it can be inferred that deviations in stiffness and mass values in-

side the approximate analytical map have a linear relation with the state’s error value,

while deviated damping’s effect is nonlinear yet stable.

Considering that stiffness and mass have both linear effects, there are two candidates.

Measurement of the mass value does not require disassembling all the legs and some

specific equipment. Mass calibration is more accessible than the stiffness constant

calibration, even if the robot has a payload. Hence, stiffness is chosen over mass to

update. This analysis is the starting point for defining the parameter update strategy.

As mentioned before in the model dynamics and control section, because the re-

stricted three-body problem does not admit to a closed-form solution, constructing a

Lyapunov function and deriving adaptive laws for dynamics of pronking motion with

a hexapod robot is not reasonably possible.

MIT rule is the key to remedying this obstacle of nonexistent closed-form solutions

[51]. The state error is defined as in (2.23). The objective parameter k must be updated

so that the loss function V(k) in (2.25) is minimized.

V(k) =
1
2

e2 (2.25)
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The MIT Rule makes V(k) small by changing k in the direction of the negative gradi-

ent of V(k).
∂V(k)
∂k

= e
∂e
∂k

k̇ = −γ
∂V(k)
∂k

= −γe
∂e
∂k

(2.26)

γ is a positive constant representing the adaptive gain in further steps. Also, the

sensitivity derivative ∂e
∂k can be extracted from Figure 2.9.

In the literature, the corrective parameter adjustment strategy adopted from the MRAC

method [52, 38] is very similar to how estimation methods such as Kalman filters use

innovation on sensory measurement to perform state updates. Based on all these rela-

tions and inspiration from previous work on control related to the spring-mass hopper

[4], which is the basis of the embedded template base controller, a parameter update

strategy is proposed as

p̂n+1 = p̂n − Ke ∗ Xn ∗ e (2.27)

where Ke is a gain coefficient used to tune convergence of parameter values and regu-

late the oscillations; note that convergence behavior is strongly related to the adaptive

gain Ke. The implementations will be based on this strategy. Stating the adaptive law

leaves us questioning the system’s stability with the adaptive controller. The stability

issue will be discussed in the stability analysis subsection later.

2.4 Performance Analysis

This section presents simulation results for reference apex state tracking introduced

in Section 2.3 using different percentage error conditions on two physical parameters,

stiffness and damping, and the approximate map itself. Comparisons of adaptive and

non-adaptive controller structures are provided to show that the proposed adaptive

controller is more capable of producing stable and controllable pronking motion in

the case of parametric miscalibration.

All simulations were run on MATLAB utilizing a hybrid dynamical simulation toolkit

based on SimSect [45] previously verified on RHex [46], including necessary addi-

tions about slimpod model [4]. A variable-step, variable-order solver based on the

numerical differentiation formulas of orders 1 to 5 is chosen as the solver.
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Basically, two types of experiments are conducted according to two control schemes

in Figure 2.7 and 2.8, and the simulation results are compared in terms of achieving

the desired apex state and steady-state error for the given desired state. The simula-

tions were run with various apex goals aX∗ and percentage of miscalibration errors.

Since the pronking is a periodic motion, any point can be tracked during the gait, i.e.,

the one-step prediction with the map could be made with any point. By choice, an

apex return map is used, and the desired apex state is tracked.

The ranges for the dynamic parameters for the Slimpod model, which apply to a

wide range of parameter combinations due to the dimensionless formulation inside

the code, detailed in [42], were chosen to closely match the physical SensoRHex

robot to ensure future applicability of the results to an experimental implementation

and given as in Table 2.2. The states z and ẏ are plotted from the dimensionless group

in the following simulation results.

Table 2.2: Parameters of the Slimpod Model

Quantity Symbol Value Unit

Body mass m 9 kg

Leg stiffness k 2000 N/m

Leg damping d 12 Nm/s

Rest leg length l 0.175 m

Desired height z∗ 0.195 m

Desired velocity y∗ 1.6 m/s

Primarily, the simulations are performed, as shown in Figure 2.10, when the system

parameters fully match the controller parameters. This experiment shows that even

if there is no miscalibration, the adaptive controller reduces the error between model

output and actual plant output by updating the k value. This oscillation on the k value

leads to fading oscillations on horizontal velocity tracking performance. However,

system response seems to become more aggressive, caused by the high parameter

update gain.
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Figure 2.10: System response if there is no miscalibration. The plot on the top left

corner represents the horizontal velocity with respect to time. Oh the top right corner,

the evolution of the adapted parameter at each apex is depicted. The curve on the

bottom left shows the trajectory of the hexapedal robot. And the magnitude of the

apex state error is demonstrated for both adaptive and non adaptive cases.

To signify the effect of the proposed adaptation scheme, another experiment is con-

ducted for the case of a miscalibrated stiffness value and depicted response in Fig-

ure 2.11. As expected, using the non-adaptive controller with miscalibrated param-

eters results in significant steady-state errors. In addition, after some time, unstable

behavior causes the robot to turn upside down. On the other hand, the proposed adap-

tation scheme clearly reduces errors and promises improved performance.

The simulation in Figure 2.12 is repeated for the miscalibrated damping value and

notes that stiffness adaptation leads the robot to recover the tracking properly. Just

updating stiffness helps to compensate for the error caused by the miscalibrated damp-

ing.
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Figure 2.11: System response if stiffness on the map is 20% less than the system

value

Figure 2.12: System response if viscous damping on the map is 10% less than the

system value
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In the following simulation, the performance for a multiple miscalibration problem is

shown in Figure 2.13. According to these simulation results, when both stiffness and

damping parameters are miscalibrated, updating stiffness helps decrease estimation

error, and consequentially tracking performance is improved.

Figure 2.13: System response if stiffness on the map is 20% and viscous damping is

-20% deviate from the system value

The final two simulations are devoted to assessing the controller’s performance in the

case of directly disturbing the output of the approximate map with a constant amount

corresponding to 5% of the desired state values. Resulting responses will be as in

Figure 2.14 and 2.15. According to these figures, if the approximate map’s output

deviates from its value by 5% higher or lower, states are drastically affected, making

the system unstable. The addition of the adaptation compensates for the error and

ensures the system’s stability to some extent.
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Figure 2.14: System response if the result of approximate map deviates -5%

Figure 2.15: System response if the result of approximate map deviates +5%
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In each case, the adaptive controller updates the stiffness value utilized on the approx-

imate analytical map inside the dead-beat controller and improves tracking perfor-

mance. Briefly, it may be concluded that the proposed adaptive control scheme to ad-

just stiffness value could confront the miscalibration problem in the planar hexapedal

system.

In Figure 2.16, the parameter adaptation for stiffness is run together with the dead-

beat controller when stiffness, mass, and damping are miscalibrated. In other words,

the experiments are repeated in Figure 2.9 with adaptive stiffness. Comparing Fig-

ure 2.9 and 2.16, the systems with parameter adaptation are able to regulate a broader

range of percentage errors, driving state errors closer to zero levels.

Figure 2.16: State errors with respect to percentage deformation after the involvement

of parameter adaptation scheme for stiffness

2.5 Stability Analysis

A need arises for developing a way to show the system’s stability with an adaptive

controller since an adaptive law cannot be developed using standard design proce-

dures in adaptive control [41]. Because running is a nonlinear, complex periodic

motion, the Poincaré Map method is used in the analysis. This method intersects a
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hyperplane with the periodic trajectory of a system with n-dimensional state space.

This hyper-plane is called the Poincaré section, as illustrated in Figure 2.17. If the

intersection is called Xk, Poincaré Map is defined as f (Xk) = Xk+1. Therefore, the

relationship between two consecutive intersections can be defined as independent of

time. Suppose the map is f (X∗) = X∗, i. e., trajectories intersect with Poincaré section

on the same point; that point is called a fixed point. It is possible to comment on the

system’s stability by looking at the local stability at its fixed points [53, 49].

Figure 2.17: Example Poincaré Map

The embedded dead-beat controller assures the fixed points in a wide subspace. Fixed

point subspace given in Table 2.3 is constructed by considering the gait level control-

lable region [4] in order to investigate stability. Fixed points are depicted in Fig-

ure 2.18.

Table 2.3: Chosen regions for fixed points

State Physical Values

z∗ [0.1850,0.2750] m

y∗ [1.3096,1.9644] m/s

The system’s stability resulting from the proposed parameter adjustment strategy

based on its linearized system matrix is analyzed. Study in [49] supports that hybrid

systems’ behavior can be reduced to lower-dimensional subsystems near periodic or-

bits. Therefore, the stability of fixed points is decided by investigating eigenvalues of

the numerically calculated linearized system matrix in (2.28) [54]. As known from

all discrete systems, if all eigenvalues’ magnitudes (i.e., ||λ||max) are smaller than 1,
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Figure 2.18: Variation of the fixed point subspace by height z, horizontal velocity ẏ

and the body angle α

the system is stable.

Ĵ =
∂ f
∂Xk

(X∗) (2.28)

This linearized system matrix Ĵ relates the infinitesimal changes in apex state pre-

dictions ∂X̂ to infinitesimal changes in states. The linearized system matrices are

calculated for tracking different height and horizontal velocity pairs. Eigenvalues at

those points can be observed in Figure 2.19. As depicted, all linearized system matri-

ces have their ||λ||max inside the unit circle, i.e., their magnitudes are smaller than one,

which is the stability criterion for a discrete-time system.

Linearized numerical stability is also investigated for different leg stiffness and adap-

tive gain pairs. Figure 2.20 exhibits that the system with the adaptive controller re-

mains stable in a wide range of stiffness and gain values.
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Figure 2.19: ||λ||max of linearized system matrices calculated by using the fixed points

given in Figure 2.18, z∗ ∈ [0.1850, 0.2750]m and y∗ ∈ [1.3096, 1.9644]m/s region

Figure 2.20: ||λ||max of linearized system matrices calculated for the fixed point at

(0.195m, 1.6m/s) with different stiffness and gain pairs. White parts on the figures

means that system cannot reach fixed points in this part of the region
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2.6 Conclusion

This chapter proposes an online parameter adaptation scheme for an underactuated

legged robot to improve the previously proposed control algorithms’ tracking per-

formance and robustness to parametric uncertainties. First, the apex state error-

parameter relation is analyzed, and the parameter update rule is defined accordingly.

Then the contribution of the additional level is demonstrated to the existing approx-

imate dead-beat controller scheme. In succession, these steps admit to deploying a

high-level layer to the current controller for the Slimpod model.

The formerly developed dead-beat controller aims to bring the apex states to desired

values. Resultant control input entirely relies on the actual values of the parameters.

Inevitably, miscalibrations in the measurements of physical instruments or parameter

changes due to environmental effects will create a significant estimation error, so the

dead-beat controller’s decisions become inaccurate. A layer for adaptation is added

to improve the tracking performance as much as possible. Simulation results for

constructing a parameter adaptation structure show that adding the parameter update

realizes this objective successfully. It reduces the error between model and actual

plant outputs and substantially improves control performance relative to existing non-

adaptive controllers.

This study extends the relationships between the apex state errors and the legs’ phys-

ical parameters. The complexity of these relations mainly arises from the coupled

effects of the parameters on gait behavior. How parameter calibration affects the apex

states is inferred with an experimental investigation. Following the presented ap-

proach in this thesis, this experimental design procedure can now be generalized to

different systems which are not suitable for analytical calculations of indirect adap-

tive control. In addition, local exponential stability of the closed-loop system under

the adaptive rule is proven via computing linearized (numerical) Poincaré return map

around the emergent fixed-points and checking the associated eigenvalues [49, 55].

