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ABSTRACT

DESIGN OPTIMIZATION OF AN S-SHAPED SUBSONIC INTAKE USING
BAYESIAN APPROACH AND BEZIER CURVES

Atasoy, Mete

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Yusuf Özyörük

May 2022, 75 pages

Engine is a prominent part for the systems of a cruise missile. Reliable and efficient

engine performance significantly depends on the quality of the incoming airflow. In

this thesis, the aerodynamic performance of a subsonic intake is improved by using

open-source multi-task Bayesian optimization (MTBO) tool [1]. The main difference

of Bayesian approaches from other optimization methods is that it has information

about all design space, along with the uncertainty value. The learning process in

the Bayesian approach is developed using the correlation of two different numerical

methods. Also, machine learning-based optimization combined with multi-tasking

used in this thesis is a pioneering work for air-intake design. The commercial com-

putational fluid dynamics (CFD) solver ANSYS Fluent c⃝ is used to calculate the flow

variables through the intake. The flow quality at a plane interfacing with the engine

(denoted as the aerodynamic interfacing plane, AIP) are usually quantified with the

flow uniformity and level of pressure loss. MTBO employs a Gaussian process with

both high and low cost solutions for machine learning. Then, an acquisition func-

tion scores the system output of the surrogate model. In addition, turbulence model
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selection studies for both cost levels are conducted. An objective function is uti-

lized based on the weighted sum of non-dimensional values of Distortion Coefficient

(DC), Pressure Recovery (PR) and weight of the S-duct. Initial sampling approach

for multi-tasking approaches is also investigated. Multi-tasking is compared with

single-tasking for total execution time when similar optima is achieved. Furthermore,

parameters in the objective functions are investigated with Pareto plots.

Keywords: Subsonic Intake Optimization, Aerodynamics, Multi-Task Bayesian Op-

timization, Bezier Curve, Machine Learning

vi



ÖZ

BAYES YAKLAŞIMI VE BEZİER EĞRİLERİ KULLANARAK S-ŞEKİLLİ
SES-ALTI HAVA-ALIĞININ TASARIM OPTİMİZASYONU

Atasoy, Mete

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Yusuf Özyörük

Mayıs 2022 , 75 sayfa

Motor, seyir füze sistemleri için önemli bölümdür. Motor performansının güvenilir ve

verimli olması önemli ölçüde ön yüzüne gelen havanın kalitesine bağlıdır. Bu tezde,

açık kaynaklı çoklu görev tabanlı Bayes optimizasyonu ile bir ses altı hava alığı-

nın aerodinamik performansı iyileştirilmiştir [1]. Bayes yaklaşımının diğer optimi-

zasyon yöntemlerinden temel farkı, belirsizlik değeri ile birlikte tasarım uzayındaki

tüm hedef değerleri hakkında bilgi sahibi olmasıdır. Bayes yaklaşımındaki öğrenme

süreci, iki farklı sayısal yöntemin korelasyonu kullanılarak geliştirilmiştir. Ayrıca,

çoklu görevle birleştirilmiş makine öğrenimi tabanlı optimizasyon, hava alığı tasarımı

için öncü bir çalışmadır. Hesaplamalı Akışkan Dinamiği çözücüsü ANSYS Fluent c⃝

hava-alığının akış performans parametrelerini hesaplamak için kullanılmıştır. Moto-

run ön yüz düzlemindeki (AIP) bir akışın performansı, akış homojenliği ve toplam

basınç kaybı seviyesinden oluşur. Çok görevli Bayes özyineleme algoritmaları pa-

halı ve ucuz çözümlerle Gauss Süreçlerini uygulayarak modellemeye çalışır. Ayrıca,

edinme işlemi vekil modelin sistem çıktısını puanlar. Ek olarak, her iki doğruluk se-

viyesi için türbülans modeli seçim çalışması yapılmıştır. Hedef fonksiyonu bozuntu
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katsayısı(DC60), basınç geri kazanımı (PR) ve model ağırlığının boyutsuzlaştırılma-

sıyla oluşturulmuştur ve eşit ağırlıklandırma ile tanımlanmıştır. Başlangıç eleman sa-

yılarının özyineleme yönelimi üzerindeki etkisi incelenmiştir. Çoklu görev yaklaşımı

toplam tasarım süresi bakımından tekli görev yaklaşımı ile kıyaslanmıştır. Ayrıca he-

def fonksiyonun içerisindeki parametreler arasındaki ilişkiler çoklu pareto grafikleri

ile incelenmiştir.

Anahtar Kelimeler: Ses-altı Hava Alığı Optimizasyonu , Aerodinamik, Çok Görevli

Bayes Optimizasyonu, Bezier Eğrisi, Makine Öğrenmesi
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CHAPTER 1

INTRODUCTION

Cruise missile is an efficient way of deploying large warheads for long distance tar-

gets with high precision capability. Most cruise missiles work with relatively small

air-breathing turbojet engines. The classification of a cruise missile is determined

by its range, size and speed [5],[13]. These classification parameters affect turbojet

engine selection for a cruise missile. Even the overall performance of a missile is

determined mostly by the engine capability. Engines are comprised of various parts

and subsystems. In turbojet engines, air intakes, sometimes referred as inlets, let

free-stream air flow into the engine.

1.1 Problem Definition

Intake geometry design is quite important for the aerodynamic performance of a

cruise missile. It is essential to have the incoming air at appropriate conditions, with

the least possible loss in terms of flow quality. Intake geometries are specialized for

almost every air-breathing missile types. For cruise missiles, S-shaped geometries are

prominent since ambient flow should be canalized from the outside to the center of

the interface plane of an engine [3].

Determining the flow variables through the subsonic S-shaped intake is quite chal-

lenging for designers since the flow there usually is highly complex in structure. Flow

simulations are mostly performed by using computational fluid dynamics (CFD) by

numerically solving the Navier-Stokes equations [14], since experimental research is

very costly, requiring huge amounts of power [15], equipment and preparation time.

For this reason, numerical applications are used in this thesis.
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Figure 1.1: Example of a Cruise Missile [3]

Another difficulty for design of S-shaped intakes is associated with incorporating

efficient optimization. Lots of geometry input parameters, objectives and constrains

for intakes make any design optimization difficult in terms of level of accuracy and

solution time.

1.1.1 Intake Flow Physics

Flows in S-duct are quite complicated for certain reasons. When the flow passes

through the subsonic intake, vortex generation or secondary flow takes place. The

S-shape bends the flow and that changes the inner flow characteristics causing a for-

mation of losses. To assess the quality of the flow that enters the engine, pressure

recovery (PR) and distortion coefficient (DC) are the two most commonly inspected

performance parameters. The level of PR losses through an intake is determined

greatly by the levels of wall friction, flow separation and shock waves [16]. The

second parameter, namely DC, is an indicated to the level of flow non-uniformity at

interfacing plane to the engine. Secondary motions and boundary layer development

have quite an impact on this parameter.
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Figure 1.2: An Example of a Flow Pattern of S-duct [4]

In an S-shaped duct, the first bend generates the secondary motions of flow which may

end up with flow separation. Then, some viscous region follows and total pressure

losses build further around the second bend [4]. These complex structures should be

well resolved for design optimization applications.

1.1.2 Applications of Intake Flow Analysis

There appear many studies in literature that investigated flows through subsonic in-

takes numerically and experimentally [17]. Though, the most of these are numerical

since the experimental ones are more expensive than computer based applications

and experimental research can require huge amounts of power for operation. The

power requirement of a wind tunnel depends mainly on test chamber cross-section,

flow Mach number and Reynolds Number [15]. On the other hand, determining the

flow variables is challenging for numerical applications since flow is usually highly

turbulent especially through S-shaped ducts. Finding the flow variables through an

intake by solutions to the Navier-Stokes equations is a common approach[18],[19].

Directly solving governing equations with performing Direct Numerical Simulation

(DNS) means to solve the all persisting eddies. However, the total number of meshes

for DNS depends on the flow Reynolds number (≈ Re9/4) [20]. That makes DNS al-

most impossible to be used for most engineering problems. In a situation where DNS

is not applicable, some modifications to the governing equations are implemented

[21].
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The Reynolds Averaging method is used in the majority of CFD simulations to obtain

an approximate averaged solutions to the Navier–Stokes equations. However, averag-

ing of Navier-Stokes equations yields a nonlinear Reynolds stress term that requires

additional modeling to fully resolve the system. In order to solve Reynold Averaged

Navier-Stokes (RANS) equations, Boussinesq hypothesis was proposed to create an

idea that turbulent eddies can be calculated with the assumption of eddy viscosity

formulation [22]. Then, the turbulence models differ from the assumption of turbu-

lent eddy viscosity in the Reynolds stress tensor. The various models (like algebraic,

one equation, two equation etc.) are derived to represent the effect of the turbulence.

Although one equation turbulence model Spalart–Allmaras (SA) is proposed for spe-

cial aerospace application [23], it is rarely used for duct flow [16]. Indeed, some

variations of k-ϵ and k-ω turbulence model are widely applied to investigate the flow

fields of an air intake [24],[12]. Detailed information about turbulence modelling is

presented in the following chapter.

