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ABSTRACT

DYNAMIC MODELING AND CONTROL OF UNDERACTUATED PLANAR
BIPEDAL WALKING

Sovukluk, Sait
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

Co-Supervisor: Prof. Dr. Uluç Saranlı

June 2022, 82 pages

This study demonstrates an adaptive model predictive control method for input con-

strained control of underactuated bipedal walking with a predefined trajectory. Our

approach aims to increase the trajectory tracking performance of the system and

produce realistic and applicable responses while letting a certain amount of posture

change around the predefined trajectory. To do so, we employ whole-body dynam-

ics in our control structure, include weights for the unactuated joint inside the cost

function, and define input torque constraints in the solution. Obeying input torque

limits decreases modeling and estimation errors, such that trajectory tracking be-

comes more robust and efficient. Additionally, we test this model-based controller

successfully against various disturbances such as high magnitude modeling errors in

its weight, significant initial condition errors, pushing and pulling the torso aggres-

sively throughout a step, high percentage input noises, and their combinations. These

disturbances are usually introduced in the torso because it is the heaviest, the longest,

and the unactuated joint. Thanks to its short-horizon requirement, the controller is

suitable for implementation in real-time and in 1kHz frequency, which is usually re-
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quired to control high-dimensional underactuated nonlinear hybrid systems.

Keywords: adaptive model predictive control, underactuated bipedal walking, bipedal

locomotion, robotic walking
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ÖZ

EKSİK TAHRİKLİ DÜZLEMSEL İKİ BACAKLI YÜRÜMENİN DİNAMİK
MODELLENMESİ VE KONTROLÜ

Sovukluk, Sait
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Ortak Tez Yöneticisi: Prof. Dr. Uluç Saranlı

Haziran 2022 , 82 sayfa

Bu çalışma eksik tahrikli düzlemsel robotik yürümenin daha önce belirlenmiş bir yö-

rünge etrafındaki giriş kısıtlı kontrülünün adaptif model öngürülü kontrol ile takip

edilmesini incelemektedir. Çalışmadaki amacımız robotik yürüme sisteminin belir-

lenen yörüngeyi takip etme performasının arttırılmasını amaçlamaktadır. Bu perfor-

mans artışı sağlanırken sistemin gerçekçi ve deneysel düzeneklerde tekrarlanabilir ha-

reketler yapmasına özen gösterilmiştir. Gerekli durumlarda belirlenen yörünge etra-

fında küçük duruş değişikliklerine izin verilerek kontrol sırasında gerekli olan sistem

girdisi miktarı azaltılmıştır. Kontrol sırasında giriş kısıtlarının göz önünde bulundu-

rulması modelleme ve kestirim hatalarının azaltılmasına olanak sağlamış ve yörünge

takibini daha verimli ve gürbüz bir hale getirmiştir. Ek olarak, bahsi geçen bu model

tabanlı kontrol gövde kütlesinin arttırılması, gövdeye dışarıdan itme ve çekme gibi

kuvvetlerin uygulanması, sistem girdilerinin hatalı ve gürültülü hale getirilmesi gibi

çeşitli belirsizlik ve hatalar karşısında başarılı bir şekilde test edilmiştir. Gövde uzu-

vunun en ağır, en uzun ve eksik tahrikli olması sebebi ile genelde modelleme hataları
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ve belirsizlikler bu uzuvda tanımlanmıştır. Kısa ufuk gereksinimi sayesinde, bahsi

geçen bu kontrolcü gerçek zamanlı olarak 1kHz frekansında uygulanmıştır.

Anahtar Kelimeler: adaptif model kestirimli kontrol, eksik tahrikli iki bacaklı yürüme,

robotik yürüme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Bipedal robotics is a subclass of legged robots. It is usually based on mimicking

human-like locomotion such as walking and running. Alongside the joy this field pro-

vides to many roboticists, the main motivations behind these robots are to replace hu-

mans in hazardous environments (as simulated in DARPA Robotics Challange, which

addresses humanoid robotics usage in natural and man-made disasters [1, 2, 3, 4, 5]),

to rehabilitate people (for example people with paraplegia [6, 7]) in an exoskeleton

form, and to develop active prosthetic leg to improve amputee gait [8, 9, 10, 11].

Unlike other robot walkers, the complexity of control of bipedal walkers with point

feet originates from their underactuated nature. The underactuation requires an indi-

rect control of unactuated joints through high-bandwidth control of actuated joints.

The actuated joints follow a specially generated trajectory such that, based on the

system dynamics, the unactuated joint performs the desired behavior. The combi-

nation of underactuation with high-dimensional nonlinear hybrid dynamics requires

special treatment for their control. Due to the high dimensionality of the system

and several gait characterization constraints, one usually needs to solve these trajec-

tory generation optimization problems offline for one step. Some of these trajectory

generation methods are Hybrid Zero Dynamics (HZD) [12], Human-Inspired Control

[13], and direct trajectory optimization [14]. Online implementation of the predefined

optimized trajectory employs a calculated restriction input with a local high-gain con-

troller.

Hybrid zero dynamics (HZD), which is the method that is employed in this study,
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is based on setting specially selected holonomic output functions to zero. Setting

the output to zero restricts the walker’s dynamics into a lower-dimensional attrac-

tive and invariant subset of its state space such that an analytically provable reliable

and dynamically-stable walking is achieved. Using the underactuated planar bipedal

walker RABBIT, it is shown that the method is successful in generating robust walk-

ing motions [15, 16]. Additionally, for the running with the compliance, compliant

hybrid zero dynamics notion is introduced in [17], such that actuator limitation prob-

lems introduced in [18] are resolved using compliant energy storage elements. Then

one degree of underactuation notion of HZD is extended for multi degree of under-

actuation, and walking and running with compliance is successfully implemented

to a robot MABEL [19, 20, 21]. The last pioneer studies related to HZD was the

extension of this method for three-dimensional (3D) walking and its realization on

humanoid robots. Related models, control approaches, and realization challenges are

described in [22, 23] in detail. Even though it has proven that 3D robot walking is re-

alizable on a small-scale humanoid robot, NAO [24, 25], since the complexity of the

full-order system dynamics is increased even more in three-dimensional walking (or

running), reducing the gap between theory and experimental realization became an

even more difficult task for full-scale humanoid robots. HZD uses entire system dy-

namics to generate walking gaits in the form of a constrained nonlinear optimization

problem. Even though the resultant solution ends up with efficient and dynamic gaits,

as the complexity increases, the difficulty of solving the problem increases along with

it. Exploiting the structure of the nonlinear optimization problem allowed rapid gait

generation and reduced optimization time from hours to a few minutes [26].

Locomotion on unknown stochastic terrains requires a combination of different gaits.

Depending on surface and stability conditions, the next foot placement point may

need the step to be longer, shorter, or suitable for different elevations. The litera-

ture employs previously calculated gait libraries with dedicated switching methods

to walk over randomly generated stepping stones [27], reject velocity disturbances

efficiently [28], walk over an uneven terrain [29] and parametrize bipedal robot loco-

motion [30]. Even though optimization problems for trajectory generation consider

various gait restrictions and torque limitations, the online implementation employed

in these studies uses a calculated restriction input with a local high-gain PD con-
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troller, which is enough to prove exponential stability in theory. Unless one tests the

trajectories against every possible source of disturbances and uncertainties, these on-

line implementation methods tend to exceed the input limitations of the actual system

due to high-gain PD and similar local controllers. Due to the complex nature of un-

deractuated bipedal locomotion, exceeding system input limitations are usually not

affordable. Exceeding torque limitations of the system causes discrepancies between

the system model and the robot, errors in estimations, and instabilities or slow con-

vergence rates. Additionally, excessive torque input usually causes a violation in the

other gait restrictions, such as friction cone.

Studies addressing the input torque limitation problem in the online implementa-

tion of walking gaits usually employ modified model-based controllers using sim-

plified or linearized dynamics. The studies in [31, 32] solve this problem employing

a modified MPC around linearized closed-loop restriction dynamics, [33] employs

Hybrid-Linear Inverted Pendulum (H-LIP) dynamics for MPC implementation, [34]

employs simplified model of the robot dynamics projected in swing foot space for

their control, [35] uses linear centroidal dynamics and [36] uses a first-order system

obtained by capture point dynamics. The problem with linear system assumptions

is that the accuracy of these models is valid only for a small region of configura-

tion variables. Additionally, even input noises of the motors affect the correctness of

linearized closed-loop restriction dynamics whose correction depends on a particu-

lar input. On unknown stochastic terrain, unavoidable sources of errors reduce the

performance of these online implementation methods.

This study proposes an adaptive MPC implementation method with input constraints

on sampled whole-body dynamics as an online trajectory tracking controller for un-

deractuated bipedal walkers. The control method isolates commonly applied feed-

back linearization inputs from trajectory tracking dynamics and reduces modeling

errors. However, the structure still allows the implementation of these feedback lin-

earization inputs before generating the cost function. Additionally, the introduced

cost function form includes weights for unactuated joints. As a result, the controller

performs considerable posture changes around the stabilizable desired orbits such

that it produces realistic and applicable responses against various disturbances while

obeying input limitations. Thanks to its short-horizon requirement, the controller can
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be implemented in real-time at 1kHz, which is crucial for high-dimensional underac-

tuated nonlinear hybrid systems. We show the controller’s ability against various ag-

gressive disturbances where local high-gain PD trajectory tracking controllers failed

to maintain stability under input torque saturation. We also show that this model-

based controller is not too sensitive against modeling errors.

1.2 The Outline of the Thesis

Chapter II includes system dynamics formulation for five-link underactuated planar

bipedal walkers. In the chapter, first, the definition of walking is discussed. Then,

taking the definition as a basis, consecutive system dynamics are derived.

Chapter III discusses the definition of zero dynamics and hybrid zero dynamics no-

tions. These methods are employed to generate periodic, stable walking gaits. In the

chapter, implementation details of these methods are discussed, along with detailed

simulation results.

Chapter IV covers an adaptive model predictive controller implementation for such

walkers. The method is used to track the previously generated walking gait in Chapter

III while constraining input and allowing some degree of posture changes.

Chapter V focuses on the adaptive power optimal control method for such walking

systems. Again, the method is used to track the previously generated walking pattern

in Chapter III. Differently, it includes the system’s power in its cost function such that

while the input torque is constrained, the input power is minimized.

Chapter VI compares controller performances that are introduced in the previous three

chapters. This chapter uses the controllers’ basin of attractions and Poincaré return

map estimations as comparison metrics.

Chapter VII discusses different aspects of the methods introduced and implemented

during the study, along with their advantages and drawbacks.

Appendix A includes the equation of motion of a planar five-link bipedal walker with

point feet termination. Contents of the inertia and Coriolis matrices and the gravity
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vector are provided.

Appendix B includes eigenvalue estimations of the linearized step-to-step dynamics

of the walker. These metrics are used to compare the local stabilities of the con-

trollers.
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CHAPTER 2

SYSTEM DYNAMICS

Walking is a combination of two consecutive events called stance and impact (2.1),

where x− and x+ represent states just before and just after the impact, respectively,

∆ represents impact dynamics, and S represents impact surface. Stance dynamics

is a nonlinear whole-body Lagrangian model that captures the state evolution of the

system while the stance leg touches the ground and the swing leg moves in the air. The

impact, ∆ : x− → x+, on the other hand, is a momentary event that happens when

the tip of the swing leg collides with the ground (2.2), causes jumps in velocities, and

triggers coordination changes, i.e., the swing leg becomes stance leg, and the stance

leg becomes swing leg. Switching surface (2.2) captures the moment when the tip of

the swing leg hits the ground ahead of the stance leg, where p2 = [ph2 ; p
v
2] represents

position of the tip of the swing leg.

