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ABSTRACT 

 

ADOPTING AI TECHNIQUES IN ROBOTIC FABRICATION IN 

ARCHITECTURE: 

INTELLIGENT ROBOTIC BRICKLAYING USING REINFORCEMENT 

LEARNING ALGORITHMS 

 

 

Maali Esfangareh, Alireza 

Master of Science, Building Science in Architecture 

Supervisor : Prof. Dr. Arzu Gönenç Sorguç 

 

 

May 2022, 78 pages 

 

Today, the Fourth Industrial Revolution is taking place and changing many industries 

and manufacturing methods to fulfill the tremendous global demand for different 

products and services using every available technological development. Moreover, 

in the context of Industry 4.0, one of the most critical challenges of Cyber-Physical 

Production is to have not only economically efficient but also adaptive and flexible 

production methods under different circumstances. However, by a simple 

investigation of the architecture industry and especially the construction sites, it will 

be witnessed that the existing techniques are remarkably far from the standards of 

Industry 4.0. 

Therefore, this research is going to investigate the potential of implementing 

artificial intelligence techniques into the existing robotic construction methods to 

propose a smarter and more flexible process of fabrication using robots. In this scope, 

reinforcement learning algorithms which are a sub-category of machine learning 

algorithms are utilized to train an industrial robotic arm in a set of simulations to 

perform unsupervised and automated bricklaying tasks. The feasibility of the 

proposed method is put to test by five case studies of different prototypes. 
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Consequently, The analysis of the results of the training simulations in these case 

studies demonstrates that applying reinforcement learning algorithms in robotic 

automated bricklaying methods can provide tools via intelligent agents to establish 

advantageous cyber-physical systems in the construction industry. This can establish 

a smart process of employing robots by architects and designers to pave the way for 

the architecture industry to cope with the emerging demands in the frame of Industry 

4.0. 

Keywords: Robotic Construction, Automated Bricklaying, Reinforcement Learning 

Algorithms, Cyber-physical Systems, Industry 4.0
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ÖZ 

 

MİMARİDE ROBOTİK İMALATTA YAPAY ZEKA TEKNİKLERİNİN 

UYGULANMASI: 

GÜÇLENDİRME ÖĞRENME ALGORİTMALARI KULLANARAK AKILLI 

ROBOTİK TUĞLA YAPMA 

 

 

 

Maali Esfangareh, Alireza 

Yüksek Lisans, Yapı Bilimleri, Mimarlık 

Tez Yöneticisi: Prof. Dr. Arzu Gönenç Sorguç 

 

 

Mayıs 2022, 78 sayfa 

 

Bugün, Dördüncü Sanayi Devrimi gerçekleşiyor ve mevcut her teknolojik gelişmeyi 

kullanarak farklı ürün ve hizmetlere yönelik muazzam küresel talebi karşılamak için 

birçok endüstriyi ve üretim yöntemini değiştiriyor. Ayrıca, Endüstri 4.0 bağlamında 

Siber-Fiziksel Üretimin en kritik zorluklarından biri, sadece ekonomik olarak 

verimli değil, aynı zamanda farklı koşullar altında uyarlanabilir ve esnek üretim 

yöntemlerine sahip olmaktır. Ancak mimarlık endüstrisinin ve özellikle şantiyelerin 

basit bir incelemesi ile mevcut tekniklerin Endüstri 4.0 standartlarından oldukça 

uzak olduğu görülecektir. 

Bu nedenle, bu araştırma, robotları kullanarak daha akıllı ve daha esnek bir üretim 

süreci önermek için yapay zeka tekniklerini mevcut robotik yapım yöntemlerine 

uygulama potansiyelini araştıracaktır. Bu kapsamda, makine öğrenmesi 

algoritmalarının bir alt kategorisi olan güçlendirme öğrenme algoritmaları, bir 

endüstriyel robotik kolun denetimsiz ve otomatik tuğla örme görevlerini yerine 

getirmek üzere bir dizi simülasyonda eğitilmesi için kullanılmaktadır. Önerilen 

yöntemin fizibilitesi, farklı prototiplerin beş vaka çalışmasıyla test edildi. Bu vaka 
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çalışmaları üzerindeki eğitim simülasyonlarının sonuçlarının analizi, robotik 

otomatik tuğla örme yöntemlerinde takviyeli öğrenme algoritmalarının 

uygulanmasının, inşaat sektöründe avantajlı siber-fiziksel sistemler oluşturmak için 

akıllı ajanlar aracılığıyla araçlar sağlayabileceğini göstermektedir. Bu, mimarlık 

endüstrisinin Endüstri 4.0 çerçevesinde ortaya çıkan taleplerle başa çıkmasının 

yolunu açmak için mimarlar ve tasarımcılar tarafından robotların kullanılmasına 

yönelik akıllı bir süreç oluşturabilir. 

