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ABSTRACT

A GENERAL FRAMEWORK FOR THE DETERMINISTIC MEDIUM
ACCESS ON THE CONTROLLER AREA NETWORK

Akpınar, Murat

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ece Güran Schmidt

Co-Supervisor: Prof. Dr. Klaus Werner Schmidt

June 2022, 192 pages

This thesis proposes a general framework CANDS (Controller Area Network with

Determinism and Synchronization support) for in-vehicle communication on CAN.

CANDS features a hierarchy of novel clock synchronization (CS) algorithms with dif-

ferent levels of clock accuracy and implementation complexity. Moreover, CANDS

realizes our original idea of weak time division multiple access (WTDMA) for de-

terministic bus access, while being fully compatible with the standard CAN protocol

and its recent extensions.

CS methods within CANDS apply offset and drift correction. While offset correc-

tion is performed based on timestamps in periodic reference messages (RMs), drift

correction is realized based on (1) the re-synchronization mechanism of the CAN

bit timing; (2) drift estimates computed from periodic timestamps with RMs and (3)

drift estimates determined in a discrete-time feedback control loop. Since accurate

timestamps are essential for the CS performance, the thesis further develops a new

timestamping (TS) method, which reduces the effect of uncertainties that are caused

by the CAN bit timing, oscillator drifts and different cable lengths. Overall, clock
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accuracies below 100 ns are achieved in hardware experiments with our TS method

and CS algorithms.

Benefiting from the achieved clock accuracy levels, the thesis next introduces WT-

DMA as a new method for slotted medium access on CAN together with novel mes-

sage scheduling algorithms for the assignment of time slots in WTDMA. WTDMA

is realized in software and a certain degree of interference between adjacent time

slots is tolerated with the usage of Carrier Sense Multiple Access/Collision Resolu-

tion (CSMA/CR) and the non-preemptive message transmission on CAN. Sufficient

conditions for the correct operation of WTDMA are derived and its practicability is

validated with comprehensive hardware experiments. Specifically, bus loads above

90% and deterministic message latencies in the order of hundreds of microseconds

are achieved.

Keywords: controller area network, clock synchronization, drift compensation, ex-

perimental evaluation, timestamping, slotted bus access, determinism.
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ÖZ

CAN AĞI ÜZERİNDE DETERMİNİSTİK ORTAM ERİŞİMİ İÇİN GENEL
BİR İŞ ÇERÇEVESİ

Akpınar, Murat

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Ortak Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Haziran 2022 , 192 sayfa

Bu tez ile genel bir iş çerçevesi olarak CANDS (Determinizm ve Senkronizasyon

destekli Kontrolör Alan Ağı), CAN üzerinde araç içi iletişim için önerilmektedir.

CANDS, farklı saat doğruluğu ve uygulama karmaşıklığına sahip yeni saat senkro-

nizasyonu (CS) algoritmalarından oluşan bir hiyerarşiye sahiptir. CANDS, standart

CAN protokolü ve son uzantıları ile tamamen uyumluyken, deterministik veri yolu

erişimi için zayıf zaman bölmeli çoklu erişim (WTDMA) konusundaki orijinal fikri-

mizi gerçekleştirir.

CANDS içerisindeki CS yöntemleri, ofset ve kayma düzeltmesi uygular. Ofset dü-

zeltmesi periyodik referans mesajları (RM) ile taşınan zaman damgalarına göre yapı-

lırken, kayma düzeltmesi (1) CAN bit zamanlamasının yeniden senkronizasyon me-

kanizmasına; (2) periyodik zaman damgalarından hesaplanan kayma tahminlerine ve

(3) ayrık zamanlı bir geri besleme kontrol döngüsünde belirlenen kayma tahminlerine

göre gerçekleştirilir. CS performansı için doğru zaman damgaları gerekli olduğundan,

bu tez ayrıca CAN bit zamanlamasının, osilatör kaymalarının ve farklı kablo uzun-
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luklarının neden olduğu belirsizliklerin etkisini azaltan yeni bir zaman damgası (TS)

yöntemi de geliştirir. Genel olarak, TS yöntemimiz ve CS algoritmalarımız ile yapılan

donanım deneylerinde 100 ns ve altında saat doğrulukları elde edilmektedir.

Elde edilen saat doğruluğu sayesinde, CAN üzerinde ayrılmış ortam erişimi için

WTDMA ve WTDMA zaman dilimlerinin atanması için yeni mesaj çizelgeleme algo-

ritmaları önerilmektedir. WTDMA yazılımda gerçekleştirilir ve bitişik zaman dilim-

leri arasında belirli bir düzeyde girişime Taşıyıcı Algılama Çoklu Erişim/Çarpışma

Çözümleme (CSMA/CR) ve CAN önleyici olmayan mesaj iletimi sayesinde izin ve-

rilir. WTDMA fikrinin doğru çalışması için yeterli koşullar ortaya konulmuş ve kap-

samlı donanım deneyleri ile uygulanabilirliği doğrulanmıştır. Spesifik olarak, %90

üzerinde veri yolu yükleri ve birkaç yüz mikro saniye düzeyinde deterministik mesaj

gecikmeleri elde edilmektedir.

Anahtar Kelimeler: controller area network, saat senkronizasyonu, kayma düzeltme,

deneysel değerlendirme, zaman damgası, ayrılmış ortam erişimi, determinizm.
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CHAPTER 1

INTRODUCTION

Modern vehicles comprise of several distributed electronic control units (ECUs) which

require to exchange information continuously [1, 2, 3]. The communication between

ECUs has been realized through the bus-based in-vehicle networks such as controller

area network (CAN) [4], FlexRay [5], local interconnect network (LIN) [6] and media

oriented systems transport (MOST) [7]. Furthermore, the complexity and diversity of

the electronic devices continue to increase together with advanced safety, driver as-

sistance and infotainment functions in new vehicles [1]. Thus, the deployment of

various new ECUs has accelerated the demand for more efficient and high bandwidth

in-vehicle communication solutions [3, 8, 9].

CAN is the most widespread in-vehicle network in modern cars. It supports a max-

imum bus speed of 1 Mbps at lengths of up to 40 m. Moreover, CAN provides high

reliability at a low cost and low power consumption [1, 10, 11]. Thus, CAN is indis-

pensable especially for the transmission of the data of real-time control applications

which require low bandwidth but high real time Quality of Service (QoS) such as

ABS, suspension and braking systems [1]. Furthermore, several leading automo-

tive producers such as Volkswagen, BMW, Porsche, Audi and Tesla still continue

to use CAN in their cars today [12]. Specifically, CAN is used in the drive system

and adaptive cruise control system of Audi A-8 D5 which is the world’s first level 3

autonomous car [12]. In addition, Tesla Model S/X/3 which are another leading au-

tonomous cars also adopt CAN in their powertrain, chassis and body control systems

[12].

The latest researches regarding the in-vehicle networks also show interest in the wire-

less solutions together with the automotive ethernet [11, 12]. The wireless communi-
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cation between ECUs is discussed in the literature [2, 13] as an alternative to the wired

in-vehicle networks. Even though it may offer an advantage in terms of cabling us-

age, the wireless in-vehicle communication does not seem feasible in the near future

due to the concerns about its security and dependability for safety critical automotive

systems [1]. On the other hand, it seems that Ethernet is very likely to be a significant

component of the future in-vehicle networks even though it is not very widespread

for now [1, 14, 11, 3]. Since Ethernet does not provide deterministic message trans-

mission, the approaches IEEE 802.1Q, Auido Video Bridging (AVB) and TTEthernet

[15] have been proposed to improve the real time communication capabilities of Eth-

ernet for automotive networks. Nevertheless, ongoing studies show that Ethernet will

not replace the existing communication links such as CAN and FlexRay, but rather

performs together with them as the backbone for the next generation of in-vehicle

communication links [1, 3].

Due to the continuing importance of CAN, the improvements on it are still ongoing.

In order to increase the capabilities of the legacy CAN protocol, CAN with flexible

data-rate (CAN FD) is proposed by Bosch [16] that enables higher bit rates up to

8 Mbps and longer message payloads as big as 64 bytes. Furthermore, CAN extended

length (CAN XL) is still being studied to reach data rates more than 10 Mbps with

message sizes up to 2048 bytes. Although the demand of higher bus speeds and the

support for longer message sizes are addressed with the legacy CAN extensions CAN

XL and CAN FD, the lack of clock synchronization (CS) between distributed nodes

and security precautions are not considered in any of the CAN protocols yet. There-

fore, there are several recent studies in the literature which introduce CS methods

on CAN [17, 18, 19, 20] and intrusion detection systems (IDS) [21, 22, 23, 24, 25]

for security of CAN. Furthermore, the support for deterministic bus access is intro-

duced with Time Triggered CAN (TTCAN) protocol [26] on top of CAN. However,

TTCAN is not used in the production cars, to the best of our knowledge, since it re-

quires specific TTCAN controllers which are not compatible to the already deployed

CAN networks.

In this thesis, Controller Area Network with Determinism and Synchronization sup-

port (CANDS) framework is proposed. CANDS is fully compatible with the legacy

CAN protocol and can be realized with the existing standard CAN controllers. It
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consists of different layers mainly to provide CS and deterministic bus access. More-

over, it can perform with different timestamping and CS methods. That is, different

realizations of CANDS are possible according to the available hardware resources.

Within CANDS, there is a clock service unit that realizes the local time for the node

and also offers a timestamping unit. CS methods as well as different timing-based

intrusion detection systems on CAN generally depend on timestamps which are ex-

pected to be taken simultaneously at different nodes. In this thesis, a detailed analysis

of existing TS methods which use the start-of-frame (SoF) bit and the end-of-message

(EoM) reveals several shortcomings of these methods. Accordingly, a new predictable

(TS) method is proposed by exploring and mitigating the identified disadvantages.

Furthermore, hardware experiments are conducted to validate our analysis results. As

the main outcome, our new TS method provides better TS quality than the existing

TS methods.

Regarding CS, this thesis introduces several new methods which enable advance-

ments in terms of both offset correction and drift correction. Specifically, CS methods

for CAN generally are based on periodic RMs that broadcasts the time information

among the CAN nodes. The slave nodes perform offset correction whenever they

receive the correct time information with RMs. In addition, the slave nodes may

also estimate the clock drift with different approaches and hence perform drift cor-

rection in order to prevent the inevitable clock drift between RMs. Regarding the

offset correction, AUTOSAR CS [27] and Gergeleit’s method [28] are two leading

CS methods on CAN. In this thesis, an Improved Software-based Clock Synchro-

nization (ISCS) method is proposed that presents advantages by benefiting from the

ongoing message transmission on CAN bus different from the existing methods. That

is, ISCS method provides clock accuracy as well as AUTOSAR CS method while

consuming the half of the bandwidth of AUTOSAR CS method. Furthermore, ISCS

enables much better clock accuracy than Gergeleit’s method even though it has the

same bandwidth usage with Gergeleit’s method. Additionally, clock drift estimation

and drift correction methods are also developed in this thesis in order to mitigate

the drift between RMs. Firstly, the drift estimation which is simply based on times-

tamps with RMs (RM-based CS) is introduced. Secondly, the controller-based CS

methods which estimate the drift with a discrete-time feedback control loop are also
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developed. Thirdly, a novel Accurate Clock Synchronization with Phase Error based

Drift Correction (ACS-PEDC) CS method that benefits from the internal bit timing

of CAN is presented. The novelty of ACS-PEDC comes from the usage of inherent

bit synchronization mechanisms of CAN protocol to estimate the clock drift, differ-

ent than the other methods that are based on periodic timestamps. Thus, ACS-PEDC

is not vulnerable to the TS inaccuracy while estimating the clock drift that is one of

the important contributions. Furthermore, it has to be noted that the comprehensive

hardware experiments are realized to present and compare the achieved clock accu-

racy results for the existing and proposed CS methods in this thesis. In addition, the

dependency of CS performance on TS quality is experimentally shown for the first

time in the literature.

Additional to the advanced CS methods, a novel weak time division multiple access

(WTDMA) model is proposed in this thesis in order to realize deterministic medium

access on CAN. In particular, the deterministic medium access on CAN is desirable

since it enables efficient bandwidth utilization and deterministic message RTs. Our

WTDMA does not need to apply the guard times which are proposed for the conven-

tional time division multiple access (TDMA) to handle the clock drift since WTDMA

depends on the specific CAN protocol features such as the usage of Carrier Sense

Multiple Access/Collision Resolution (CSMA/CR) and the non-preemptive message

transmission on CAN. That is, the certain degree of conflicts between the succes-

sive time slots are allowed in our WTDMA and thus it is called as Weak TDMA.

Furthermore, WTDMA model also considers the software delays additional to the

clock inaccuracy which can result in that a message may miss the starting time of its

allocated window in a WTDMA schedule. Thus, our WTDMA model can be real-

ized in software and can work with existing standard CAN controllers, different from

TTCAN. Specifically, the sufficient conditions for successful WTDMA implementa-

tion is provided such that the achieved clock accuracy plus the maximum software

delay should be less than the minimum message window size. When the given condi-

tion is satisfied, the order of the messages according to the offline computed WTDMA

schedule is guaranteed to be followed on the bus and hence the RTs of the messages

is mostly determined by the transmission times of the messages which is desired

with the deterministic bus access. That is, the message RTs in the order of hundreds
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of microseconds are achievable for the practical bit rates of 250 kbps. Moreover,

WTDMA can cooperate with any existing CS methods and the requirement for CS

accuracy loosens for lower CAN bit rates since the minimum message window size

gets longer. In summary, WTDMA model is the first time triggered enhancement of

CAN protocol that presents a flexible TDMA model which depends on the achievable

clock accuracy, the maximum software delays and minimum message window sizes.

Moreover, it has to be noted that the practicability of the WTDMA is confirmed with

detailed hardware experiments where bus loads up to 100% is achieved successfully

with deterministic bus access on CAN.

After the introduction of WTDMA model, WTDMA scheduling methods which are

used offline to determine the allocated windows for each message are required. Thus,

WTDMA scheduling methods that define the windows and assign CAN messages to

those windows are also developed in this thesis. Specifically, the WTDMA scheduling

problem is first formulated as Integer Linear Programming (ILP) problem. Secondly,

the heuristic methods are developed as alternative to ILP-based WTDMA scheduling

method. Moreover, it is shown that the proposed WTDMA scheduling methods are

able to provide feasible results with several challenging CAN message set examples

which are constructed in line with the practical CAN applications.

It further has to be noted that this thesis covers materials that is either published in

a paper or submitted for publication. The main contributions of the thesis are listed

together with the relevant chapters and publications as follows:

• Chapter 4: M. Akpınar and K. W. Schmidt, "Predictable Timestamping for

the Controller Area Network Evaluation and Effect on Clock Synchronization

Accuracy," IEEE Transactions on Systems, Man and Cybernetics: Systems,

Under Review.

• Chapter 5: M. Akpınar, E. G. Schmidt, and K. W. Schmidt, “Evaluation of clock

synchronization algorithms for controller area network,” in Signal Processing

and Communications Applications Conference, pp. 1–4, May 2020 [29].

• Chapter 5: M. Akpınar, K. W. Schmidt, and E. G. Schmidt, “Improved clock

synchronization algorithms for the controller area network (CAN),” in Interna-

5



tional Conference on Computer Communication and Networks, pp. 1–8, IEEE,

2019 [17].

• Chapter 5: M. Akpınar, E. G. Schmidt, and K. Werner Schmidt, “Drift cor-

rection for the software-based clock synchronization on controller area net-

work,” in 2020 IEEE Symposium on Computers and Communications (ISCC),

pp. 1–6, 2020 [18].

• Chapter 6: D. E. Arkadaş, M. Akpınar, E. G. Schmidt, and K. Werner Schmidt,

“Clock Synchronization for the Controller Area Network using Bit Timing In-

formation,” in Signal Processing and Communications Applications Confer-

ence, pp. 1–4, May 2022 [30].

• Chapter 6: M. Akpınar, K. W. Schmidt, and E. G. Schmidt, "Highly Accurate

Clock Synchronization with Drift Correction for the Controller Area Network,"

IEEE Transactions on Parallel and Distributed Systems, Accepted [31].

• Chapter 7: M. Akpınar, K. W. Schmidt, and E. G. Schmidt, "Weak TDMA

for the Deterministic Medium Access on the Controller Area Network," IEEE

Transactions on Intelligent Transportation Systems, Under Review.

In brief, the thesis is organized as follows. Chapter 2 introduces the background re-

lated to the CAN protocol and the existing CS and timestamping methods on CAN.

The conventional message scheduling on CAN and deterministic bus access with

TTCAN are explained together with our CANDS framework in Chapter 3. Chapter 4

evaluates the existing TS methods together with our new predictable TS method. In

Chapter 5, ISCS, RM-based CS and the controller based CS methods are introduced.

The dependency of the CS methods on TS quality is also presented in Chapter 5. Af-

terwards, Chapter 6 presents ACS-PEDC method that enables precise drift estimates.

The WTDMA model and its verification with hardware experiments are presented

in Chapter 7 and WTDMA scheduling methods are introduced in Chapter 8. Lastly,

Chapter 9 presents the concluding remarks.
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CHAPTER 2

PRELIMINARY WORK

In this chapter, the background related to the CAN protocol is introduced. That is,

the basic principles of CAN protocol, the message formats and CAN bit timing are

explained. Moreover, CAN FD and CAN XL which are extensions of the CAN pro-

tocol to provide higher bus speed and larger message payloads are also mentioned.

Afterwards, the existing CS methods for CAN are introduced, since a global clock is

missing in the CAN protocol. Additionally, local clock (LC) and clock drift concepts

that are related to CS applications are described. The fundamental CS methods for

CAN that are Gergeleit’s method [28] and AUTOSAR CS [27] are explained in detail.

Then, the general information about the experimental setup that is used throughout

this thesis is provided and the preliminary evaluations of Gergeleit’s method [28]

and AUTOSAR CS method [27] are presented. The proposed CS methods on CAN

depend on the usage of timestamps that are assumed to be taken simultaneously at

different nodes. Thus, the existing timestamping methods for CAN and their avail-

ability in the existing CAN controllers are also discussed in this chapter. Lastly, the

scheduling model notation that is followed in this thesis is presented.

2.1 CAN Protocol

CAN [4] is the most prominent in-vehicle communication bus in modern cars [32,

33, 22, 24]. Apart from the automotive industry, it has also been used in different in-

dustrial applications to provide communication between distributed components [33].

Specifically, CAN is still indispensable for safety critical components such as engine

control, transmission control, braking, steering and suspension control that require
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high real-time quality of service (QoS) [22, 20, 1]. After the first introduction in

the mid 1980s, the advancement of the legacy CAN protocol is yet ongoing with ex-

tensions such as CAN FD [16] in 2012 and CAN XL [34] starting from 2018. In

particular, CAN XL will offer data rates above 10 Mbps and payloads of up to 2048

bytes [20, 34] to meet the stringent demand of contemporary real-time applications.

Due to the continuing importance of CAN, the recent literature is highly interested

in possible improvements for CAN such as advanced CS [17, 18, 20] and security

methods [22, 32, 24]. Hereby, the recent progress in CS potentially paves the way for

the deterministic medium access on CAN which is highly desired to provide efficient

bandwidth utilization and deterministic message RTs [35, 36, 37].

2.1.1 The Basic Concepts of CAN

The communication on the CAN bus is realized with fixed format messages. The

length of a message can change according to its payload that is allowed to be between

0 and 8 bytes. The bit rates up to 1 Mbps is supported on CAN protocol. Even

though the bit rate can be set as different values in different systems according to

requirements, it must be uniform and fixed within a given system. That is, the nodes

are able to differentiate the bits on the bus since they know the predefined bit duration.

According to CAN protocol, any node can start sending a message when the bus is

idle and the ongoing message is received by all nodes simultaneously. Moreover, each

message has a unique identifier (ID) that defines the meaning of the message. That is,

the nodes can decide to use or ignore the received messages according to their IDs.

Additionally, all receivers that successfully receive the transmitted message notify the

transmitter node by an acknowledgement.

The bus level can be logic ’1’ (recessive) and logic ’0’ (dominant). In case of simulta-

neous transmission by multiple nodes, the bus level is determined like a wired-AND

implementation such that the bus value will be dominant if at least one node transmits

a ’0’ bit (dominant). Additional to the wired-AND mechanism, the message priorities

which are determined by unique message IDs are employed on CAN. When multiple

nodes start sending messages on the bus, the bus arbitration is resolved by bitwise

arbitration based on the message priorities. During the arbitration, a transmitter node
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reads the bus level and compares it to the bit level which it is sending. If the levels

are equal, it continues with sending the next bit. If the levels are not the same, it

decides that the arbitration is lost and stops transmitting the following bits. Thus, the

transmitter node which is trying to send the message with the highest priority (with

the lowest ID value in binary) wins arbitration and continues to send it, whereas the

other nodes in the arbitration give up transmitting and start receiving the message.

That is, the bus access conflict is resolved without a performance penalty regarding

the data and bandwidth loss in CAN protocol.

2.1.2 CAN Message Transfer

There are four different frame types such as data frame, remote frame, error frame

and overload frame. The error frame can be transmitted by a node if it detects an

error on the message transfer. The overload frame can be used to provide an extra

time delay between the last and the following data and remote frames. Moreover, a

node can request the transmission of the data frame with the same ID by sending the

remote frame. The data frame is used to transmit the data from a transmitter to the

receivers. Hereby, the data and remote frames support both standard frame format

and extended frame format which have 11 bit ID and 29 bit ID, respectively.

A data frame consists of seven different fields such as start of frame field, arbitration

field, control field, cyclic redundancy check (CRC) field, acknowledgement (ACK)

field and end of frame field. While the bus is idle, any CAN node can start transmitting

a frame with the start of frame (SoF) bit that is always a dominant bit, which results

in a falling edge on the CAN bus. Since multiple nodes can attempt transmitting a

frame at the same time, the arbitration is resolved during the arbitration field which is

different for standard (Fig. 2.1) and extended (Fig. 2.2) formats. In standard format,

the arbitration field has an 11 bit ID and the remote transmission request (RTR) bit as

seen in Fig. 2.1.

However, the arbitration field consists of a 29 bit ID, the Substitute Remote Request

(SRR) bit, the Identifier Extension (IDE) bit and the RTR bit in extended format as

seen in Fig. 2.2. The 11 bit Base ID in standard format is lengthened with 18 more

Extended ID bits in extended format in order to support more CAN messages with

9



S 
O 
F

ID 
(11 bit) 

R 
T 
R 

r0 DLC 
(4 bit)

PAYLOAD 
(0 to 8 byte) 

CRC 
(15 bit) 

A 
C 
K 

EOF 
(7 bit) 

IFS 
(3 bit) 

Arbitration  
Field

I 
D 
E 

Control 
Field

D 
E 
L 

D 
E 
L 

Data 
Field

CRC 
Field

ACK 
Field

End of
Frame
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RTR bit is dominant in the data frames and recessive in the remote frames. In both

standard and extended formats, RTR bit is sent as the last bit of the arbitration field.

SRR bit is transmitted as a recessive bit in the extended format at the same position

of the RTR bit in the standard format to substitute it. Thus, an arbitration among the

standard and extended frames which have the same base ID is resolved such that the

standard frame continues to its transmission on the bus. In order to distinguish the

standard and extended formats the value of the IDE bit is used whose position is the

same in both formats. The IDE bit is dominant in the standard format and belongs to

the control field. On the contrary, it is recessive and belongs to the arbitration field in

the extended format.

The 6 bit control field follows the arbitration field for both standard and extended

formats. In the standard format, the first bit of the control field is dominant as IDE bit

whereas it is recessive as reserved R1 bit in the extended format. The following bits in

the CAN frames are the same both for the extended and standard formats. A reserved

bit (r0) and data length code (DLC) are sent within the control field before the data

field that carries the payload of the CAN message. DLC indicates the number of

bytes within the payload and the number of bytes can change from 0 to 8 bytes. The

CRC field that follows the payload consists of 15 bit CRC sequence and a recessive

bit as CRC delimiter. The CRC sequence is used to check the validity of the ongoing

message transmission by all nodes. Afterwards, the transmitter sends a recessive bit
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and all receivers which receive the frame successfully send a dominant bit in the first

bit of the ACK field. The second bit of the ACK field is recessive and called as ACK

delimiter. Then, the transmitter continues with seven more recessive bits as the end of

frame field before 3 recessive bits as inter frame spacing (IFS) that takes place before

a new frame can be transmitted.

It has to be noted that during the arbitration and ACK fields, multiple nodes can access

the bus by sending different bit values. However, the parts of the CAN frame where

falling edges on the CAN bus can be generated only by a single node are highlighted

in white in Fig. 2.2 and 2.1.

2.1.3 CAN Bit Timing

The CAN controller of each node maintains a CAN system clock. The CAN system

clock signal is generally derived from a clock oscillator (CO) and its period is named

as Time Quantum (TQ). Writing fCO,N and TCO,N for the nominal CO frequency and

period, respectively, the nominal duration TTQ,N of a TQ is TTQ,N = nTQ,N · TCO,N .

The CAN bit timing is organized in four segments denoted as SYNC_SEG, PROP_SEG,

PHASE_SEG1 and PHASE_SEG2 as illustrated in Fig. 2.3. For each CAN node N ,

the length of each segment is given as a number of TQs, which is fixed during run-

time and whose range of values is specified in the CAN standard [4].

The TQs are counted by a TQ counter (TQC) and the SYNC_SEG consists of one

TQ and PROP_SEG, PHASE_SEG1 and PHASE_SEG2 can be programmed from 1

up to 8 TQs [4]. Thus, the minimum possible length of one TQ is one twenty-fifth of

the nominal bit time. Each CAN node samples the bus value at the sample point (SP)

and the ratio of the SP distance to the nominal bit time is advised to be around 87.5%

[38].

There are two internal bit timing synchronization mechanisms on CAN [4] within the

CAN controller. In this way, the successful message transfer is provided by CAN

protocol even though CAN nodes do not send and receive the bits in a synchronous

way. Hard synchronization is realized at the beginning of a CAN message such that

all nodes observing a falling edge when the bus is idle restart their internal bit timing
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Figure 2.3: CAN bit segments.

with SYNC_SEG. That is, all nodes restart their TQC as 1 whenever they detect a SoF

bit on the bus. Furthermore, the nodes apply re-synchronization during the message

transmission when they receive a falling edge different from SoF bit on the bus. We

write QF,N for the value of the TQC, where CAN node N observes a falling edge and

#TQ,N for the total number of TQs in node N per one bit. Hereby, TQC counts from

1 to #TQ,N and returns to 1 after it reaches to #TQ,N , unless an internal bit timing

synchronization is performed. Then, the phase error

eP,N =

 QF,N − 1 if falling edge is after SYNC_SEG

QF,N − 1−#TQ,N otherwise
(2.1)

captures the deviation of QF,N from TQC=1 (SYNC_SEG). That is, based on the

value of eP,N , re-synchronization shortens PHASE2 of N by |eP,N | if eP,N < 0 (the

CO frequency of N is slow compared to the transmitter node) and lengthens PHASE1

by eP,N if eP,N > 0 (the CO frequency of N is fast compared to the transmitter node).

Hereby, enough re-synchronization instants (falling edges) during a CAN message

are provided by the bit stuffing mechanism, which adds a bit of the opposite value

after five consecutive bits with the same value. The correction amount is limited

by the configurable re-synchronization jump width (RJW). Only a node transmitting

a ’0’ bit does not perform re-synchronization if the falling edge is observed before

the sampling point [4] to prevent the application of re-synchronization with a falling

edge created by itself. It has to be emphasized that the bit timing mechanism on CAN

only provides synchronization relative to the SoF bit of each CAN frame and cannot

directly be used for CS of LCs of different CAN nodes.
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2.1.4 CAN FD Protocol

To improve the bandwidth of current CAN bus, BOSCH has introduced a new high

bandwidth CAN bus called CAN FD in 2012 [16] through two major improvements:

1) increase of bit rate (more than 1 Mbps) and 2) increase of payload sizes (up to 64

bytes). CAN FD is standardized internationally in ISO 11898-1:2015 and it supports

higher bit rates in a part of the data frame. Hereby, the CAN-FD controllers can also

take part in standard CAN communication since the new CAN-FD frame formats

make use of the reserved bits on CAN.
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ID 
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Field
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R 
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E 
S 
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D 
E 
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D 
E 
L 

Data 
Field

CRC 
Field

ACK 
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End of
Frame

Arbitration phase Arbitration phase Data transmission phase 

Figure 2.4: CAN-FD frame - standard format (11 bit ID).

In the standard CAN-FD frame (with 11 bit ID) as seen in Fig. 2.4, extended data

length (EDL) bit is transmitted as a recessive bit after the IDE bit. Moreover, the

RTR bit in CAN frame is replaced with a dominant reserved r1 bit since there are

not CAN-FD remote frames. EDL bit is used to differentiate the CAN and CAN-FD

frames since r0 bit in CAN frames are sent as a dominant bit unlike the EDL in CAN-

FD. Then, a reserved r0 bit follows the EDL bit in the CAN-FD frame. Afterwards,

bit rate switch (BRS) bit is sent. If the value of BRS is recessive, faster bit rate is

applied during the data transmission phase. However, the same bit rate is used during

the data transmission and arbitration phase, if its value is dominant. The duration

before the BRS bit and after the CRC delimiter bit is named as the arbitration phase

in CAN-FD and the same bit rates with CAN are supported. On the contrary, during

the data transmission phase bit rates higher than 1 Mbps are supported by CAN-FD.

The extended CAN-FD frame is also presented in Fig. 2.5 where EDL bit is sent after

reserved r1 bit which takes place instead of the RTR bit in the extended CAN frame.

The remaining bits after the EDL bit are exactly the same in standard and extended

CAN-FD frames and have similar functions that are described for CAN messages

in Section 2.1.2. Differently, the length of the CRC sequence can be 15, 17 or 21
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Figure 2.5: CAN-FD frame - extended format (29 bit ID).

bits in CAN-FD. Furthermore, CAN-FD frames can transmit payload up to 64bytes,

different from CAN frames. Thus, the DLC values from 9 to 15 (in binary) are defined

in CAN-FD for payload lengths of 12, 16, 20, 24, 32, 48 and 64 bytes respectively.

The DLC values from 0 to 8 (in binary) are still represent the payloads from 0 to 8

bytes like CAN.

After installation of the nodes applying CAN-FD that enables higher bit rates, it

is seen in practice that the existing high-speed CAN transceivers achieve bit rates

of 2 Mbps with a linear network topology and bit rates of 5 Mbps with a point-

to-point communication. Different from the existing high-speed CAN transceivers,

the bit rates up to 5 Mbps is achieved with signal improvement capability (SIC)

transceivers even on networks that follow star topology with long stub lines. Thus,

SIC transceivers allow building more complex network topologies at higher commu-

nication bit rates since it reduces the ringing effects that are caused by reflections on

a network. Therefore, the sampling of bits gets more robust when SIC transceivers

are used. Moreover, CAN in Automation (CiA) has released the CiA 601-4 standard

proposal specifying the ringing suppression in CAN FD star and hybrid topology

networks by using CAN SIC transceivers [39].

2.1.5 CAN XL Protocol

The future of CAN might also offer interesting potentials. The next generation of

CAN will be CAN XL [34] whose development process is still ongoing. This ver-

sion will offer data rates more than 10 Mbps and a significantly enlarged payload of

up to 2048 byte, while retaining the media access scheme of CAN and backward

compatibility with the previous CAN FD version [40].
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2.2 Clock Synchronization on CAN and Related Work

2.2.1 Local Clock and Clock Drift

The local time of a CAN node is commonly realized by a LC, which consists of a

hardware register (HR) that is incremented using periodic ticks from a CO [41, 42].

The resolution of node N ’s LC is defined by the nominal frequency fCO,N = 1/TCO,N

of the CO and the number of CO ticks nHR,N per HR increment. That is, one tick of

the HR corresponds to a time duration TN = nHR,N · TCO,N = nHR,N/fCO,N . We

write NN(t) for the value of node N ’s HR value at time t. The maximum value of

NN depends on the width of the hardware register and hence determines the maximum

time represented by the LC.

It has to be noted that the LCs of different CAN nodes are not expected to hold the

same time value since two different COs cannot provide periodical ticks with exactly

the same rate [41]. In particular, the actual frequency of a CO generally deviates

from fCO,N due to short term, long term and environmental frequency instability ef-

fects [43, 44]. Measuring such deviations in ppm (parts per million), the frequency

instability is in the order of 50 ppm for fabrication errors, 5 ppm per year for aging

and 150 ppm (within -40◦C and 125◦C) for temperature variations [45]. That is, the

actual CO frequency fN of node N is time-varying and can be written in the form

fN(t) = fCO,N · (1 + kIA,N + kLTI,N + kEI,N(t)). (2.2)

Here, kIA,N is the initial accuracy (IA) based on fabrication errors, kLTI,N is the

long term frequency instability (LTI) due to aging and kEI,N(t) represents the time-

varying environmental instability (EI) depending on temperature, pressure, humidity

and noise from the voltage supply [41, 46, 47]. Then, the local time cN(t) of node

N ’s LC is determined by

cN(t) = NN(t) · TN =
⌊ ∫ t

0

fN(τ)

nHR,N

dτ
⌋
· TN , (2.3)

whereby ⌊•⌋ is the floor operation. Due to the frequency instability, the LC of each

CAN node diverges from real time.

We define the clock difference of node N with respect to a reference clock (RC)
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which is accepted to equal to the real time as

∆cN(t) = cN(t)− cRC(t). (2.4)

When we consider that real time is given by the LC value cTM of a given TM, it

holds that cRC(t) = cTM(t). Accordingly, the clock offset of node N in HR ticks is

∆NN(t) = NN(t) −
⌊
cTM(t)
TN

⌋
. Then, the maximum value maxt |∆cN(t)| describes

the accuracy of the LC cN . Furthermore, the clock drift dN of node N is the rate of

change of ∆cN(t) and can be approximated for small values of τ as

dN(t) =
d

dt
(∆cN(t)) ≈

∆cN(t)−∆cN(t− τ)

τ
. (2.5)

2.2.2 Clock Synchronization on CAN

Modern vehicles that have to be considered as safety-critical cyber-physical systems,

require highly accurate CS among their distributed computing devices to synchro-

nize actions of different nodes [48, 49, 1, 19, 20]. Since CAN is the predominant

in-vehicle communication bus, it is highly relevant to support CS for CAN which

does not provide a global time notion between the nodes [50]. Moreover, accurate

global clocks enable more deterministic medium access and hence decrease message

latencies on CAN [51, 35, 52].

Network Time Protocol (NTP) and IEEE 1588 Precision Time Protocol (PTP) [53]

are the most distinguished time synchronization protocols for computer networks.