Σ :

ẋ = f(x) + g(x)u x− ̸∈ S

x+ = ∆(x−) x− ∈ S
(2.1)

S := {(q, q̇) ∈ TQ | pv2(q) = 0, ph2 > 0} (2.2)

The morphology of the bipedal walker that is employed in this study includes n = 5

number of links with m = n− 1 number of actuation with point feet termination (see

Fig. 2.1). The system includes two knee and two hip joints along with two tibias, two

femurs, and one torso link (see Fig. 2.2). Because of the point feet termination, no

actuation is possible between the ground and the tip of the stance leg. As a result,

the system is underactuated, i.e., the number of actuation is less than the number of

joints. The system is represented in body coordinates that are n−1 relative angles and

an absolute angle. This representation provides the necessary information to model

7



the system configuration in space. Additionally, it is a realistic representation since

it is not convenient to obtain the absolute angle of each joint in real-life applications.

The model parameters, which are inherited from RABBIT [15], are shown in Fig. 2.2

and given in Table. 2.1.

Figure 2.1: Schematic of a 5-link bipedal walker with point feet.

2.1 Stance Dynamics

Stance dynamics of the walker is based on a pinned open kinematic chain configu-

ration. It is assumed that the stance leg is always in contact with the ground, and its

end is pivoted, i.e., there is an imaginary revolute joint between the ground and the

tip of the stance leg. For a set of generalized coordinates q = (q1; q2; q3; q4; q5) in an

n − dimensional configuration space Q, dynamic model of the system can be ob-

tained using the method of Lagrange [37, 38]. To begin with, Lagrangian (2.3) of the

system should be calculated using total kinetic energy K (2.4) and total potential en-

ergy V (2.5) of the system. In the equations, phcm,i and pvcm,i represent horizontal and

vertical coordinates of the center of mass of the ith link, Jcm,i represents moment of

inertia about the center of mass of the ith link, and θabsi represents absolute orientation

8



Figure 2.2: Model parameters of the bipedal walker.

of the ith link with respect to the inertial frame (2.6).

L(q, q̇) = K(q, q̇)− V (q) (2.3)

K =
n∑

i=1

Ki =
n∑

i=1

(
1

2
mi

(
(ṗhcm,i)

2 + (ṗvcm,i)
2
)
+

1

2
Jcm,i

(
θ̇absi

)2)
(2.4)

V =
n∑

i=1

Vi =
n∑

i=1

mig0p
v
cm,i (2.5)

θabs5 =
π

2
+ q5

θabs1 = θabs5 + q1

θabs2 = θabs5 + q2

θabs3 = θabs1 + q3

θabs4 = θabs2 + q4

(2.6)

The Lagrangian is employed in Lagrange’s equation,

d

dt

∂L
∂q̇

− ∂L
∂q

= Γ, (2.7)
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Table 2.1: Model parameters of the walker.

Model Parameter Units Label Value

Mass kg

mT 12

mf 6.8

mt 3.2

Length m

lT 0.63

lf 0.4

lt 0.4

Inertia kg ·m2

IT 1.33

If 0.47

It 0.20

Mass Center m

lcmT 0.24

lcmf 0.11

lcmt 0.24

Viscous friction Nm · s
bHip 10

bKnee 5

where Γ represents vector of generalized torques and forces, such that it results in the

second-order differential equation,

D(q)q̈ + C(q, q̇)q̇ +G(q) = Γ. (2.8)

Matrices D = D⊤ ∈ Rn×n, C ∈ Rn×n and G ∈ Rn represent mass-inertia matrix,

coriolis matrix and gravity vector, respectively. D, G and C are selected as shown in

(2.9), (2.10) and (2.11), respectively, where Ckj is the kj entry of the matrix. Analytic

representation of a similar system’s system dynamics can be found in [39, Appendix

E].

K(q, q̇) =
1

2
q̇′D(q)q̇ (2.9)

G(q) =
∂V (q)

∂q
(2.10)
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Ckj =
n∑

i=1

1

2

(
∂Dkj

∂qi
+

∂Dki

∂qj
− ∂Dij

∂qk

)
q̇i where 1 ≤ k, j ≤ n (2.11)

The sum of external generalized forces and torques Γ covers actuation, viscosity and

(if any) spring effects on the dynamics. In this study, viscosity and (if any) spring

dynamics are included into the coriolis matrix and gravity vector, respectively, such

that Γ only represents input as in (2.12), where B ∈ Rn×m represents input matrix for

m = n− 1 number of actuation.

Γ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


︸ ︷︷ ︸

B


u1

u2

u3

u4


︸ ︷︷ ︸

u

(2.12)

General state-space representation of the nonlinear system with configuration vari-

ables q ∈ Q is expressed as:

ẋ := f(x) + g(x)u (2.13)

where x(t) = (q(t); q̇(t)) ∈ T Q,

f(x) =

 q̇

D−1(q)[−C(q, q̇)q̇ −G(q) +B(q)u]


and

g(x) =

 0

D−1(q)B(q)

 .

(2.14)

2.2 Impact Dynamics

A widely used impact model for kinematic chains with multiple contact points [40]

can be implemented for the bipedal walkers with some assumptions [12]. It is as-

sumed that the impact is instantaneous and there is no rebound and slipping after the

impact. It is also assumed that the impulsive forces cause instantaneous changes in

the velocities, but it does not cause any change in positions. The impact model of
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the system requires the reaction forces at the leg ends. Thus it requires unpinned

(n + 2 −DOF ) model of the system. If the Cartesian coordinate added to the robot

is labelled as pe = (phe ; p
v
e) then the generalized coordinates of this system turns out

to be qe = (q; pe). Again, the method of Lagrange results in dynamics as shown

in (2.15), where Fext represents external impulsive forces acting between the ground

and the tip of the swing leg when the collision occurs.

De(q)q̈ + Ce(q, q̇)q̇ +Ge(q) = Bu+ δFext. (2.15)

From the conservation of momentum, change in the momentum throughout the im-

pact event, which is momentarily, is equal to the external forces (2.16) where Fext =∫ t+

t−
δFext(τ)dτ where t− and t+ represent time just before and just after the impact,

respectively.

De(q
+
e )q̇

+
e −De(q

−
e )q̇

−
e = Fext (2.16)

If the impulsive forces at the tip of the swing leg are represented as F2 = (F h
2 ;F

v
2 ),

Fext turns out to be,

Fext = E2(q
−
e )

′F2 (2.17)

where, E2(qe) =
∂

∂qe
p2(qe) and p2(qe) represents position of the tip of the swing leg

with respect to the inertial frame. The conservation of momentum equation (2.16)

contains n + 2 equations along with n + 4 unknowns which are q̇+e , F h
2 and F v

2 . The

required additional two equations comes from no slip and rebound assumption,

E2(q
−
e )q̇

+
e = 0 (2.18)

which states that velocity of the tip of the swing leg just after the impact is zero.

Combination of the equations yields toDe(q
−
e ) −E2(q

−
e )

′

E2(q
−
e ) 02×2

q̇+e
F2

 =

De(q
−
e )q̇

−
e

02×1

 . (2.19)

Since the matrix De is positive definite and E2 is full rank, left hand side of (2.19) is

invertible. If the location of the Cartesian coordinate pe added to the robot is chosen

to be the tip of the stance leg then,

De(q
−
e ) −E2(q

−
e )

′

E2(q
−
e ) 02×2

q̇+e
F2

 =

De(q
−
e )

In×n

02×n


02×n

 q̇−. (2.20)
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As a result the impact map for velocities, ∆q̇(x
−), turns out to be,

∆q̇(x
−)q̇− :=

[
R 0n×4

]q̇+e
F2



=
[
R 0n×4

]De(q
−
e ) −E2(q

−
e )

′

E2(q
−
e ) 02×2

−1

De(q
−
e )

In×n

02×n


02×n


︸ ︷︷ ︸

∆q̇(x−)

q̇−.
(2.21)

where, R is a relabelling matrix. The relabelling matrix (2.22) is used to perform

coordinate changes when the impact occurs, i.e., the swing leg becomes the stance leg

and vice versa. The resultant impact dynamics that happen when the tip of the swing

leg collides with the ground (2.2), causes jumps in velocities and triggers coordination

changes, i.e., the swing leg becomes stance leg, and the stance leg becomes the swing

leg is shown in (2.23), where ∆q represents impact map for positions. Using the

available information from just before the impact, that is x−, the impact dynamics

is used to calculate the new velocity q̇+ of the system just after the impact and to

perform the relabelling operation.

R = ∆q =



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


(2.22)

x+ = ∆(x−) =

∆qq
−

∆q̇ q̇
−

 (2.23)
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CHAPTER 3

TRAJECTORY GENERATION AND CONTROL OF BIPEDAL

LOCOMOTION USING HYBRID ZERO DYNAMICS

Zero dynamics control of a system that is modeled by ordinary differential equations

covers driving the outputs, which are equal in number to the inputs, to zero [41]. With

a proper desired trajectory selection, forcing the output to zero can be used to encode

a geometric task to the robot such that driving the output to be zero is equivalent to

achieving the desired behavior. Hybrid Zero Dynamics (HZD), on the other hand, is

an extension developed to implement zero dynamics to hybrid systems, i.e., systems

that include impact dynamics, such that the zero dynamics notion becomes compat-

ible with the complete model of the bipeds [12, 39]. This notion is used to design a

walking gait via solving a constrained parameter optimization problem, i.e., desired

trajectory generation problem, and used to follow that trajectory. Optimization is used

to select output parameters such that zeroing the output is equivalent to walking mo-

tion obeying a unique set of kinematic and dynamic constraints. This chapter includes

a summary of the HZD method implementation. A more complete mathematical de-

scription with related proofs and theorems can be found in [39, Chapter 5-6]. Addi-

tionally, this chapter includes an initial condition selection approach that we employ

for the optimization problem and a primitive controller parameter selection approach.

In the end, some simulation results are provided.

3.1 Swing Phase Zero Dynamics

The swing phase defines state evolution between two consecutive impact events, i.e.,

the stance leg is in contact with the ground, and the swing leg is moving forward in
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the air. Since there is no impact, the system model is expressed as in (2.13). For an

output function,

y = h(q) := h0(q)− hd ◦ θ(q) (3.1)

where, h0(q) represents m = n − 1 number of independent quantities that are to be

controlled and hd◦θ(q) represents desired evolution of these quantities as a function of

a scalar quantity θ(q), which is called internal clock (see Fig. 2.1). The internal clock

is a monotonic one-to-one function that slaves the desired states, and a combination

of the configuration variables constitutes it, θ(q) = cq, where c ∈ R1×n. The internal

clock selection is shown in (3.2).

θ(q) = cq =
[
−1 0 −1/2 0 −1

]


q1

q2

q3

q4

q5


(3.2)

Similarly, the controlled quantity selection is shown in (3.3), where H0 ∈ Rn−1×n.

h0(q) = H0q =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





q1

q2

q3

q4

q5


(3.3)

It is important to note that, driving (3.1) to zero, will force the controlled quantities to

track desired state evolution, i.e., h0(q) − hd ◦ θ(q) = 0. This virtual constraint will

be used to mimic walking behavior. Due to the underactuated nature of the system,

the unactuated degree of freedom, q5, will be controlled indirectly. Considering the

system dynamics, the controlled quantities should follow a trajectory such that the

unactuated quantity will perform the desired behavior. In order to zero the output, one

should observe the second derivative of the output (3.4) where acceleration terms are

replaced with the corresponding system dynamics terms. LgLfh is called decoupling

matrix and as long as the decoupling matrix is invertible, substitution of (3.5) into
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(3.4) results with ÿ = 0.

d2y

dt2
=

[
∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] q̇

D−1 [−Cq̇ −G]


︸ ︷︷ ︸

L2
fh

+
∂h

∂q
D−1B︸ ︷︷ ︸

LgLfh

u

=L2
fh(q, q̇) + LgLfh(q)u.