1.1.3 Shape Optimizations for Intake Design

An optimization implies meticulously selecting input values from within an accept-

able set and computing the value of a function to maximize or minimize. With

breakthroughs in computing technology and a growing attention on optimization

techniques, there have been numerous innovative approaches. In shape optimiza-

tion problems, the aim is to improve the performance of the structure by modifying

its boundaries. Types of optimization techniques used for geometry design are briefly

explained as follows,

• Gradient descent is an optimization technique for finding the minimum of an

objective function by following the function’s negative gradient. It is a straight-

forward approach that can be used in shape optimization. The direction of

gradient-based progress is influenced by the starting points and first order it-

erative progress can have a problem for those whose objective function has

multiple local optima [25]. Even, gradient based optimizations may get stuck

when dealing with high-dimensional nonlinear optimization problems with sev-

eral local optima.
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• In stochastic optimization, the objective function incorporates randomness. The

randomization of a stochastic optimization approach does not imply that the

application is entirely random [26]. More specifically, in order to prevent these

algorithms from getting stuck of local optima unlike gradient based [27], certain

level of randomness is considered. However, they are very slow when the input

size of the system is large.

• Surrogate models have been recently used in complex engineering design to re-

place expensive simulations or physical experiments. A surrogate model builds

a statistical model to approximate the simulation outcome accurately. The orig-

inal computer simulation can be replaced with this statistical model by applying

sensitivity analysis, optimizations, or risk analysis [28]. Data analysis is used

to train a surrogate model. Then, a single evaluation of the original simula-

tion takes substantially longer than a single evaluation of the trained statistical

model. Polynomial regressions, Gaussian Processes, neural networks, etc., are

examples of the surrogate models. Bayesian Optimization is widely used as a

surrogate based optimization method for many engineering problems. It makes

use of Bayes’ Theorem to guide an efficient search for a global optimization

issue [29].

1.2 Literature Survey

Thanks to the technological development in air power in the 1940s, a cruise missile

concept was introduced in many army’s inventory. Mission capabilities of cruise mis-

siles cannot be executed by most classical weapons. Since there were many different

requests of mission from the authorities in the past, a new concept of air-breathing

missiles came out. The cruise missile spends the majority of its flight trajectory un-

der cruise conditions, which means it maintains a constant altitude and speed. Sahm

and Werrell [5] investigated chronologically the evaluation of cruise missiles trying to

point out whether cruise missile technology was a milestone. Firstly, they also noted

that Germans found first “Flying Bombs” namely V-1 which is powered by a pulse

5



jet engine.

Figure 1.3: German V-1 Flying Bomb (Imperial War Museum)[5]

There are many experimental and numerical studies about intake flow. In 1992,

Harloff [30] performed an experimental analysis of S-duct at NASA Lewis Research

Center to test the solution of the three dimensional Navier Stokes based flow solver. In

order to validate their in-house code, PARC3D, algebraic and k-ϵ turbulence models

are used. Their study reveals that both turbulence model don’t perform well for strong

secondary flows with separation. Moreover, Royal Aircraft Establishment (RAE) sub-

sonic intake model M-2129 [31] is used as a validation case in common by a great

amount of research. Aref used that S-shaped model to test their CFD methodology

[16]. It is states in their study that Hybrid DDES numerical method performs bet-

ter than RANS models and Spalart-Allmaras, one equation turbulence model, don’t

capture smaller vorticities as well. Detached Eddy Simulations were first introduced

at the study of Spalart [23],[32]. The Hybrid DDES turbulence model requires finer

grid resolution than RANS simulation[33].

There are several studies about aerodynamic performance of an intake in literature

[34], [35]. In Wellborn’s study [36] total pressure, static pressure and velocity fields

are collected at five cross-sections of a S-duct to visualize separately the behavior of

flow variables. From contours of pressures, separation is clearly seen at the lower part

of S-duct since the counter-rotating vorticities induced by a duct curvature causes the

flow to lose momentum. Distortion coefficient is an another performance parameter

of an intake to be investigated by the various study. It is defined as the difference

between worst total pressure among 600, any worst of 4 pieces of 150 at AIP, averaged

total pressure divided by dynamic pressure of location at the engine face [37],[38].
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Zhang and Vahdati [39] examine the detrimental effects on compressor blades due

to the distortion of incoming flow by the using of AU3D flow solver. Instantaneous

velocity profiles of the rotor section in their study are visualized for each stage and tip

vortex triggered the periodical stall through the compressor. There have been many

trade-off studies for weight and performance. Thrust requirement defines the cruise

missile size since higher thrust is produced by a large engine. Thrust to weight ratio

is essential performance parameters for fixed wing air-platforms [40].

Mathematical descriptions of geometries are involved in many design optimization

literature researches. Curvatures in a specific geometry can be defined by polynomials

and splines. Hicks and Henne [41] introduced a bump function for airfoils. The

amplitude, the location and the height of the bump functions for each curve defines

the shape. Bezier curve is an another function proposed by Pierre Bézier [6], French

engineer doing external body design for RenaultTM. It is also called as a Bernstein-

Bezier curve because of its close relation to Bernstein function.

Optimization methodology is used for many fields of science to solve a variety of

specific problems. There are mainly many types of method for searching techniques,

which are stochastic, gradient based and surrogate based. Gradient based searching

entails by computing the slope using the entire data set or preparation set in order

to find the best arrangement [42], [43]. In 2014, Oral [44] uses gradient based op-

timization on parametric submerged intake geometry to find optimum design point .

Approaches for optimum solution are direct, each cycle involves going over the full

data set. Also, a lot of computational effort and time are required for the non-linear

problems since gradient based can be lingered around locals. Stochastic methods, on

the other hand, enable alternate approaches by allowing for fewer choices to be taken

into the search with certain randomness. In 1996, Mitchell [45] proposed an optimiza-

tion algorithm related to Darwin’s Evaluation Theory. Progress of initially random

samples are applied to crossover and random mutation with respect to their fitness.

Each sample has its own encoding of chromosome representation [46]. Kennedy and

Eberhart [47] introduced the Particle Swarm Optimization (PSO) method in 1995 for

non-linear continuous functions. Theory behind the PSO is that all particles move

around space and share their position and velocity information . All stochastic opti-

mization methods have some degree of sensitivity to the size of the initial population
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[27].

Bayesian optimization had been introduced by a series of Mockus’work [48],[49],

[50]. Bayesian approximation is based on the Bayes Theorem, which states that the

probability of an event is conditional. It uses a surrogate function to model surface for

design input with its objective values. Moreover, the Gaussian Process is widely used

for computationally expensive problems as a surrogate function. Then, the acqui-

sition function predicts the candidate design points which have good performance.

Kennedy and Hagan [51] performed a Gaussian Process with linear multi-fidelity

model for their specific multi-level computer code. They claim that the elapsed time

for estimated data was significantly less than that of expensive runs using Bayesian

Methods. In addition, Perdikaris [52] uses multi-fidelity modelling for multi-fidelity

modelling using GPs. They emphasize that it is possible to have erroneous in the

predictions if there is a poor correlation between these two different ranked fidelities.

Huang [53] introduced in 2006 a new method optimization named the Multiple Fi-

delity Sequential Kriging optimization. Due to the higher computational cost, lower

fidelity results are used by a kriging meta-model to predict higher fidelity results. Fur-

thermore, different fidelities of solution are combined to find any correlations and this

correlation helps to estimate the results from expensive methods. Surrogate model is

established with all available data which involve expensive data and corrected cheap

data. Swersky [8] uses multi-fidelity Bayesian optimization. The basic idea of this

technique is to apply a multi-task Gaussian process with Bayesian optimization. Main

difference of multi-task Bayesian optimization (MTBO) with standard task approach

is that surrogate function is constituted with mixing more than one fidelity of solu-

tion techniques. Letham and Baksky [54] studied online-offline experimentation of

Bayesian Optimization. To sum up, their study provides mean values prediction error

for online, offline and MTBO predictions. MTBO performs outstanding convergence

rate compared to the others and they pointed out the single task model failure on their

experiments.
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1.3 Thesis Objectives

The objective of the thesis is to develop effective design approaches for subsonic in-

take shape optimization by applying multi-task Bayesian optimization. In order to

reduce the amount of computationally expensive tasks, a machine learning based de-

sign optimization is used to show that Bayesian approach with multi-tasking can be

applicable for intake design problems. Giving an alternative engineering approach

to the geometrical representation for subsonic intakes is an another objective of the-

sis. After setting certain design points for the surrogate model, its predictive ability

is tested with missing data. Multi-tasking optimizations with different sizes of ini-

tial sampling are conducted to show their final design outcome. The fitness scores

of these approaches with different initial samplings are expected to be similar. Also,

using two different costs of solutions on Bayesian optimization is expected to lower

optimization time. Finally, the performance parameters of an intake model are inves-

tigated with Pareto plots to better visualize the relations.

1.4 Outline of the Study

In Chapter 1, brief information on cruise missile and their intake performance is pro-

vided. Then, main problems and breakthroughs to their solutions are addressed. Lit-

erature review of numerical application and optimization details are given and up-to-

date situation and applications are mentioned.

Chapter 2 provides the details of the formulation governing equations and mathemati-

cal applications on intakes and branches of Bayesian optimization required to support

methodology. Then, the details of performance parameters are provided.

Results and discussions for validation cases are included in Chapter 3. Numerical

applications and performance comparison with available data are mentioned in figures

and contour plots.Then, chapter 4 gives the multi-task optimization outcomes with

respect to different numbers of initial sampling with cross validation, task comparison

and parameters relation in the objective function.

