
A NOVEL CONTAINER ATTACKS DATA SET FOR INTRUSION DETECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HALE BERA OĞUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY 2022

Approval of the thesis:

A NOVEL CONTAINER ATTACKS DATA SET FOR INTRUSION
DETECTION

submitted by HALE BERA OĞUR in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil KALIPÇILAR
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit OĞUZTÜZÜN
Head of Department, Computer Engineering

Assist. Prof. Dr. Pelin ANGIN
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Hikmet DOĞRU
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Burak CAN
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Pelin ANGIN
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Hale Bera OĞUR

Signature :

iv

ABSTRACT

A NOVEL CONTAINER ATTACKS DATA SET FOR INTRUSION
DETECTION

OĞUR, Hale Bera
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Pelin ANGIN

May 2022, 53 pages

Recent years have witnessed a rapid increase in the use of the cloud, and especially

the container technology, which is very convenient to use in the cloud environment

due to its ability to deploy microservices quickly and easily. A number of studies

have been carried out on the security of this technology since the day it started to be

used. However, ensuring inclusive security is still a critical need. As containers are

a relatively new technology, it is essential to discover their security vulnerabilities

by testing them with continuous and up-to-date attacks to develop effective defense

systems.

Today, machine learning-based intrusion detection and prevention systems are an ef-

fective option for securing many platforms including containers. The major issue

with these approaches is the need for appropriate and comprehensive labelled data

sets, which is a common problem in any machine learning-based study.

In this thesis, we describe a novel public container attacks data set we have created

for machine-learning based intrusion detection, which focuses on container attacks

extracted from the Common Vulnerabilities and Exposures (CVE) platform for the

v

period 2019-2022. The data set comprises attacks simulated on vulnerable container

images deployed in a Kubernetes orchestration environment. We believe the data

set will be instrumental for advancing intrusion detection research and practice for

containers, which will be increasingly widespread in the years to come.

Keywords: Container security, cyber attack dataset, Kubernetes

vi

ÖZ

SIZMA TESPİTİ İÇİN YENİ BİR KONTEYNER SALDIRILARI VERİ
KÜMESİ

OĞUR, Hale Bera
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Pelin ANGIN

Mayıs 2022 , 53 sayfa

Son yıllarda bulutun, ve özellikle mikroservisleri hızlı ve kolay bir şekilde dağıta-

bilme özelliğinden dolayı bulut ortamında kullanımı oldukça uygun olan konteyner

teknolojisinin kullanımında hızlı bir artış yaşanmıştır. Bu teknolojinin kullanılmaya

başlandığı günden itibaren güvenliği konusunda bir takım çalışmalar yapılmıştır. Bu-

nunla birlikte, konteynerler için kapsayıcı güvenliğin sağlanması hala kritik bir ihti-

yaçtır. Konteynerler nispeten yeni bir teknoloji olduğundan, etkili savunma sistemleri

geliştirmek için sürekli ve güncel saldırılarla test edilerek güvenlik açıklarının keşfe-

dilmesi önemlidir.

Günümüzde makine öğrenme tabanlı saldırı tespit ve önleme sistemleri, konteynerler

de dahil olmak üzere birçok platformun güvenliğini sağlamak için etkili bir seçenek-

tir. Bu yaklaşımlarla ilgili en büyük sorun, herhangi bir makine öğrenme tabanlı çalış-

mada yaygın bir sorun olan uygun ve kapsamlı etiketlenmiş veri kümelerine duyulan

ihtiyaçtır.

Bu tezde, 2019-2022 dönemi için Ortak Güvenlik Açıkları ve Etkilenmeler (CVE)

vii

platformundan çıkarılan konteyner saldırılarına odaklanan, makine öğrenme tabanlı

sızma tespiti için oluşturduğumuz yeni bir genel konteyner saldırı veri kümesi sunul-

muştur. Veri kümesi, bir Kubernetes düzenleme ortamında kurulu, güvenlik açıkları

bulunan kapsayıcı görüntüleri üzerinde simüle edilen saldırıları içermektedir. Oluştu-

rulan veri kümesinin, önümüzdeki yıllarda giderek yaygınlaşacak olan konteynerler

için sızma tespit araştırmalarını ve uygulamalarını geliştirmede etkili olması beklen-

mektedir.

Anahtar Kelimeler: Konteyner Güvenliği, siber saldırı veri kümesi, Kubernetes

viii

To My Family

ix

ACKNOWLEDGMENTS

I would like to express my appreciation to my thesis supervisor Pelin Angın for her

encouragement, support and guidance during the thesis period. I would like to thank

my thesis committee members Ali Hikmet Doğru and Ahmet Burak Can for their

invaluable feedback, which has helped me improve the thesis a lot.

I would like to thank my labmates Yiğit Sever, İlter Taha Aktolga, Said Gürbüz, Meriç

Karadayı, Vahab Jabrayilov, Adnan Harun Doğan, Buğra Alparslan, Batuhan Dilek,

Göktuğ Ekinci, Şerif Can Tekin, Ali Kömürcü and Mert Atay for their great help and

support. I would also like to thank my friends and co-workers for their patience and

support.

Lastly, I would like to thank to my family.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Thesis Outline . 2

2 PRELIMINARIES . 5

2.1 Cloud Agility Challenges . 5

2.2 Microservices . 6

2.3 Containers . 7

2.3.1 Docker . 9

2.4 Kubernetes . 10

2.5 Container Security . 11

xi

2.5.1 Definitions . 11

2.5.2 Container Attack Vectors . 12

2.5.3 Container Security Databases 14

2.5.3.1 CVE . 14

2.5.3.2 CVE DETAILS . 15

2.5.3.3 NVD . 15

2.5.3.4 Other Databases . 15

3 RELATED WORK . 17

3.1 Container Security Studies . 17

3.2 Container Security Datasets . 18

4 METHODOLOGY . 25

4.1 Attack Selection Strategy . 25

4.1.1 CVE Details Review . 25

4.1.2 NVD Review . 26

4.1.3 Nuclei Review . 27

4.1.4 OWASP Review . 28

4.1.5 Vulnerability Elimination . 33

4.1.6 Selected Weakness Descriptions 33

4.2 Simulation Environment . 35

4.2.1 Nuclei Engine . 36

4.2.2 Testing Environment . 36

4.3 Data Set . 37

4.3.1 Experiments . 37

xii

4.3.2 Monitoring . 38

4.3.3 Feature Extraction . 38

4.3.4 Resulting Data Set . 43

5 CONCLUSIONS . 47

REFERENCES . 49

xiii

LIST OF TABLES

TABLES

Table 4.1 NVD Container Security-Related Data Statistics 27

Table 4.2 Number of YAML files having a proper description text 28

Table 4.3 Top CWE codes for 2021 retrieved from CVE Details in January

2022 [1]. 29

Table 4.4 Number of YAML files including a CWE-ID information. 30

Table 4.5 NUCLEI Yaml Files (2019-2021) Related with OWASP Top 10 CWEs 31

Table 4.6 List of Selected Attacks for Implementation 33

Table 4.7 NUCLEI Template Statistics . 36

Table 4.8 List of extracted features and descriptions 39

Table 4.9 Classification Results for SVM algorithm. 44

Table 4.10 Classification Results for Random Forest Algorithm. 45

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Cloud agility solutions . 6

Figure 2.2 Microservices [2] . 7

Figure 2.3 Containers vs virtual machines 8

Figure 2.4 Docker overview [3] . 10

Figure 2.5 Kubernetes architecture . 11

Figure 2.6 Container attack vectors [4] . 12

Figure 2.7 MITRE container attack matrix [5] 14

Figure 4.1 Number of CVE codes per year retrieved form CVE Details in

January 2022 [6]. 26

xv

LIST OF ABBREVIATIONS

NIST National Institute of Standards and Technology

CVE Common Vulnerabilities and Exposures

NVD National Vulnerability Database

CISA Cybersecurity and Infrastructure Security Agency

DHS Department of Homeland Security

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

YAML Yet Another Markup Language

DNS Domain Name Server

PE Privilege Escalation

xvi

CHAPTER 1

INTRODUCTION

Advances in cloud computing systems in recent years have led to the development

of applications based on the microservices architecture to meet the high performance

requirements of systems using the cloud. This architecture includes a complex appli-

cation structure that consists of services that exist as independent entities and interact

with each other through specific APIs. Microservice architecture frequently uses a

structure called container, which is much lighter and faster than virtual machines in

the cloud. The rapid digital transformation experienced in recent years has led to

the widespread use of container-based application structures [7]. The proliferation of

container networks has revealed the potential of exposing these networks to many cy-

ber attacks caused by the malicious capture of endpoints such as IoT devices. Recent

surveys on container adoption in enterprises show that security is still the top concern

standing in the way of more widespread adoption of the technology [8].

A number of studies have been carried out on the security of the container technology

since its introduction. However, ensuring inclusive security is still a critical need. As

a new technology, it is essential to discover the vulnerabilities that threaten contain-

ers by continuously testing them with up-to-date attacks to develop effective defense

systems. In recent years, machine learning (ML) based studies have been carried

out on the development of intrusion detection systems for containers. The need for

comprehensive datasets, a common problem in machine learning-based studies, is an

important issue to be addressed for developing effective intrusion detection models.