(3.4)

u∗(x) = −(LgLfh(x))
−1L2

fh(x) (3.5)

As a result, since ÿ = 0, for an open set Q̃ ⊂ Q such that for each q ∈ Q̃ the

decoupling matrix LgLfh(q) is invertible, the system dynamics can be restricted into

an invariant manifold, i.e., a lower dimensional surface in which if the system is

initialized on the surface, the evolution remains on the surface. The two-dimensional

embedded submanifold of TQ takes the following form:

Z = {x ∈ T Q̃ | h(x) = 0, Lfh(x) = 0}. (3.6)

The feedback control u∗ renders Z invariant under the swing phase dynamics, and for

every z ∈ Z ,

fzero(z) = f(z) + g(z)u∗(z) ∈ TzZ. (3.7)

The set Z is called the zero dynamics manifold and ż = fzero(z) is called the zero

dynamics. For a valid coordinate transformation Φ := [h; θ(q)] on Q̃,

η1 = h(q), η2 = Lfh(q, q̇),

ξ1 = θ(q), ξ2 = Lfθ(q, q̇),
(3.8)

represents coordinate transformation on T Q̃. In these coordinates, for,

q = Φ−1(η1, ξ1)

q̇ =

(
∂Φ

∂q

)−1
η2
ξ2

 (3.9)

the swing phase dynamics ẋ = f(x) + g(x)u, and the output y = h(q) takes the

following form:
η̇1 = η2, η̇2 = L2

fh+ LgLfhu,

ξ̇1 = ξ2, ξ̇2 = L2
fθ + LgLfθu,

y = η1.

(3.10)

17



For input u∗, on the zero dynamics manifold y ≡ 0, such that η1 = h = 0 and

η2 = Lfh = 0. As a result the zero dynamics becomes:

ξ̇1 = ξ2,

ξ̇2 = L2
fθ + LgLfθu

∗.
(3.11)

Equation (3.11) indicates that the zero dynamics is a second-order system. Even

though dimension of the system is reduced, this form of the equation is very difficult

to compute due to the required matrix inversions. With this motivation, Theorem 5.1

of [39] indicates that for a modified set of coordinates, on Z , the computation of the

zero dynamics is easier. The theorem states that relating zero dynamics states with θ

and generalized momentum conjugate to θ on Z , (ξ1; ξ2) = (θ(q);σn), is a valid set

of coordinates. For

H :=

H0

c

 (3.12)

the new set of coordinates are shown in (3.13) and (3.14), where qb indicates body

coordinates and θ indicates the internal clock, i.e., an absolute angle.

q̃ := Hq =

qb
θ

 (3.13)

˙̃q := Hq̇ =

q̇b
θ̇

 (3.14)

In these new set of coordinates, the potential energy, the inertia matrix and the output

function becomes as in (3.15), (3.16) and (3.17), respectively.

Ṽ (q̃) = V (q)|q=H−1q̃ (3.15)

D̃(q̃) = (H−1)′D(q)H−1|q=H−1q̃ (3.16)

y = h(q̃) := qb − hd(θ) (3.17)

In the coordinates (qb; θ; q̇b; θ̇), the zero dynamics manifold can be written as

Z :=

{
(qb; θ; q̇b; θ̇)

∣∣∣∣ qb = hd(θ), q̇b =
∂hd(θ)

∂θ
θ̇

}
. (3.18)
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For the virtual inertia

I(θ) :=

[
d̃n,n(qb) + [d̃n,1(qb), . . . , d̃n,n−1(qb)]

∂hd(θ)

∂θ

] ∣∣∣∣
qb=hd(θ)

, (3.19)

the generalized momentum conjugate to θ on Z becomes

σn = I(θ)θ̇. (3.20)

On the zero dynamics manifold, since there is no external input to the system, the rate

of change of angular momentum is directly related with potential energy,

σ̇n = −∂Ṽ

∂θ
(qb, θ)

∣∣∣∣
qb=hd(θ)

. (3.21)

Explicit representation of Ṽ is shown in (3.22), as a result, the rate of change of

angular momentum becomes as in (3.23).

Ṽ (qb, θ) = mtotg0p
v
cm(qb, θ) (3.22)

σ̇n = mtotg0p
h
cm(qb, θ)

∣∣∣∣
qb=hd(θ)

(3.23)

For (ξ1; ξ2) = (θ(q);σn), zero dynamics of the system becomes as

ξ̇1 = κ1(ξ1)ξ2

ξ̇2 = κ2(ξ1)
(3.24)

where,

κ1(ξ1) =
1

I(ξ1)

κ2(ξ1) = mtotg0p
h
cm(hd(ξ1), ξ1).

(3.25)

Lastly, using the principle of angular momentum transfer, change in the angular mo-

mentum conjugate after the each step can be calculated as

ξ+2 = ξ−2 + Lsmtotṗ
v−
cm, (3.26)

where Ls is the step length. As a consequence, after each step, the angular momentum

conjugate is scaled by δzero, such that,

ξ+2 = δzeroξ
−
2 where δzero = 1 +

Lsmtotṗ
v−
cm

ξ−2
. (3.27)
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3.2 Parameterization of hd by Bézier Polynomials

So far, while discussing the output function (3.1), the existence of a desired trajectory

is repeatedly mentioned, but there were no details about its structure. It is mentioned

that a trajectory generation optimization problem will be solved to select the param-

eters of the desired trajectory function, hd. In order to encode the desired trajectory

into hd, Bézier polynomial [42] notion is employed. Using a vector of Bézier polyno-

mials, a predefined trajectory can be calculated for each controlled quantity such that

following these trajectories ends up with the desired behavior. An one-dimensional

degree M Bézier polynomial, bi : [0, 1] → R, is defined by M + 1 coefficients, αi
k,

for i ≤ i ≤ (n− 1),

bi(s) =
M∑
k=0

αi
k

M !

k!(M − k)!
sk(1− s)M−k. (3.28)

It is important to note that s ∈ [0, 1]. In order to put the polynomial into hd ◦ θ(q)

form, it is necessary to normalize θ, since, in general, θ(q) will not take values in the

unit interval over a phase of single support. As a consequence, s can be defined as,

s(q) =
θ(q)− θ+

θ− − θ+
(3.29)

where, θ− is the value of θ at the end of the step and θ+ is the value at the beginning

of the step. Since θ(q) is one-to-one strictly monotonic function, i.e., achieves its

maximum and minimum values at the end points, (3.29) takes values in [0, 1]. As a

result, hd ◦ θ(q) takes the following form:

hd ◦ θ(q) =


b1 ◦ s(q)
b2 ◦ s(q)

...

bn−1 ◦ s(q)

 . (3.30)

Some of the useful properties of the Bézier polynomial are shown in (3.31) and (3.32).

Equation (3.31) implies that the first and the last coefficient of the polynomial rep-

resents the value of the polynomial at the endpoints, respectively. Similarly, (3.32)

implies that the rate of change of the polynomial with respect to s at the beginning and

the end is determined by the first two and last two coefficients, respectively. These

properties will be helpful while discussing the existence and periodicity of the Hybrid
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Zero Dynamics.

bi(0) = αi
0 and bi(1) = αi

M (3.31)

(∂bi(s)/∂s)|s=0 = M(αi
1 − αi

0) and (∂bi(s)/∂s)|s=1 = M(αi
M − αi

M−1) (3.32)

3.3 Hybrid Zero Dynamics

Hybrid Zero Dynamics includes the impact dynamics into the zero dynamics notion.

If the trajectory contains some impact events, the existence of the HZD is determined

by whether the system dynamics after the impact stays on the invariant surface or not,

i.e., ∆(S ∩ Z) ⊂ Z where S ∩ Z represents the intersection of the invariant surface

and the impact surface. If ∆(S ∩ Z) ⊂ Z then it is clearly possible to obtain a zero

dynamics manifold for the complete dynamics of the system.

For a periodic trajectory, achieving ∆(S ∩ Z) ⊂ Z can be done via showing h ◦
∆(S ∩ Z) = 0 and Lfh ◦∆(S ∩ Z) = 0, respectively. Since the matrix,

H :=

H0

c

 (3.33)

is full rank, it is invertible. Equations (3.34) and (3.35) are direct conclusions of

(3.31). On the invariant manifold, the system states can be related with the desired

state evolutions (3.36), (3.37).

hd(θ
+) = α0 (3.34)

hd(θ
−) = αM (3.35)

q+ = H−1

α0

θ+

 (3.36)

q− = H−1

αM

θ−

 (3.37)
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As a result, a periodic trajectory with the following constraint,α0

θ+

 = H∆qH
−1

αM

θ−

 (3.38)

would always guarantee that h ◦∆(S ∩ Z) = 0. Equation (3.38) relates the end and

the beginning of the desired state evolution according to the impact dynamics such

that if the system starts on the invariant manifold, after the impact, the controlled

configuration variables will stay on the surface.

In order to achieve Lfh ◦ ∆(S ∩ Z) = 0, a similar methodology can be employed.

Similarly, (3.40) and (3.41) are direct conclusions of (3.32) and (3.39).

q̇ = H−1

∂hd

∂θ
1

 θ̇ (3.39)

q̇+ = H−1

 M

θ− − θ+
(α1 − α0)

1

 θ̇+ (3.40)

q̇− = H−1

 M

θ− − θ+
(αM − αM−1)

1


︸ ︷︷ ︸

ω−

θ̇− (3.41)

For a periodic orbit, the end points of the desired trajectory, again, can be related via

impact dynamics,

q̇+ = ∆q̇ q̇
−. (3.42)

As a consequence,

α1 = H0∆q̇ω
− θ

− − θ+

M
(c∆q̇ω

−)−1 + α0 (3.43)

guarantees that Lfh ◦ ∆(S ∩ Z) = 0 after the impact, as long as c∆q̇ω
− ̸= 0. As

a result, for a periodic trajectory, the existence of the Hybrid Zero Dynamics can be

achieved via (3.38) and (3.43) such that when these constraints are applied during the

trajectory generation optimization, ∆(S ∩Z) ⊂ Z is achieved as long as there exists

a solution, i.e., the decoupling matrix is invertible along the trajectory and all other

stability, dynamic and kinematic constraints are satisfied.
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3.4 Stability and Periodicity Analysis

Assuming ∆(S ∩ Z) ⊂ Z holds, i.e., the existence of the hybrid zero dynamics

holds, with a proper coordinate transformation, stability, and periodicity analysis can

be done employing Poincaré return map [39, Chapter 5.4]. Poincaré return map trans-

forms finding periodic orbit for hybrid zero dynamics into existence analysis of a fixed

point. The periodic orbit of hybrid zero dynamics also inherits the local stability prop-

erties of this fixed point. For a Poincaré section S ∩ Z , the return map turns out to

be P : S ∩ Z → S ∩ Z . The hybrid zero dynamics coordinates defined in (3.24) is

equivalent to
dξ2
dξ1

=
κ2(ξ1)

κ1(ξ1)ξ2
. (3.44)

Since the internal clock is defined to be a strictly monotonic function, ζ2 =
1

2
(ξ2)

2 is

a valid coordinate change. In these coordinates, (3.44) turns out to be

dζ2
dξ1

=
κ2(ξ1)

κ1(ξ1)
. (3.45)

Since the swing phase zero dynamics is Lagrangian, total energy of the orbit is con-

stant over a step. As a result, for θ+ ≤ ξ1 ≤ θ−, a potential energy notion can be

defined such that

Vzero(ξ1) := −
∫ ξ1

θ+

κ2(ξ)

κ1(ξ)
dξ. (3.46)

As a result of Vzero, the equivalent kinetic energy definition becomes

Kzero =
1

2

(
ξ̇1

κ1(ξ1)

)2

= ζ2. (3.47)

Integrating (3.45) over a step results in

ζ−2 = ζ+2 − Vzero(θ
−) (3.48)

where, ζ−2 :=
1

2
(ξ−2 )

2 by definition and ζ+2 := δ2zeroζ
−
2 as a result of (3.27). Since

the total energy is constant over a step, (3.48) indicates that the kinetic energy at the

end of the step is determined by how much kinetic energy is gained or lost due to the

potential energy evolution over a step. As a result, the Poincaré return map definition

turns out to be

P (ζ−2 ) = δ2zeroζ
−
2 − Vzero(θ

−). (3.49)
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The Poincaré return map indicates that if δ2zero ̸= 1, for

ζ∗2 := −Vzero(θ
−)

1− δ2zero
(3.50)

there exists a periodic orbit, which indicates that if

0 < δ2zero < 1, (3.51)

then ζ∗2 is exponentially stable equilibrium point of P (ζ2(k)) = ζ2(k + 1). The

stability condition becomes more clear when one disturbs (3.50), by for example ϵ.