The proposed protocols have been also used for different communication networks

with modifications due to the differences between the network structures [54]. For

example, EtherCAT utilize Distributed Clock which is similar to PTP [55]. Moreover,

IEEE 802.1AS time synchronization standard [56] which sends synchronization data

based on a PTP profile was specified for IEEE 802 networks. Additionally, the IEEE

802.1AS was analyzed for Ethernet based in-vehicle networks in [57]. However, the

low-cost CAN cannot rely on those CS protocols due to its network structure and

limited bandwidth [18, 19, 20].

Existing CS algorithms for CAN use timestamps that are taken simultaneously by all

nodes on a CAN bus. A time master (TM) node (infrequently) transmits periodic RMs
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with its timestamp. Slave nodes perform offset correction whenever receiving a RM

and optionally drift correction between RM receptions. That is, the clock accuracy of

CS algorithms for CAN directly depends on the quality of the timestamps.

Without a dedicated hardware timestamping unit, the quality of the timestamps is

mostly determined by inevitable software jitters until the time instant when the timer

value is recorded as a timestamp. On the contrary, hardware timestamps provide more

promising performance for CS applications at the expense of a dedicated hardware

unit that takes timestamps with a known and constant delay. Hardware timestamp-

ing units are not very common in already deployed CAN controllers due to the lack

of its standardization in the past. However, CiA 603 document which defines the

hardware timestamps for CS on CAN was published in 2017 [58]. After its standard-

ization, Bosch developed its M_CAN CAN IP with an extra hardware timestamping

unit (TSU) which is able to take hardware timestamps at the SoF bit and also at the

end of a frame. Moreover, there are some CAN modules [59, 60] that support hard-

ware timestamps even before the standardization of the hardware timestamps for CS

applications on CAN. However, it has to be noted that the practicability of the ex-

isting timestamping units in [59, 60] is questionable for having precise timestamps

since the timestamp width is only 16 bit and the resolution can not be better than one

CAN bit time.

Another important unit is the timer module for CS applications. In the cost sensitive

automotive domain, the MCUs generally do not have timer modules with a property of

the rate correction. Thus, the rate correction must be handled in software by adding/-

subtracting 1 tick from the timer value manually. Accordingly, the timer value must

be read first. Then, the new value should be calculated and should be written into the

timer register. Furthermore, the time duration between the read and write functions

should be compensated while deciding the new value for the timer register. Although

special attention should be performed in software to compensate the time duration,

the rate correction seems practicable in software with standard timer modules at the

expense of an extra software load. On the contrary, some commercial off-the-shelf

(COTS) MCUs [61] already provides an IEEE 1588-enabled Ethernet interface with

a high precision timer module with rate correction. In the work [19], the usage of the

timer’s rate capability for the purpose of CS on CAN is presented.
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Considering the properties of the commonly used MCUs in the automotive industry,

the timer modules with rate correction and CiA 603 compatible hardware timestamp-

ing units are considered as extra hardware support in this thesis. Additionally, the CS

implementations on CAN which do not require the extra hardware support is called

as software-based CS (SW-CS) methods. Hereby, it has to be noted that similar clas-

sification is also followed in the literature [40, 43].

The underlying algorithm for several SW-CS methods that are based on timestamps

inside the periodic RMs is proposed in [28] in 1994. It can be implemented in soft-

ware without requiring any extra hardware support and uses one RM per synchro-

nization round. Furthermore, the AUTOSAR-compliant CS method [27] that is the

simplified version of PTP has been introduced for CAN. It proposes using two succes-

sive RMs as SYNC and Follow Up (FUP) to achieve better CS at the expense of the

extra bandwidth consumption for CS messages. It has to be noted that the AUTOSAR

CS method is also realizable on software. In a recent work [40], the AUTOSAR CS

method is implemented on software with an improvement that aims to increase the

software timestamping quality by using filtering. Moreover, the rate correction de-

pending on the timestamps is also applied together with the offset correction. In this

paper, the best clock accuracy that is reported experimentally is in the order of 50µs

when synchronization round is 0.1 ms.

On the contrary, the hardware based CS methods have advantages over software based

CS implementations for example better timestamping quality and easiness at applying

rate correction. In 1994, a special hardware mechanism is proposed by Turski [62] to

take hardware timestamps at the SoF bit of a RM. Additionally, the same approach is

also adopted in orthogonal clock subsystem (OCS) for CAN [43]. In order to realize

those methods, the existing CAN controllers have to be modified such that they signal

the instant of the SoF bit to trigger taking the timestamps. Moreover, TTCAN level 2

provides a global clock among the CAN nodes and achieves an accuracy in the order

of one CAN bit time. TTCAN CS realization also depends on specific hardware units

that means modifications of the CAN protocol. Additionally, in a recent work [19],

the SYNC and FUP messages are used similar to the AUTOSAR CS method and

rate correction is applied by using the IEEE 1588 timer with rate correction for the

purpose of CS on CAN. Moreover, in the same work, a PI control loop is introduced
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to adjust the timer’s clock rate. However, the design details about the controller is

missing in the paper.

2.2.3 Gergeleit’s Method

The RM transmission scheme compatible to the SW-CS method by Gergeleit [28]

is illustrated in Fig. 2.6. RMs (gray boxes) with the message duration tRM are sent

by TM with a period T and received synchronously by any CAN node (slaves and

Master) at tk = k ·T , k = 0, 1, . . .. With each RM reception at tk, TM and each slave

Si take a timestamp of their respective LC t̂k,TM and t̂k,Si. TM then transmits t̂k,TM with

the next RM such that each slave Si receives this timestamp at tk+1 = (k + 1) · T .

The difference between the received value t̂k,TM and the stored value t̂k,Si is then used

to perform the clock update

cSi(t
+
k+1) = cSi(t

−
k+1) + t̂k,TM − t̂k,Si. (2.6)

Here, cSi(t
−
k+1) and cSi(t

+
k+1) represent the LC value of Si before and after the update,

respectively.

To this end, the application of Gergeleit’s method requires the transmission of one

RM in each synchronization cycle k.

k T

tk-1,TM tk,TMtk-2,TM

(k-1) T (k+1) T
tRM

t

tk-1,TM tk-1,Si tk,TM tk,Si tk+1,TM tk+1,Si

cycle k

Figure 2.6: Illustration of RM transmissions compatible to Gergeleit’s method.

The clock difference when the method in [28] is followed is presented in Fig. 2.7.

Specifically, the figure shows the clock difference of the TM and a slave node Si.

The period of RMs is T and the drift of the Si clock is dSi with respect to the clock

of TM. Thus, a time difference of dSi · T is observed between two successive RMs.

The blue boxes in Fig. 2.7 represent the RMs and the gray ones are regular messages
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transmitted on the bus.

0

0 T 2T 3T 4T 6T 7T5T

dSi  T

2 dSi T

-dSi  T

cSi(t) - cTM(t)

t

Figure 2.7: Illustration of clock difference when Gergeleit’s method is followed.

For example, at time 2 · T the slave node makes a clock correction according to the

timestamp taken at time T. Since the clock difference at T is dSi · T , the slave clock

value is reduced by this value at time 2 · T . It can be seen that the maximum clock

difference is dSi · 2 · T , which equals the theoretical upper limit guaranteed by the

method in [28]. In addition, it has to be emphasized that the method in [28] cannot

always fully compensate the actual clock difference right before the current RM. This

is due to the additional clock drift between taking the timestamp of the previous RM

and sending the timestamp in the current RM.

Additionally, there are several research works based on the method in [28] due to

its low bandwidth consumption and simple implementation in software. In [63],

the method in [28] is realized with a 32-bit micro-controller and it is claimed that

a global time base with an approximate error of 4.5 microseconds is achieved. How-

ever, achieving clock accuracy in the order of 4.5µs with Gergeleit’s method is only

possible with very frequent RMs that is not desired due to the limited bandwidth

on CAN or in case of low clock drifts that is not in line with the practical usage of

CAN nodes. Moreover, fault-tolerant extensions of the method in [28] for CAN are

developed in [64].
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2.2.4 AUTOSAR Method

According to the AUTOSAR SW-CS [27], TM sends a SYNC message right before

the RM (or FUP) in each cycle k as shown in Fig. 2.8. Each slave node Si takes a

timestamp t̂k,Si when receiving the SYNC message and TM transmits its timestamp

t̂k,TM in the RM right after the SYNC message. At the reception time tk = k · T of

the RM, each slave corrects its LC as

cSi(t
+
k ) = cSi(t

−
k ) + t̂k,TM − t̂k,Si. (2.7)

k T

tk,TM tk+1,TM

(k+1) T
tRM

t

tk,TM tk,Si tk+1,TM tk+1,Si

cycle k

SYNC SYNC

Figure 2.8: Illustration of the RMs (SYNC and FUP) according to AUTOSAR SW-

CS method.

Different from Gergeleit’s method, the AUTOSAR method requires two messages

(SYNC and FUP) per cycle k in order to take the timestamp close to the update time.

The clock difference illustration when AUTOSAR CS method [27] is applied is pre-

sented in Fig. 2.9. The orange boxes present the SYNC messages which are sent right

before the following RM (also called as FUP) in AUTOSAR CS method.

At the expense of two consecutive RMs (SYNC and FUP) in one cycle, the clock

difference after the offset correction is close to the zero as desired. In the AUTOSAR

method, the clock drift during the blue boxes that represent the FUP messages result

in an error after the offset correction. In practice, the duration of the FUP message is

very likely to be much shorter when compared to the cycle period T . Thus, the clock

drift amount during the FUP message and hence the error after the offset correction is

negligible with respect to the clock difference error before the offset correction that

is higher than dSi · T as seen in Fig. 2.9.

Finally, it has to be noted that the clock accuracy performance of both methods can
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Figure 2.9: The clock difference example in case of AUTOSAR CS method.

be improved with more frequent RMs since it would result in low T values. However,

this is undesired, since it would lead to a higher bandwidth usage of RMs on the

already limited CAN bandwidth.

2.3 Experimental Setup

In this section, the main components of our experimental setup that is presented in

Fig. 2.10 is briefly introduced. CAN nodes are realized on MCU development boards

[65] and Field Programmable Gate Array (FPGA) development boards [66, 67]. Both

FPGA development boards have an FPGA from Xilinx Zynq7000 SoC family that

has an ARM Cortex-A9 processor additional to the programmable FPGA logic. CAN

nodes communicate with each other through the CAN bus and all messages on the

bus are collected on a computer via a CAN analyzer device (PCAN-USB PRO FD)

which is also connected to the CAN bus. Each CAN node realizes a 32-bit LC and

the LC resolution of all nodes are equal to a common network time unit (NTU) such

that the clock values of different nodes are comparable [27, 26].

Regarding the clock accuracy performance evaluation, the LC values of the nodes

are required to be monitored simultaneously and periodically. Therefore, all CAN

nodes are triggered by a rising edge of an independent external hardware signal from

a signal generator every 20 ms similar to the work in [44]. Afterwards, they send the
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Figure 2.10: The general view of the experimental setup.

recorded LC values to the CAN bus with specific message IDs. The measurement

values are collected on a computer via a CAN analyzer device and the evaluation of

the measurements are realized offline.

2.3.1 Evaluation of the fundamental CS methods

This section presents the experimental evaluation of the fundamental CS methods on

the setup that is introduced in Fig. 2.10. Specifically, 4 MCU boards [65] are used

as CAN nodes (N1-N4). Each CAN node implements a 32-bit CS whose HR tick is

arranged as 250 ns. CAN node N1 is assigned as TM whereas N2, N3 and N4 are

programmed as slave nodes S1, S2 and S3, respectively. Firstly, the clock drift of

S3 dS3 is experimentally measured as -5.8 ppm by monitoring the LCs of the nodes

without applying any CS method. Afterwards, the clock difference measurements are

taken for 30 minutes while Gergeleit’s CS method is followed with an RM period of

1.048 ms on the bus. The clock difference measurements of S3 relative to TM are

presented in Fig. 2.11 such that a small portion of them is presented as an illustration

at the left side in Fig. 2.11 and the overall measurements are presented as a histogram

at the right side in Fig. 2.11. Accordingly, it is seen that the measurements at the left

side in Fig. 2.11 are compatible to our theoretical expectations that verifies the correct

implementation of the method on the MCU boards. On the other hand, the histogram

at the right side in Fig. 2.11 includes clock difference measurements that are outside
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of the theoretical limits that are -6µs and 12µs. The reason of these outliers will be

explained in Section 5.2.
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Figure 2.11: Clock difference measurement of S3: Gergeleit’s method.

Furthermore, the experiment is repeated with a change that AUTOSAR CS method is

followed by the CAN nodes. The representative measurements are presented in Fig.

2.12 and the clock differences are observed as between 0µs and 6µs, as expected.
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Figure 2.12: Clock difference measurement of S3: AUTOSAR.

To sum up, the practicability of the experimental setup in order to evaluate the per-

formance of the CS methods is verified with these experiments. Moreover, it is seen

that Gergeleit’s method and AUTOSAR CS method are realized successfully on the

development boards by comparing the experimental results to the theoretical expec-

tations.
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2.4 Timestamping on CAN and Related Work

A common shortcoming of all CAN protocols is the lack of inherent CS and se-

curity mechanisms. CS is important when coordinating tasks of different nodes in

distributed real-time system applications that are supported by CAN [68, 69, 19].

Security is essential to prevent cyber-attacks in connected and autonomous vehi-

cle applications [23]. Due to the continuing importance of CAN, the recent lit-

erature on CAN focuses on advanced CS [17, 18, 19, 20] and security methods

[70, 21, 22, 23, 24, 25, 71, 72, 73, 33]. Hereby, it has to be noted that the quality

of CS methods depends on accurate timestamps that are taken simultaneously by all

nodes on a CAN bus. Accordingly, an AUTOSAR-compatible timestamping (TS)

method is specified in CiA standard 603 [58]. Likewise, accurate timestamps are

needed by timing-based IDS to improve security for CAN [74, 75, 76, 77, 78, 23].

In general, the TS process on CAN is initiated by a TS trigger signal at a certain time,

denoted as the trigger (TR) instant. The TS trigger signal activates a TS service, at

the end of which a copy of a timer is recorded as the timestamp. Hereby, the TR

instant must occur simultaneously on all nodes on a CAN bus since any deviation

leads to a deterioration of the TS quality. Regarding the TS service, it is the case that

a hardware implementation can ensure a constant TS service duration [19, 43, 79],

whereas the TS service duration is variable due to the inevitable software jitter in a

software implementation. In summary, the quality of a TS method on CAN depends

on the simultaneity of the TR instants and the constancy of the TS service duration

on all CAN nodes.

CS methods for CAN commonly use timestamps that are taken simultaneously by

all nodes. One node serves as a TM with a perfect LC and transmits periodic RMs

with its timestamp. The remaining slave nodes then correct their LCs based on the

timestamp in the RM and their own timestamp.

There are different choices for selecting the time instant when timestamps should

be taken, which is denoted as the timestamp trigger (TR) instant in this thesis. The

Gergeleit’s method in [28] proposes that all nodes take timestamps at the end of mes-

sage (EoM) with each RM. Conversely, timestamps are taken at the sampling point
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of the SoF bit of each RM in [62, 43]. These timestamping (TS) methods are as well

supported recently by standard CAN controllers as specified in [80].

Moreover, there are different options for the transmission of a timestamp that is taken

with a certain RM. First, it is possible that the TM transmits the timestamp in the

next RM as in [28]. Second, the TM can transmit a follow-up (FUP) message right

after the RM (which is denoted as SYNC message) according to the Autosar standard

[27]. Third, the TM can directly put the timestamp as the payload of the ongoing RM

[62, 43]. The transmission methods in [28] and [27] can be used with both of the

TS choices (EoM and SoF) and are compatible with the CAN protocol specification

[4]. Differently, the transmission method in [62, 43] can only be applied when taking

timestamps with the SoF and does not conform to the CAN standard since the content

of a CAN message has to be modified during the transmission.

It has to be noted that, although the slave nodes can correct their LCs after receiving

the TM’s timestamp, they will accumulate a clock difference until the reception of

the TM’s next timestamp due to the drift of their oscillators [43, 19, 18]. To prevent

the mentioned clock drift, recent methods such as [18, 19] provide rate correction

between RMs, benefiting from the existing timestamps.

It can be concluded from the previous discussion that CS methods on CAN depend on

accurate timestamps taken by all CAN nodes, whereby it is expected that the quality

of the timestamps directly affects the clock accuracy. Nevertheless, to the best of our

knowledge, the existing literature does not provide any work that evaluates this effect.

2.5 Notation

We next introduce the notation to be employed in this thesis. We consider a CAN bus

with a set of nodes N and a set of messages M = {M1, . . . ,Mm} that are transmitted

on the bus. For each message Mi ∈ M, we define the parameters pi, Bi, fmax
i , fmin

i .

Hereby, pi and Bi represent the transmission period and payload length in Byte of

Mi, respectively. Moreover, we consider that CAN applies bit stuffing such that a bit

of the opposite value is inserted after five consecutive bits with the same value [4].

Accordingly, the frame bit length varies between a minimum value fmin
i (determined
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by the frame header and payload) and a maximum value fmax
i (determined by the

maximum bit stuffing) as follows [81]:

fmin
i = g + 8 ·Bi + 13 (2.8)

fmax
i = g + 8 ·Bi + 13 +

⌊g + 8 ·Bi − 1

4

⌋
, (2.9)

whereby g = 34 for the standard format (11-bit identifiers) and g = 54 for the ex-

tended format (29-bit identifiers) of CAN. The corresponding values for the possible

standard format CAN frame bit lengths are shown in Table 2.1.

Table 2.1: Bounds on the frame bit length depending on Bi.

Bi fmin
i fmax

i

0 47 55

1 55 65

2 63 75

3 71 85

4 79 95

5 87 105

6 95 115

7 103 125

8 111 135

We further introduce the bit rate B and the corresponding bit time τbit = 1/B. Using

τbit, it is then possible to evaluate the minimum and maximum length (time duration)

of Mi as Lmin
i = fmin

i · τbit and Lmax
i = fmax

i · τbit, respectively. Finally, we introduce

the node map µ : M → N that maps each message Mi ∈ M to its transmitter node

µ(Mi) ∈ N .
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CHAPTER 3

THE GENERAL FRAMEWORK

The general framework of this thesis is introduced in this chapter. Firstly, the exist-

ing message scheduling approaches which are proposed for the conventional CAN

protocol are presented. The conventional approaches depend on the possibility that

any CAN messages may be sent at the same time. Thus, they are very pessimistic

and can not provide high bandwidth utilization while trying to meet the deadline re-

quirements also for those unlikely cases. Furthermore, the offset assignment method

that can prevent the collisions from a single node is explained. Accordingly, the

CAN messages that are sent from a single node can be managed such that they are

transmitted with offsets. However, a global synchronization among different nodes is

missing in the offset assignment methods. Despite that, the improvements in message

RTs seem possible with offset assignments when compared to the conventional CAN

scheduling without offsets. On the other hand, the bounded phase concept in [82]

where a light CS with a clock accuracy of a few milliseconds is explained. Although

the bounding phase concept achieves better RTs together with offset assignments,

its performance can still be improved to reach RTs that are comparable to the mes-

sage transmission times that is the ultimate reachable point in terms of a message RT.

Hereby, it has to be remembered that there are several CS algorithms in the literature

which are capable of providing a global clock with clock accuracies in the order of

microseconds and even better. Thus, the bounding phase concept that depends on the

claimed hardness of having a precise global clock does not look reasonable anymore.

Afterwards, TTCAN where deterministic bus access is provided on top of CAN is

explained. TTCAN requires specific hardware modifications on CAN which prevents

the widespread usage of TTCAN in automotive productions. Lastly, our CANDS

framework is introduced in this chapter. CANDS aims to provide the deterministic
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bus access on CAN without requiring specific hardware modifications, different from

TTCAN. Furthermore, CANDS have a new traffic shaping strategy that is named as

Weak TDMA (WTDMA) which is based on a new TDMA approach that considers

the software delays and clock inaccuracies. Thus, WTDMA does not depend on an

inherent CS algorithm but can perform well with any of the existing CS algorithms

in the literature and can be realized in software. Moreover, the layered architecture

of CANDS is presented and main responsibilities of each layers are explained in this

chapter. In addition, the possible realizations for each layer are discussed by con-

sidering the existing methods in the literature together with probable improvements

which will be introduced and evaluated throughout this thesis.

3.1 Message Scheduling on CAN

3.1.1 Classical Scheduling and WCRT computation

Real-time messages on CAN need to be received before their specified deadline

[83, 84, 85]. To evaluate this deadline constraint, the conventional schedulability

analysis proposed in [86] and its revised version [81] have been used in the automo-

tive industry [87]. In this analysis, the worst-case response time (WCRT) of a CAN

message is computed by considering the unlikely scenario, where all higher priority

CAN messages are ready for transmission at the same time. Although this worst-case

scenario is possible, it is very unlikely, and this pessimistic analysis commonly leads

to less efficient bandwidth usage.

At that point, we need to mention about the efforts of the priority assignment methods

to increase the bus utilization on CAN. The deadline monotonic and deadline minus

jitter (D-J) monotonic priority assignments are claimed as optimal for CAN in [86]

and [88]. However, [81] proves that they are not optimal for CAN by giving a counter

example. Thus, optimal priorities for CAN messages can be determined with using

the priority assignment method in [89] that guarantees to find a schedulable order

if there exists. Here, it is claimed that bus utilization up to 80% can be reached

with a suitable priority assignment policy [90]. Nevertheless, it is not possible to

freely change the preassigned priorities of CAN messages in industrial applications
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[35, 91]. Thus, the approaches for increasing the bus utilization that only benefit

from the optimal priority assignments are not practical. Furthermore, such priority

assignment methods provide lower bus utilization in case of tighter deadlines since

the main concern of the priority assignment methods is to meet the deadline constraint

that is generally assumed in the order of the message period by priority assignment

methods. However, when deadlines are shorter, they will not be as successful as

TDMA approaches where lower RTs are achieved thanks to the deterministic medium

access.

3.1.2 Offset Scheduling

Additional to the conventional scheduling on CAN, it is shown that assigning offsets

to CAN messages of individual nodes increases the efficiency of the bandwidth usage

by spreading the message load of each node over time [92, 35, 82, 85]. Different from

conventional methods, new RT analyses [93, 84, 94, 95] which also consider offsets

have been proposed in order to compute the message RTs.

When the offset assignment is realized in different nodes independently, it is still

likely that CAN messages from different nodes may be ready for transmission simul-

taneously. Despite that, a major performance improvement is achieved with the usage

of offsets in terms of WCRTs even without applying CS [85, 35, 82].

Additionally, the bounded phases concept which benefits from CS providing a clock

accuracy in the order of milliseconds has been introduced in [82]. It does not provide

high clock accuracy as global clock but it is better than the case without any common

clock notion. According to the evaluation results of the bounded phase notion in the

paper [35], the RT of the lowest priority CAN message is improved from 20 ms to

almost 9 ms with usage of offsets without having a global clock. Moreover, the same

RT is seen as almost 7 ms when a light clock synchronization with an accuracy of

1 ms is provided together with the offset assignment. On the other hand, the achieved

message RTs are far away from the message transmission times that must be in the

order of a few hundred microseconds since the experiments are conducted with a bit

time of 2µs (500 kbps).
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Furthermore, it is shown in [85] that the usage of offsets with a CS accuracy of 1 ms

allows reaching an average bus load of 83% if the deadlines are assumed to be equal

to message periods. It has to be noted that the given bus load is computed with

the breakdown utilization notion in [90] that can to reach higher bus utilization with

higher deadline requirements. Even though the bounded phase approach with offset

assignments seems to facilitate CAN messages meeting their deadlines, its usability

in case of tight deadline requirements is questionable. Furthermore, the advancement

in CS methods that enables clock accuracies in the order of microseconds invalidates

the idea behind the bounded phase notion which claims that having a precise global

clock on CAN is difficult.

3.2 TDMA and TTCAN

3.2.1 TDMA

TDMA is employed in many communication systems to provide collision-free trans-

mission with bounded access delay [36, 96, 97, 98]. In TDMA, time is divided into

isolated time slots as it is presented in Fig. 3.1 and only one node is allowed to trans-

mit in a specific time slot. Moreover, guard times, during which none of the nodes is

permitted to access the network are introduced at the beginning and end of each time

slot. While guard times ensure the avoidance of interference between time slots of

different nodes [37, 99], they lead to a reduction in the bus utilization.

window  
n

time

window  
n+1

window  
n+2

window  
n+3

Guard
Time

Guard
Time

Guard
Time

Figure 3.1: TDMA with guard times.
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3.2.2 TTCAN

In addition to software-based approaches such as the offset assignment and the bounded

phase concept on CAN, TTCAN [100] has been proposed to enable deterministic bus

access at the expense of the modification of the CAN protocol and its underlying

hardware. A bus usage close to 100% seems achievable in TTCAN since a global

clock among the nodes makes it possible to schedule all CAN messages in a deter-

ministic way [51, 35]. However, to date TTCAN has not been used in production cars

[101] to the best of our knowledge due to the lack of compatibility with the existing

CAN protocol and hardware.

Specifically, TTCAN Level-1 does not provide a global clock among nodes and its

Basic Cycle Length (BCL) is limited as 216 (65.536) bit times due to the Cycle Time

counter that is 16 bits wide [100]. Although the TTCAN Level-2 implementation

includes a hardware-based CS (HW-CS) method with a global clock, this comes at

the expense of a hardware modification of standard CAN controllers.

The TTCAN protocol itself has several constraints in terms of schedule design. The

Matrix Cycle (MC) itself is composed of a maximum number of 64 basic cycles (BC)

[100]. In addition, TTCAN requires triggers that contain information about the sent

and received messages and that are stored in a fixed-size memory on the TTCAN

controller. Hence, the total number of triggers per node is limited [51]. Additionally,

the repetition period of a message trigger has to be a power of 2 [51]. Furthermore, a

CAN message is allowed to start its transmission only during the TxEnable window

whose length is between 1 and 16 Network Time Units (NTUs) in TTCAN [100].

Additionally, [102] provides an example of a software implementation of TTCAN

that aims to work with existing standard CAN controllers by giving up the benefits of

special hardware units. However, it has to be noted that this implementation is based

on TTCAN Level-1 and does not support a global clock. Moreover, the experimental

results are not satisfactory for the real applications in CAN networks. In [102], the

message windows have a duration of 2ms and only a bus load of 12.8% is achieved

at a bit rate of 250 kbps.
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3.3 Discussion

The conventional WCRT analyses for legacy CAN depend on very unlikely case for a

CAN message where all higher priority CAN messages are sent together with it at the

same time. Although its probability is low, it could not be ignored since it can happen,

and it may result for a message to miss its deadline. Thus, the conventional CAN

scheduling suffers from inefficient bandwidth usage. However, this situation can be

improved when each node applies offset assignment to their own CAN messages.

In case of the offset assignment, it can be avoided that the collisions between the

CAN messages from the same node which may improve WCRT of the messages.

Moreover, the studies in [35, 82, 85] show that the RTs of messages decrease as

desired when offset assignments within each node independently from the other nodes

are applied. On the contrary, it is seen from the evaluations in those papers that the low

priority CAN messages still have high RTs since they can be blocked due to the higher

priority messages. Moreover, even a higher priority message can still be blocked by a

lower priority message since a deterministic bus access is not followed when different

nodes function without having a global time notion. In order to provide completely

deterministic bus access for all CAN messages independently from their priorities,

TDMA should be applied that seems only possible with clock synchronization on

CAN. Even though it is supported in TTCAN, the specific hardware requirements of

TTCAN additional to its inherent scheduling limitations prevent it from being widely

used. The deterministic bus access is highly desirable on CAN since it enables the

transmission of the CAN messages without being delayed by any other message. That

is, it makes possible to achieve message RTs which are determined by the message

transmission times. When the deployed CAN nodes are considered, it is also required

to develop a method that is able to support deterministic bus access without changing

the existing hardware. Therefore, our CANDS framework is highly relevant.

3.4 CANDS Framework

In this thesis, we propose CANDS framework which aims to realize deterministic bus

access on CAN, like TDMA, in order to increase the bandwidth efficiency. Although
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the bit rate is limited to 1 Mbps for CAN, it can meet the increasing bandwidth de-

mands of the automotive applications if the message collisions on the bus are avoided.

CANDS provides that each node transmits their CAN messages according to a TDMA

schedule that is computed offline by the network designers. Moreover, deterministic

bus access enables for CAN messages to reach their destinations with RTs that are

only in the order of transmission times of the messages. Furthermore, a global clock

among the nodes that is required to achieve a successful TDMA operation in practice

is supported within CANDS with several CS method options. According to the avail-

ability of the resources, a suitable CS method can be chosen to follow within CANDS

framework. The last but not the least, the classical TDMA approach is enhanced for

CANDS by benefiting from the specific properties of CAN protocol.

The developed framework CANDS includes several protocol layers and components

that provide improvements compared to the state-of-the-art while complying with the

original CAN standard [4]. These layers include a generalized CAN controller (CC)

that provides read access to additional information while ensuring the standard CAN

operation; a local clock (LC) realization for a generic CAN node; a timestamping

(TS) unit that allows taking precise timestamps of the LC, a CS service layer with

various implementations that is able to achieve clock accuracies below 100 ns; a traffic

shaping layer that follows a new WTDMA model for CAN, where time slots can

temporarily overlap in practice, different from the classical TDMA. Thus, WTDMA

can operate even with a moderate clock accuracy among the nodes that can even be

provided with any of the existing CS methods for CAN such as [27, 18].

3.4.1 Overview

The CANDS framework consists of several layers that can be implemented in soft-

ware and/or hardware. The general overview is shown in Fig. 3.2.

Hereby, it is assumed that the CAN protocol is realized on a microcontroller or FPGA

hardware, denoted as the CAN system. That is, the CAN transceiver in Fig. 3.2 rep-

resents the physical connection of the CAN system to the CAN cable. The CAN

Controller (CC) receives CAN messages from the upper layers and provides the cor-

responding physical signals to the CAN transceiver. In addition, the CC reads the
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Figure 3.2: Overview of the CANDS framework.

physical signals from the CAN transceiver and provides the received CAN messages

to the upper layers. The clock service implements a local clock together with a times-

tamping unit. It interacts with the CC to obtain trigger signals for taking timestamps.

In addition, it provides timestamps and clock access to the clock synchronization (CS)

service and the traffic shaping layers. The CS service performs clock updates (both

offset correction and rate correction) based on information communicated among

CAN nodes. Moreover, the traffic shaping layer uses the fact that clocks of differ-

ent CAN nodes are synchronized in order to implement TDMA on top of the CAN

protocol in order to ensure deterministic bus access with low latency.

3.4.2 Parameter Discussion

This section discusses the possible realizations for all layers and their outcomes.

The CAN controller is generally implemented on hardware. There are CAN IPs [80]

for use of them inside an FPGA or there are several MCUs [59, 60, 61] that have

CAN controller as a sub-module. In case of the hardware implementation, the CAN

controller performs fully compatible to the CAN standard and supports the bus speeds

up to 1 Mbps that is the maximum bus speed of the CAN protocol [4]. On the contrary,

the work in [103] presents a software defined CAN controller (SDCC) that can run

on a Cortex-M3 processor. However, the maximum bus speed is limited to 62.5 kbps

when the processor runs at a clock speed of 100 Mhz. Although, the maximum bus
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speed is 175 kbps on the Cortex-M4F core of the LPC4357 when it runs at a clock

speed of 204 Mhz. By considering the other critical tasks that should be handled in

software, the achievable bus speeds will inevitably decrease with an increase in the

number of other tasks different than the SDCC realization. Despite its bus speed

limitation, it is very useful contribution to the literature that makes easy to realize

novel ideas that requires to make modifications on the CAN controller.

The clock service unit consists of a timer module that realizes a local clock and also

a timestamping unit which records a copy of the value of the local clock. The timer is

generally implemented on hardware as a counter with a clock signal input. The period

of the clock signal defines the resolution of the local clock. The higher clock signal

frequency means better resolution that enables better performance for other layers.

Together with the clock signal frequency, the width of the timer determines the over-

flow frequency. Although the CANDS framework handles the LC overflows, frequent

LC overflows are not preferred since it will increase the code complexity of the other

layers which use local clock. Moreover, the hardware resources limit the maximum

clock signal frequency and the timer width. Thus, it has to be noted that increas-

ing the clock signal frequency and the width of the timer is not practicable approach

in order to have better local clock performance. Regarding the timestamping unit,

it can be implemented on software where a signal comes from the CAN controller

is used to trigger the interrupt service routine in the software. Within the interrupt

service routine, the value of the local clock is taken as a timestamp. In the software

timestamping implementation, the time duration between the trigger signal and the

timestamp changes due to the software delays. Thus, the quality of the timestamps is

degraded by the jitter that likely affects the performance of the other tasks benefiting

from the timestamps. On the contrary, the timestamping unit can also be realized on

the hardware with a constant delay that takes timestamps without a jitter. In brief, the

higher quality timestamps is possible with hardware timestamping realization at the

expense of a dedicated hardware TS unit.

The clock synchronization service is responsible for determining the necessary up-

dates on the running timer that realizes the LC. It can send and receive synchroniza-

tion CAN messages on the bus through CAN controller and CAN transceiver. The

most important performance outcome of the CS service is the achieved clock accu-
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racy result among the CAN nodes. Furthermore, it is also important to be friendly in

terms of CPU utilization and CAN bus bandwidth consumption.

The traffic shaping layer provides a deterministic access to the bus for a CAN node.

By assuming that a global clock is provided by the CS service between all nodes,

a TDMA schedule where all CAN messages are transmitted in a deterministic way

is achieved with CANDS framework. The traffic shaping layer monitors the local

clock and transfers the corresponding CAN messages from the application layer to

the CAN controller. It can be implemented on software where the software delays

affect its performance while monitoring the local clock and also transferring the CAN

messages to the CAN controller. Due to the software delays, the starting time instant

of the corresponding message window may be missed. However, our weak TDMA

model which is proposed in this thesis for CANDS considers the software delays

within the traffic shaping layer additional to the clock inaccuracy among the nodes.

Thus, implementing the traffic shaping layer on software is practicable. On the other

hand, the hardware implementation of the traffic shaping layer makes possible to

catch the message windows only with an error of the clock accuracy on the network.

Although the main goal of the CANDS framework is to increase the bandwidth ef-

ficiency and decrease the RTs of the CAN messages by enabling the deterministic

bus access, the IDS and also networked control systems can benefit from the CANDS

framework. A global clock and precise timestamps are required in networked control

systems to provide better control performance [69]. Moreover, the timing-based in-

trusion detection methods can also benefit from such improvements that are provided

within the CANDS framework.
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CHAPTER 4

TIMESTMAPING ON CAN

Accurate timestamps are important for clock synchronization and cyber-security on

the Controller Area Network. This chapter introduces a new predictable timestamping

(TS) method on CAN. Different from existing TS methods, our method reduces the

effect of uncertainties that are caused by the CAN bit timing, oscillator drifts and

different cable lengths. Accordingly, our TS method provides an improved TS quality,

which is confirmed in comprehensive hardware experiments.