Chapter 5 concludes the thesis with gains and outcomes related MTBO.
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CHAPTER 2

METHODOLOGY

Numerical flow solutions that are needed by the optimization procedure are obtained

by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with various tur-

bulence models. Geometric optimization fed by these solutions is carried out using

a multi-task Bayesian optimization (MTBO) method. In this chapter, the flow solver

with the employed turbulence models is described first. Then, the MTBO method is

detailed. The solved subsonic intake problem is also discussed in detail. Also, sam-

pling technique is explained. After that, the geometrical description of S-shaped duct

will be explained. Finally, objective function used in Bayesian optimization will be

given as a summation of normalized values of distortion coefficient, pressure recovery

and weight of S-shape.

2.1 Governing Equations

The mathematical descriptions that constitute the framework of a computational algo-

rithm are referred to as the governing equations. For Computational Fluid Dynamics

(CFD), fluid motion is described by conservation of mass, momentum and energy.

In the present study the conservation equations are solved employing the commercial

ANSYS Fluent c⃝ [55] software. For completeness, they are included also here.

The conservation of mass equation is given as,

∂ρ

∂t
+

∂(ρui)

∂xi

= 0 (2.1)

where ρ is the density of the fluid and u is the velocity.
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The conservation of momentum equations are given below:

∂(ρui)

∂t
+ uj

∂(ρui)

∂xj

= − ∂p

∂xi

+
∂τij
∂xj

+ ρgi (2.2)

where p is the pressure of the fluid, τij is the shear stress term and gi is the gravity.

With Newtonian assumption which stated that viscosity is not affected by shear rate,

the stress tensor formulated as follows.

τij = 2µSij + λ
∂vk
∂xk

δij (2.3)

where δij denotes the Kronecker delta, µ denotes the viscosity and λ denotes dynamic

viscosity of the fluid. In shear stress term, µ is calculated by using Sutherland’s law

to consider the temperature effects on dynamic viscosity.

µ = µ0

(
T

T0

)3/2(
T0 + 110.56

T + 110.56

)
(2.4)

where µ0 is 1.716× 10−5 in kg/m-s and T0 is 273.11 in K.

The RHS of momentum equations consists of all the force terms such as shear, surface

and body. The equation of thermal energy is given as

∂(ρh)

∂t
+

∂(ρhui)

∂xi

=
∂

∂xi

(
k
∂T

∂xi

)
+ S (2.5)

where k is the thermal conductivity coefficient, h denotes the total enthalpy and S is

the heat dissipation term.

The Navier-Stokes equations are coupled and should be solved simultaneously. There

are 6 flow variables for three dimensional compressible analysis to be calculated but

the Navier-Stokes equations consist of 5 conservation equations. Due to compress-

ibility of flow, pressure is obtained with perfect gas assumption which allows equation

of state to close the system.

P = ρRT (2.6)

where R denotes gas constant and T denotes the static temperature.
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2.2 Reynolds-Averaged Navier-Stokes Equations

Osborne Reynolds [21] proposed Reynolds decomposition for the flow parameters,

which splits the instantaneous values into average and fluctuation components; for

example for the x-velocity into ū and u′, respectively. Reynolds decomposition sim-

plifies the governing equations. After introducing the Reynolds decomposition into

the N-S equations, terms like ρu′v′ appear in the averaged momentum equations.

These terms are related to the eddy viscosity concept associated with turbulence.

τRij = −ρu′v′ = 2µTSij −
2

3
ρKδij (2.7)

where δij denotes the Reynolds-averaged strain-rate tensor, K denotes the turbulent

kinetic energy. There is a closure problem for the RANS equations with these ad-

ditional terms since the number of equations is not altered while the unknowns now

include the fluctuating parts. To satisfy the system of equations, the Boussinesq hy-

pothesis [56] has been used to model the turbulent quantities. Boussinesq assumption

is based on the idea that there is an extra dissipation term, which is isotropic, created

by turbulent stresses. The classification of eddy viscosity models comes from the

formulation and approximation of turbulent viscosity terms in Reynolds stresses. The

linear eddy viscosity models are divided into following groups;

• Algebraic Models (No models)

• One Equation Model (Spalart-Allmaras Model, Prandtl’s Model, etc.)

• Two Equation Model ( SST-k-ω, Realizable k-ϵ,etc.)

In this thesis, the Spalart-Allmaras one equation, and realizable k-ϵ two equation tur-

bulence model are used for the low and high fidelity numerical flow solutions as re-

quired by the optimization approach employed in the thesis. These turbulence models

are discussed below.

2.2.1 Spalart-Allmaras Turbulence Model

The Spalart-Allmaras turbulence model uses a single transport equation to determine

the eddy viscosity ν term . The model was developed primarily for aerodynamic and
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turbomachinery applications related to wall-bounded flows. Despite a large number

of parameters and coefficients included in the kinematic equation, it is substantially

less computationally intensive than of course direct simulation technique. In addition

to this, to determine a turbulent length scale, the shear layer thickness does not need

to be adjusted locally. Also, the Spalart-Allmaras turbulence model has an excellent

prediction capability for turbulent flows with adverse pressure gradients.

The Spalart-Allmaras turbulence model formulation [23] given in tensor notation as

follows

∂ν̄

∂t
+

∂(ν̄vj))

∂xj

= Cb1(1− ft2)S̄ν̄

+
1

σ

{
∂

∂x

[
(νL + ν̄)

∂ν̄

∂xj

)

]
+ Cb2

∂ν̄

∂xj

∂ν̄

∂xj

}
−
[
Cw1fw − Cb1

κ2
ft2

]( ν̄
d

)2
+ ft1 ∥∆v⃗∥22

(2.8)

The eddy viscosity production terms are given as below

S̄ = fv3S +
v̄

κ2d2
fv2 (2.9)

where S is the magnitude of the mean rotation rate.

fv1 =
χ3

χ3 + C3
v1

, fv2 =

(
1 +

χ

Cv2

)−3

(2.10)

fv3 =
(1 + χfv1)(1− fv2)

max(χ, 0.001)
, χ =

ν̄

ν
(2.11)

S =
√

2ΩijΩij (2.12)

The laminar-turbulent transition terms are defined as

ft1 = Ct1gtexp

(
−Ct2

w2
t

∆U2
(d2 + g2t d

2
t )

)
(2.13)

ft2 = Ct3exp(−Ct4χ
2), gt = min [0.1, ∥∆v⃗∥2 /(wt∆xt)] (2.14)

14



where ωt represents the vorticity at the wall at the trip point, ∆v⃗2 denotes the 2-norm

of the difference between the velocity at the trip point and the current field point, dt

is the distance to the nearest trip point, and ∆xt stands for the spacing along the wall

at the trip point.

Finally, the constant parameters in the Spalart-Allmaras equation are defined as

Cb1 = 0.1355, Cb2 = 0.622

Cv1 = 7.1, Cv2 = 5, σ = 2/3, κ = 0.41

Cw1 = Cb1/κ
2 + (1 + Cb2)/σ, Cw2 = 0.3, cw3 = 2

Ct1 = 1, Ct2 = 2, Ct3 = 1.3, Ct4 = 0.5

2.2.2 Realizable k-ϵ Turbulence Model

The k-ϵ model was founded firstly for free-shear layer flows with small pressure gra-

dients, such as free jets. The equation dynamics of the Realizable k-ϵ turbulence

models is similar to the original version of the k-ϵ turbulence model. The turbulent

kinetic energy k and the rate of dissipation of the turbulent energy ϵ defines the two

equation approaches to model turbulence mechanism. Due to insufficiency of the k-

ϵ model for flows with adverse pressure gradients, there have been many modified

versions of the transport-diffusion equations [57],[58]. An alternative to the turbulent

viscosity formulation of the standard k-ϵ turbulence model, the so-called realizable k-

ϵ turbulence model was introduced by Shih [59] for high Reynolds number turbulent

flow. An exact version of the equation for the transfer of the mean-square vortic-

ity fluctuation was reformulated as a dissipation rate equation. Indeed, the model’s

ability defines the realizable version satisfying specific mathematical expressions on

the Reynolds stress term for turbulent flows. The main difference between the real-

izable k-ϵ and the standard version comes from the definition of an eddy-viscosity

formulation and derivation of the mean-square vorticity fluctuation.