Substitution of disturbed (3.50) into (3.49) shows that the disturbance fades away if

and only if δ2zero < 1.

It is important to note that, to talk about an orbit or a Poincaré section at the end of

the step, one should ensure that the walker can complete a whole step. To ensure that,

a potential energy barrier definition (3.52) is introduced. The potential energy barrier

V MAX
zero defines the point where the walker has the highest potential energy. After this

point, since the center of mass of the walker passes the stance leg, the kinetic energy

starts to increase. As a result, a step may be completed if and only if the initial kinetic

energy is high enough to pass the potential energy barrier (3.53).

V MAX
zero := max

θ+≤ξ1≤θ−
Vzero(ξ1) (3.52)

ζ∗2 > V MAX
zero /δ2zero (3.53)

3.4.1 Interpretation

Since the swing phase zero dynamics is Lagrangian, total energy, Kzero+Vzero, during

the swing phase is constant, as an inverted pendulum subject only to gravity, where

Kzero and Vzero are given in (3.46) and (3.47), respectively. As a result, total energy

of a periodic orbit has a constant value Vzero(θ
−) +

1

2
(σ∗

n)
2, where σ∗

n indicates gen-

eralized momentum conjugate to θ of a periodic orbit. The energy may be gained

and lost only at impacts. A constant change of Vzero occurs at impact, from V −
zero at

the end of the step to V +
zero at the beginning of the step. The re-initialization rules

induce this energy change, i.e., the stance leg becomes the swing leg, and the swing
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leg becomes the stance leg. Similarly, the angular momentum of the system, σ̄n, is

scaled by δzero (3.27) such that σ̄+
n = δzeroσ̄

−
n . This change is induced by angular

momentum transfer caused again by the re-initialization rules.

In order to ensure continuous displacement in the forward direction, the angular mo-

mentum of the system, σ̄n, should always be positive or negative depending on the

direction selection. At the beginning of the step, since the center of mass of the sys-

tem is behind the stance leg, gravity decreases the angular momentum of the robot

until the center of mass passes the stance leg as indicated in (3.23). If the angular mo-

mentum is sufficiently large to overcome the potential energy barrier corresponding

to V MAX
zero (3.52), the center of mass will move past the support leg end, inducing a

reverse exchange of energy and the swing leg impacts with the ground. As a conse-

quence, existence of a fixed point can be checked by (3.53), where ζ∗2 =
1

2
(σ∗

n)
2. The

existence of a fixed point can be discussed if and only if the walker is able to complete

a step, and if (3.53) holds, then it can be concluded that the robot will complete the

step.

On the other hand, exponential stability can be shown using angular momentum con-

jugate. At each step, the angular momentum conjugate is scaled by δzero (3.27). The

same scale is true for the difference between the angular momentum and its value

on the periodic orbit, given by σn − σ∗
n. Consequently, if the angular momentum

conjugate decreases at each impact, the error decreases along with it, and the sys-

tem converges to the periodic orbit. This condition is shown in (3.51). As a result,

dictating (3.53) and (3.51) inside the trajectory generation optimization problem, if

there is a solution, it results in an exponentially stable periodic orbit of hybrid zero

dynamics. Note that since Vzero(θ
+) = 0 and V MAX

zero ≥ 0, δzero < 1 is equivalent to

Vzero(θ
−) < 0.

3.5 Trajectory Generation

So far, some properties and the existence of the hybrid zero dynamics of bipedal walk-

ing have been discussed. But, it is not pointed out how to select the parameters of the

desired state evolution, i.e., hd. In this section, an optimization problem used to select
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the desired state evolution of the system is discussed such that following this trajec-

tory will end up with the desired walking motion. Additionally, it is discussed how to

select a proper initial condition for the optimization problem such that computation

time is decreased and the chance to end up with a proper trajectory is increased.

3.5.1 Cost Function

A popular cost function over a single step is shown in (3.54), where TI , ph2 and u∗(t)

represent step time, step length and constraining input (3.5), respectively. The cost

function represents input cost of a step and in this study the cost function with dedi-

cated constraints is minimized via MATLAB’ s built-in fmincon function.

Jcost =
1

ph2(q
−
0 )

∫ TI

0

||u∗(t)||22dt (3.54)

3.5.2 Constraints

Selection of constraints is so essential to achieving a proper walking motion. The

constraints include existence and stability requirements and physical limits to obtain

a meaningful and realistic walking motion.

Friction Cone

Friction cone constraint ensures that the tip of the stance leg does not slide during

the motion. It ensures that contact forces are always inside a friction cone, i.e.,

|F T
1 /F

N
1 | < µ, where F1 represents contact forces at the stance leg in tangential

and vertical directions.

The calculation of F1 requires the full N + 2 − DOF model, which is discussed in

Section 2.2 and given in Appendix A.2, as in impact dynamics. Then for a Jacobian

matrix J, the contact forces can be obtained as the following:

F1 = (JD−1
e J ′)−1(JD−1

e (Ceq̇e +Ge −Bu)). (3.55)

For qe = (q; p1), the Jacobian matrix turns out to be J = [02×n, I2×2].
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Normal Ground Reaction Force

In order to ensure that the stance leg is always in contact with the ground, the normal

ground reaction force experienced by the stance leg end should be,

FN
1 > 0 (3.56)

throughout the step.

Swing Leg Height

In order to ensure that impact occurs only at the end of the step, one should ensure

that:

pv2(q) = 0 ⇐⇒ q = q−. (3.57)

Average Walking Rate

Average walking rate can be enforced using step length and time to impact informa-

tion:

ν̄ =
ph2(q

−
0 )

TI

. (3.58)

Time to impact is the time passed from the beginning of the step to the end.

Ground Separation

In order to ensure that the contact is momentary, the vertical velocity component of

the tip of the swing leg just after the impact should be positive such that:

ṗv2(q
+) > 0. (3.59)

In the other words, vertical velocity component of the tip of the swing leg at the very

beginning of the step should be positive such that leg scuffing does not occur.
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Step Length

The desired step length can be enforced such that:

ph2(q
−
0 ) = Ls (3.60)

where, ph2(q
−
0 ) represents horizontal position of the tip of the swing leg at the end of

the step and Ls represents the desired step length.

Existence of the fixed point

This constraint ensures that the angular momentum of the system is high enough to

overcome the potential energy barrier (3.53).

ζ∗2 > V MAX
zero /δ2zero (3.61)

Stability of the fixed point

This constraint ensures that the fixed point is exponentially stable (3.51).

0 < δ2zero < 1. (3.62)

Hyperextension

Hyperextension constraints are defined to prevent knee bending in the reverse direc-

tion. Other than a requirement, this constraint is a preference to obtain a human-like

walking (see Fig. 2.1).

q3 < 0 (3.63)

q4 < 0 (3.64)

Input Limits

Since each real actuator element has limits, limiting the input of actuators results

in realistic motions. This constraint can be used to restrict input torque, force, and
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power. In this study, input torque along the trajectory is limited, such that:

u < umax. (3.65)

3.5.3 The Optimization Problem

The resultant optimization problem is constituted by the combination of the cost func-

tion (3.54) and the above-defined nonlinear inequality and equality constraints. The

problem is solved to minimize the cost of the system with proper desired trajectory

selection. Since the trajectory is fitted into Bézier polynomials, each polynomial is

represented by M + 1 coefficients, αi
k, for 1 ≤ i ≤ (n − 1). The HZD existence

conditions (3.38) and (3.43) states that, some of the coefficients are restricted. As a

result, for M = 6, there are in total (M + 1)(n− 1) = 28 parameters in which 8 are

restricted. In total 20 parameters are left to be found out by solving the optimization

problem,

argmin
α1,...,αn−1

(
1

ph2(q
−
0 )

∫ TI

0

||u∗(t)||22dt
)

such that

(closed-loop dynamics)

(HZD conditions)

(kinematic constraints)

(dynamic constraints)

(3.66)

Note that the desired trajectory contains information only for the controlled quanti-

ties. In order to select the initial condition of unactuated quantities, which are q5 and

q̇5, using optimization, these terms can be included in the optimization problem. As

a result, the optimization problem makes the initial condition selection of all parame-

ters, i.e., x−. In this case, the number of parameters required to be found raises from

20 to 22.

3.5.4 Initial Condition Selection for the Optimization Problem

Initial condition selection for the optimization problem (3.66) affects the solution

directly. The optimization problem solver may terminate without finding a useful
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parameter depending on the initial condition selection. Additionally, even though the

solver finds a solution, it may take too much time to solve due to the initial condition

selection. Considering the natural posture of the walker (see Fig. 2.1) and kinematics

constraints, a logical initial condition selection can be made.

At the beginning of a step, the tip of the swing and stance legs is expected to be on

the ground. Additionally, it is expected that the distance between the tips is equal to

the step length. To start with, initial condition of q0−3 , q0−4 and q0−5 are selected as

(q0−3 ; q0−4 ; q0−5 ) = −(5; 5; 5) degrees. Solving for q0−1 and q0−2 such that p−1 = (0; 0)

and p−2 = (0.4; 0), where p1 and p2 represents position of the tip of the stance and

swing legs, respectively, results with (q0−1 ; q0−2 ) = (3.0196; 3.5254) radians. Addi-

tionally, the initial velocity of the walker should be selected such that the robot moves

(falls) forward. The resultant initial state selection is formed as the following:

x−
0 =



q0−1

q0−2

q0−3

q0−4

q0−5

q̇0−1

q̇0−2

q̇0−3

q̇0−4

q̇0−5





3.0196

3.5254

−0.0873

−0.0873

−0.0873

0

0

0

0

−1



(3.67)

where position and velocity variables are expressed in rad and rad/s, respectively.

Also from (2.23), x+ = ∆(x−). The resultant initial posture of the robot is shown

in Fig. 3.1. Relating the initial state selection of the walker with the first two and

last two parameters of the Bézier polynomial are shown in (3.36), (3.37), (3.40) and

(3.41). The rest of the parameters can be selected as in (3.68). The first row indicates

a smooth displacement of the stance leg from q+1 to q−1 . The second row is selected

such that the swing leg moves to forward quickly. The third row represents desired

state evolution for stance leg knee, q3. The stance leg knee is set to expand during the

step. Lastly, the last row indicates the desired state evolution for the swing leg knee,
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Figure 3.1: Posture of the walker at the initial condition.

q4. It is decreased quickly to prevent foot scuffing.


