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ABSTRACT

RADIX-3 NTT-BASED POLYNOMIAL MULTIPLICATION FOR
LATTICE-BASED CRYPTOGRAPHY

Hassan, Chenar Abdulla
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

May 2022, 39 pages

The lattice-based cryptography is considered as a strong candidate amongst many

other proposed quantum-safe schemes for the currently deployed asymmetric cryp-

tosystems that do not seem to stay secure when quantum computers come into play.

Lattice-based algorithms possesses a time consuming operation of polynomial mul-

tiplication. As it is relatively the highest time consuming operation in lattice-based

cryptosystems, one can obtain fast polynomial multiplication by using number the-

oretic transform (NTT). In this thesis, we focus on and introduce a radix-3 butterfly

operation to be used in NTT-based polynomial multiplication. In addition, utilizing

the ring structure, we propose two parameter sets of CRYSTALS-KYBER, one of the

four round three finalists in the NIST Post-Quantum Competition.

vii



Keywords: Number Theoretic Transformation, Polynomial Multiplication, KYBER,

Lattice-Based Cryptography.
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ÖZ

KAFES-TABANLI KRİPTOGRAFİ İÇİN RADİX-3 NTT-TABANLI POLİNOM
ÇARPMASI

Hassan, Chenar Abdulla
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Mayıs 2022, 39 sayfa

Kafes tabanlı kriptografi, kuantum bilgisayarlar devreye girdiği takdirde güvenli kal-

mayan şu anda kullanılmakta olan asimetrik şifreleme sistemleri yerine önerilen diğer

kuantum-güvenli şemalar arasında güçlü bir aday olarak kabul edilmektedir. Kafes

tabanlı algoritmaların en zaman harcayan işlemi polinom çarpmasıdır. Kafes tabanlı

kriptosistemlerde görece olarak en fazla zaman alan işlem polinom çarpması oldu-

ğundan, sayı teorik dönüşüm (NTT) kullanılarak hızlı polinom çarpımı elde edilebilir.

Bu tezde, NTT tabanlı polinom çarpmasında kullanılacak bir radix-3 kelebek işlemine

odaklanıyor ve tanıtıyoruz. Ek olarak, NIST Post-Kuantum Yarışmasında üçüncü tu-

runun dört finalistten biri olan CRYSTALS-KYBER için halka yapısını kullanarak iki

parametre setini öneriyoruz.
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Anahtar Kelimeler: Sayı Teorik Dönüşümü, Polinom Çarpımı, KYBER, Kafes-Tabanlı
Kriptografi.
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CHAPTER 1

INTRODUCTION

A small portion of people notices the small padlock symbol that is visible on the

left of the search bar in internet browsers which is significant while shopping, bank,

email, and social media accounts are visited. It is a sign of whether the intended

website uses encryption for communication on the internet. This symbol verifies that

the data is guarded while traveling through the internet.

Symmetric and asymmetric schemes are the two cryptosystems that provide secu-

rity for today’s digital information. Symmetric Cryptography (also referred to as

secret key cryptography) utilizes one previously agreed on and shared key between

the sender and receiver to encrypt and decrypt messages among them. On the other

hand, asymmetric cryptography, which is also known as public-key cryptography,

makes use of two keys that are referred to as public and private keys. The public key

(publicly known as the name suggests) is used by senders to encrypt and send over

messages (known as plaintexts) and the receiver on the other end uses a unique and

solely known private key to decrypt the message. These two oftentimes are used along

with each other. For instance, internet browsers use public-key schemes for valida-

tion and obtainment of a shared key afterward symmetric key schemes for encrypting
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future communications.

The lack of security of any kind of credentials that goes through the internet, often

referred to as an insecure channel, could lead to significant ramifications that are much

more aggravating for government, intelligence communities, and business companies

who handle quite sensitive information than it is for individuals. The reason for this

is that the current computational power is not yet strong to compromise that security

despite being still under development. Albeit, quantum computers can compromise

that and it is anticipated in a decade or so they could become somewhat of a threat to

the currently deployed cryptographic protocols. It is for this reason that government,

intelligence agencies, bank companies, and researchers are all competing to create

new methods and cryptographic protocols that would resist attacks that can utilize

quantum computers.

It is well-known that for classical computers, it takes thousands of years to break the

presently deployed cryptosystems for which we can conclude that they are practically

secure and they cannot pose a great threat.

Quantum computers are machines that take advantage of quantum phenomena such

as entanglement and superposition for solving difficult mathematical problems which

are infeasible for classical computers. In fact, there has been a significant amount of

research in the past few years. Moreover, having said that if a large enough quantum

computer comes into play, that would in fact put in danger all the integrity and confi-

dentially of all the digital information everywhere. Therefore, it is the primary goal of

post-quantum cryptography (also known as quantum-safe cryptography) to advance

a cryptographic scheme safe from attacks by classical as well as quantum computers.
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As research institutes and companies are all racing for quantum supremacy, according

to P. Shor’s algorithm [28] that is published in 1999, the currently hard problems such

as Integer Factorization and Discrete Log problems are all breakable in polynomial

time by a quantum computer with high enough number of qubits. Although no effi-

cient quantum computer is built yet, it is anticipated that it may happen in a decade

or so. That’s why it is thoroughly been worked on in industry and academia as well

as by government intelligence agencies. That is why new crypto schemes safe toward

quantum computer attacks are of great interest to the National Institute of Standards

and Technology, NIST.

NIST furthermore demonstrates the significance of building post-quantum cryptog-

raphy schemes with the statement “Historically, it has taken almost two decades to

deploy our modern public key cryptography infrastructure. Therefore, regardless of

whether we can estimate the exact time of the arrival of the quantum computing era,

we must begin now to prepare our information security systems to be able to re-

sist quantum computing [24].” Therefore, back in 2016 NIST started a quantum-safe

standardization process and called for submission of cryptosystems that are quantum-

safe. The scope of the competition included submissions of digital signatures and

KEM/PKE schemes. For that reason, cryptosystems based on five main classes of

quantum-resistant problems are proposed, namely, lattice-based, code-based, hash-

based, multivariate-based, and supersingular elliptic curve isogeny-based cryptogra-

phy. In the beginning, there were 86 submissions, and then 69 of the submissions

were deemed qualified for further consideration in the first round that was held in

2016. The second round was held in 2019 and 26 of the submissions made it to the

third round. Amongst the finalists of the second round were 12 lattice-based schemes,
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3 digital signatures, and 9 KEM/PKEs. Performance and security were the two major

criteria in the process. In 2020, the third round of the competition was carried out and

there were 7 finalists along with 8 alternatives [25].