1

1.1 Contributions

Studies carried out in the field of cyber security primarily refer to Common Vulnera-

bilities and Exposures (CVE) [9], which contain the security vulnerabilities reported

worldwide. Within the scope of the information we have obtained from the literature

research conducted in this context, it has been determined that there are very few

studies related to attacks against containers, most being limited to the vulnerabilities

published in 2017 and 2018. Still, there is no machine learning data set study that

addresses the vulnerabilities used in attacks against containers thus far.

In this thesis we aim to make a contribution to the field of intrusion detection for

container-based application systems by:

• Describing a systematic process for extracting the vulnerabilities affecting con-

tainers

• Describing the implementation of attacks for forming a container attacks data

set in the Kubernetes environment

• Creating a publicly available data set to be used in studies on machine learning-

based intrusion detection systems for containers

To the best of our knowledge, this is the first systematic study for forming a machine

learning data set for intrusion detection, which focuses on the top vulnerabilities for

containers in the period 2019-2022.

1.2 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we provide background information on cloud agility challenges, con-

tainers, microservices and the Kubernetes orchestration platform. We also discuss at-

tack vectors against container-based applications, and provide an overview of databases

containing container-specific vulnerabilities as well as other security vulnerabilities.

2

In Chapter 3, we provide an overview of related works in the field of container se-

curity and a detailed discussion of previously created data sets for attacks against

containers.

In Chapter 4, we present our methodology for forming the container attacks data set.

We also describe our simulation environment for attack implementation and provide

the details of our data set.

In Chapter 5, we conclude the thesis.

3

4

CHAPTER 2

PRELIMINARIES

2.1 Cloud Agility Challenges

The increasing adoption of cloud computing for a variety of applications in recent

years has made agile cloud services a must. Providing high agility in the cloud faces

several challenges, among which are the following:

• Virtual machine based cloud solutions are resource-demanding.

• Lightweight, portable application components are needed for quick deploy-

ment.

• Geographically-distributed mission-critical applications may suffer from limi-

tations in network quality of service (QoS).

• Provisioning networks to deliver optimal paths between new applications and

users can take hours or days.

• Network configuration is highly manual, requiring device-by-device configura-

tion in data center networks.

• Enforcement of policies involve a complex architecture.

• Enterprises have limited control over cloud operations.

A number of solutions for these challenges have been introduced, with some resulting

in paradigm changes in their respective fields. Among the major technologies that

support an agile cloud are microservices, containers and software-defined networking

5

(SDN)/network functions virtualization (NFV). Figure 2.1 provides a summary of the

enabling technologies for cloud agility.

Figure 2.1: Cloud agility solutions

While these enabling technologies have been instrumental in increasing cloud agility,

they have their peculiar security vulnerabilities that need to be addressed. In this

work, we focus on the first two technologies, i.e. microservices and their enabling

software unit, containers, which are described in the following subsections.

2.2 Microservices

Microservices are a realization of the service-oriented architecture model for design-

ing applications composed of small services that can be distributed and individually

scaled by completely integrated delivery machines, with limited centralized adminis-

tration [10]. Microservices are designed around different functionalities of the organi-

zation. Each microservice operates in its process and communicates through mecha-

nisms of lightweightness, often using application programming interfaces (API). Fig-

ure 2.2 demonstrates the difference between monolithic applications and microser-

vices.

Microservices tackle the drawbacks of monolithic applications. The major differences

of microservices from monolithic applications can be summarized as follows:

6

• Microservices are small and can reboot faster when upgrading or recovering

from an unsuccessful state.

• Microservices are loosely coupled, so the failure of one microservice would

have little effect on other microservices.

• The microservices architectural style’s fine granularity makes scaling more

flexible and more efficient, as each microservice can evolve at its own pace.

• In the microservices architecture, services are distributed across servers, instead

of replicating whole applications in different servers for scalability.

• Microservices provide the opportunity for continuous delivery, while mono-

lithic applications take longer for delivery of updates.

Figure 2.2: Microservices [2]

2.3 Containers

A container is a lightweight package in which a software application can be stored,

carried and run on a compatible OS. It encapsulates application logic components

provisioned with minimal resources (its own operating environment) required. Con-

tainers involve virtualization at operating system (OS) level rather than hardware level

7

and they can be run on any host without special configuration, i.e. there is no need

for an embedded OS. While the requirements for running a container are are a com-

patible OS and a compatible runtime environment for the containers, the required

components to build a microservices-based application based on containers is a plat-

form to manage the applications and a tool for container orchestration, management,

networking and security.

Figure 2.3: Containers vs virtual machines

The main advantages of containers over virtual machines can be summarized as fol-

lows [11]:

• Although both technologies are based on virtualization, containers use OS-

level virtualization rather than hardware level virtualization, which achieves

improved performance.

• In containers, application instructions do not go through a guest OS and hyper-

visor to reach CPU, while in virtual machines they do.

• Containers have a smaller size compared to virtual machines.

• Containers provide faster application startup as compared to virtual machines.

• Containers provide reduced footprint compared to virtual machines.

8

Containers provide enhanced agility as compared to virtual machines by sharing the

same OS with many other containers, which achieves reduced resource consumption

and increased efficiency. They also provide fast application upload and no downtime

during application updates, as well as increased portability features with applications

separated from the underlying infrastructure.

2.3.1 Docker

Docker [3] has been one of the most popular container technologies since the in-

ception of containers. Docker images have an onion-like layered structure that uses

union file systems to form a single coherent file system. Image build changes yield

the creation of a new layer rather than replacing the whole image. This makes the

distribution faster as it only sends the updated images built from bases (e.g. Ubuntu

image) using instructions.

A Docker container is composed of an operating system, user-added files, and meta-

data. When a container runs, a new container is created with a read-write layer added

on top of it. A network interface is allocated, and an IP address is assigned to the

container. Figure 2.4 provides an overview of the components of Docker.

The Docker architecture consists of the following elements:

• Docker daemon: This component handles the main functionalities such as

building, running, and distributing Docker containers. It listens to and com-

municates with clients.

• Docker client: Binary user interface that accepts commands from the user and

can communicate with multiple daemons in parallel.

• Docker images (build): Template container images.

• Docker registries (distribution): Public or private stores for uploading/down-

loading container images.

• Docker containers (run): Hold everything needed to run applications created

from Docker images.

9

Figure 2.4: Docker overview [3]

2.4 Kubernetes

Since containers are isolated, they do not know each other. Therefore, an orches-

tration framework is required to handle container deployment in a way that they can

communicate with each other when part of a microservices-based application. Kuber-

netes is a Google open source project that provides a framework for managing con-

tainerized distributed systems that support portable configuration, automation, easy

deployment and creation of containers, and scalability [12]. It has become one of the

most popular container orchestration platforms in recent years.

In this work, we also use the Kubernetes Environment due to its being an open-source

and widely used project by many organizations, ranging from Red Hat to VMware

Tanzu [13].

Figure 2.5 demonstrates Kubernetes architecture. Each node, which hosts part of

the distributed application, does so by leveraging a container technology. The nodes

also run two kube-proxy, which gives access to the running application, and kubelet,

which receives commands from the control plane. The control plane (master node)

runs the API server, the scheduler, the controller manager and etcd, which is a highly

available key-value store for service discovery and shared configuration.

10

Figure 2.5: Kubernetes architecture

2.5 Container Security

This section will give the simple definitions of vulnerability, exploit, and attack ter-

minologies with an overview of container attack vectors.

2.5.1 Definitions

Vulnerabilities: Bugs are defined as mistakes that happen during the building or cod-

ing process that create weaknesses in systems. Many of these bugs have the potential

to be exploited for malicious actions and are described as vulnerabilities [14].

Exploits/Attacks: An exploit is simply defined as the behavior of the utilization of a

vulnerability by using code pieces or commands, which is the attack itself [14].

Remote Code Execution (RCE): RCE is a remote host with a downloaded malicious

malware exploitation attack, that can be exploited by injecting an input from the user-

side, and can result in the compromising of the entire server. This attack type is

commonly used for remote shell, coin mining, and mass-scanning.

Privilege Escalation (PE): PE attacks aim to gain unauthorized access to an orga-

11

nization’s systems by finding weak points in defense systems. Mostly attackers start

with a lower level of access than they need. After that point, attackers perform further

attempts to elevate their current privileges and try to gain more permissions for more

critical systems [15].

This thesis focuses primarily on RCE and PE attacks on containers. The reasons for

selecting these two will be elaborated on in the following sections.

2.5.2 Container Attack Vectors

Figure 2.6 provides an overview of attack surfaces for a container. While some of

these attacks such as insecure networking are also valid for other application struc-

tures, some such as container image related attacks are specific to containers. In any

case, the isolation between containers running on the same physical machine is not

as strong as the isolation between virtual machines running on the same physical

machine. This creates additional security issues when containers are preferred for

application deployment.

Figure 2.6: Container attack vectors [4]

The major attack vectors against containers can be summarized as follows:

12

• Vulnerable application code: The software code itself or its third-party de-

pendencies built in an image can threaten the system’s security.

• Badly configured container images: Shortsightedly configured container im-

ages may realize vulnerabilities during further periods of their lifecycles. We

need to avoid giving over privileges to this type of image in the configuration

step.

• Build machine attacks: If an unauthorized actor finds a way to modify the

building process on an image, malicious code can be inserted in it, which can

bypass the production environment.

• Supply chain attacks: A malicious actor can upload specific code inserted

images into publicly known and trusted image repositories, where anybody can

pull it without knowing what is inside.