Anahtar Kelimeler: Robotik Konstrüksiyon, Otomatik Tuğla Örme, Güçlendirme 

Öğrenme Algoritmaları, Siber-Fiziksel Sistemler, Endüstri 4.0 
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CHAPTER 1  

1 INTRODUCTION  

Architecture is one of the oldest practices of mankind and one of the largest 

industries worldwide today. In each era, architectural design and construction have 

played important roles in different societies. Due to its importance, architecture has 

evolved and been subject to many changes and enhancements in terms of styles, 

materials, building methods, etc. throughout history to meet the demands and 

requirements of its own historical period. 

Today, the Fourth Industrial Revolution is taking place and changing many 

industries and manufacturing methods to fulfill the tremendous global demand for 

different products and services using every available technological development. 

Moreover, in the context of Industry 4.0, one of the most critical challenges of Cyber-

Physical Production is to have not only economically efficient but also adaptive and 

flexible production methods under different circumstances. However, by a simple 

investigation in architecture industry and especially the construction sites, it will be 

witnessed that the existing techniques and methods are remarkably far from the 

standards of Industry 4.0, the era that we are living in. By paving the way for 

implementing cutting edge technologies into various processes of this industry, we 

can make noticeable enhancements to make architecture one of those which are 

capable of coping with the emerging demands in the frame of Industry 4.0. 

 The German government, in 2011, have introduced to the world a new topic 

called Industrie 4.0, hypothesized as fourth industrial revolution. (Wagner et al., 

2017) The ultimate goal of Industry 4.0 is to operate with an enhanced level of 

automatization to approach a higher stage of operational efficiency and productivity 

which integrates the virtual world to the physical world and brings computerization 



 

 

2 

and connection into the traditional industry. (Lu, 2017)According to Alcacer and 

Cruz-Machado (2019), “I4.0 is a Cyber-Physical Systems (CPS) production, based 

on heterogeneous data and knowledge integration and it can be summed up as an 

interoperable manufacturing process, integrated, adapted, optimized, service-

oriented which is correlated with algorithms, Big Data (BD) and high technologies 

such as the Internet of Things (IoT) and Services (IoS), Industrial Automation, 

Cybersecurity (CS), Cloud Computing (CC) or Intelligent Robotics.” (Alcácer & 

Cruz-Machado, 2019) 

The studies on implementing elements of Industry 4.0 into architectural 

construction projects have demonstrated that the integration brings about 

considerable enhancements to this industry from many points of view. (Oesterreich 

& Teuteberg, 2016) These enhancements can be categorized and listed as below: 

Cost savings: The automation of labor-intensive processes by employing 

robotics and automated workflows can result in reducing the cost of labor. 

(Bruemmer, 2016) Moreover, by use of embedded sensors, the automated tracking 

of equipment and material can assist to reduction in material costs. (Sardroud, 2012) 

Time savings: Contemporary manufacturing concepts and technologies such 

as Prefabrication, Robotic Fabrication, and Additive Manufacturing increase the 

speed of building constructions remarkably compared to older methods. (Oesterreich 

& Teuteberg, 2016) (MHC, 2011) 

On-time and on-budget delivery: The use of elements such as complex 

simulations or Building Information Modeling can be a profitable assistance to 

manage delivery time and keep projects low budget which used to be a challenging 

task in traditional construction projects. (Jones, 2016) 

Improving quality: At any stage of design and construction process, using BIM 

and other simulations can discover and terminate errors. This has been proven to help 

to increase the quality of constructed buildings. (Allison, 2015) Additionally, 

analytics of Big Data will assist project managers to plan more persuasive and smart 

chain of decisions. (McMalcolm, 2015) 
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Improving communication and collaboration: As the number of participants in 

every construction project is considerably high, cloud and BIM platforms or other 

social media apps can enhance collaboration efficiently. (Merschbrock & Munkvold, 