In contrast, lattice-based algorithms possess two very time-consuming operations;

despite random number generation, polynomial multiplication is the other most time-

consuming operation. Additionally, the RLWE and MLWE based schemes are built

upon operations with polynomials from polynomial rings Zp[x]/f(x) where p is a

prime and f is an irreducible polynomial over Zp. Furthermore, as polynomial mul-

tiplication is relatively the highest time-consuming operation in lattice-based cryp-

tosystems, by using Number Theoretic Transform (NTT) one can obtain fast poly-

nomial multiplication if the rings and primes are selected in a specific way. Thus,

it is of great interest in the research community to explore the utilization of NTT

for this polynomial multiplication which reduces the time complexity from O(n2) to

O(n log n) as well as to see how far can we optimize it in different settings.

The fast Fourier transform (FFT) [12] is perhaps one of the most elegant results of

the twentieth century that computes the discrete Fourier transform (DFT) of a se-

quence. A lot of the currently used technologies rely on it such as GSM and WIFI

communications and many more applications in science. In fact, any technologies

using signal processing make use of the concept of DFT with different underlying

rings. Moreover, if one restricts the underlying ring in the DFT algorithm to be a

finite field, we then get a variant of DFT called number theoretic transform (NTT),

which is primarily used for optimizing integer and polynomial multiplication.

In addition, despite its simplicity, the schoolbook polynomial multiplication has a

quadratic time complexity and it takes a lot of processing cycles. To overcome that

4



there are other polynomial multiplication approaches to be used such as Karatsuba

[17], Toom-Cook [11], and more importantly the number-theoretic transform which

is a very efficient way to compute polynomial multiplication for some lattice-based

schemes.

Some of the proposed post quantum schemes which utilize NTT for polynomial mul-

tiplications are NewHope [2, 4], NewHope Compact [3], Kyber [5], NTTRU [21].

Our contribution in this thesis is that we define the radix-3 NTT, develop a Cooley-

Tukey-like butterfly as well as utilizing it for polynomial multiplication along with

a Python implementation. Moreover, we use these results to propose two parameter

sets for CRYSTALS-KYBER, a post-quantum KEM.

This thesis is organized as follows. Followed by this introduction is Chapter 2 that

gives the necessary mathematical background to this work. In Chapter 3, we present

the radix-3 NTT, how it functions and arithmetic complexity. We propose two param-

eter sets for KYBER in Chapter 4. The benchmarking and comparison to the imple-

mented radix-3 NTT is given in Chapter 5. And we conclude this work in Chapter

6.
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CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter, we recall and give some of the basics and definitions to provide the

reader with the necessary mathematical background to better understand the topics

covered. Most of the concepts follow from [13].

2.1 Mathematical Definitions

Definition 1. For a positive integer n and a finite field Fp, the nth root of unity is

w ∈ F such that wn = 1.

Definition 2. A primitive nth root of unity for a positive integer n in the field F is a

root of unity w ∈ F such that wk ̸= 1 for any k < n.

Definition 3 (Irreducible Polynomial). A monic polynomial f(x) in the field F[x] is

called irreducible if it does not have nontrivial factors over F[x].

Definition 4 (Cyclotomic Polynomial). For a positive integer m, the mth cyclotomic

polynomial is an irreducible polynomial defined over the field F[x] that divides xm−1

but not xk − 1 for a positive integer k < m.

Cyclotomic polynomials are monic as well as their roots are roots of unity.
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It is well known that there exits a unique polynomial that interpolates n + 1 distinct

pairs (ai, bi) ∈ F for i = 0, 1, . . . , n of degree at most n [14].

Definition 5. (Centered Binomial Distribution [6]) Let n be a positive integer, the

centered binomial distribution is denoted by βη and defined as follows.

Sample (a1, . . . , aη, b1, . . . , bη)← {0, 1}2η and output
n∑

i=1

(ai − bi)

2.2 Lattice-Based Cryptography

The history of lattices goes a long time back to J. S. Lagrange and C. F. Gauss.

However, it was in 1996 that Miklós Ajtai [1] introduced the use of lattices to build

computationally hard problems that could be used for cryptographic purposes.

Assume B is a basis of the n dimensional Euclidean space, a lattice L is a linear com-

bination of the basis elements in B. To put it another way, for B = {b1,b2, . . . ,b2} a

basis of Rn, the lattice L is defined as

L =

{
n∑

i=0

aibi : ai ∈ Z

}
.

Shortest vector problem (SVP) and the closest vector problem (CVP) [22] are the two

most studied mathematically hard problems based on lattices. The SVP is defined as

finding the shortest vector in a lattice having been given a basis of the lattice whilst

CVP is finding the closest vector to a vector outside the lattice.

2.2.1 Learning with Error (LWE) Problem

Introduced by Regev [27], Learning with Error problems are believed to be hard prob-

lems for quantum computers. Their security is proved to be as difficult as the worst-
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case lattice problems. The LWE problmes can be viewed as the problem of solving a

linear system over Zp except for which an error is added making it a hard problem to

solve.

Let A = [a1, . . . , am] ∈ Zn×m
p , and an error vector e ∈ Zm

p chosen according to ψ.

The LWE problem is to find the secret vector s ∈ Zn
p given b = sA+ e.

2.2.2 Ring-Learning with Error (R-LWE) Problem

The R-LWE is very similar to the LWE problem in context. However, instead of now

having vectors from Zn
p , we have polynomials of degree less than n chosen from a

polynomial ring Rp [20]. The cryptographic algorithms based on R-LWE problem

have a key size of order n unlike those based on LWE that has order n2. In addition,

computations can be accelerated using rings. Furthermore, it is proved that the R-

LWE problem is as hard as the LWE on ideal lattices [20].

2.2.3 Module-Learning with Error (M-LWE) Problem

The M-LWE [18] is merely an extension of the R-LWE. However, this time a vector

of k polynomials are selected rather than one polynomial as in R-LWE. This vector

is called a module, and k is said to be the rank of this module.