The main contribution of this chapter is the development of a new predictable TS

method for CAN. To this end, we first investigate the TS quality of existing TS meth-

ods that are based on the start-of-frame (SoF) bit [62, 43] and the end-of-message

(EoM) [28, 58, 19]. Specifically, for the first time in the literature, we perform a

detailed timing analysis of the uncertainties affecting the simultaneity of the trigger

(TR) instant depending on the internal bit timing of CAN, oscillator drift between

different nodes and propagation delays due to different cable lengths. In addition, we

evaluate the effect of software jitter on the TS service. To mitigate the identified un-

certainties of the existing methods, we propose a new TS method with a predictable

TR instant. All our findings are supported by measurements from comprehensive

hardware experiments. As a result of these experiments, we confirm that our new TS

method provides higher quality timestamps.

To sum up, the timestamping unit of the clock service layer in CANDS framework

can be designed as compatible to the existing timestamping methods that are based

on the SoF and EoM, and also our predictable TS method introduced in this chapter.

That is, our predictable TS method enables highly precise timestamps for the other

layers inside the CANDS framework. Specifically, the performance of the clock syn-
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chronization service is expected to increase with more accurate timestamps.

4.1 Background

In order to access the physical medium, a CAN transceiver is required for a CAN

controller as seen in Fig. 4.1.
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Figure 4.1: Signal propagation delays on the CAN bus.

That is, each bit of a CAN frame passes through a CAN transceiver after it is transmit-

ted from the transmitter’s CAN controller and before it reaches the receiver’s CAN

controller. In order to characterize the transmission path, we introduce the following

notation.

• dTX
i : Signal propagation delay from the CAN controller to the CAN bus through

the CAN transceiver of node i.

• dRX
i : Signal propagation delay from the CAN bus to the CAN controller through

the CAN transceiver of node i.

• dPi,j : Signal propagation delay between CAN transceivers of two node i and j.

dTX
i and dRX

i depend on the CAN transceiver of node i. Generally, product vendors

provide upper and lower bounds for dTX
i and dRX

i , whose actual values can not be

identical even for the products from the same vendor due to fabrication tolerances.

dPi,j depends on the cable length between node i and j, whereby a delay of 5 ns/m

over a twisted-pair cable is considered [19].
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The maximum cable length depends on the physical delays and the bus speed since the

signal must propagate to the farthest node and back again before each bit is sampled.

It should typically be shorter than 40m [104, 19] for the maximum bus speed of

1 Mbps of the CAN protocol. In case of lower bus speeds, longer bus lengths can be

used.

4.2 Components of Timestamping on CAN

Timestamping on CAN can be characterized by two main components. First, the

timestamping process is initiated at the trigger (TR) instant on each CAN node. Sec-

ond, the TR is detected and a copy of the current value of the local clock is taken

by a function that is denoted as the timestamp service. The actual time instant when

the timestamp is taken is after the completion of the timestamping service. The basic

setting is illustrated in Fig. 4.2 for an arbitrary k-th timestamping instant of the TM

and a generic slave node Sy.

TM

Sy

t
dTM,k
sv

tSy,k
TR

tTM,k
TR tTM,k

TS

dSy,k
sv

tSy,k
TS

Figure 4.2: The components of the timestamping.

Here, tTR
TM,k and tTR

Sy ,k
are the respective TR instants, dsvTM,k and dsvSy ,k

show the re-

spective time intervals of the timestamping service and tTS
TM,k and tTS

Sy ,k
represent the

supposedly synchronous timestamping instants for the TM and Sy.

The timestamp quality of a slave node Sy is characterized by the distribution of the

differences between tTS
TM,k and tTS

Sy ,k
. Accordingly, the timestamp quality directly de-

pends on the quality of the TR instant and timestamping service. In this context,

we recall that the TR is realized either by the SoF bit [62, 43] or by the end of the

CAN message (EoM) [28, 18, 19, 27, 18] in the existing literature. Since both of

them are directly determined by the internal bit timing mechanisms of CAN, this im-
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plies that the TR instant quality depends on the CAN protocol itself. Differently, the

timestamping service quality depends on its implementation such as on software or

hardware. Hereby, an implementation in hardware is expected to provide a constant

time of timestamping service and will hence perform better than a software imple-

mentation with potentially varying delays.

We next determine the uncertainties of the CAN bit timing and the different times-

tamping methods with the aim of analyzing their effect on the TR instant and times-

tamping service quality.

4.3 Uncertainties Related to the CAN Bit Timing

In this section, uncertainties related to the CAN protocol are explored. We first con-

sider that the granularity of the CAN system clock is given by one TQ. That is,

even TM and Sy are aligned during the SYNC_SEG after hard synchronization or

re-synchronization, the internal bit timing of the nodes can differ by the synchroniza-

tion uncertainty (SYU) of up to one TQ length as illustrated in Fig. 4.3

t1

~TQ of TM 

Node TM ahead Node Sy ahead

TM

Sy SYNC_SEG

SYNC_SEG

t1

~TQ of Sy SYNC_SEG

SYNC_SEG

Figure 4.3: CAN bit timing synchronization uncertainty.

Remark 1 The TQ lengths of all nodes should be chosen as small as possible to keep

the bit timing SYU low.

Remark 2 In rare cases, the difference between internal bit timings of the nodes after

re-synchronization may exceed the TQ length since the correction amount is limited

by RJW.

Second, there is a SP uncertainty (SPU) that is applicable for timestamping methods
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that use the SP as TR instant. Consider the case where different nodes have different

internal bit timing arrangements. Then, the SP distance will be different, leading to

a difference in the TR instant. For instance, the SP distance can be 70% in TM and

85% in Sy.

t1 SP

SYNC_SEG 

due to the  
oscillator drift

TM

Sy SYNC_SEG 

PHASE_SEG1 PHASE_SEG2

SP

PHASE_SEG1 PHASE_SEG2

Figure 4.4: Possible time difference due to the oscillator drift.

Finally, it has to be taken into account that the actual TQ lengths of TM and Sy are

different due to oscillator drift as presented in Fig. 4.4. As a result, even if TM and Sy

are perfectly aligned in the SYNC_SEG and all internal bit timing parameters such as

TQ lengths and number of TQs for all segments are identical, the TR instant in both

nodes will be different, due to an oscillator drift uncertainty (ODU). As an example,

a typical oscillator drift in the order of 100 ppm (parts per million) will result in a

difference of 0.8 ns after one nominal bit time of 8µs for a bit rate of 125 kbps. This

time difference increases as long as no re-synchronization re-aligns the bit times.

Remark 3 In order to decrease the effect of oscillator drift, it is preferable to choose

the TR close to a synchronization instant.

4.4 TR Quality using the SoF bit as TR Instant

We perform a detailed timing analysis of the components of the TR quality when

using the SoF bit as TR instant. For clarity, we first consider the case in Fig. 4.5,

where only the TM sends an RM, while all other nodes remain silent. Here, t1 presents

the starting instant of the SoF bit sent by the TM. That is, the CAN controller sends

a bit (falling edge) at the beginning of the SYNC phase at t1. Afterwards, the CAN

transceiver starts transmitting the bit on the CAN bus at t2 after the delay dTX
TM and the
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CAN controller of the TM receives the bit at t3 after dRX
TM. Whenever TM notices the

falling edge of the SoF bit, it applies hard synchronization at t3, restarting its internal

bit time with SYNC_SEG. The signal on the bus reaches the CAN transceiver of Sy

after the propagation delay dPTM,Sy
. Then, the CAN controller of Sy notices the falling

edge of the SoF bit after dRX
Sy

at t5 and also applies hard synchronization. Finally, t6

and t7 represent the actual TR instants of the TM and Sy.
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TM internal  
bit timing
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Figure 4.5: Timing analysis of SoF bit TR instant.

Looking at the components which contribute to the difference between t6 and t7 (and

hence the uncertainty in the TR instant), dTX
TM , dRX

TM, dRX
Sy

and dPTM,Sy
can assumed

to be almost constant and can hence be compensated based on measurements. Ac-

cordingly, it seems that the uncertainty mostly occurs after hard synchronization and

hence consists of SYU, SPU and ODU in Section 4.3 since the SP of the SoF bit is

used as TR instant. Hereby, the time interval where the oscillator drift is effective is

shorter than 1 bit time since the hard synchronization instant and SP take place within

the same bit.

However, it has to be taken into account that the previous analysis assumes that the

TM is the only transmitter on the bus. In the general case, multiple nodes may start

sending the SoF bit without noticing each other due to their differences in the bit tim-

ing and because of the signal propagation delay. In this case, the relation between
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the synchronization instants of TM and an arbitrary slave node Sy are not directly

determined by dTX
TM , dRX

TM, dRX
Sy

and dPTM,Sy
, which introduces an additional uncer-

tainty. In this context, it is important to note that the latter case with multiple sender

nodes is more likely at higher bus loads which are commonly observed in practical

applications.

4.5 TR Quality using the EoM as Trigger Instant

Defining the EoM as the TR instant is a very common practice since all existing CAN

controllers indicate the EoM to the upper layers to inform that message transmission

or reception is complete [19, 79]. Hereby, it has to be respected that the definition of

the EoM, in other words the message validation instant, is different for the transmitter

and receivers according to the CAN protocol. The transmitter considers the SP of the

last bit of the EOF field as the EoM, whereas the receivers have already observed the

EoM at the SP of the second-last bit of the EOF field [79].

We next investigate the components of the TR quality when using the EoM as the

TR instant. In principle, the timing of the EoM for each node depends on its last re-

synchronization instant before the EoM. Recalling that only "1" bits are transmitted

during the EOF field and the second ACK bit, this instant is either the first ACK bit

or the last falling edge during the CRC field.

We first consider a slave node Sy that performs re-synchronization at t4 in Fig. 4.6

with the last falling edge during the CRC field, whose position depends on the mes-

sage content. Then, Sy accumulates ODU until the first ACK bit, where Sy transmits

a "0" bit. Then, there are two possible cases for Sy depending on the distances and

the uncertain relation to the bit timing of the other slave nodes in the first ACK bit.

If Sy observes a falling edge due to an ACK bit that is sent by another slave node

before Sy starts sending the "0" bit as the ACK bit, it performs re-synchronization.

Otherwise, Sy does not re-synchronize. That is, the last synchronization instant for an

arbitrary slave node Sy is not certain when the EOM is used as TR instant. Further-

more, Sy continues accumulating additional ODU until the EoM whether it performs

re-synchronization or not.
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Figure 4.6: Timing analysis of EOM TR instant.

On the contrary, the TM definitely performs re-synchronization during the first ACK

bit since it sends a (recessive) "1" bit on the bus, whereas all slaves send a (dominant)

"0" bit. Nevertheless, it is uncertain which slave triggers the falling edge for the TM

since this depends both on the bit timing of the slaves and their distance to the TM.

After the first ACK bit the TM accumulates ODU until the EoM. Lastly, TR instants

for TM and Sy are shown with t7 and t8 depend on the SPU since the SP of the last

two bits of EOF field triggers the timestamping service.

Additional to SYU, SPU and ODU in Section 4.3, there are uncertainties regard-

ing the re-synchronization instants, the nodes that trigger re-synchronization and the

nodes that perform re-synchronization in the first ACK bit when using the EoM as

TR instant. In addition, the duration during which ODU is accumulated is uncertain.

That is, it is expected that a high TR quality cannot be ensured when EoM is used as

TR instant.

4.6 Predictable TR Instant

The existing trigger options suffer from several uncertainties due to the particularities

of the CAN bit timing. In order to mitigate the identified uncertainties, we propose

to use a predictable TR instant. According to the previous discussion, the following
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properties are desired.

1. Different from the TR instant at the SoF bit or at the EoM, a falling edge that is

certain to be generated by the TM should be used,

2. Different from the TR instant at the SoF bit and the EoM, the SPU and ODU

should be avoided.

In order to address 1), we propose to locate the TR instant to the detection moment

of the first falling edge after the CAN ID field of the frame in Fig. 2.1 and 2.2.

In this case, it is guaranteed that the falling edge is generated by the TM while trans-

mission of an RM. We further address 2) by directly using the detection time of the

falling edge as the TR instant instead of the SP, hence entirely removing SPU and

ODU. That is, the uncertainty of the TR instant is limited to TQ length by SYU.

In Fig. 4.7, it is represented that the CAN controllers of TM and Sy receive the

first falling edge after the CAN ID bits at t3 and t5 respectively. The source of the

falling edge is certainly TM during the transmission of an RM in this method. By

assuming that dTX
TM , dRX

TM, dRX
Sy

and dPTM,Sy
are known, the arrival of the falling edge

on an arbitrary slave node Sy and TM can be expressed formally. Therefore, tTR
Sy ,k

the detection instant of the falling edge on Sy can be defined relative to the detection

instant on TM tTR
TM,k with only the SYU, which is bounded by one TQ of the TM or

Sy.

In principle, any falling edge in white part in Fig. 2.1 and Fig. 2.2 can be used.

Nonetheless, we suggest using the first falling edge after the CAN ID since it is guar-

anteed that this falling edge occurs before the transmission of the payload. In partic-

ular, there are 7 bits between the CAN ID and the message payload such that a falling

edge is ensured because of bit stuffing. In this way, using our proposed predictable

TR instant makes it possible to apply any of the options for the timestamp transmis-

sion described in Section 2.4. That is, timestamps can be transmitted in later RMs

or FUP messages but can also be put in the payload of an RM during the ongoing

transmission.

Remark 4 We also note that there is no additional implementation complexity when
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Figure 4.7: Timing analysis of the predictable TR instant.

using the proposed predictable TR instant. The already existing logic within a stan-

dard CAN controller is capable of indicating the first falling edge after the CAN ID as

defined with the predictable TR instant, similar to the SoF bit and EoM indications.

Remark 5 The previous results were discussed for the legacy CAN protocol [4]. We

note that analogous results are valid for the recent extensions CAN FD and CAN

XL since they use the same arbitration, bit timing and acknowledgement mechanism.

Specifically, this suggests that our predictable TS method will as well be beneficial

for CAN FD and CAN XL.

4.7 Timestamping Service Quality and Discussion

As discussed in Section 4.2, the second component of the timestamping quality is

the timestamping service quality that is determined by dSVTM and dSVSy
of the TM and

any slave Sy. On the one hand, the timestamping service can be implemented in

software. This will lead to varying values of dSVTM and dSVSy
due to unavoidable jitter in

the software delays. Even though the jitter of the software delays can in principle be

minimized by assigning higher task priorities to the timestamping service, it has to be
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respected that this is not applicable in practice due to other mission critical tasks of

the CAN nodes. On the other hand, a hardware implementation of the timestamping

service provides a constant value of dSVTM and dSVSy
as desired.

Following the above explanation, it can be concluded that the timestamping service

quality together with the TR instant quality defines the resultant timestamping quality

when a software implementation of the timestamping service is chosen. This observa-

tion is confirmed in the experimental evaluation in Section 4.8.2. On the contrary, the

quality of the TR instant directly determines the timestamping quality when using a

hardware implementation. Because of this reason, we next compare the uncertainties

of the different TR methods. To this end, Table 4.1 qualitatively evaluates the effect of

the identified uncertainties in line with the elaborations in Section 4.4 to 4.6. Hereby,

the mark ✓ indicates that the uncertainty negatively affects the quality, ✓⋆ shows that

the uncertainty negatively affects the quality but is negligible or can be compensated

based on additional effort (such as measurements) and ✗ means that the uncertainty

does not exist for the respective method.

Table 4.1: Dependency comparison.

SoF EoM Predictable

SYU ✓ ✓ ✓

SPU ✓⋆ ✓⋆ ✗

ODU ✓⋆ ✓ ✗

CAN transceiver delays ✓ ✓ ✓⋆

Cable delays ✓ ✓ ✓⋆

Message validation instant ✗ ✓⋆ ✗

The SYU exists for all TR methods and cannot be compensated since it is caused by

the granularity of the TQ. The SPU and the ODU only exist for the SoF and EoM

TR method, which trigger at the SP of the respective bit. In principle, the SPU can

be compensated by comparing the SP distances of the TM and the slave nodes. The

effect of oscillator drifts depends on the duration between the last synchronization

and the respective TR instant. For the SoF TR method, this duration is less than one

bit time and hence negligible. Differently, the duration is not deterministic and can be
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up to 19 bit times for the EoM TR method. Furthermore, transceiver delays and cable

delays affect all TR methods. However, both delays can only be compensated for

the proposed predictable TR method since the TR instant directly follows from these

delays as explained in Section 4.6. This is the major benefit of our method, which

will be confirmed in Section 4.8.6. Finally, the EoM TR method is also affected by

the difference in the message validation instant definition which is defined as the TR

instant for the EoM TR method as described in Section 4.5. Hereby, the difference

equals to one bit time and the effect on TR instant quality can be compensated.

In summary, it is readily observed that the EoM TR method is the least suitable

method for achieving a high timestamp quality. It is further expected that the SoF

TR method can perform as well as the proposed predictable TR method whenever

no other node enters arbitration when the TM sends the SoF bit of an RM. In this

case, it is certain that the TM causes hard synchronization of the nodes. However,

this situation is not likely in practical applications with a high bus load, where mul-

tiple nodes try to access the bus simultaneously. SoF and our predictable TR instant

method makes it possible to take timestamp before the payload of the ongoing RM.

Finally, we recall that the SoF and predictable TR methods allow sending the times-

tamps within the payload of the ongoing RM unlike EoM TR method. The qualitative

results discussed in this section are supported by hardware experiments in the next

section.

4.8 Experimental Evaluation of Timestamping on CAN

In this section, we evaluate the performance of the different TR methods and compare

the quality of the hardware and software timestamp service implementations.

4.8.1 Experimental Setup

The experimental setup consists of 4 FPGA SoC development boards [66] (TM, S1,

S2 and S3) which have an ARM processing system and an FPGA programmable

logic on the same chip. Additionally, one PCAN analyzer is used to record CAN

messages on a PC as seen in Fig. 4.8.
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Figure 4.8: Experimental setup.

Each development board implements our custom CAN controller IP (CCIP) that is

verified to successfully communicate with standard CAN controllers such as PCAN

analyzer and various different COTS MCU boards in extensive experiments.

The CCIP includes a timestamping unit (TSU) that is triggered by the TS signal and

that has a timer with a resolution of 10 ns. When implementing the TS service in

hardware, the TR signal from the CCIP is directly used as the TS signal of the TSU.

In this way, a copy of the timer value is constructed with a constant delay relative

to the occurrence of the TR signal. Differently, the TR signal is connected to the

interrupt input of the ARM processing system when the TS service is implemented in

software. That is, the TS signal is generated whenever the ARM processing system

detects the interrupt, leading to a varying delay due to the inevitable software jitter.

In addition, the CCIP is developed to support the TR instants at the SoF, EoM and the

predictable TR instant, whereby it has to be noted that the implementation complexity

of the different TR methods is equivalent.

The overall TS quality is evaluated by observing the TS service quality and TR in-

stant quality. In order to determine the TS service quality, each node measures the

TS service delay as the difference between the TR instant and the TS signal for all

timestamps with an accuracy of 10 ns. These measurements are sent on the CAN bus

with specific message IDs by the nodes. Furthermore, all nodes toggle an output pin

when they detect the TR instant. Those output pins are connected to another FPGA

board with equal propagation delays to measure the TR instant quality of the slave

nodes in real time with a timer that has 10 ns resolution.

As stated in Fig. 4.1, the TS quality is affected by the signal propagation delay. In
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order to study the effect for different TR methods, an extra 10 meter ∆ cable is used in

some experiments to increase the bus length between S3 and other nodes. Moreover,

the bus load is changed with extra CAN messages which are randomly sent by all

nodes on the bus.

In the subsequent sections, the TR instant quality measurements are presented with

their standard deviation and peak to peak difference statistics. Both of these metrics

are important and should be as low as possible. Furthermore, a consistent TR instant

quality of different nodes on the bus is also an indicator of a good TR method.

4.8.2 Evaluation of the Timestamping Service Quality

In this section, the timestamp service quality is compared for hardware and software

implementations. The experiments are conducted without using the extra ∆ cable in

Fig. 4.8. Furthermore, the CAN bus speed is 1Mbps and TQ length of all nodes are

50 ns.

Firstly, the predictable TR method together with software TS service implementation

is applied. Secondly, the experiment is repeated with a change that hardware TS

service implementation is realized instead of software TS service. In the former one,

the distribution of the timestamp service delays on different nodes are measured and

shown in Fig. 4.9. It can be seen that timestamp request can be served on software

with delays ranging from 600 ns to 1090 ns.

Furthermore, the distribution of the time difference between equivalent software de-

lay measurements of slave nodes and TM is presented on the right of Fig. 4.10.

Accordingly, uncertainties up to 460 ns affect the timestamp quality when timestamp

service is realized on software, additional to the TR quality.

In the latter one, for hardware TS service, the timestamp quality becomes equal to the

trigger quality which changes from -20 ns to 40 ns for all slave nodes as seen on the

left of Fig. 4.10.

Thus, we next continue with the hardware timestamp service to compare the different

trigger instant methods.
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4.8.3 The Evaluation of the SoF Bit as TR Instant
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Figure 4.11: SoF bit - the trigger quality evaluation.

To evaluate the performance of using SoF bit as the timestamp trigger, another series

of experiments are carried under different bus speeds, TQ lengths, cable delays and

bus loads.

The TR instant quality measurements for S3 node are given in Fig. 4.11, where the

right plot presents the results for the bit rate of 1Mbps and TQ length of 50 ns ; the

left plot stands for the bit rate of 250kbps and TQ length of 400 ns.

Firstly, it is experimentally verified that TR instant quality is better when TQ length is

smaller. The TR instant quality results at the right plot in 4.11 are small in terms of the

peak to peak difference as desired since TQ length is smaller. Secondly, TR quality

does not change with ∆ cable delay for both bus speeds when the bus load is 10% by

looking at the results S3− 10 and S3− 10C where the bus usage is 10% and without

and with ∆ cable, respectively. The peak to peak differences are the same and the

offset values of 60ns and 50ns are seen for 250kbps and 1Mbps, respectively. When

the signal propagation of 50ns due to the ∆ cable and 10ns measurement resolution

are considered, it is deduced that offset values are exactly introduced by ∆ cable

usage. As explained in Section 4.4, the cable delay predictably affects the TR quality

for low bus loads since an arbitration with different nodes is not very likely for TM

while sending the SoF bit of an RM. However, TR quality becomes worse with the
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usage of ∆ cable when the bus load is 60% for both bus speeds according to the

experiments results of S3 − 60 and S3 − 60C. Furthermore, the increase in the bus

load has an effect on the TR quality according to the between S3− 10 and S3− 60;

also between S3− 10C and S3− 60C.

Although TR instant quality stays the same for the different signal propagation delays

on the bus when the bus load is very low as 10%, those experiments show that using

SoF bit as trigger can not guarantee a promising timestamping behaviour for practical

CAN network configurations. In particular, high bus load brings more uncertainty due

to the fact that other nodes likely participate in arbitration during the transmission of

the SoF bit of the RM.

4.8.4 The Evaluation of the EoM as TR Instant
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Figure 4.12: EoM - the trigger quality evaluation.

The experiments in Section 4.8.3 are repeated with a difference that EoM TR method

is used instead of the SoF bit. According to the results in Fig. 4.12, the bus load

has no remarkable effect on the TR instant quality when the other parameters are

the same for example S3 − 10 and S3 − 60 with 250kbps. However, the signal

propagation delay due to ∆ cable results in an increase in the peak to peak difference,

in other words TR instant quality decreases when ∆ cable is used, for example S3−10

and S3 − 10C with 250kbps. Unlike the SoF TR method, the signal propagation
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delay deteriorates the performance even for low bus loads. That is, it verifies the

explanations in Section 4.5 that the uncertainties correspond to the acknowledgement

bit timings when EoM is used as the trigger instant and hence are not affected by the

bus load. Furthermore, it is seen from the experiments that the effect of the delays

due to the network components such as cables is uncontrollable additional to SYU

that depends on TQ lengths when EoM TR method is used.

4.8.5 Evaluation of the Predictable TR Instant
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Figure 4.13: Predictable TR method - the trigger quality evaluation.

The experiments in Sections 4.8.4 and 4.8.4 are repeated with our predictable TR

instant method. In Fig. 4.13, it can be seen that the peak to peak difference in other

words TR quality is determined only by the bus speed. Hereby, TR quality in fact

depends on the TQ length due to SYU not directly the bus speed. Different from

the other existing TR methods, it becomes possible to compensate the delays only

when our predictable TS method is followed since the cable delay effect is seen as

a pure offset and the difference between upper and lower bounds stay the same, as

seen in Fig. 4.13. To sum up, the same TR quality is preserved independently from

the delays and bus load with our novel TR instant method. Thus, our predictable TR

method enables the most robust trigger quality as explained in Section 4.8.5.
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4.8.6 Overall Comparison

In Table 4.2 , the trigger quality measurements are also given for different bus speeds

of 1Mbps, 500kbps , 250kbps and 125kbps ; TQ lengths of 50 ns, 100 ns , 200 ns

and 400 ns respectively. In these experiments, the bus load is 60% and S3 has ∆

cable as a challenging condition. By looking at the standard deviation and peak to

peak values, the results show that our predictable TR method always provide the best

trigger quality. It is also important that the trigger qualities of all slave nodes are

very close to each other with our predictable TR method. However, it is seen that

the SoF bit TR method can reach to the same performance with our predictable TR

method for some cases. Furthermore, EoM TR method performs better than the SoF

bit method only for S3 node when the bit rate is 1Mps in terms of the peak to peak

values. However, EoM has the worst performance in other cases. The last but not the

least, it is seen that all three trigger methods perform worse when TQ length increases

as explained with the timing analyses.

4.9 Discussion and Conclusion

This chapter proposes a new predictable timestamping (TS) method for the Controller

Area Network (CAN), which reduces uncertainties due to the CAN bit timing, oscil-

lator drifts as well as different CAN transceiver and cable delays. The original idea

behind our method emerges from findings of a detailed timing analysis of the ex-

isting TS methods for CAN. Moreover, the results of our analysis are confirmed by

comprehensive experiments that evaluate the performance of our TS method under

realistic conditions. Specifically, the experiments show that our new TS method pro-

vides higher quality timestamps on CAN and is not affected by parameters that are

likely to change on different CAN systems. Furthermore, our idea behind the new

predictable TS method is also valid for the CAN extensions CAN FD and CAN XL

since they also follow the same arbitration phases at the end and at the beginning of

the CAN frames.

The clock synchronization methods provide better results with more accurate times-

tamps as explained in Chapter 2. Thus, our predictable TS method contributes the
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clock accuracy performance of the clock synchronization service in CANDS. Dif-

ferent from the existing TS methods that provide TS quality in the order of one bit

time, our TS method directly improves the performance of the existing CS methods

by providing the timestamps with TS quality in the order of one time quantum.
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Table 4.2: The trigger quality comparison.
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CHAPTER 5

SOFTWARE-BASED CLOCK SYNCHRONIZATION METHODS ON CAN

The CANDS framework has a global clock among the nodes with a known accu-

racy. The global clock enables that the traffic shaping layers from different CAN

nodes can construct a complete TDMA altogether where all CAN messages can be

transmitted on the bus without any collision. That is, the global clock is one of the

important building blocks that makes the deterministic bus access on CAN possible.

Furthermore, the clock synchronization is also required for safety critical in-vehicle

applications to coordinate their actions. Therefore, the realization of CS on CAN is

highly relevant. Furthermore, developing the SW-CS methods that can run on many

low-cost micro-controllers is desirable since the automotive domain is cost sensitive

and hardware resources are limited.

In this chapter, the leading SW-CS methods AUTOSAR CS [27] and Gergeleit’s

method [28] are revisited and analyzed by considering the possible TS inaccuracies

that are explained in Chapter 4. Additionally, ISCS method that can be realized on the

software is proposed by mitigating the disadvantages of the existing methods. ISCS

provides clock accuracy as well as AUTOSAR method while ISCS requires only one

RM in a cycle, that is the half of the AUTOSAR CS method. Moreover, ISCS requires

the same amount of RM bandwidth with Gergeleit’s method but provides a much bet-

ter clock accuracy performance than Gergeleit’s method independently from the bit

rate, bus load and RM period. In addition, it is shown with comprehensive hardware

experiments that our ISCS method is practicable and better than AUTOSAR CS and

Gergeleit’s methods.

Nevertheless, ISCS, AUTOSAR CS and Gergeleit’s method only perform offset cor-

rection and the clock drift continue to increase between RMs during a cycle. There-
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fore, RM-based drift correction CS that estimates the clock drift by using the AU-

TOSAR compatible timestamps is introduced in this chapter. In this method, AU-

TOSAR compatible offset corrections are supported by the periodic drift corrections

depending on the drift estimates from the timestamps with RMs. Moreover, it is ex-

perimentally shown that RM-based drift correction CS provides clock accuracy below

4µs by preventing the clock drift between RMs.

Different from the RM-based CS method, a controller method that also considers the

previous error measurements and drift estimates is developed. The novel controller

model is introduced for Gergeleit compatible timestamps first and then reconsidered

also for AUTOSAR compatible timestamp scheme. In the controller-based CS meth-

ods, only periodic drift corrections are applied, and offset corrections are not required.

The simulation results are validated by comparing them to the experiment results.

Moreover, our detailed experiments confirm that very small clock differences below

4µs are achieved with the controller-based CS methods.

Lastly, the dependency of the clock accuracy performance on timestamping quality

is presented experimentally for CAN for the first time in the literature. A series

of experiments are conducted where the bit rate is 1 Mbps and the LC resolution

is 10 ns with a change in the timestamping method. It is experimentally shown that

our controller-based CS method can provide CS with clock accuracies below 120 ns

with high quality timestamps whereas its clock accuracy performance is measured as

worse than 1.35µs when high quality timestamps are not followed.

5.1 Revisiting the AUTOSAR Offset Correction

In this section, we revisit the AUTOSAR offset correction method that is explained

in Chapter 2. The upper bound for the clock accuracy maxt |∆cSi(t)| is evaluated

by considering the timestamp quality that is explained in Chapter 4. Different from

the ideal case, the time difference between timestamps does not give the precise time

difference between the Slave and the TM due to the misalignment of the timestamp

instants.

Each slave node Si takes the current value N̂Si,k of its HR as timestamp when receiv-
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ing the SYNC message. Likewise, the TM takes a timestamp t̂TM,k in the NTU upon

reception of the SYNC message and transmits it in the FUP message right after the

SYNC message. At the reception time tk = k · T of the FUP message, each slave

Si corrects the HR value of its LC by subtracting the measured clock offset as using

⌊t̂TM,k/TSi⌋ as the TM timestamp in terms of HR ticks of Si:

NSi(t
+
k ) = NSi(t

−
k ) +

⌊ t̂TM,k

TSi

⌋
− N̂Si,k, (5.1)

We next evaluate the clock accuracy of the AUTOSAR method, which is given by

the maximum value maxt |∆cSi(t)| of the clock difference for later comparison. The

CAN nodes take timestamps with a possible inaccuracy due to software delays in the

intervals [0, JTM] and [0, JSi] for the TM and any slave Si, respectively.

In addition, it has to be taken into account that the trigger instants for timestamping

of TM and Si do not occur exactly at the same instant as explained in Chapter 4. We

denote this TR inaccuracy as the TRI error ETRI which depends on the implemented

TS method.

Finally, the LCs of TM and Si experience drift during the uncontrolled region whose

duration is denoted as tunc between the timestamping and offset correction instants.

In AUTOSAR CS method, tunc is equal to the transmission time tRM of the FUP

message after taking the timestamps at time tk − tRM. Our first new result is stated in

Theorem 1, which provides a bound for the clock accuracy of the AUTOSAR method.

A detailed proof of Theorem 1 is given in Appendix A.1.

Theorem 1 Consider the offset correction at time tk according to (5.1) for a slave

node Si with drift dSi, software delays JTM, JSi, maximum TRI error ETRI and the

uncontrolled time duration tunc = tRM. Then, the clock accuracy of node Si’s LC is

bounded by

max
t

{|∆cSi(t)|} ≤ COC +
⌈ |dSi| · T

TSi

⌉
· TSi, (5.2)

with the maximum clock difference after offset correction at the update times t+k

COC = max{|∆Nmin
Si |, |∆Nmax

Si |} · TSi (5.3)
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and

∆Nmin
Si =

⌊tunc · dSi
TSi

⌋
−
⌈ ETRI + JSi
TSi/(1 + dSi)

⌉
− 1

∆Nmax
Si =

⌈tunc · dSi
TSi

⌉
+
⌈JTM

TSi

⌉
+
⌈ ETRI

TSi/(1 + dSi)

⌉
,

Hereby, ∆Nmin
Si and ∆Nmax

Si represent the minimum and maximum clock deviation

in HR ticks of Si, respectively.

5.2 Revisiting the Gergeleit Offset Correction

This section evaluates the susceptibility of the Gergeleit’s method to the timestamping

quality. Different from the AUTOSAR method, the Gergeleit’s method maintains

the effects of the past errors in the following cycles since it does not use the time

difference in the current cycle, as explained in Chapter 2.

In order to visualize the performance of the Gergeleit’s method when ideal times-

tamps are not taken, an imaginary example is presented in Fig.5.1. In this example, it

is imagined that the timestamps at t = 0 is recorded such that there is eTS difference

between them. Nevertheless, the difference between the recorded timestamps would

be zero instead of eTS in case of the ideal timestamps without an inaccuracy since the

time difference between Si and TM is seen as 0 at t = 0 in the Fig.5.1.

Although it is imagined that the other timestamps are recorded perfectly in the fol-

lowing cycles with zero inaccuracy, it can be seen from Fig.5.1 that the effect of the

timestamping inaccuracy at t = 0 is permanent in the remaining cycles.

Furthermore, the time difference likely diverges from zero when the Gergeleit’s method

is followed since it remembers the past errors. That is, the past errors can accumulate

such that the time difference between Si and TM increases that is undesired for a CS

method. We also verified this finding with series of simulations where the errors are

inserted randomly at the timestamping instants as it is the case in the real-world ex-

periments. One of the simulation results is presented as an example in Fig.5.2 where

the clock accuracy exceeds the ideal upper and lower bounds which are previously

presented as 2 · dSi · T and −1 · dSi · T in Fig.2.7.
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Figure 5.1: Illustration of the Gergeleit’s method with a timestamping inaccuracy
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Figure 5.2: The simulation with random TS errors.