• Badly configured containers: These results from running a container with

unexpected privileges with an unknown configuration file.

• Vulnerable hosts: The host machine the container is deployed on may be vul-

nerable, which can result in sensitive data thefts.

• Exposed secrets: In a containerized environment, tokens, credentials, and pass-

words used in an application could be exposed if not securely transferred be-

tween the destination and source without violating their security from other

components.

• Insecure networking: Container-to container or container-to-outside commu-

nications could lead to vulnerabilities if not properly secured.

• Container escape vulnerabilities: This type of threat can occur at the weak

points of the container runtime by escaping from its defined locations in the

environment.

MITRE ATT&CK publishes a matrix [16] including tactics and techniques for con-

tainer security. This container attacks matrix is grouped under 8 tactics, which are

Initial Access, Execution, Persistence, Privilege Escalation, Defense, Evasion, Cre-

dential Access, Discovery and Impact. MITRE gives detailed techniques and tactics

13

for each attack vector category. Following this matrix, we decided to base our data

set on the two tactics, Execution and Privilege Escalation. This decision was deter-

mined by our result from OWASP’s Most Hazardous Top 25 Weaknesses list analysis.

Detailed information will be given under the attack selection strategies section.

Interruption of an attack without getting the last access or the sensitive information is

not the natural behavior of an attacker. For that reason, from the initial discovery to

gaining the highest accessing capability should be considered aggregately. Thus, in

addition to these two base tactics, we also examined a few other tactics and techniques

that are supportive of RCE and PE; we consider Initial Access, Persistence, Credential

Access, and Discovery tactics in our attack selection process.

Figure 2.7: MITRE container attack matrix [5]

2.5.3 Container Security Databases

2.5.3.1 CVE

Common Vulnerabilities and Exposures (CVE) program is a benchmark for the secu-

rity community and is owned, starting in 1999 by The MITRE Corporation, and it is

sponsored by the U.S. DHS from CISA.

It maintains publicly exposed vulnerabilities collected by partners from all over the

world. This program identifies, defines, and catalogues the collected vulnerabilities

and publishes each vulnerability with a unique identifier named CVE code or number,

which creates a common language among information technology and cyber security

14

experts.

There are 176,170 CVE Records in its database collected from 1999 to the date of

retrieval of this information, which is May 14, 2022 [9].

2.5.3.2 CVE DETAILS

CVE only maintains the database containing the CVE Records containing the vulner-

ability details. Thus, to fill the need for additional interpretations using these records,

there are additional databases.

CVE Details is a personal database maintained by Serkan ÖZKAN who is also the

project owner of Open Vulnerability and Assessment Language (OVAL). The site

maintains different statistics extracted from CVE Records published by CVE[6].

2.5.3.3 NVD

NIST launched a program named U.S. National Vulnerability Database (NVD) in

2005, which is a different program than CVE. It is also sponsored by the U.S. DHS

from CISA.

NVD serves as a vulnerability database that is strictly synchronized with the CVE

Records and immediately reflects any updates on CVE. NVD proposes enhanced in-

formation per record by giving suggestions for fixing, assigning severity level scores

and impact ratings, which also enables advanced searching opportunities [17].

2.5.3.4 Other Databases

Other than the three databases mentioned above there are some large companies like

Sysdig, RedHat, Tenable etc. that maintain studies and publish references, guides

and white papers about container security. Among these, Sysdig is a company that

provides cloud, container and Kubernetes related security tools. In 2021, the company

published a guide including best practices for container security [18]. In this guide

it is listed that web application security is mostly in the responsibility of the user-

15

side instead of the provider, which means that it is more risky relative to the others

that are in the responsibility of providers and needs to be defended by comprehensive

intrusion detection systems.

16

CHAPTER 3

RELATED WORK

3.1 Container Security Studies

Since the rise of containers as a new technology, organizations have been working on

establishing security standards for them. Standards specify the common properties for

a product or service in order to work by themselves and with other product or service

systems in a compatible and proper [19] manner. Besides standards, there is also

comprehensive documentation like policies, procedures, whitepapers, and guidelines

[20].

The first standardization for this novel technology was published by the National In-

stitute of Standards and Technology (NIST) as a Special Publication named Applica-

tion Container Security Guide (NIST 800-190) at the end of 2017 [21]. In the NIST

880-190, major risks and countermeasures are handled for container technology’s

core components which include “Image”, “Registry”, “Orchestrator”, “Container”

and “Host OS”. Although there is also a variety of reports, guides, and whitepapers

published by large cyber security organizations like Sysdig, Red Hat, Tenable, etc.

NIST 800-190 is considered a milestone for container security.

On the other hand, a comprehensive survey on container security done by [22] in

2019 matches the countermeasures retrieved from around 30 container security stud-

ies with the risk subtitles listed/specified in NIST 800-190. The study shows that

some threats remain that NIST uncovered but are covered by other container security

studies and lays emphasis on the need for additional research studies to achieve much

more comprehensive standardization.

17

In addition to NIST 800-190 and the other studies mentioned above, MITRE has

published a release (v9), last updated in April 2021, that discusses its techniques for

attack tactics against container platforms. The release has based the threats against

containers on a more detailed systematic than previous studies.

Our literature research focused on the range of each study, reference points of the

study in terms of the standards, guides, reports, if they exist, categorization of con-

tainer threats, handled vulnerabilities and attacks, and especially the attack data sets

they used or created. Here, we aim to comprehensively look at the literature research

on container security data sets, examine how the studies deal with container security,

and determine which area the data set is needed more primarily. For this reason, we

have included predominantly ML-based and also some recent image-based studies in

our research.

3.2 Container Security Datasets

Among previously released container security data sets, we have seen static analysis

on container images and dynamic analysis on container runtime for container security

purposes under the argument of the container engines’ sufficiency at protecting the

application within the container and the insufficiency at container image protection

from unauthorized access [23]. They take general security requirements under the

division of six as a base: system integrity, system protection, service acquisition,

maintenance, authentication and identification, and access control mechanism. They

try to predict access control mechanisms through four use cases considering the safety

of container, inter-container, and host. For this purpose, they perform vulnerability

scanning analysis on popular ten docker images in 2021, resulting in the most frequent

vulnerabilities being related to memory corruption/buffer over-read and DoS attack,

which will lead to information leakage and file modification.

Due to having a large number of images, the DockerHub has been studied widely.

Another research that focuses on container image protection [24] performed a wider

analysis to present the vulnerability landscape on 2500 Docker images collected at the

beginning of 2020. They extracted several statistics, such as 329 being the average

18

occurrence rate of each vulnerability per image from the 5,554 unique vulnerabilities

having an occurrence rate of 14,031 in total. Besides, they showed the most frequently

occurring ten vulnerabilities having the CVE code starting from 2010 to 2019. The

types of the ten most frequent vulnerabilities are listed as related to improper input

validation, code execution, restriction bypass, and overflow. The research concludes

with the statement that the execution of code and overflow-related vulnerabilities are

the most frequent and critical ones. This study did not present an ML-ready data set

though.

The study by Cavalcanti et al. [25] focused on the performance comparison of container-

level anomaly-based intrusion detection on application containers containing four

specific MYSQL vulnerabilities in the CVE code range of 2012 to 2017, consider-

ing the classes, DoS and integer overflows, PE, and authentication bypassing. They

constructed 200000 system call records in total. For this, they created malicious

and benign containers of a specific version of a MySQL image. Half of the resulting

records belong to benign, and others belong to malicious behavior, including an equal

number of samples from each of the four vulnerabilities (25,000 records). They used

60 percent for training and the rest for test data to compare several different intrusion

detection classifiers.

Another study was performed by Pope et al. [26]. In their research, they collected

a data set of the publicly released 374 kernel memory corruption vulnerabilities for

their strong relation with PE and container escape attacks, which are the two most

severe threats for cloud container services. The vulnerabilities were collected from

the NVD database between 2008 to 2018. In addition to that, essential metric data

were extracted against the attacker on the PE and container escape attacks. As a

conclusive statement, even by obtaining ROOT privilege in a container, it is still hard

to escape from a public cloud container.

A previous study from Lin et al. [27] created an exploit data set for the Linux con-

tainer platform and a defense mechanism for privilege escalation. They collected

400 exploits published in 2016 and 2017 related to web application, remote control,

PE, and DoS according to the Exploit-DB division of the exploits into four categories.

They found 274 CVEs used by these exploits (Only 24 CVEs were published between

19

2013 and 2015.). 235 exploits were found capable of affecting container platforms,

and to fasten the evaluation process, 88 typical exploits were filtered out of 233, and

148 vulnerabilities related to these exploits were collected. However, due to some

conceivable reasons, i.e., failure of exploits, in the end, they focused on the 11 PE-

related exploits.

As a result of our research, we observed that studies were carried out on image files,

vulnerabilities, and exploitation in order to contribute to the development of defense

mechanisms for container security. We have seen that there are studies that reveal the

state of the existing landscape, such as what the type of vulnerabilities can be found

on the top 10 popular images of that year, as in [23] or 2500 images collected from

different years independently from the time, [24], in order to shed light on the future

defense mechanisms, instead of aiming to create any defense mechanism.