Inspiration from the different animals’ natural ability for varying gaits draws attention

to legged systems. Employing controllers that mimic various motions allows robots to

exploit different advantages, such as energy efficiency, considerable jumping heights,
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or speeds. Through adaptation, robots can now take a further step to embark on an

essential biotic characteristic to increase the feasibility of the existing theoretical con-

trollers and practice in more complex places. In the future, it is intended to scale this

process to different robotic platforms with unmeasurable (directly) inner or environ-

mental parameters. Online adaptive parameter update rules can create a relatively

simple yet powerful and practical approach for legged robotic platforms. As a result,

the applicability of the theoretical controllers to the actual physical systems will be

foreseen to rise significantly.
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CHAPTER 3

STOCHASTIC ANALYSIS OF LEGGED LOCOMOTION BY UNSCENTED

TRANSFORMATION

3.1 Introduction

Analytical models do not represent the real systems perfectly because some phenom-

ena like impact and friction always bring discrepancies to the actual implementation.

In exchange for their agility and capabilities, legged robots are much more vulnerable

to the stochastic effects of unknown terrains than the other types of robotic systems.

They eventually encounter different abnormalities, which might be slight differences

in elevations (e.g., holes, rocks) or some contaminated surfaces that drastically affect

friction constant and impact dynamics. Accordingly, controllers should take account

of the external noises.

Legged locomotion involves, in general, periodic gaits such as walking, running, gal-

loping, trotting, and pronking. This motion’s stability analysis can be conducted

based on the linearization of nonlinear dynamics around a periodic motion. Poincaré

return map analysis is widely used to simplify the limit cycles of the periodic trajec-

tories [56], as used and explained in Section 2.5 of the previous project in this thesis.

This simplification ignores the stochastic effects of the external disturbances, and its

results are only local, meaning that the stable periodic gait corresponds to an asymp-

totically and locally periodic motion around the fixed point. In addition, Poincaré

methods handle the stability characteristics deterministically. Deterministic limit cy-

cle stability analyses cover the stability properties of legged systems. However, they

are usually difficult to apply and often fail to capture the stability properties of the

systems without true limit cycle dynamics. In addition, they are technically incorrect
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in the existence of stochastic disturbance. For example, the MARLO robot was able

to walk in a laboratory environment; however, it took only few steps before falling

down in outside tests due to a slight inclination of the sidewalk [57]. That is why the

characterization of stochastic dynamics of walking should be accounted for during

system identification and controller design to improve stability. This is an important

yet understudied approach in the robotics community and is mainly addressed as a

robust control problem [58, 57] rather than an analysis of stochastic dynamics.

3.1.1 Metastable Walking

Legged locomotion is characterized by the dynamic interactions between the feet and

the contact surface. The term dynamic locomotion usually stands for an unbalanced

walking cycle leading to a stable gait behavior. Underactuated legged systems lever-

age the underactuation to achieve dynamic locomotion. As the trade-off between

stability and agility in the control theory, there exists an essential relationship be-

tween stability and maneuverability for legged systems [59]. Under disturbance, as

in many stochastic dynamical systems, legged robots exhibit long-living, locally sta-

ble behaviors up to some point that cannot handle the external effects anymore. Once

the disturbed system’s states go into a region with a different attractor, the system

behavior irreversibly adjusts to the new local dynamics. In simpler words, a legged

robot can run for quite some time, but it will definitely fall down due to the external

stochastic effects. Since they eventually leave the locally stable gait behavior, they

cannot be considered "stable." On the other hand, they obviously operate for long

periods of time, making calling them "unstable" wrong. A need arises for a new type

of classification in the control theory. Metastability is a well-defined candidate for

defining this phenomenon.

Metastable systems exhibit long-living behaviors that are guaranteed to transition to

another success or failure state. The term metastability is, in fact, broadly used by

other disciplines such as physics [60], chemistry [61] and electronics [62].

The systems with metastable states have another equilibrium state with less energy.

A minor disturbance will cause a system in a metastable state to fall to a lower energy

level, i.e., the stable equilibrium. The basic toy example to explain metastable systems
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is depicted in Figure 3.1. In this simple example, a particle is swinging in a valley,

and a sufficient disturbance can cause the particle to roll into another valley that has

another local minimum.

Figure 3.1: Toy example to explain metastable systems. The particle swings around

the metastable equilibrium point unless an external disturbance leads the ball to fall

into the other valley with an equilibrium point with less energy.

The legged counterpart of this toy example substitutes the metastable equilibrium

with dynamic locomotion and the absolute minimum with falling to the ground.

Hereby, walking is well-characterized as a metastable process. In the literature, Byl

and Tedrake introduced the conceptual connection and utilized the metastability con-

cept to quantify the stochastic stability of rimless wheel and compass-gait walking

on rough terrain [63, 64]. They also utilized stochastic optimization to improve the

overall stability of legged systems.

Byl and Tedrake’s metastable limit cycle analysis methodology deals with walking

systems by their closed-loop return map dynamics. For the first step, the return maps

are represented as Markov chains. States of this Markov chain consist of mesh points

of the state space for the particular legged system. State transition matrices of this

Markov chain are numerically obtained from systematic experiments by integrating

the system dynamics from each mesh point for different values of terrain slope. Fi-

nally, eigenvalues and eigenvectors of the state transition matrix are used to make

deductions on stochastic stability.

Referring to Byl’s studies [65], Benallegue and Laumond questioned the computa-

tional feasibility of the prior method for complex walking systems and proposed a
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solution for the legged systems with high-dimensional states using the limit-cycle

property of stable walking [66]. Actually, the biggest problem in the former approach

is computational complexity. The complexity comes from two different aspects: sim-

ulation time and meshing methodology. Firstly, obtaining the state transition matrix

requires numerous simulations in order to get the most accurate results. For instance,

for a 5-link bipedal walking simulation, a one-step simulation takes up to 0.5 seconds

in MATLAB. Running 106 simulations lasts more than five days, which can be re-

duced to less than one day by parallel programming, but it will still be too long to

conduct enough experiments to build a smooth stochastic return map. In addition to

the infeasibility of conducting thousands of experiments, if experimental setups are

in the loop, another problem arises; physical damage. The more experiment is con-

ducted, the more likely the system will fall down due to its metastable nature. There-

fore, the system is more likely to get damaged. Secondly, for lower dimensional (1-

DOF or 2-DOF) systems with one-dimensional noise, meshing the state space will be

quite easy as slicing a range of values or meshing a surface. However, as the number

of dimensions increases, meshing a cube or a 4D structure becomes more complex,

even impossible. For example, for a 5-link bipedal robot, one must discretize all the

state-space in ten dimensions along with the noise space. If the noise comes from

only one source, noise space discretization is relatively trivial. Whereas, in the case

of multiple noise sources, the former method fails to present an efficient way to ana-

lyze the dynamics. For 3D walking, the required degree of freedom increases quickly.

Subsequently, Saglam and Byl introduced an improved meshing technique [67], but

unfortunately, this improvement did not totally break the curse of dimensionality. On

the other hand, Saglam and Byl’s studies contributed to the previous breakthrough

to handle legged systems as metastable systems by compilation of the methodology

[68], new meshing technique [69] and optimal controller designs [70]. Now, this the-

sis proposes a methodology to further improve the metastable analysis by borrowing

estimation methods from stochastic tools.

3.1.2 Stochastic Estimation Tools

Kalman filter [71] is a well-known estimation method and widely used in robotic plat-

forms. Theoretically, Kalman Filters are called the linear quadratic estimator since
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they minimize a quadratic function of estimation error for a linear dynamical system.

As the name signifies, the Kalman filters use a linear estimator and fail to handle

nonlinearities. Later, extended Kalman Filtering (EKF) is introduced to include the

nonlinear effects by linearizing the problem about the estimated trajectory [72, 73].

EKF is used widely, so it has become almost the standard estimation method for

the aerospace industry. As a matter of fact, linearized Kalman Filters’ high capabil-

ity was enough to be applied to navigation for the Apollo Project [74]. One of the

methods in this thesis to compare the proposed estimation methodology will be a for-

mulation based on linearization. EKF formulation is modified to involve nonadditive

noise cases and adapt to this study’s estimation scheme. Following Section 3.1.2.1

will present the estimation method based on the linearized model and its limitation.

The alternative method with unscented transformation to overcome this limitation is

introduced in Section 3.2.2.

3.1.2.1 Estimation Over Linearized Model

The Extended Kalman Filter (EKF) extends the classic Kalman Filter for nonlinear

systems where nonlinearity is approximated using the first or second-order derivative.

It tries to capture nonlinearity using Taylor expansion around a local point. By the

same principle with EKF, a covariance prediction can be formulated either using a

linearized analytical model of the system or a numerically linearized version. For

the legged systems that this study is based on, linearization should be conducted

numerically, noting that it is not efficient. However, it is obligatory because there are

no explicit linearized analytical models for these highly nonlinear hybrid dynamical

legged systems.

Formulation steps of the linearization-based estimation method for a generalized case

of nonadditive noise begin with the same nonlinear system description in Markov

chains and unscented transformation later. The noise is applied at the impact, and its

effect on the output state xk+1 is not explicitly known.

xk+1 = f(xk,wk), wk ∼ N(0,Qk) (3.1)

At the model forecast step (3.6), the forecast value of xk+1 (indicated by x f
k+1) is pro-

duced by propagating the initial optimal estimate xa
k through the nonlinear system

37



and used to compute the mean and covariance of the forecast value of xk+1. In this

thesis, the initial optimal estimate is defined as the initial condition, more clearly, the

midpoint of the range defining each Markov state.

xa
k := xk (3.2)

The predictable part of xk, i.e., the forecast value, is given by

x f
k+1 =E[xk] = E[f(xk,wk)] (3.3)

The next step is expanding system description f(.) in Taylor Series about the optimal

estimate xa as follows,

f(xk,wk) ≈ f(xa
k , 0) + fxk(x

a
k , 0)(xk − xa

k) + fwk(x
a
k , 0)wk + H.O.T. (3.4)

where fxk = ∂f
∂xk

, fwk = ∂f
∂wk

. Higher order terms are ignored and the partial derivatives

with respect to state and noise should be calculated by numerical methods. Then

forecast value is calculated by substituting (3.4) into (3.3),

x f
k+1 ≈ E

f(xa
k , 0) + fxk(x

a
k , 0) (xk − xa

k)︸    ︷︷    ︸
ek

+fwk(x
a
k , 0)wk


x f

k+1 ≈ f(xa
k , 0) + fxk(x

a
k , 0) E[ek]︸︷︷︸

0

+fwk(x
a
k , 0)E[wk]︸︷︷︸

0

x f
k+1 ≈ f(xa

k , 0)

(3.5)

The forecast error equation becomes as follows:

e f
k+1 = xk+1 − x f

k+1

= f(xk,wk) − f(xa
k , 0)

≈ fxk(x
a
k , 0)ek + fwk(x

a
k , 0)wk

(3.6)

The forecast error covariance is calculated as

P f
k+1 = E[e f

k+1(e f
k+1)T ]

= E
[
(fxk(x

a
k , 0)ek + fwk(x

a
k , 0)wk)(fxk(x

a
k , 0)ek + fwk(x

a
k , 0)wk)T

]
= fxk(x

a
k , 0)E[ek(ek)T ](fxk(x

a
k , 0))T + fwk(x

a
k , 0)E[wk(wk)T ](fwk(x

a
k , 0))T

= fxk(x
a
k , 0)Pk(fxk(x

a
k , 0))T + fwk(x

a
k , 0)Qk(fwk(x

a
k , 0))T

(3.7)

The estimation in this study considers a one-step calculation of successive states. One

can reformulate the output mean and variance equations for the one-step calculation
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instead of a recursive calculation of forecast and error values with time points such as

k and k + 1. Since the initial value for xk (= x0) is deterministically known, P0 will be

0, and estimated mean and variances for the next step can be computed as

µ1 = x f
1 = f(xa

0, 0),

P f
1 = fw(xa

0, 0)Q0
(
fw(xa

0, 0)
)T

(3.8)

Using the estimated output mean µ1 and output variance P f
1 , the estimated normal

distribution can be constructed as X1 ∼ N
(
µ1,P f

1

)
.