α2
1 α3

1 α4
1

α2
2 α3

2 α4
2

α2
3 α3

3 α4
3

α2
4 α3

4 α4
4

 =


3.45 3.30 3.15

3.5 3.5 3.5

0 0 0

−0.8 −0.8 −0.8

 (3.68)

3.6 Generating Exponentially Stable Orbit

So far, all mathematical results represented in this section are valid in the zero dy-

namics manifold. The objective is to show that exponentially stable periodic orbits of

hybrid zero dynamics are exponentially stabilizable periodic orbits of the full-order

system. As long as initial condition is on the zero dynamics manifold, i.e., y = 0 and

ẏ = 0, and the input is chosen to be u∗ (3.5), the state evolution stays on the zero

dynamics manifold since

ÿ = 0. (3.69)
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In order to force the system to converge back to the zero dynamics manifold, when-

ever it diverges due to disturbance and modeling errors, the input form can be modi-

fied as

u(x) = (LgLfh(x))
−1(v − L2

fh(x)), (3.70)

such that,

ÿ = v. (3.71)

Selecting v to be,

v = −KDẏ −KPy, (3.72)

where KD and KP are m × m (where m = n − 1) positive definite gain matrices,

results in

ÿ = −KDẏ −KPy. (3.73)

Equation (3.73) indicates that, the resultant output dynamics is exponentially stable.

3.6.1 Parameter Selection

In (3.73) it is shown that the computed torque with the PD control method results

in exponentially stable output dynamics. Parameter selection for this output dynam-

ics determines the general behavior of the system. Selection should be made such

that the walking is stable and joints do not oscillate. Additionally, it is also essen-

tial to make the walker robust against external disturbances such as modeling errors,

external forces, input noises, and initial condition disturbances in velocity and posi-

tion components. The parameter selection is made by observing the eigenvalues and

eigenvectors of Poincaré return map estimations, which are calculated numerically.

Calculation details of this map are covered extensively in Chapter 6.2. This section

discusses the methodology, ideas, and concerns behind the parameter selection.

Thanks to trajectory generation optimization, on the invariant manifold, computed

torque control follows the predetermined trajectory well. But, it is too fragile against

any disturbance. That is why, as long as there is no oscillation due to the parameter

selection, almost for any positive definite KP and KD selection, the system is sta-

ble. The parameter selection is mainly made to increase the robustness of the walker

against various uncertainties, modeling errors, and disturbances. The PD part of the
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computed torque with PD control (3.70) is used to force the states to converge back

into the invariant manifold as soon as it diverges from there. Eigenvalues and eigen-

vectors of numerically calculated Poincaré return map estimations are employed for

parameter tuning. One important drawback of numerical computation is that they are

not much insightful. It is very difficult, if not impossible, to establish a cause-and-

effect relationship between a particular parameter and the resultant numerical compu-

tation. In this case, it is even harder because the system’s dynamics are highly nonlin-

ear, and the dimension of the model is too high. In order to resolve this issue, in this

study, a computationally intensive primitive search algorithm is employed. Starting

from a base KP and KD selection, the search algorithm checks the effects of each pa-

rameter on the eigenvalues of the Jacobian matrix, i.e., the numerical derivative of the

Poincaré return map with respect to the state variables (see Chapter 6.2), then it selects

a proper parameter combination. Since the calculation requires a significant compu-

tation source, the search is done independently for each parameter. If KP and KD

are said to be equal to diag(KP1, KP2, KP3, KP4), and diag(KD1, KD2, KD3, KD4),

respectively, then implementation of the search algorithm can be expressed as:

1. Set KP = KD = diag(20, 20, 20, 20) and i = 0.

2. Set i = i+ 1.

3. Calculate the eigenvalues of the closed-loop system for each of KPi− 10, KPi,

and KPi + 10.

4. Select the one with the smallest eigenvalue summation
∑2n

i=1 (1 + |λi|)2.
5. Repeat step 2, 3 and 4 for each element of KP and KD, i.e., until i = 2n, but

at each calculation set the other parameters to their initial values. In the first

iteration, for example, while calculating for KP2 − 10, KP2, KP2 + 10, use

KP1 = 20.

6. Update the initial condition of KP and KD with the selected parameters.

7. Set i = 0 and start again from step 2 until the smallest eigenvalue combination

is found.

It is important to note that in the search algorithm minimum of
∑2n

i=1 (1 + |λi|)2

checked instead of directly aiming for maximum magnitude eigenvalue. There are

two main reasons for this selection. Firstly, the orbit of the full-order model is a

stabilizable periodic orbit. This means some eigenvalues are fixed independent of
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KP and KD selection. Aiming only for the highest eigenvalue may not cause any

difference between different parameters. For example, in this case, independent of

the parameter selections, the highest eigenvalue is 0.75. Secondly, this condition de-

creases oscillation of the joints and tries to reduce all eigenvalues. As a result of

the search, the controller parameters turned out to be KP = diag(60, 90, 90, 50) and

KD = diag(10, 20, 20, 10). The resultant changes in the eigenvalues are:



0.75

0.61

−0.57 + 0.19i

−0.57− 0.19i

0.53

0

0

0

0

0


︸ ︷︷ ︸

λbefore

−→



0.75

−0.05

−0.04 + 0.06i

−0.04− 0.06i

−0.03 + 0.03i

−0.03− 0.03i

0.02

0

0

0


︸ ︷︷ ︸

λafter

. (3.74)

3.7 Simulation Results

A simulation environment is utilized to test the results of the optimization. The sim-

ulation is conducted using MATLAB’s ode45 solver. Compatible with the nature

of the computers, the controller is implemented in discrete time, in 1kHz frequency.

Step length, average walking rate, and friction coefficient are selected during the op-

timization to be 0.4m, 0.8m/s, and 0.6, respectively. Optimized Bézier polynomial

parameters are shown in Table 3.1. The resultant initial state of the system turns out
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to be:

x− =



q−1

q−2

q−3

q−4

q−5

q̇−1

q̇−2

q̇−3

q̇−4

q̇−5





2.9195

3.5369

−0.1483

−0.3626

0.0147

−0.2077

−0.1565

−0.2521

0.2285

−0.8486



. (3.75)

Table 3.1: Bézier polynomial parameters for fitted desired trajectory

i α0 α1 α2 α3 α4 α5 α6

1 3.54 3.66 3.39 3.28 3.02 2.93 2.92

2 2.92 2.94 3.12 3.73 3.62 3.55 3.54

3 −0.36 −0.60 −0.28 −0.18 −0.03 −0.13 −0.15

4 −0.15 −0.18 −0.51 −0.81 −0.48 −0.38 −0.36

The posture of the walker throughout the generated periodic trajectory is sketched in

Fig. 3.2. State evolution of the walker is shown in Fig. 3.3 and Fig. 3.4. State evolu-

tion of the controlled variables, H0q and H0q̇, are identical with the Bézier polyno-

mial output from θ+ to θ−. State evolution shows that the walking is periodic, and

the knee angles are always negative. The jumps in configuration variables are caused

by the re-initialization rules. Similarly, the jumps in velocity variables are caused by

the impact dynamics along with the re-initialization rules. The resultant input of the

controller is shown in Fig. 3.5. Since the decoupling matrix is invertible along the

trajectory, the inputs are finite. Fig. 3.6 indicates that the internal clock, θ, is a mono-

tonically increasing one-to-one function. It also shows that the angular momentum

of the walker is always positive, i.e., θ̇ > 0. Lastly, the contact force response of the

walker at the tip of the stance leg is shown in Fig. 3.7. It can be seen that FT/FN
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during the step is always smaller than the maximum friction coefficient, µ, defined

inside the optimization problem.

Since the optimization is used only for desired trajectory generation and is performed

offline, the system is not input limited in online implementation. Online implemen-

tation of the walker covers applying a computed torque (3.70) to the system. One

drawback of this method is that, when there is a disturbance, the input torque in-

creases dramatically (see Fig. 3.8). This increase may cause saturation in real-life

applications and cause defined dynamical constraints to be exceeded, such as friction

cone. Even though the figure shows that the system converges to the desired periodic

trajectory, the walker may fail in real-life applications due to motor saturations. For

example, when the hip motors, u1 and u2, saturate at 75Nm and the knee motors,

u3 and u4, saturate at 50Nm, under the defined disturbance, the walker cannot even

complete a single step and falls forward.

-0.5 0 0.5

time: 0.00s

-0.5 0 0.5

time: 0.25s

-0.5 0 0.5

time: 0.5s

Figure 3.2: Posture of the walker throughout the generated periodic trajectory with

0.4 meters step length and 0.5 seconds step time.
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Figure 3.3: Position evolution of the walker under undisturbed conditions. Red and

blue indicate leg-1 and leg-2, initialized as stance and swing legs, respectively.

Figure 3.4: Velocity evolution of the walker under undisturbed conditions. Red and

blue indicate leg-1 and leg-2, initialized as stance and swing legs, respectively.
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Figure 3.5: Input response of the controller under undisturbed conditions. Red and

blue indicate leg-1 and leg-2, initialized as stance and swing legs, respectively.

Figure 3.6: Internal clock evolution of the walker under undisturbed conditions.
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Figure 3.7: Contact force evolution at the tip of the stance leg of the walker under

undisturbed conditions.
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Figure 3.8: Input response of the controller when initial condition of q̇5, velocity of

the torso, in (3.75), is disturbed by −0.4 rad/s.
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CHAPTER 4

MODEL PREDICTIVE CONTROL OF UNDERACTUATED BIPEDAL

WALKING

So far, it has been discussed how to generate a stabilizable periodic orbit using HZD

optimization and track that orbit with exponential stability using computed torque

with PD control. One drawback of computed torque with PD control is that this con-

trol method does not allow input limitation. Unless one tests the trajectory against

every possible source of disturbances and uncertainties, this online implementation

method tends to exceed the input limitations of the actual system. Due to the com-

plex nature of underactuated bipedal locomotion, exceeding system input limitations

are usually not affordable. Exceeding torque limitations of the system causes discrep-

ancies between the system model and the robot, errors in estimations, and instabilities

or slow convergence rates. Additionally, excessive torque input usually causes a vio-

lation of the other gait restrictions, such as friction cone. In order to address this issue,

this study proposes an adaptive model predictive control method as an online trajec-

tory tracking controller that allows counting input limitations. As an online trajectory

tracking controller, it requires a predefined trajectory to follow, aiming to enhance

the tracking performance of the system. Since the controller is adaptive, the system

dynamics approximations inside the controller change at each step to capture the ac-

tual dynamics of the walker around the present states. Adaptiveness is an essential

aspect because the dynamic of the walker is highly nonlinear and the parameters are

very much coupled. In order to adapt this highly nonlinear dynamics, at each time

step, approximations around the present states are updated, s.t., the system model em-

ployed inside the controller changes at each time step. The proposed control method

isolates commonly applied feedback linearization inputs from trajectory tracking dy-

namics and reduces modeling errors. Additionally, the proposed control method al-
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lows considerable posture changes around the stabilizable desired orbits such that it

produces realistic and applicable responses against various disturbances while obey-

ing input limitations. Thanks to its short-horizon requirement, the controller can be

implemented in real-time at 1kHz, which is crucial for high-dimensional underactu-

ated nonlinear hybrid systems. Lastly, the controller’s ability against various aggres-

sive disturbances, where computed torque with PD control failed to maintain stability

under input torque saturation, is shown in the simulation results.

4.1 Proposed Control Method

General state-space representation of a nonlinear system with configuration variables

q ∈ Rn is expressed as:

ẋ := f(x) + g(x)u (4.1)

where x(t) = (q(t); q̇(t)) ∈ R2n,

f(x) =

 q̇

D−1(q)[−C(q, q̇)q̇ −G(q) +B(q)u]


and

g(x) =

 0

D−1(q)B(q)

 .