The eddy viscosity is given as follows

µt = ρCµ
k2

ϵ
(2.15)
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For a new method Cµ is not constant as in Re-Normalize Group (known as RNG) k-ϵ

turbulence model

Cµ =
1

A0 + As
kU∗

ϵ

(2.16)

The model constants A0 and As are given as

A0 = 4.04, As =
√
6cos(ϕ) (2.17)

where
ϕ =

1

3
cos−1(

√
6W )

W =
SijSjkSki

S̃3

S̃ =
√

SijSij

Sij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
(2.18)

U∗ is another parameter in the model and formulation are given as

U∗ =

√
SijSij + Ω̃ijΩ̃ij (2.19)

where
Ω̃ij = Ωij − 2ϵijkwk

Ωij = Ωij − ϵijkwk

(2.20)

where Ωij is the mean rate-of-rotation tensor viewed in a rotating reference frame

with the angular velocity wk

2.2.3 SST k-ω Turbulence Model

The Shear-Stress Transport k- ω model was formulated out in 1994 by Menter [60] to

be used as the inner part of boundary layer directly. It is a two-equation eddy viscosity

model and combination of Standard k-ϵ and Wilcox’s k-ω turbulence models. The

standart k-ω model is applicable for low Reynolds number flows. Flow has thicker

boundary layer at low Reynolds numbers since viscous terms are dominant. The SST

k-ω turbulence models give good prediction capability for adverse pressure gradient

and separating flow. However, there is a low prediction capability on where higher

velocity gradients occur.
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The governing equations for the SST k- ω model are given as follows,

∂(ρk)

∂t
+

∂(ρkui)

∂xi

=
∂

∂xj

(
Γk

∂k

∂xj

)
+ G̃k − Yk + Sk (2.21)

and

∂(ρw)

∂t
+

∂(ρwui)

∂xi

=
∂

∂xj

(
Γw

∂

∂xj

)
+Gw − Yw + Sw +Dw (2.22)

where G̃k denotes the turbulence kinetic energy generated by mean velocity gradients,

Gw denotes the specific rate of dissipation, Γ is the effective diffusivity, Y represent

the turbulence dissipation, Dw denotes the cross-diffusion and S are defined as a

source.

2.3 Geometrical Description

Model geometry is defined by S-shape , lip and engine intake parts with bullet. Only

S-shape geometrical representation is optimized. Initial points of Bezier are fixed

with the center since it is important that there cannot be discontinuous in the control

volume. Distance between input points x0, x1, x2, ...etc., are identical and length of

duct defines each distance. The heights y1, y2, ...y6, are changed in their limits and y0

and y7 are fixed with the location of front-end and back-end of S-duct respectively.

Figure 2.1: Geometric Parameters of S-Shape

Coordinate details of S-shape are provided in Figure 2.1. y1 and y6 should be carefully
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selected for the line continuity.

(xi+1 − xi) |i=[0,6]= Lduct/n n ∈ [0, 7] (2.23)

2.3.1 Bezier Curve

Bézier curves are used in many fields of computer aided technology. Two ends of

points are stationary and between these points defines the curve. Moreover, the theory

behind the Bezier curve is that it is a parametric curve defined by a set of control

points. The Bezier curve defined by these points is defined and examples of Bezier

curves are given in Figure 2.2.

P (t) =
b∑

i=0

Bn
i (t) · Pi t ∈ [0, 1] (2.24)

where B(t), Bernstein polynomial given as

Bi =

 n

i

 ti(1− t)n−i,

 n

i

 =
n!

i!(n− i)!

Figure 2.2: Bezier Curve Examples [6]

2.4 Design Optimization

This section explains the basic optimization concepts used in the design of the sub-

sonic intake geometry in this thesis. When the number of input parameters is large,

efficient searching strategies are required to lower the computational time. Large
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grid/mesh size and higher order numerical applications are needed for complex flows

to be solved accurately. These implementation are expensive and time-consuming ap-

plication. When expensive analyses are required, surrogate modelling approaches are

highly beneficial in engineering design. The surrogate based optimization consists of

constructing a surface function and finding best scores from the mapped high-fidelity

objectives data. Below stages of surrogate-based optimization approach are discussed

in detail, together with their features and model functions.

2.4.1 Bayesian Optimization

Bayesian optimization is a method for determining the minimum or maximum of an

objective function using the basis of Bayes’ theorem. Bayesian optimization is the

best for objective functions that are to evaluate costly [61].

Figure 2.3: Flow Chart of Pseudo-Bayesian Optimization
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The schema of the Bayesian optimization loop is given in Figure 2.3. In Bayes the-

orem , the posterior probability is related to the conditional probability. Starting to

assess the space’s, the theorem uses statistical models, generally Gaussian process,

by providing posterior probability distribution to model potential values for objective

function. Every iteration for Bayesian optimization, the statistical or surrogate model

is updated. Then, acquisition function quantify the values of evaluation of the objec-

tive function and select the possible solutions to examine. The cycle is repeated until

convergence is achieved.

2.4.1.1 Gaussian Process

A Gaussian process (GPs) is a set of functions with probability of a distribution. Many

applications of GPs have been applied for regression analysis, dimension reduction

and mapping of the function. A response surface model is illustrated by Gaussian

kernel function , generally Radial Basis Function (RBF). A regression method is a

simple way of learning relationship from inputs to outputs and it is a core technique

for many statistical problems. The GPs is formulated as a combination of the mean

function µ (f(x)) and a covariance function K (f(x), f(x′)) .

f ∼ GP (µ (f(x)) , K (f(x), f(x′)))

µ (f(x)) = E [f(x)]

K (f(x), f(x′)) = E [(f(x)− µ(x))(f(x′)− µ(x′))]

Covariance identifies the correlations between input parameters in the space. Covari-

ance matrix is always positive and symmetric. There are many types of covariance

functions. The Radial Basis Function was introduced by Rasmussen and Williams

[62] and it is defined the squared exponential kernel. That function is a prominent

kernel used in the Gaussian process providing a smooth probability function. How-

ever, Matern kernel is used in the open source multi-task Bayesian optimization.

K (f(x), f(x′)) = τ 2exp

(
−1

2

N∑
j=1

(
xj − x′

j

lj

)2
)

(2.25)
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τ and lj are two hyperparameters that define the capability of modeling the posteriors

in terms of amplitude and length scale of variation. Following Figure 2.4 gives an

example of a regression analysis by using an RBF based Gaussian process.

Figure 2.4: Example of a Gaussian Process [7]

2.4.1.2 Multi-Task Gaussian Process

A new approach for Gaussian process application was proposed by Swerky [8]. Co-

variance formulation was modified in his study to use different fidelity sets of appli-

cations. The reason for a number of fidelities usage is to make fast approximations

due to limitations on resources and time. In other words, the system of domain can be

modeled in a much less time with mixed fidelity approximation for computationally

extensive problems. Covariance function of Multi-Task Gaussian Process (MTGP)

models posteriors from all observations modeling high fidelity observation from low

fidelity observation.

KMTGP ((x, t), (x′, t′)) = Kt(t, t
′)⊗KX(x, x

′) (2.26)
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where ⊗ refers Kronecker product, Kx defines the input correlation and Kt relates

the task level.

Figure 2.5 shows Gaussian process over different fidelities. Correlation among tasks

reduces global uncertainty in the multi-tasking application.

Figure 2.5: The Effect of Correlated Function on Gaussian Process Uncertainity [8]

2.4.1.3 Correlation of Methods

In order to use multi-fidelity approach, two solutions of numerical method should

have a correlation. The Pearson correlation is used to measure how strongly two

numerical methods are related [63]. Following formulation shows the calculation of

Pearlson Correlation coefficient. Being close to 1 for Pearson coefficient means that

there is a strong correlation.

r =

∑
(xi − x̄)(yi − ȳ)√

(
∑

(xi − x̄)2
∑

(yi − ȳ)2
(2.27)

where ni denotes the sample values and n̄ denotes the mean values

2.4.1.4 Acquisition Function

Acquisition function proposes the sampling points for Bayesian optimization. Pre-

diction includes scores and uncertainty to give direction. There are many types of

acquisition function to apply Bayesian optimization. Expected improvement (EI) is a

widely used technique and based on exploration and exploitation.
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Expected improvement is defined as

EI(x) =

(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

 (2.28)

where

Z =

(µ(x)− f(x+)− ξ)/σ(x) if σ(x) > 0

0 if σ(x) = 0


where µ(x) denotes mean and σ(x) denotes the standard deviation of GPs posterior.

2.4.2 Sampling Method

Sampling is a process of distributing the set of variables in their limits. It’s crucial the

way of how widely the population is sampled because choosing a sample of individ-

uals determines the searching outputs. Testing entirely the population is not feasible

due to lack of resources and time so a considerable amount of studies use different

techniques of sampling methods. Simple random sampling [64] is a prominent and

widely used sampling technique because of easy implementation and availability in

free software. A pseudo-random number generator is an example of simple sampling

methods but they use specific mathematical expressions to arrange the irregularity of

a distribution of individuals. The number of initial sets is determined by the dimen-

sions of input space [65].

2.4.2.1 Sobol Sampling

Sobol sampling is a low-discrepancy quasi-random sequence. It is a productive method

for higher dimension optimization problems. Distribution of points on initial state

defines the behaviour of searching algorithms. When points condensed on a specific

area, the surface model could not be well resolved for surrogate based optimization.

Let x1, x2, ..0 < xi < 1 to be generated as a set of numbers with low discrepancy in

a given interval [66],[67].

xn = b1ν1 ⊕ b2ν2 + ... (2.29)

where bn denotes the binary representation of n and vi is the direction numbers which

represent a binary fraction.
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2.4.2.2 Cross Validation

Cross validation is a validation of a model in machine learning techniques by sub-

tracting limited data to be compared. Surrogate models are tested by comparing un-

available data in the domain. Cross validation uses train data to estimate the error of

a given surrogate model [68]. Also, cross validation creates surrogate model by using

converged hyper-parameters of a given surrogate model.