3.1.2.2 Unscented Transformation

The nonlinear extensions of the Kalman Filter consist of nonlinear propagation of

probability densities. The sample-and-propagate methods can be generalized as per-

turbation methods, using samples as initial values, which are perturbations from the

mean trajectory. The continuous state domain is actually transformed into a discrete

set of points by sampling. EKF fails to conduct nonlinear propagation because of its

basis for linearization and partial derivatives instead of propagation [75].

Unscented Kalman Filter is a special case of sigma point filters introduced to im-

prove filtering performance. Unscented transformation [76, 77] is a powerful tool to

estimate the statistics of a random variable that undergoes a nonlinear transformation

[78] and is used in many applications ranging from sensor fusion for state estimation

[79] to an unscented Kalman observer [80]. Moreover, in recent studies, Sieberg et al.

combined an artificial neural network with confidence level adjustment and presented

a hybrid state estimation structure using unscented transformation [81]. This strong

stochastic process tool is borrowed to make informed choices of initial conditions for

the stochastic analysis experiments in this thesis. Eliminating computational com-

plexity, the mean first passage time metric is able to be utilized to characterize the

stochastic stability of high-dimensional underactuated nonlinear systems. Addition-

ally, unlike the previous studies [64, 67], estimation with unscented transformation

allows us to deal with multiple sources of uncertainties on higher dimensional sys-

tems. Even though unscented transformation helps estimate the output distribution

for nonlinear systems, nonlinear transformation does not help with the higher-order

moments. The higher-order moments of the estimation distributions are not tracked.
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Infinitely many possible distributions share the same mean and variances having dis-

tinct higher-order moments. Sample-and-propagate methods can capture the exact

and unique solution if the transformation results are linear. In the existence of non-

linearities, the exact solution cannot be reached. Because there is no unique solution,

estimation performance assessments for this type of estimator are also tricky. There-

fore, tuning the parameters of the filters to reach a better estimation can be done by

comparing the estimation with the results of the Monte Carlo experiments. This tun-

ing procedure gives the proper parameters only for this particular nonlinear system.

Tuning the weights in the unscented transformation-based estimation affects the esti-

mated results, so one should be careful when choosing those parameters. This thesis

assumes that the output distribution is a Gaussian, so the output distribution is built

as a Gaussian with estimated mean and variances. The estimated mean and variances

are compared with the results from Monte Carlo experiments.

Monte Carlo analysis is a common method to estimate a probability distribution’s

progress over time. The method is based on selecting a sufficient number of rep-

resentative random samples and simulating them with the dynamical system model.

The result is the probability density as an estimate of output distribution. This exper-

imental output distribution can be visualized as a histogram and used for assessing

the estimation error. As the number of samples increases, the accuracy of the output

distribution will increase.

This study proposes a more efficient estimation method for metastable system prop-

erties based on unscented transformation; therefore, there will be no need for con-

ducting many experiments through Monte Carlo sampling. The proposed method is

implemented to examine the stochastic stability of a one-dimensional hopper and an

idealized 5-link biped simulation with a hybrid zero dynamics controller under dis-

turbance. The one-dimensional hopper states an example of a simple legged system.

After observing the satisfactory estimation results, the methodology is extended to

a higher dimensional system. This 5-link walker model is inclusive for robot walk-

ers due to its nonlinear, underactuated, and hybrid nature. In addition, the proposed

method is compared with the numerical linearization-based method, formulated in

Section 3.1.2.1 for both systems.
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3.2 Methodology

This section presents the methodology behind the metastable analysis of legged lo-

comotion. This stochastic analysis framework is mainly adopted from [64]. The

storyline is as follows. First the Markov chain representation for the system is intro-

duced. Secondly the proposed estimation scheme based on unscented transformation

is explained. Lastly, the stochastic stability metric mean first passage time is defined

to utilize stochastic analysis in controller comparison.

3.2.1 Markov Chain Representation

Markov chains are defined as stochastic models that describe a sequence of possible

events whose probability only depends on the previous event [82]. Markov processes

have many applications as building statistical models for the real systems in engineer-

ing, biology, economy, social sciences, etc. These applications vary from modeling

airport queues to stock market predictions. There also exist Markovian representa-

tions for storage models of dams, animal populations, and employment structures of

companies [83].

There are two conditions for a matrix to be a state transition matrix of the Markov

chain. First, the state transition matrix to a Markov chain needs to be a stochastic

matrix, i.e., rows of a stochastic matrix are probability vectors. That means, if the

transition matrix is built as in (3.9), all rows should add up to 1.

TO

T =


FROM

X1 = X0T

(3.9)

where X0 is the initial state distribution and X1 is the state distribution at step 1.

Secondly, the matrix has to be regular. That means Tn (n > 1) has only nonzero

positive entries. The second condition is trivial to meet, because a stochastic matrix

is also a regular matrix. If T is a regular matrix, there will be a Tn where X0Tn = X̄,

where X̄ is a stable distribution state. Then, T,T2,T3, .. becomes a regular Markov

chain.
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Absorbing Markov chains are defined as Markov chains with absorbing states to

which it is possible to go from any transient states in a finite number of steps. The

standard form of the transition matrix of an absorbing Markov chain is as in (3.10).

T =

 I 0

S R


X1 =X0T

(3.10)

Stable distribution matrix of an absorbing Markov chain with only one absorbing state

is expected to be the first unit vector X̄ =

[
1 0 0 ...

]
. That means that regardless

of the initial distribution, all of the population is guaranteed to go to the absorbing

state.

X̄T = X̄

X̄(I − T) = 0

e1(λ1I − T) = 0

λ1 = 1 , e1 = X̄

(3.11)

According to the calculations in (3.11), absorbing Markov chains has one eigenvalue

at λ1 = 1 and stable distribution matrix of that Markov chain will be the first left

eigenvector e1. e1 is the first unit vector, which means this system will eventually

stop at the first (absorbing) state. If there is more than one absorbing state, the state

distribution vector will be a state distribution among those absorbing states depending

on the initial condition. In this thesis, all configurations representing the failure of

motion or leaving a predetermined region are compiled to one absorbing state.

The eigenvector associated with the largest megnitude eigenvalue (first eigenvector)

of the transpose of an absorbing Markov chain transition matrix, T, represents the

stable distribution matrix of the chain, X̄. The second largest magnitude eigenvalue

of the matrix T corresponds to the first eigenvalue of the T̄.

T =

1 0

r T̄

 (3.12)

The eigenvector associated with the first (largest) eigenvector on T̄ describes the long-

living (metastable) distribution of the state.
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3.2.1.1 Toy example: Simple Absorbing Markov Chain

A simple example is inserted to visualize the basics of absorbing Markov chains. This

Markov chain represents a person’s travel probabilities between 5 cities; A, B, C, and

D. Figure 3.2 represents the visualization of the Markov chain, its state transition

matrix in (3.13) as a colored surface and its eigenvalue plot. Throughout the thesis,

state transition matrices are visualized as in Figure 3.2 to observe the stochastic return

maps.

Figure 3.2: Toy example to explain absorbing Markov chain representing the transi-

tion between five states; A, B, C, D

T =



1 0 0 0 0

0.41 0 0 0.59 0

0.45 0.55 0 0 0

0 0.24 0 0 0.76

0.06 0 0.5 0 0.44


(3.13)

To find out the probability distribution between possible next cities, state transi-

tion matrix T′ needs to be multiplied by the state vector Xn as in Xn+1 = XnT.

For example, if the person is known to be in city B, the state vector will be X0 =

[0, 1, 0, 0, 0]. Therefore, at the next time step, the state probability vector will be
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X1 = [0.41, 0, 0, 0.59, 0]. The person will be in city A with a probability of 0.41 and

city D with a probability of 0.59. If the person keeps moving between states, the next

state vectors will be as follows,

X2 =

[
0.4100 0.1416 0.0000 0.0000 0.4484

]
X3 =

[
0.4950 0.0000 0.2242 0.0835 0.1973

]
X4 =

[
0.6077 0.1434 0.0986 0.0000 0.1503

]
...

X10 =

[
0.9172 0.0204 0.0182 0.0128 0.0315

]
...

X30 =

[
0.9994 0.0001 0.0001 0.0001 0.0002

]
...

X40 =

[
1.0000 0.0000 0.0000 0.0000 0.0000

]

(3.14)

At the 30th time step, the person is in city A by more than 99.99% probability. As

the time goes to infinity, the probability of traveling to city A becomes 1, i.e., state A

represents the absorbing state. The person cannot avoid arriving at city A no matter

what his/her initial spot is.

3.2.1.2 System as an Absorbing Markov Chain

In metastable limit cycle analysis, the discrete-time system dynamics are represented

as a Markov process. Walking dynamics of legged systems demonstrate a hybrid

behavior having discrete impact events that interrupt the continuous flight dynamics.

The Poincare map resulting from this natural time-discretization is the basis for the

return map used to build the corresponding Markov chain.

The apex to apex dynamics should be represented as a discrete system for the stochas-

tic stability analysis.

xk+1 = f(xk,wk) (3.15)

where xk and wk represent the states and noises at time step k respectively. The noise

values are drawn from a Gaussian distribution with zero mean and covariance of Rω.
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The state transition dynamics can be approximately represented as a finite-state Markov

process if the state space is discretized into a finite set of states. State discretization is

required for the computation of a finite-state Markov chain. The state space is divided

into N pieces and assigned to Markov states. The state transition matrix TN×N of this

Markov chain collects the transition probabilities between the N predefined states.

The probability of transition from state i to state j is,

Ti j = P(xk+1 = s j|xk = si). (3.16)

An absorbing Markov chain is a Markov chain with at least one state that is impossible

to leave. In legged locomotion, the absorbing state can be considered as collecting all

configurations where the robot falls down [64]. Besides, a particular region desired

to operate can be specified, and the other configurations can be taken as belonging to

the absorbing state. Assuming s1 is the absorbing state, the following can be stated.