(4.2)

Matrices D = D⊤ ∈ Rn×n, C ∈ Rn×n, G ∈ Rn and B ∈ Rn×m represent mass-

inertia matrix, coriolis matrix, gravity vector and input matrix for m number of actu-

ation, respectively. Using the first and second order discretization for f and g respec-

tively, for a small enough sampling time T , the system model (4.1) can approximately

be represented as:

xk+1 = xk + (fk + gkũk)T, k = 0, . . . , N − 1 , (4.3)

where for an initial condition x0 and t = kT ,

fk = f + gu and gk =

D−1BT/2

D−1B

 . (4.4)
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With the new representation of function f , the original system dynamics becomes

an autonomous system. Input u can be used to change the system dynamics, for ex-

ample, via feedback linearization. If u ̸= 0, ũ constitutes a second layer controller.

Otherwise, ũ is the only input to the system. Note that, in order to include the effects

of input to the position variables, second-order discretization is employed for func-

tion g. On the other hand, first-order discretization is employed for function f for

simplicity. Using (4.3), general representation of the system becomes as,

xN = x0 +
N−1∑
j=0

fjT +
N−1∑
j=0

gjũjT . (4.5)

For a predefined stabilizable orbit, i.e., for a known desired state xd, error dynamics

is a basic manipulation of (4.5),

eN = xN − xd
N = x0 +

N−1∑
j=0

fjT +
N−1∑
j=0

gjũjT − xd
N . (4.6)

As a result of (4.6), general error representation can be shown as:

e0

e1

e2
...

eN


︸ ︷︷ ︸

E

=





x0

x0

x0

...

x0


+



0

f0

f0 + f1
...∑N−1

j=0 fj


T −



xd
0

xd
1

xd
2

...

xd
N




︸ ︷︷ ︸

F

+ T



0 0 . . . 0

g0 0 . . . 0

g0 g1 . . . 0
...

... . . . ...

g0 g1 . . . gN−1


︸ ︷︷ ︸

G



ũ0

ũ1

ũ2

...

ũN−1


︸ ︷︷ ︸

U

(4.7)

where E ∈ R2n(N+1), F ∈ R2n(N+1), G ∈ R2n(N+1)×Nm, and lastly U ∈ RNm. The

general error representation (4.7) enables us to write a cost function for error in a

quadratic form (4.8) in terms of input. In (4.8), N ∈ Z+, Q = Q⊤ ∈ R2n×2n ≥ 0,

Qf = Q⊤
f ∈ R2n×2n ≥ 0, R = R⊤ ∈ Rm×m > 0 represent horizon, error weight,

final error weight and input weight, respectively.

J = e⊤NQfeN +
N−1∑
k=0

(e⊤k Qek + ũ⊤
k Rũk) (4.8)
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Substituting (4.7) into the general representation of the cost function (4.9) yields the

cost function in terms of input (4.10). Basic manipulation of (4.10) shows that the

input U = −M−1α minimizes the error where M is invertible for Q = Q⊤ ≥ 0 and

R = R⊤ > 0.

J = E⊤


Q 0

. . .

0 Qf


︸ ︷︷ ︸

Q

E + U⊤


R 0

. . .

0 R


︸ ︷︷ ︸

R

U (4.9)

J(U) = U⊤(G⊤QG+R︸ ︷︷ ︸
M

)U + 2F⊤QG︸ ︷︷ ︸
α⊤

U + F⊤QF︸ ︷︷ ︸
β

= (U +M−1α)⊤M(U +M−1α) + β − α⊤M−1α

(4.10)

In order to define the input constraints, the minimization problem can be solved via

quadratic programming (4.11). In this study, MATLAB’s quadprog function is uti-

lized.

min
U

{U⊤MU + 2α⊤U} s.t.


AU ≤ b,

AeqU = beq,

lb ≤ U ≤ ub

(4.11)

4.2 System Dynamics

Walking is a combination of two consecutive events called stance and impact (4.12),

where x− and x+ represent states just before and just after the impact, respectively.

Stance dynamics (4.1) is a nonlinear whole-body Lagrangian model of the system.

The impact is a momentary event that happens when the swing leg collides with the

ground (4.13), causes jumps in velocities, and triggers coordination changes, i.e., the

swing leg becomes stance leg, and the stance leg becomes the swing leg. A widely

used impact model for kinematic chains with multiple contact points [40] can be

implemented to the bipedal walkers with some assumptions [12]. Switching surface

(4.13) captures the moment when the tip of the swing leg hits the ground ahead of the
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stance leg.

Σ :

ẋ = f(x) + g(x)u x− ̸∈ S

x+ = ∆(x−) x− ∈ S
(4.12)

S := {(q, q̇) ∈ TQ | pv2(q) = 0, ph2 > 0} (4.13)

4.3 Trajectory Generation Using HZD

Hybrid Zero Dynamics (HZD) is a well-known stabilizable trajectory generation

method for underactuated hybrid 5-link bipedal walkers [12, 43]. The method en-

sures that for a certain subset of the configuration variables q ∈ Q̃ ⊂ Q, there exists

a set of input such that the output,

y = h(q) := h0(q)− hd ◦ θ(q) (4.14)

is zero, where h0(q) specifies n − 1 independent quantities that are to be controlled

and hd ◦ θ(q) specifies the desired evolution of these quantities as a function of a

scalar quantity θ(q), which is called internal clock. The internal clock is a monotonic

one-to-one function that slaves the desired states, and a combination of configuration

variables constitutes it, θ(q) = cq, where c ∈ R1×n. Using HZD, one can fit a degree

M Bézier polynomial, bi : [0, 1] → R, for the desired state evolution hd◦θ(q). The de-

sired state evolution mimics walking behavior and satisfies defined constraints during

HZD optimization process. The study in [39, Chapter 6] provides more throughout

explanation on obtaining stabilizable periodic trajectory for such systems.

4.4 Controller Implementation

The existence of a stabilizable orbit guarantees a solution around that trajectory and

allows the employment of a model-based controller. The proposed control method

requires the error to be defined for each joint, but the error definition (4.14) in HZD

covers only n − 1 independent quantities, which are the controlled joints. To obtain

error information for the uncontrolled joint, one can combine the desired state evo-

lution information, the instant actual state information, and the internal clock. Both
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system states and desired states share the same internal clock. As a result, the solution

of (4.15) for the uncontrolled desired state completes the required error information.

θ = cq = cqd and θ̇ = cq̇ = cq̇d (4.15)

For each time step, required operations to apply the controller can be listed as:

• Using (4.3) and (4.4), for ũ = 0, simulate ahead up to horizon N and store fk

and gk matrices,

• Using (4.15), for each simulated time step, complete the missing error informa-

tion for the unactuated joint.

• Using (4.7), (4.9) and (4.10), generate G and F , then obtain M , α⊤ and β,

• Using (4.11), solve for input.

4.5 Parameter Selection

Parameter selection for the proposed adaptive model predictive controller is not in-

tuitive as it was for zero dynamics control in section 3.6.1. Different reasons cause

this difference. First of all, in zero dynamics control, it was shown that the PD part of

the controller is applied on top of the feedback linearization (3.70). That is why it is

evident that, as long as there is an approximate balance between derivative and pro-

portional control parameters, almost any parameter selection would work when there

is no disturbance or uncertainty. In this particular case, the control input is applied

directly to the nonlinear dynamics of the walker. That is why making an intuitive

guess is harder. Additionally, it was shown that for the PD part of the zero dynamics

control, there were eight parameters to select (3.72). For the adaptive model pre-

dictive control, on the other hand, the required number of selections is 14 (or 24 if

Qf ̸= Q), which are error weights and input weights (4.8). Even though the same

search algorithm introduced in chapter 3.6.1 could be used, it would take too much

time. Additionally, parameter increase rate selection is not that obvious in this partic-

ular control method in the search algorithm. Even though the search algorithm could

be run with different incremental rates, again and again, this is not preferred.
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Since the parameter selection in the PD part of the zero dynamics control (3.70) gives

a reasonable ratio between joints, almost the same ratio is used. For R = In−1×n−1,

the error weights are selected to be:

Q = Qf = 105 × diag(6 · 103, 2 · 104, 9 · 103, 5 · 103, 6 · 103, 1, 2, 2, 1, 1) (4.16)

It is important to note that ratios between gains related to position errors are almost

the same as those in proportional control. Similarly, ratios between the gains related

to velocity errors are the same as those in derivative control. For example, the gain

related to the error in q̇2 is double of the gain related to the error in q̇1. The only

difference is in the gain related to the error in q2. It is slightly increased to enhance

the forward disturbance rejection of the walker. In case of a forward disturbance,

the swing leg should be moved forward quickly to prevent the walker from falling

forward. Additionally, different from the gains introduced in the PD part of the zero

dynamics control, there is an extra 103 multiplier between the gains related to the

position and velocity errors. The extra T/2 multiplier in the discretization (4.4) ex-

plains the order differences between weights of the position and the velocity errors

in Q. Lastly, it is mentioned that this control method requires extra weights related

to the errors in position and velocity of the torso, i.e., the unactuated joint. Since the

torso affects the posture of the walker as the stance leg does, the weights of the errors

related to the torso are selected to be the same as the weights of the errors associated

with the stance leg.

Horizon N selection is another important decision. First of all, it is mentioned that

the dynamic model of the walker is updated at each time step. This update is made via

simulating the discretized system dynamics (4.3) without any input (ũ = u = 0), i.e.,

effect of input is neglected while obtaining system dynamics at each time step (see

Chapter 4.4). Since the effect of input is neglected, selecting the horizon too high

causes considerable deviation between estimated and actual dynamics. Additionally,

it increases optimization time. On the other hand, selecting it to be too low decreases

the controller’s performance. In order to find a good balance, N is selected to be

five. This selection provides good disturbance rejection performance, and it allows

control of the system in 1kHz frequency. For the same parameter selection, selecting

N to be ten increases disturbance rejection performance slightly, but solution time

increases. It should be noted that the controller’s performance for different horizon
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selections is hard to comment on due to the system’s complexity. Additionally, differ-

ent parameter selections could work differently for each horizon selection. Parameter

selection is a general drawback of this method, which will be discussed extensively

in the discussion chapter.

Unlike the approach followed in this study, the horizon of the model predictive con-

trol usually contains two variables called the control horizon and prediction horizon.

The control horizon indicates the number of time steps to be controlled with chang-

ing input. On the other hand, the prediction horizon indicates the number of further

time steps to be observed with a constant input. An increase in the control horizon

increases the required amount of computation to calculate the system’s input. On the

other hand, since there is no new input calculation during the prediction horizon, it is

used to obtain a more informative cost function [44, Chapter 20]. Usually, introducing

a prediction horizon after the control horizon increases the controller’s performance

without additional significant computation requirements. In this study, a single hori-

zon notion is employed by the selection. This approach is listed as a future study and

discussed in Chapter 7.1.

4.6 Simulation Results

In order to test the performance of the proposed control method on a 5-link pla-

nar underactuated bipedal walking, the same simulation environment in the previous

chapter is utilized. Similar to the discrete nature of the computers, the controller is

implemented in discrete time, at 1 kHz. The proposed control method is tested against

various disturbances such as large modeling errors in body weight, aggressive initial

condition errors, pushing and pulling torso throughout a step, input noises, and their

combinations.

Fig. 3.2 and 4.1 show the posture of the walker around the optimized trajectory and

resultant input calculation of the proposed controller, respectively. Fig. 4.1 shows

that the hip torques (u1 and u2) are limited to ±75Nm in magnitude, whereas the

knee torques (u3 and u4) are limited to ±50Nm. When there is no disturbance,

input torques are within the limits because trajectory generation optimization already
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considers these limits. This undisturbed system response will be used as a comparison

basis for other simulation scenarios.
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Figure 4.1: Input response of the proposed control method to the optimized trajectory

without any disturbance. Dashed lines at ±50Nm and ±75Nm indicates input limits

of the knee and the hip joints, respectively.