When we examined the scope of the studies, we saw that many reference databases

such as CVE, NVD and ExploitDB were used in them. However, when we look at the

inspiration points of the studies, it is seen that some of them carried out their studies

based on different points such as container images [24], [23], some of them based

on Linux container mechanisms [27], while some others proceeded quite differently

from these, by a more specific selection of an application type, for example a MySQL

application container in [25].

In summary, the types of attacks addressed in these studies, all of which have been

carried out on containers, are:

• [23]: Memory Corruption / Buffer Over-Read and DoS

• [24]: Improper Input Validation, Code Execution, Restriction Bypass, and Over-

flow

• [25]: DoS and Integer Overflows

• [26]: Memory Corruption vulnerabilities, Privilege Escalation and Container

Escape Attacks

• [27]: Web Application, Remote Control, Privilege Escalation and DoS

20

Here, it can be clearly seen that the vulnerabilities of relations with code execution

and overflow, which are the outputs of study [24], are also emphasized in other stud-

ies. For this reason, we expected to accelerate and contribute to the literature studies

on container intrusion detection systems in the coming years by a novel data set for

training and testing, created with the data to be obtained from the attacks using the

vulnerabilities related to two scenarios in 2021, which have the highest number of

vulnerabilities of all time with 20,141.

Among container security solutions is KubAnomaly [28], which made a contribution

by presenting a neural network-based detection system that will detect anomalies on

the system and network part of containers, has carried out its studies based on the

sub-headings of the NIST SP-800-190 Standard on orchestration and runtime risks.

They compared the detection model which they proposed with many large monitoring

systems such as AppArmor, Sysgig, Aqua, which offer features for container runtime

risks too. For the evaluation, they carried out container runtime attacks in four cat-

egories, mainly orchestrator, network-based policy-based, and anomaly-based. Sys-

tems that offer solutions against orchestrator and network-based risks do not provide

a solution for anomaly detection. For this reason, they enabled their anomaly-based

solution to meet orchestrator and network-based risks at the same time. For their

training and testing purposes, they used three different data sets, private, public, and

real-world. For these data sets, instead of listing all the events related to container

behavior, they worked on a data set with a total of 17 system calls, among which

they selected the 14 root directory access features they added on top of them, and

four categories: file input-output, network input-output, memory, and scheduler. The

first data set is called the private data set, which consists of a simple and a complex

data set that they created. Both of the data sets were created from normal user and

abnormal hacker samples in order to be suitable for use for training and testing. They

used JMeter, the Apache performance measurement tool, to simulate normal behav-

ior in the simple data set, and hacker attempts that perform path traversal and DoS

attacks that will affect web service containers were simulated with OWASP Zap, an

open-source penetration testing tool for abnormal behaviors. A more comprehensive

version of the simple data set was obtained by creating fourteen different user be-

haviors in the complex data set. Normal user behaviors were created from randomly

21

selected user events to simulate fourteen different user behaviors. In addition, to Zap

attacks for abnormal behavior, SQL injection and CVE-2017-5638 vulnerability for

command injection attacks were added. On the other hand, a total of 26,000 abnor-

mal behavior samples were collected, more than half of which were SQL injection,

whereas about 9,000 exhibited normal behavior for the complex data set and about

27,000 abnormal behavior. By combining these two created data sets, using the result

data set, approximately sixty percent of which consists of abnormal behaviors, per-

formance comparison was carried out primarily with only the system call logs in the

data set and then with all the collected events.

Here, an important point that shows how their work was hindered due to a data set-

related restrictions is that the classification model they produced according to the

result of this first evaluation did not show good performance during anomaly detection

for Zap attacks, probably because Zap attacks are not uniform, and there are different

types of brute force, and XSS attacks are inside it. It was stated that this was caused by

the presence of various types of web attacks. Since the attack data was not presented

in a separate form before, it was a process that would require labor and time. It

was seen that those who carried out the study preferred to perform the separation

process, so the attack scope that was mastered during the training and testing stages

was limited to the existing one.

They used the selection of synthetic insider test data collected by the Cert Division,

a public data set, to perform secondary validation with a different data set that their

models were not trained on. There is no system call data in this data set. Apart from

that, there are various types, such as device and email data. Log data of malicious

behavior of a user in the data set has been used. It is stated here that the categoriza-

tion of abnormal behavior is done by performing the feature extraction process with

unsupervised learning since the data set does not contain any label.

This article, among other machine learning-based intrusion detection systems, covers

in detail a complete life cycle from start to finish, unlike the others, in the process of

creating the model itself and collecting the train and test data sets in order to achieve

the best performance of the system. It is a good example for those to create a data set,

as it offers three different methods, such as creating a data set from scratch, using a

22

ready-made data set, and hunting live data with the local term.

23

24

CHAPTER 4

METHODOLOGY

4.1 Attack Selection Strategy

In this section, we describe our attack selection strategy used in forming the data set.

Before creating the dataset, we need to select vulnerabilities that could contribute to

the container security literature. In order to do so, we made an investigation based on

the NVD and CVE Details to get some general information related to CVEs world-

wide. We preferred using the NVD because in addition to the description information,

it provides further insights on the severity level of a vulnerability. Moreover, NVD

includes references for proof-of-concept and exploitation codes for most of the vul-

nerabilities with a competent search criterion. Finally, the CVE Details maintains

complementary statistics on the CVEs published by the NVD.

4.1.1 CVE Details Review

The chart in Figure 4.1 was taken from CVE Details. It shows the distribution of

CVE codes published from 1999 to January 2022 by year. Especially in 2017 and

later, except for 2022, we can observe that the number of CVE codes per year has

been multiplied by 2 to 3 times compared to previous years. The reason for this is

stated in [29]: CVE has made an improvement on the assignment process of CVE

numbers in 2017, which decreased the processing time dramatically compared to the

previous years. In addition to this, the rise in cloud, mobile, and IoT platforms after

2017 led to an enlarged attack surface causing a rise in vulnerabilities. The number

of published CVE codes does not necessarily reflect the number of vulnerabilities

25

Figure 4.1: Number of CVE codes per year retrieved form CVE Details in January

2022 [6].

discovered in that year either [29], as there are some vulnerabilities published in a

year with a CVE code from another year. However, it still reflects the number of

vulnerabilities per year that have been made public. It can be deduced from the graph

that there is still a significant number of vulnerabilities that have potentially not been

studied yet, especially in 2021.

4.1.2 NVD Review

On the NVD database, we followed a straightforward methodology to roughly ex-

tract the vulnerabilities related to containers. Most of the other vulnerabilities related

to container security possibly may not contain the keyword “container”. However, as

our purpose is to get a general impression for a starting point, we searched the vulner-

abilities that contain the word “container”. For the search criteria, where the search

keyword is set as “container” without selecting any published date range which cov-

ers the entries containing the “container” keyword for all time, the search returned

627 records up to 01/01/2022. After that, we added a date range as an additional

search criterion. All in all, we selected the published date range between 01/01/2019

and 31/12/2021 which results in 353 entries in total.

We eliminated vulnerabilities with CVE codes that do not reflect its publishing year

by hand, which left us with 337 vulnerabilities. We mentioned that NVD immediately

26

Table 4.1: NVD Container Security-Related Data Statistics

Access Date Year Total

01/01/2022 2019 104

01/01/2022 2020 140

01/01/2022 2021 109

- 2011-2018 16

- Total 353

- NET 337

reflects changes in the CVE Database. Thus, in terms of the above search criteria, for

this thesis, we can roughly assume that by just handling the vulnerabilities with a CVE

code, including any of 2019, 2020, and 2021, we could make our selection/election/-

filtering among more than half of the records that can be obtained from the data set

for the vulnerabilities including the container keyword, which is a very inclusive rate.

4.1.3 Nuclei Review

For implementation, we analyzed the open-source vulnerability scanner Nuclei En-

gine [30], which we chose to automate attacks, to discover its capabilities in terms of

vulnerabilities that it can cover. In Nuclei’s dedicated repository, we performed fur-

ther analysis on the ready-to-use vulnerability template files, which used the special

YAML format, to form our attack data set. For this purpose, we retrieved the Nu-

clei templates from its GitHub repository on 01 January 2022. Table 4.2 summarizes

our findings. We sought the CVE code and description, if they exist, by using bash

commands and converting them into Excel format.

In order to see how many of the NVD vulnerabilities we filtered for the "container"

keyword and the dates between 2019 and 2021 the extracted Nuclei templates can

cover, we matched the CVE codes we obtained from NVD with the Nuclei tem-

plate YAML files. This resulted in only six matched Nuclei YAML files, which

are CVE-2020-11854, CVE-2020-11853, CVE-2020-17496, CVE-2020-9757, CVE-

27

Table 4.2: Number of YAML files having a proper description text

Year Total

Number

of YAML

Files

Nuber of YAML

Files with Proper

Description

Total

2019 106

2020 951 173 485

2021 206

2000-2018 Not examined

2021-37573, and CVE-2021-21978. The result was well below our expectations as,

in the end, the number of implementable vulnerabilities was not sufficient to create a

rich data set. Half of these were eliminated because of their relation to commercial

software (CVE-2020-11853, CVE-2020-11854, CVE-2020-9757). Thus, we decided

to follow a different methodology in the vulnerability selection process.