5.3 Improved Software-based Clock Synchronization Method on CAN

The new ISCS algorithm proposed in this thesis is based on two major improvements

over Gergeleit’s method in [28] and AUTOSAR CS method[27]. 1) The timestamps

should be taken as close as possible to the offset correction instant as in AUTOSAR

CS method. 2) In order to consume less bandwidth for RMs, only one RM in a cycle
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would be better as in [28].

In order to satisfy the improvements 1) and 2), the main idea of the ISCS method is

to make use of the fact that CAN is a shared medium with message broadcast. Hence,

it is possible for each CAN node to take timestamps of all messages broadcasted on

the bus and to use the latest timestamp for clock correction. In this way, it is expected

to achieve the same clock accuracy with AUTOSAR method with only one RM in a

cycle.

5.3.1 Improved Software-based Clock Synchronization

The pseudo code of the ISCS algorithm is shown as 4 separate parts in Algorithms

1,2,3 and 4.

Algorithm 1 ISCS algorithm Part-1 / main function
1: Function: main()

2: while 1 do

3: if this node is a master node then

4: if RM period is reached then

5: refTX(); //call function refTX

6: end if

7: end if

8: if receive interrupt is intercepted then

9: clockTS(); //call function clockService

10: end if

11: end while

Algorithm 1 constitutes the main function running on each CAN node. If the node

is the TM, it must implement a timer and periodically transmit a RM whenever the

timer expires. This is realized by calling the function refTx in line 5. In addition,

each node intercepts the receive interrupt that indicates a message reception and that

is available on each CAN node. Upon detection of the receive interrupt, the function

clockTS is called in line 9 for applying timestamping and clock correction. The

clock service on each CAN node is implemented using memory for the virtual clock,
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two timestamps and one Boolean flag, that indicates which of the timestamps is valid.

The virtual clock is denoted as vClock, the timestamps are denoted as prevTS (holds

the previous timestamp) and curTS (holds the current/most recent timestamp). The

Boolean flag is denoted as vF lag. This flag indicates if the current timestamp or the

previous timestamp is valid.

If refTx is called in line 5 of Algorithm 1, the transmission of a RM with the function

refTx follows Algorithm 2. In this algorithm, the RM is denoted as Tx_Ref_M and

has the data fields Tx_Ref_M.TS (timestamp) and Tx_Ref_M.vF lag (information

about which timestamp is valid). Whenever refTx is called, the current timestamp

value curTS and the validity flag vF lag are written in the payload of Tx_Ref_M .

Then, Tx_Ref_M is put in the Tx queue of the node.

Algorithm 2 ISCS algorithm Part-2 / transmission of a RM by TM
1: Function: refTx()

2: Tx_Ref_M.TS = curTS;

3: Tx_Ref_M.vF lag = vF lag;

4: Send Tx_Ref_M ; //Put the message into the Tx queue

If clockTS is called with the receive interrupt in line 9 of Algorithm 1, the steps in

Algorithm 3 are carried out to perform timestamping and clock correction. If the

received message named as Rx_M is a RM, the function syncClock is called to

perform clock correction in line 3. After that for all received messages, the value

of the validity flag vF lag is toggled (line 5), the current timestamp is written to the

previous timestamp (line 6) and the current clock value vClock is taken as the current

timestamp (line 7).

Algorithm 3 ISCS algorithm Part-3 / clock service
1: Function: clockTS()

2: if Rx_M is a RM then

3: syncClock(); //call the synchronization service

4: end if

5: toggle vF lag; // 0 changes to 1, 1 changes to 0

6: prevTS = curTS; // store old timestamp

7: curTS = vClock; // take new timestamp
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The clock correction is performed by the function syncClock in Algorithm 4, which

is called in line 3 of Algorithm 3 whenever a RM is received. The operation of Al-

gorithm 4 is as follows. First, the validity flags of the node (vF lag) and the received

RM (Rx_M.vF lag) are compared. In case they are identical (line 2), the clock dif-

ference of the virtual clock and the clock of the TM is determined as the difference

of the timestamp in the received RM (Rx_M.TS) and the current timestamp of the

node (line 3). Otherwise, the clock difference is the difference of the timestamp in

the received RM (Rx_M.TS) and the previous timestamp (line 5). After that, times-

tamps and flags are reset, and the virtual clock value is corrected using the computed

clock difference (line 10).

Algorithm 4 ISCS algorithm Part-4 / synchronization service
1: Function: syncClock()

2: if Rx_M.vF lag == vF lag then

3: clockDiff = Rx_M.TS − curTS;

4: else

5: clockDiff = Rx_M.TS − prevTS;

6: end if

7: prevTS = 0; // reset previous TS

8: curTS = 0; // reset current TS

9: vF lag = 0; // reset validity Flag

10: vClock = vClock + clockDiff ; // Local Clock offset correction

In Algorithm 4, the lines from 2 to 6 are critical for the correct operation of the pro-

posed algorithm. In order to explain this part of the algorithm, we first state two basic

assumptions. First, we assume that all nodes that want to synchronize with the TM

know the CAN ID of the RM. This is a basic assumption for all clock synchroniza-

tion algorithms on CAN, which is needed to detect the reception of a RM in line 2 of

Algorithm 3. Second, it is assumed that the RM has the highest priority on the CAN

bus. We next describe the importance of this requirement.

We first note that all nodes perform the same update after regular messages and also

after receiving RMs. That is, upon reception of a message all nodes have the same

value of vF lag. If the TM transmits a RM, it puts its value of vF lag and its cur-

rent timestamp in the RM. Since the clock synchronization algorithm is realized in
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software, it holds that Tx_Ref_M does not enter the CAN arbitration immediately

when it is generated in Algorithm 2. That is, even Tx_Ref_M has the highest pri-

ority it is possible that another message, say otherM , is already being transmitted on

the CAN bus when Tx_Ref_M enters the Tx queue on the TM. Since CAN is non-

preemptive, this means the transmission of Tx_Ref_M has to wait until the transmis-

sion of otherM is completed. In this case, all nodes receive otherM and change their

value of vF lag as well as prevTS and curTS. That is, when Tx_Ref_M is received

by the nodes as Rx_M , Rx_M.vF lag is different from the value of vF lag, and now

Rx_M.TS corresponds to the timestamp in prevTS in all nodes. This situation is

addressed in line 5 of Algorithm 4. In the case that Tx_Ref_M can be transmit-

ted without interference from another message, Rx_M.TS and Rx_M.vF lag corre-

spond to the curTS and vF lag in all nodes such that line 3 in Algorithm 4 is used.

0

0 T 2T 3T 4T 6T 7T5T

dSi  T

2 dSi T

-dSi  T

cSi(t) - cTM(t)

t

Figure 5.3: Illustration of ISCS method.

Fig.5.3 illustrates the ISCS method. According to the proposed algorithm, the slave

node performs a clock correction whenever a RM is received. The amount of the clock

correction equals the clock difference at the reception time of the previous message

on the CAN bus as long as no other message blocks the RM on the bus (line 3 in

Algorithm 4). In Fig.5.3, this situation is for example observed at the times T, 2 · T ,

3 · T and 4 · T . The situation is different at time 5 · T . Here, another message blocks

the immediate transmission of the RM. That is, according to line 5 in Algorithm 4),

the clock correction is done using the clock difference of the message before.
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We note that the performance of the clock correction directly depends on the time

difference between the reception of the message before the RM and the RM. If the

last received message is close to the RM, the clock correction is very accurate. This is

always the case on CAN with a high bus load. We also note that the clock difference

does not increase cumulatively. For example, at time 2 · T , the algorithm cannot

compensate the clock difference very well since the last received message is not very

close to the RM. However, this case does not affect the performance of the following

cycles. At the time 3 · T , the last message is very close to the RM. Thus, most of

the clock difference is compensated after receiving the RM. This independence of the

successive cycles contributes to the robustness of the algorithm. The effectiveness of

the algorithm can as well be seen when looking at the clock difference values right

after receiving the RMs. Although, the possible upper limit of the clock difference is

the same as for Gergeleit’s method in [28] (that is, 2 ·dSi ·T ), this case is very unlikely

in the practical case where many messages are transmitted between RMs. In terms of

resource usage, ISCS algorithm requires one more timestamp register and one-bit flag

register when it is compared with Gergeleit’s method [28]. Moreover, timestamps are

taken with each message instead of each RM. Considering the prospective benefits,

this amount of increase in the processor usage is acceptable. Furthermore, ISCS

method consumes half of the RM bandwidth when it is compared to the AUTOSAR

CS method [27]. However, it is very likely that ISCS method performs as well as

AUTOSAR CS method in terms of the clock accuracy in practice. To sum up, ISCS

method has remarkable advantages over the leading CS methods [27] and [28].

5.3.2 Analysis of the ISCS Method

In this section, the clock accuracy bounds for ISCS method are discussed as similar

to AUTOSAR CS and Gergeleit’s method.

Remark 6 The Theorem 1 that gives the clock accuracy bounds for AUTOSAR can

also be followed for ISCS method. In case of ISCS, the uncontrolled time duration

tunc depends on the regular CAN message traffic on the bus. Although tunc can be as

high as one RM period T for ISCS unless there is not any CAN message traffic on the

bus between RMs, it is very likely that tunc can be as low as tRM when there is a CAN
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message right before the RM. In this case, ISCS provides the same clock accuracy

performance with AUTOSAR method.

It seems possible to define an upper bound for tunc and hence an upper bound for

the clock accuracy of ISCS method when the periods of periodic CAN messages

are given. That is, by considering a periodic CAN message Mi ∈ M, the minimum

number of repetitions of Mi between two successive RMs with a period of T equals to⌊
T
pi

⌋
. When there are m periodic CAN messages (M1, ...,Mm), the total transmission

of those m CAN messages take at least Tmin
occ between two successive RMs. That is,

the minimum occupied time duration Tmin
occ can be formulated as :

Tmin
occ =

m∑
i=1

⌊T
pi

⌋
· Lmin

i . (5.4)

In the worst case for ISCS method, tunc equals to T − Tmin
occ when all periodic CAN

messages are sent successively at the beginning of the cycle without any idle time

between them and also the message lengths are assumed to equal to their minimum

lengths as Lmin
i . In brief, after calculating the upper bound of tunc according to the

given periodic CAN messages, the Theorem 1 can be applied in order to determine

the bounds of the clock accuracy of ISCS method.

5.3.3 Evaluation of the ISCS Method

This section evaluates the ISCS method together with the corresponding software-

based CS methods: Gergeleit’s CS method and AUTOSAR CS method.

5.3.3.1 Experimental Setup

The experimental setup consists of 4 MCU boards [65] as CAN nodes TM, S1, S2

and S3. Each CAN node realizes a 32-bit local clock by using the timer modules

inside the MCU. The timer modules run at the speed of 4 Mhz and hence NTU equals

to 250 ns.
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Figure 5.4: Clock drift.

Moreover, Fig.5.4 shows the clock drift of the nodes S1, S2 and S3 relative to TM in

this experiment when a CS method is not followed. Accordingly, the clock drifts are

measured as 1.84µs/s, -10.9µs/s and -5.8µs/s for S1, S2 and S3, respectively.

5.3.3.2 Experimental Results

In the Fig.5.5, the performances of the algorithms in different RM periods are pre-

sented. In the experiments, the bus speed was chosen to be 125 kbps and the bus load

to be 70%. As it is expected, the mean clock accuracy value decreases in the AU-

TOSAR when RMs are sent more frequently with shorter RM periods. Furthermore,

it is seen that our ISCS method performs as well as AUTOSAR method in practice,

as it is explained. On the other hand, the performance of the Gergeleit’s method also

increases in case of more frequent RMs even though its performance is worse than

the other methods in all cases.

Regarding AUTOSAR CS and ISCS, it should be noted that the maximum clock

difference measurements show us that the improvement when changing T from 1 s to

0.5 s , could not be reached when T changes from 0.5 s to 0.25 s. Although the mean

clock difference values show linear improvements according to the RM period, the

maximum clock difference seems saturated due to the fact that TS quality becomes

more significant when it is compared to the offset correction amount. Thus, trying
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to achieve better clock accuracy by reducing the RM period does not always work in

practice due to the TS inaccuracies.

Regarding Gergeleit’s method, the theoretical approaches lead us that the maximum

clock accuracy value is almost twice of the clock accuracy in AUTOSAR CS. In

our experiments, the expected theoretical clock accuracy values for S3 are 11.6µs

and 5.8µs when T = 1 s for Gergeleit’s method and AUTOSAR CS, respectively.

However, Fig.5.5 validates that the Gergeleit’s method performs much worse than its

theoretical expectation since it can accumulate the past errors as explained in Section

5.2.

Figure 5.5: The dependency of the clock accuracy of S3 on the RM period.

We next compare the SW-CS methods under different bus loads while the bit rate is

chosen as 125 kbps and T = 1 s. The performance of the Gergeleit’s method does

not depend on the other messages on the bus. However, the clock accuracy results

for Gergeleit’s method in Fig.5.6 changes for the different bus loads indeterminately

due to nature of the Gergeleit’s method that does not guarantee an upper bound in

practice. Nevertheless, a slight decrease in the performance of our ISCS method can

be observed as it is expected since the probability of having a regular message close

to the RM is lower in case of low bus load. However, it can be seen from Fig.5.6 that

our ISCS performs very close to the AUTOSAR CS method even when the bus load

is 20%.
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Figure 5.6: The dependency of the clock accuracy of S3 on the bus load.

In Fig.5.7, their performances with different bit rates as 125 kbps, 500 kbps and 1 Mbps

are compared while the bus load is 70% and T = 1 s. As a consequence, it is seen

that ISCS and AUTOSAR performs better than Gergeleit’s method independently

from the bit rate.

Figure 5.7: The dependency of the clock accuracy of S3 on the bit rate.

The clock difference measurements are presented in Fig.5.8 when T = 1 s, the bus

load equals to 70% and bit rate is 125 kbps. The clock difference measurements
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are recorded for 10 minutes and only 20 seconds portion of the measurements are

presented to provide better visibility. The results in Fig.5.8 confirms that each CS

method is implemented on the CAN nodes successfully.
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Figure 5.8: The clock accuracy of S3 for different CS methods.

5.4 RM-based Drift Correction Clock Synchronization for the Controller Area

Network

In this section, a drift estimation approach which uses the periodic timestamps that

are taken with RMs is introduced. Furthermore, the CS method which applies offset

correction as described in AUTOSAR [27] together with the drift correction according

to the estimated drift values is evaluated experimentally.

5.4.1 Drift Estimation based on RMs

The clock accuracy of CS methods can be improved using drift correction by regularly

updating the LC. Hereby, we note that LC updates should only be performed in mul-

tiples of the HR tick TSi. We recall the clock drift dSi of Si and write sSi for the sign

of dSi. Now consider that the LCs of TM and Si are perfectly aligned at some time t0

such that ∆cSi(t0) = NSi(t0) ·TSi−NTM(t0) ·TTM = 0. Then, it is only reasonable to

perform LC updates at times t1 where (NSi(t1) ·TSi−NTM(t1) ·TTM)/TSi ≈ sSi = ±1
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as illustrated in Fig. 5.9 for a positive and negative clock drift. Moreover, it holds that

a deviation of sSi HR ticks on Si is accumulated within the time sSi · TSi/dSi.

Figure 5.9: Computation of the LC update interval.

Writing PSi for the number of HR ticks of Si’s LC during the time sSi · TSi/dSi (with

drift), this implies that drift correction can be applied by adding −sSi HR ticks to NSi

every PSi HR ticks. It has to be noted that this procedure might lead to very frequent

clock updates depending on the value of PSi. In order to trade off clock accuracy and

processor load, it is further possible to scale the update interval by an integer γ such

that an update of −γ · ssi HR ticks is performed every γ · Psi HR ticks.

In order to find PSi, we first note that the correct number of HR ticks (without drift)

during the time sSi · TSi/dSi should be PSi − sSi. Computing PSi as integer, we get

(PSi − sSi) · TSi =
sSi · TSi

dSi
⇒ PSi =

⌈
sSi +

sSi
dSi

⌉
. (5.5)

With (5.5), PSi can be determined from an estimate of the clock drift dSi. Using

the information from RMs, we introduce AUTOSAR-DC as an extension of the AU-

TOSAR method with drift correction between RM receptions. Specifically, a drift

estimate dk,RM at time instant k can be estimated from the time difference of succes-

sive RMs:

dk,RM =
(N̂k,Si − N̂k−1,Si) · TSi − (t̂k,TM − t̂k−1,TM)

t̂k,TM − t̂k−1,TM

. (5.6)

That is, (5.6) determines the accumulated time difference of Si with respect to TM,

which is divided by the actual time passed between RMs. The number of HR ticks
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between LC updates PSi can then directly be computed from dk,RM using (5.5). Here,

we note that it is expected that PSi slightly varies over time due to variations in the

clock drift and inaccuracies in the timestamps.

5.4.2 Experimental Setup and Evaluation

We next evaluate the proposed AUTOSAR-DC method. The experimental setup con-

sists of 3 MCU development boards [65] (nodes N1 to N3) and 1 FPGA development

board (node N4) with an ARM Cortex-A9 processor [67]. Each board realizes a 32-

bit LC with TN = 250 ns, which is also chosen as the NTU.

The first experiment evaluates the clock differences ∆cN and drifts dN of the CAN

nodes without CS with respect to the LC of N1 as the TM over a time interval of

1 800 s. The remaining nodes N2, N3 and N4 are the slaves S1, S2 and S3. Fig. 5.10

shows that the clock drift of each slave is almost constant with the measured values

dS1 ≈ −35.2 ppm, dS2 ≈ −24.8 ppm and dS3 ≈ −113.1 ppm.

Figure 5.10: Clock drift measurement for the experimental setup.

We next illustrate the performance of the AUTOSAR method [27]. Fig. 5.11 shows

a representative snapshot of the clock difference of the slave nodes for a RM period

of T = 1.048 s, a bit rate of B = 250 kbps. It can be seen that the clock difference

of each LC is reset to approximately zero with each RM in compliance with (5.3).

Nevertheless, the LCs drift freely until the next RM such that a maximum (absolute)

clock difference according to (5.2) (dashed line) occurs.
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Figure 5.11: Clock difference for the AUTOSAR method.

We also evaluate the benefit of drift correction using AUTOSAR-DC in Section 5.4.1

on S3 for γ = 1. Fig. 5.12 shows clock differences and estimated clock drifts in (5.6)

for different RM periods. The clock accuracy is significantly improved compared to

the AUTOSAR method due to the applied drift correction as can be seen in the left

and center plots. In particular, a clock accuracy in the order of 4µs is achieved. Nev-

ertheless, it is the case that the drift estimate is not precise and deteriorates for smaller

RM periods (right plots) due to the increased effect of timestamping inaccuracies. In

particular, decreasing the RM period does not necessarily improve the clock accuracy.

5.5 Controller-based Clock Synchronization for the Controller Area Network

In this section, a drift estimation approach based on feedback control is introduced.

The main contribution of this section is new software-based clock synchronization

(SW-CS) methods for CAN based on periodically transmitted RMs and discrete-time

control formulations. In addition to the formulations, it is also explained how to

determine suitable controller coefficients for the constructed models.

5.5.1 Basic Idea

The main idea of the controller-based CS method is based on the observation that

the oscillator drift dSi of any slave node only shows small and slow variations over

time. That is, knowing or estimating dSi, it is possible to compensate the clock drift
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Figure 5.12: AUTOSAR-DC: Dependency on the RM period.

between RMs by continuously applying the drift correction u(t) = −dSi between

RMs, different than the offset correction which applies clock corrections only after

receiving RMs. Assuming that RMs are transmitted according to Gergeleit’s method,

we propose to compute the required drift correction u(t) at the times tk, k = 0, 1, . . .

after the reception of a RM and to apply uk = u(tk) for one cycle between tk and

tk+1.

We formulate the computation as a discrete-time control problem for a generic slave

node Si and the Master node TM in the feedback loop in Fig. 5.13. Here, C(z)

represents the drift correction controller and the gray box contains the LC model.

xk in the LC model represents the clock difference at tk as cSi(tk) − cTM(tk) and the

corresponding clock error is ek = −xk. Writing Dk for the overall clock drift of Si

with respect to TM and T ·uk for the overall clock correction between tk and tk+1 the

discrete-time model of the clock difference in Si is given by

xk+1 = xk +Dk + T · uk. (5.7)

79



Plant

C(z)
0 (ek) (uk)

(Dk)

(xk)
T

1

z-1

Figure 5.13: Feedback loop.

Applying the z-transform with the signals U(z) t ........... duk and X(z) t ........... dxk in the

z-domain, the plant transfer function is

G(z) =
X(z)

U(z)
=

T

z − 1
. (5.8)

We further note that the available information for computing uk at time tk consists of

the previous drift correction values uk−1, uk−2, uk−3, . . . and the clock error measure-

ments ek−1, ek−2, ek−3, . . .. Hence, we define the controller as

uk = c1 uk−1 + c2 uk−2 + c3 uk−3 + g1 ek−1 + g2 ek−2 + g3 ek−3. (5.9)

Here, c1, c2, c3, g1, g2, g3 are the unknown controller coefficients. We note that the

measurement ek is not available at tk due to the application of Gergeleit’s method for

timestamping. The controller transfer function with E(z) t ........... dek is

C(z) =
U(z)

E(z)
=

g1 z
2 + g2 z + g3

z3 − c1 z2 − c2 z − c3
=

P (z)

L(z)
. (5.10)

5.5.2 Discrete-time Control Problem

In order to determine suitable controller coefficients, we employ the disturbance sen-

sitivity

X(z)

D(z)
=

z3 − c1 z
2 − c2 z − c3

z4 + a3 z3 + a2 z2 + a1 z + a0
=

L(z)

A(z)
(5.11)

with a0 = c3 + T g3, a1 = c2 − c3 + T g2, a2 = c1 − c2 + T g1 and a3 = −1 − c1.

There are two basic requirements for the choice of the controller parameters c1, c2,

c3, g1, g2, g3.

1. The roots of the characteristic polynomial A(z) = z4+a3 z
3+a2 z

2+a1 z+a0

need to be within the unit circle in order to achieve a stable feedback loop.
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2. One root of the controller denominator L(z) should be at z = 1 to obtain

integrating behavior, which leads to a zero steady-state error for the given dis-

turbance Dk.

In addition, a small magnitude of the roots of A(z) is desired to achieve fast conver-

gence of the clock error ek to zero.

In this thesis, we apply optimization for finding suitable roots. First, we formulate

requirement 2) as a constraint:

(z3 − c1 z
2 − c2 z − c3)|z=1 = 0 ⇒ c3 + c2 + c1 = 1. (5.12)

Writing R(A(z)) for the set of roots of A(z), we want to minimize the maximum

absolute value of any root r ∈ R(A(z)), while fulfilling (5.12). In order to adjust the

convergence time we further employ the constraint in (5.15) such that the absolute

value of any r ∈ R(A(z)) stays above a minimum value rmin.

min
c1,c2,c3,g1,g2,g3

{ max
r∈R(A(z))

|r|} (5.13)

subject to

c3 + c2 + c1 = 1 (5.14)

|r| ≥ rmin,∀r ∈ R(A(z)) (5.15)

The controllers in this section are all computed by solving the nonlinear optimization

problem in (5.13) to (5.15) for selected values of rmin using Matlab. We note that

this problem is solved offline and the found parameters can then be implemented in

software on any MCU.

5.5.3 Experimental Setup

We validate the controller-based CS method using the CAN network with the nodes

N1, N2, N3 and N4. It consists of 3 MCU development boards [65] (N1-N3) and 1

FPGA development board (N4) with an ARM Cortex-A9 processor [67]. Each board

realizes a LC in software with a width of 32 bit and a time tick of TN = 250 ns while

N1=TM, N2=S1, N3=S2, N4=S4. Since the MCU boards have a nominal oscillator
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frequency of fCO,N = 4MHz, the number of CO ticks per HR increment is nHR,N = 1

for N1, N2, N3. The FPGA development board has an oscillator with fCO,N4 =

33.3MHz such that nHR,N4 = 8.25 is adjusted with the help of the Phase Locked

Loop (PLL) modules.
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Figure 5.14: Clock drift.

Fig.5.14 shows the clock drift of the nodes S1,S2 and S3 in this experiment when a

CS method is not followed. Accordingly, the clock drifts are measured as 4.7µs/s,

-1.83µs/s and -113.8µs/s for S1, S2 and S3, respectively.

5.5.4 Basic Evaluation of the Existing CS methods

In order to evaluate and compare the proposed controller-based CS method, the clock

accuracy performance of the existing fundamental CS methods are measured first on

the constructed experimental setup. Accordingly, using the Gergeleit’s CS method

[28] and AUTOSAR CS method [27], slaves correct LCs at the periodic time instants

tk, k = 0, 1, . . .. In between these time instants, the LC of each slave drifts because

of the oscillator drift.

We illustrate this fact using the setup that is explained in 5.5.3. We choose TM = N1

as the perfect clock and implement the Gergeleit’s CS method [28] and AUTOSAR

CS method [27] on the slave nodes. Then, we measure the clock difference xS3(t) =

cS3(t) − cTM(t) for the slave S3 = N4 at a bit rate of B = 250 kbps and a bus load
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of U = 70% generated by all the nodes. Fig. 5.15 shows representative results for

T = 1.048 s, T = 0.524 s and T = 0.262 s.

Figure 5.15: Comparison of existing methods.

Considering that the clock drift for S3 is dS3 ≈ −113.8 ppm as measured in Section

5.5.3, maximum clock differences in the order of 2 · T · dS3 and T · dS3 are observed

for Gergeleit’s method and the AUTOSAR method, respectively. The AUTOSAR

method takes timestamps very close to the update time such that cS3(t
+
k ) ≈ cTM(t

+
k )

right after tk. Then, the LC of S3 drifts with dS3 for the time T . Differently, the

timestamp in Gergeleit’s method is taken one cycle before tk. That is, generally

cS3(t
+
k ) ̸≈ cTM(t

+
k ), which causes the increased clock difference. The advantage of

Gergeleit’s method is the requirement of a single RM per cycle.

A common shortcoming of all the RM-based offset correction methods is that they

only correct the LC right after the reception of a RM, whereas the clocks drift freely

between RMs.

5.5.5 Implementation Details and Evaluation

Any slave node that realizes the proposed controller-based CS method has to both

perform timestamping as in Gergeleit’s method and continuously apply the drift cor-

rection in (5.9). We suggest to use corrections in integer multiples γ of the time

resolution TN of the LC. That is, making corrections of γ · TN, each correction has to
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be carried at time intervals of

γ · TN

uk

. (5.16)

Hereby, γ can be chosen respecting the trade-off between precision (frequent correc-

tions) and processor load (infrequent corrections). Considering that TN = 250 ns in

our implementation, we choose γ = 4. That is, for a drift correction of 113.8µs/s, the

update time is 8.8ms (note that the update time dynamically changes in every cycle

k depending on uk).

Using the described implementation, we first perform an experiment with different

RM periods T = 1.048 s, T = 0.524 s and T = 0.262 s. In this experiment, a

bus load of U = 70% is generated by the nodes and the bit rate is B = 250 kbps.

The controller parameters were computed for rmin = 0.5 in (5.13) to (5.15). Fig.

5.16 shows a comparison of simulations in Matlab/Simulink with the clock difference

measurements from the CAN node S3 in the experimental setup.

Figure 5.16: Comparison of simulation and measurements for different values of T

for B = 250 kbps and U = 70%.

It can be seen that the maximum clock difference is well below 5µs for all values

of T when reaching the steady state after starting up the nodes. Considering that

dS3 ≈ −113.8 ppm for S3, this is a major improvement compared to the existing

methods, which cannot achieve maximum clock differences below |dS3| · T (see Fig.

5.15). The main reason for this improvement is the ability of correcting the clock drift

between RMs. Nevertheless, there is still one shortcoming of the proposed algorithm

at the start-up of slave nodes. It takes about 10 s until the clock difference converges

to the steady state. We address this shortcoming in the next section.
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5.5.6 Initialization Phase

The slow convergence to the steady-state value is mostly due to fact that the values

of the signal values uk−3, uk−2, uk−1, ek−3, ek−2, ek−1 required by the controller are

undefined at start-up. We next develop a heuristic procedure in order to determine

suitable values within at most 3 RM periods as shown in Algorithm 5.

Algorithm 5 Drift Correction (DC) with Initialization
1: Input: ek−1, ek−2, ek−3, T

2: Output: uk

3: Init: uk−1 = 0; uk−2 = 0; uk−3 = 0; uk = 0; k = 0

4: if RM is received then

5: k = k + 1; ek−1 = tk−1,TM − tk−1,Si

6: if k = 3 (3rd RM is received at t3) then

7: uk = (ek−1 − ek−2)/T ; êk = ek−2 + (2 · T · uk)

8: cSi(tk) = cSi(tk) + êk (clock update)

9: t̂k,Si = t̂k,Si + êk (timestamp overwrite)

10: else if k > 3 then

11: Calculate uk according to (5.9)

12: end if

13: end if

Algorithm 5 records the error values starting from the first RM received (k = 1). No

drift correction is applied until the third RM (line 3 and 5). With the third RM (line

6), the algorithm estimates the input signal uk and the clock error êk at tk from the

difference of the previous clock errors ek−1 and ek−2 (line 7). The LC and timestamp

at t3 are then updated using êk. After t3, the proposed drift correction in (5.9) is

applied (line 11). A main advantage of the proposed initialization procedure is that

a small clock difference is achieved after receiving 3 RMs when starting up a CAN

node.
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5.5.7 Further Evaluation with Initialization Phase

We next perform a comprehensive evaluation of the proposed control method. We

first study the convergence to the steady state with and without the initialization pro-

cedure. The clock difference measurements for node S3 and RM periods T = 1.048 s,

T = 0.524 s and T = 0.262 s are shown in Fig. 5.17. Different from the original con-

trol method, the steady state is reached within at most 3T for the algorithm with

initialization. In particular, choosing smaller values of T allows decreasing the start-

up time without any negative effect on the clock differences in the steady state, which

are well below 5µs. We note that using line 7 to 9 in Algorithm 5 also in the steady

state leads to a decreased CS performance.

Figure 5.17: Comparison of the control algorithm with and without initialization for

B = 250 kbps and U = 70%.

For further analysis, the upper part of Fig. 5.18 compares the histograms of the clock

differences for the AUTOSAR (ASAR) method and our controller-based CS algo-

rithm (DC) with initialization for different RM periods with U = 70% and B = 250

kbps.

While the clock differences for the AUTOSAR method are almost equally distributed

with maximum values around T · dS3, our algorithm leads to clock differences that

are tightly centered around 0. Consider for example the AUTOSAR method for T =

0.262 s and the proposed method for T = 0.524 s. Even two messages (SYNC and

RM) are transmitted every 0.262 s using the AUTOSAR method, the maximum clock

difference of about 31.25µs is observed periodically before each RM. Differently,

only one RM is sent every 0.524 s using our method, whereas the clock difference

stays below 2.5µs after the initialization period of 3T = 1.572 s. This is a major
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Figure 5.18: Clock differences for different parameters.

performance boost (factor of 50) of SW-CS for CAN. We note that clock differences

in the order of 5µs are reported for existing methods [63]. However, this is only

possible for very small RM periods and CAN nodes with very similar COs. This is

not realistic in practical CAN networks with CAN nodes from diverse manufacturers.

Conversely, our method is independent of the clock drift of COs.

We finally investigate the dependency of the proposed controller-based CS method

on the bus load (for T = 1.048s and B = 250 kbps) and the bit rate (for T = 1.048s

and U = 70%) as shown in the lower part of Fig.5.18. It is clearly observed that there

is no significant dependency of the clock difference on the bus load and the bit rate.

In all cases, the clock difference stays below 5µs, which is one order of magnitude

better than the clock difference obtained using the AUTOSAR method.
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In this section, a clock synchronization method based on feedback control is pre-

sented. It proposes estimating the clock drift with a controller that benefits from

the timestamps which are periodically taken together with RMs. To this end, we

formulate a discrete-time control problem and develop a start-up procedure for fast

convergence to the steady-state. Different from existing algorithms that only update

clocks after receiving a RM, our algorithm corrects the clock drift between RMs.

5.5.8 AUTOSAR CS Compatible Controller Model and Parameters

The controller model that is proposed for the timestamps compatible to the Gergeleit’s

scheme can be modified such that it works with timestamps that are sent according

to the AUTOSAR CS method. That is, for computing uk at time tk the previous

drift correction values uk−1, uk−2, ... and the clock error measurements ek, ek−1, ...

are reachable. It has to be noted that ek measurement which is not usable when

the timestamps are applied according to the Gergeleit’s method is available when the

timestamps are taken and transmitted as defined by the AUTOSAR CS method. Thus,

the controller can be defined as

uk = c1 uk−1 + g1 ek + g2 ek−1. (5.17)

We employ the disturbance sensitivity by following again the same model in Fig.5.13

as follows:

X(z)

D(z)
=

z − c1
z2 + z (T g1 − c1 − 1) + c1 + T g2

=
L(z)

A(z)
(5.18)

The roots of the characteristic polynomial A(z) should be within the unit circle to

achieve a stable feedback loop. Moreover, one root of L(z) should be at z = 1 which

provides a zero steady state error for the given disturbance Dk. Accordingly, the

suitable controller parameters are computed offline such that c1 = 1 , g1 = 1.24 and

g2 = −0.84 for T = 1.048 s.

Furthermore, the initialization procedure in Algorithm 6 should be used. Different

from the initialization procedure for the Gergeleit’s scheme, the procedure 6 predicts
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the input signal uk after receiving the second FUP message. Furthermore, it is not

required to estimate the clock error êk at tk since it is already available when AU-

TOSAR CS is applied.

Algorithm 6 Drift Correction (DC) with Initialization - AUTOSAR compatible
1: Input: ek, ek−1, T

2: Output: uk

3: Init: uk−1 = 0; uk = 0; k = 0

4: if RM is received then

5: k = k + 1; ek = tk,TM − tk,Si

6: if k = 2 (2nd FUP is received at t2) then

7: uk = (ek − ek−1)/T

8: cSi(tk) = cSi(tk) + ek (offset correction)

9: t̂k,Si = t̂k,Si + ek (timestamp overwrite)

10: else if k > 2 then

11: Calculate uk according to (5.17)

12: end if

13: end if

The developed AUTOSAR compatible controller-based method is also evaluated with

comprehensive experiments. It is seen that the clock accuracy is achieved below

4µs independently from the RM period, bus load and bus speed like the Gergeleit’s

method compatible controller-based CS. The local clock difference of S3 is shown in

Fig.5.19 as an illustration where T = 1.048 s, B = 250 kbps and U = 70%.