T11 = 1 and T1 j = 0 for j , 1. (3.17)

Absorbing Markov chains has one eigenvalue at λ1 = 1 and the stable distribution

matrix of that Markov chain will be the first left eigenvector of T in (3.18) which is the

first unit vector, which means this system will eventually stop at the first (absorbing)

state. The second-largest magnitude eigenvalue of the matrix T corresponds to the

largest magnitude eigenvalue of the T̄ and is related to the metastable characteristic

of the system. The eigenvector associated with the largest magnitude eigenvalue of T̄

describes the long-living (metastable) distribution of the state.

T =

 11×1 01×N−1

T j1N−1×1 T̄N−1×N−1

 (3.18)

The state transition matrix of the Markov chain can be built via Monte Carlo exper-

iments. According to the law of large numbers, the average of the results obtained

from a large number of trials should be close to the expected value and tends to be-

come closer to the expected value as more trials are performed [84]. However, build-

ing the state transition matrix with Monte Carlo experiments requires too many trials,

which is highly inconvenient for the complex legged systems. Thus, this study prefers

to choose sigma points using prior knowledge of noise characteristics and simulate

the system accordingly. As a result, the unscented transform concept results in a more

efficient estimation of state transition matrices.
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3.2.2 Unscented Transformation

This section explains the formulation of the unscented transformation method. The

fundamental motivation behind using unscented transform is that approximating a

probability distribution is easier than approximating an arbitrary nonlinear function

[76]. Instead of approximating the system equations by linearization, sigma points

are calculated and used in the unscented transformation to directly approximate the

output probability density functions. The assumption under the probability distribu-

tion estimation is to have a Gaussian noise and expect the output distributions to be

Gaussian. The central limit theorem states that the sampling distribution approaches

a normal distribution as the sample size increases [85]. That is why it can be assumed

that, under the exposure of multiple noise sources, the output distributions will co-

incide with a Gaussian distribution. It is also observed in later sections. Even if the

output distribution is not Gaussian, the estimation can approximately capture its mean

and variance.

The formulation steps are similar to the Unscented Kalman Filters [76, 77]. First of

all, formulation for the generalized case of nonadditive noise requires an augmented

state definition xa
k with system states xk and zero mean noises wk,

xa
k =

[
xT

k wT
k

]T
. (3.19)

Previously known nonlinear system dynamics f and the noise variance characteristics

Pk are,

xk+1 = f(xa
k),

Pk =

ε 0

0 Rw

 , (3.20)

where Pk contains the known variances as diagonal entries, and Rw represents the

noise variances. Since the initial states xk are deterministic in this study, their variance

will be zero; however, for computational purposes, their variance is specified as a very

small value ε. If the state variance is taken as zero, that will cause a problem in the

matrix square root step.

Sigma points represent the chosen initial conditions so that the output of the nonlin-

ear system to these initial conditions will provide the information related to output
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distribution. The sigma point set Xk (3.21) contains 2n + 1 sigma points x j
k and their

associated weights W j so that their mean will be xa
k and variance Pk, where n is the

dimension of augmented state.

Xk = {(x j
k,W

j)| j = 0 . . . 2n}

x0
k = xa

k , −1 < W0 < 1

x j
k = xa

k + A j, j = 1 . . . n

x j
k = xa

k − A j, j = n + 1 . . . 2n

W j =
1 −W0

2n
, j = 0 . . . 2n

Ai =

(√
n

1 −W0 Pk

)
i

(3.21)

The weight of the first sigma point W0, in (3.21), controls the proximity of sigma

points to their mean. If W0 ≤ 0 or W0 > 0, the sigma points tend to be closer

or further from the origin. It is not trivial to tune W0 which affects the estimation

results. Tuning process is also explained in [76].

At the model forecast step (3.22), the transformed points (x f , j
k+1) are produced by prop-

agating each sigma point through the nonlinear system and used to compute the mean

and covariance of the forecast value of xk+1 in (3.22).

x f , j
k+1 = f(x f , j

k ) j = 0 . . . 2n (3.22)

After forecasting, estimated mean and variances are computed as

µk =

2n∑
j=0

Wix f , j
k+1,

P f
k+1 =

2n∑
j=0

Wi{x f , j
k+1 − µk}{x

f , j
k+1 − µk}

T .

(3.23)

Using the estimated output mean µ0 and output variance P f
1 , the estimated normal

distribution can be constructed as X1 ∼ N(µk,P f
1).
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3.2.3 Analysis and Controller Performance Metric

One of the core purposes of stochastic analysis is to assess the system’s stability in

the existence of noise. The methodology adopted in this thesis uses Markov chains

to model system behavior. The aim is to improve the procedure for building the state

transition matrix using the mean and variance estimations from the unscented trans-

formation. The stochastic characteristics can be inferred by investigating the state

transition matrix, and the effect of noise for each configuration can be commented on.

To complete the state transition matrix, the transition probabilities of nonabsorbing

states in (3.16) are calculated as the following,

Ti j =P(xk+1 = s j|xk = si)

=FXk+1(
s j+1 + s j

2
) − FXk+1(

s j + s j−1

2
)

(3.24)

where FXk+1 represents the cumulative distribution function of output distribution.

Transition probabilities to the absorbing state are equal to the total probability of not

going into nonabsorbing states.

Ti1 = P(xk+1 = s1|xk = si)

= 1 −
N∑

i=0

P(xk+1 , s1|xk = si)
(3.25)

Finally, setting transition probabilities from the absorbing state to zero completes the

state transition matrix structure in (3.18).

The state transition matrix of the Markov Chain includes information about the sta-

bility of the system under disturbance. Mean first passage time is a stability metric

for metastable systems and extracted from the second-largest magnitude eigenvalue

of the state transition matrix T. Definition of system-wide mean first passage time

value M is the following;

M =
1

1 − λ2
. (3.26)

The closed-loop system’s estimated mean first passage time values can be used to

assess different controllers’ performances. In addition, the closed-loop system be-

haviors can be compared with respect to different levels of noise variances.
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3.3 Stochastic Analysis of One Dimensional Hopper

This section states an example of the stochastic analysis by the proposed methodol-

ogy in Section 3.2. This hopper with one-dimensional vertical motion is expected

to demonstrate the applicability of the proposed stochastic analysis methodology. Its

quasi-linear nature prohibits generalizing the deductions on more complex dynamical

systems; however, promising results are introduced in the following sections.

3.3.1 Model and Dynamics

Chosen one-dimensional hopper model is a variation of the Spring Loaded Inverted

Pendulum (SLIP) template with constant forcing and damping called F-SLIP studied

by [86, 87, 88]. Using SLIP model variations brings the advantage of simplicity for

implementation and analysis together with its applicability to many legged systems

as a template [14]. Figure 3.3 depicts the dynamical model of the F-SLIP template

model with one-dimensional vertical motion.

Figure 3.3: Illustration of the hopper with one-dimensional vertical motion

Detailed solutions of differential equations used in apex-to-apex simulations are given

in Appendix A. The MATLAB script for one-step calculation is built according to

those steps and parameters.
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3.3.2 Stochastic Analysis

In this section, the behavior of the one-dimensional hopper is examined in case there

is a disturbance at the impact velocity. This stochastic analysis will lead to deductions

on the applicability of the proposed method and gives a layout to study the effects of

internal parameters on the system’s stability under noise.

Running the system for each initial condition in the state space when no noise is

involved in the calculation, one can build the deterministic return map for the system.

Return map for the one-dimensional hopper is depicted in Figure 3.4 together with

the line with unity slope. The intersection of these two curves gives the fixed point

location. A fixed point is a point from which the hopper starts its motion and arrives

at the same point at the next step. From this Figure, the fixed point for the system can

be found as h = 0.6146m. Also, the slope of the deterministic return map shows that

the system is stable.

Figure 3.4: Return map and fixed point for a one leg hopper without external distur-

bance. hk is defined as the apex height at time step k where hk+1 represents the apex

height at the next step (Fixed point ≈ 0.6146 m)

Impact disturbance is assumed to be an additive noise drawn from the zero-mean

Gaussian distribution with a variance of 0.05. This noise is added to the velocity value

at the impact so that the noise value also goes through nonlinear transformations.

That is why augmented state representation was required during the formulation of

estimation. In order to conduct systematic experiments to build output distributions,

noise values are sliced as in Figure 3.5.
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Figure 3.5: Noise values with their probabilities. Slices are drawn wider for visual-

ization purposes.

For the stochastic analysis, the first step is representing the system as an absorbing

Markov chain. Since this system has a one-dimensional state representation, deter-

mining the Markov states is pretty straightforward. States of the Markov chain are

obtained by discretizing the state space, in this case, only the height values, using

equally spaced 220 slices between 0.4 and 1.5 m and defining an absorbing state

to represent the height values below 0.4 and higher than 1.5, this slicing is roughly

illustrated in Figure 3.6.

Figure 3.6: (on the left) Discretization of states for one dimensional hopper. The apex

height of the top of of the leg is discretized into a finite set of slices. (on the right)

An example passage time observation. Passage time is observed as 7, that means the

robot leaves the predetermined region at the 7th step.
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During systematic experiments, all possible noise values are added to the system for

all states of the Markov chain, and the results are weighted by their probabilities. A

state transition matrix is calculated by the weighted sum of the state-to-state tran-

sition occurrences. Of course, it is impossible to span the entire one-dimensional

noise space; however, as the points are getting further from the noise mean, proba-

bilities, i.e., weights, are getting too small and do not significantly affect the result.

Therefore, one can truncate the noise probability distribution after including enough

range of values. On the other hand, it is crucial to span a range wide enough with

thin enough slices to maximize the accuracy and smoothness of the output distribu-

tion. The methodology for systematic experiments is referred to as the "Exhaustive

Method” throughout this chapter.

Figure 3.7: Return distribution for a one dimensional hopper with a impact distur-

bance with variance of 0.05 and zero mean. Rows of this matrix represent the tran-

sition probabilities from hk to hk+1 and correspond to vertical lines on this surface

plot.

Subsequently, under stochastic disturbance, the return map in Figure 3.4 is replaced

by the probabilistic description of the transitions, as illustrated in Figure 3.7. This
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figure is the surface plot of the 220 × 220 state transition matrix and represents the

stochastic return map simultaneously. Some example rows of the state transition ma-

trix in Figure 3.7 is depicted Figure 3.8. The vertical axis represents the probabilities

of reaching the states on the horizontal axis. More clearly, the third subplot, for ex-

ample, represents the probability distribution of the next jumping height when the

current height is 0.8475m, and it is the 90th row of the state transition matrix.

The largest eigenvalue of this state transition matrix is equal to 1, and the associated

eigenvector is the first unit vector. That result is expected due to the nature of ab-

sorbing Markov chains and shows that the one-dimensional leg will escape from the

predefined range sooner or later. The other eigenvectors associated with the other

eigenvalues sum up to zero. The second-largest eigenvalue of this state transition

matrix is equal to λ2 = 0.991707153083467, which yields a system-wide mean first

passage time of 120.58 steps, according to (3.26).

Figure 3.8: Return distribution for a one dimensional hopper with a impact distur-

bance with variance of 0.05 and zero mean, if the initial condition is the states on the

subplot titles.
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The red contour depicted in Figure 3.9 represents the metastable neighborhood of

state-to-state transitions. Suppose the robot starts from some arbitrary initial condi-

tion and has not fallen after several steps. In that case, this contour map represents

the joint probabilities of transitioning to the hk+1 while starting from state hk. The

contour lines drawn on Figure 3.9 are the contour plot of the metastable neighbor-

hood. This metastable neighborhood represents that if the robot starts to jump from a

random height, its height at the next apexes will most likely be around the fixed point

unless it fails. In order to calculate the metastable neighborhood, first the metastable

distribution should be defined. Metastable distribution is the stationary distribution

of the Markov states unless the robot is not in the absorbing state and calculated by

the replacing the first element of eigenvector associated with the second largest mag-

nitude eigenvalue with zero and normalizing it. Then the metastable neighborhood,

i.e. joint probability, can be calculated by multiplying the state transition matrix with

the metastable distribution.