4.1.4 OWASP Review

Due to the reasons listed under the Nuclei Engine Review section, as an alternative

solution. Instead of directly using CVE codes, we decided to look at one level higher,

and based our research on weaknesses to increase the coverage of our Nuclei tem-

plates set on the NVD vulnerabilities set. For this, in addition to our investigation on

the NVD database, we examined the OWASP’s top twenty-five hazardous weaknesses

listed for 2021. The top ten weaknesses among these are listed in Table 4.3.

OWASP has published top 25 CWE lists for several years [31]. For the 2021 list,

OWASP conducted research on around 32,500 CVE codes by referencing CVE, NVD,

and CVSS records retrieved in March 2021 to find the most hazardous weaknesses

observed in 2019 and 2020. OWASP noted that the main difference in the 2021 list

compared to previous years is that there are more specific weaknesses rather than

class-level weaknesses that are more informative. The score column data in the table

28

Table 4.3: Top CWE codes for 2021 retrieved from CVE Details in January 2022 [1].

Rank ID Name Score 2020

Rank

Change

[1] CWE-787 Out-of-bounds Write 65.93 1

[2] CWE-79 Improper Neutralization of In-

put During Web Page Generation

(’Cross-site Scripting’)

46.84 -1

[3] CWE-125 Out-of-bounds Read 24.9 1

[4] CWE-20 Improper Input Validation 20.47 -1

[5] CWE-78 Improper Neutralization of Spe-

cial Elements used in an OS Com-

mand (’OS Command Injection’)

19.55 5

[6] CWE-89 Improper Neutralization of Spe-

cial Elements used in an SQL

Command (’SQL Injection’)

19.54 0

[7] CWE-416 Use After Free 16.83 1

[8] CWE-22 Improper Limitation of a Path-

name to a Restricted Directory

(’Path Traversal’)

14.69 4

[9] CWE-352 Cross-Site Request Forgery

(CSRF)

14.46 0

[10] CWE-434 Unrestricted Upload of File with

Dangerous Type

8.45 5

29

is calculated as an average value out of 100, using the information of how many of

the vulnerabilities collected from the NVD database are related to the relevant CWE

code and the average CVSS score information generated per CWE as a result of this

matching. The next column shows the change in the ranking of the related weakness

compared to the previous report [1].

We detailed our examination by aggregating the possible technical impacts and ade-

quate scope information of each listed weakness shown in (Only the first 10 CWEs

are shown) Table 4.3. We filtered the technical impact information of each CWE with

the keywords “remote”, “exec”, “code,” and “command” to find the remote code/-

command execution related weaknesses. From this filtration process, we observed

that 13 out of 25 of the listed weaknesses are directly related to RCE for 2019 and

2020.

In addition to the description information, to find out which of these YAML files con-

tain one of the 25 most hazardous vulnerabilities OWASP has released, we retrieved

the CWE code information from our NUCLEI YAML set. The set size decreased

from 485 to 430. The change is shown in Table 4.4.

Table 4.4: Number of YAML files including a CWE-ID information.

Year Number of Unique

CWEs per YAML

Files

Total Number of YAML

Files Including CWE In-

formation

0 1 2 Net

2019 12 94 0 94

2020 20 143 10 153 430

2021 23 181 2 183

Here it can be seen that 55 patch files were not associated with any CWE. However,

12 YAML files were also associated with two weaknesses. Then, we matched the

CWE codes we obtained from OWASP top 25 list with the CWE codes in each Nu-

clei YAML file. Selecting CWE codes instead of CVE codes gives more remarkable

results and covers our set of YAML files better than the NVD set does.

30

Table 4.5: NUCLEI Yaml Files (2019-2021) Related with OWASP Top 10 CWEs

Rank ID Name Unique

Number

of Yaml

Files

Repeating

Yaml

Files

[1] CWE-787 Out-of-bounds Write 1 0

[2] CWE-79 Improper Neutralization of In-

put During Web Page Genera-

tion (’Cross-site Scripting’)

119 1

[4] CWE-20 Improper Input Validation 6 1

[5] CWE-78 Improper Neutralization of

Special Elements used in an

OS Command (’OS Command

Injection’)

32 1

[6] CWE-89 Improper Neutralization of

Special Elements used in

an SQL Command (’SQL

Injection’)

26 4

[8] CWE-22 Improper Limitation of a Path-

name to a Restricted Directory

(’Path Traversal’)

59 0

[9] CWE-352 Cross-Site Request Forgery

(CSRF)

2 0

[10] CWE-434 Unrestricted Upload of File

with Dangerous Type

12 0

31

Table 4.5 shows the distribution of NUCLEI YAMLs by CWE IDs included in the

OWASP Top 10. Here, the last column shows the number of YAML files that si-

multaneously contain another weakness in this list, among the YAML files where the

weakness is seen. It is noticeable that nearly one-third of the total number of YAML

files, including CWE code information, are related to weakness CWE-79, which is

listed as the second most hazardous weakness between the years 2019 and 2020, ac-

cording to OWASP.

We can argue that the raw data set consisting of NUCLEI YAMLs can cover 19 of

the weaknesses in the OWASP 2021 top 25 list. Also, it can be seen that our raw set

can cover 10 RCE-related weaknesses. We know that 6 of these nine are in the top

10. Besides these, the rest of the CWEs in the rows which do not have zero number

YAML files are the weaknesses that can possibly be used to exploit PE-related attacks.

Thus, there are 9 weaknesses that can be associated with PE attacks where 3 of these

CWEs are listed in the top 10.

When we include only the rows associated with RCE we see that our vulnerability

set, which we have reduced from 485 to 430 by choosing YAMLs containing CWE

code information, is reduced to 238, i.e., almost half these vulnerabilities are related

with the RCE weaknesses listed in OWASP Top 25. The rest of the vulnerabilities,

which is again nearly half of the total, are related with PE weaknesses.

After this step, we combined NUCLEI YAML CWE and CVE descriptions with the

related NVD description and CVSS core information. Thus, on the resulting version,

we can perform a much more effective search to find vulnerable container images.

This process also allowed us to be capable of applying some specific keyword filtra-

tion to narrow our attack set selection processes. From this, to ease the automation for

simulating the attacks, we filtered with the keyword “unauth” to find the unauthenti-

cated and unauthorized entry vulnerabilities which are more suitable for automation.

There were a significantly high number of weaknesses and vulnerabilities. To fo-

cus on a narrowed set of these vulnerabilities, we applied several strategies. If a

significant number of vulnerabilities belonging to one type of weakness could not

be implemented, then this weakness set is automatically eliminated from our search

scope.

32

4.1.5 Vulnerability Elimination

Most of the weaknesses were eliminated after the process mentioned above. After

that, by taking the OWASP rank values into account, we chose the first five weak-

nesses for which we could find vulnerable container images, successfully exploited

by the related Nuclei Engine vulnerability YAML files.

As a result of this process, we ended up with a total of seven vulnerable images,

where two belong CWE-22, two belong to CWE-78, and the remaining belong to

CWE-78, CWE-79, and CWE-434. The resulting weakness and vulnerabilities are

listed in Table 4.6

Table 4.6: List of Selected Attacks for Implementation

OWASP Rank CWE ID CWE Name CVE ID

2 CWE-79 Cross-Site Scripting

(XSS)

CVE-2019-7543

5 CWE-78 OS Command Injection CVE-2019-15107,

CVE-2019-16662

6 CWE-89 SQL Injection CVE-2020-9483

8 CWE-22 Path Traversal CVE-2020-17518,

CVE-2021-26086

10 CWE-434 Unrestricted Upload of

File with Dangerous

Type

CVE-2019-25213

4.1.6 Selected Weakness Descriptions

The first weakness is named "SQL Injection" [32] with code CWE-89. Some un-

filtered SQL queries created by user inputs may be interpreted as SQL commands,

which can bypass security checks and modify the back-end database, together with

the execution of system commands. SQL injection attacks commonly target database-

33

driven web sites. They are mostly related with databases and the data inside, while

obtaining shells in order to run system commands and take control over a target or

network can also be performed by this injection type. Attackers initially perform a

database enumeration process to determine the number and data types of columns

in use. Finding a web server’s root directory path may yield to opening a reverse

shell allowing attackers to run OS commands and gain wider capabilities on systems

reaching to get higher privileges and critical information [33].

The second weakness is named "Improper Limitation of a Pathname to a Restricted

Directory (’Path Traversal’)" [34] with code CWE-22. File operations occur outside

the restricted directories by using special characters like ".." and "/" separators. This

can cause relative (accessing root directory) or absolute (using direct pathnames) path

traversal to access unexpected system files or directories. Path Traversal can also be

used to get reverse shells. By attempting several directory traversals, an attacker

can determine whether a target is vulnerable to a local file inclusion (LIF), which

allows the attacker to read local system files, perform XSS, and can even lead to code

execution. After finding an LFI, the attacker uses several injection attacks to find

where to inject the script for the reverse shell [35].

The third weakness is named "Improper Neutralization of Special Elements used in

an OS Command (’OS Command Injection’)" [36] with code CWE-78. An attacker

can execute commands on the operating system. This can lead to the attacker hav-

ing direct control on the operating system, or, it could allow the attacker to invoke

commands with privileges. Thus, it can be harmful in the manner of the code execu-

tion, privilege escalation and persistence attack vector listed in the MITRE Container

Matrix. This can result in executing arbitrary command execution, sensitive data

disclosure and denial of service. This can be potentially hazardous for a container

environment.