2.3 Schoolbook Polynomial Multiplication

Schoolbook or naive polynomial multiplication is the conventional way of polynomial

multiplication. Suppose that f(x) and g(x) be two n-term polynomials, that is of

degree n− 1. Then, their multiplication h(x) = f(x)g(x) of 2n-term is calculated as

9



follows. f(x) =
∑n−1

i=0 fix
i and g(x) =

∑n−1
i=0 gix

i, therefore,

h(x) =
2n−1∑
i=0

hix
i such that hi =

i∑
j=0

figi−j.

The multiplication h(x) has a complexity of order n2.

There are several approaches in the literature for polynomial multiplication such as

the schoolbook method, Karatsuba method, Took-Cook method, NTT method, etc.

2.4 Radix-2 NTT

The NTT polynomial multiplication evaluates the two polynomials at roots of unity,

multiply them coefficient-wise, and then uniquely interpolates the results to the re-

sulting polynomial. Figure 2.1 below illustrates this process.
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ĉ
(
w2n−1

2n

)

O
(
n2

)Schoolbook Multiplication

Polynom
ialE

valuation

O
(n

lo
g
n
)

O(n)

Point-wise Multiplication

O
(n

lo
g
n
)w

ith
N

T
T

Po
ly

no
m

ia
lI

nt
er

po
la

tio
n

w
ith

in
ve

rs
e

N
T

T

Figure 2.1: Discrete Fourier Transform Algorithm

In order to multiply two polynomials g, h ∈ Rp = Zp[x]/(x
n+1) for the parameters:

an integer n power of 2 and a prime p such that p ≡ 1 mod 2n which provides the
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existence of w, a primitive 2nth root of unity. Then one can efficiently compute the

polynomial multiplication f = gh mod (xn + 1) with NTT transformation. The

multiplication is calculated by NTT as follows:

f = INTT (NTT (g) ◦NTT (h))

where NTT is forward NTT transformation, INTT is the inverse operation and ◦ is

the componentwise multiplication of the vector elements. The formulas of NTT and

INTT are given by

ĝ = NTT (a) =
n−1∑
i=0

ĝix
i where ĝi =

n−1∑
j=0

gjw
ij mod p,

g = INTT (ĝ) =
n−1∑
i=0

gix
i where gi = 1/n

n−1∑
j=0

ĝjw
−ij mod p.

To carry out these transformations there are two separate methods. The first method

is FFT (Fast Fourier Transform) method which uses the Cooley-Tukey butterfly algo-

rithm [12] for calculating NTT and Gentleman-Sande butterfly algorithm [16] for

INTT. The second method is called the Twisted FFT method [3] which uses the

Gentleman-Sande butterfly algorithm for both NTT and INTT transformations.

a1 wj

a0

â1 = a0 − wja1

â0 = a0 + wja1
+1

−1

Figure 2.2: Cooley-Tukey Butterfly
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a1 wj

a0

â1 = wj(a0 − a1)

â0 = a0 + a1
+1

−1

Figure 2.3: Gentleman-Sande Butterfly
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CHAPTER 3

RADIX-3 NTT-BASED POLYNOMIAL MULTIPLICATION

3.1 Radix-3 NTT

The radix-3 NTT is defined on a modular polynomial ringRp = Zp[x]/(f(x)) where

the modulus f(x) is a cyclotomic polynomial allowing to evaluate a polynomial at its

roots. The conventional definition is to evaluate a polynomial at the roots of unity w

existing in the Zp, that is, for f(x) = xn − 1 where n = 3ℓ, ℓ ∈ Z. However, compu-

tation over rings with such modulus f(x) is not safe for cryptographic schemes based

on the LWE problem as there are algebraic attacks against them [19]. Nevertheless,

this could be utilized for schemes that do not require a cyclotomic modulus polyno-

mial such as NTRU [9]. Here, our focus is on targeting cryptographic schemes based

on LWE, and so we omit f(x) = xn − 1. A cyclotomic polynomial that suits our

goal here is f(x) of the form f(x) = x2n + xn + 1 of degree 2 · 3ℓ . It is worth not-

ing that, "Mixed-based FFT Multiplication Algorithms" [23] are introduced of length

n = k · 2ℓ whereas considered multiples ℓ include 1 and the first three odd primes.

Two recent works [3, 21] consider a ring of degree 3 · 28.

The ring Rp = Zp[x]/(x
2n + xn + 1) allows efficient computation of full level NTT

13



of polynomials at the roots of x2n + xn + 1 for p ≡ 1 mod 3n. The ring possesses

the following Chinese Remainder Theorem (CRT) isomorphism,

Rp = Zp[x]/(x
2n + xn + 1) ∼= Zp[x]/(x

n − α)× Zp[x]/(x
n − β)

for α, β ∈ Zp, αβ = 1 and α + β = −1.

Therefore, if we have a polynomial inRp and we would like to compute its NTT, we

can instead map it to the frequency domain of the above CRT isomorphism, carry out

its NTT over both rings, and finally use the inverse CRT map to get back the results in

Rp. Although this method would increase the arithmetic complexity, that is the best

we could do.

The problem, now, has reduced to computing NTT in the rings of the form Zp[x]/(x
n−

ζ). In the following section, we shall discuss this process.

3.2 NTT over Zp[x]/(x
n − γ)

Recall, NTT is just the evaluation of a polynomial at some special roots of the modu-

lus f(x) in the modular polynomial ring Zp[x]/(x
n − γ). In this chapter, we develop

what is called a radix-3 NTT over a finite field. Assume we have a polynomial a(x)

of length n that we would like to find its NTT where n is a power of 3. The algorithm

evaluates the polynomial a(x) at all the roots of f(x). In order for the ring to allow

computing NTT, it should contain a primitive nth root of unity w and an nth root of

γ that we shall denote by ζ . Note that multiplying ζ by the powers of w yields all the

roots of xn − γ. As stated in the previous section, the modulus prime p is of the form

p ≡ 1 mod 3n.
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Since wn = 1 mod p, this implies that wn − 1 = 0 mod p or (wn/3 − 1)(w2n/3 +

wn/3 + 1) = 0 mod p, and so only (w2n/3 + wn/3 + 1) = 0 mod p as wn/3 ̸= 1

mod p. For simplicity we use µ = w2n/3. Thus, it is not difficult to prove that

xn− ζn = (xn/3− ζn/3)(xn/3−µζn/3)(xn/3−µ2ζn/3). Therefore, according to CRT,

the ring decomposes as follows:

Rp = Zp[x]/(x
n − ζn)→ Zp[x]/(x

n/3 − ζn/3)

× Zp[x]/(x
n/3 − µζn/3)× Zp[x]/(x

n/3 − µ2ζn/3) (3.1)

In order to find the NTT of a polynomial a(x) ∈ Zp[x]/(x
n − γ), we need to reduce

a(x) iteratively according to this above CRT map, as shown in Example 1. However,

we would rather prefer to follow the definition below to compute it. We will denote

the NTT form of a(x) by â(x).