2015) 

Improving safety: Several research on safety management demonstrates that 

safety is one of the most critical affairs in construction projects. The construction 

industry, because of its dangerous work environment is famous for its dramatically 

high rates of work accidents and injuries. (Chun et al., 2012) Subsequently, many 

different approaches have been introduced by researchers and practitioners to 

enhance construction safety, by virtual safety training (Guo et al., 2013), using risk 

maps for evading labor accidents or utilizing wearable technologies such as Smart 

Helmets Glasses. (Vahdatikhaki & Hammad, 2015) 

Enhancing sustainability: The construction industry is responsible for 

excessive carbon dioxide emissions, energy consumption and producing immense 

amount of waste during its different processes. (Chou & Yeh, 2015) Several 

approaches have been proposed in order to handle these environmental problems for 

construction waste minimization (Yuan & Wang, 2014), for project emissions 

reduction through strategic project management (Tang et al., 2013) or to use BIM to 

produce design alternatives. (Davies & Sharp, 2014) 

Considering this and with the aim of benefiting from some contemporary 

technologies in an ancient process of building, this research is going to investigate 

the potentials of implementing artificial intelligence (AI) techniques into existing 

robotic bricklaying methods to establish a smart process of employing robots by 

architects and designers. Artificial intelligence is a field of software engineering and 

technology that focuses on intelligent computer programs or algorithms (Kate et al., 

2021). The goal of AI systems is for machines to be able to imitate human 

"cognitive" skills including reasoning and problem-solving in order to conduct  tasks 

that are ordinarily performed by humans. AI tasks are carried out by storing and 

analyzing massive amounts of data with the aid of those algorithms (Manyika et al., 

2013). Smart machines can be used for construction projects by harnessing robots 
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that can undertake repetitive tasks that humans once performed, like as bricklaying. 

AI systems can also collect and organize data for engineers to use in project planning 

and implementation (Kingston, 2016). 

Although there have been studies and implementations of robotics in 

architectural design and fabrication process in the last decades, the developed 

methods until today can be enhanced from many aspects so that architects and 

construction specialist can benefit from more intelligent and productive tools in both 

design and construction phases. One of these many aspects, which can be made 

advantage of in construction using robotics is adopting recent advancements in 

artificial intelligence methods that are being developed and used in other industries. 

Investigating through these methods, in the scope of this research, several 

artificial intelligence algorithms have been studied and tested to achieve the most 

feasible and functional integration of the algorithms and existing robotic fabrication 

techniques. Among these algorithms were evolutionary metaheuristic optimization 

methods and Machine Learning (ML) algorithms such as Genetic Algorithms (GA), 

Deep Learning methods, Neural Network algorithms (NN), and Reinforcement 

Learning (RL) Algorithms. In the next step, the most applicable set of these 

algorithms which are also considered as one of the most advanced artificial 

intelligence algorithms have been selected as a tool to approach the aims of this 

research. Reinforcement Learning algorithms, which function based on a simulation 

of an environment and an intelligent agent being trained to perform certain 

objectives, are chosen for training our intelligent method of employing robots in 

architectural fabrication process. More details on the features and capabilities of this 

sort of algorithms and the logic behind preferring them to other methods in this 

research have been thoroughly discussed in the next chapters. 

To test and prove the hypothesis of this research which is to state that by 

integration of latest AI advancements to the existing robotic construction methods, 

we can train robots as intelligent agents to perform human labor tasks on construction 

sites, a research design has been conducted that consists of different steps. This 

simulation-based research is following a flow from designing primitive prototypes 
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to training a robotic arm as the intelligent agent to construct the prototypes by 

bricklaying. Several platforms and tools are combined in this research design to 

achieve the objectives of this research which will be introduced and discussed in the 

related chapters.
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Construction, Industry4.0, and Its Elements 