Trajectory tracking performance of the controller is tested under an aggressive initial

condition error that is introduced in the position of the torso, q5. Any disturbance

introduced in the torso can be considered aggressive since it is the unactuated, the

heaviest, and the longest joint. Additionally, the position and velocity of the stance

and swing legs are defined relative to the torso (see Fig. 2.1). As a result, any position

error in this joint displaces legs from their desired positions, too. That is why the

angle of the torso is disturbed by +0.1 radian (≈ 6 degrees). Fig. 4.2 shows that the

controller changes the posture of the walker such that the center of mass of the system

is shifted toward the right in order to compensate for this aggressive initial condition

error. This posture change helps the system fall forward using its weight and reduces

input requirements. Fig. 4.3 depicts the limited input torque response of the controller

and concludes that the input tends to exceed the limits under disturbance.

Generally, model-based controllers are vulnerable to modeling errors. In order to

show the robustness of the controller against modeling errors, we simulated the sys-
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Figure 4.2: Posture of the walker throughout a step with an initial condition error

introduced in the position of the torso.
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Figure 4.3: Input response of the controller against 0.1 radian (≈ 6 degrees) initial

condition error in the position of the torso.
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tem with a modeling error along with an initial condition error in the torso by multi-

plying its weight by two and adding 0.07 radian (≈ 4 degrees) to its initial condition,

q5, inside the stance and impact dynamics of the walker. Fig. 4.4 shows the resulting

response against these disturbances. The posture evolution of the walker followed a

similar pattern with the one shown in Fig. 4.2.
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Figure 4.4: Input response of the controller against 0.07 radian (≈ 4 degrees) initial

condition error in the position of the torso along with a modelling error introduced in

the torso weight.

Finally, the performance of the proposed controller is compared with the local PD

controller around restriction dynamics. Fig. 4.5 shows the two-step response of the

controllers against a forward force of 40N to the torso during the first step. The figure

shows that the local PD controller applies much more input than the proposed control

method, even with the fine-tuned parameters. The system with the local PD controller

failed to maintain stability when there was saturation. Fifteen-step error responses of

the systems to the same disturbance are shown in Fig. 4.6 and 4.7. From the figures,

it can be seen that outputs of both closed-loop systems are converged to around zero

after a few steps. The proposed controller managed it with much less input torque

usage in magnitude. Since the adaptive model predictive controller is implemented

on top of the full-order system model and in discrete time with some approximations,
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a slight steady-state error remains. On the other hand, since the zero-dynamics with

PD control is also applied in discrete time, the slight steady-state error remains. The

velocity error evolution shows that since the joint velocities are too high due to the ag-

gressive forward disturbance, the impact causes high magnitude jumps. Additionally,

due to the different characteristics of the controllers, error evolution shows different

behavior. For example, the disturbance causes high error in the swing knee position

at the beginning of the closed-loop system with zero dynamics control. On the other

hand, the disturbance causes a high magnitude error in stance leg position at the be-

ginning of the closed-loop system with adaptive MPC. It is mainly because the torque

is limited in adaptive MPC controller but not in zero dynamics control. And since the

stance leg requires high input torque against this disturbance, the system with limited

torque exhibits high deviation in the position of the stance leg at both in hip and knee

at the beginning of the disturbance. Since the simulated walker model is determinis-

tic, the system with zero dynamics with PD control has a smaller steady-state error.

The calculated input torque is exact, and the PD control helps the output converge

to around zero. On the other hand, the adaptive MPC is implemented on the full or-

der system and calculates the input via solving an optimization problem. Due to the

parameter selections, it showed a slight more steady-state error in magnitude. It is a

drawback of this controller compared to the zero dynamics control. The parameter

selection has to be made on full-order nonlinear system dynamics. As a result, pa-

rameter selection is harder. But, in the following chapters, it is shown that when there

is an error in the system model, since the exact torque calculation in zero dynamics

control directly depends on the system model, the performance of the closed-loop

system with zero dynamics control decreases dramatically.
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Figure 4.5: Two-step response of the PD controller (top) and the proposed controller

(bottom) against a forward force of 40N to the torso throughout the first step of the

robot.
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Figure 4.6: Ten-step position error response of the PD controller (top) and the pro-

posed controller (bottom) against a forward force of 40N to the torso throughout the

first step of the robot.
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Figure 4.7: Ten-step velocity error response of the PD controller (top) and the pro-

posed controller (bottom) against a forward force of 40N to the torso throughout the

first step of the robot.
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CHAPTER 5

POWER OPTIMAL CONTROL

In the previous chapter, input limited optimal control of the bipedal walker is studied.

The motivation was that in real-life applications, actuators saturate such that after

a certain amount of torque, the input torque cannot increase. Even though this is

a reasonable motivation, the amount of torque that can be supplied to the system

changes by velocity too. For example, the maximum torque, which is usually called

peak torque or stall torque, that an actuator can supply is when it is not rotating, and

it can only be supplied for a short amount of time [45]. Due to power limitations, as

the velocity increases, the amount of torque that can be supplied decreases. In order

to cover this issue, one can replace the input cost with a power cost in (4.8), such that

J = e⊤NQfeN +
N−1∑
k=0

(e⊤k Qek + (ũk · q̇0,1−4)
⊤R(ũk · q̇0,1−4)) (5.1)

where q̇0,1−4 represents (q̇1; q̇2; q̇3; q̇4)|k=0. It is important to note that, independent

of horizon N , input weight is multiplied by the momentary actual velocity. It is

preferred not to disturb the linearity of the cost function such that the same solution

sequence introduced in the previous chapter can be employed. It is also important to

note that the input weight of the cost function changes at each time step depending on

the momentary velocity of the system. Since the input weight changes depending on

the velocity of the actuated joints, when velocity is small, it may cause oscillations

and abnormalities. When input weight is too small, the input cost decreases too much,

and the controller tends to increase the magnitude of the input torque dramatically.

In order to prevent this, a lower limit can be introduced. In this study, the minimum

value for each member of (ũk · q̇0,1−4)
⊤R(ũk · q̇0,1−4) is set to be one.

In order to present behavioral differences between power and input optimization, error
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and final error weight matrices, which are Q and Qf , respectively, are selected to

be identical. Differently, only input weight is scaled by momentary velocities of

the corresponding actuators such that the input weight changes at each time step. It

should be noted that the parameter selections are not absolute. Even though some

well-educated guesses are made and some proper mathematical notations are used, it

is clear that the selected parameters do not guarantee the best performance. Further

discussions on this can be found in Chapter 7.1.

5.1 Simulation Results

In order to test the performance of the power optimal control, the same simulation

environment is employed. Fig. 5.1 depicts that power optimal control reduces the

maximum required power input from the actuators when there is no disturbance. In

model predictive control, maximum power required at the hip (p1 and p2) is observed

to be around 83 Watts. On the other hand, in power optimal control, the maximum

power required at the hip is around 67 Watts. Hence, using power optimal control,

the sizing of the hip actuators can be reduced. No dramatic change is observed in

knee actuators (q3 and q4).

The difference between two cost functions (4.8) and (5.1) is more apparent under

forward speed disturbances. Fig. 5.2 and Fig. 5.3 show two-step power and input

response of the controllers against 20N forward disturbance throughout the first step,

respectively. The figures show that the maximum required power at the hip is reduced

from 221Watts to 145Watts. Similarly, no dramatic change in knee actuators is ob-

served. Fig. 5.3 indicates that as the velocity increases, the power-optimal control

reduces the input torque. Similarly, it tends to use more torque when joint velocity is

small. This tendency defines distinctions between the input torque profiles with the

input minimized model predictive control. Fifteen-step error responses of the sys-

tems to the same same disturbance are shown in Fig. 5.4 and 5.5. Since the forward

disturbances usually require high torques at high velocities, forward disturbance re-

jection performance of the system with power-optimal control decreases. From the

error responses, it can be seen that it takes more steps for the system with power-

optimal control to converge. It takes eleven steps for the closed-loop system with
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Figure 5.1: Required power profile calculated by three different controllers through-

out a step without any disturbance. From top to bottom, the figure shows response of

computed torque control (3.70), model predictive control (4.11), and power optimal

control (5.1), respectively.
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power-optimal control to converge to its steady state. On the other hand, the closed-

loop system with adaptive MPC converges to its steady-state in five steps. Since both

controllers are implemented on top of the full-order system model and in discrete time

with some approximations, a slight steady-state error remains. The only difference

in weight selections of the adaptive MPC and power optimal control was the input

weight. The input weight of the power optimal control changes at each time step

depending on velocity evolution. These input weight differences cause behavioral

differences in error characteristics between these two controllers. Finally, since it is

an aggressive forward disturbance, high magnitude jumps in velocity error evolution

are observed until the controllers slow the walker down.
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Figure 5.2: Two step power response of the controllers when 20N forward distur-

bance from the CoM of the torso is applied throughout the first step of the walker.

From top to bottom, the figure shows response of model predictive control (4.11) and

power optimal control (5.1), respectively.
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Figure 5.3: Two step input response of the controllers when 20N forward disturbance

from the CoM of the torso is applied throughout the first step of the walker. From top

to bottom, the figure shows response of model predictive control (4.11) and power

optimal control (5.1), respectively.
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Figure 5.4: Fifteen-step position error response of the model-predictive controller

(top) and the power-optimal controller (bottom) against a forward force of 20N to the

torso throughout the first step of the robot.
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Figure 5.5: Fifteen-step velocity error response of the model-predictive controller

(top) and the power-optimal controller (bottom) against a forward force of 20N to the

torso throughout the first step of the robot.

64



CHAPTER 6

PERFORMANCE OF THE CONTROLLERS

The previous chapters investigate the behavioral and characteristics differences be-

tween zero dynamics control, adaptive model predictive control, and adaptive power

optimal control. This chapter employs some performance metrics to compare the con-

trollers. This chapter compares the basin of attraction of each controller along with

their closed-loop Poincaré return map eigenvalue estimations. A basin of attraction

surface is generated for initial condition disturbances at the position and velocity of

the torso. The disturbances are introduced in the torso because it is the heaviest, the

longest, and the unactuated joint. Along with the undisturbed case, in order to discuss

the effects of modeling errors on the controller performances, the Poincaré return map

estimations are also done with a modeling error introduced in the mass of the torso

by multiplying it by two.

6.1 Basin of Attraction Analysis

The basin of attraction of the controllers is calculated for torso angle q5 and its veloc-

ity q̇5. Torso angle and its velocity are selected since it is the heaviest, the longest,

and the unactuated joint of the walker. During the calculation, q5 and q̇5 are disturbed

inside the initial state condition of the system (3.75). Since the input is constrained

in optimal controllers, during basin of attraction calculation, the input torque that the

zero dynamics controller calculates is limited to 75Nm at the hips (u1 and u2) and

50Nm at the knees (u3 and u4). Additionally, since the states of the walkers that

did not fall until the sixth step converged or came very close to their desired trajecto-

ries, the simulation is terminated after six steps. Since the exact convergence is not
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guaranteed, the figure can also be named a six-step failure analysis. It shows the col-

lection of disturbance configurations that the controllers managed to proceed at least

six steps without falling. Fig. 6.1 shows basin of attraction for all three controllers

with respect to changes in initial conditions of q5 and q̇5. From the figure, the basin of

attraction of input saturated zero dynamics control (top) is the smallest. On the other

hand, the basin of attraction of the adaptive model predictive control (bottom) is the

widest compared to the other two. Since the power-optimal control does not allow

high torque input at high velocities, it cannot maintain stability under high magnitude

forward velocity disturbances. As a result, the basin of attraction of power optimal

control (middle) is wider than the basin attraction of the zero dynamics control but

smaller than the basin of attraction of the adaptive model predictive control. It is

understandable to observe the smallest basin of attraction for zero dynamics control

because the controller does not consider input saturation. As shown in previous dis-

cussions, it should be noted that, even though they all seem stable in some regions,

each closed-loop system with different controllers handles disturbances differently.