5.6 Dependency of the CS on Timestamping Quality

It can be concluded from the previous discussion that CS methods on CAN depend on

accurate timestamps taken by all CAN nodes, whereby it is expected that the quality

of the timestamps directly affects the clock accuracy. This effect is well known for

different networks such as IEEE 802.11 [105, 106] but has not been rigorously eval-

uated for CAN. The existing literature only suggests to use hardware TS [58, 43] and

to benefit from jitter measurements in case of software TS [19] without providing an
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Figure 5.19: The clock difference results.

analysis. Accordingly, this section shows that the clock accuracy is directly affected

by the TS quality, which in turn depends on the uncertainties of each TS method.

Moreover, our predictable TS method which is introduced in Chapter 4 makes possi-

ble for our controller-based CS method in Section 5.5.8 to achieve clock accuracies

below 100 ns.

5.6.1 Experimental Evaluation

The experimental setup described in 4.8.1 is used to evaluate the effect of the TS

quality on the CS accuracy. The controller-based clock synchronization method in

Section 5.5.8 is used in the experiments. The RMs are sent according to the Autosar

CS method [27] and the controller parameters are computed accordingly. A 32-bit

LC with a resolution of 100 ns is used in the experiments. A practical value of 1 s is

chosen as the RM period in the experiments and the clock accuracy is monitored with

a period of 20ms. We note that the oscillator drifts of the slave nodes S1, S2 and S3

relative to TM are measured as 98, 99 and 96 ppm, respectively. That is, a clock drift

in the order of 100µs per second is expected without CS.

Firstly, an experiment where the CAN bus speed is 1Mbps and TQ length of all

nodes is 50ns is realized with our predictable TR method and hardware TS service

implementation. The TS quality in the order of 60ns is measured . However, the
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experiment is repeated with a change that TS service is implemented on software. In

this case, the TS quality decreases to the order of 900ns due to the varying software

delays. The effect of the TS quality on the CS accuracy can be seen from the clock

accuracy results in Table 5.1. As a consequence, the controller-based CS method

achieves a peak-to-peak clock accuracy of 120ns with higher TS quality (hardware

implementation - TS quality of 60ns). Nevertheless, the same CS method cannot

provide a peak-to-peak clock accuracy better than 1.35µs when the TS service is

realized in software (TS quality of 900ns). That is, the timestamp quality is one of

the key parameters that determines the performance of the CS method.

Table 5.1: Clock accuracy results.

Predictable TR + Predictable TR +

Hardware TS service Software TS service

(TS quality of 60ns) (TS quality of 900ns)

S1 S2 S3 S1 S2 S3

mean(ns) 20.72 17.76 20.60 100.81 104.19 106.55

std.(ns) 16.94 17.43 16.73 182.07 186.69 187.07

max(ns) 70.00 80.00 80.00 765.63 750.00 765.63

min(ns) -50.00 -40.00 -40.00 -718.75 -609.38 -609.38

p-p(ns) 120.00 120.00 120.00 1484.38 1359.38 1375.01

Moreover, the clock accuracy statistics of the experiments whose TS quality results

are already presented in Table 4.2 are given in Table 5.2. It can be seen that the

best clock accuracy results are obtained when using our predictable TS method. Fur-

thermore, the correlation between the TR instant quality measurements and the clock

accuracy results confirms the dependency of the CS performance on the TS quality.

As it is expected, the CS accuracy gets worse for the lower bit rates since the TS

quality is lower due to the increase in SYU uncertainties with higher TQ lengths, as

explained in Chapter 4.

As an illustration, we further present the clock difference measurements in Fig.5.20

when applying the controller-based CS method with the predictable TR method with

a bus speed of 1 Mbps. The clock difference for all slave nodes is mostly between 50
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Table 5.2: Clock accuracy - overall comparison.

B Node EoM SoF Predictable TR

1Mbps

p-p(ns)

S1 140 120 120

S2 140 120 120

S3 170 270 120

std(ns)

S1 21,9723 16,8967 16,9446

S2 20,4889 17,0974 17,7649

S3 29,5527 20,5308 20,6048

500kbps

p-p(ns)

S1 280 240 190

S2 200 240 180

S3 320 240 180

std(ns)

S1 45,329 30,0388 29,7535

S2 45,0746 30,7466 31,3127

S3 59,4221 32,2348 30,9108

250kbps

p-p(ns)

S1 400 390 320

S2 400 380 370

S3 550 490 340

std(ns)

S1 65,0135 60,1449 51,0321

S2 69,0876 58,0711 67,6625

S3 90,7366 61,0517 67,6835

125kbps

p-p(ns)

S1 1080 940 540

S2 990 940 570

S3 1050 610 550

std(ns)

S1 165,3906 144,8683 105,0069

S2 169,477 119,6268 110,1489

S3 187,4457 135,9121 104,3040
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ns and 0 ns in Fig.5.20 even though the peak-to-peak difference is 120 ns according to

Table 5.1. To sum up, this constitutes the best clock accuracy performance for CAN

in the literature under realistic conditions such as additional cables with the help of

our new predictable TR instant method.
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Figure 5.20: The clock difference results.

5.7 Discussion and Conclusion

In summary, this section provides several CS methods that are fully implemented in

software. Additional to the leading offset correction CS methods AUTOSAR and

Gergeleit’s method, our ISCS method is proposed. Furthermore, it is experimen-

tally shown that our ISCS provides the same clock accuracy with the AUTOSAR CS

method whereas ISCS requires half of the RM bandwidth usage of the AUTOSAR.

Moreover, ISCS performs better than Gergeleit’s method even though they both use

only one RM in one cycle.

The offset correction methods such as ISCS, AUTOSAR CS and Gergeleit’s method

cannot avoid clock drift between RMs. Thus, their performances are determined by

the physical oscillator drifts of the nodes. In order to reach better clock accuracy

independently from the oscillator drift values by applying drift correction, the RM-

based CS method that realizes both offset correction and drift correction is introduced.
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It is offered according to the timestamps that are exchanged as compatible to the

AUTOSAR CS scheme. It estimates the drift value by simply using the rate of the

changes in the timestamps. Moreover, the clock difference of a generic slave node

relative to a master node is also modeled as a discrete time control problem. Both

controller parameters and initialization procedures that are compatible to AUTOSAR

CS and Gergeleit’s method timestamp schemes are also developed. The correctness

and practicability of the controller-based drift correction methods are shown with

comprehensive experiments.

Lastly, the importance of the TS quality for CS performance is presented experimen-

tally. Thus, TS quality is highly relevant for the SW-CS methods based on timestamps

on CAN. The proposed SW-CS methods which mitigate the drift between RMs pro-

vide generally clock accuracies less than 5µs with moderate quality timestamps. On

the other hand, high quality timestamps which are achieved with our predictable TR

method enable even clock accuracies below 100 ns. In brief, the proposed CS ad-

vancements are significant for CANDS framework that aims to apply traffic shaping

with a precise global clock to realize a deterministic CAN bus.

94



CHAPTER 6

CLOCK SYNCHRONIZATION FOR THE CONTROLLER AREA

NETWORK USING BIT TIMING INFORMATION

The main contribution of this section is a novel CS method for CAN. The proposed

method performs both offset and drift correction. While offset correction is performed

based on timestamps in periodic RMs, our new ACS-PEDC method benefits from the

re-synchronization mechanism of the CAN bit timing to apply highly accurate drift

correction. Therefore, the drift correction is not subject to TS inaccuracies as an ad-

vantage, different from the existing CS methods on CAN. Furthermore, our algorithm

does not make any modifications to the CAN protocol but requires the measurement

of the phase error from the CAN controller. We note that existing commercial CAN

controllers do not provide the phase error information. However, since the phase er-

ror is computed in each CAN controller, only a minor modification of existing CAN

controllers is required in order to make the phase error available.

Existing drift correction methods for CAN compute drift estimates only from times-

tamps with the following disadvantages. First, the accuracy of drift estimates directly

depends on the timestamp accuracy, which can be in the order of µs even in hardware

implementations [43]. Second, the drift estimate can only be updated infrequently

after receiving a new RM. To mitigate these disadvantages, ACS-PEDC method with

highly accurate and timely drift estimation is introduced. Specifically, our original

drift estimation algorithm measures the time intervals between re-synchronizations

of the CAN bit time and computes highly accurate drift estimates by the real-time

computation of the approximate greatest common divisor (AGCD) of these time in-

tervals. We further extend our algorithm by a procedure for the quick start-up in

practical applications and derive analytical bounds for the expected clock accuracies.
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Our comprehensive hardware experiments validate that our method achieves a clock

accuracy below 2µs after receiving only 2 RMs, independent of the bit rate, RM pe-

riod, bus load, oscillator drift and changes in the ambient temperature. As a major

advantage, our method does not require modifications of the CAN protocol such that

CAN nodes implementing our algorithm can operate on a standard CAN network.

To sum up, the proposed novel drift estimate method enables CANDS to predict the

clock drift precisely without the need of timestamps within RMs. In addition to the

proposed SW-CS methods which are previously evaluated in Chapter 5, the new orig-

inal ACS-PEDC method that benefits from the bit timing information can also be

followed within CANDS without modifying the CAN protocol in order to provide a

global clock among the nodes.

6.1 Basic Idea behind the Phase-error Based Drift Correction

The RM-based drift correction method in Section 5.4.1 requires a correction period

PSi and the sign of the drift sSi in order to apply drift correction. Hereby, PSi is

represented in terms of HR ticks of Si’s LC, which is used for timestamping. It has to

be remembered that one HR tick clock difference is accumulated between LCs of Si

and TM after LC of Si increments PSi HR ticks. Nevertheless, the same idea can be

applied using the TQ counter of the CAN system clock which is described in Section

2.1.3. Specifically, a difference of sSi TQ counter ticks is accumulated during the

time sSi ·TTQ,Si/dSi according to the clock drift equation 2.5. Hereby, PSi TQ counter

ticks in Si equal to the time duration of sSi · TTQ,Si/dSi. Therefore, the time duration

during which one TQ counter tick accumulates between Si and TM directly gives the

clock drift of Si.

In this context, the crucial observation in this chapter is that, the amount of the clock

drift of the TQ counter in Si relative to TM can be determined by using the phase

error values eP while re-synchronizations during message transmission of the TM.

Furthermore, the clock drift of LC of Si relative to TM is found when LC and TQ

counters are driven by the same oscillators on Si and TM nodes.

We denote the time instant when TQ counters of both Si and TM are aligned as phase
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error overflow (PEO) since the previous eP values equal to 0 but the upcoming eP

value will be different than 0 due to the drift of TQ counters in Si and TM. Thus,

a clock difference of sSi TQ ticks is accumulated in LC of Si relative to LC of TM

between two successive PEO instants. Furthermore, the sign of eP right after the PEO

instant gives the sign of the clock drift Si sSi. In this way, the clock drift correction

period PSi in TQ counter ticks can be determined by benefiting from the internal bit

timing mechanism on CAN.

The PEO time instants can be detected by a slave node Si by trying to catch the time

instants where eP changes from 0 to ±1, during message transmission of the TM .

Accordingly, Si can determine PSi as the number of TQ ticks between PEO instants.

That is, PSi does not need to be computed from the periodic timestamps but can be

directly measured using the PEO instants.

Nevertheless, it has to be respected that Si can only detect PEO when applying re-

synchronization during message transmissions of the TM since the TQ counter of Si

is synchronized to the node which is transmitting on the bus. TM does not transmit

messages continuously and it is possible that Si misses PEOs that occur while other

nodes are transmitting or while the bus is idle. Writing P̂EO for the detected PEO

instants, we introduce ∆qj , j = 1, 2, . . . as the number of TQs of Si between succes-

sive P̂EOs. Considering the possibility of missing PEOs, the measurements ∆qj are

hence expected to be approximate multiples of PSi.

Remark 7 The concept of PEO requires that the length of TQs of TM is a multiple of

the length of TQs of Si to ensure that the time between successive PEOs is determined

only by the clock drift of Si. Otherwise, it may also be affected due to the bit-level

synchronization mechanisms during message transmissions of other nodes. This is

not a restriction since even simple CAN controllers allow adjusting the TQ length.

We next consider the computation of estimates P Si of PSi after each measurement

∆qj . When successive PEOs (without missing any PEO) are detected by Si, the

related measurement ∆qj is almost equal to PSi. Thus, a naïve approach for the

estimation of PSi would be to record the smallest observed values ∆qj to compute

PSi ≈ P Si = min
j=1,2,...

{∆qj}. (6.1)
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Nevertheless, such approach is neither efficient nor robust to uncertainties in prac-

tice.1 On the one hand, there is a potentially long delay until successive PEOs are

detected by Si. On the other hand, only the smallest values of ∆qj are used for the

drift estimation and multiples of PSi are discarded by the naïve approach although

they contain information about PSi.

6.2 Usage of the Approximate GCD

In order to mitigate the discussed shortcomings of the naïve approach, we next de-

velop a practical algorithm that makes use of all the measurements ∆qj and the related

values of the phase error eP. Our algorithm takes into account that ∆qj must be an

approximate multiple of PSi. Formally, ∆qj = nj · PSi +∆pj , where ∆pj represents

a bounded measurement uncertainty.

We next quantify ∆pj . Consider that the TM transmits a message. Then, it holds that

PEO for an arbitrary slave Si can occur during any bit of the message. However, PEO

can only be detected when Si performs re-synchronization with the first falling edge

after the PEO. The worst-case scenario is shown in Fig. 6.1.

PEO falling edge after PEO

falling edge before PEO

tbit
eP=0

Figure 6.1: Illustration of the PEO detection.

Here, PEO occurs right after a falling edge such that it can only be detected with the

next falling edge on the CAN bus. Hereby, the duration until the next falling edge is

limited due to the bit stuffing mechanism on CAN. Specifically, a bit of the opposite

value is inserted after five consecutive bits with the same value for all fields of the

CAN frame except for the CRC delimiter, ACK field and the EOF [4]. That is, in the

worst case, the falling edge before PEO is followed by 5 0-bits and 5 1-bits before

the next falling edge must occur due to bit stuffing. Recalling that ∆pj is counted in

1 This is also demonstrated in Section 6.5.2.
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TQs, it holds that

|∆pj| ≤ X := 10 ·#TQ,Si. (6.2)

In addition, it is possible to determine the smallest possible value of PSi depending

on the maximum tolerable clock drift dmax, which is in the order of ±100 ppm [107,

108, 109] for clock oscillators in practical applications. Using (5.5), we obtain

PSi =
⌈
sSi +

sSi
dSi

⌉
≥

∣∣∣ 1

dSi

∣∣∣− 1 ≥

≥ Y :=
1

dmax

− 1 =
1

200 · 10−6
− 1 = 4 999. (6.3)

Using the bounds X and Y , we next develop the novel idea of computing the AGCD

[110] of the measurements ∆qj , i = 1, 2, . . . to determine PSi by iteratively refined

estimates P Si,j that are also approximate multiples of PSi. In each iteration, we want

to obtain the AGCD P Si,j of ∆qj and the previous estimate P Si,j−1 by finding unique

coprime natural numbers nj,mj such that
∆qj
nj

≈ P Si,j−1

mj

≈ P Si,j . To this end, the

new result in Theorem 2 states sufficient conditions for a tight approximation of the

greatest common divisor (GCD) of two natural numbers. We write N for the set of

natural numbers (excluding zero), Z for the set of integers and ⌊•⌉ for the nearest

integer function.

Theorem 2 Consider two natural numbers N,M ∈ N such that N = n · g+∆n and

M = m · g +∆m for m,n, g ∈ N, m,n coprime and ∆n,∆m ∈ Z. Further assume

that there are bounds X, Y ∈ N such that |∆n|, |∆m| < X and g > Y . Then, it

holds that m,n are the unique coprime natural numbers such that

|N ·m−M · n| < X · (m+ n). (6.4)

and

2 ·X · (m+ n) < Y. (6.5)

In addition consider any estimate ĝ =
⌊
λ · N

n
+ (1 − λ) · M

m

⌉
of g for 0 ≤ λ ≤ 1.

Then,

|g − ĝ| <
⌊ X

min{n,m}

⌉
. (6.6)

The proof of Theorem 2 is given in Appendix B.1. In words, Theorem 2 considers

two numbers N,M that are approximate multiples of g. That is,
N

n
≈ M

m
≈ g. Then,
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the theorem states that the multipliers n and m can be uniquely determined if a lower

bound Y of g and an upper bound X for ∆n,∆m are known and the error bounds in

(6.4) and (6.5) are fulfilled and n,m are coprime natural numbers. In addition, any

weighted average ĝ of
N

n
and

M

m
tightly approximates the GCD g of N and M . In our

setting, g represents PSi, N represents a measurement ∆qj , M represents a previous

estimate P Si,j−1 and X , Y are given in (6.2) and (6.3).

6.3 Approximate GCD-based Drift Correction

Using Theorem 2 and the bounds in (6.3) and (6.2), it is possible to obtain a tight and

reliable estimate of PSi based on the AGCD of the measurements ∆qj . The main idea

of our method is to keep a certain number of recent measurements in a table v. At each

iteration j, row r of v stores the values ∆qk/r for previous measurements (k ≤ j) that

are confirmed as a multiple of the current estimate P Si,j with ∆qk ≈ r · P Si,j using

Theorem 2. The current estimate P Si,j is then the average of the stored values.

As an explanatory example, consider the case where X = 160, Y = 4999, the table

v has 5 rows and 2 columns and the successive PEO measurements ∆q1 = 53 040,

∆q2 = 17 592, ∆q3 = 44 532, ∆q4 = 17 605, ∆q5 = 8763, ∆q6 = 26 502, ∆q7 =

35 330, ∆q8 = 26 643, . . . are obtained.

As the first estimate P Si,1 = ∆q1 = 53 040, we directly use the first measurement and

insert the corresponding value in row 1, entry v[1, 1] of the table in Fig. 6.2. Using

(6.4) and (6.5) for the second measurement ∆q2, we find m2 = 3 and n2 = 1 such

that |∆q2 ·m2 − P Si,1 · n2| = 264 < X · (m2 + n2) = 640 and 2 ·X · (m2 + n2) =

1 280 < Y . Since m2 = 3, we know that ∆q1 is 3 times the current estimate. It is

hence moved to row 3, entry v[3, 1] in the table and its value is divided by 3. Since

n2 = 1, ∆q2 is inserted in row 1, entry v[1, 1] of the table. The current estimate

becomes P Si,2 = 0.5 · (v[1, 1] + v[3, 1]) = 17 636. For ∆q3, we find m3 = 2 and

n3 = 5 to determine |∆q3 · m3 − P Si,2 · n3| = 884 < X · (m3 + n3) = 1 120 and

2 ·X · (m3 + n3) = 2 240 < Y . Since m3 = 2, the previous estimate P Si,2 must be 2

times the current estimate. Hence, the row of each existing item has to be multiplied

by 2: v[1, 1] is moved to v[2, 1] and v[3, 1] is discarded since the table has only 5
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rows. Since n3 = 5, ∆q3 is divided by 5 and inserted in v[5, 1]. The new estimate is

P Si,3 = 0.5 · (v[2, 1] + v[5, 1]) = 8 851. In this iteration, the interesting case occurs,

where a value of PSi is estimated which is a divisor of all measurements. This is

possible due to the fact that coprime approximate multiples of PSi are measured. The

table content after all example measurements is as well shown in Fig. 6.2. Here, the

columns of the table are used to keep different measurements of the same approximate

multiple, overwriting old measurements.

530401
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5

17592

17680
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5

Dq2=17592

8796

8906
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Dq3=44532

8763

8796 8803

8834 8881

8833

8906

1
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3
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5

Dq4

PSi,3=8851PSi,2=17636 PSi,8=8830

Dq1=53040 Dq5

Dq6

Dq7

PSi,1=53040

Dq8

Figure 6.2: Example iterations of Algorithm 7 with table v.

Algorithm 7 formalizes our ACS-PEDC method.

Algorithm 7 keeps the table v that is updated in each iteration j to record S samples

of up to L multiples of PSi. Hereby, L in line 3 is the maximum possible value of

mj + nj that leads to a valid estimate of the AGCD according to Theorem 2. An

additional vector c keeps track of the location of the last recorded sample for each

multiple l ≤ L. All array entries are initialized as zero. Iteration j of Algorithm

7 starts with measuring the current values ∆qj and eP. In the first iteration, ∆q1 is

directly written as the first value in v and the estimate of PSi is P Si,1 = ∆q1 (line 9).

Otherwise, it is checked for all possible combinations of m,n ≤ L if (6.4) and (6.5)

can be fulfilled for the previous estimate P Si,j−1 and the current value ∆qj (line 11).

In the negative case, the values of iteration j− 1 are retained (line 21). In the positive

case, line 11 can be re-written as

P Si,j−1

mj

− ∆qj
nj

<
(mj + nj) ·X

mj · nj

.
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Algorithm 7 ACS-PEDC
1: Input: X , Y , S

2: Output: sSi,j and P Si,j at each iteration j

3: Init: j = 0; P Si,j = 0; L = ⌊ Y

2X
⌋; v[l, s] = 0 and c[l] = 0 for 1 ≤ l ≤ L and

1 ≤ s ≤ S

4: while true do

5: if P̂EO occurs (PEO is detected) then

6: j = j + 1; measure ∆qj and eP

7: end if

8: if j = 1 then

9: v[1, 1] = ∆q1; c[1] = 1; P Si,1 = ∆q1; n1 = 1

10: else

11: if P Si,j−1 and ∆qj fulfill (6.4), (6.5) for some nj,mj then

12: for l = L · · · 1 do

13: if l ·mj ≤ L then

14: v[l ·mj, s] = ⌊v[l, s]/mj⌉ for all s ≤ S

15: c[l ·mj] = c[l]

16: end if

17: end for

18: c[nj] = c[nj] mod S + 1

19: v[nj, c[nj]] = ⌊∆qj/nj⌉;

20: else

21: P Si,j = P Si,j−1

22: end if

23: end if

24: P Si,j is the average of all non-zero values in v

25: sSi,j = sgn(eP)

26: end while

That is, the new estimate of PSi will be in the order of
P Si,j−1

mj

≈ ∆qj
nj

. Accordingly,

each entry in row l of vj−1 (representing multiple l of P Si,j−1) is divided by mj and

moved to row l ·mj (representing multiple l ·mj of the new estimate) and c is updated
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accordingly in line 14 and 15. In addition, since ∆qj ≈
nj · P Si,j−1

mj

, the new sample

⌊∆qj/nj⌉ is written in row nj of v. After updating v, the estimate P Si,j in iteration

j is computed as the average of all valid samples (non-zero values) in v and sSi,j is

determined by the sign of the phase error eP.

We next show a sufficient condition for a tight bound on the difference between PSi

and the estimates P Si,j .

Theorem 3 (i) It holds at each iteration j of Algorithm 7 with measurement ∆qj =

nj · PSi + ∆pj and multiple nj in line (11) that P Si,j = kj · PSi + ∆pj with kj =

minr=1,...,j{
nr

nr

} and |∆pj| < X . (ii) If additionally nj = nj in line 11 of Algorithm

7 and there is no zero entry in v, it holds for all r ≥ j that

|P Si,r − PSi| < Xeff = X · HL

L
. (6.7)

Hereby, HL =
∑L

n=1
1
n

denotes the L-th harmonic number.

The proof of Theorem 3 is given in Appendix B.2. In order to explain the theorem,

we recall that all estimates are approximate multiples of PSi. Part (i) of Theorem 3

states that the quality of the estimate of PSi in iteration j is determined by the smallest

multiple found up to this iteration. Part (ii) establishes the desired condition of closely

estimating PSi (that is, the approximate multiple should be 1). On the one hand, this

condition is trivially fulfilled if a measurement ∆qj = 1 · PSi + ∆pj with nj = 1 is

taken. However, the timely observation of such measurement is only expected if the

TM frequently transmits messages as will be further explored in Section 6.5.2. On the

other hand, the condition is already fulfilled if coprime multiples of PSi are observed,

which is much more likely as shown in Section 6.5.2. It is important to note that Xeff

in (6.7) denotes the effective uncertainty bound, which is a decreasing function of the

number L of multiples. Specifically, the usage of L multiples of PSi has the advantage

of improving the estimate of PSi.

Based on Theorem 3, it is further possible to evaluate the clock accuracy of ACS-
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PEDC for the case nj = nj as

max
t

{|cSi(t)|} ≤ ∆PEO = COC+(∣∣∣⌈ T ·Xeff

γ · TSi · (PSi −Xeff) · (PSi − 1)

⌉∣∣∣+ 1
)
· γ · TSi. (6.8)

The detailed proof of this identity is given in Appendix B.3.

We also emphasize that both the usage of the AGCD for the clock drift estimation and

the result in Theorem 2 for the computation of the AGCD are new. Different from the

existing literature that performs offline computations [111, 112] or tries to recover

the exact value of the AGCD [110, 113] in different application areas, we perform

an online computation of the AGCD that suitably updates the drift estimate based on

new measurements.

We finally point out that the developed method will as well be applicable for CAN

FD and CAN XL due to the usage of the same bit timing mechanism.

6.4 Experimental Evaluation

The main focus of this section is the experimental evaluation of ACS-PEDC for dif-

ferent performance parameters. The same experimental setup that is used while eval-

uating the RM-based CS method and is introduced in Section 5.4.2 is constructed to

evaluate the performance of ACS-PEDC method. Each board realizes a 32-bit LC

with TN = 250 ns. Moreover, the FPGA development board [67] (node N4) accom-

modates our custom CCIP such that the phase error values are accessible different

than the existing CAN controllers. Thus, N4 can apply ACS-PEDC in order to re-

alize clock synchronization even though the other nodes (N1-N3) use standard CAN

controllers inside the MCU development boards [65].

6.4.1 Implementation Details

The implementation of ACS-PEDC consists of a custom CCIP, a PEO detection block

(PEOD), a 32-bit hardware timer block, an interface block and software running on

the ARM Cortex-A9 processor of the board as can be seen in Fig. 6.3.
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Figure 6.3: The components of ACS-PEDC.

The custom CCIP realizes the standard CAN controller functionality without any

modifications. In particular, our custom CCIP performs message TX/RX and pro-

vides the related TX/RX flags. Different from a commercial CAN controller, our

custom CCIP makes the phase error eP, the current RX message ID and the RX state

(current bit received in the CAN frame) available for reading. Here, it is important to

note that this does not change the CAN functionality such that a CAN node with the

CCIP can operate with standard CAN nodes. This is actually the case in our experi-

mental setup with the standard CAN nodes TM, S1 and S2. Only S3 implements the

CCIP. The value of the 32-bit hardware timer can be read for timestamping and incre-

mented/decremented based on the offset correction and the drift correction. PEOD

realizes the PEO detection in line 6 of Algorithm 7 during the effective part of TM

messages. The effective part is given by bits whose edges are definitely controlled by

the TM without interference from other nodes. Since all nodes potentially participate

in the arbitration and the acknowledgement (ACK), the effective part of TM messages

is given by all bits after the arbitration field and before the ACK field (see white parts

in Fig. 2.1 and 2.2). Thus, the first re-synchronization in the effective part is ignored

since it may be belong to the first edge that is exactly created from TM. Moreover, the

non-zero values of eP during the rest of the effective part of TM messages are consid-
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ered as valid PEOs by the PEOD block. Hereby, the effective part is determined from

the RX state that defines which bit is being received. The Interfacer block realizes the

data exchange between the FPGA and the ARM processor. Messages, timer values

and clock updates are exchanged via the AXI bus. In addition, the CAN RX/TX inter-

rupts as well as an interrupt for any new ∆qj measurement are provided. Using these

interrupts, the ARM processor polls the relevant data via the AXI bus. All parts of

ACS-PEDC except for the PEO detection and ∆qj measurement are realized on the

ARM processor. The resulting clock update values are then applied to the hardware

timer.

Remark 8 We note that commercial CAN controllers do not provide the phase error

information. However, since the phase error is computed in each CAN controller,

only a minor modification of existing CAN controllers is required in order to make

the phase error available. Most importantly, this modification does not change the

operation of the CAN protocol.

6.4.2 Comprehensive Experimental Evaluation

Using the described implementation of ACS-PEDC, we next perform a comprehen-

sive experimental evaluation. In this context, we introduce the bus utilization U as

the number of bits per time unit sent by all nodes divided by the bit rate. Similarly,

UTM denotes the bus utilization of the TM.

Then, we investigate the dependency of the obtained clock accuracy on relevant pa-

rameters such as the RM period T , the bit rate B, UTM, U , γ, the clock drift of the

slave node dSi and environmental influences such as the temperature. Each measure-

ment was conducted for a time duration of 1 800 s, which corresponds to a number

of K = 90 000 LC measurements. The values of T and bit rates used in practice are

chosen for the experiments. Our measurement results are summarized in Table 6.1.

We first evaluate the dependency on the RM period. Representative measurements

are shown in Fig. 6.4. It is readily observed that the absolute clock differences are

well below 2µs with sporadic outliers. In order to quantify this observation, we write

K≥δ for the number of samples with a clock difference above a given bound δ. Then,
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Table 6.1: Comparison of ∆cS3 for different experiments.

mean [µs] max [µs] std [µs] pO,2µs [%]

Dep. on T [s]: B = 250 kbps, UTM = 30%, γ = 4

T = 0.262 0.46 2.5 0.31 0.002

T = 0.524 0.43 2.3 0.30 0.002

T = 1.048 0.33 2.5 0.33 0.001

T = 8.384 0.46 2.0 0.32 0.0

T = 16.768 0.36 2.5 0.27 0.002

Dep. on B [kbps]: T = 1.048 s, UTM = 30%, γ = 4

B = 500 0.56 2.8 0.33 0.003

B = 1000 0.61 2.5 0.33 0.003

Dep. on UTM [%]: T = 1.048 s, B = 250 kbps, γ = 4

UTM = 10% 0.58 3.0 0.34 0.002

UTM = 50% 0.60 2.75 0.33 0.003

Dep. on U [%]: T = 1.048 s, B = 250 kbps, γ = 4, UTM = 10%

U = 20% 0.60 2.8 0.33 0.003

U = 50% 0.50 2.5 0.33 0.004

U = 70% 0.55 2.8 0.32 0.003

U = 85% 0.49 2.8 0.32 0.005

Dep. on γ: T = 1.048 s, B = 250 kbps, UTM = 30%

γ = 2 0.27 2.3 0.21 0.003

γ = 1 0.12 2.0 0.14 0.0

Dep. on dS3(t): T = 1.048 s, B = 250 kbps, UTM = 30%, γ = 4

dS3 ≈ −78ppm 0.50 2.75 0.32 0.005

dS3 ≈ 8ppm 0.52 1.75 0.33 0.0

Dep. on Temp. : T = 1.048 s, B = 250 kbps, UTM = 30%, γ = 4

0.40 2.5 0.31 0.004

we define the percentage of outliers as

pO,δ =
K≥δ

K
· 100. (6.9)
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Table 6.1 shows that the percentage of outliers is negligible. Most importantly, ACS-

PEDC achieves the same accuracy below 2µs even for very infrequent RMs due to

the very accurate drift estimate in the order of ±0.1 ppm as can be seen in the right-

hand plots of Fig. 6.4. That is, the drift estimates when using ACS-PEDC are one

order of magnitude better compared to drift estimates that are computed from RMs

when comparing the measurements in Fig. 5.12.

Figure 6.4: Measurements for different RM periods.

Remark 9 Existing fault-tolerant CS methods for CAN experience a deterioration of

the clock accuracy during fault-recovery [43] since they are based on RMs only. Since

ACS-PEDC does not require frequent RMs and hence tolerates the intermittent loss

of several RMs, it is expected to improve the clock accuracy during fault-recovery.

This advantage of ACS-PEDC will be further investigated in future work.

Remark 10 We also point out that the clock difference when using ACS-PEDC is

mostly affected by the offset correction in (5.1) due to the software inaccuracies. That

is, we expect an improved clock accuracy when using a hardware implementation of

the timestamping service, which is the topic of our ongoing research.

108



For the next comparisons, we note that the measurement for B = 250 kbps, T =

1.048 s, UTM = 30% and γ = 4 already appears in the upper part of the Table (high-

lighted in gray) and is hence not repeated.

Table 6.1 shows that the clock accuracy does not depend on the bit rate B when using

ACS-PEDC. As pointed out in Section 6.4.1, PEO can only be detected during the

effective part of any message transmitted by the TM. Hence, it is expected that more

PEOs are missed if the bandwidth UTM used by the TM for message transmissions is

low. In order to study this effect, we conduct an experiment with different values of

UTM = 10%, 30%, 50% as shown in Table 6.1. Here, the interesting result is that the

same clock accuracy is maintained even for a small value of UTM = 10%. In addition,

it holds that there is no interference by transmissions of other nodes, such that the

clock accuracy as well does not depend on an increasing overall bus utilization U

with more transmissions from other nodes as can be seen in Table 6.1.

The parameter γ determines the correction period for clock updates, which is realized

by counting γ · P S3 HR ticks by S3. Noting that the previous experiments were

carried out for γ = 4 and hence, γ · P S3 · TSi ≈ 8.8ms, we conducted experiments

for γ = 2 and γ = 1 as shown in Table 6.1. It can be seen that decreasing γ leads

to smaller clock differences as is expected from (6.8). Accordingly, it is possible to

further improve the clock accuracy by selecting small values of γ at the expense of

an increased load for the ARM processor.

The previous experiments were carried out using N1 as the TM and the slave node

S3 = N4. Accordingly, the obtained drift estimates are all similar in the order of

−113.1 ppm with small variations depending on the environmental conditions. Table

6.1 shows measurements for experiments where the clock oscillator of the TM was

changed to obtain drift values of dS3(t) ≈ −78 ppm and dS3(t) ≈ 8 ppm. It can be

seen that there is no significant effect of the clock drift on the clock accuracy. This

is expected since the clock accuracy is dominated by the offset correction, whereas

ACS-PEDC is guaranteed to work as long as all the parameters remain within the

defined bounds.

All the previous experiments were conducted with similar environmental conditions

such that no significant variations in the clock drift are observed (see also Section
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2.2.1). We next investigate the performance of ACS-PEDC under a time-varying

clock drift. To this end, we exploit the dependency of the clock drift on the tempera-

ture and repeatedly increase and decrease the ambient temperature of the TM with the

following profile: heat up (60−120 s), cool down (120−240 s), heat up (240−360 s),

cool down (360 − 660 s), heat up (660 − 720 s), cool down (720 − 1200 s), heat up

(1200− 1320 s), cool down (1320 s to end).

Figure 6.5: Measurements for a time-varying clock drift.

The measurement in Fig. 6.5 shows that ACS-PEDC precisely and quickly adjusts to

a time-varying drift. This is due to the fact that the algorithm only keeps a limited

number of measurements that are updated with each new value ∆qj in the array vi.

Accordingly, there is also no effect on the clock accuracy. We further note that the

experiment represents a very fast change of the TM temperature which is not expected

in practice.