Example 1. Suppose that a(x) and b(x) be two polynomials over Zp[x]/(x
9− 63) for

p = 109, where a(x) = x + 5x2 + 2x3 + 7x4 + 100x5 + 43x6 + 105x7 + 17x7 and

b(x) = 3 + 77x+ 21x2 + 99x3 + 53x4 + 29x5 + x6 + x7 + 4x9. Note that w = 16 is

9th root of unity and µ = 63, µ2 = 45. Now, we would like to find c(x) = a(x)b(x)

mod (x9 − 63) using the NTT method. For that purpose, we first split the modulus

as:

x9 − 63 = (x3 − 27) · (x3 − 66) · (x3 − 16)

= (x− 3)(x− 80)(x− 16)

· (x− 81)(x− 89)(x− 48)

· (x− 7)(x− 5)(x− 97) (3.2)

We divide the solution in a few steps, and in each step the polynomials are expressed

in smaller rings.
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Step 1: Write a(x) and b(x) in Zp[x]/(x
3−27), Zp[x]/(x

3−66) and Zp[x]/(x
3−16) :

a(x)→ [53 + 108x+ 56x2, 87 + 43x+ 106x2, 78 + 70x+ 71x2]

b(x)→ [14x2 + 57x+ 26, 66x2 + 83x+ 102, 92x2 + 91x+ 99].

Step 2: We now write each of these component in their rings, according to the order

appears in Equation (3.2) :

NTT (a) = [9, 90, 60, 19, 98, 35, 14, 23, 88]

NTT (b) = [105, 10, 72, 36, 99, 62, 12, 20, 47].

In order to compute NTT (c), we point-wise multiply NTT (a) and NTT (b) and

obtain

NTT (c) = [73, 28, 69, 30, 1, 99, 59, 24, 103].

To compute c(x), we now need to compute INTT (NTT (c)), which can be done in

the reverse order and obtained as

c = [54, 25, 70, 6, 90, 29, 41, 37, 69].

Definition 6 ([26]). The NTT form of a polynomial a(x) ∈ Zp[x]/(x
n−γ) represented

in coefficient form as a = [a0, a1, a2, . . . , an−1] is defined by

â(x) =
n−1∑
i=0

â[i]xi where â[k] =
n−1∑
j=0

a[j] ζj wjk,

where w is a primitive nth-root of unity and ζ is an nth root of γ.

Therefore, from this definition,

â[k] =
n−1∑
j=0

a[j] (ζwk)j

=

n/3−1∑
j=0

a[3j] (ζwk)3j +

n/3−1∑
j=0

a[3j + 1] (ζwk)3j+1
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+

n/3−1∑
j=0

a[3j + 2] (ζwk)3j+2

=

n/3−1∑
j=0

a[3j] (ζwk)3j︸ ︷︷ ︸
A[k]

+ζwk

n/3−1∑
j=0

a[3j + 1] (ζwk)3j︸ ︷︷ ︸
B[k]

+ (ζwk)2
n/3−1∑
j=0

a[3j + 2] (ζwk)3j︸ ︷︷ ︸
C[k]

= A[k] + ζwk B[k] + ζ2w2k C[k] (3.3)

Remark 1. From the definition of A,B and C we can derive equivalences for A[k],

B[k] and C[k]:

1. A[k + n/3] =

n/3−1∑
j=0

a[3j](ζ wk+n/3)3j =

n/3−1∑
j=0

a[3j](ζ wk)3j = A[k],

2. A[k + 2n/3] =

n/3−1∑
j=0

a[3j](ζ wk+2n/3)3j =

n/3−1∑
j=0

a[3j](ζ wk)3j = A[k],

for k = 1, 2, . . . , n/3. Note that wn = 1. Similarly, the same equalities hold for B[k]

and C[k].

From Remark 1, we obtain that,

â[k + n/3] = A[k] + ζwk+n/3B[k] + ζ2w2(k+n/3)C[k]

= A[k] + µ ζ wkB[k] + µ2 ζ2w2k C[k]

â[k + 2n/3] = A[k] + µ2 ζ wk B[k] + µ ζ2w2k C[k].

Therefore, for 0 ≤ k < n/3,

â[k] = A[k] + ζwk B[k] + ζ2w2k C[k],

â[k + n/3] = A[k] + µ ζ wkB[k] + µ2 ζ2w2k C[k],

â[k + 2n/3] = A[k] + µ2 ζ wk B[k] + µ ζ2w2k C[k]. (3.4)
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Moreover, we can trade two multiplications by µ2 to four additions. Since we have

that µ2 + µ+ 1 = 0 substituting this for µ2 in (3.4), we get:

â[k] = A[k] + ζwk B[k] + ζ2w2k C[k]

â[k + n/3] = A[k]− ζ2w2k C[k] + µ (ζ wkB[k]− ζ2w2k C[k])

â[k + 2n/3] = A[k]− ζ wk B[k]− µ(ζ wk B[k]− ζ2w2k C[k]) (3.5)

In Algorithm 1, we give a pseudo-code to computing the NTT according to (3.5).

Theorem 1. The arithmetic complexity of calculating a radix-3 NTT of length n is

given by the recurrence relation:

TNTT (n) = 3 · TNTT

(n
3

)
+ n ·M +

7

3
n · A (3.6)

where TNTT (1) = 0, n is a power of 3, M stands for multiplication and A stands for

addition over Zp. Moreover,

TNTT (n) = ℓ n ·M +
7

3
ℓ n · A, (3.7)

for n = 3ℓ and ℓ ∈ Z+.