Figure 3.9: (on the left) Same return map as in Figure 3.7 with additions of metastable

neighborhood contour, deterministic return map and unity slope, (on the right) The

metastable neighborhood of state-to-state transitions.

There is much valuable information to be extracted from this state transition matrix

representing a stochastic return map. Further deductions will be stated in Section

3.3.2.2. Due to its importance, the goal is to estimate this state transition matrix
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accurately. This thesis covers three main approaches to estimating the state transi-

tion matrix. First of all, one can calculate the state transition matrix by running the

aforementioned systematic experiments covering a wide range of noise values. This

method can be interchangeably addressed as Monte Carlo simulations when the slic-

ing of noise values is infeasible, so the initial conditions are randomly sampled in

space. Monte Carlo simulation results are expected to be very close to systematic

experiments if enough number of experiments are conducted. Secondly, one can use

a linearized version of the system to calculate the mean and variance of the output

distribution. This linearization can be conducted either, if available, using the ana-

lytically linearized version of the system or numerically calculated linearized system

matrices (Jacobians) at respective points. This methodology is formulated in Section

3.1.2.1. Estimation results via linearization will be addressed in Section 3.3.2.1. Fi-

nally, another alternative is proposed based on the unscented transformation method,

whose results will also be presented in Section 3.3.2.1. The third approach is pro-

posed to handle nonlinear systems more efficiently without losing the information

sourced from nonlinearity. This thesis hypothesized that using either linearization or

unscented transformation will yield a satisfactory estimation of the output distribution

depending on the system’s nature. However, for the cases where nonlinear behavior

is dominant, the estimation method based on unscented transformation is expected

to outperform the linearization-based methods because unscented transformation is

supposed to handle nonlinearities and takes the actual system dynamics into account

for calculations.

3.3.2.1 Estimation with Linearization and Proposed Method

In this section, following the modified formulation in (3.8) in Section 3.1.2.1, state

transition matrix is produced. In the numerical linearization step, the effect of noise

values w to system output is calculated by the same method used in Section 2.5. This

numerical Jacobian calculation method uses variable step-size for the perturbations to

calculate the elements of the linearized matrix. Therefore, the linearization becomes

much more accurate than a predefined step-size case because the most appropriate

step size is used for the linearization radius. In the end, fwk = ∂f
∂wk

expression relates

the infinitesimal changes in apex state to infinitesimal changes in noise.
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Rows of the state transition matrix are calculated by the mean and variance values

from (3.8). The resulting estimated state transition matrix is depicted in Figure 3.10.

Due to its near-linear nature, output estimation for the one-dimensional leg is quite

accurate with the numerical linearization of the system.

Following the proposed methodology in Section 3.2.2, for each state of the Markov

Chain mean and variance of the output distribution is estimated. Note that each

Markov state is actually a range of height values. For the estimations, the mid point

of those ranges is picked and passed through the estimator. If the slices are thin

enough, this sampling will not affect the result. Figure 3.10 shows the estimated state

transition matrix.

Figure 3.10: Resulting transition matrix from Numerical Linearization (on the left)

and from proposed method based on unscented transform (on the right).

3.3.2.2 Comparison and Results

In this section, different estimation methods are compared and followed by the deduc-

tions from the state transition matrix properties. As stated before, there are mainly

three different methods dealt with in this thesis. The systematic experiments (or

Monte Carlo simulations), estimation based on linearization, and the proposed es-

timation method based on unscented transformation. Clearly, Figures 3.7, 3.10 are
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almost indistinguishable. That means that the estimation methods have done quite a

satisfactory job approximating the output distributions. Figure 3.11 shows some sam-

ple output distributions to visualize the rows of estimated state transition matrices.

Figure 3.11: Comparison of output probability distributions for some selected

Markov states

To assess the performance of the estimation methods, properties of the estimated

output distributions and the results of systematic experiments should be compared.

Figures 3.12 and 3.13 show the comparison of the estimated mean and variances

and their difference from the proposed method for better visibility. As seen from all

three Figures 3.11, 3.12 and 3.13, mean and variances are very close to each other.

Estimation results by the Monte Carlo experiments are not smooth. However, they

are expected to get smoother and be identical to the results of systematic experiments
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as the number of random trials increases.

Figure 3.12: Comparison of mean of Output PDF’s and their absolute difference with

the results of the proposed method for better visibility

Figure 3.13: Comparison of variances of Output PDF’s and their absolute difference

with the results of the proposed method for better visibility

That similarity mainly comes from the quasi-linear nature of the simulated one-

dimensional hopper. The linearization-based method is expected to work as well

as the proposed method, which deals with nonlinearities. The results are also ex-

pected to be close enough to the systematic experiment method, which has no further

assumptions on the system and represents the true output distribution.

For a deeper comparison, one can examine the other properties extracted from the
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state transition matrices. Eigenvalues, for example, contain essential information

about the Markov chain and subsequently the metastable system itself. From the

second largest magnitude eigenvalue, system-wide mean first passage time is calcu-

lated to use as an indicator for stochastic stability. Figure 3.14 shows the first four

eigenvalues of the state transition matrices for impact velocity noise variance of 0.05

for comparison, which are also listed in Table 3.1. The methods based on unscented

transformation and linearization give almost the same result and slightly deviated

results from Monte Carlo and systematic experiments. The linearization-based esti-

mation method is observed to give almost identical results to the proposed method.

Figure 3.14: Visualization of first 4 eigenvalues of the state transition matrices for

impact velocity noise variance of 0.05.

Additionally, the eigenvectors corresponding to the second largest magnitude eigen-

values of the state transition matrices obtained by different methods are also very

close to each other, as depicted in Figure 3.15. The second eigenvector actually re-

lates the state transition matrix with the system’s metastable distribution. If the first

element of the vector is replaced by zero and normalized, the metastable distribution

is obtained. Through this definition, it can be concluded that starting from an initial
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Table 3.1: Comparison of different transition matrix estimation methods

Method # of experiment λ1 λ2 λ3 λ4

Systematic Experiments 6.6 · 106 1.0000 0.9917 0.8602 0.7328

Monte Carlo 3.3 · 105 1.0000 0.9916 0.8595 0.7343

Unscented Transform 6.6 · 102 1.0000 0.9877 0.8534 0.7252

Linearization 4.4 · 102 1.0000 0.9877 0.8534 0.7252

condition, the robot will likely move around 0.5m − 0.8m unless it falls.

Figure 3.15: Comparison of 2nd eigenvectors of state transition matrices for impact

velocity noise variance of 0.05.

In the end, it is important to mention properties to extract from the state transition

matrix to emphasize the contribution behind a better and faster estimation of it. State-

dependent mean first passage time curves are one of the properties to discuss. The S

state dependent MFPT vector m collects the expected passage time from the state si

to the absorbing state s1. This vector is computed as in (3.27).

m =

 0

(I − T̄)−11

 (3.27)

where T̄ is the state transition matrix without its first row and first column, I is the
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identity and 1 is a vector with all elements equal to 1.

State-dependent MFPT curve is plotted in Figure 3.16, using the state transition ma-

trix estimated by the proposed method. Each initial condition has a particular state-

dependent MFPT m(si) and m(si) quantifies the relative stability for each point. Dif-

ferent from the rimless wheel (RW) in [64], for this system, state-dependent MFPT

curve is far from flat. Therefore, the objective system can be inferred as highly sensi-

tive to initial conditions. In addition, the same conclusion can be reached by investi-

gating the eigenvalues: λ1 = 1, λ2 = 0.9917, λ3 = 0.8602, λ4 = 0.7328. The value of

λ3 means that almost 14% of the contribution to the probability function at the initial

condition is lost ("forgotten") with each successive step. Again, this was not the case

for the rimless wheel in [64]. RW system has its third eigenvector near 0.5 and for-

gets 50% of the initial condition. As a result, within a few steps, initial conditions for

any wheel beginning in the range of analysis have therefore predominantly evolved

into the metastable output distribution unless it fails. Analogously, the motion of the

one-dimensional hopper will converge to its metastable distribution after more steps

but eventually it will.

Figure 3.16: State dependent MFPTs, quantifies the relative stability of each point in

state space, for impact velocity noise variance of 0.05.

After the assessment of the estimation performance, proposed estimation method is

utilized to examine stochastic behavior of the system under different levels of noises.

Figure 3.17 shows the output distribution of fixed point state for each of several values
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of impact velocity noise variance. One can calculate the mean first passage time

(MFPT) value from this estimated output distributions.

The comparison of the MFPT values based on noise variance helps the examination

of the system behavior. Figure 3.18 shows the mean first passage time values with

respect to different noise variances. The blue curve is drawn for this particular system

with the specified controller and system parameters. One can conclude more about

the affect of the different parameters in the system to the overall stochastic behavior

through this analysis. If the stiffness value is changed to 3000, the MFPT values

becomes as in the red curve meaning that the system become more resilient to the

impact noise. However, increasing stiffness value does not always mean an increase

in robustness, as can be deduced from the location of the yellow curve.

Figure 3.17: PDF of known noise and resulting output distribution of fixed point

state, for each of several values of impact velocity noise variance. Each distribution

is estimated by running the system using sigma points, i.e. unscented transformation.

States are the 220 slices between 0.4m and 1.5m
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Figure 3.18: MFPT for the one leg hopper as a function of noise variation, σ2, ob-

tained by proposed method
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3.4 Extension to High-Dimensional Systems: Dimensionality Reduction

The main problem in extending this stochastic analysis to multidimensional systems

stems from the requirement of meshing of multidimensional state spaces. In Saglam’s

studies [69], meshing the hybrid zero dynamics (HZD) surface is presented as an al-

ternative to finding and meshing the reachable state space for a bipedal walker op-

erated by an HZD controller. In this way, a switching mechanism between multiple

HZD controllers becomes possible to increase stability. Despite the effort to decrease

the complexity of the meshing process, the issue still exists and grows with the in-

creasing degree of freedom and the variety of noise sources.

Linearization is a candidate method to decrease system order to identify and control

systems. Numerical Jacobian calculations with variable step size can be conducted

exactly in Section 2.5 [54], or other methods such as analytical linearization, for-

ward and center difference approximations can be used, noting that the linearization

method will influence the result. After linearization, by investigating the eigenvector

associated with the largest magnitude eigenvalue, the state can be identified such that

the system is the most sensitive against a change in that state. Eigenvalues of the

system give a picture of stability around the chosen operating point.

The selected state can be used as the indicator state for the stability conditions in the

stochastic stability analysis. Nevertheless, calculating the linearized system matrix

with variable step size gets more difficult as the dimension increases. Choosing a

fixed step size to tackle complexity diminishes the accuracy of the calculation.

Alternatively, this analysis for the most vulnerable state can also be done with stochas-

tic tools. For dimension reduction, there are many methods such as Principal Compo-

nent Analysis (PCA), Heatmaps, t-SNE plots, and Multidimensional Scaling (MDS).