We finally evaluate the implementation complexity of ACS-PEDC in comparison to

the RM-based CS method with drift correction in Section 5.4.1. Using γ = 4, we

determined a processor utilization of 0.27% and 0.42% for AUTOSAR-DC and ACS-

PEDC, respectively. It is readily observed that the processor utilization is negligible,

which confirms the practicality of the proposed method.

6.4.3 Start-up Phase

The tight bound in (6.8) is ensured as soon as coprime multiples of PSi are observed

according to Theorem 3. We define this time as the PEO period detection time tPEO,Si.

We next compare the PEO period detection times for the naïve approach in Section
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6.1, which only considers the smallest ∆qj measurements and ACS-PEDC. The re-

sults for the maximum and mean value of tPEO,S3 for different levels of UTM are

summarized in Table 6.2 (results for 20 trials per data point are shown).

Table 6.2: Maximum and mean PEO period detection times.

Maximum tPEO,S3 Mean tPEO,S3

UTM 10 % 30 % 50 % 10 % 30 % 50 %

Naïve [s] 413.2 8.65 0.70 139.8 2.21 0.16

Algorithm 7 [s] 207.9 3.42 0.23 43.0 0.68 0.09

The first important observation is that the naïve method has larger PEO period detec-

tion times than ACS-PEDC. This is expected since ACS-PEDC already determines

the correct PEO period if coprime multiples of PDC,S3 are measured. However, it is

still the case that the PEO period detection times can be large for low values of UTM

since it is less likely to quickly observe coprime multiples of PDC,S3 in the PEO mea-

surements. This is a possible disadvantage of ACS-PEDC in practical applications

since it is not guaranteed to achieve a tight drift estimate short after system start-up.

This issue is addressed in the next section.

6.5 Start-up Method for ACS-PEDC

The experiments in Section 6.4 indicate that ACS-PEDC enables highly accurate CS

for different RM periods, bit rates, bus utilization, clock drifts and temperatures with-

out modifying the CAN protocol. As pointed out in Section 6.4.3, a possible short-

coming of ACS-PEDC is the fact that a close estimate of PSi is only found after

measuring coprime multiples of PSi after system start-up. We next develop a method

for achieving short start-up times by combining information from Algorithm 7 and

the RM timestamps.
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6.5.1 Start-up Method

We first determine bounds for a drift estimate based on RM timestamps. To this end,

we consider the case, where no offset correction and drift correction is applied to

the clock cSi after the first RM. That is, ideally, NSi(T ) = ⌊T/TSi⌋. Assuming an

approximately constant drift dSi during the start-up period, dSi can be evaluated after

the k-th RM (k ≥ 2) as

dRM
Si,k =

(N̂Si,k − ⌊t̂TM,k/TSi⌋) · TSi

(k − 1) · T
. (6.10)

It has to be respected that the timestamps N̂Si,k (Si) and t̂TM,k (TM) are not ideal and

there is a propagation delay on the CAN bus. Using (6.10) and the maximum clock

correction error of Si

ECC
Si =

(⌈ ETRI + JSi
TSi/(1 + dSi)

⌉
+
⌈JTM

TSi

⌉
+
⌈ ETRI

TSi/(1 + dSi)

⌉
+ 1

)
· TSi, (6.11)

the following upper and lower bounds for the actual drift can be determined2.

dloSi,k = dRM
Si,k −

ECC
Si

(k − 1) · T
≤ dSi ≤ dupSi,k = dRM

Si,k +
ECC

Si

(k − 1) · T
. (6.12)

Hereby, it is important to note that the bounds in (6.12) become tighter (the drift

estimate becomes more accurate) with increasing values of k.

In order to compare the bounds in (6.12) to the drift estimate from Algorithm 7, we

next recall the fact that the actual value PSi always must be an approximate divisor of

P Si,j . That is, P Si,j = kj · PSi + ∆pj with |∆pj| ≤ X . Accordingly, we propose to

evaluate drift estimates from divisors of P Si,j in the form

dSi,j(m) =
sSi

P Si,j/m− sSi
=

sSi ·m
P Si,j − sSi ·m

(6.13)

in order to determine kj . Taking into account the possible uncertainty X in the esti-

mate P Si,j , the actual drift for divisor m is bounded by

dloSi,j(m) =
sSi ·m

P Si,j + sSi ·X − sSi ·m
≤ dSi,j(m)

≤ sSi ·m
P Si,j − sSi ·X − sSi ·m

= dupSi,j(m). (6.14)

2 Appendix B.4 provides the derivation of the results in this section.
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In view of (6.12) and (6.14), the drift estimate in (6.13) is considered as safe if

dupSi,j(m− 1) < dloSi,k and dloSi,j(m+ 1) > dupSi,k. (6.15)

In this case, the drift estimate from the PEO measurement is guaranteed to respect the

bounds computed from the RM timestamps for a unique value of m. Hence, it must

be the case that m = kj .

We note that the conditions in (6.15) solely depend on measurements and parameters

that are available on Si. That is, Si can evaluate these conditions to decide about the

correctness of the drift estimate as summarized in Algorithm 8.

Algorithm 8 Start-up procedure for ACS-PEDC
1: Init: active = START-UP

2: while true do

3: Determine P Si,j using Algorithm 7

4: if k < 2 then

5: Apply drift correction using P Si,j

6: else

7: Evaluate the conditions in (6.15)

8: if there is a unique value of m then

9: active = ACS-PEDC

10: end if

11: if active = ACS-PEDC then

12: Apply drift correction using P Si,j/m

13: else

14: Apply drift correction using PRM
Si = sSi + sSi/d

RM
Si,k

15: end if

16: end if

17: end while

In the start-up phase, Algorithm 8 uses the less accurate drift estimate from the RM

timestamps (line 14) and checks the conditions in (6.15). If a unique value of m is

found, the start-up phase is completed and the highly accurate drift estimate from the

PEO measurements is used (line 12).

We next show that the proposed method ensures a fast start-up independent of the
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drift value.

Theorem 4 Consider Algorithm 8 and write tST for the start-up time,

when active = ACS-PEDC. Then,

max
t

{|cSi(t)|} ≤

 ∆RM = COC +
ECC

Si

(k−1)
if T ≤ t ≤ tST

∆PEO in (6.8) if t > tST.
(6.16)

Remark 11 The drift estimate in (6.10) is based on a clock value of cSi without off-

set correction and drift correction. When applying offset correction using the AU-

TOSAR method and drift correction according to line 14 in Algorithm 8, the clock

value without offset correction and drift correction can be obtained by memorizing

the accumulated offset correction and drift correction during the start-up period.

Remark 12 The bound in (6.16) converges to COC for large values of k. It has to be

pointed out that this bound is only considered at system start-up since it relies on the

assumption that the actual drift dSi is constant. After the start-up phase, Algorithm

7 enables highly accurate drift estimates even for time-varying drifts as is shown in

Fig. 6.5.

6.5.2 Start-up Evaluation

We next evaluate the start-up phase for different drifts and TM bus loads UTM. Fig.

6.6 shows representative measurements of the clock difference of S3 for UTM = 10%,

B = 250 kbps, T = 1.048 s, γ = 4, dSi = 8 ppm and dSi = −113 ppm. Hereby, we

recall that the first offset correction of S3 is performed with the reception of the first

RM, which is assumed to occur at t = 0 in the figure for ease of understanding. In

general, a slave node will receive the first RM between t = 0 and t = T .

It is readily observed that cS3 drifts freely until the second RM at around t = T .

After that, ∆cS3 stays below the bound ±∆RM in (6.16) until tST (represented by the

dashed line). Finally, ∆cS3 is bounded by ±∆PEO in (6.8). Hereby, it has to be further

noted that the bounds consider the worst case, which was not observed in any of our

experiments. In order to quantify this observation, we define the time t2µs as the time
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Figure 6.6: Start-up measurements for different drift values.

Table 6.3: Evaluation of t2µs depending on UTM and dS3.

UTM 6.5% 10% 30% 50%

dS3 = 8 ppm 0.73 s 0.88 s 0.64 s 0.16 s

dS3 = −78 ppm 0.73 s 0.84 0.0 0.0

dS3 = −113.1 ppm 0.72 s 0.63 0.01 0.0

after which the clock difference of S3 is below 2µs. Table 6.3 shows the average

value of t2µs over 10 experiment runs for different values of UTM and dS3.

Our experiments indicate that a clock accuracy below 2µs is generally achieved

within less than 1 s. In particular, we observed that this clock accuracy could always

be achieved after the slave receives the second RM. We emphasize that the proposed

CS method is applicable even using TMs with a very small bus utilization.

6.6 Discussion and Conclusion

This chapter proposes a new CS algorithm for CAN that combines infrequent clock

updates using timestamps in RMs from a TM and a highly precise drift correction

between such clock updates. The original idea of our algorithm is the measurement

of the time intervals between re-synchronizations of the CAN bit time. We develop

a novel drift estimation algorithm based on the real-time computation of the AGCD

of these time intervals and formally prove its correctness. We further extend our
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algorithm by a method for the quick start-up of the CS. In order to validate the prac-

ticability of the proposed method, we conduct extensive experiments.

Generally, the experiments show that any CAN node that implements our method is

able to estimate the clock drift with a precision below 0.2 ppm and achieves a clock

accuracy below 2µs after receiving at most two RMs from the TM. Hereby, these

values are obtained independent of the bit rate, the RM period and the drift between

clock oscillators of the nodes. Even time-varying oscillator drifts that can be caused

by variations in the ambient temperature do not affect the clock accuracy.

As a further advantage of the proposed method, no modification of the CAN proto-

col is required. That is, different from the TTCAN protocol, any node implement-

ing our method can be connected to any standard CAN network. Different from

other methods that employ drift correction based on timestamps only, our method

achieves a highly accurate drift estimate using the bit time synchronization of CAN.

Thus, CANDS framework can follow our novel ACS-PEDC as a clock synchroniza-

tion method. Moreover, ACS-PEDC enables estimating the clock drift independently

from the periodic timestamps within RMs which has advantages when timestamping

quality is low. When our ACS-PEDC is compared to the CS methods which benefits

from the timestamps both for offset and drift correction, the performance of ACS-

PEDC is degraded less by timestamping quality since it depends on TS quality only

for offset correction, not for drift correction.
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CHAPTER 7

WEAK TDMA ON CAN

The proposed CS algorithms that can also apply drift correction for CAN in Chapter 5

provide clock accuracy below 5µs independently from the clock drift of the nodes. In

Chapter 4, a new timestamping method is introduced and it is shown in Chapter 5 that

it improves the clock accuracy performance of the CS methods by enabling higher

quality timestamps. Additional to the timestamp-dependent drift estimate methods, a

novel drift computation method that benefits from the internal bit timing mechanism

of the CAN protocol is proposed in Chapter 6. Moreover, a new CS method which

combines the AUTOSAR compatible offset correction and drift correction depend on

the novel drift computation is introduced. It is experimentally shown that it provides

the clock accuracy below 2µs independently from the clock drift and even under

changing environmental conditions.

Considering the maximum CAN bus speed that is 1 Mbps, the minimum bit rate

equals to 1µs. Thus, a global clock with an accuracy in the order of 5µs makes

possible to apply classical TDMA schedule with the guard times that handles the

clock inaccuracy between the nodes. However, it is noticed in this thesis that the

specific properties of CAN bus remove the necessity of the guard times that decrease

the bandwidth efficiency. Thus, a new WTDMA model for CAN is introduced in

this chapter. Specifically, the WTDMA model defines the traffic shaping for CANDS

which provides that each message is transmitted in its own scheduled window.

The WTDMA on CAN is based on two main observations. First, it holds that CAN is

a non-preemptive bus and possible message collisions are managed by the CAN arbi-

tration mechanism without a performance penalty. That is, when realizing slot-based

access on CAN it is not required to introduce guard times since possible overlaps
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of time slots will be resolved by the usage of Carrier Sense Multiple Access/Colli-

sion Resolution (CSMA/CR) and the non-preemptive message transmission on CAN.

Second, it is possible to use CS to keep the overlaps of time slots bounded and hence

maintain the transmission order defined by a TDMA schedule that is determined of-

fline.

Based on these observations, we propose a novel WTDMA model for CAN, where

time slots can temporarily overlap, different from the classical TDMA. Thus, WT-

DMA can operate even with a moderate clock accuracy among the nodes that can

easily be provided with any of the proposed CS methods for CAN in Chapter 5 and

Chapter 6. In addition to the formal description of the WTDMA model, we also val-

idate its usability with comprehensive experiments, where challenging message sets

are used. Specifically, we show experimentally that WTDMA operates well even with

average bus loads above 95% throughout the experiments with the message sets con-

structed in line with practical CAN networks. Moreover, we confirm that WTDMA is

applicable for all bit rates of CAN and show that our WTDMA model even provides

feasible schedules for message sets that are not schedulable on TTCAN. As such,

the repetition period of a trigger does not have to be power of 2 and the number of

triggers is not limited in WTDMA since it is implemented in software.

In summary, WTDMA which is not limited to any specific CS method, does not re-

quire a modification of the CAN protocol and provides very low WCRTs in the order

of the message transmission time independently from the assigned message priorities

and message deadlines. Hence, WTDMA outperforms all other approaches in the

literature in terms of the achieved bus utilization and its implementation complexity.

7.1 Assumptions

We next state three realistic assumptions that are employed in this chapter. First,

we note that the CAN protocol itself does not support clock synchronization (CS).

Nonetheless, this thesis suggests several CS algorithms that enable an accurate com-

mon clock among the nodes without requiring any hardware modification in Chapter

5 and Chapter 6. In this chapter, we assume the availability of a CS algorithm with an
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accuracy that is bounded by a value θ. That is, any of the existing SW-CS methods can

be used as long as the accuracy is guaranteed to be below θ. Secondly, we assume that

the software delay of each node N ∈ N between the time instant when the generation

of a CAN message is triggered and the time instant when it is ready for arbitration is

limited by an upper bound ∆N . Even though the actual delays vary depending on the

software implementation, an upper bound can be either estimated experimentally or

computed theoretically by examining the hardware on which the software runs. Fi-

nally, we point out that messages on CAN are commonly re-transmitted in case of an

error. We assume that re-transmission of messages is not allowed similar to TTCAN

[100]. It has to be noted that this is not a practical restriction for existing CAN con-

trollers since they can be configured to disable the auto re-transmission feature [114].

7.2 Protocol Definition

As indicated in Section 7.1, we assume that the nodes on a CAN bus have synchro-

nized clocks with a maximum clock difference of θ between any node and the global

clock of a TM node.

Then, the proposed medium-access method introduces an offset oi and a transmission

window size wi for each message Mi ∈ M. Hereby, the a-th instance of message

Mi ∈ M is denoted as Mi,a. Writing yi,a = oi + a · pi for a = 0, 1, . . ., we define the

time intervals

Ii,a = yi,a + [0, wi), (7.1)

during which the message instances Mi,a can be transmitted. Accordingly, a message

schedule consists of the set of offsets O = {o1, . . . , om} and the set of window sizes

W = {w1, . . . , wm}. We further use the hyper-period (HP)

H = lcm(p1, . . . , pm), (7.2)

which characterizes the time after which the schedule repeats. The number of repeti-

tions of Mi per HP is ri = H/pi.

Depending on the choice of O and W , it is possible that the windows of different

messages overlap. Hence, we introduce the notion of a feasible schedule in Definition

1.
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Definition 1 Consider a message set M with the previously defined parameters and

a corresponding schedule given by the set of offsets O and the set of window sizes W .

The schedule is denoted as feasible if

1. ∀i ∈ {1, . . . ,m}, it holds that Lmax
i ≤ wi,

2. ∀i, j ∈ {1, . . . ,m} with i ̸= j, a ∈ {0, . . . , ri − 1} and b ∈ {0, . . . , rj − 1}, it

holds that Ii,a ∩ Ij,b = ∅

That is, a feasible schedule ensures that 1) each message fits in its assigned window

and 2) the windows of any two different messages do not overlap. That is, each mes-

sage obtains exclusive access to the CAN bus during its assigned window, ensuring

deterministic message transmission.

It has to be noted that this desired property is valid for the ideal case with perfect

SW-CS and zero delay between trigger of message generation and transmission start

time on the CAN bus. The real case with SW-CS inaccuracies and software delays is

addressed in the next section.

7.3 Sufficient Conditions for Correct Operation of WTDMA

The feasible WTDMA schedule in Definition 1 assumes that each message instance

is generated and enters arbitration on the CAN bus precisely at the beginning of its

allocated window. In practice, it is expected to observe software delays on the CAN

nodes as well as deviations of the synchronized clocks.

This section provides an analytical derivation of sufficient conditions for the correct

WTDMA operation in the sense that all messages are transmitted in the order defined

by the WTDMA schedule. In addition, we determine the WCRT of each message in

a given set M.

We first introduce some additional notation for our derivation, which is given for the

duration of one HP. Specifically, the following time instants are needed:

• yi,a: starting time of the window for Mi,a,
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• gi,a: time instant when the generation of Mi,a is triggered by its node µ(Mi),

• ei,a: time instant when Mi,a is ready to enter arbitration on the CAN bus,

• ui,a: time instant when the CAN bus is guaranteed to be free for Mi,a,

• si,a: time instant when Mi,a starts transmission,

• fi,a: time instant when Mi,a finishes transmission including Inter Frame Spac-

ing (IFS),

• Li,a: length of the a-th instance of message Mi.

In addition, we recall the bound ∆µ(Mi) for the (MCU-dependent) maximum software

delay between the time instant when the generation of message instance Mi,a is trig-

gered and the time instant when Mi,a is ready to enter arbitration on the CAN bus.

Specifically, it consists of the software tasks such as detecting the trigger, preparation

of the CAN message content and its placement into the CAN controller transmission

buffer. Furthermore, θ is the bound for the clock difference of any node relative to the

global clock on the CAN bus. Accordingly, we establish the following facts about the

above parameters:

F1 yi,a − θ ≤ gi,a ≤ yi,a + θ and yi,a − θ ≤ ei,a ≤ yi,a + θ +∆µ(Mi),

F2 si,a = max{ui,a, ei,a},

F3 fi,a = si,a + Li,a.

Fig. 7.1 provides an illustration of the WTDMA operation and the notation intro-

duced above. To this end, the figure shows the transmission of different instances of

the consecutive messages Mi, Mj and Mk in two different HPs (denoted as HPn and

HPn+1). The window start times are shown by dashed lines and the range of times

where each message instance can enter arbitration is displayed by red and green ar-

rows. Respecting F1, we note that this range is for example given by the interval

[yi,a − θ, yi,a + θ + ∆µ(Mi)] for the message instance Mi,a. To point out the possible

cases, Mi,a starts transmission at the latest possible time si,a = yi,a + θ + ∆µ(Mi) in

HPn of the example. Then, Mj,b starts transmission when the bus becomes idle right
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after the transmission of Mi,a at time sj,b = si,a + Li,a = fi,a = uj,b. Here, it is

important to note that, even if ej,b < fi,a, that is, Mj,b is ready before the transmission

of Mi,a is completed, Mj,b is transmitted after Mi,a as long as ej,b > si,a. Intuitively,

this amounts to the fact that the time instant si,a when Mi,a starts transmission is

guaranteed to be before the time instant sj,b when Mj,b starts transmission, which

will be formally stated and proved in Theorem 5. Similarly, Mk,c starts transmission

after the transmission of Mj,b is completed at fj,b. A different scenario is shown for

HPn+1. Here, the message instance Mi,a+ri is transmitted at the earliest possible time

yi,a+ri − θ. As a consequence, the CAN bus is idle at uj,b+rj = fi,a+ri before Mj,b+rj

is ready and Mj,b+rj is transmitted right at sj,b+rj = ej,b+rj . The same is true for

Mk,c+rk . At this point, we emphasize that a message can be ready during the time

window of the previous message without affecting the WTDMA operation. That is,

different from TDMA, the WTDMA operation does not require guard times between

time windows for different messages and hence allows a more efficient bandwidth

usage.

Figure 7.1: WTDMA notation and example illustration.

Using the above notation, we next quantify the correct operation of WTDMA. Con-

sider that K messages are transmitted on the CAN bus according to a given WTDMA
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schedule. Then, we denote each message that is not transmitted in the specified order

as a schedule violation and write

V =
Number of schedule violations

K
(7.3)

for the ratio of schedule violations. We note that V = 0 is required for the correct

operation of WTDMA.

We further introduce the starting time delay

ϕj,b = sj,b − gj,b (7.4)

as the difference between the transmission start time sj,b and the trigger time gj,b of

instance Mj,b.

Finally, the RT Ri,a of instance Mi,a is computed by adding the starting time delay

ϕi,a and the actual message length Li,a:

Ri,a = ϕi,a + Li,a. (7.5)

We next provide sufficient conditions for the correct operation of the proposed WT-

DMA and compute bounds for ϕi,a and Ri,a.

Theorem 5 Consider a feasible WTDMA schedule as in Definition 1 with the pa-

rameters introduced above. Further, define wmin = minMi∈M Lmax
i as the minimum

window size for the messages in M and ∆max = maxN∈N ∆N as the maximum soft-

ware delay of the nodes in N . Then, V = 0 if

wmin > wsafe = ∆max + 2 · θ. (7.6)

Hereby, wsafe denotes the safe window size. Furthermore, the starting time delay ϕj,b

and the RT Rj,b of any message instance Mj,b are bounded by

ϕj,b ≤ ϕmax = ∆max + 2 θ and Rj,b ≤ Rmax
j = ϕmax + Lmax

j . (7.7)

The proof of Theorem 5 is given in Appendix C.1.

That is, (7.6) in Theorem 5 provides a lower bound for the window size depending on

the software delay ∆max and the maximum clock difference θ. In addition, Theorem
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5 allows the computation of the WCRT of each message in M. Hereby, it has to be

emphasized that the WCRT for any message Mj in (7.7) only depends on Lmax
j , θ and

∆max and is hence independent of the message priority.

We further note that the window size for each message Mi ∈ M depends on its

payload size Bi, In particular, the smallest window size is obtained for messages with

Bi = 0 as 55 · τbit (11 bit ID) and 80 · τbit (29 bit ID).

In order to assess the practicability of (7.6), we consider realistic values of ∆max =

20µs and θ = 5µs for the software delay and the maximum clock difference. Then,

we compare the minimum required safe window size ∆max + 2 · θ = 30µs in (7.6)

with the minimum message length wmin (11 bit ID) for different bit rates as shown in

Fig. 7.2.

Figure 7.2: Minimum window size and minimum frame length.

It is readily observed that the messages with minimum length are much larger than

the minimum required window size even for large bit rates. That is, the proposed

WTDMA method is expected to work well in practice.

Remark 13 The previous discussion focuses on the legacy CAN protocol [4]. We

note that an analogous computation of wmin can be performed for the recent exten-

sions CAN FD and CAN XL. Specifically, the minimum message length is determined

by the duration of the CAN frame fields excluding the payload, which are transmit-

ted at the same maximum bit rate of 1Mbps for all CAN protocols. Hence, the safe

window size wsafe computed for CAN is as well applicable for CAN FD and CAN XL.

124



7.4 Advantages of Our Method

We note that there are other methods that provide slotted access to CAN such as

TTCAN [26, 100] and the methods in [82, 102]. In this section, we point out various

advantages of our method compared to these methods.

First, WTDMA can benefit from the highly accurate CS that is possible with the pro-

posed CS methods in the literature to provide low message RTs, unlike the TDMA

approach in [82], where global clocks with an accuracy below 0.5 ms are not con-

sidered. Furthermore, WTDMA is not limited to any CS method and can be imple-

mented on MCUs with standard CAN controllers following any of the existing CS

methods such as [18]. Thus, it is more advantageous than TTCAN that does not have

a global clock for TTCAN Level-1 and depends on its own inherent CS application

at the expense of a hardware modification for TTCAN Level-2, as explained in 3.2.2.

Although, a software implementation of TTCAN is presented on standard CAN con-

trollers in [102] without requiring the specific TTCAN controllers, the results are not

promising for real CAN networks since only a bus load of 12.8% is achieved with a

bit rate of 250 kbps.

Furthermore, TTCAN protocol has several limitations that are introduced in Section

3.2.2, regarding its Basic Cycle Length, the number of basic cycles in a matrix cycle,

the total number of triggers per node and the repetition period of a message trigger.

On the contrary, WTDMA provides flexibility in terms of schedule design since it

does not have such limitations. That is, feasible WTDMA schedules can be obtained

for message sets that are not schedulable on TTCAN. This is confirmed in Section

7.5.3.

Additionally, TTCAN requires a modification of the standard CAN controllers also

to provide a timing-related interrupt that notifies the starting of each window [115].

Such a special hardware is not required in WTDMA since it is designed to handle

both software delays and clock differences.

In TTCAN, a guard time is applied due to the TxEnable window as explained in

Section 3.2.2. Hence, an error frame will prevent the next CAN message if it finishes

later than the TxEnable interval of the next window in TTCAN [100]. WTDMA

125



does not apply such a restriction. Specifically, the time windows of different message

instances may intersect temporally in our WTDMA. Hence, the next CAN message

can start its transmission whenever the error frame finishes since the starting times of

the messages are not limited in WTDMA.

7.5 Experimental Evaluation

This section performs a detailed evaluation of the proposed WTDMA method based

on experiments. The experimental setup is described in Section 7.5.1 and the con-

sidered performance metrics are introduced in Section 7.5.2. Section 7.5.3 to 7.5.9

confirm the correct operation of WTDMA according to the analytical bounds in The-

orem 5 in different scenarios including high bit rates, different CS methods and large

clock differences, reduced window sizes and the effect of CAN nodes that are not

synchronized to the TM.

7.5.1 Experimental Setup and Implementation of WTDMA

The experimental setup consists of 4 FPGA development boards [66] (N1-N4) and 2

MCU boards [65] (N5 and N6). Each board realizes a 32-bit local clock (LC) with

an NTU of 250 ns. Clock differences below θ = 5µs among all nodes are achieved

by applying the SW-CS method introduced in [18] with a RM period of T = 1 s.

The TM node N1 is also responsible for time stamping the reception time instants of

all messages on the bus in its own LC and sending the measurements to a PC via an

Ethernet connection of 100 Mbps. The contents of the messages are monitored and

saved on a PC via a CAN analyzer device. Since the transmission length of a message

changes due to bit stuffing, it has to be noted that the actual transmission times in an

experiment are deduced by using the recorded contents. Moreover, all CAN messages

carry 4-byte generation times in the LC of the transmitter node if there is sufficient

space in the payload of the message. Each experiment was conducted until 106 CAN

messages are transmitted on the bus.

The implementation of WTDMA is realized in software both on the FPGA boards and

the MCU boards. The FPGA boards have an ARM Cortex-A9 processor with a CPU
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clock frequency that is configured as 400 Mhz. The 2 MCU boards include a 32-bit

MB91460 series MCU which runs with a core clock of 64 Mhz in the experiments. As

described in Section 7.3, the generation of CAN messages is initiated by comparing

the LC of the node to the trigger times of the messages via a polling mechanism

in software. Thus, variable delays in the generation time of a message can occur

relative to the trigger time of the message. Moreover, the generated CAN messages

experience some delay before entering the CAN arbitration due to the transfer time

to the CAN controller. In our experiments, we verified that the software delays on

the FPGA development boards (N1 to N4) and the MCU boards (N5 and N6) are

bounded by ∆N1···N4 = 20µs and ∆N5 = ∆N6 = 80µs, respectively.

7.5.2 Parameters and Performance Metrics

Using the frame bit length in (2.8) and (2.9) and the message set M, we introduce

Umax =
1

B
·

m∑
i=1

fmax
i

pi
and Umin =

1

B
·

m∑
i=1

fmin
i

pi
. (7.8)

That is, Umax and Umin represent the maximum and minimum bus utilization, which

are observed if all messages in M are transmitted with maximum and minimum bit

stuffing, respectively. We further consider a generic experiment, where mi instances

are measured for each message Mi ∈ M during a duration Texp. Then, the actual

average bus load for the experiment is given by

Uexp =

(∑m
i=1

(∑mi

a=1 Li,a

))
Texp

. (7.9)

Since the RT depends on the bit stuffing, whereas the starting time delay only depends

on the clock differences and software delays, we will focus on the starting time delay

ϕi,a to evaluate the performance of our WTDMA.

7.5.3 Message Set

We use the message set in Table 7.1 in order to evaluate the proposed WTDMA

method. The message set is constructed such that messages have different payload
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sizes (Bi in bytes) and periods (pi in ms). The message periods change between 5 ms

and 1000 ms similar to existing message sets such as the SAE and PSA example mes-

sage sets [86, 116, 117, 51]. The payload sizes are chosen such that there are several

short messages with payloads of 0, 1, 2, 3, 4Byte since short messages are more chal-

lenging for WTDMA according to (7.6). Due to the stuff bits, the actual average bus

load Uexp can change between Umin = 83.84% and Umax = 100% in practice when the

bit rate is B = 250 kbps. The window sizes (wi) are determined by considering the

maximum possible message transmission time for each message. Furthermore, the

offset assignment is realized manually in order to obtain a feasible WTDMA sched-

ule. In this context, we want to highlight that the algorithmic offset assignment is

not in the scope of this chapter, which focuses on the WTDMA operation. Specifi-

cally, the offset assignment is an offline task that is performed before deployment of

the CAN system and the assigned offsets do not change during run-time. Computing

offset assignments will be the subject of the work in Chapter 8.

We further note that the message set in Table 7.1 is not schedulable on TTCAN. This

is due to the fact that Umax = 100% and the RM period is 1 s (M1). On TTCAN, a

RM would have to be sent much more frequently, resulting in an infeasible maximum

bus utilization above 100%.

7.5.4 TDMA Operation and WCRTs

First, we conduct an experiment with the message set in Table 7.1. The messages are

sent by the six nodes in Section 7.5.1 according to the assigned offsets oi and window

sizes wi given in Table 7.1. Respecting Theorem 5, it holds for the FPGA boards and

the MCU boards that ∆FPGA + 2 · θ = 30µs and ∆MCU + 2 · θ = 90µs, respectively.

In both cases, the resulting number is smaller than the minimum window length of

wmin = 220µs, which is given by 0-Byte messages. That is, the conditions in Theo-

rem 5 are fulfilled. This result is confirmed by the experimental measurements, where

all the messages are transmitted without schedule violations such that V = 0. This

indicates that WTDMA can be realized with V = 0 even for a high average bus load

of Uexp = 88%. This result is confirmed when looking at the measured starting time

delays of each message Mi, which remain below 70µs as can be seen in Fig. 7.3.
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Table 7.1: Message and schedule properties.

Mi oi pi Bi wi Mi oi pi Bi wi

M1 0 1000 8 0.54 M21 80.00 200 8 0.54

M2 0.54 1000 8 0.54 M22 120.00 200 8 0.54

M3 1.08 5 0 0.22 M23 160.00 200 8 0.54

M4 1.30 5 0 0.22 M24 15.54 20 8 0.54

M5 1.52 5 0 0.22 M25 10.54 20 8 0.54

M6 1.74 5 0 0.22 M26 20.54 40 8 0.54

M7 1.96 5 0 0.22 M27 40.54 200 8 0.54

M8 2.18 5 1 0.26 M28 80.54 200 8 0.54

M9 2.44 5 1 0.26 M29 120.54 200 8 0.54

M10 2.70 5 1 0.26 M30 160.54 200 8 0.54

M11 2.96 5 2 0.30 M31 200.00 1000 8 0.54

M12 3.26 5 2 0.30 M32 400.00 1000 8 0.54

M13 3.56 5 3 0.34 M33 600.00 1000 8 0.54

M14 3.90 5 3 0.34 M34 800.00 1000 8 0.54

M15 4.24 5 4 0.38 M35 200.54 1000 8 0.54

M16 4.62 5 4 0.38 M36 400.54 1000 8 0.54

M17 15.00 20 8 0.54 M37 600.54 1000 8 0.54

M18 10.00 20 8 0.54 M38 800.54 1000 8 0.54

M19 20.00 40 8 0.54 M39 5.00 20 8 0.54

M20 40.00 200 8 0.54 M40 5.54 20 8 0.54

oi, pi and wi are given in ms. Umax = 100.0% when B = 250 kbps
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This also validates (7.7) since wmin > wsafe. It can further be seen that the starting

time delays of M19, M20, M21, M22, M39 and M40 are larger compared to the other

messages. The reason is that these messages are transmitted by the MCU boards N5

and N6 which encounter larger internal software delays as indicated in Section 7.5.1.
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Figure 7.3: Starting time delays for a bit rate of B = 250 kbps.

We repeat the same experiment with an increased bit rate of B = 1Mbps. Hereby, we

adapt the message set in Table 7.1 by dividing the parameter values oi, pi and wi by

4 in order to achieve the same bus utilization as in the first experiment. In this case,

wmin = 55µs for CAN messages with zero payload (M3 −M7). Since the software

delay of the MCU boards (N5 and N6) is too large for this minimum window size,

we distribute all messages to the 4 FPGA boards. The measured starting time delays

of the messages are shown in Fig. 7.4. It is seen that all starting time delays remain

below 20µs, which implies that the WTDMA operation is again successfully carried

out for the bit rate of 1 Mbps. Hereby, the average bus load Uexp is measured very

high as 89% during the experiment.

7.5.5 Evaluation of Computed Bounds

In this section, we evaluate the validity of the bound computed in Theorem 5. To this

end, we conduct experiments that modify wsafe by artificially adjusting the maximum
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Figure 7.4: Starting time delays for a bit rate of B = 1Mbps.

clock difference θ. This is achieved by adding/subtracting random values in a spec-

ified range from the synchronized clocks of CAN nodes. We use the message set in

Table 7.1 and a bit rate of B = 250 kbps. Considering that wmin = 220µs, we run

experiments for the values θ1 = 5µs (no modification), θ2 = 100µs, θ3 = 120µs,

θ4 = 130µs and θ5 = 200µs. That is, schedule violations are expected for θ3, θ4 and

θ5 according to (7.6). Table 7.2 shows the resulting ratio of schedule violations.

Table 7.2: Observed ratios of schedule violations.

θ1 θ2 θ3 θ4 θ5

V 0 0 0.0025 0.0031 0.0083

As expected, there are no schedule violations for the case of θ1 and θ2, whereas an

increasing number of schedule violations is observed with larger clock differences. In

order to further illustrate the concept of schedule violations, we select the messages

M3 to M9 in Table 7.1, which are transmitted successively according to the WTDMA

schedule. According to Theorem 5, we expect that the groups of the starting times of

these messages do not overlap (for example, the starting times of M3 should always be

before the starting times of M4 if there are no schedule violations). The distribution

of the starting times of the selected messages is shown in Fig. 7.5. It can be seen that
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the message transmission order is correct even for clock differences as high as 100µs

since there is no intersection of the groups of starting times. Differently, schedule

violations are observed for θ3, θ4 and θ5. In particular, it can be seen that the starting

times of the different messages are separated into two blocks. This indicates that the

successor message (for example M4) overtakes the predecessor message (for example

M3), which is in line with the computed bound in (7.6). It is interesting to note that

no overtakes between the messages M9 and M8 are observed when θ3 = 120µs. This

is due to the fact that the payload of M8 is B8 = 8Byte and hence its window size

w8 = 260µs is larger than wsafe = 245µs. Together, this experiment confirms the

correctness of the (7.6).