Proof. In order to calculate the complexity, we will follow Algorithm 1. The first

line scrambles the polynomial according to a ternary reversal function. This helps in

returning the resulting polynomial in normal ordering. In fact, the butterflies are in

line 9, 10 and 11, the other lines can all be pre-computed. Assume δ1 = wjb, δ2 = w2
j c

and δ3 = µ(δ1 − δ2). Thus, line 9 could be computed with 2 multiplications and 2

additions. Line 10, can be computed with 1 multiplication and 3 additions. Moreover,

line 11 can be computed with just 2 additions. Note that some operations are carried

out in the steps before. Therefore, it takes 3 multiplications and 7 additions, each
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Algorithm 1 NTT algorithm based on a Cooley-Tukey-like butterfly
Input: A polynomial a(x) ∈ Zp[x]/(x

n − ζn) where a[i], i < n is the ith coefficient

of a(x). The list pre-computed Γ of ζwj, j ∈ [0, n/3). Also, µ = wn/3 mod p where

w is a primitive nth root of unity.

Output: A← NTT (a) = [A0, A1. . . . , An−1].

1: A = scramble(a, n) ▷ To arrange a so that A will be in normal ordering.

2: ℓ← log3 n

3: for each level ∈ [1, ℓ+ 1) do

4: m← 3level

5: for each j ∈ [0,m/3) do

6: wj ← Γ[j]n/m

7: for each k ∈ [0, n/m) do

8: A← A[km+ j], B ← A[km+ j + m
3
], C ← A[km+ j + 2m

3
]

9: A[km+ j]← A+ wjB + w2
jC

10: A[km+ j + m
3
]← A− w2

j C + µ (wjB − w2
j C)

11: A[km+ j + 2m
3
]← A− wj B − µ(wj B − w2

j C)

12: end for

13: end for

14: end for

15: return A

of length n/3. This completes the proof of (3.6). The result (3.7) can be directly

obtained by solving (3.6) for n = 3ℓ.
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3.3 Inverse NTT over Zp[x]/(x
n − γ)

In the previous section, we presented a Cooley-Tukey-like butterfly to compute the

forward NTT. In the present section, we shall take this further and reverse it to give a

similar butterfly to compute its inverse operation.

To find the inverse transformation, recall Equation (3.4):

â[k] = A[k] + ζwk B[k] + ζ2w2k C[k]

â[k + n/3] = A[k] + µ ζ wkB[k] + µ2 ζ2w2k C[k]

â[k + 2n/3] = A[k] + µ2 ζ wk B[k] + µ ζ2w2k C[k]

In matrix-vector form, this can be written as
â[k]

â[k + n/3]

â[k + 2n/3]

 =


1 1 1

1 µ µ2

1 µ2 µ




A[k]

ζwkB[k]

ζ2w2k C[k]


By inverting the intermediate matrix, we can obtain that

A[k]

ζwkB[k]

ζ2w2kC[k]

 =
1

3


1 1 1

1 µ2 µ

1 µ µ2




â[k]

â[k + n/3]

â[k + 2n/3]


equivalently

A[k] =
1

3
(â[k] + â[k + n/3] + â[k + 2n/3])

B[k] =
1

3
ζ−1w−k

(
â[k] + µ2â[k + n/3] + µâ[k + 2n/3]

)
C[k] =

1

3
ζ−2w−2k

(
â[k] + µâ[k + n/3] + µ2â[k + 2n/3]

)
. (3.8)

for 0 ≤ k < n/3. Furthermore, we can again trade two multiplications by µ2 to four

additions. Since we have that µ2 + µ+ 1 = 0 substituting this for µ2 in (3.8), we get:

A[k] =
1

3
(â[k] + â[k + n/3] + â[k + 2n/3])
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B[k] =
1

3
ζ−1w−k (â[k]− â[k + n/3]− µ(â[k + n/3]− â[k + 2n/3]))

C[k] =
1

3
ζ−2w−2k (â[k]− â[k + 2n/3] + µ(â[k + n/3]− â[k + 2n/3]))(3.9)

The above butterflies are inverse of the NTT transformation and it is called as Gentleman-

Sande-like butterfly [16]. We prefer to follow the Gentleman-Sande-like butterflies to

calculating the inverse of the NTT transformation. The definition of calculating the

inverse NTT is provided in Definition 7.

Definition 7 ([26]). The inverse NTT of a polynomial â(x) ∈ Zp[x]/(x
n − γ) repre-

sented in coefficient form as â = [â0, â1, â2, . . . , ân−1] is defined by

a(x) =
n−1∑
i=0

a[i]xi where a[k] =
1

n

n−1∑
j=0

â[j] ζ−j w−jk,

for w is a primitive nth-root of unity and ζ is an nth root of γ.

In Algorithm 2, we propose a pseudo-code to compute the inverse NTT using the

Gentleman-Sande-like butterflies according to Equation (3.9).

Theorem 2. The arithmetic complexity of calculating a radix-3 inverse NTT of

length n is given by the recurrence relation:

TINTT (n) = 3 · TINTT

(n
3

)
+ n ·M +

7

3
n · A (3.10)

where TINTT (1) = 0, n is a power of 3, M stands for multiplication and A stands for

addition in Zp. Moreover,

TINTT (n) = ℓ n ·M +
7

3
ℓ n · A, (3.11)

for n = 3ℓ and ℓ ∈ Z+.

Proof. Line 8 can be computed with 2 additions. Line 9 can be computed with 2 mul-

tiplication and 3 additions. Moreover, Line 10 can be computed with 1 multiplication

21



Algorithm 2 Inverse NTT algorithm based on a Gentleman-Sande like butterfly
Input: A polynomial A(x) ∈ Zp[x]/(x

n− ζn) where A[i], i < n is the ith coefficient

of â(x). The list pre-computed Γ−1 of ζ−1w−j, j ∈ [0, n/3). Also, µ−1 = w−n/3

mod p where w is a primitive nth root of unity.

Output: a← INTT (A) = [a0, a1, . . . , an−1].