Input profiles and posture evolution are distinct for each method. Additionally, it

should be noted that unrealistic movements are eliminated during the simulation. For

example, if leg scuffing occurs before the swing leg passes through the stance leg, the

simulation is terminated, and the behavior is marked as unstable.
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Figure 6.1: Basin of attraction of all three controllers with respect to changes in initial

conditions of q5 and q̇5. From top the bottom the figure shows feedback linarization

control with input saturation, power optimal control, and model predictive control.

The colorbar indicates number of steps the walker took and the simulation is termi-

nated after six steps.
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6.2 Poincaré Return Map Analysis

Gait stability can approximately be determined by analyzing the eigenvalues of Poin-

caré return map of the system, which is linearized about a fixed point [46, 47, 48, 49].

Poincaré return map transforms the problem of finding periodic orbit into finding a

fixed point of the map, which is a discrete-time nonlinear system. If the Poincaré

section is selected to be the switching surface S, then the fixed point x∗ lies within

S ∩ Z and the resultant Poincaré map definition becomes P : S ∩ Z → S ∩ Z . For

P (xk) = xk+1 periodicity is achieved only if P (x−) = x−. A periodic stable fixed

point satisfies that, in its neighbourhood, all eigenvalues of the Jacobian matrix

DP =
∂fcl
∂xk

(x∗) (6.1)

lie within a unit circle (|λ| < 1) [50], where fcl indicates closed-loop system dy-

namics. A sketch for the return map is shown in Fig. 6.2. The figure shows that

for an initial condition x−, the states undergo an impulsive impact. Then the closed-

loop stance dynamics take place until the next intersection with the switching surface

occurs.

Figure 6.2: Stride-to-stride return (Poincaré) map of the system where switching sur-

face S is selected as Poincaré section. The dynamics starts from x−, undergoes an

impact x+ = ∆(x−), and evolves into the next x− in accordance with closed-loop

stance dynamics.
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Since there is no closed-form analytical solution for such nonlinear ordinary differ-

ential equations, generating the Jacobian matrix (6.1) requires an intensive numerical

calculation. Employing a numerical differentiation method [51, Chapter 6], one can

calculate each individual term of the Jacobian matrix using the centered formula of

order O(h4)

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
(6.2)

where h indicates step size for the numerical differentiation. Selection of h is im-

portant because selecting it too high or too small results in wrong estimation [51,

Chapter 6]. Choosing it to be too small causes the result of the differentiation to

be zero or almost zero since the functions in the numerator of (6.2) lose their signifi-

cance with respect to each other, i.e., they all results in the same number. On the other

hand, selecting h to be too high prevents the two points from being close enough to

each other to extract information from that particular location. In order to overcome

this selection issue, starting from a relatively high step size selection, one can reduce

the step size until the result of differentiation starts to converge to zero. As a result,

in this study, h is selected to be 10−2−(N/10) and the differentiation is repeated with

increasing N until the condition

|DN+1 −DN | ≥ |DN −DN−1| for N = 1, 2, . . . (6.3)

holds. The condition ensures that the step size is reduced until the differentiation starts

to converge to zero. The numerical differentiation has to be repeated for each member

of the Jacobian matrix, which contains 2n×2n individual members. Considering (6.2)

and (6.3), for a 10× 10 Jacobian matrix, the closed-loop dynamics have to be solved

at least 1200 times throughout a full walking step.

Since the gait stability can be determined by analyzing the eigenvalues of the system’s

single-step return map, which is linearized about the fixed point, this tool can be used

to comment on the performances of the controllers introduced in previous chapters.

The maximum magnitude eigenvalues of the undisturbed closed-loop systems with

zero dynamics control, adaptive model predictive control, and adaptive power optimal

control are given in the first column of Table 6.1, respectively. Since no disturbance

and uncertainty is introduced, similar maximum magnitude eigenvalues are obtained.

Input limits are already taken into account during the trajectory generation optimiza-
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tion, and in the undisturbed case, everything is within the constrained limits, and no

input saturation occurs.

In order to check the robustness of the controllers against modeling errors, the same

calculation is repeated with some modeling error introduced in the system dynamics.

There always are some unavoidable deviations between the dynamical model and the

actual system in real-life applications. In order to mimic these differences, an aggres-

sive modeling error is introduced, and the mass of the torso is multiplied by two in

the simulator. The disturbance is introduced in the torso because it is the heaviest,

the longest, and the unactuated joint. The maximum magnitude eigenvalues of the

disturbed closed-loop systems with zero dynamics control, adaptive model predictive

control, and adaptive power optimal control are given in the second column of Ta-

ble 6.1, respectively. Since the maximum magnitude eigenvalue of the closed-loop

system with zero dynamics control increased dramatically. This controller mainly

relies on direct torque computation from the system dynamics, and any error intro-

duced in the system model reduces the stability of the closed-loop system. Since the

eigenvalue of the one-step response of the walker is too close to unity, the closed-

loop system is simulated for multiple steps. It is observed that the controller cannot

maintain stability, and the walker falls forward after two walking steps. The result

is the same even after the input saturation is disabled. On the other hand, since the

model predictive control is based on input selection that minimizes the cost function

(4.8) and (5.1), it handles modeling errors better, and among the others, it results

in the smallest maximum magnitude eigenvalue. Input selection in the model pre-

dictive control method does not directly rely on the system dynamics, as is the case

in the computed torque control. The maximum magnitude eigenvalue of the closed-

loop system with power optimal control is higher than the one with model predictive

control. Since the mass of the torso is multiplied by two, the walker tends to fall for-

ward. In order not to fall forward, the velocity of the swing leg should be increased

such that the impact occurs before the walker falls. In the power optimal control, the

controller does not apply high torques at high velocities since the input power is min-

imized. This behavior decreases the high-speed disturbance rejection performance of

the system, as also shown in the basin of attraction calculation (see Fig. 6.1).

70



Table 6.1: Maximum magnitude eigenvalues of the disturbed and undisturbed closed-

loop systems.

Undisturbed Doubled Torso Mass

Zero Dynamics Control 0.75 0.94

Adaptive MPC 0.71 0.66

Power Optimal Control 0.78 0.84
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CHAPTER 7

DISCUSSION

This study discusses dynamic modeling and control of five-link underactuated planar

bipedal walking. It is shown that using the hybrid zero dynamics notion, considering

the desired characteristics, a walking trajectory can be generated for bipedal walk-

ers. Additionally, it is also shown that using the zero dynamics notion, a feedback

linearization input with PD control can be developed such that the generated desired

trajectory is followed. One drawback of this method is that since the trajectory gen-

eration optimization problem contains too many nonlinear equality and inequality

constraints and since the dimension of the system is too high, the trajectory genera-

tion optimization problem has to be solved offline. Then the generated trajectory is

followed using a zero dynamics control, i.e., a computed torque with PD control. This

input is an unconstrained computed torque, which means when there is a disturbance

or uncertainty, nothing prevents input from exceeding its limits. Then it is shown that

an adaptive model predictive control method can be implemented such that online

trajectory tracking can be done with an input limited optimal control. Additionally,

it is discussed that, since power input is also a consideration, the cost function of the

controller can be manipulated such that it minimizes power usage while limiting the

input torque of the system.

An important aspect of HZD optimization for trajectory generation is that the so-

lution does not guarantee existence and optimality. Since the cost function is highly

nonlinear, the method allows finding a solution if there exists that satisfies constraints.

And offline calculation necessity prevents the walker from adapting itself for different

walking surfaces such as inclination, stair climbing, roughness, etc. As mentioned,

in order to adjust the walker for different walking surfaces, literature that implements
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HZD employs a trajectory library such that with a proper switching policy, walking

gait can be switched depending on surface conditions. This approach also requires

foresight such that the designer should predict all types of conditions, generate proper

walking gaits corresponding to those conditions and store them in the library.

The performances of the controllers are compared within their corresponding chap-

ters and in chapter 6. It is shown that the adaptive model predictive control is superior

to the zero dynamics control in many aspects. First of all, it accounts for input satu-

ration and regulates the walker accordingly. Since the model predictive control does

not calculate torque directly relying on the system dynamics, as in the zero dynam-

ics control, the control method allows a certain amount of posture changes around

the predefined trajectory. This posture change enables the walker to be more robust

against disturbances than the input saturated zero dynamics control.

Even though some performance comparisons are made between different controllers,

it should be noted that parameter selections are not absolute. Eigenvalues and eigen-

vectors of numerically calculated Poincaré return map estimations are employed for

parameter tuning. A critical drawback of numerical computations is that they are not

insightful. It is very difficult, if not impossible, to establish a cause-and-effect rela-

tionship between a particular parameter and the resultant numerical computation, and

the information is local. In this case, it is even more challenging because the system’s

dynamics are highly nonlinear, and the dimension of the model is too high. Con-

sidering these, even though some well-educated guesses are made, and some proper

mathematical notions are used, it is clear that the selected parameters do not guarantee

the best performance. Additionally, since the stability information is local, it is hard

to estimate the system’s behavior under disturbances and uncertainties. The system’s

response to various effects is observed throughout the study to compensate for this

issue. In the different regions, the controllers may show different performances.

Even though it is shown that the proposed adaptive model predictive control is su-

perior to the zero dynamics control in many aspects, it has its own drawbacks. It is

discussed that parameter selection for the proposed adaptive model predictive control

is not trivial, as it was almost trivial for zero dynamics control. Additionally, it re-

quires much more parameter selection than the zero dynamics control. Further, the
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implementation of zero dynamics control is more straightforward since the proposed

adaptive model predictive control requires much more preparation to obtain the corre-

sponding cost function. After the cost function generation, an optimization problem

solver takes place and performs additional computations to find cost-minimizing in-

puts.

7.1 Future Studies

Unlike the approach followed in this study, the horizon of the model predictive con-

trol usually contains two variables called the control horizon and prediction horizon.

The control horizon indicates the number of time steps that are to be controlled with

changing input. The prediction horizon indicates the number of further time steps

that are to be observed with constant input. An increase in the control horizon in-

creases the required amount of computation to calculate the system’s input. On the

other hand, since there is no new input calculation during the prediction horizon, it is

used to obtain a more informative cost function. In order to increase the performance

of the controller, a good balance should be found between the computational load

and good system estimation. A more throughout explanation along with parameter

selection discussions is captured in [44, Chapter 20]. Even though the system model

of the walker introduced in this study is highly nonlinear and estimation and param-

eter selection are not that trivial, separating the control and prediction horizon in the

controllers introduced in this study could increase the walker’s performance. Observ-

ing the performance of the closed-loop systems with separate control and prediction

horizon is a future study.

One of the main differences between legged robots and other mechatronics machines

is that legged robots are not fixed to a place and interact with changing environments,

for example, different surface types. Additionally, since long open kinematic chains

constitute them and they contain many joints, the dynamics of bipedal walkers are

too complicated. These issues motivate the importance of experimental realization of

the proposed control methods for such robotic walkers. Implementing the proposed

control method on an experimental testbed is an open problem in future studies. If it

is not possible, implementing these methods on a well-accepted physical simulator,
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such as gazebo, is also a valuable prospective study.

In this study, during the model predictive control implementation, impact dynamics

are not taken into account. Even though the horizon is too short and only the first

input computation is used at each time step, detecting impact and switching system

dynamics during cost function generation would enhance the system’s closed-loop

performance. It should be noted that due to the system’s nonlinearity, impact detec-

tion while constructing cost function is not that trivial.
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