Figure 2.6: Schema of Leave One Out Cross-Validation

Figure 2.6 shows the schema of Leave-one out cross-validation. Parameter of k is

a single indicator of the number that is taken out of the groups to be tested. Imple-

menting these applications is known as k-fold cross-validation. Leave one out cross

validation excludes each point building models at every single close out to estimate

missing data.
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2.5 Design Objectives

The objective function is a kind of mathematical expression or equation that repre-

sents the target that is to be optimized. There are basically two types of objective func-

tion in terms of formulation such as single objective and multi objective. Objective

function is the main factor affecting directives of optimization algorithms since it de-

fines the physics of a problem. When the system has many parameters, the weighted

sum approach gives scale to each element of the objective function into a single value

by giving a specific ratio and summation of each weight equals to one. Importance

of the parameters in the objective function depends on the context or physics of the

problems. In this thesis, there are three parameters that define the objective function.

Equally important weights are given to normalized values of distortion coefficient,

pressure recovery and mass of an intake.

Objective function,given as below, is defined as the weighted sum of normalize value

of performance parameters

obj(x) =
n∑

i=1

ωi

(
ϕi − ϕmin

ϕmax − ϕmin

)
(2.30)

where ωi denotes weights, n denotes the number of objectives and ϕ is the values of

the objective parameter.

3∑
i=1

ωi = 1

wi−1 = wi = wi+1

(2.31)

The reason for normalization is that there are difference in the order of magnitude for

performance parameters.

2.5.1 Distortion Coefficient

Distortion coefficient is a non-dimensional parameter that defines the upcoming flow

homogeneity. Aerodynamic interface plane (AIP) is a surface of the engine’s com-

pressor front-side. Flow inhomogeneity can lead to stall compressor blades and even
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more beyond these, engine failure occurs. In order to avoid these detrimental effects

on the compressor blade, intake geometry should be well designed.

DCθ =
PtAIP − Pθ

QAIP

(2.32)

where QAIP denotes the dynamic pressure at interfacing plane.

When the flow passes through the S-shape intake, secondary flow can occur. Detach-

ment point for flow depends on the geometry of S-shape.

Figure 2.7: θ degrees slices of AIP for Distortion Coefficient [9]

Figure 2.7 shows the portion of θ angle sector for distortion coefficient.

2.5.2 Pressure Recovery

Pressure recovery is a ratio of total pressure values at engine face divided by free-

stream total pressure. Flow strength is highly correlated with total pressure values.

Geometry of S-shape is a main factor affecting losses in flow strength due to sec-

ondary flows.

PR =
PtAIP

Pt∞
(2.33)

26



Desired values of PR is equal to one and it means there is no loss. Total pressure

values include static pressure and velocity. Total pressure calculation is different be-

cause of the compressibility of flow. For incompressible flow, density is constant so

that Bernoulli equation defines the total pressure. When density is not constant, isen-

tropic relation is used to calculate total pressure under the assumption of calorically

perfect air.

Instrumentation of total pressure is done with a number of across pressure probes

located at air intakes. From each probe, readings are used for area weighted average

of total pressure values.

Figure 2.8: Air Inlet Pressure Rake ONERA [10]

Application to check whether pressure transducer reads real values or not is defined as

calibration. There are some techniques of calibration under reference standard. Mea-

suring error comes from instrumentation manufacturing, order of scale and outside

effects.
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2.5.3 Weight Estimation of a S-duct

Minimization of weight is an objective parameters as a stopping criteria in this thesis.

While arranging flow performance of the intake, weight should be taken into account.

Weight of a S-duct depends on volume size and material properties. In this study, it

is assumed that same material is chosen for S-duct. Then, volume size of a S-duct

is a single parameter for the weight calculation. Geometry of a S-duct is similar

to a hollow circular cylinder. Figure 2.10 provides dimensions of a hollow circular

cylinder.

Figure 2.9: Volume by Cylindrical Shell [11]

The volume of a hollow circular cylinder is found by multiplying the circumference

of the circular base times the height of the cylinder and thickness.

V = APerimeter ×∆xk

V = 2πr × h×∆xk

(2.34)

Small thickness assumption simplifies the calculation of a shell volume.
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V = APerimeter when ∆xk ≈ 0 (2.35)

where V denotes the volume and A is the surface area of a shell.

∆VS−duct ∼ ∆Aperimeter (2.36)

Normalized weight calculation of a S-duct is performed by using surface area values

in the GAMBIT. Different surface areas for two intake model are given in Figure 2.10.

Figure 2.10: Different Surface Area Examples for S-duct
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CHAPTER 3

VALIDATION STUDY FOR FLOW SOLUTIONS

In this chapter, a validation study for steady-state flow solutions to the RAE M-2129

subsonic intake is represented. This intake is one of the most commonly used sub-

sonic intake models for numerical applications [16],[69].

First, the geometry of the RAE M-2129 intake is described. Then, the boundary

conditions, and grid generation process are discussed, which is followed by a grid

convergence study. As aforementioned all flow computations in this thesis are done

using the commercial solver ANSYS Fluent c⃝. The numerical models available in

this solver are explored for steady flow solutions. Different cost levels of analysis

method are necessary in multi-task Bayesian optimization, and therefore a turbulence

model selection study is carried out first. Validation is carried out comparing the static

pressure values yielded by different turbulence models across the entire duct’s upper

and lower sides. Pressure recovery, distortion coefficient, Mach number, and static

pressure ratio at AIP plane are also investigated comparing with the available wind

tunnel measurements [12].

3.1 RAE M-2129 Subsonic Diffuser

M-2129 S-diffuser geometry was designed by QinetiQ and supplied to AD/AG-43

Groups to perform numerical analysis for comparisons. The model has a formulated

circular cross-section whose center is aligned on the line of S-shaped.

D = Dthroat + (DAIP +Dthroat)

[
3
(
1− x

L

)4
− 4

(
1− x

L

)3
+ 1

]
(3.1)
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S-shaped is formulated as follows,

y = −0.15
[
1− cos(

πx

L
)
]

(3.2)

Table 3.1: Geometric Parameters of RAE M-2129

Parameters Symbol Values [mm]

AIP Location xAIP 483.9

Duct Lenght L 457.2

Entry Diameter Dc 144.0

AIP Diameter DAIP 152.4

Throat Diameter Dthroat 128.8

The parameters in Equation 3.1 and 3.2 are tabulated in Table 3.1

The diffuser has an inlet-lip, then an S-duct and a straight channel after AIP. Coordi-

nate representation of the diffuser at side view is illustrated in Figure 3.1.

Figure 3.1: Side-view Geometrical Represantation of RAE M-2129 [12]
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3.1.1 Solid Model Detail

The Computer aided graph version of the model is drawn with given formulated

data in GAMBIT software. Figure 3.2 shows isometric views of RAE M-2129 CAD

Model.

Figure 3.2: CAD Model of RAE M-2129

The straight duct segment at the lip is the first component which interacts with the

upcoming free-stream flow.

3.1.2 Boundary Conditions

Numerical solvers use boundary conditions to simulate the real condition. Far field

is created at the outer surface of the control volume to imply free-stream conditions

with specified Mach number, constant pressure and temperature values. An adiabatic

and no-slip wall boundary condition are used to represent the intake surfaces. The

back-end surface of S-shape is set as a pressure outlet boundary condition to simulate

the effect of an engine.

Boundary conditions for the test case are illustrated in Figure 3.3.
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Figure 3.3: Boundary Conditions of RAE M-2129 Test Case

Figure 3.4: Mass Flow Rate with respect to Back Pressure at AIP

From the test condition of RAE M-2129, pressure values are iteratively set to cap-
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ture mass flow rate at AIP in Figure 3.4, and Mach number, pressure recovery and

distortion coefficient are all monitored during the iterative solution.

Far-field and outlet boundary condition is given in Table 3.2

Table 3.2: Flow and Boundary Conditions[2]

Parameters Values

Mach Number (M∞) 0.204

Total Pressure (Pt∞) 105139.5 Pa

Total Temperature (Tt∞) 293.7 K

Angle of Attack (α) 00

Sideslip Angle (β) 00

Mass Flow Rate (ṁ) 2.692

3.1.3 Grid Generation

When it comes to engineering simulation of a field with discretization, meshing plays

a crucial role. One of the most important considerations for ensuring numerical ac-

curacy is the creation of a high-quality mesh. In other words, face and cell elements

of mesh should have a good quality for stable numerical analysis. Skewness is a pri-

mary indicator of quality. It is an angle measuring technique related with equilateral

triangle/quadrangle.

To capture turbulence, y+ values which is a non-dimensional first cell distance to

the wall should be close to 1 for the selected numerical models in this thesis. The

formulation of y+ is given below,

y+ =
u∗y

ν
(3.3)

where u∗ denotes friction velocity at wall and ν denotes the kinematic viscosity of

the fluid.

In the validation analysis, the first cell height in the boundary layer is calculated as

5× 10−3 mm for the given test condition. Total number of elements in the boundary

layer is taken as about 25 with a stretching ratio of 1.15 outward. The constructed
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grid has skewness values of under 0.8 for the surface and 0.95 for the cells.

Flow regions with shocks, shear layer interactions and expansion waves involve high

gradients and should be discretized with high resolution. However, denser mesh el-

ements cause to quite extensive calculations, and therefore an optimum number of

elements should be determined for reasonable cost.

The details of volume mesh and boundary layer grid in the duct are illustrated in

Figure 3.5.