1: ℓ← log3 n

2: for each level ∈ [ℓ,−1) do

3: m← 3level

4: for each j ∈ [0,m/3) do

5: w−1
j ← Γ−1[j]n/m

6: for each k ∈ [0, n/m) do

7: A← A[km+ j], B ← A[km+ j + m
3
], C ← A[km+ j + 2m

3
]

8: A[km+ j]← 1
3
(A+B + C)

9: A[km+ j + m
3
]← 1

3
w−1

j (A−B − µ−1 (B − C))

10: A[km+ j + 2m
3
]← 1

3
w−2

j (A− C + µ−1(B − C))

11: end for

12: end for

13: end for

14: a = scramble(A, n) ▷ To get a in normal ordering.

15: return a

and 2 additions. Therefore, it takes 3 multiplications and 7 additions, each of length

n/3.
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3.4 NTT Polynomial Multiplication over Zp[x]/(x
n − γ) and Its Complexity

Let a(x) and b(x) be two polynomials in Zp[x]/(x
n − γ), their multiplication c(x) =

a(x)b(x) mod (xn − γ) utilizing NTT can be carried out via

c = INTT (NTT (a) ◦NTT (b)), (3.12)

where ◦ represents point-wise multiplication.

Therefore, in order to multiply two polynomials, it takes two NTT operations and one

inverse NTT operation as well as n point-wise multiplication. From Equations (3.7)

and (3.11), we can conclude that the cost of multiplying a(x) and b(x) is given by:

T (n) = 2 · TNTT (n) + TINTT (n) + n ·M

= (3ℓ+ 1)n ·M + 7 ℓ n · A. (3.13)

3.5 NTT Polynomial Multiplication over Zp[x]/(x
2n+xn+1) and Its Complex-

ity

Recall that

Rp = Zp[x]/(x
2n + xn + 1) ∼= Zp[x]/(x

n − α)× Zp[x]/(x
n − β)

for α, β ∈ Zp, αβ = 1 and α + β = −1.

Hence, in order to multiply two polynomials inRp, we can map them to the frequency

domain, and perform the multiplication there with the NTT multiplication developed

in the last sections. And at the end, by inverse CRT map, we get the multiplication

result inRp.
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It is not so difficult to compute the aforementioned CRT map for 2n = 2 · 3ℓ. Let

a(x) = a0 + a1x+ a2x
2 + . . .+ a2n−1x

2n−1 ∈ Rp, then we have

a(x) mod (xn−α) = (a0+α·an)+(a1+α·an+1)x+. . .+(an−1+α·a2n−1)x
n−1

a(x) mod (xn + (α+1)) = ((a0− an)−α · an) + ((a1− an+1)−α · an+1)x+ . . .

+ ((an−1 − a2n−1)− α · a2n−1)x
n−1 (3.14)

with merely n− 1 multiplications, n− 1 additions and 2(n− 1) subtractions. Since

addition and subtraction have the same cost, we can just say n− 1 multiplication and

3(n − 1) additions. Note that to reduce the number of multiplications in this CRT

conversion we benefited from the fact that β = −1 − α and increased the number

of additions in return. This is a good idea to perform as the cost of multiplication is

much more than that of addition.

On the other hand, the inverse CRT map to Rp can be performed as follows. Let

c(x) ∈ Rp and cα(x) ≡ c(x) mod (xn − α) and cβ(x) ≡ c(x) mod (xn − β), c(x)

can be recovered with

c(x) =
1

α− β
cα · (xn − β) +

1

β − α
cβ · (xn − α). (3.15)

The arithmetic cost of calculating c(x) can be done with only 2n multiplications and

2n additions, apart from the coefficients in front. The multiplication of cα and cβ by

xn can be dealt with just a shift in coefficients of cα and cβ , respectively.

The total complexity of multiplying two polynomials inRp can now be computed as

PM(n) = 2 · CRT + 2 · T (n) + ICRT

= [6(ℓ+ 1)n− 2] ·M + [2(7ℓ+ 4)n− 6] · A (3.16)

where ℓ = log3 n.
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CHAPTER 4

PARAMETER PROPOSALS FOR KYBER

Kyber [6, 8] is one of the round three finalists of the NIST post-quantum competition.

It is a lattice based post-quantum key encapsulation mechanism that uses a modified

Fujisaki-Okamoto Transformation [15]. KYBER depends on the Module-LWE [18]

unlike the other cryptosystems such as Frodo [7] and NewHope [2, 4] that depend

on LWE and RLWE problems, respectively, where operations are of the form As+ e

for all the variables being polynomials from the underlying ring. In Kyber, those

variables are no longer polynomials. Instead, A is a square matrix of polynomial

components, and s and e are vectors of polynomials. The scheme utilizes NTT poly-

nomial multiplication over an NTT friendly ring Zp[x]/(x
n + 1) where n is a power

of two and p is a prime such that p − 1 is divisible by n. Moreover, the polynomial

ring is of fixed length throughout all the parameter sets. This transition helps to scale

the security level between different parameter sets mainly through the dimension of

the matrix/vectors.

Furthermore, the NTT utilized in Kyber is radix-2 NTT. That is, the dimension of the

modulus is a power of two. In this chpater, we attempt to change the polynomial ring

to what we considered in the last chapter.
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We start with providing the algorithmic specifications of Kyber [6], the key genera-

tion, encryption, and decryption algorithms are given in Algorithms 3, 4 and 5.

Algorithm 3 KYBER.CPAPKE.KeyGen(): key generation

1: ρ, σ ← {0, 1}256

2: A ∼ Rk×k
p := Sam(ρ)

3: (s, e) ∼ βk
η1
× βk

η2
:= Sam(σ)

4: t := As + e

5: return (pk := (t, ρ), sk := s)

Algorithm 4 KYBER.CPA.Enc(pk = (t, ρ),m ∈M): encryption

1: r ← {0, 1}256

2: A ∼ Rk×k
p := Sam(ρ)

3: (r, e1, e2) ∼ βk
η1
× βk

η2
× βη2 := Sam(r)

4: u := Compressp(A
T r + e1, du)

5: v := Compressp(tT r + e2 + ⌈ q2⌋ ·m, dv)

6: return c := (u, v)

Algorithm 5 KYBER.CPA.Dec(sk = s, c := (u, v)): decryption

1: u := Decompressp(u, du)

2: v := Decompressp(v, dv)

3: return Compressp(v − sTu, 1)

The original parameter set of KYBER is given in Table 4.1. As discussed above, we

are trying to change the modulus polynomial in the ring from xn +1 to x2n + xn +1.