Figure 7.5: The distribution of starting times of messages.

7.5.6 Usage of a Reduced Window Size

The conventional scheduling methods consider the message transmission time as the

maximum message length which is only possible when the maximum number of stuff

bits are added. However, maximum stuff bits are highly unlikely in real CAN net-

works [118]. Thus, we also realized an experiment, where the window sizes are com-

puted by considering the message transmission time statistics in our previous experi-

ments. The message set in Table 7.1 is modified by changing the periods and payload
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lengths of M17, M24, M39 and M40 as shown in Table 7.3. In this case, the expected

bus utilization is in the order of 100 % but can theoretically reach Umax = 108.88%

if all messages experience the maximum stuff bits. Additionally, a new WTDMA

schedule is designed such that new offsets and window sizes for all messages are de-

termined by considering the average message lengths. Hereby, the minimum window

size is shortened to 200µs in this experiment.

Table 7.3: Properties of the modified messages.

Mi pi Bi Mi pi Bi

M17 10 8 M24 10 8

M39 5 0 M40 5 0

Although the average bus load is measured as 96.2%, the message transmission order

is correct. The starting time delays can be seen in Fig. 7.6. The messages M3-M16

are sent successively also in this experiment. Besides, M39 is sent right after M16

according to the WTDMA schedule. If the actual transmission time of a message is

greater than its window size, the starting time of the next message will be blocked

since CAN is a non-preemptive bus. In case, transmission times of the successive

messages exceed their window sizes, the sum of excess times creates a cumulative

effect on the following messages. Thus, the peak values of the starting times for M3-

M16 and M39 are in an increasing order in Fig. 7.6. Even though delays up to 85µs

are observed for M39, it does not result in any violation in the transmission orders

in our WTDMA. To understand how the WTDMA operation functions successfully

in this case, it has to be remembered that the effect of the excess time is compen-

sated when the actual transmission length of a message is shorter than its window

size which is also equally possible with longer messages. To sum up, our WTDMA

approach works well even for bus loads that are above 95% and makes it possible to

have message transmissions with very low starting times and hence also RTs.
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Figure 7.6: The starting time delays of CAN messages - 250 kbps with smaller win-

dow sizes.

7.5.7 Independence of the CS Method

As indicated in Section 7.2, the proposed WTDMA protocol is independent of the CS

method. Thus, any CS algorithm in the literature can be used together with WTDMA.

In order to demonstrate this fact, we realized an experiment by using the message

set in Table 7.1, where N1 as TM sends RMs as described in [27]. N2, N3 and

N4 apply the AUTOSAR CS method in [27] as slave nodes. N5 and N6 apply the

controller based CS method in [18]. It is verified that the message transmission orders

are correct as expected during the experiment where CAN nodes apply different CS

methods since the safe window size wsafe with the clock differences of the applied CS

methods remain below the smallest window size.

7.5.8 CAN Bus with Fault Injection

In case of a bit error on a CAN message, a maximum of 20 extra bits as an error frame

can be transmitted by the CAN nodes detecting the bit error on the bus before the IFS

starts prior to the next CAN message. It has to be noted that bit errors occurring

earlier than the last 20 bits of the CAN message do not affect the next CAN message
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when using WTDMA since the error frame ends before the expected finishing time

of the erroneous CAN message. The worst case happens for a bit error in the last bit

of the CAN message. Thus, to formally guarantee a successful WTDMA operation

under bit errors at the end of each CAN message, Definition 1 could be extended by

including a possible error frame for each CAN message such that Lmax
i +20·τbit ≤ wi

is required.

However, since CAN messages do not experience their maximum transmission lengths

frequently in practice, the suggested extension would lead to an inefficient bandwidth

use. Instead, it is possible to use the free spaces due to messages without maximum

bit stuffing to accommodate the error frames in WTDMA since the starting times of

the CAN messages are not restricted to a tight interval unlike TTCAN. That is, even if

a WTDMA schedule is constructed by considering the original message lengths, the

error frames will be handled successfully in WTDMA unless bit errors occur during

the last bits of all CAN messages on the bus. However, in this case, the CAN bus it

not operational anyway.

In order to demonstrate the error tolerance of WTDMA, we repeated the experiment

in Section 7.5.4 by injecting errors from the CAN analyzer device with a bit error rate

(BER) of 10−3. Although the bit error generation in the experiment is much more

challenging compared to practical values in the literature, where the BER for CAN

is in the order of 10−10 in benign environments and 10−6 in aggressive environments

[119], no violation (V = 0) was observed in the WTDMA schedule. To sum up,

it is verified that WTDMA can handle error frames with a high BER without any

performance loss even at a high measured bus load of 90%.

7.5.9 CAN Nodes with Non-Sync Messages

We next consider the case where some messages are not transmitted according to the

WTDMA schedule. This case is for example possible when one of the nodes on the

CAN bus does not have an synchronized clock and hence does not realize WTDMA.

In order to evaluate this scenario, we repeat the experiment in Section 7.5.4 with a

change such that N6 does not follow a SW-CS method. Thus, the non-sync mes-

sages M21, M22 and M40 that are sent by N6 do not fulfill (7.6) and hence violate
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the required rules of the WTDMA protocol. As a consequence, it is experimentally

observed that the order of the synchronized messages changes due to the non-sync

messages. That is, formally, the WTDMA operation fails since the order of the mes-

sages can not be strictly followed unless all nodes apply SW-CS.

When the RTs are evaluated, the most affected message is M16 whose RT is presented

in Fig. 7.7 together with M17, M18 and M15 as examples. Hereby, the RT of a

message can not be shorter than its actual transmission time which can change from

316µs to 380µs for M15 and M16, and from 444µs to 540µs for M17 and M18. By

considering the minimum possible RTs, it can be seen in Fig. 7.7 that the WTDMA

operation returns to its correct operation even after the WCRTs are experienced. That

is, the saw-tooth shape of the RTs shows us that the effect of non-sync messages is

not permanent. Even though the order of the messages can not always be preserved

throughout the experiment, the benefits of applying our WTDMA are still observable.

To sum up, our WTDMA protocol can be followed also together with non-sync nodes

at the expense of a reasonable performance loss in terms of RTs.
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Figure 7.7: Response times of messages.
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7.6 Discussion and Conclusion

Providing deterministic medium access on the controller area network (CAN) both

enables a more efficient bandwidth usage and improves the real-time capabilities of

CAN such as message latencies. This chapter introduces WTDMA in order to pro-

vide slotted medium access on CAN. Thus, the traffic shaping layer that is another

significant component of CANDS framework is realized according to the proposed

WTDMA model.

As an important feature, WTDMA makes use of the medium access CSMA/CR and

the non-preemptive message transmission of CAN by allowing a certain degree of

overlap of time windows. As a result, WTDMA can be realized with a moderate

accuracy of the synchronized clocks of different CAN nodes and can hence be im-

plemented in software without any modifications to the CAN standard. The chapter

formally shows under which conditions WTDMA operates correctly and provides an

experimental evaluation to validate the formal results in practice. The experiments

confirm that high bus loads above 90% can be achieved at message latencies that are

only determined by the message transmission time. In addition, WTDMA is shown to

be tolerant to bit errors and remains operational even if a limited number of messages

that do not follow the WTDMA schedule are transmitted on the bus.
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CHAPTER 8

WTDMA MESSAGE SCHEDULING

A WTDMA schedule is defined by the message offsets O and the message window

sizes W , as explained in the WTDMA model in Chapter 7. Determining the mes-

sage offsets and window sizes are realized offline and is called as WTDMA message

scheduling. During the message scheduling, the offsets and window sizes should be

arranged such that all messages have their own time slots. That is, any message win-

dow cannot be shared completely or partially between two different CAN messages.

Although there are existing CAN offset assignment works in the literature [35, 83,

92], they are not applicable to WTDMA scheduling problem since they are developed

for the case where there is not a global clock among the nodes. They realize offset

assignments for messages that are sent from a single node, by ignoring the other

messages. On the contrary, WTDMA model depends on a global clock where all

messages are transmitted by respecting the global clock on the network. Thus, new

WTDMA scheduling algorithms that consider all messages on the bus are required.

In this chapter, we propose to realize the WTDMA schedule design in two steps.

Specifically, one HP is divided into mini time slots with equal lengths. The place-

ment of the CAN messages into those mini time slots is realized as the first step.

Afterwards, the ultimate offset assignments are determined in the second step. As

one of the contributions in this chapter, the first and second steps are formulated

as ILP optimization problems which can be solved by standard ILP solvers such as

CPLEX [120]. Hereby, it has to be noted that the ILP formulations in [121, 122]

which are introduced for different problems gives inspiration while formulating the

WTDMA scheduling as ILP problems. Additional to the ILP-based methods, heuris-

tic approaches are also developed for the first and second steps, separately.
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The proposed methods are evaluated with several randomly generated message sets

that are in line with the real automotive applications. It is seen that the run-time

of the first step ILP (ILP-S1) method can be as high as 30 minutes when bus load

is close to 100%. Moreover, the second step ILP (ILP-S2) can last up to 4 s. The

achieved run-times with ILP-based methods are practicable since a schedule design

is not repeated very often. Regarding the heuristic methods, the second step heuristic

(H-S2) provides a close performance to ILP-S2 in terms of run-times and ability to

solve the problem. The first step heuristic (H-S1) is not as successful as ILP-S1 in

finding a solution when the bus load is close to 100%. However, the run-time of H-S1

is independent from the bus load and is always measured as less than 1 s. Thus, H-S1

can be applied before ILP-S1 in order to find a solution throughout the first step.

8.1 Background

The length of one hyper-period (HP) is defined as H = lcm(p1, . . . , pm) in Chapter

7. It is assumed that one HP duration is divided into the mini time slots which have

equal lengths. The duration of one mini time slot Ls is defined as the GCD of the

periods of the messages Mi ∈ M such that Ls = gcd(p1, ..., pm). Therefore, there

will be S = H
Ls

slots in one HP and the slot indexes are numbered from 0 to (S − 1).

While the placement of the messages into the mini time slots, si represents the index

of the earliest slot where the message Mi appears and the repetition period qi is given

by qi =
pi
Ls

. Thus, si can take the values between 0 and qi − 1 since mini time slot

offset assignment si should be smaller than the mini time slot repetition period qi.

That is, the CAN message Mi exists in all mini time slots si+ k · qi for k = 0, ..., S−1
qi

The offset assignment for WTDMA scheduling is realized in two steps in this chapter.

In the first step, the messages are assigned into the mini time slots such that the total

lengths of the messages in a slot should not exceed the length of the slot Ls. Then,

the final message offset assignment oi for message Mi is decided by considering the

determined slot assignments such that the window intervals of different messages do

not overlap as required in a feasible WTDMA schedule.

140



8.2 Integer Linear Programming for WTDMA Scheduling

8.2.1 ILP for the First Step - Mini Time Slot Assignment

The first step (mini time slot assignment) problem is formulated as ILP such that

1. The binary decision variables (xi,0, ...xi,qi−1) defines the slot assignment for

each message Mi ∈ M. That is, the slot index si of Mi is given as si =

xi,0 · 0+ xi,1 · 1+ ...+ xi,qi−1 · (qi − 1) by the binary decision variables of Mi .

2. In order to have a balanced distribution among the mini time slot usages, it

is required to keep the maximum load of the mini time slots TML as small as

possible.

3. Only one of the variables xi,0, ...xi,qi−1 can be 1 whereas the other variables

must be zero for every message Mi ∈ M.

4. The total length of the messages contained in any mini time slot must not ex-

ceed the length of the mini time slot.

The decision vector x consists of all decision variables for all messages ∀i ∈ {1, ...,m}
together with TML as written below:

x =



x1,0

...

x1,q1−1

...

xm,0

...

xm,qm−1

TML


It has to be noted that the decision variables xi,j for i = {1, ...,m} and j = {0, ..., qi−
1} in x matrix are binary. However, TML can take integer values that shows the

amount of the highest usage among the mini time slots.
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Even though the constraint 2) is not mandatory as long as constraint 4) is satisfied, it

is preferred to have a balanced distribution among the mini time slots. Therefore, the

objective function which is written as J = minx TML is preferred to be minimized.

The constraint 3) is written for an arbitrary message Mi as:
qi−1∑
j=0

xi,j = 1. (8.1)

and it has to be true for each Mi ∈ M with ∀i ∈ {1, ...m}.

Furthermore, the constraint 4) has to be true for all mini time slots from 0 to S − 1

and it is formulated as :
m∑
i=1

(Lmax
i · xi,(k mod qi)) ≤ Ls, 0 ≤ k ≤ S − 1. (8.2)

The equation 8.2 guarantees that total message length in any mini time slot (0, 1, ..., S−
1) does not exceed the mini time slot length Ls. Hereby, a CAN message Mi that is

assigned to slot j (implying that si = j and hence xi,j = 1) takes place in the mini

time slot with slot index k whenever k mod qi = j is true.

By considering the provided explanations, ILP problem can be formulated as com-

patible to the following standard form:

min
x

f · x. (8.3)

Aeq · x = beq. (8.4)

A · x ≤ b. (8.5)

in order to be able to solve it with standard ILP solvers such as CPLEX [120].

We next continue with an example CAN message set in Table 8.1 to illustrate the ILP

formulation for the first step. Accordingly, the mini time slot length Ls equals to 1 ms

for this message set and there are 4 mini time slots during one HP whose duration is

4 ms.

The x matrix is computed for this example as :

xT =
[
x1,0 x2,0 x2,1 x3,0 x3,1 x4,0 x4,1 x4,2 x4,3 x5,0 x5,1 x5,2 x5,3 TML

]
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Table 8.1: Example of CAN message set.

Mi pi [µs] Lmax
i [µs]

M1 1000 100

M2 2000 120

M3 2000 140

M4 4000 160

M5 4000 180

Moreover, the f matrix is constructed as:

f =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
in order to minimize the highest mini time slot usage TML.

Furthermore, Aeq and beq matrices are constructed for the given example as follows:

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0


· x =



1

1

1

1

1


A and b matrices for the inequality equation are as follows:

100 120 0 140 0 160 0 0 0 180 0 0 0 −1

100 0 120 0 140 0 160 0 0 0 180 0 0 −1

100 120 0 140 0 0 0 160 0 0 0 180 0 −1

100 0 120 0 140 0 0 0 160 0 0 0 180 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 1



· x ≤



0

0

0

0

1000


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The constructed ILP problem is solved by CPLEX ILP solver [120] and the x matrix

is found as follows:

xT =
[
x1,0 x2,0 x2,1 x3,0 x3,1 x4,0 x4,1 x4,2 x4,3 x5,0 x5,1 x5,2 x5,3 TML

]
=

[
1 1 0 1 0 0 1 0 0 0 0 0 1 360

]
According to the definition of x matrix, the maximum mini time slot usage is seen as

360µs. Moreover, the mini time slot offset assignments si values are seen as s1 = 0,

s2 = 0, s3 = 0, s4 = 1 and s5 = 3 as shown in Table 8.2.

Table 8.2: The si values found by ILP.

s1= x1,0 · 0 = 0

s2= x2,0 · 0 + x2,1 · 1 = 0

s3= x3,0 · 0 + x3,1 · 1 = 0

s4= x4,0 · 0 + x4,1 · 1 + x4,2 · 2 + x4,3 · 3 = 1

s5= x5,0 · 0 + x5,1 · 1 + x5,2 · 2 + x5,3 · 3 = 3

The distribution of the messages in the mini time slots for one HP is represented in

Fig. 8.1. That is, s1 is 0 and M1 are sent in the mini time slots 0, 1, 2 and 3 since

its repetition period q1 is 1. s2 and s3 is also 0 and M2 and M3 are sent in the mini

time slots 0 and 2 since their repetitions q2 and q3 are 2. Moreover, s4 is 1 and M4 is

sent in the mini time slot 1. s5 is 3 and M5 is sent in the mini time slot 3. Since their

repetitions q4 and q5 are 4, they are transmitted only one time in one HP whose length

is equal to 4 mini time slots.

8.2.2 ILP for the Second Step - Ultimate Offset Assignment

It is expected that all CAN messages are placed into the mini time slots successfully

at the end of the first step. It is possible that an instance of CAN message Mi may

be placed together with a group of CAN messages in a mini time slot, but a different

group of CAN messages may exist in another mini time slot together with another

instance of Mi, when Mi is transmitted more than one time in one HP. The aim of the

second step is to find the ultimate offset assignments such that the window intervals

construct a feasible schedule as defined in Definition 1. That is, the ultimate offset
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M1 M1 M1M1M1M1 M1

360

us

M2 M2

M3 M3

M4 M5

260

100

0 1 2 3
S #

Figure 8.1: Example of mini time slot assignment.

table O = o1, ..., om is determined by respecting to the mini time slot assignments

s1, ..., sm that is the output of the first step. Specifically, the second step determines

the offset table O = o1, ..., om as the offsets of the messages within the mini time slot.

Thus, any offset value oi can not be bigger than the mini time slot length Ls, which

can be expressed as oi ≤ Ls,∀i ∈ 1, ...,m. In order to determine the the offset table

O = o1, ..., om, an ILP formulation is developed to solve the problem as compatible

to the standard ILP equations in 8.3, 8.4 and 8.5. Together with the offset table O
values, the ultimate offset table O values can be computed as follows:

oi = oi + si · Ls,∀i ∈ 1, ...,m. (8.6)

Regarding the second step ILP, the binary decision variables are chosen as below:

xT =
[
o1 · · · om u1,2 · · · u1,m u2,1 · · · u2,m · · · · · · um,i · · · um,m−1

]
where ui,j is a binary variable which defines the positions of the CAN messages Mi

and Mj according to each other. That is, if Mi is sent earlier than Mj in the mini

time slot, ui,j takes the value of 0. However, ui,j takes the value of 1 when Mi is sent

later than Mj . Hereby, ui,j is defined for i = {1, ...,m}, j = {1, ...,m} and i ̸= j.

Furthermore, it has to be noted that ui,j and uj,i have always the different values (0 or

1) according to its definition.
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Moreover, the co-existence of Mi and Mj CAN messages in the same mini time

slot together is presented with another variable ci,j . According to the mini time slot

assignment after the first step, if Mi and Mj are placed in any mini time slot together,

ci,j takes the value of 0. On the contrary, ci,j takes the value of 1, if Mi and Mj do

not take place together in any of the mini time slots. The values of ci,j are determined

directly according to the mini time slot schedule after the first step. Hereby, ci,j is

defined ∀i, j ∈ {1, ...,m} and ci,j = 0 when i = j as compatible to its definition.

Lastly, it has to be noted that the value of the binary decision variable ui,j is not

important and take 0 or 1 when Mi and Mj are not located in the same mini time slot

(ci,j = 1).

We next continue with the first constraint that is below:

oi + Lmax
i ≤ Ls, ∀i ∈ {1, ...m} (8.7)

According to the constraint 8.7 , all CAN message Mi ∈ M must complete its trans-

mission before the end of the mini time slot. That is, in the second step it is not

allowed for a CAN message to exceed the bounds of the mini time slot while trying

to find an offset value oi. In this way, the output of the first step is respected, and the

content of the different mini time slots are kept isolated from each other during the

second step.

The second constraint which avoids the overlap between different CAN message win-

dows within a mini time slot is provided as follows:

oi + Lmax
i ≤ oj + ui,j · Ls + ci,j · Ls, ∀i, j ∈ {1, ...m}, i ̸= j. (8.8)

Specifically, the equation 8.8 guarantees that the transmission of Mi must be com-

pleted earlier than Mj in case of that Mi and Mj are placed in the same mini time

slot and Mi is placed earlier than Mj . That is, the equation 8.8 is always true in case

of that Mi is scheduled later than Mj and hence ui,j = 1, due to the first constraint

defined by the equation 8.7. Similarly, when Mi and Mj are not placed in the same

mini time slot, ci,j = 1 and the equation 8.8 is always true due to the first constraint

in the equation 8.7.

Lastly, the third constraint which comes from the definition of ui,j variables is pre-

sented as follows:
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ui,j + uj,i = 1,∀i, j ∈ {1, ...m}, i ̸= j. (8.9)

According to the constraint (8.9), only one of the ui,j and uj,i binary variables can be

1.

The second step ILP approach is further illustrated with an example CAN message

set in Table 8.3.

Table 8.3: Example of CAN message set.

Mi pi [µs] Lmax
i [µs]

M1 3000 250

M2 4000 500

M3 6000 250

The length of one HP equals to 12 ms as lcm(p1, p2, p3) and the mini time slot length

Ls is 1 ms as gcd(p1, p2, p3).

M1 M1M1M1

us

M3

250

0 1 2 3

S #

500

750

1000

4 5 6 7 8 9 10 11

M2

M2

M3

M2

Figure 8.2: Example of mini time slot schedule.

It is assumed that the mini time slot assignment is realized by the first step ILP and the

schedule in Fig. 8.2 is found. According to the schedule, mini time slot assignments

are seen as s1 = 0, s2 = 1, and s3 = 2. In addition, ci,j values are as follows:
c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3

 =


0 0 1

0 0 1

1 1 0


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In the mini time slot 9, M1 and M2 messages are placed together. Thus, c1,2 = c2,1 =

0. Furthermore, c1,1 = c2,2 = c3,3 = 0 by definition of ci,j since i = j.

The ILP decision vector x is determined as:

xT =
[
o1 o2 o3 u1,2 u1,3 u2,1 u2,3 u3,1 u3,3

]

The constraints in 8.7 and 8.8 are presented with inequality matrices A and b by

rewriting the constraints as follows:

oi ≤ Ls − Lmax
i , ∀i ∈ {1, ...m} (8.10)

oi − oj − (ui,j · Ls) ≤ (ci,j · Ls)− Lmax
i ,∀i, j ∈ {1, ...m}, i ̸= j. (8.11)

Specifically, the matrices A and b are constructed for the given example as follows:

1 −1 0 −1000 0 0 0 0 0

1 0 −1 0 −1000 0 0 0 0

−1 1 0 0 0 −1000 0 0 0

0 1 −1 0 0 0 −1000 0 0

−1 0 1 0 0 0 0 −1000 0

0 −1 1 0 0 0 0 0 −1000

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



·x ≤



−250

750

−500

500

750

750

750

500

750



Furthermore, the equality matrices Aeq and beq are constructed as:
0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0 1

 · x =


1

1

1



In the second step ILP formulation, it is not required to minimize any of the variables

in x. Thus, f matrix is chosen as 0. The given example is solved by CPLEX ILP

148



solver such that :

x =



o1

o2

o3

u1,2

u1,3

u2,1

u2,3

u3,1

u3,3



=



250

500

0

0

0

1

0

1

1


Hereby, there may be multiple solutions that satisfy the requirements. However, the

offset assignments for CAN messages are found by ILP solver as o1 = 250µs, o2 =

500µs and o3 = 0µs in our example. Together with si and determined oi values, the

ultimate offset values are found as o1 = 250µs, o2 = 1500µs and o3 = 2000µs.

By considering the message length and periods in the Table 8.3, it can be seen that

the CAN messages are transmitted without any collision with the assigned offset oi

values after the second step ILP.

8.3 The Heuristic Method for WTDMA Scheduling

8.3.1 The Heuristic Method for the First Step - Mini Time Slot Assignment

In order to place the messages into the mini time slots, heuristic approaches may also

be used as an alternative to ILP-based methods. The messages should be placed into

the mini time slots whose lengths are Ls with respect to the same constraints that are

already explained for the ILP for the first step (8.2.1). It has to be remembered that

the total usage of a mini time slot should not be more than the length of the mini time

slot Ls and the first instance of a message Mi should be placed in a mini time slot

with an index si that is smaller than its repetition period qi.

The heuristic method for the first step is presented in Algorithm 9. As the initial-

ization, the values for the mini time slot assignments si are empty. The messages

are ordered in line 4 and the mini time slot placements are realized in the rest of
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the algorithm according to this order. Therefore, the order of messages after line 4

determines the performance of the heuristic algorithm. Although there are several

ordering options, we choose to order messages according to their periods. Specifi-

cally, the message with the smallest period will be placed on top of the queue Qmes

such that it will be processed first for the mini time slot assignment. When there are

multiple messages with the same period, the ordering is realized randomly. After the

messages are ordered, the mini time slot assignments are realized for each message

until all messages are processed (line 6-8). In line 7, the possible mini time slot as-

signments (0 ≤ si ≤ qi − 1) are compared and the option which results in the lowest

maximum mini time slot usage TML is preferred. When there are multiple options,

any of si options can be chosen randomly. After deciding its si value, the present

message is removed from the queue Qmes so that the next message can be processed.

In the end, the feasibility of the mini time slot assignments S are checked (line 9-13).

Algorithm 9 WTDMA Scheduling Algo - Heuristic
1: Input: M
2: Output: S = s1, ..., sm

3: Init: si = ∅ for 1 ≤ i ≤ m; H = gcd(p1, ..., pm) ; Ls = lcm(p1, ..., pm) ;

TML = 0 ; Qmes = ∅.

4: Fulfill the message list as a queue Qmes by ordering messages in M according to

their periods.

5: Remove Mi from the queue Qmes.

6: while Qmes is not empty do

7: si assignment for the present message Mi.

8: end while

9: if TML > Ls then

10: No feasible solution at the end of the 1st stage!

11: else

12: The 1st stage is successful.

13: end if

When the algorithm fails to find a feasible solution, the same algorithm can be fol-

lowed again with a change that the message order in line 4 is realized according to

another criteria such as the message length. Changing the order of the messages di-
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rectly affects the output of the algorithm and may help to find a feasible solution.

8.3.2 The Heuristic Method for the Second Step - Ultimate Offset Assignment

In order to find the ultimate offset assignments O = o1, ..., om for CAN messages,

an heuristic in 10 is developed. In the algorithm, a queue Qmes which follows the

First In First Out (FIFO) principle and a stack Sproc that follows the Last In First Out

(LIFO) principle are used. Qmes consists of the messages whose offset values are not

assigned yet. However, Sproc consists of the messages whose process is complete and

have assigned offset values. That is, the union of the contents of Qmes and Sproc gives

the CAN message set M.

Before starting to process the messages, the queue Qmes is fulfilled in line 4 that

determines the order of the messages for the rest of the algorithm. Here, we choose

to order the messages according to their periods in the same way with the first step

heuristic. Moreover, the algorithm in 10 inputs mini time slot assignments S and

constructs dependency lists Wdep,i for each message. Wdep,i consists of the messages

that share the same mini time slot with any instance of Mi. Then, the algorithm starts

processing messages one by one (line 6).

The present message is read in line 7. Then, in line 8, an imaginary timeline is

constructed where the messages in the dependency list of the present message are

transmitted at their relative offsets mod(oi, Ls). The imaginary timeline goes from 0

to Ls. The messages in the dependency list that have not been processed yet are not

be included in the imaginary timeline. Afterwards, it is checked if there is at least

one empty interval in the imaginary timeline which is longer than the length of the

present message, in line 9. If it is found, the offset value oi of the present message is

assigned such that it is transmitted at the starting point of the biggest empty interval,

in line 10. In case of multiple empty intervals with the same length, the earliest one

can be chosen. When the offset assignment is realized for the present message, it is

removed from the Qmes and added to the stack Sproc.

On the contrary, if there is not any available interval for the current message (line 13),

the algorithm should try to create a space for it by changing the offsets of the messages
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Algorithm 10 WTDMA Scheduling Algo - Heuristic

1: Input: M , S = {s1, ..., sm}
2: Output: O = {o1, ..., om}
3: Init: oi = ∅, i = 1, ...,m; H = gcd(p1, ..., pm) ; Ls = lcm(p1, ..., pm) ; Wmes =

∅ ; Wdep,i = ∅, i = 1, ...,m ; Qmes = ∅ ; Sproc = ∅ .

4: Construct a queue Qmes of messages according to their periods

5: Construct the dependency lists Wdep,i for all messages (i = 1, ...,m).

6: while Qmes is not empty do

7: Pick the present message Mi from Qmes.

8: Construct an imaginary timeline with the messages in Wdep,i.

9: if Available room for the current message then

10: Place the current message at the Starting Point SP of the biggest empty

interval. That is, oi = (si ∗ Ls) + SP .

11: Remove the message from Qmes.

12: Add it to the processed message stack Sproc.

13: else

14: Find the starting point of the earliest empty interval.

15: Find Mtarget that comes right after the earliest empty interval.

16: Construct a new queue Qnew
mes such that the current message Mi will come

first.

17: Right after Mi, all the previously processed messages until Mtarget and

Mtarget will be transferred from the stack Sproc to Qnew
mes. The offset val-

ues oi of those messages which are transferred from Sproc will be updated as

∅ since they will required to be processed again.

18: The remaining messages in Qmes will be transferred to Qnew
mes. Then replace

Qmes with Qnew
mes.

19: end if

20: end while
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which are already processed. Firstly, the starting point of the earliest empty interval

is found even if its length is smaller than the biggest empty interval (line 14). Then,

the message Mtarget that comes right after the earliest empty interval in the imaginary

timeline is found (line 15). Changing or cancelling the offset value of Mtarget may

help to create an available interval for the present message since the length of the

earliest empty interval will increase when Mtarget is removed. Therefore, between

the lines 16 and 18, the offset assignments of all CAN messages except the messages

that are processed before Mtarget is canceled. The offset assignments for the messages

that are processed earlier than Mtarget are preserved and the other messages will be

processed again such that the present message is handled first. Accordingly, the stack

of the processed messages Sproc and the queue for the waiting messages Qmes are

updated.

Hereby, it has to be noted that the algorithm tries to find an offset assignment solution

in an iterative way. When it does not find an empty space for the present message, it

cancels some of the assigned offsets and goes back. That’s why, a timeout should be

applied while running the algorithm since it runs forever in case of a problem that has

no solution.

8.4 Evaluation of the WTDMA Scheduling Methods

The proposed WTDMA scheduling methods are evaluated in this section with CAN

message sets that are constructed in line with the real automotive applications. The

message sets that consist of m CAN messages are randomly generated while evalua-

tion. The message lengths are chosen randomly such that the payload of the message

can change from 0 byte to 8 bytes. In order to compute the message length in terms of

second, the bit rate is accepted as 250 kbps that is very common bit rate in practice.

Moreover, the message periods are chosen randomly from the options: 5, 10, 20, 40,

80, 100, 200 and 1000 ms.

The evaluation is conducted in MATLAB R2018b [123] together with the CPLEX

ILP solver 12.6 [120] which is used as embedded in the MATLAB environment. The

host machine consists of Intel Core i3-2370M CPU @2.40 GHz with 8,00 GB RAM.
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Table 8.4: Comparison of the success rate of the first step methods.

H-S1 ILP-S1

m=30 SR(%) 99 99,5

m=40 SR(%) 88 100

m=50 SR(%) 72,5 98

In Table 8.4, the first step heuristic (H-S1) is evaluated in terms of its success rates

(SR) by changing the number of messages in the message set. The success rate of

ILP-S1 is given as a reference since ILP-S1 is able to find a solution if a solution

exists. That is, the SR of ILP-S1 gives the ratio of the generated CAN message sets

that have a solution to the total number of message sets. Furthermore, the evaluation

is realized with 200 different message sets for each case and the bus load of a message

set is forced to be higher than 50% to make the case more challenging. The success

rate of H-S1 decreases from 99% to 72.5% when the number of messages m in a

CAN message set is increased from 30 to 50. However, the ILP-S1 maintains its

performance when m increases to 50 which shows that 98% of the generated message

sets still have a solution when m = 50.

Furthermore, it has to be noted that the change in m directly affects the bus load

during the evaluation. Thus, it is important to state that the bus load changes between

50% and 99,59% with an average of 64,24% when m = 30 ; between 50% and

98,86% with an average of 75,46% when m = 40 ; between 53,19% and 99,98%

with an average of 85,04% when m = 50.

We next continue with the evaluation of H-S1 and ILP-S1 in terms of their runtimes.

In Table 8.5, the runtimes of the first step methods are compared for the same set of

CAN messages for which both methods can find solution. That is, we excluded the

message sets which are solved only by ILP-S1. Although the runtimes are below 1 s ,

it is seen that H-S1 finds a solution slightly faster. Regarding the message sets which

are solved only by ILP-S1, the maximum runtime is recorded as 0,063 s, 400,44 s and

1677 s (almost 30 min.) when m is 30, 40 and 50, respectively.

Additionally, it is observed that all of the CAN message sets that could not be solved
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Table 8.5: Comparison of the run-times of the first step methods.

H-S1 ILP-S1

m=30
mean(s) 0,0089 0,0392

max(s) 0,0671 0,0630

m=40
mean(s) 0,0171 0,0554

max(s) 0,0580 0,1560

m=50
mean(s) 0,0419 0,0679

max(s) 0,0890 0,2810

by H-S1 have bus load higher than 90%. In order to verify that H-S1 provides a

solution with higher success rate when the CAN message sets have bus load lower

than 90%, we conducted an evaluation where m changes as 50, 60 and 70 and the

bus load is forced to be between 50% and 90%. In this evaluation, it is observed that

H-S1 finds solutions for all cases with SR of 100%. Moreover, the runtimes of H-S1

and ILP-S1 are measured very close to each other also in this evaluation and they are

below 1 s.

To sum up, both first step methods provide similar performance when the bus load

is lower than 90%. Both of them solves the first step problem with a success rate of

100% and in shorter than 1 s. On the contrary, when the bus load is more than 90%,

the heuristic H-S1 rarely finds a solution although it takes shorter than 1 s. Moreover,

ILP-S1 can take up to 0.5 hours for the case where m = 50, but it finds a solution if

it exists for the problem. It has to be noted that the runtimes in the order of hours are

acceptable for the WTDMA scheduling design since it is not repeated very frequently.

The solution of the first step is the input of the second step problem. Thus, the second

step methods are evaluated naturally for the message sets which have feasible solu-

tions after the first step. Therefore, we evaluate the success rate of the second step

heuristic (H-S2) for the CAN message sets that have solutions after the first step when

ILP-S1 is applied. After evaluation with several challenging CAN message sets, it is

observed that both ILP-S2 and H-S2 always find a solution that means the success

rate is 100% independently from the number of messages and the bus load. It has to
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be noted that, H-S2 is able to find a solution even for the CAN message sets whose

bus loads are close to 100%.

Regarding the runtimes of ILP-S2 and H-S2, the comparison is presented in Table 8.6.

It is seen from the table that ILP-S2 provides a solution less than 4 s when m = 50.

Furthermore, it takes for H-S2 to find a solution less than 2.5 s when m = 50.