Figure 3.5: Numerical Elements of RAE M-2129 Test Case
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Figure 3.6: y+ values over RAE M-2129 Walls

y+ values for two different cost of numerical models is plotted in Figure 3.6

3.1.4 Solvers Setup

ANSYS Fluent c⃝ offers two different numerical methods which are pressure based

and density based. Although pressure based solvers are used for low-speed flow and

density based solvers are used for high-speed flow, the two methods have been mod-

ified to expand for a wide range of flow conditions . In the density-based algorithm,

the pressure field is obtained from the equation of state. The continuity equation is

used for the density field [55]. For pressure based solver, continuity and momentum

equations are manipulated to be formed as a pressure-correction equation. Pressure

fields are obtained from pressure-correction equations.

The solvers used in multi-tasking optimization of the present work are coupled, pres-

sure based 3-D RANS with the Spalart-Allmaras (S-A) turbulence model for low-cost

results, and density based 3-D RANS with the realizable k-ϵ turbulence model for the

high-cost result.
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To achieve convergence for steady state analyses, permissible CFL numbers are se-

lected. When the smooth convergences are achieved, total iteration numbers are 3500

for low-cost method and 6500 for high-cost method.

3.1.5 Grid Convergence Study

The independence grid study is used to ensure that the solutions are not affected by

the grid size. To eliminate the errors in the solution due to the insufficient number of

grid size, grid independence study is carried out until the solution does not change for

each turbulence model. The grid convergence study for RAE M-2129 is performed

with a sequence of coarse ( ∼5 million cells), medium (∼10 million cells), and fine

(∼20 million cells) meshes. Figure 3.7- 3.8 show the details of the mesh near AIP.

Figure 3.7: Grid Convergence Study of RAE M-2129
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Figure 3.8: Grid Convergence Study of RAE M-2129 Engine Inlet

Grid sensitivity study is carried out for each numerical solver, and the distortion coef-

ficient and pressure recovery values at AIP are determined with respect to the number

of elements. It is obtained that the values of pressure recovery and distortion coef-

ficient do not change and the differences are less than 1 % when the element size is

equal to or higher than the medium size in Figure 3.9 and 3.10.
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Figure 3.9: Distortion Coefficient for Different Element Size

Figure 3.10: Pressure Recovery for Different Element Size
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3.1.6 Turbulence Models Selection According to Cost Levels

Validation of RAE M-2129 model is performed to simulate real physics. Cost of

numerical model is defined that it is a trade-off between computational effort of the

turbulence model and level of error in the solution. For high and low cost turbulence

model selection, realizable k- ϵ, SST k-ω and Spalart-Allmaras are used for multi-task

Bayesian Optimization [69],[17],[16]. After setting the boundary conditions with a

suitable mesh model, the flow Mach number, pressure recovery, mass flow rate, and

static pressure ratio values are monitored during the iterations

Experimental data are taken from the technical report of the GARTEUR AD/AG-43

[2], “Application of CFD to High Offset Intake Diffusers”. Performance outputs at

interfacing face for the bullet model named DP78 are tabulated in Table 3.2

Table 3.3: DP78 Experimental Data[2] of RAE M-2129 with bullet

Parameters Values

AIP Mach Number 0.419

ṁ (kg/s) 2.69

Pressure Recovery 0.9744

PRA 0.8522

DC60 0.313

In table 3.3, static pressure ratio (PRA) is the area-weighted average static pressure

values over ambient total pressure.

The flow results of the turbulence models at the interfacing plane are compared to

experimental data in Table 3.4.
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Table 3.4: Comparisons of Flow Variables at AIP for Turbulence Models and Exper-

imental Data (DP78)[2]

Turb. Methods Back Pressure Mach Number ṁ DC60 PR PRA

Experiment - 0.419 2.69 0.313 0.974 0.85

Realizable k-ϵ 91000 0.422 2.71 0.297 0.981 0.86

SST k-ω 88000 0.394 2.68 0.551 0.975 0.84

Spalart-Allmaras 91000 0.389 2.65 0.362 0.952 0.87

k-kl EARSM [2] 91800 0.381 2.63 0.464 0.984 0.87

The difference between experimental data and numerical results are calculated. Mach

number at AIP is calculated with area-weighted average values. With increased mass

flow rate, the Mach number at the interfacing plane rises. Other turbulence models,

in particular, have failed to estimate the distortion coefficient. Each turbulence model

finds pressure recovery values close to the experimental results and errors in the cal-

culated mass flow rate values are less than 1 % at AIP. For this reason, the distortion

coefficient (DC60) is the determining parameter in the selection of the turbulence

model according to the cost level. DC60 obtained from realizable k-ϵ turbulence

model is closer to experimental data. The solution time for the realizable k- ϵ turbu-

lence model is about 3 hours on 240 CPU Processors. Realizable k- ϵ is selected as a

high cost turbulence model for multi-task Bayesian optimization due to low error in

DC60 and execution time of an analysis.

Spalart-Allmaras turbulence model is selected as a low cost numerical method for

multi-tasking Bayesian optimization. Compared to the experiment, the Spalart-Allmaras

has a 15% error value in the DC60 value. Also, solution time for is obtained nearly 1

hour with 240 number of CPU Processors.

Following figure shows the comparisons of total pressure contours for CFD applica-

tions and experiment.
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Figure 3.11: Comparisons of Pressure Recovery Contours for RAE M-2129 (a) Ex-

perimental Measurement DP78 [2], (b) Realizable k-ϵ Turbulence Model,(c) SST k-ω

Turbulence Model , (d) Spalart Allmaras and (e) k-kl EARSM Turbulence Model [2]
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Analysis results in Figure 3.11 show the losses on the flow quality. The difference

on the distribution on pressure recovery comes from the secondary flow modelling.

The k-ϵ turbulence model predicts pressure recovery trends that are similar to those

observed in the experiments. The small total pressure values near wall are obtained

due to effects of skin friction. Also, separated flow region at the bottom of AIP is

captured to certain extent by Spalart-Allmaras.

The static pressure ratios of the walls are compared at the upper and bottom of the

inlet section across the duct in Figure 3.12

Figure 3.12: Upper and Bottom of the Inlet Section Across the Duct

Figure 3.13: Comparison of Wall Static Pressure Ratio for Experimental Measure-

ments and k-ϵ Turbulence Model at PORT[2]
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Figure 3.14: Comparison of Wall Static Pressure Ratio for Experimental Measure-

ments and k-ϵ Turbulence Model at STBD[2]

The static pressure ratio at AIP is higher at the bottom section due to secondary flow.

Also, separation starts at x = -450 mm shown in Figure 3.14. Static pressure ratios

across the duct are well captured by realizable k-ϵ turbulence Model. Wall duct pres-

sure ratio comparison in Figure 3.13 shows that low cost turbulence model and high

cost turbulence model have similar predictions and they have a small differences in

static pressure ratio at the upper section.

Contours of Mach number are compared for k-kl EARSM turbulence model [2], re-

alizable k-ϵ Turbulence Model and Spalart- Allmaras. Figure 3.15 shows three dif-

ferent numerical analysis details about inner flow characteristic and separation zone

at mid-section. It is easy to understand that separated flow affects the total pressure

distribution at the interfacing plane. Low total pressure region differs slightly in tur-

bulence models.
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Figure 3.15: Comparison of Mach Contours for k-ϵ Turbulence Model, Reference

Turbulence Model (k-kl EARSM) [2] and Spalart- Allmaras Turbulence Model at

mid-section
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CHAPTER 4

OPTIMIZATION RESULTS AND DISCUSSION

In this chapter, results of shape optimization by multi-task Bayesian application are

explained and supported with detailed discussions. In the optimization study, baseline

of intake is selected as RAE M-2129. Bezier control points that represent the RAE

M-2129 geometry are required to be calculated. For this reason, y-coordinate dif-

ference of selected span-wise locations between Bezier representation and analytical

formulation of RAE M-2129 iterated until satisfactory root mean square error value

is obtained. The root mean square error definition is given in Equation 4.1.

RMSE =

√∑N
i=1(yi − ŷ)2

N
(4.1)

where N is the number of points, yi denotes values from the Bezier curve and ŷ

denotes values from the analytical formulation.

Figure 4.1 shows matching Bezier representation of RAE M-2129 (black-dashed)

with curve obtained from its analytical formulation(red-line).

Figure 4.1: Bezier Representations of RAE M-2129 with Analytical based S-line
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Bezier points that represent RAE M-2129 is given in Table 4.1. The upper and lower

boundaries of Bezier parameters for optimization study is defined based on the Bezier

parameters of the RAE M-2129. Additionally, the length of the duct is an another

input parameter. Its boundary changes in ± 100 mm around the value in the baseline.

The input baseline values, upper and lower boundaries are tabulated in Table4.1

Table 4.1: Boundaries of Inputs for Optimization

Parameters Lower Bound Baseline(RAE M-2129) Upper Bound

y1 146.00 136.00 121.00

y2 140.00 125.00 110.00

y3 97.00 82.00 67.00

y4 71.00 56.00 41.00

y5 28.00 13.00 -2.00

y6 16.00 1.00 -9.00

∆L -100.00 0.00 100.00

Line continuity problem is observed for some design alternatives. The reason is re-

sulted to be broad range of y1 and y6. In order to overcome line continuity problem,

the range of y1 and y6 is reduced. Figure 4.3 shows an example of line continuity

problem.