This would mean having different parameters. For the security levels and communi-

cation cost, we refer the reader to the round three KYBER submission documentation

[6].
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Table 4.1: Original Parameter Sets for KYBER

n k p η1 η2 (dp, du, dv) δ

KYBER256 256 2 3329 3 2 (12, 10, 4) 2−139

KYBER512 256 3 3329 2 2 (12, 10, 4) 2−164

KYBER1024 256 4 3329 2 2 (12, 11, 5) 2−174

To examine the ring Zp[x]/(x
2n + xn + 1) for Kyber, we consider that n is a power

of three. A suitable p that allows utilizing a full level NTT is of the form p ≡ 1(

mod 3n). Throughout the rest of this work, we assume n = 34 and n = 35. Moreover,

we consider k = 2, 3, 5 and 6 so that we obtain parameter sets as close as to what

was proposed in Kyber submission. In addition, we denote the secret distribution

by η1 and the error distribution by η2. Therefore, we consider the following two sets

throughout the rest of this work.

Table 4.2: Proposed Parameter Set 1
n 2n k

KYBER486 81 162 3

KYBER810 81 162 5

KYBER972 81 162 6

Table 4.3: Proposed Parameter Set 2
n 2n k

KYBER972 243 486 2

KYBER1458 243 486 3

The natural question, now, is how do we compute the security level, failure probability

and communication cost. In the sections ahead, we address these concerns.

4.1 Calculating Security Level

The security level does not depend on the ring structure and instead it depends mainly

on the hardness of the module-LWE. The parameters that impact the security are
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2n× k and the primes p as well as the secret distribution η1.

In that respect, the Kyber scripts can still be used to calculate the security level. We

investigate two primes p = 1459 and p = 2917. There are smaller primes that satisfy

p ≡ 1 mod 3n, but they would not give us a negligible probability of failure. We

only consider the latter prime for the second parameter set. In Tables 4.4, 4.5 and 4.6

the security levels are shown for both sets.

Moreover, the message space is 162-bits for the first set, and 486-bits for the second

set. In first set, m ∈ {0, 1}162, if one decides to encode one key bit per polynomial

coefficient, we get 162-bits of entropy. This is way smaller than acceptable for the

securities of KYBER810 and KYBER972 as in this case the attacker does not need

to try to solve LWE guessing the shared secret much more easier for higher security

parameters, say, greater than 180-bits security. Nevertheless, the message space in

the second set provides higher entropy and hence security levels in Table 4.6 are

more realistic.

Table 4.4: Security estimates for 2n = 162 the prime p = 1459

BKZ block
size β

Classical
Hardness

Quantum
Hardness

KYBER486
Primal Attack 365 106 96

Dual Attack 361 105 95

KYBER810
Primal Attack 678 198 179

Dual Attack 666 194 176

KYBER972
Primal Attack 840 245 222

Dual Attack 823 240 218
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Table 4.5: Security estimates for 2n = 162 and the prime p = 2917

BKZ block
size β

Classical
Hardness

Quantum
Hardness

KYBER486
Primal Attack 365 106 96

Dual Attack 363 106 96

KYBER810
Primal Attack 620 181 164

Dual Attack 610 178 161

KYBER972
Primal Attack 770 225 204

Dual Attack 757 221 200

Table 4.6: Security estimates for 2n = 486 and the prime p = 2917
BKZ block
size β

Classical
Hardness

Quantum
Hardness

KYBER972
Primal Attack 779 225 204

Dual Attack 757 221 200

KYBER1458
Primal Attack 1237 361 328

Dual Attack 1208 353 320

4.2 Calculating Failure Probability

The decryption failure very much depends on the coefficients under multiplication in

the decryption equation as well as the number of bits that are dropped in the Com-

press and Decompress functions of the ciphertexts u and v in the decryption equa-

tion. The nature of these functions is the same, except that the public key is not

compressed anymore. However, the coefficients under multiplication will increase

due to the extra middle term, that is, xn. Therefore below we will analyze the effect

of the coefficients.
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The decryption equation receives the two ciphertexts u and v and calculates,

v − sTu = eT r + e2 + cv + r− sT e1 − sT cu (4.1)

failure occurs if the coefficient of this equation, in absolute value, happens to be

greater than p/4.

The NTTRU scheme [21] considers a similar modulus polynomial xd − xd/2 + 1.

Therefore to illustrate how these multiplications work, we follow the same strategy.

Let a(x) and b(x) be two polynomials defined over Zp[x]/(x
6 + x3 + 1), and we

would like to compute their multiplication c(x) = a(x)b(x) mod (x6 + x3 + 1).

This modular polynomial multiplication can be seen as follows:

ab mod (x6 + x3 + 1) = a
(∑

bix
i
)

mod (x6 + x3 + 1)

=
(∑

axi mod (x6 + x3 + 1)
)
bi (4.2)

Writing this on matrix-vector form



c0

c1

c2

c3

c4

c5


=



a0 −a5 −a4 −a3 a5 − a2 a4 − a1

a1 a0 −a5 −a4 −a3 a5 − a2

a2 a1 a0 −a5 −a4 −a3

a3 a2 − a5 a1 − a4 a0 − a3 −a2 −a1

a4 a3 a2 − a5 a1 − a4 a0 − a3 −a2

a5 a4 a3 a2 − a5 a1 − a4 a0 − a3





b0

b1

b2

b3

b4

b5



Observe that c5 = [a5b0 + (a2− a5)b3] + [a4b1 + (a1− a4)b4] + [a3v2 + (a0− a3)b5].

If you notice the last three rows, they are all sum of three independently randomly

distributed variables of of the form

c = ab+ (a′ − a)b′, where a, a′, b, b′ ← βη. (4.3)
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Moreover, the first three rows also follow a certain formula. However, the general

distribution is established by the bottom three rows. In general, the multiplication of

a(x) and b(x) inRp = Zp[x]/(x
2n+xn+1) is the sum (or difference) of n randomly

distributed variables as in (4.3), and so the tail bounds of this one is computed.