Although all the methods aim to reduce the dimensionality of the dataset, their objec-

tive is different. Each technique has its own trade-off while mapping high-dimensional

data into low dimensions and preserving the information. PCA identifies linear com-

binations of variables that provide maximum variability within a data set. i.e., PCA

aims to maximize the variance in the data.

This study features PCA to reduce the objective dimensions to assess the legged sys-
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tem’s stochastic stability. PCA is used as a preprocessing technique to reduce dimen-

sionality. It aims to increase interpretability while minimizing information loss [89]

and allows to use of previously collected data rather than conducting experiments for

numerical simulation. A PCA plot converts the correlations among all cells into a

2D graph and allows to comment on the features in the dataset. The mathematical

details of the method are not in the scope, so they are not covered in this thesis. More

detailed information can be referred from [89].

In order to explain the basic principles of the PCA, this toy example is inserted. As-

sume that there is a dataset containing mice and their selected genes, as in Table 3.2.

Mouse A Mouse B Mouse C Mouse D Mouse E Mouse F

Gene 1 10 11 8 3 2 1

Gene 2 6 4 5 3 2.8 1

Gene 3 12 9 10 2.5 1.3 2

Gene 4 5 7 6 2 4 7

Table 3.2: Mouse - Genes Dataset

If the raw data from the table is plotted as in Figure 3.19, one may not see the relations

to classify the mice according to the genes that they have. PCA can be conducted to

reduce the dimensionality of the gene data.

Figure 3.19: Data from the table and PCA plots of the dataset
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Scree plot, in Figure 3.19, states how much variation each principal component (PC)

captures from the data. The first principal component (PC1) obviously has the largest

eigenvalue. That is why PC1 can be considered enough to describe the data. Since v1

and v3 has the largest projections over the PC1 axis, one can distinguish the mouses

using only those two genes. This approach is generalized to select "the most important

state" in a multi-dimensional legged system.

The most critical limitation of PCA is its reliance on linear models and sensitivity

towards outliers. Because PCA is a linear projection, it assumes a linear relationship

between features and cannot capture the nonlinear dependencies. Its goal is to find

the directions (i.e., principal components) that maximize the variance in a dataset.

In this thesis, the system’s input-output relation is assumed to be known. While hav-

ing the system that generates the dataset, analyzing the dynamics based on just the

data might seem controversial. However, this model reduction method can be gener-

alized for a model reduction on experimental legged setups when this methodological

study goes forward with the actual implementation.
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3.5 Stochastic Analysis of Bipedal Walking

This section presents the higher dimensional system example featuring an existing

bipedal locomotion structure. Analysis of this more complex system strengthens the

argument of this thesis by showing the applicability of proposed method. The stochas-

tic analysis is again conducted by following the methodology proposed in Section

3.2. The model dynamics are explained briefly and the model is reduced to extend

the methodology to this higher dimensional hybrid rhythmic dynamical system. The

comparison of different methods and the implications of stochastic analysis are also

presented in following sections.

3.5.1 Model and Dynamics

Proposed method is demonstrated on a 5-link bipedal locomotion model, the RABBIT

[90]. This simulation testbed has a controller design based on optimization of the

hybrid zero dynamics (HZD) following the same steps in [91, Chapter 6.6.2.1]. The

details about the HZD controller implementation is not in the scope of this thesis and

treated like a black-box during the analysis. Briefly, as in the implementation in [91],

the system dynamics are defined as

ẋ = f (x) + g(x)u (3.28)

where ten dimensional state x := [qT q̇T ]T collects the configuration variables q :=

[q1 q2 q3 q4 q5]T , as shown in Figure 3.20, along with their velocities and system

dynamics are represented by f and g.

HZD ensures that relative angles h0(q) track desired trajectory hd(q). Definition of

tracking error (y) is

y = h(q) := h0(q) − hd(q). (3.29)

Control input applied by the HZD controller takes the following form

u = (LgL f h)−1(−L2
f h + 3) (3.30)

whereLgL f h andL2
f h represents Lie derivatives of tracking error with respect to sys-

tem dynamics f and g in (3.28). The control input is saturated in the implementation

to make the simulation studies more realistic.
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Figure 3.20: Illustration of 5-link bipedal robot

Study in [91] proves that, with a basic PD controller, the solution of the closed-loop

system converges to an exponentially stable periodic orbit of the hybrid zero dynam-

ics. Therefore, it is preferred to utilize a PD controller in (3.31) for 3 to force h in

(3.29) to zero.

3 = KDL f h + KPh (3.31)

Table 3.3 shows different parameter choices for diagonal entries of KP and KD pairs

to analyze the closed-loop behavior later with the proposed method.

Table 3.3: Different controller parameter pairs, values of the table represents the di-

agonal entries of KP and KD values

KP KD

C1 [60 90 90 50] [10 20 20 10]

C2 [5 5 5 5] [5 5 5 5]

C3 [40 40 40 40] 0

C4 [40 40 40 40] [1 1 1 1]

C5 [10 89 83 50] [5.4 21 21 9]

The first step towards the stochastic analysis of bipedal locomotion is building the

reachable state space. Reachable state space should be built by Monte Carlo sampling

or meshing the space by predefined ranges [66]. In the case of a 5-link bipedal robot,
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each Markov state si can be chosen as a 10 × 1 vector, containing each link’s angular

positions and velocities. Nevertheless, it is too complicated to specify the Markov

states and build the state transition matrix either by applying Monte Carlo sampling

to 10D space or meshing a 10D space. The underactuated 5-link bipedal testbed needs

a different approach for stochastic analysis.

The system’s controller follows a trajectory such that the unactuated link shows the

desired behavior, i.e., actuated degree of freedoms indirectly control the body angle.

As shown in Figure 3.20, the position and velocity of stance and swing legs of the

walker are defined relative to the body of the system. This coordinate configuration

strengthens the idea that high bandwidth actuated joints are expected to be around

their desired trajectory as long as the unactuated joint is close to its desired evolution.

That is why observing body angle provides strong information about other joints’

evolution and stability. Furthermore, for the reachable state space construction, the

underactuated body angle si = qi
5 and body angular velocity si = qi

10 are suitable can-

didates to focus, search the vicinity of the fixed point and define the reachable limits

assuming noises for all five states representing velocities. Nevertheless, this model

reduction should be justified quantitatively. The next section explains the model re-

duction process for this 5-link bipedal system.

3.5.2 Model Reduction

The way to chose the objective state should be justified. Although the body angle can

be concluded as the indicator of stability by the intuition resulting from the comments

on underactuated nature. A candidate approach is the analysis by linearization as

stated in Section 3.4. The linearized system matrix is extracted by numerical Jacobian

calculation [54] while the bipedal system is tuned with the controller parameter set
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C1 on Table 3.3. Resulting linearized system matrix becomes as follows:

J =



−0.0155 −0.2900 −0.0054 −0.1065 −0.2273 0.0008 0.0011 0.0002 −0.0001 −0.0005

0.0559 0.0968 −0.0015 0.0561 0.0920 0.0044 −0.0004 −0.0003 0.0001 −0.0009

0.0239 0.0631 0.0169 0.1088 0.1008 0.0035 −0.0046 0.0029 0.0005 −0.0008

0.0128 −0.3144 −0.0217 −0.1639 −0.3134 −0.0021 0.0001 0.0088 −0.0001 −0.0021

−0.0253 0.1104 −0.0012 0.0039 0.0647 −0.0035 0.0012 −0.0014 −0.0002 0.0010

0.5528 5.0936 0.1411 2.3864 5.2884 0.0853 −0.0401 0.0461 0.0038 0.1568

−0.2237 0.8440 −0.0446 0.1693 0.5534 0.0633 0.0021 0.0411 −0.0002 0.1097

0.0074 1.5831 −0.1939 0.0218 0.9167 0.1223 0.0287 0.0444 −0.0023 0.1731

−0.2970 2.1255 −0.3576 1.3694 2.4911 −0.1077 −0.0005 −0.1599 0.0001 −0.1273

−1.1268 −3.5229 −0.3458 −1.2075 −3.6862 0.4914 0.0185 0.2414 0.0006 0.5523



(3.32)

If the linearized system matrix is extracted with a different set of PD coefficients on

Table 3.3, λ1 and ν1 results remains approximately the same. The eigenvalues of the

linearized system matrix (D) is calculated.

D =



0.7476

0.0535

−0.0363 + 0.0567i

−0.0363 − 0.0567i

−0.0337 + 0.0299i

−0.0337 − 0.0299i

0.0223

−0.0000

−0.0000

0.0000



−→ λ1 = 0.7476 ν1 =



−3.54e − 08

−6.37e − 08

−1.32e − 07

−2.9e − 08

9.12e − 08

−0.2186

−0.1646

−0.2652

0.2404

−0.8928



(3.33)

The eigenvector (ν1) associated with the largest eigenvalue (λ1) indicates that the

system is the most sensitive against the change in the 10th state.

The second approach is using Principal Component Analysis. The first step of this

analysis is to generate a dataset that contains the state values at the beginning of each

gait, just before the impact. Controller set is the same as in previous analysis: C1 on

Table 3.3. The bipedal walker is run for 100 steps, and a 10 × 100 dataset is gener-

ated. Next, using the built-in function for PCA in MATLAB, the dataset is visualized.

Figure 3.21 demonstrates the PCA biplot, scree plot, and score plot for the dataset.

From the scree plot, it can be concluded that the first principle component (PC1) can

be concluded as enough to describe the data. Investigating states’ projections onto

principal components, one can see that the 10th state has the largest projection on
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the first principal component, meaning that one can roughly characterize the motion

using the 10th state.

Figure 3.21: Principal Component Analysis for the 5-link bipedal system

While on the subject, it is no surprise that both linearization and PCA give the same

result about the 10th state because they both rely on the linearity assumption for the

state relations. And they both produced results that are compliant with our intuition

in the previous section.
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3.5.3 Stochastic Analysis

In this section, stochastic behavior of 5-link bipedal walker’s torso is examined. This

stochastic analysis will confirm the estimation capability of the proposed method on

multi-dimensional rhythmic hybrid dynamical systems.

In absence of noise, deterministic return map for the angular velocity of torso be-

comes as in Figure 3.22. As clearly seen from the Figure, body angle has a nonlinear

behavior in some interval ([−1.12,−0.98]rad/s) and linear elsewhere.

Figure 3.22: Return map and fixed point for the angular velocity q̇5 of 5-link bipedal

system’s torso without external disturbance, (Fixed point ≈ -0.8486 rad/s)

During stochastic analysis, disturbance is applied to all states representing velocities

(q̇ := [q̇1 q̇2 q̇3 q̇4 q̇5]T ) at the impact and drawn from a zero mean Gaussian dis-

tribution with a variance of 0.001. Conducting systematic experiments is in this case

not feasible because it is not trivial to mesh and sample a hypercube in 5 dimensions

just to slice noise values. That’s why, state transition matrix is calculated by ran-

dom experiments. Calculated state transition matrix can be visualized in Figure 3.23

together with its deterministic return map.
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Figure 3.23: Return distribution for one dimensional hopper with an impact dis-

turbance with variance 0.001 and zero mean. Colorful surface plot represents the

115 × 115 state transition matrix of body angular velocity for a zero mean Gaussian

noise with variance of 10−3 on each derivative state (q̇).The black line represents the

deterministic return map of body angle. Controller is C1 on Table 3.3.