The fourth weakness is named "Improper Neutralization of Input During Web Page

Generation (’Cross-site Scripting’ or ’XSS’)" with code CWE-79. If a user-controllable

input is not neutralized (controlled), untrusted data enters through a web request into

the web application. There are three types of XSS: Reflected XSS (or Non-Persistent),

Stored XSS (or Persistent), and DOM-Based XSS. In Reflected XSS, in the HTTP re-

34

quest, the data is read directly by the server and it is reflected back in the HTTP

response. Reflected XSS exploits occur when an attacker causes a victim to supply

dangerous content to a vulnerable web application, which is then reflected back to the

victim and executed by the web browser. In stored XSS, dangerous data is stored in

the application database or other trusted data store. After a period of time, the appli-

cation reads back the stored data, and an attacker can get elevated privileges or reach

sensitive data. In DOM-Based XSS, a trusted script is sent to the client, which makes

client perform injections to the page or, the injection is performed by the server. Once

the malicious script is injected, the attacker can perform a variety of malicious activ-

ities. The private information, such as cookies including the session information, can

be transferred, or a malicious request is sent by the attacker that may result in taking

over the victim machine [37].

The last weakness is named "Unrestricted Upload of File with Dangerous Type (UUF)"

with code CWE-434. Attackers can upload dangerous type files that are automati-

cally processed within the target system. The uploaded file can yield to arbitrary code

execution, especially automatically executable .asp and .php extensions. An non-

properly validated file is allowed as executable code, which can result in a reverse

shell, or overwrite critical files simply by replacing them with a file having the same

name and get the control over the server [38] .

The weaknesses different from the CWE-78 are very commonly used categories and

they are used for the purposes of "Initial Access" and "Discovery" attack vectors

defined in the MITRE container Matrix, thus, detection of any of these attacks po-

tentially warn us for further and much hazardous attacks that can deeply affect a

container environment.

4.2 Simulation Environment

In this section, we explain our attacker machine and the testing environment for the

monitoring processes.

35

Table 4.7: NUCLEI Template Statistics

Access Date Year Total

01/01/2022 2019 108

01/01/2022 2020 176

01/01/2022 2021 206

- 2000-2018 468

- Total 958

- NET 490

4.2.1 Nuclei Engine

NUCLEI Engine is an open-source web application vulnerability scanner. The tool

enables researchers to create custom YAML templates for security research and bug

discovery [30] [39]. NUCLEI uses YAML templates to launch traffic from the client

and test the server’s response against signs of vulnerabilities. It supports various pro-

tocols, including HTTP, TCP, DNS, FILE. Furthermore, NUCLEI maintains a collec-

tion of YAML templates that has been continuously updated since 2000. As of 2022,

a total of 958 are present in this collection. We decided to use NUCLEI due to its

easy deployment and fast configuration features for our attack simulations.

4.2.2 Testing Environment

There are two main actors in our testing environment. The attacker machine which

runs the Nuclei Engine and the vulnerable container environment which is a Kuber-

netes cluster installed on an Ubuntu 20.04 machine. We deployed different containers

on the Kubernetes cluster which spans each for separate nodes. Within the scope of

five weaknesses (CWE codes) that we have previously determined on this environ-

ment, seven different attacks have been studied using the Nuclei Engine, with the

number of vulnerabilities (CVE codes) per weakness are up to two. The constraints

that determine the weakness selections and the number of nodes are discussed in de-

tail in the following sections.

36

4.3 Data Set

In this section, we describe our experimental strategy for the data set creation pro-

cesses.

4.3.1 Experiments

In the previous sections, we described five specific weaknesses we selected and a total

of seven unique vulnerabilities. In order to form the attack simulation environment,

we deployed each of the found vulnerable containers on our Kubernetes environment

to a total of seven nodes, where each container runs on a single node. We established

the attacker machines with the Nuclei Engine outside of the cluster on the same ma-

chine.

For this study, we used the Nuclei templates related with each of the seven vulnerable

images. In addition to these default attack templates files, we produced more Nu-

clei template files by simply changing the payloads inside the default templates. We

treated each different payload template as a different attacker/behavior. We defined

each attacker by creating Python scripts that run the specified Nuclei template from

the Nuclei Engine.

For the testing, we created more than one Vagrant [40] (a tool for building and man-

aging virtual machines), virtual machines and installed Nuclei to each. We performed

our attacks from these virtual machines. By this method, attackers can have IP ad-

dresses different from the host that they are attacking and the cluster running the

vulnerable images.

Also, we defined randomly generated timestamps based on UNIX Time and assigned

them to the each of the attacks. By this, we avoid attackers running at exactly the

same time. The timestamps were generated between a period of time differing from

one to eight seconds.

When we performed the attacks with the random timestamp in parallel, our feature

extractor named CICFlowMeter generated very few flows, and none for most. Thus

we decided to perform the attacks from the same CVE category in random serial

37

order. This is defined as at each time, we assume that the image related with CVE-X

has six attackers that can exploit the vulnerability CVE-X inside the image, the six of

the attackers are ordered randomly in another script, and perform their attacks once

per each execution of that script. To collect enough network traffic, we repeated the

execution of these scripts between four and eight times, that can differ for each CWE

category to make the resulting flow numbers nearly equal to each other.

4.3.2 Monitoring

For monitoring, we used the latest version of tcpdump, a command-line packet an-

alyzer. The tool captures network traffic in "pcap" format generated using a portable

C/C++ library, libpcap [41].

Inside the Kubernetes environment, we monitored each CWE category one-by-one

and saved their traffic during the attack period.

4.3.3 Feature Extraction

For feature extraction, we used CICFlowMeter [42], an open-source network traffic

flow generator that extracts the features from the given Packet Capture (.pcap) files

into a Comma Separated Values (.csv) file.

A flow can be defined as all packets, in forward and backward direction between

two connection endpoints during a connection period. If another connection between

these endpoints starts after one ends, then it is named as another flow.

CICFlowMeter can generate bidirectional flows, i.e. in the forward (source to desti-

nation) and backward (destination to source) directions. This allows the calculation

of time-related feature statistics both in the forward and backward directions.

In [43] the authors examined and troubleshooted another CICFlowMeter generated

data set. The study found errors in the old version of CICFlowMeter and released a

fixed version of it. In this study we used the fixed version [44].

The feature extraction tool can extract 76 network flow features by default. The list

38

of features is listed in Table 4.8.

Table 4.8: List of extracted features and descriptions

Feature Name Description

Flow duration Duration of the flow in Microsecond

total Fwd Packet Total packets in the forward direction

total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packet in forward direction

total Length of Bwd Packet Total size of packet in backward direc-

tion

Fwd Packet Length Min Minimum size of packet in forward di-

rection

Fwd Packet Length Max Maximum size of packet in forward di-

rection

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Standard deviation size of packet in for-

ward direction

Bwd Packet Length Min Minimum size of packet in backward di-

rection

Bwd Packet Length Max Maximum size of packet in backward

direction

Bwd Packet Length Mean Mean size of packet in backward direc-

tion

Bwd Packet Length Std Standard deviation size of packet in

backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in

the flow

Flow IAT Std Standard deviation time between two

packets sent in the flow

39

Flow IAT Max Maximum time between two packets

sent in the flow

Flow IAT Min Minimum time between two packets

sent in the flow

Fwd IAT Min Minimum time between two packets

sent in the forward direction

Fwd IAT Max Maximum time between two packets

sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in

the forward direction

Fwd IAT Std Standard deviation time between two

packets sent in the forward direction

Fwd IAT Total Total time between two packets sent in

the forward direction

Bwd IAT Min Minimum time between two packets

sent in the backward direction

Bwd IAT Max Maximum time between two packets

sent in the backward direction

Bwd IAT Mean Mean time between two packets sent in

the backward direction

Bwd IAT Std Standard deviation time between two

packets sent in the backward direction

Bwd IAT Total Total time between two packets sent in

the backward direction

Fwd PSH flags Number of times the PSH flag was set

in packets travelling in the forward di-

rection (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set

in packets travelling in the backward di-

rection (0 for UDP)

40

Fwd URG Flags Number of times the URG flag was set

in packets travelling in the forward di-

rection (0 for UDP)

Bwd URG Flags Number of times the URG flag was set

in packets travelling in the backward di-

rection (0 for UDP)

Fwd Header Length Total bytes used for headers in the for-

ward direction

Bwd Header Length Total bytes used for headers in the back-

ward direction

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a packet

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std Standard deviation length of a packet

Packet Length Variance Variance length of a packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWR Flag Count Number of packets with CWR

ECE Flag Count Number of packets with ECE

down/Up Ratio Download and upload ratio

Average Packet Size Average size of packet

Fwd Segment Size Avg Average size observed in the forward di-

rection

Bwd Segment Size Avg Average size observed in the backward

direction

41

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the

forward direction

Fwd Packet/Bulk Avg Average number of packets bulk rate in

the forward direction

Fwd Bulk Rate Avg Average number of bulk rate in the for-

ward direction

Bwd Bytes/Bulk Avg Average number of bytes bulk rate in the

backward direction

Bwd Packet/Bulk Avg Average number of packets bulk rate in

the backward direction

Bwd Bulk Rate Avg Average number of bulk rate in the back-

ward direction

Subflow Fwd Packets The average number of packets in a sub

flow in the forward direction

Subflow Fwd Bytes The average number of bytes in a sub

flow in the forward direction

Subflow Bwd Packets The average number of packets in a sub

flow in the backward direction

Subflow Bwd Bytes The average number of bytes in a sub

flow in the backward direction

Fwd Init Win bytes The total number of bytes sent in initial

window in the forward direction

Bwd Init Win bytes The total number of bytes sent in initial

window in the backward direction

Fwd Act Data Pkts Count of packets with at least 1 byte of

TCP data payload in the forward direc-

tion

Fwd Seg Size Min Minimum segment size observed in the

forward direction

Active Min Minimum time a flow was active before

becoming idle

42

Active Mean Mean time a flow was active before be-

coming idle

Active Max Maximum time a flow was active before

becoming idle

Active Std Standard deviation time a flow was ac-

tive before becoming idle

Idle Min Minimum time a flow was idle before

becoming active

Idle Mean Mean time a flow was idle before be-

coming active

Idle Max Maximum time a flow was idle before

becoming active

Idle Std Standard deviation time a flow was idle

before becoming active

4.3.4 Resulting Data Set

To prepare the raw CICFlowMeter features data set for ML testing and validation

purposes, we labeled each row with its related vulnerability category in an additional

column on the raw dataset. As we had already specified each vulnerability’s weakness

category, we also added another column to the existing data set to label each row’s

weakness category. The resulting data set consists of flows, the group of packets

having the same source IP, destination IP, source port, destination port, and the proto-

col type [45]. There is also a third column that contains the OWASP CWE category

unique name for readability.