In order to calculate the decryption error overRp, we can still keep using the KYBER

scripts having changed the coefficient distribution to (4.3) in the script. Tables 4.7,

4.8 and 4.9 present our proposed parameter set 1 and 2. The probability of failure is

denoted by δ.

Table 4.7: Proposed Parameter Set 1, p = 1459

n 2n k p η1 η2 (dp, du, dv) δ

KYBER486 81 162 3 1459 1 2 (11, 11, 5) 2−144

KYBER810 81 162 5 1459 1 1 (11, 11, 5) 2−135

KYBER972 81 162 6 1459 1 1 (11, 11, 6) 2−120

Table 4.8: Proposed Parameter Set 1, p = 2917

n 2n k p η1 η2 (dp, du, dv) δ

KYBER486 81 162 3 2917 2 2 (10, 10, 5) 2−130

KYBER810 81 162 5 2917 1 1 (10, 10, 3) 2−152

KYBER972 81 162 6 2917 1 1 (10, 10, 4) 2−171

Table 4.9: Proposed Parameter Set 2, p = 2917

n 2n k p η1 η2 (dp, du, dv) δ

KYBER972 243 486 2 2917 1 2 (11, 10, 4) 2−158

KYBER1458 243 486 3 2917 1 1 (11, 10, 4) 2−135

4.3 Calculating Communication Cost

For the communication cost, the public key pk size is composed of (ρ, t), therefore

it is calculated by 256 + k · (2n) · dp where dp is the number of bits in the prime p.

Furthermore, the ciphertext consists of u and v, therefore the size of the ciphertext is
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the size of u and v together, that is, k · (2n) · du + (2n) · dv where du is the number

of bits in the u and dv is the number of the bits in v. Tables 4.10 and 4.11 shows the

communication cost for the two parameter sets.

Table 4.10: Communication Cost (byte) for Parameter Set 1
Set 1, p = 1459 Set 1, p = 2917

pk ct pk ct
Kyber486 700 749 639 708
Kyber810 1145 1215 1044 1073
Kyber972 1368 1458 1247 1296

Table 4.11: Communication Cost (byte) for Parameter Set 2
Set 2, p = 2917

pk ct
Kyber972 1368 1458

Kyber1458 2036 2065
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CHAPTER 5

BENCHMARKS AND COMPARISON

In this section, we test our implementation of the radix-3 NTT polynomial multiplica-

tion developed in Section 3. In Table 5.2, we measure the runtime for our parameters

and compare it to the runtime of the radix-2 NTT used for KYBER parameters. We

perform the tests for both the parameter sets we proposed in Section 4.

Implementations and Details. The NTT implementations are in SageMath pro-

gramming language and can be found in the GitHub repository https://github.

com/ChenarHassan/NTT. The benchmarking was carried out on Windows op-

erating system with an Intel Core i7-5600U processor running at a base speed of 2.6

GHz . Moreover, the mean, maximum and minimum runtime of 10000 executions are

reported.

In order to calculate the security level, as pointed out before, one can still use the

KYBER scripts. The KYBER scripts are available in https://github.com/

pq-crystals/security-estimates. However, for the decryption failure,

we modified the coefficient distribution functions in the file proba_util.py as

well as a very minor change in the file Kyber_failure.py. We also put these

files in the GitHub repository above.
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Due to the coefficient increase under multiplication, we observe that the complexity

of multiplication in Zp[x]/(x
2n + xn + 1) increases. Table 5.1 depicts the arithmetic

complexity of radix-2 NTT where degree of the modulus polynomial is n′ = 2k, k = 8

and our radix-3 NTT where degree of the modulus polynomial is d = 2n = 2×3ℓ, ℓ =

4 and ℓ = 5

Table 5.1: Arithmetic complexity of radix-2 NTT and radix-3 NTT polynomial mul-
tiplication

d multiplications additions
radix-2 NTT [3] 256 3328 6144

radix-3 NTT [this work] 162 2428 5178

radix-3 NTT [this work] 486 8746 18948

Table 5.2: The runtime of NTT multiplication for the proposed parameter sets and
KYBER’s parameter

runtime (in seconds)
d prime p minimum average maximum
162 [this work] 1459 0.021 0.024 0.113
162 [this work] 2917 0.021 0.024 0.274
256 [3] 3329 0.028 0.032 0.123
486 [this work] 2917 0.074 0.081 0.332
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CHAPTER 6

CONCLUSION

Although it is not yet disclosed when the fourth round of the NIST competition will

be, it is anticipated that the fourth round will be the last and that a scheme or two will

be selected as standardized. So far, lattice-based cryptography is the most promising,

and the finalists of round three of NIST’s competition 3 out 4 Key Encapsulation

Mechanism and 2 out of 3 Digital Signatures are based on lattices. The lattice-based

cryptosystems thus far have proven to be the most promising candidate for a quantum-

resistant scheme. The competitions for the post-quantum standardization project of

NIST is still going on. There were 4 public key encryption finalists in the third round,

namely, Classic McEliece [10], Kyber [6], NTRU [9], and Saber [29]. The last three

of these are based on lattices in fact.

In this thesis, we investigated the polynomial multiplication using the number-theoretic

transform which is a powerful method for polynomial multiplications for schemes

based on RLWEs. Furthermore, improvements of the number-theoretic transform

come in the form of more efficient modular reduction algorithms as well as different

parameter sets of the underlying ring.

As discussed, the NTT is widely used for polynomial multiplication over cyclotomic
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rings of a certain structure. Most of the schemes, if not all, adopt what is called a

radix-2 NTT variant. In this thesis, we considered the radix-3 NTT and introduced a

Cooley-Tukey-like butterfly algorithm to compute it. Moreover, we defined the NTT

in the ring Zp[x]/(x
2n+xn+1) which could be utilized for polynomial multiplication.

Furthermore, we computed its computational complexity.

In Section 4, based on the radix-3 NTT, we proposed some parameters for Kyber

and calculated their security level, probability of failure and communication cost. In

addition to that, in the last section, we provided the required number of arithmetic

operations as well as tested the runtime of the radix-3 NTT and compared it with the

radix-2 NTT used in KYBER. We have observed that for the first parameter set, the

radix-3 NTT is more efficient than the radix-2 NTT used in KYBER. However, this

does not remain true for the second parameter set.
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