Figure 4.2: An Example for the Failure of Bezier based Model
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As it is aforementioned in section 2.4.1.3, Bayesian application requires that analysis

methods with different accuracy levels have a strong relationship. Pearlson corre-

lation coefficient is calculated as 0.945 which is sufficient for multi-task Bayesian

optimization. Moreover, Figure 4.3 shows the correlation of high and low cost mod-

els objective values. The objective function is a combination of normalized pressure

recovery, distortion coefficient and duct weight. The correlation between two numer-

ical models is evaluated as sufficient.

Figure 4.3: Comparison between High Cost Numerical Results and Low Cost Nu-

merical Results of Intake Samples

The correlated models are used to test the prediction success of Gaussian process.

The reason why these demonstrations are performed is to understand how well the

Gaussian process can learn from the training data. A total of 30 arbitrarily selected

design points are solved with two different cost levels of turbulence models. An

open source data prediction tool for multi-task Bayesian application is employed in

Gaussian process. Figure 4.4 shows the differences between objective values of low

and high cost methods.
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Figure 4.4: Objective Values of Two Different Cost Turbulence Models over Sample

Numbers

In Figure 4.4 each sample which has specific inputs of y1, y2, y3, y4, y5, y6 and L val-

ues represents the S-duct configuration. Objective values from numerical solutions

are used in the Gaussian process to model the distribution. Regression analysis is

used to estimate 5 different samples in Table 4.2.

Table 4.2: Parameters Detail of a Gaussian Process Application of a given 5 Control

Points (CPs)

ValuesID CP-1 CP-2 CP-3 CP-4 CP-5

y1[mm] 137.2609 141.2418 139.3542 138.9812 140.0333

y2[mm] 132.1630 130.5458 130.4317 133.5354 133.9270

y3[mm] 73.6903 73.1234 77.1520 76.1348 74.5686

y4 [mm] 51.5888 51.8987 49.7011 53.1587 46.3715

y5[mm] 25.5671 24.2423 23.3283 23.9812 25.0329

y6[mm] 1.2430 1.4776 0.4341 0.3050 4.6238

L [mm] 9.865 31.832 38.971 13.810 19.038

The predicted values from the Gaussian process and high cost numerical results of

these samples are compared to show the regression analysis achievement in Figure

4.5
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Figure 4.5: Comparison for High Cost CFD Results and Gaussian Prediction over

Control Points

Demonstration of the Gaussian process shows valuable prediction over given samples

test data. Each prediction error is less than 1%. It can be stated that prediction of

Gaussian Process can be used as an high cost solution.

Optimization study is performed for different size of initial sampling and the per-

formance comparison between multi-tasking and single tasking. Firstly, multi-task

Bayesian optimizations are employed for the effect of initial sample size on opti-

mization to compare the convergence speed. In order to check the surrogate model

capability, leave one out cross-validation (LOOCV) is applied for each optimization

with different number of sampling. Secondly, single tasking is performed to compare

multi-tasking Bayesian optimization for execution time comparison.

Relation between performance parameters in the objective function are investigated

with Pareto plots. In addition, related figures point out the outcomes. Lastly, contours

comparison are drawn for the baseline and optima.
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4.0.1 Effects of Initial Sampling Size on Optimization

Multi-Task Bayesian optimization starts with the initial set of sample to understand

the system behaviour. All starting points are analysed with two numerical applica-

tions for Gaussian Process. Then, optimization continues with cycles which includes

proposed design points by acquisition function. Low cost and high cost analysis are

performed also in the optimization cycles. In this part, the effects of a number of

initial points are investigated on convergence performance. Multi-task optimization

parameters are given in Table 4.4.

Table 4.3: Input Settings of Multi-Task Bayesian Optimization Application

Parameters Definition Values

n-init-cfd-ke Size of the quasirandom initialization HCOST RUN 5-10-20

n-init-cfd-sa Size of the quasirandom initialization LCOST RUN 5-10-20

n-opt-cfd-ke Batch size for BO selected points to be HCOST RUN 5

n-opt-cfd-sa Batch size for BO selected points to be LCOST RUN 15

Optimization starts with high cost and low cost performance values of intake samples

selected by Sobol sequence. Then, Bayesian optimization constructs a probabilis-

tic model using Gaussian Process. Acquision function gives scores of the surrogate

model to select the next sample from the search space. The selected 15 number of

intake models (n-opt-cfd-sa) are analyzed with low-cost models in optimization cy-

cles. Then, 5 intake models (n-opt-cfd-ke) out of these 15 intake models have higher

fitness values between them. Then, high accuracy analysis is used for these 5 intake

models to train the surrogate model. Updating surrogate model in each cycle is also

referred as machine learning. This multi-task optimization is applied at each cycle

until the convergence is achieved.

Figure 4.6 shows the mechanism of open source multi-tasking Bayesian optimization.
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Figure 4.6: Schema of the Open Source Multi-Task Bayesian Optimization

Each initial sample analysis are applied with cross-validation to show surrogate model

performance.

Figure 4.7: High Cost Objective History of Design ID over 5-5 Initial Sampling

Multi-Task Bayesian Optimization

Only high cost objective values are plotted with respect to the design identity in Figure

4.7. Multi-tasking finds lower objective value in each cycle than in the previous

cycle. Convergence occurs in 3 number of cycles and best fitness is 0.345 in terms of

objective values.

Additionally, cross-validation analysis is applied for all high cost samples in opti-

mization. As stated previously in section 2.4.2.2, converged hyper-parameters of
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Gaussian process is used in the application of cross-validation. Leave one out cross-

validation analysis details is given in Figure 4.8 for initial sampling 5-5 MTBO.

Figure 4.8: Cross-Validation Application for Initial Sampling 5-5 Bayesian Optimiza-

tion.

The same optimization execution and cross-validation study is performed for 10 and

20 of number of initial size in Figure 4.9, 4.10, 4.11 and 4.12.

Figure 4.9: Objective History of High Cost Design ID over 10-10 Initial Sampling

Multi-Task Bayesian Optimization
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Figure 4.10: Cross-Validation Application for Initial Sampling 10-10 Bayesian Opti-

mization.

Figure 4.11: Objective History of High Cost Design ID over 20-20 Initial Sampling

Multi-Task Bayesian Optimization

Cross-Validation analysis presented in Figure 4.12 shows that Gaussian Process per-

forms better prediction on the lower objective values. The reason of scatter distribu-

tion around higher objective values is that surrogate model has fewer design points

for regression. Optimization algorithm tries to minimize the objective function, there-

fore, new design points are generated with lower objective values. For this reason,

having more points at low objective values improves surrogate model’s success.
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Figure 4.12: Cross-Validation Application for Initial Sampling 20-20 Bayesian Opti-

mization.

Figure 4.13: Comparison of Initial Sampling Size in terms of Objective Values with

Arms.

In order to compare the effect of initial sampling size on convergence speed, op-

timization study has been performed for three different initial sampling size. The

performance history of different design cycles is illustrated in Figure 4.13. Greater

number of initial samples has faster convergence rate at initial design cycles. How-
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ever, it is observed that sample size has minimal effect on the convergence rate and

final objective value as design cycles increase.

In table 4.4, comparison of performance parameters that define the objective function

are provided for three initial sample size. Although same level of objective values are

obtained, differences between performance parameters are observed.

Table 4.4: Input Settings of Multi-Task Bayesian Optimization Application

Design ID DC60 PR W-normalized Objective Value

RAE-M2129 0.293 0.9744 0.59 0.420

5-5 MTBO 0.281 0.9902 0.62 0.344

10-10 MTBO 0.279 0.9850 0.61 0.344

20-20 MTBO 0.279 0.9912 0.65 0.343

Table 4.5 lists the parameters for the baseline and the improved intake. Significant

changes occurred in y3, y5 and y6 values which basically define the transition from

inlet to interfacing plane.

Table 4.5: Input Details of Baseline and Optimized S-shape

Parameters y1 y2 y3 y4 y5 y6 ∆L

Baseline Intake 136 125 82 56 13 1 0

Optimized Intake 135 125 70 60 30 10 4.91

57



Figure 4.14: Total Pressure Ratio Comparison of Baseline and Best Design at Side-

view.

Comparison of pressure recovery contours for baseline and optimized design point

at mid-section is provided in Figure 4.14. Blue-color shows low pressure recovery

region and red-color indicates high pressure recovery values. Total pressure losses is

decreased for optimized design point.

Figure 4.15: Total Pressure Ratio Comparison of Baseline and Best Design at AIP .
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In order to better see the improvements, semi-images of AIP surface for baseline and

optimum design points are combined in Figure 4.15. The level of losses are slightly

reduced by using multi-tasking.

4.0.2 Comparison of Single Fidelity-Multi Fidelity Bayesian Optimization

Performance of optimization techniques for surrogate based Bayesian Optimization is

examined with single task and multi task approaches. For single task approach, only

high cost numerical analysis is used in Gaussian Process. Performance of methods are

measured by how much time does it take for convergence of desired fitness. Figure

4.16 shows that elapsed time to reach same fitness for single-task approach is nearly

2 times slower than that for multi-task approach. Two approaches converge to similar

objective values when convergence is achieved. Analysis takes nearly 1 hour for

Spalart-Allmaras turbulence model and 3 hours for realizable k-ϵ turbulence model

when 240 CPU Processors used in the cluster.