As mentioned, we monitored and saved the traffic of each CWE category one-by-

one. First we specified a single test file and a single train file per CWE category by

combining two-thirds of the collected flow data into a single .csv file as the training

data and the rest as the testing data. Then, we combined each weakness category’s

test data and created our finalized test data set. We applied the same process for the

training data to gather our finalized training data set.

43

Our project codes and the data set can be found at https://github.com/Hal

eBera/A-NOVEL-CONTAINER-ATTACKS-DATASET-FOR-INTRUSION-DE

TECTION.

We performed some initial experiments with different classification algorithms on

the formed data set in order to evaluate their ability to distinguish between different

classes of attacks on the containers. Specifically, we performed multi-class classifica-

tion with the Support Vector Machines (SVM) and Random Forest (RF) algorithms,

which have been frequently utilized in the intrusion detection domain. The train-

ing and test sets consisted of traffic flow instances from implementations of the five

different weakness classes in the data set. Table 4.9 summarizes the results of the

experiments with the SVM algorithm and Table 4.10 summarizes the results of the

experiments with the RF algorithm. We observe that while some of the attack classes

have been captured accurately by both algorithms, there is room for improvement for

others. This calls for development of algorithms that will achieve improved results

for accurately detecting all attack types.

Table 4.9: Classification Results for SVM algorithm.

SVM ##### precision recall f1-score

’Path Traversal’ 0.89 0.93 0.91

’Cross-site Scripting’ 1.00 1.00 1.00

’OS Command Injection’ 1.00 0.95 0.98

’SQL Injection’ 1.00 1.00 1.00

’Unrestricted Upload of File ’ 1.00 1.00 1.00

’Normal Traffic’ 1.00 1.00 1.00

44

https://github.com/HaleBera/A-NOVEL-CONTAINER-ATTACKS-DATASET-FOR-INTRUSION-DETECTION
https://github.com/HaleBera/A-NOVEL-CONTAINER-ATTACKS-DATASET-FOR-INTRUSION-DETECTION
https://github.com/HaleBera/A-NOVEL-CONTAINER-ATTACKS-DATASET-FOR-INTRUSION-DETECTION

Table 4.10: Classification Results for Random Forest Algorithm.

Random Forest ##### precision recall f1-score

’Path Traversal’ 1.00 0.89 0.94

’Cross-site Scripting’ 1.00 1.00 1.00

’OS Command Injection’ 1.00 1.00 1.00

’SQL Injection’ 1.00 1.00 1.00

’Unrestricted Upload of File ’ 0.86 1.00 0.92

’Normal Traffic’ 1.00 1.00 1.00

45

46

CHAPTER 5

CONCLUSIONS

In recent years, machine learning-based intrusion detection systems for containers

have been on a tremendous rise. Thus, the need for appropriate and convenient train-

ing and test data sets is still an existing problem in machine learning-based studies

for container security.

In this thesis, we presented a novel container attack traffic data set for intrusion de-

tection system research in container-based application environments. The data set

was constructed in a systematic manner considering the top hazardous vulnerabilities

used in recent attacks against containers. For the data set, seven remote code execu-

tion and privilege escalation related vulnerabilities that have a CVE code belonging

to the years 2019, 2020, and 2021 were implemented in the Kubernetes environment.

Using CICFlowMeter Tool, seventy-six bidirectional features were extracted from the

attack traffic. We have made this data set publicly available for the benefit of container

security researchers utilizing machine learning techniques for intrusion detection.

To ensure inclusive security, it is crucial to discover the behavior of attacks exploiting

the vulnerabilities that are malicious for containers. We believe that testing containers

with data sets based on up-to-date attacks continuously will help the community to

develop defense systems much more effectively.

47

48

REFERENCES

[1] MITRE, “2021 cwe top 25 most dangerous software weaknesses.” https://

cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html,

2022. Last accessed May 14 2022.

[2] J. Lewis, “Microservices: a definition of this new architectural term.” https:

//martinfowler.com/articles/microservices.html, 2014.

Last accessed May 14 2022.

[3] “Docker overview.” https://docs.docker.com/get-started/ov

erview/. Last accessed May 14 2022.

[4] L. Rice, “Container security.” https://www.oreilly.com/library/

view/container-security/9781492056690/ch01.html. Last

accessed May 15 2022.

[5] MITRE, “Containers matrix.” https://attack.mitre.org/matrice

s/enterprise/containers/. Last accessed May 15 2022.

[6] “Current cvss score distribution for all vulnerabilities.” https://www.cved

etails.com/. Last accessed June 11 2022.

[7] L. S. Vailshery, “Containerization in organizations worldwide 2021.” https:

//www.statista.com/statistics/1223916/it-container-u

se-organizations/#:~:text=In%202021%2C%2019%20perce

nt%20of,of%20an%20entire%20runtime%20environment., Feb

2022. Last accessed June 11 2022.

[8] Aquasec, “Portworx annual container adoption survey shows container adoption

accelerates while security and data management concerns remain top of mind.”

https://www.aquasec.com/news/portworx-container-adop

tion-survey/, 2019. Last accessed May 14 2022.

49

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.oreilly.com/library/view/container-security/9781492056690/ch01.html
https://www.oreilly.com/library/view/container-security/9781492056690/ch01.html
https://attack.mitre.org/matrices/enterprise/containers/
https://attack.mitre.org/matrices/enterprise/containers/
https://www.cvedetails.com/
https://www.cvedetails.com/
https://www.statista.com/statistics/1223916/it-container-use-organizations/#:~:text=In%202021%2C%2019%20percent%20of,of%20an%20entire%20runtime%20environment.
https://www.statista.com/statistics/1223916/it-container-use-organizations/#:~:text=In%202021%2C%2019%20percent%20of,of%20an%20entire%20runtime%20environment.
https://www.statista.com/statistics/1223916/it-container-use-organizations/#:~:text=In%202021%2C%2019%20percent%20of,of%20an%20entire%20runtime%20environment.
https://www.statista.com/statistics/1223916/it-container-use-organizations/#:~:text=In%202021%2C%2019%20percent%20of,of%20an%20entire%20runtime%20environment.
https://www.aquasec.com/news/portworx-container-adoption-survey/
https://www.aquasec.com/news/portworx-container-adoption-survey/

[9] MITRE, “Common vulnerabilities and exposures.” https://cve.mitre.

org/. Last accessed June 11 2022.

[10] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[11] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE

Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[12] “What is kubernetes?.” https://kubernetes.io/docs/concepts/

overview/what-is-kubernetes/, Jul 2021. Last accessed May 14

2022.

[13] S. M. Kerner, “Top kubernetes management platforms.” https://www.da

tamation.com/cloud/top-kubernetes-management-platfor

ms/, January 2021. Last accessed May 14 2022.

[14] “Vulnerabilities, exploits, and threats at a glance.” https://www.rapid7

.com/fundamentals/vulnerabilities-exploits-threats/.

Last accessed June 10 2022.

[15] Cynet, “Understanding privilege escalation and 5 common attack techniques.”

https://www.cynet.com/network-attacks/privilege-es

calation/#:~:text=Privilege%20escalation%20is%20a%2

0type,gaining%20access%20to%20a%20system., Apr 2022. Last

accessed June 11 2022.

[16] MITRE|ATT&CK, “Containers matrix.” https://attack.mitre.org

/matrices/enterprise/containers/#. Last accessed June 11 2022.

[17] NIST, “National vulnerability database.” https://nvd.nist.gov/. Last

accessed June 11 2022.

[18] A. Iradier, “Container security best practices: Comprehensive guide.” https:

//sysdig.com/blog/container-security-best-practices/,

October 2021. Last accessed June 10 2022.

[19] G. Tassey, “Standardization in technology-based markets,” Research Policy,

vol. 29, no. 4, pp. 587–602, 2000.