Building a state transition matrix with Monte Carlo experiments requires a repetitive

calculation of many experiments (For Figure 3.25, it is 104 for one Markov state,

1.15 × 106 in total.) for the mid-point of each state of the Markov chain as the initial

condition of body angular velocity. Suppose the Monte Carlo sampling method is

chosen to build matrices. In that case, due to its random nature, no two matrices will

be the same, and increasing the number of trials per Markov state, for example, from

104 to 106 leads to a lower variance among the produced matrices. In other words,

Monte Carlo simulations result in different matrices for each experiment set, requiring

significant computational power and time. In a different approach, if the systematic

experiments are conducted for each Markov state-noise value pair to get a result with

lower variance, the objective system should be run for ν10 times, where ν is the size

of the set of noise values. Apparently, both systematic and Monte Carlo experiments

are infeasible for high-dimensional cases, as also clearly stated in [66].
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The proposed method includes additional information to the experimental procedure

to choose initial conditions to estimate each output state distribution. It requires 41

experiments for each Markov state in a 5-link bipedal walking case. Figure 3.24

depicts the constructed state transition matrix for body angle together with a deter-

ministic return map. The output distribution of body angle is represented if all the

states are subject to noise with known characteristics.

The goal is to estimate this stochastic return map with fewer experiments to reach ba-

sic conclusions on stochastic stability easier. At first, the linearization-based method

and then the proposed methodology is employed. After implementation, the results

from the estimated matrices and the comparison of different estimation methods are

presented in the following sections.

3.5.3.1 Estimation with Linearization and Proposed Method

This thesis proposes a novel methodology for estimating the output distributions for

hybrid multi-dimensional nonlinear systems. After choosing the Markov chain states

as the body angular velocity by model reduction, the next step is to estimate the output

distributions for each Markov state and build the state transition matrices.

As an alternative, estimation of the state transition matrix by linearizing the system

around each Markov state is formulated in Section 3.1.2.1. Applying for the bipedal

simulation, the state transition matrix for the body angular velocity state is visualized

in Figure 3.24. As a result, linearizing the system allows us to build a state transition

matrix with fewer experiments but seems only to work for quasi-linear parts. Around

the nonlinear region, this method does not seem to capture output variances correctly.

This difference stands obviously in Figure 3.26. Evidently, the methodology based

on linearization of the system fails for the highly nonlinear return maps. In order to

improve the estimation, the proposed methodology in Section 3.2 is followed. Fig-

ure 3.24 also shows the results of the proposed method, the stochastic return map,

i.e., state transition matrix for the body angular velocity state, which is chosen by

principal component analysis in the model reduction step.
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Figure 3.24: State Transition Matrix for body angular velocity (stochastic return map)

estimated based on linearization (on the left) and proposed method (on the right).

Colorful surface plot represents the 115 × 115 state transition matrix of body angular

velocity for a zero mean Gaussian noise with variance of 10−3 on each derivative state.

Controller is C1 on Table 3.3

Figure 3.25: Comparison of experimental results and estimation with unscented trans-

formation. Each subplot represents the output distribution of states of the 5-link

bipedal robot under disturbance. Histogram of experimental results is a product of

104 experiments and the proposed method run 41 simulations for estimation.

The experimental observation supports the claim that under Gaussian noise, output
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distributions’ shapes approach Gaussian shape, shown as histograms in Figure 3.25.

Also, the proposed estimation is capable of capturing each ten state’s variance and

mean under independent noise effects for each state. The advantage of the proposed

method stands out with this example because the previously implemented methods

are based on systematic experiments; in order to estimate all states, one must run too

many experiments to cover the effect of multiple state noises. Unscented transforma-

tion provides minimal information loss to estimate the output distributions, thanks to

its nonlinear nature (sample-and-propagate methodology).

3.5.3.2 Comparison and Results

This section deals with the comparison of different estimation methods and presents

the conclusions made from the estimated state transition matrices. Figure 3.26 shows

some selected rows of the state transition matrices obtained by three different meth-

ods. Even if the results of the Monte Carlo experiments are not smooth, since it has

no assumption over the system dynamics, the blue curve can be treated as the true

distribution for this particular figure. As can be seen, the two estimation methods

introduced in this thesis cannot be compared just by looking at those selected rows,

but they seem to represent satisfactory results.

The state transition matrix represents a stochastic return map and includes valuable

information about the system behavior. For example, Figure 3.24 shows that the

deterministic return map tends to be linear for some intervals, including the fixed

point. That means, near the fixed point, the system can be assumed as a linear system.

Under stochastic disturbance, estimation with the linearity assumption works very

well, as seen in Figure 3.27. In addition, both deterministic and stochastic return

maps indicate that the linearity assumption is not valid for a small region, so the

body’s behavior cannot be generalized as linear. The stochastic return map implicates

the same facts as the deterministic one and brings the output variance information for

different initial conditions of the body angular velocity.
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Figure 3.26: Comparison of output probability distributions i.e. selected rows of

matrices

Mean and variances of estimated PDFs are plotted in Figure 3.27 in order to assess the

estimation performance. Around the region where the nonlinear behavior is dominant

([−1.12,−0.95]rad/s), the proposed method with unscented transformation works

better than the linearization-based method as expected. In the linear region, both

methods have a satisfactory performance; however, the linearization-based method

works better. This may caused from the asymmetrical shape of the output distribution,

which can be observed in Figure 3.25. The estimation can be improved by tuning the

weights in the unscented transformation up to some level. After all, the aim is to find

an approach with fewer assumptions and generalizable for highly nonlinear systems.

Therefore, the unscented transformation is adopted for further investigation of the

stochastic behavior of the bipedal system.
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Figure 3.27: Comparison of mean and variances of Output PDF’s

After evaluating the success of estimation methods, the deductions on the stochas-

tic properties of the system are made by the estimated state transition matrices by

the proposed method. As stated before, the eigenvector associated with the second

largest magnitude eigenvalue is used to calculate metastable distribution. Metastable

distribution in Figure 3.28 states that if the body angular velocity starts from a random

point, it will more likely be around [−0.9,−0.8]rad/s unless it fails.
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Figure 3.28: Second eigenvector and metastable distribution for the bipedal system

for noise variance of 10−3

The state dependent MFPT vector in Figure 3.29 also shows the initial conditions such

that the system is more likely to maintain its locomotion under noise. The curves in

Figures 3.28 and 3.29 imply the same possibilities.

Figure 3.29: State dependent MFPTs for the bipedal system for noise variance of 10−3

A metastable neighborhood map focuses on relating the probabilities of successive
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steps. Figure 3.30 shows the metastable neighborhood of the body angular veloc-

ity for the objective bipedal system. This neighborhood is actually the stochastic

counterpart of the fixed point of the deterministic return map. The metastable neigh-

borhood indicates the joint probability of the two successive body angular velocity

value measured just before the impact.

Figure 3.30: Metastable neighborhood of state transitions for the bipedal system

In addition, the system’s sensitivity to initial conditions can also be inferred by inves-

tigating the eigenvalues of the state transition matrix of the absorbing Markov chain:

λ1 = 1, λ2 = 0.9775, λ3 = 0.3552, λ4 = 0.2918. The value of λ3 means that nearly

65% of the contribution to the probability function at the initial condition is lost with

each successive step. As noise variance increases, λ3 decreases, which means the

system tends to forget its initial condition more and converges to its metastable dis-

tribution in a few steps, faster than the one-dimensional hopper.

The feasibility of building this matrix with unscented transformation allows us to as-

sess the different controllers and analyze the system’s stability under different noise

levels. Each ten states of the 5-link bipedal are subject to noise with the same vari-

ance. Figure 3.31 shows the dependence of system-wide MFPT in (3.26) on noise
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standard deviation for different controller parameters in Table 3.3. The MFPT values

over 1014 are not reliable due to MATLAB’s numerical limits. From the figure, it

can be deduced that the first controller C1 is more stable than the other experimented

controllers. Also, it can be related that the proportional controller C5 shows the least

stable behavior. Control input saturation prevents making this observation without

conducting the stochastic analysis.

Figure 3.31: System-wide MFPT for the bipedal walker with respect to standard de-

viation of state noises, σ, obtained by unscented transformation method

3.5.3.3 Two Dimensional Meshing and Estimation

One of the advantages of the proposed method is its generalizability to Markov states

with multiple dimensions. If two states are chosen as a result of the model reduction,

each Markov state will be tuples containing body angle q5 and body angular velocity

q̇5. After choosing the states representing the behavior of the bipedal system, the

state space for those states should be meshed. Figure 3.32 shows the region called the

basin of attraction. If the system is started inside this region, keeping all other eight

initial states as in the fixed point, the system will maintain its walking motion. This
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region is meshed by a simple grid.

Figure 3.32: Basin of attraction for the bipedal walker’s body angle (on the left) and

angular velocity and 2 dimensional meshing inside the stable region (on the right)

Figure 3.33: Basin of attraction with red marks at the Markov States (on the left) and

the samples used in Monte Carlo experiments (on the right)

Then, as Figure 3.33 depicted, the grid points and their vicinity are chosen as the

Markov states of the absorbing Markov chain. Outside of the basin of attraction

region belongs to the absorbing state in the Markov chain. In order to build the state

transition matrix, one can conduct Monte Carlo experiments that sample the initial
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conditions as in Figure 3.33.

This implementation aims to show the ability of the proposed method for the Markov

chains with multi-dimensional Markov states. As a result of the estimation, Fig-

ure 3.35 becomes very close to Figure 3.34. Then, it can be concluded that the pro-

posed method is effective even if the model reduction does not result in a single state

representing the system.
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3.6 Future Work

This thesis is aimed to be the groundwork for future studies. There are many possible

directions for stochastic analysis to drive into. Some of them are listed as future work

for this study.

3.6.1 Experimental Setup

Reproducing the simulation results with actual experimental setups is a way to prove

the strength of the proposed methodology. Comparing the mean first passage time

values calculated by the estimated matrices and real setup experiments is essential for

transferring this methodology to the physical world.

The study in [92] utilizes the mean first passage time metric as a measure of the long-

term metastability of a stochastic dynamical system to quantify the effect of haptic

feedback in a virtual paddle juggling experiment. Following a similar procedure,

replacing the human experiment with robot hopping or walking, the stability of the

systems can be estimated and compared with the actual results.

3.6.2 Controller Optimization

Output distribution estimation scheme can also be utilized in the controller parameter

tuning as an alternative to the deterministic methods. The proposed methodology can

be exploited to find the optimal controller parameters for future work. For example,

minimizing the variance of output distribution near a fixed point can be a candidate

for the optimization objective.