Figure 4.16: Single Task and Multi Task Comparison with respect to Elapsed Time

4.0.3 Parameters Relation on Objective Function

In this part, relation between performance parameters in design objective are inves-

tigated to understand physical characteristic of the S-duct. To look even more into
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details, Pareto plots are drawn in Figure 4.17-4.18 and 4.19 . Data in 10-10 initial

sampling with proper setting are used in those figures.

Figure 4.17: Parameters Comparison for Distortion Coefficients and Pressure Recov-

ery of Design Points

Distortion coefficient and pressure recovery have negative strong correlation. It is

observed that improvement on pressure recovery and distortion coefficient are corre-

lated. Distortion coefficient is highly affected by secondary flows in the duct. Weaker

secondary flows results in low distortion coefficient. Similarly, weaker secondary

flow induces less pressure loss.

Pareto plot in Figure 4.18 shows the relation between the distortion coefficient and

duct length.
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Figure 4.18: Parameters Comparison for Intake Length and Distortion Coefficient of

Design Points

Normalized weight is directly influenced by the length of S-duct. Better distortion

coefficient is obtained when length of S-duct gets longer. Long duct provide smoother

transition from inlet to AIP, therefore, smaller separation regions are expected.

Figure 4.19: Parameters Comparison for Normalized Weight and Pressure Recovery

of Design Points

The relation between the pressure recovery and duct length are shown in Figure 4.19.

Pressure recovery values improve with increasing duct weight which is directly re-
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lated to duct length. In fact, highest total pressure value is obtained at maximum

weight. Longer duct length improves the flow quality through the duct. The similar

relation is mentioned in the discussion of distortion coefficient-weight comparison.

To sum up, optimization structure can be visualized from Pareto plots. Parameter’s

relation shows that distortion coefficient and pressure recovery are affected in a simi-

lar manner by Length. Weight of S-duct behaves the inverse of these two parameters.

Then, Bayesian optimization algorithm performs oscillatory selection for length of

S-duct and that makes the system non-linear.
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CHAPTER 5

CONCLUSION

In this thesis, the performance optimization of S-duct is improved by using machine

learning based CFD optimization. Validation cases have been done for various cost of

turbulence models. Unstructured mesh type is used for numerical analysis and bound-

ary layer height is selected for proper y+ value to model turbulence. Grid convergence

study is taken out for turbulence models. Also, RAE M-2129 intake model is taken

as a validation model. Pressure Recovery, distortion coefficient, Mach Number and

mass flow rate are compared at AIP plane with available experimental data [2]. Real-

izable k-ϵ turbulence model is selected for high cost model and Spalart- Allmaras is

chosen for low cost model for Gaussian Process.

Bezier control points representing the RAE M-2129 geometry are taken as baseline

input parameters. Then, the baseline input parameters are used to determine the

bounds of Bezier parameters for optimization studies. Also, line continuity is taken

into account when determining boundaries of the input parameters. The correlation

calculation of the selected numerical methods is made within the limits of these input

parameters. The Gaussian process is demonstrated with the given set of S-duct sam-

ples to predict the performance of another 5 intake models. A set of S-duct is analyzed

by using correlated turbulence models to train the surrogate model. Bayesian appli-

cation predicted perfectly and there are less than 1% differences between prediction

values and high cost CFD results.

Different numbers of initial samples are used to investigate the effects on optimiza-

tion. Higher number of initial sample has faster convergence on optimum design

point. Also, the effect of the initial samples on optimization decreases in the further

cycles of optimization. Input parameters of baseline and best design are tabulated and
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pressure recover contours show the performance enhancement. Pressure recovery has

increased by 1.5 %, and the distortion coefficient has dropped by 5%. The weight of

an intake model, on the other hand, is increased by 6%.

Multi-task Bayesian optimization approach is compared with single-task Bayesian

optimization. Multi-tasking has nearly two times faster convergence time than single-

task optimization. Relation of performance parameters is investigated with related

Pareto plots. There is a direct proportion between pressure recovery and distortion

coefficient. Any geometrical changes that make the pressure recovery better, also

decreases the distortion coefficient. As the length of the duct gets larger, the weight of

an intake increases. Larger length size of an intake makes inlet flow much smoother.

This improves pressure recovery and distortion coefficient, but the weight of the s-

shape increases.

To sum up, multi-task Bayesian optimization has valuable influence on intake design.

Due to requirement of extensive computational analysis, usage of cheap and expen-

sive methods on Gaussian Process reduces global uncertainty. It also gives greater

precision of prediction so that multi-task Bayesian optimization is crucial to project

which has limited time and requires detailed analyses.
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Appendix A

XChor Language - 1: Bezier Curve Python Scripts

1 d e f b e z c u r v e ( X p o i n t s , L , i n o ) :

2 d e f b i n o m i a l ( i , n ) :

3 r e t u r n math . f a c t o r i a l ( n ) / f l o a t ( math . f a c t o r i a l ( i ) math .

f a c t o r i a l ( n i ) )

4 d e f b e r n s t e i n ( t , i , n ) :

5 r e t u r n b i n o m i a l ( i , n ) ( t i ) ( ( 1 t ) ( n i ) )

6 d e f b e z i e r ( t , c o n t r o l p o i n t s ) :

7 n= l e n ( c o n t r o l p o i n t s ) 1

8 x=y=0

9 f o r i , pos i n enumera t e ( c o n t r o l p o i n t s ) :

10 be rn = b e r n s t e i n ( t , i , n )

11 x += pos [ 0 ] be rn

12 y += pos [ 1 ] be rn

13 r e t u r n x , y

14 d e f b e z i e r c u r v e r a n g e ( n , p o i n t s ) :

15 f o r i i n r a n g e ( n ) :

16 t = i / f l o a t ( n 1 )

17 y i e l d b e z i e r ( t , p o i n t s )

18 Rt =64 .4

19 Rf =76 .2

20 R= [ ]

21 X= [ ]

22 Y= [ ]

23 Z=np . z e r o s ( 2 0 6 )

24 p l t . c l o s e ( a l l )

25 P= X p o i n t s

26 Bx = [ ]

27 By = [ ]

28 f o r p o i n t i n b e z i e r c u r v e r a n g e ( 1 0 0 , P ) :

29 Bx . append ( p o i n t [ 0 ] )

30 By . append ( p o i n t [ 1 ] )

31 f o r i i n r a n g e ( 0 , l e n ( Bx ) ) :

32 R . append ( Rt +( Rf Rt ) ( 3 ( 1 Bx [ i ] / L ) 4 4 ( 1 Bx [ i ] / L ) 3 + 1 ) )

33 B=pd . DataFrame ( columns = [ Bx , By ] )
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34 B . Bx=Bx [ : ]

35 B . By=By [ : ]

36 B . t o c s v ( B e z i e r p o i n t s . out , i n d e x = F a l s e )

37 R=pd . DataFrame ( d a t a = R : R [ : ] , d t y p e =np . f l o a t 1 6 )

38 X. append ( Bx [ 0 ] )

39 Y. append ( By [ 0 ] + Rt )

40 X. append ( Bx [ 0 ] )

41 Y. append ( By [ 0 ] )

42 Z [ 1 ] = Rt

43 X. append ( Bx [ 0 ] )

44 Y. append ( By [ 0 ] Rt )

45 X. append ( Bx [ 0 ] )

46 Y. append ( By [ 0 ] )

47 Z [ 3 ] = Rt

48 f o r i i n r a n g e ( 1 , l e n ( Bx ) ) :

49 X. append ( Bx [ i ] )

50 Y. append ( By [ i ]+R[ i ] )

51 X. append ( Bx [ 1 ] )

52 Y. append ( By [ 1 ] )

53 Z [ l e n ( Bx ) + 4 1 ] = Rf

54 X. append ( Bx [ 1 ] )

55 Y. append ( By [ 1 ] )

56 Z [ l e n ( Bx ) + 5 1 ] = Rf

57 X. append ( Bx [ 1 ] )

58 Y. append ( By [ 1 ] + Rf )

59 X. append ( Bx [ 1 ] )

60 Y. append ( By [ 1 ] Rf )

61 f o r i i n r a n g e ( 1 , l e n ( Bx ) 1 ) :

62 X. append ( Bx [ i ] )

63 Y. append ( By [ i ] R[ i ] )

64 X. append ( Bx [ 1 ] )

65 Y. append ( By [ 1 ] Rf )

66 Z1=Z . t o l i s t ( )

67 d a t a =np . c o l u m n s t a c k ( ( X, Y, Z1 ) )

68 np . s a v e t x t ( i n l e t g e o m e t r y . da t , da t a , d e l i m i t e r = s , fmt = f f

f )

69 ppx , ppy= z i p ( P )
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70 p l t . x l im ( [ 0 , 7 0 0 ] )

71 p l t . y l im ( [ 1 0 0 , 2 0 0 ] )

72 p l t . p l o t ( Bx , By )

73 p l t . p l o t ( ppx , ppy , marker = o , l i n e s t y l e = )

74 p l t . s u p t i t l e ( f " Des ign i n o " , x = 0 . 2 , y = 0 . 3 )

75 p l t . x l a b e l ( X [mm] )

76 p l t . y l a b e l ( Z [mm] )

77 p l t . s a v e f i g ( C u r v e + f " Des ign i n o " + . jpg )

78 p l t . c l o s e ( )

79 r e t u r n
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