50

https://cve.mitre.org/
https://cve.mitre.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.datamation.com/cloud/top-kubernetes-management-platforms/
https://www.datamation.com/cloud/top-kubernetes-management-platforms/
https://www.datamation.com/cloud/top-kubernetes-management-platforms/
https://www.rapid7.com/fundamentals/vulnerabilities-exploits-threats/
https://www.rapid7.com/fundamentals/vulnerabilities-exploits-threats/
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://www.cynet.com/network-attacks/privilege-escalation/#:~:text=Privilege%20escalation%20is%20a%20type,gaining%20access%20to%20a%20system.
https://attack.mitre.org/matrices/enterprise/containers/#
https://attack.mitre.org/matrices/enterprise/containers/#
https://nvd.nist.gov/
https://sysdig.com/blog/container-security-best-practices/
https://sysdig.com/blog/container-security-best-practices/

[20] C. Spoden, “Security policies, standards, procedures, and guidelines.” https:

//frsecure.com/blog/differentiating-between-policies

-standards-procedures-and-guidelines/, August 2017. Last

accessed June 11 2022.

[21] M. P. Souppaya, J. Morello, and K. Scarfone, “Application container security

guide,” NIST Special Publication 800-190, 2017.

[22] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, challenges,

and the road ahead,” IEEE Access, vol. 7, p. 52976–52996, 2019.

[23] S. Subramanian, P. B. Honnavalli, and S. S. Shylaja, “Container security: An

extensive roadmap,” in Proceedings of the 3rd International Conference on In-

tegrated Intelligent Computing Communication Security (ICIIC 2021), pp. 427–

436, 2021.

[24] K. Wist, M. Helsem, and D. Gligoroski, “Vulnerability analysis of 2500

docker hub images,” in Advances in Security, Networks, and Internet of Things

(K. Daimi, H. R. Arabnia, L. Deligiannidis, M.-S. Hwang, and F. G. Tinetti,

eds.), (Cham), pp. 307–327, Springer International Publishing, 2021.

[25] M. Cavalcanti, P. Inacio, and M. Freire, “Performance evaluation of container-

level anomaly-based intrusion detection systems for multi-tenant applications

using machine learning algorithms,” in Proceedings of the 16th International

Conference on Availability, Reliability and Security, ARES 2021, pp. 1–9, 2021.

[26] J. Pope, F. Raimondo, V. Kumar, R. McConville, R. Piechocki, G. Oikonomou,

T. Pasquier, B. Luo, D. Howarth, I. Mavromatis, P. Carnelli, A. Sanchez-

Mompo, T. Spyridopoulos, and A. Khan, “Container escape detection for edge

devices,” in Proceedings of the 19th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’21, p. 532–536, 2021.

[27] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement study

on linux container security: Attacks and countermeasures,” in Proceedings

of the 34th Annual Computer Security Applications Conference, ACSAC ’18,

p. 418–429, 2018.

51

https://frsecure.com/blog/differentiating-between-policies-standards-procedures-and-guidelines/
https://frsecure.com/blog/differentiating-between-policies-standards-procedures-and-guidelines/
https://frsecure.com/blog/differentiating-between-policies-standards-procedures-and-guidelines/

[28] C.-W. Tien, T.-Y. Huang, C.-W. Tien, T.-C. Huang, and S.-Y. Kuo,

“Kubanomaly: Anomaly detection for the docker orchestration platform with

neural network approaches,” Engineering Reports, vol. 1, no. 5, p. e12080,

2019.

[29] Y. Wu, L. Lei, Y. Wang, K. Sun, and J. Meng, “Evaluation on the security of

commercial cloud container services,” in Proceedings of the 23rd International

Conference on Information Security (ISC 2020), p. 160–177, 2020.

[30] Dimitriverhoeven, “Hacker tools: Nuclei, a yaml based vulnerability scanner.”

https://blog.intigriti.com/2021/05/10/hacker-tools-n

uclei/, May 2021. Last accessed June 11 2022.

[31] MITRE, “Cwe top 25 archive.” https://cwe.mitre.org/top25/ar

chive/. Last accessed June 11 2022.

[32] W. G. Halfond, J. Viegas, A. Orso, et al., “A classification of sql-injection at-

tacks and countermeasures,” in Proceedings of the IEEE international Sympo-

sium on Secure Software Engineering, pp. 13–15, IEEE, 2006.

[33] “Use sql injection to run os commands & get a shell.” https://null-byt

e.wonderhowto.com/how-to/use-sql-injection-run-os-co

mmands-get-shell-0191405/#:~:text=SQL%20injection%2

0is%20typically%20only,reverse%20shell%20on%20the%20s

erver. Last accessed June 11 2022.

[34] A. A. Almutairi, S. Mishra, and M. AlShehri, “Web security: Emerging threats

and defense,” Computer Systems Science and Engineering, vol. 40, no. 3,

pp. 1233–1248, 2022.

[35] “From local file inclusion to reverse shell.” https://a3h1nt.medium.co

m/from-local-file-inclusion-to-reverse-shell-774fe61

b7e1e, April 2020. Last accessed June 11 2022.

[36] I. Security, “Os command injection vulnerability: Cwe-78 weakness: Exploita-

tion and remediation.” https://www.immuniweb.com/vulnerabil

ity/os-command-injection.html. Last accessed June 11 2022.

52

https://blog.intigriti.com/2021/05/10/hacker-tools-nuclei/
https://blog.intigriti.com/2021/05/10/hacker-tools-nuclei/
https://cwe.mitre.org/top25/archive/
https://cwe.mitre.org/top25/archive/
https://null-byte.wonderhowto.com/how-to/use-sql-injection-run-os-commands-get-shell-0191405/#:~:text=SQL%20injection%20is%20typically%20only,reverse%20shell%20on%20the%20server
https://null-byte.wonderhowto.com/how-to/use-sql-injection-run-os-commands-get-shell-0191405/#:~:text=SQL%20injection%20is%20typically%20only,reverse%20shell%20on%20the%20server
https://null-byte.wonderhowto.com/how-to/use-sql-injection-run-os-commands-get-shell-0191405/#:~:text=SQL%20injection%20is%20typically%20only,reverse%20shell%20on%20the%20server
https://null-byte.wonderhowto.com/how-to/use-sql-injection-run-os-commands-get-shell-0191405/#:~:text=SQL%20injection%20is%20typically%20only,reverse%20shell%20on%20the%20server
https://null-byte.wonderhowto.com/how-to/use-sql-injection-run-os-commands-get-shell-0191405/#:~:text=SQL%20injection%20is%20typically%20only,reverse%20shell%20on%20the%20server
https://a3h1nt.medium.com/from-local-file-inclusion-to-reverse-shell-774fe 61b7e1e
https://a3h1nt.medium.com/from-local-file-inclusion-to-reverse-shell-774fe 61b7e1e
https://a3h1nt.medium.com/from-local-file-inclusion-to-reverse-shell-774fe 61b7e1e
https://www.immuniweb.com/vulnerability/os-command-injection.html
https://www.immuniweb.com/vulnerability/os-command-injection.html

[37] O. Foundation, “Cwe-79: Improper neutralization of input during web page

generation (’cross-site scripting’).” https://cwe.mitre.org/data/d

efinitions/79.html. Last accessed June 11 2022.

[38] Portswigger, “File uploads: Web security academy.” https://portswigge

r.net/web-security/file-upload. Last accessed June 11 2022.

[39] OWASP, “Vulnerability scanning tools.” https://owasp.org/www-co

mmunity/Vulnerability_Scanning_Tools. Last accessed June 11

2022.

[40] “Vagrant.” https://github.com/hashicorp/vagrant. Last ac-

cessed June 11 2022.

[41] “Tcpdump & libpcap.” https://www.tcpdump.org/. Last accessed June

11 2022.

[42] M. Sarhan, S. Layeghy, and M. Portmann, “Towards a standard feature set for

network intrusion detection system datasets,” Mobile Networks and Applica-

tions, vol. 27, p. 357–370, 2022.

[43] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion detection

dataset: the cicids2017 case study,” in Proceedings of the 2021 IEEE Security

and Privacy Workshops (SPW), pp. 7–12, IEEE, 2021.

[44] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani, “Ci-

cflowmeter.” https://github.com/ahlashkari/CICFlowMeter.

Last accessed June 11 2022.

[45] A. Habibi Lashkari., G. Draper Gil., M. S. I. Mamun., and A. A. Ghorbani.,

“Characterization of tor traffic using time based features,” in Proceedings of the

3rd International Conference on Information Systems Security and Privacy -

ICISSP, pp. 253–262, 2017.

53

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://portswigger.net/web-security/file-upload
https://portswigger.net/web-security/file-upload
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://github.com/hashicorp/vagrant
https://www.tcpdump.org/
https://github.com/ahlashkari/CICFlowMeter

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Contributions
	Thesis Outline

	Preliminaries
	Cloud Agility Challenges
	Microservices
	Containers
	Docker

	Kubernetes
	Container Security
	Definitions
	Container Attack Vectors
	Container Security Databases
	CVE
	CVE DETAILS
	NVD
	Other Databases

	Related Work
	Container Security Studies
	Container Security Datasets

	Methodology
	Attack Selection Strategy
	CVE Details Review
	NVD Review
	Nuclei Review
	OWASP Review
	Vulnerability Elimination
	Selected Weakness Descriptions

	Simulation Environment
	Nuclei Engine
	Testing Environment

	Data Set
	Experiments
	Monitoring
	Feature Extraction
	Resulting Data Set

	Conclusions
	REFERENCES