The initial variance was around 5.7× 10−4. After optimization, it is reduced to 4.27×

10−5 and the minimizing controller parameters are calculated as follows:

KP =

[
10.39747 89.17644 83.06905 50.86171

]
KD =

[
5.38221 21.50242 20.79997 9.11454

] (3.34)

This controller optimization study with a broader implementation with stability in-

86



Figure 3.36: Initial return map with controller parameters K p =

diag([60, 90, 90, 50]), Kd = diag([10, 20, 20, 10]) (on the left) and the return

map after optimization based on variance around fixed point (on the right)

Figure 3.37: Variance values during optimization

vestigation and comparison of different optimization methods promises a practical

optimal controller that might be used online. For example, this optimization objec-

tive is questionable because its performance results for the MFPT are worse than the

initial parameter set. Also, the search algorithm in optimization needs to be studied

deeper.
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3.6.3 Extension with Other Stochastic Tools

This study focuses on how to estimate the output distribution using the known sys-

tem dynamics and noise characteristics. In the next step, Gaussian process models

are foreseen to approximate system dynamics. Therefore, the cost of running the

system decreases significantly. In addition, calculating the metastable distribution of

a system without calculating the individual state transition probabilities allows us to

approximate the mean first passage time value much more efficiently.
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3.7 Conclusion

This chapter compiles the methodology for the stochastic analysis of legged systems.

This methodology is mainly based on the metastable nature of the legged locomotion.

Under uncertainties, Metastable-legged robots can maintain their locomotion for a

reasonable amount of time but eventually will fail. The idea of modeling the system

as an absorbing Markov chain comes from this metastability.

Stochastic return maps calculated as the state transition matrices for the absorbing

Markov chains represent the system behavior in the existence of uncertainties. It is

important to extract the information related to stochastic stability, such as metastable

distribution and mean first passage time. In this study, those properties are investi-

gated and used in commenting on the metastable behavior and controller comparison.

Inspiring from Kalman filters, two different estimation method is formulated to esti-

mate state transition matrices and compared with the existing methods. At first, the

linearization-based method is inspired by the extended Kalman filters and reformu-

lated for the non-additive noise case. This method relies on the numerically linearized

version of the system and is observed to fail for the systems with dominating nonlin-

ear behavior. This limitation is an expected tradeoff originating from the linearization

and should be eliminated by extending the methodology for the dynamical systems.

In basic terms, suppose the objective system is a simple nonlinear system with addi-

tive noise inside. In that case, the effect of noise on the resulting apex-to-apex map

is unknown because the noise input might go through a nonlinear transformation.

This fact leads to the use of methods that take the nonlinear dynamics into account.

In [92], the closed-loop system identification uses Poincaré theory and assumes the

closed-loop juggling behavior as operating near a limit cycle. So, the authors fit a

linear system model of apex-to-apex dynamics, assuming that the subject humans re-

main within a local region where the linear dynamics dominate. Therefore, an autore-

gressive Gaussian model using the apex height data can model the system. However,

this approach cannot be generalized to all hybrid rhythmic dynamical systems, which

may have some dominating nonlinear behavior and are not self-stable.

Unscented transformation provides a strong tool for estimation, requires much less
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simulation time to conduct, and leads to a low variance solution. Most importantly,

it considers the full system dynamics and brings no simplification at this step while

reducing the number of experiments. However, even if unscented transformation con-

siders the whole system dynamics, some tradeoffs exist. For example, it assumes that

the output distribution is a Gaussian. As long as the output is near symmetric, it

does not cause a huge problem in capturing the mean and variances of the output

distribution. However, symmetry is non-generalizable to every system. In addition,

another simplification step in the methodology related to the model reduction of the

5-link bipedal robot extends the stochastic stability analysis to multi-dimensional sys-

tems. The limitation comes from making dimension reduction based on methods that

adopt linearization, such as Principal Component Analysis. This model reduction

may require to be conducted with less assumption for highly nonlinear systems. In

the end, despite these limitations of the principal component analysis and unscented

transformation-based estimation, simulation results in this chapter showed that the

improved stochastic stability analysis methodology provides a much faster analysis

that is inclusive for complex legged systems.

To conclude, this thesis discusses the preeminence of the proposed method based on

unscented transformation over existing methods. Furthermore, this chapter employs

this estimation method for the stochastic stability analysis of legged systems with dif-

ferent specifications. Despite all the limitations, the proposed methodology satisfies

the requirements of the analysis. Most importantly, this study promises a wide range

of new research questions in this unexplored territory of legged locomotion.
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CHAPTER 4

CONCLUSIONS

In this thesis, two independent studies are conducted related to discrepancies in legged

locomotion. Specifically, two key aspects are investigated; adaptation and stochastic

behavior. New methodologies are introduced, such as an adaptation layer for the

adaptive control for a pronking hexapod in Chapter 2 and output distribution estima-

tion methods based on linearization and unscented transformation stochastic analysis

in Chapter 3.

In Chapter 2, the study is an incremental work to improve the tracking performance

of an existing deadbeat controller structure that is vulnerable to modeling errors. This

modeling error can also be replaced with environmental information. After perfor-

mance analysis, updating only one selected parameter is observed to help maintain

the pronking motion. In addition, stability analysis of the closed-loop system with

the adaptation layer is novel to adaptive control studies in terms of using a numerical

method to inspect stability.

The second project in Chapter 3 aims to build the groundwork for future studies in

metastable legged systems. Actually, two new methods are introduced for the output

distribution estimation. The first is the estimation based on numerical linearization of

the system dynamics inspired by the extended Kalman filter formulation. The second

one is an estimation method based on unscented transformation inspired by a different

Kalman filter considering the nonlinear nature of the system, unscented Kalman filter.

Both one-dimensional hopper and bipedal walker are analyzed with those methods

and compared with the Monte Carlo simulations adopted in the literature. Estimation

performance analysis based on mean and variance values showed that the method

based on unscented transformation is good at capturing the output distribution. Then,
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the state transition matrices are obtained using the proposed method with unscented

transformation, and in the end, some critical comments are made on the objective

rhythmic hybrid dynamical systems.

These studies together conclude the importance of handling unexpected external ef-

fects. Moreover, they introduce the methods to make robots more adaptable by basic

changes and improve the existing analysis procedures to be computationally feasible.
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APPENDIX A

DERIVATION OF THE APEX TO APEX MAP FOR ONE DIMENSIONAL

HOPPER

This section aims to collect all the calculations to build a apex-to-apex returnmap f

for the one dimensional hopper. The input output relation is as follows,

ynext = f(y0) (A.1)

For this system, touchdown states are ytd and ẏtd.

ytd = L0

ẏtd = −
√

2gy0 − 2gytd

(A.2)

To extract the apex-to-apex map of this model, we need to integrate of hybrid dynam-

ics of F-SLIP. Force input f is applied as a sine input with periode 2π
ω

and amplitude

L.

f = −Lsin(ωt)

mÿ = −mg − ky − kytd − dẏ + f

mÿ + dẏ + ky = −mg + kytd − Lsin(ωt)

(A.3)
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Definitions of standard second order systems are the damping ratio, ξ := d′

2
√

km
and

natural frequency, wn :=
√

k
m . Solving this forced vibration,

mẍ + bẋ + kx = f (t)

x(t) = xh(t) + xp(t)

xh(t) = c1x1(t) + c2x2(t)

...

xh(t) = Ce−ξωntcos(ωdt − φ)

xp(t) = Acos(ωt) + Bsin(ωt) + D

ẋp(t) = −Aωsin(ωt) + Bωcos(ωt)

ẍp(t) = −Aω2cos(ωt) − Bω2sin(ωt)

mẍp(t) + dẋp(t) + kxp(t) = −mg + kytd − Lsin(ωt)

(A.4)

Particular solution xp(t) can be found as following,

m
(
−Aω2cos(ωt) − Bω2sin(ωt)

)
+ d (−Aωsin(ωt) + Bωcos(ωt)) + ...

k (Acos(ωt) + Bsin(ωt) + D) = −mg + kytd − Lsin(ωt)

sin(ωt)

−mBω2 − dAω + kB + L︸                          ︷︷                          ︸
=0

 + cos(ωt)

−mAω2 + dBω + kA︸                    ︷︷                    ︸
=0

 + kD = −mg + kytd

− mAω2 + dBω + kA = 0

− mBω2 − dAω + kB + L = 0
k − mω2 dω 0

−dω k − mω2 0

0 0 1



A

B

D

 =


0

−L

−
mg
k + ytd

 −→


α β 0

−β α 0

0 0 1



A

B

D

 =


0

−L

−
mg
k + ytd


A =

β

α2 + β2 L =
dω

(k − mω2)2 + (dω)2 L

B =
−α

α2 + β2 L =
mω2 − k

(k − mω2)2 + (dω)2 L

D = −
mg
k

+ ytd

(A.5)
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Unknowns C and φ in homogeneous solution xh(t) can be found as following,

x(t) = Ce−ξωntcos(ωdt − φ) + Acos(ωt) + Bsin(ωt) + D

x(0) = ytd = Ccos(φ) + A + D

= Ccos(φ) + A −
mg
k

+ ytd −→ 0 = Ccos(φ) + A −
mg
k

−→ Ccos(φ) =
mg
k
− A

ẋ(t) = −Ce−ξωnt (ωnξcos(ωdt − φ) + ωd sin(ωdt − φ)) − Aωsin(ωt) + Bωcos(ωt)

ẋ(0) = −C (ωnξcos(φ) + ωd sin(φ)) + Bω

=

(
−ωnξ(

mg
k
− A) −Cωd sin(φ)

)
+ Bω

= −Cωd sin(φ) − ωnξ(
mg
k
− A) + Bω = ẏtd

Csin(φ) =
−ẏtd + Bω − ωnξ(

mg
k − A)

ωd

φ = atan2(
−ẏtd + Bω − ωnξ(

mg
k − A)

ωd
,

mg
k
− A)

C =

√
(
−ẏtd + Bω − ωnξ(

mg
k − A)

ωd
)2 + (

mg
k
− A)2

(A.6)

Bottom time tb cannot be extracted from the solution easily. So, the MATLAB built-in

function f zero() is used to find the zero crossing of the velocity function.

tb = argmin
t

ẋ(t) = f zero(ẋ(t)) (A.7)

There are 2 different cases for lift off.

y(tlo1) − ytd = 0

k(y(tlo2) − ytd) − dẏ(tlo2) = 0

tlo = min(tlo1, tlo2)

(A.8)

Solving the equation of motion for those conditions analytically is not possible. Hence,

by assuming that compression time will be approximately equal to decompression

time, the following assumption can be made;

e−ξωnt ≈ e−2ξωntb (A.9)

For tlo1;

x(tlo1) − ytd = 0 = Ce−2ξωntbcos(ωdtlo1 − φ) + Acos(ωtlo1) + Bsin(ωtlo1) −
mg
k

tlo1 = f zero(x(t) − ytd)
(A.10)
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For tlo2;

k(x(tlo2) − ytd) − dẋ(tlo2) = 0

0 = k(Ce−2ξωntbcos(ωdtlo2 − φ) + Acos(ωtlo2) + Bsin(ωtlo2) + D − ytd)...

− d
(
−Ce−2ξωntb(ωnξcos(ωdtlo2 − φ) + ωd sin(ωdtlo2 − φ)) − Aωsin(ωtlo2) + Bωcos(ωtlo2)

)
tlo2 = f zero(k(x(t) − ytd) − dẋ(t))

(A.11)

The next apex position ynext can be found as the following;

tlo = min(tlo1, tlo2)

ynext =
ẏ(tlo)2

2g)
+ y(tlo)

(A.12)

Table A.1 collects all kinematic and dynamic parameters for the one dimensional

hopper model.

Table A.1: Parameters of the One Dimensional Hopper Model

Quantity Symbol Value Unit

Body mass m 2 kg

Leg stiffness k 2000 N/m

Leg damping b 5 Nm/s

Rest leg length l 0.2 m
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