Table 8.6: The run-time comparison for H-S2 and ILP-S2.

H-S2 ILP-S2

m=30
mean(s) 0,1905 0,0122

max(s) 0,4597 0,0320

m=40
mean(s) 0,3837 0,0191

max(s) 0,7744 0,3750

m=50
mean(s) 0,6644 0,0679

max(s) 2,3793 3,9630

8.5 Discussion

In this chapter, WTDMA schedule design problem is discussed. The WTDMA model

is introduced as the traffic shaping layer method of CANDS in this thesis. That’s

why, the schedule design methods compatible to WTDMA model are required within

CANDS framework. We divide the scheduling problem into two steps such that the

first step places the messages into mini time slots and the second step assigns ulti-

mate offset values by respecting the mini time slot assignments which are decided at

the end of the first step. Accordingly, ILP-based methods and heuristic methods are

proposed for both steps and they are evaluated with several CAN message sets that

are generated randomly in line with the practical applications.

With the comprehensive evaluation, it is verified that WTDMA scheduling of the

practical CAN message sets can be realized in two steps with the proposed methods.

Specifically, H-S1 finds solutions with high probability when the bus load is lower

than 90%, but it is not very successful in finding a solution when the bus load of the
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message set is above 90%. Moreover, the process of H-S1 takes less than 1 s for all

trials independently from its success in finding a solution. On the contrary, ILP-S1

is able to solve the first step mini time slot assignment problem for the cases where

H-S1 is unsuccessful at the expense of higher runtimes. The runtimes of ILP-S1 and

ILP-H1 look similar and less than 1 s for the problems where H-S1 is able to find a

solution. However, the process of the ILP-S1 can be as high as 30 minutes to find

a feasible solution for challenging CAN message sets. Thus, it makes sense to try

to solve the first step problem with H-S1 before applying the ILP-S1. Regarding the

second step, it is seen that a successful heuristic H-S2 is developed which is able

to find solutions for all cases during the evaluation. Moreover, the runtimes of the

second step methods ILP-S2 and H-S2 are similar and in the order of seconds. Thus,

it is concluded that ILP-S2 and H-S2 provide comparable performance while solving

the second step problem.
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CHAPTER 9

CONCLUSION

Controller Area Network (CAN) is still the most widespread in-vehicle communica-

tion bus in modern cars today due to advantages such as reliability, low cost and sim-

plicity. Furthermore, its importance is supported with the introduction of CAN with

Flexible Data-rate (CAN-FD) in 2012 and the recent development of CAN Extended

Length (CAN-XL). In particular, CAN is essential for safety critical automotive appli-

cations which require high real time Quality of Service (QoS) such as engine control,

suspension control, traction control, and others. A possible shortcoming of CAN is

its lack of a global time, which is required by safety-critical automotive applications

that are realized on distributed nodes in order to coordinate their tasks. Hence, it is

highly relevant to support clock synchronization (CS) on CAN. Additionally, the re-

alization of CS on CAN makes it possible to provide deterministic medium access on

CAN, that is highly desired in order to increase the bandwidth efficiency by reducing

the message latencies. In brief, having CS on CAN is notable both for the synchro-

nization of the distributed nodes and for CAN protocol itself with its contribution to

the deterministic bus access.

This thesis proposes a general framework CANDS (CAN with Determinism and Syn-

chronization support) for in-vehicle network protocols. CANDS features a hierarchy

of novel clock synchronization (CS) algorithms with different levels of clock accu-

racy and implementation complexity. Moreover, CANDS realizes our original idea

of weak time division multiple access (WTDMA) for deterministic bus access. In

particular, WTDMA can be implemented in software and hence it is fully compatible

with the standard CAN protocol and its extensions. Furthermore, WTDMA does not

depend on a specific CS method but it can operate with different levels of clock accu-
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racy that are achieved by the developed CS methods at the expense of different levels

of complexity within CANDS. In order to efficiently use WTDMA, the thesis further

develops scheduling methods for assigning time slots in WTDMA.

Considering CS methods for CAN, periodic timestamps which are expected to be

taken at the same time by all nodes are generally used. In addition, a TM whose local

clock is assumed as the perfect clock broadcasts its timestamp by sending a RM to

slave nodes. The slave nodes correct their local clocks periodically whenever they

receive timestamps of TM in RMs. In this thesis, Improved Software-based clock

synchronization (ISCS) method is proposed which brings advantages over the leading

CS schemes, AUTOSAR CS and Gergeleit’s method in the literature. AUTOSAR CS

method provides the best clock accuracy performance at the expense of higher band-

width usage for CS. However, Gergeleit’s method requires the half of the bandwidth

of AUTOSAR CS method while it can not achieve the clock accuracy performance of

AUTOSAR CS method. As a new idea, our ISCS method benefits from the ongoing

CAN message transmission on the bus. Thus, ISCS achieves the clock accuracy per-

formance of the AUTOSAR CS method, while requiring the bandwidth for CS as low

as Gergeleit’s method. In brief, ISCS scheme is able to provide the strong features

of two leading CS scheme at the same time with an original idea that depends on the

usage of CAN message traffic between the nodes. On the other hand, CS schemes

define the simultaneous timestamping instants and transmission of timestamps within

periodic RMs and hence offset correction mechanism. In order to have better clock

accuracy results, slave nodes should perform drift correction between RMs in addi-

tion to offset correction when receiving a RM. Accordingly, several original methods

which enable drift correction on CAN in line with the existing CS schemes are pro-

posed in this thesis. Firstly, the basic drift estimation approach by using the periodic

timestamps within RMs is formulated. Secondly, the periodic timestamps are eval-

uated with a discrete-time feedback control loop in order to estimate the clock drift.

Thirdly, a novel drift estimation approach that does not depend on the timestamps is

introduced by using the internal re-synchronization mechanism of the CAN bit tim-

ing. That is, our bit timing based drift estimation method is not affected by the TS

inaccuracies and hence provide better drift estimation performance. However, the

proposed drift estimation methods are developed to supplement the offset correction
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applications in order to avoid the clock drift between RMs. Therefore, the resultant

CS methods for CAN depend on TS quality which is determined by the difference

between the time instants when timestamps are taken on different nodes. Although it

is well known for CS applications that the clock accuracy performance depends on TS

quality, there is not any study in the literature which evaluates and compares the exist-

ing TS methods on CAN. Thus, this thesis further explores the existing TS methods in

detail and proposes a new TS method which mitigates the identified uncertainties of

the existing TS methods. That is, our new predictable TS method enables timestamps

with higher quality on CAN. As a consequence, the clock accuracies below 100 ns

is achieved with comprehensive hardware experiments when our novel timestamping

method and CS algorithms perform together.

The CS methods in this thesis offer different levels of clock accuracy with different

levels of implementation complexity. Benefiting from these CS methods, this thesis

further introduces Weak Time Division Multiple Access (WTDMA) as a new slotted

medium access on CAN that is compatible with the different levels of clock accu-

racy. Moreover, the proposed WTDMA takes also inevitable software delays into

account and hence can be realized on software without requiring any modification

of the existing CAN controllers. Particularly, WTDMA model is presented with the

sufficient conditions that define the minimum window size according to the achiev-

able clock accuracy and the maximum software delay for the correct operation of

WTDMA. Therefore, WTDMA can be extended according to the specific network

parameters for example the bit rate and the message payloads which determine the

message length together. In addition, WTDMA does not use guard times differently

from the conventional Time Division Multiple Access (TDMA) approaches for exam-

ple in wireless networks. Due to the specific properties of CAN protocol such as Car-

rier Sense Multiple Access/Collision Resolution (CSMA/CR) and the non-preemptive

message transmission, any interference from the previous or the next CAN message

is tolerated in WTDMA. That is, the guard times are not required in WTDMA which

makes higher bandwidth utilization possible. As a consequence, the message re-

sponse times (RTs) are deterministic and mostly determined by the message trans-

mission times in WTDMA. In this thesis, it is experimentally shown that bus loads

above 90% are achieved in WTDMA while the message latencies are in the order of
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hundreds of microseconds and almost equal to the message transmission times.

Having introduced the WTDMA model, this thesis also develops new message schedul-

ing algorithms for WTDMA, which assign the given CAN messages into the time

slots. The proposed Integer Linear Programming (ILP) methods and heuristic WT-

DMA scheduling methods are evaluated with several CAN message sets that are con-

structed in line with the practical automotive applications. It is shown that the devel-

oped scheduling methods for WTDMA are able to find feasible message assignments

that can be followed in a successful WTDMA operation.

Last but not least, it has to be noted that the advancements in this thesis have potential

to be used by timing-based intrusion detection systems for the security of CAN, which

is left as a future work. Specifically, our bit timing based drift estimation approach

can be used to identify the CAN nodes within the system since each CAN node has

an individual clock drift. Accordingly, the malicious attacks that are realized by an

attacker which transmits intrusion CAN messages on the bus can be determined since

the clock drift of the attacker can not be the same with the nodes in the original

system. Furthermore, our predictable TS method likely improves the performances

of timing-based intrusion detection systems by providing more precise timestamps.

In addition, future work will be concerned with the extension of our CS methods to

fault-tolerant CS.
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Appendix A

PROOFS IN CHAPTER 5

A.1 Clock Accuracy of Offset Correction

We prove Theorem 1 from the main document, which is recalled here for convenience.

Theorem 1 Consider the offset correction at time tk according to (5.1) for a slave

node Si with drift dSi, software delays JTM, JSi, maximum TRI error ETRI and the

uncontrolled time duration tunc = tRM. Then, the clock accuracy of node Si’s LC is

bounded by

max
t

{|∆cSi(t)|} ≤ COC +
⌈ |dSi| · T

TSi

⌉
· TSi, (A.1)

with the maximum clock difference after offset correction at the update times t+k

COC = max{|∆Nmin
Si |, |∆Nmax

Si |} · TSi (A.2)

and

∆Nmin
Si =

⌊tunc · dSi
TSi

⌋
−
⌈ ETRI + JSi
TSi/(1 + dSi)

⌉
− 1

∆Nmax
Si =

⌈tunc · dSi
TSi

⌉
+
⌈JTM

TSi

⌉
+
⌈ ETRI

TSi/(1 + dSi)

⌉
,

Proof 1 Assuming perfect timestamping at the reception time tk − tunc of the SYNC

message and no software delay, we can evaluate the clock difference ∆cSi((tk −
tunc)

+) when applying the offset correction in (5.1) at time tk− tunc (before the trans-

mission of the RM). That is, using (5.1) and the perfect timestamps t̃TM,k and ÑSi,k

taken by TM and Si, respectively, at tk − tunc, we have

NSi((tk − tunc)
+) = NSi((tk − tunc)

−) +
⌊ t̃TM,k

TSi

⌋
− ÑSi,k. (A.3)
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Considering the corresponding clock difference, we compute

∆cSi((tk − tunc)
+) =

(
NSi((tk − tunc)

−) +
⌊ t̃TM,k

TSi

⌋
− ÑSi,k

)
· TSi − t̃TM,k

=
⌊ t̃TM,k

TSi

⌋
· TSi − t̃TM,k. (A.4)

Noting that −y < ⌊x
y
⌋ · y − x ≤ 0 for x ≥ y > 0 and t̃TM,k ≥ TSi, we conclude that

−TSi < ∆cSi((tk − tunc)
+) ≤ 0 (A.5)

Next, we consider the effect of the TRI error, the software delay and the time difference

between the timestamping instant tk − tunc and the time of the offset correction tk.

Due to the TRI error, Si potentially takes the timestamp at a slightly different time

than the TM. This TRI error is given by two components. First, there is a potential

misalignment of the TQs of TM and Si (maximum one TQ duration). Second, any of

the receiver nodes in the network can create the falling edge of the ACK bit also for

the SYNC message. That is, depending on the distance of Si and TM from the node

generating the falling edge, it is possible to observe an additional inaccuracy, whose

upper bound is the propagation delay dP = 5ns/m · LCAN with the maximum length

LCAN between two CAN nodes [124]. In addition, due to variable software delays,

TM and Si take the actual timestamp with a delay between 0 and JTM and 0 and JSi,

respectively. Finally, the clock difference changes by tunc · dSi between tk − tunc and

tk due to the drift of Si’s LC.

Together, the actual timestamp t̂TM,k received from the TM varies between t̃TM,k

(zero software delay) and t̃TM,k + JTM (maximum software delay). Similarly, the

corresponding timestamp N̂Si,k (in terms of HR ticks) taken by Si varies between

ÑSi,k −
⌈ ETRI

TSi/(1 + dSi)

⌉
(zero software delay and negative TRI error) and ÑSi,k +⌈ ETRI + JSi

TSi/(1 + dSi)

⌉
(maximum software delay and positive TRI error). Hereby, TSi/(1+

dSi) is the actual duration of Si’s HR tick. Moreover, an additional clock difference of
tunc · dSi

TSi

is accumulated between tk − tunc and tk due to the drift dSi.

Applying the offset correction

NSi((tk)
+) = NSi((tk)

−) +
⌊ t̂TM,k

TSi

⌋
− N̂Si,k. (A.6)
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with the actual timestamps t̂TM,k and N̂Si,k, the possible negative HR tick difference

after offset correction at time tk (smallest value of t̂TM,k, smallest value of ∆cSi term

in (A.5) and largest value of N̂Si,k) is

∆Nmin
Si =

⌊tunc · dSi
TSi

⌋
−
⌈ ETRI + JSi
TSi/(1 + dSi)

⌉
− 1. (A.7)

and the possible positive HR tick difference (largest value of t̂TM,k, largest value of

∆cSi in (A.5) and smallest value of N̂Si,k) is

∆Nmax
Si =

⌈tunc · dSi
TSi

⌉
+
⌈JTM

TSi

⌉
+
⌈ ETRI

TSi/(1 + dSi)

⌉
(A.8)

That is, indeed

|∆cSi(t
+
k )| ≤ max{|∆Nmin

Si |, |∆Nmax
Si |} · TSi.

This confirms (A.2). An upper bound for the clock difference between the LCs of TM

and Si is then given by adding the maximum clock difference after offset corrections

and the accumulated clock difference between offset corrections due to clock drift in

the form

max
t

{|∆cSi(t)|} ≤ max{|∆Nmin
Si |, |∆Nmax

Si |} · TSi

+
⌈ |dSi| · T

TSi

⌉
· TSi.
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Appendix B

PROOFS IN CHAPTER 6

B.1 Proof of Theorem 2

We next provide the proof of Theorem 2. We restate the theorem for convenience.

Theorem 2 Consider two natural numbers N,M ∈ N such that N = n · g+∆n and

M = m · g +∆m for m,n, g ∈ N, m,n coprime and ∆n,∆m ∈ Z. Further assume

that there are bounds X, Y ∈ N such that |∆n|, |∆m| < X and g > Y . Then, it

holds that m,n are the unique coprime natural numbers such that

|N ·m−M · n| < X · (m+ n). (B.1)

and

2 ·X · (m+ n) < Y. (B.2)

In addition consider any estimate ĝ =
⌊
λ · N

n
+ (1 − λ) · M

m

⌉
of g for 0 ≤ λ ≤ 1.

Then,

|g − ĝ| <
⌊ X

min{n,m}

⌉
. (B.3)

Proof 2 Without loss of generality, assume that N > M such that n ≥ m. Further,

assume that (B.1) and (B.2) are fulfilled. That is,

|N ·m−M · n| < X · (m+ n) and 2 ·X · (m+ n) < Y.

In order to show that m,n are unique, we pursue a proof by contradiction. To this

end, we assume that there are different coprime numbers k, l ∈ N with k ̸= n and/or

l ̸= m such that

|N · l −M · k| < X · (k + l) and 2 ·X · (k + l) < Y.
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Then, we have

|N · l −M · k| = |(n · g +∆n) · l − (m · g +∆m) · k|

= |(n · l −m · k) · g +∆n · l −∆m · k|

< (l + k) ·X.

There are two cases. If n · l −m · k = 0, it holds that

n

m
=

k

l
.

Since k, l are coprime and k ̸= n and/or l ̸= m by assumption, this implies that

n = c · k and m = c · l for some c > 1. Hence, n and m are not coprime, which

violates the assumption. If n · l−m · k ̸= 0, we conclude that |(n · l−m · k) · g| ≥ g.

Since g > Y by assumption, we compute

|N · l −M · k| = |(n · l −m · k) · g +∆n · l −∆m · k|

≥ |(n · l −m · k) · g| − |∆n · l −∆m · k|

> g − (k + l) ·X > Y − (k + l) ·X

> 2 · (k + l) ·X − (k + l) ·X

> (k + l) ·X.

This contradicts the assumption that |N · l −M · k| < X · (k + l). Hence, m and n

are the unique coprime natural numbers that fulfill (B.1) and (B.2).

We next consider the estimate ĝ =
⌊
λ · N

n
+ (1− λ) · M

m

⌉
with 0 ≤ λ ≤ 1. It holds

that

|g−ĝ| =
∣∣∣g − ⌊

λ · N
n

+ (1− λ) · M
m

⌉∣∣∣
=

∣∣∣g − ⌊
λ · n · g +∆n

n
+ (1− λ) · m · g +∆m

m

⌉∣∣∣
=

∣∣∣g − ⌊
λ · g + (1− λ) · g + λ ·∆n

n
+

(1− λ) ·∆m

m

⌉∣∣∣
=

∣∣∣⌊λ ·∆n

n
+

(1− λ) ·∆m

m

⌉∣∣∣ ≤ ∣∣∣⌊(λ
n
+

1− λ

m
) ·X

⌉∣∣∣
≤

∣∣∣⌊ X

min{n,m}

⌉∣∣∣.
This concludes the proof of Theorem 2.
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B.2 Proof of Theorem 3

We next prove Theorem 3 which is also restated for convenience.

Theorem 3 (i) It holds at each iteration j of Algorithm 7 with measurement ∆qj =

nj · PSi + ∆pj and multiple nj in line (11) that P Si,j = kj · PSi + ∆pj with kj =

minr=1,...,j{
nr

nr

} and |∆pj| < X . (ii) If additionally nj = nj in line 11 of Algorithm

7 and there is no zero entry in v, it holds for all r ≥ j that

|P Si,r − PSi| < Xeff = X · HL

L
. (B.4)

Hereby, HL =
∑L

n=1
1
n

denotes the L-th harmonic number.

Proof 3 We prove the first part of the theorem by induction. For the initialization,

we note that P Si,1 = ∆q1 = n1 · PSi + ∆p1 in line 9. Using n1 = 1, k1 = n1 =

minr=1{nr/nr} and ∆p1 = ∆p1, it follows that |∆p1| < X by assumption. Moreover,

only v[1, 1] = ∆q1 ̸= 0 by line 3 and 9 with |v[1, 1] − k1 · PSi| = |n1 · PSi + ∆p1 −
n1 · PSi| = |∆p1| < X .

For the induction step, we assume for some iteration j that P Si,j = kj ·PSi+∆pj with

|∆pj| < X , kj = minr=1,...,j{nr/nr} and |v[l, s] − kj · PSi| < X for all l ≤ L and

s ≤ S such that v[l, s] ̸= 0. We next look at iteration j + 1. If there are no integers

mj+1, nj+1 to fulfill the condition in line 11, it holds that v and c are unchanged and

P Si,j+1 = P Si, j with line 21. That is, v and P Si,j+1 trivially fulfill the assertion.

Otherwise, we have that ∆qj+1 = nj+1 · PSi +∆pj+1 with

|nj+1 · P Si,j −mj+1 ·∆qj+1| =

= |nj+1 · kj · PSi + nj+1 ·∆pj

−mj+1 · nj+1 · PSi −mj+1 ·∆pj+1|

= |(nj+1 · kj −mj+1 · nj+1| · PSi

+ nj+1 ·∆pj −mj+1 ·∆pj+1|

< (mj+1 + nj+1) ·X

because of line 11 in Algorithm 7. In analogy to the proof of Theorem 2, this implies

that nj+1 · kj −mj+1 · nj+1 = 0. Now we consider two cases.
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(i) In the first case, mj+1 = 1. Then, it holds that v does not change before line 19 in

Algorithm 7. Moreover,

v[nj+1, c[nj+1]] = ⌊∆qj+1

nj+1

⌉ = ⌊nj+1 · PSi +∆pj+1

nj+1

⌉

= ⌊nj+1 · kj

nj+1

· PSi +
∆pj+1

nj+1

⌉ = kj · PSi + ⌊∆pj+1

nj+1

⌉

with |⌊∆pj+1

nj+1

⌉| < X since nj+1 ≥ 1. Hence, using kj+1 = kj =
nj+1

nj+1

, we have that

kj+1 = minr=1,...,j+1{nr/nr+1} and for all l ≤ L and s ≤ S that |v[l, s]−kj+1·PSi| <
X if v[l, s] ̸= 0. Further, P Si,j+1 = kj+1 ·PSi+∆pj+1 with |∆pj+1| < X after taking

the average in line 24.

(ii) In the second case, mj+1 > 1. Then, nj+1 · kj − mj+1 · nj+1 = 0 implies that

nj+1 =
nj+1

mj+1

· kj . Since nj+1 ∈ N and mj+1, nj+1 are coprime it follows that kj =

k ·mj+1 for some k ∈ N. That is, nj+1 =
nj+1 · k ·mj+1

mj+1

= nj+1 ·k. According to line

14 and 15 in Algorithm 7, we update v[l ·mj+1, s] = ⌊v[l, s]/mj+1⌉. Choosing kj+1 =

kj/mj+1 = (k ·mj+1)/mj+1 = k, it follows that kj+1 = minr=1,...,j+1{nr/nr+1} and

|v[l ·mj+1, s]−kj+1 · PSi| = |v[l, s]− kj · PSi

mj+1

|

=
1

mj+1

· |v[l, s]− kj · PSi| <
X

mj+1

< X

for all l ≤ L and s ≤ S such that v[l, s] ̸= 0. In addition,

v[nj+1, c[nj+1]] = ⌊∆qj+1

nj+1

⌉ = ⌊nj+1 · PSi +∆pj+1

nj+1

⌉

= ⌊nj+1 · kj · PSi

nj+1 ·mj+1

+
∆pj+1

nj+1

⌉

= k · PSi + ⌊∆pj+1

nj+1

⌉ = kj+1 · PSi + ⌊∆pj+1

nj+1

⌉

with |⌊∆pj+1

nj+1

⌉| < X since nj+1 ≥ 1. Hence, we conclude that |v[nj+1, c[nj+1]] −

kj+1 ·PSi < X . Further, we know that P Si,j+1 = kj+1 ·PSi+∆pj+1 with |∆pj+1| < X

when taking the average in line 24.

Together, P Si,j = kj · PSi + ∆pj with kj = minr=1,...,j{
nr

nr

} and |∆pj| < X in each

iteration j.
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It remains to show that

|P Si,j − PSi| < X · HL−1

L

under the assumption that nj = nj in line 11 of Algorithm 7 and there is no zero

entry in v. To this end, we assume that nj = nj in line 11 of Algorithm 7 and

there is no zero entry in v. Then, it follows from the previous part of the proof that

kj = minr=1,...,j{
nr

nj

} = 1. That is, P Si,j = PSi +∆pi. We next analyze the error for

each multiple l of PSi. To this end, we recall that ∆qj/l is inserted in row l of v. Since

∆qj = l · PSi +∆pi and |∆pi| < X , it must hold that

|∆qj
l

− PSi| = |∆pi
l

| ≤ X

l
.

Considering that P Si,j is the average of the non-zero values in vi, it directly follows

that

|P Si,j − PSi| =
1

L · S
· |

L∑
l=1

S∑
s=1

v[l, s]− PSi|

≤ 1

L · S
·

L∑
l=1

S∑
s=1

X

l
=

X

L
·

L∑
l=1

1

l
= X · HL

L
.

Considering that kj ≥ 1, it also follows that kr = 1 for all r ≥ j. Hence, indeed,

|P Si, − PSi| < X · HL

L
for all r ≥ j.

B.3 Clock Accuracy of ACS-PEDC

We next derive the bound on the clock accuracy in (6.8) of ACS-PEDC. To this end,

we consider an arbitrary cycle k between the times tk and tk+1.

ACS-PEDC applies drift correction between the offset corrections after the RMs at tk

and tk+1, that is, during a time duration T . Considering the perfect correction period

PSi in Section 6.1 in the main document, the required number of clock corrections is

given by ⌊ T

γ · (PSi − sSi) · TSi

⌋
=

⌊T · (1 + dSi)

γ · TSi · PSi

⌋
. (B.5)

In contrast, the number of actually applied clock corrections in iteration j of Algo-

rithm 7 is ⌊T · (1 + dSi)

γ · TSi · P Si,j

⌋
(B.6)
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with the estimated correction period P Si,j .

We next evaluate the difference between the required number of clock corrections

with period PSi and the number of actually applied clock corrections with period

P Si,j as

∣∣∣⌊T · (1 + dSi)

γ · TSi · PSi

⌋
−

⌊T · (1 + dSi)

γ · TSi · P Si,j

⌋∣∣∣
=
∣∣∣⌊T · (1 + sSi

PSi−sSi
)

γ · TSi · PSi

⌋
−
⌊T · (1 + sSi

PSi−sSi
)

γ · TSi · P Si,j

⌋∣∣∣
=
∣∣∣⌊ T

γ · TSi · (PSi − sSi)

⌋
−
⌊ T · PSi

γ · TSi · P Si,j · (PSi − sSi)

⌋∣∣∣
using the relation between dSi and PSi in (5.5) in the main document. We next consider

the general relation

⌊x⌋ − ⌊y⌋ ≤ ⌈x− y⌉, (B.7)

which holds for any real numbers x, y ∈ R. We further recall that |P Si,j −PSi| < Xeff

according to Theorem 3. Hence, we can continue

∣∣∣⌊T · (1 + dSi)

γ · TSi · PSi

⌋
−

⌊T · (1 + dSi)

γ · TSi · P Si,j

⌋∣∣∣
≤
∣∣∣⌈ T

γ · TSi · (PSi − sSi)
− T · PSi

γ · TSi · P Si,j · (PSi − sSi)

⌉∣∣∣
=
∣∣∣⌈ T · (P Si,j − PSi)

γ · TSi · P Si,j · (PSi − sSi)

⌉∣∣∣
≤
∣∣∣⌈ T ·Xeff

γ · TSi · (PSi −Xeff) · (PSi − 1)

⌉∣∣∣.
In addition, a clock difference of at most γ HR ticks is accumulated between the clock

corrections with period P Si,j and after the last clock correction before the next RM

at tk+1. Adding the maximum absolute clock difference after offset corrections and

considering that each correction corresponds to γ HR ticks, the clock accuracy of

ACS-PEDC is indeed determined by

max
t

{|cSi(t)|} ≤ COC+

+
(∣∣∣⌈ T ·Xeff

γ · TSi · (PSi −Xeff) · (PSi − 1)

⌉∣∣∣+ 1
)
· γ · TSi. (B.8)
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B.4 Start-up algorithm

This section provides the detailed derivations of the drift estimates and bounds in

Section 6.5.1 of the main document. We first consider the drift estimate in (6.10).

Ideally, it holds that (N̂Si,1−⌊t̂TM,1/TSi⌋)·TSi = 0. That is, the clock difference is zero

with the offset correction after the first RM. Assuming no further offset correction

and drift correction after the first RM, it is the case that (N̂Si,k − ⌊t̂TM,k/TSi⌋) · TSi

represents the accumulated clock difference between TM and Si after the k-th RM,

that is, within the time duration (k − 1) · T . Assuming a constant drift between the

first and k-th RM, it indeed follows from (2.5) that

dRM
Si,k =

(N̂Si,k − ⌊t̂TM,k/TSi⌋) · TSi

(k − 1) · T
, (B.9)

which confirms (6.10) in the main document. We next determine the clock correction

error ECC
Si in (6.11) in the main document. ∆Nmin

Si in (A.7) and ∆Nmax
Si in (A.8)

in Appendix A.1 represent the possible minimum and maximum HR tick difference

after offset correction. That is, the maximum HR tick error of N̂Si,k − ⌊t̂TM,k/TSi⌋ in

(B.9) occurs if the HR tick difference is ∆Nmin
Si after RM 1 and ∆Nmax

Si after RM k

or ∆Nmax
Si after RM 1 and ∆Nmin

Si after RM k. In both cases, we obtain the maximum

absolute clock correction error as

ECC
Si =

∣∣∆Nmax
Si −∆Nmin

Si

∣∣ · TSi =

=
(⌈JTM

TSi

⌉
+
⌈ ETRI

TSi/(1 + dSi)

⌉
+
⌈ ETRI + JSi
TSi/(1 + dSi)

⌉
+ 1

)
· TSi. (B.10)

Using (B.9) and (B.10), we determine the lower and upper bounds dloSi,k and dupSi,k for

the actual drift as

dloSi,k =
(N̂Si,k − ⌊t̂TM,k/TSi⌋) · TSi − ECC

Si

(k − 1) · T

= dRM
Si,k −

ECC
Si

(k − 1) · T
, (B.11)

dupSi,k =
(N̂Si,k − ⌊t̂TM,k/TSi⌋) · TSi + ECC

Si

(k − 1) · T

= dRM
Si,k +

ECC
Si

(k − 1) · T
. (B.12)

This confirms (6.12) in the main document.
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We finally provide the proof of Theorem 4 in the main document, which is restated

here for convenience.

Theorem 4 Consider Algorithm 8 and write tST for the start-up time,

when active = ACS-PEDC. Then,

max
t

{|cSi(t)|} ≤

 ∆RM = COC +
ECC

Si

(k−1)
if T ≤ t ≤ tST

∆PEO in (6.8) if t > tST.
(B.13)

Proof 4 Initially, active = START-UP according to Algorithm 8. In each iteration

of the while loop in line 2, it is first checked if at least two RMs were received. Assum-

ing that the first RM is transmitted at time 0, two RMs are received at time T . Before

time T , no guarantees on the clock difference are given. After two RMs are received, it

is checked if there is a unique value of m in (6.15). active = START-UP as long as

no unique m is determined. Specifically, t ≤ tST as long as active = START-UP.

In that case, it holds that the applied drift correction is dRM
Si,k, whereas the actual drift

is given by the lower and upper bounds in (6.12). That is, the maximum accumulated

clock difference because of an inaccurate drift estimate is given by(
dupSi,k − dRM

Si,k

)
· T =

(
dRM
Si,k − dRM

Si,k

)
· T

=
ECC

Si

(k − 1) · T
· T =

ECC
Si

(k − 1)
.

Considering the bound on the clock difference from the offset correction in (5.3) in

the main document, it holds for t ≤ tST that

max
t

{cSi(t)} ≤ COC +
ECC

Si

(k − 1)
,

which confirms (6.16) in the main document. If a unique value of m is found in (6.15),

Algorithm 8 sets active = ACS-PEDC and t > tST. Then, we know that

P Si,j = m · PSi +∆pj

such that ∣∣∣P Si,j

m
− PSi

∣∣∣ = ∣∣∣m · PSi +∆pj
m

− PSi

∣∣∣ ≤ Xeff

m
≤ Xeff

since m ≥ 1. But then, the bound on the clock difference in (6.8) in the main document

holds, which concludes the proof.
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Appendix C

PROOFS IN CHAPTER 7

C.1 Proof of Theorem 5

We prove Theorem 5 from the main document, which is recalled here for convenience.

Theorem 5 Consider a feasible WTDMA schedule as in Definition 1 with the pa-

rameters introduced above. Further, define wmin = minMi∈M Lmax
i as the minimum

window size for the messages in M and ∆max = maxN∈N ∆N as the maximum soft-

ware delay of the nodes in N . Then, V = 0 if

wmin > wsafe = ∆max + 2 · θ. (C.1)

Hereby, wsafe denotes the safe window size. Furthermore, the starting time delay ϕj,b

and the response time Rj,b of any message instance Mj,b are bounded by

ϕj,b ≤ ϕmax = ∆max + 2 θ and Rj,b ≤ Rmax
j = ϕmax + Lmax

j . (C.2)

Proof 5 We first consider a generic window (j, b) for the b-th instance Mj,b of mes-

sage Mj ∈ M and show that (1) yj,b−θ ≤ sj,b ≤ yj,b+∆max+θ and (2) all messages

scheduled earlier than Mj,b complete their transmission no later than yj,b+∆max+ θ

by induction. For the induction basis, consider the window (j, b) = (j, 0), assuming

that instance Mj,0 is transmitted in the first window of the schedule. Regarding Mj,0,

it is known that yj,0 − θ ≤ ej,0 ≤ yj,0 + θ + ∆max with F1. Besides, the CAN bus is

idle until Mj,0 starts transmission and subsequent messages in the schedule can not be

ready before Mj,0 due to (C.1). Thus, it holds that (1) yj,0−θ ≤ sj,0 ≤ yj,0+∆max+θ

and (2) all messages which are scheduled earlier than Mj,0 complete their transmis-

sion no later than yj,0 + ∆max + θ. Now consider two consecutive windows (i, a)
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and (j, b) with the induction assumption (1) yi,a − θ ≤ si,a ≤ yi,a + ∆max + θ

and (2) all messages which are scheduled earlier than Mi,a complete their trans-

mission no later than yi,a + ∆max + θ. Hence, transmission of Mi,a finishes at

fi,a ≤ yi,a + ∆max + θ + Li,a ≤ yi,a + ∆max + θ + wi ≤ yj,b + ∆max + θ consid-

ering F3. That is, it follows that all messages scheduled earlier than Mj,b complete

their transmission no later than yj,b +∆max + θ. Since Mj,b is ready at ej,b such that

yj,b−θ ≤ ej,b ≤ yj,b+∆max+θ with F1 and subsequent messages in the schedule can

not be ready before Mj,b due to (C.1), it holds that yj,b − θ ≤ sj,b ≤ yj,b +∆max + θ.

This concludes the induction step.

Based on this result, it is now possible to prove that V = 0 when using WTDMA. For-

mally, considering any arbitrary two consecutive message instances Mi,a and Mj,b,

it must hold that si,a < sj,b. Since the WTDMA schedule is feasible, it holds that

yi,a +∆max + θ < yj,b − θ due to (C.1). Furthermore, we know from the above com-

putation that si,a ≤ yi,a + ∆max + θ and yj,b − θ ≤ sj,b. This directly implies that

si,a < sj,b with yi,a +∆max + θ < yj,b − θ. Since si,a < sj,b and i, j, a, b were chosen

arbitrarily, it follows that indeed V = 0.

Regarding the latest starting time, we use sj,b ≤ yj,b + ∆max + θ from above. Since

gj,b ≥ yj,b − θ, it follows that sj,b − gj,b ≤ ∆max + 2 θ = ϕmax. Adding the longest

transmission duration of instance Mj,b to ϕmax, we obtain the WCRT Rj,b ≤ Rmax
j =

∆max + 2 θ + Lmax
j .
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