In the early years of this century, the first commercial solutions to one of the 

most critical difficulties in construction informatics – structured information sharing 

on construction products – developed. Building Information Modeling (BIM) 

software began to take the place of CAD and drafting tools (CADD). Because many 

ICT solutions in the construction industry process data in some manner, BIM has 

become a core concept and a focus of numerous research efforts. (Eastman et al., 

2011). The drawn line was overtaken by a digital object that can also be understood 

by a computer after decades of being the basic information unit for transmitting 

information in engineering (in the building context). Commercial software now 

commonly supports structured information work, and it is becoming normal practice 

in design and construction; countries are beginning to establish statutory 

requirements for its usage. (EU BIM Task Group, 2017) This evolution followed the 

same pattern as that of all other sectors and professions. It all started with the advent 

of generic software (such as word processing, spreadsheets, and, in our case, CAD 

software) that can be used for a variety of purposes and is not restricted to a single 

application. To enable well-defined repetitive operations, enterprise information 

systems powered by relational databases and higher-level frameworks arose shortly 

after. (Romero & Vernadat, 2016). A human, on the other hand, has served as a link 

between information systems and physical events. Human participation was used to 

enter most information into information systems. Human activity, based on digital 

analysis, makes a difference in the real world. However, a number of technologies, 

the most of which fall under the umbrella of the "Internet of Everything," have begun 
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to change that. It meant that the "real" world was beginning to be furnished with 

sensors and controls that would enable a human-free bridge between the physical 

and digital worlds. The setting was set for something unusual, and Industry 4.0 was 

accountable for it. (Klinc & Turk, 2019) 

The pass to evolution of Industry 4.0 from Industry 1.0 to Industry 3.0 can be 

summarized as follows: 

• Industry 1.0 - mechanization. It all started with the development of water-based 

energy generation and steam power as a supply of (mechanical) energy. This shift 

from agricultural and rural to European industrial civilization happened in the late 

1800s and was based on three natural resources: coal, iron, and rivers (Balasingham, 

2016). (Sharman, 2017). Not only did steam engines have an impact on heavy 

industries such as iron and textiles, but also on transportation, communication, and 

other commercial sectors (Rifkin, 2016). Nonetheless, labor was the most significant 

resource — albeit one helped by machines (Von Tunzelmann, 2003). 

• Industry 2.0 - electrification. According to Rifkin (2016), around the start of the 

twentieth century, electricity (rather than oil and coal) developed as a primary source 

of energy, setting the framework for the second industrial revolution. This enabled 

electrically powered commodity mass manufacturing, often known as serial 

production (Industrie 4.0 Working Group, 2013). Production processes were 

relatively easy, leading in high labor-assisted machinery efficiency and the 

establishment of a social middle class with financial stability (von Tunzelmann, 

2003). (Balasingham, 2016). 

• Industry 3.0 - automation. Even though the first computers were constructed in the 

1930s, it took decades for them to become more powerful and dependable while 

remaining small and controllable (Sharman, 2018). The advent of computerization 

into existing serial manufacturing, digitally assisted design, and numerically 

controlled equipment marked the tipping point in the 1970s. The digital revolution 

was given its name because computers played such an important part in the shift 

from an industrial to an information society (Balasingham, 2016). Hence, it made it 
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possible to automate manufacturing processes using IoT (Preuveneers & Ilie-Zudor, 

2017). Industry 4.0 was introduced in Germany at the beginning of this decade as a 

strategic response to the rivalry brought on by Asia's fast industrialisation. The 

European Union finally adopted it as an umbrella term for efforts aimed at upgrading 

European industry and maintaining its global competitiveness in the twenty-first 

century. (Klinc & Turk, 2019) 

• Industry 4.0 - networking. At the turn of the century, the term "Industry 4.0" 

initially appeared. Its core building blocks are cyber-physical systems or the 

networking of the physical environment. It is a mix of cyber and physical systems 

that describes the technologically structured industrial processes and the autonomous 

communication of equipment along the value chain (Smit et al., 2016). Industry 4.0 

employs a virtual digital reproduction of the real world in terms of technology. It is 

built on the Internet of Things (IoT), Big Data, the Internet of Services, Smart 

Factories, and Advanced Manufacturing, all of which are components of today's 

digital environment. The fundamental distinction between Industry 3.0 automation 

and earlier versions was the presence of a human intermediate between the physical 

and digital worlds who input data on computers, reviewed computer printouts, and 

led events in the physical world. (FIEC, 2015) described Industry 4.0 as the 

digitization of the whole industry. 

2.1.1 Cyber-physical Systems 

In Industry 4.0, cyber physical systems are a key technical concept. A cyber-

physical system is one that has a continuous automated link between the physical 

world and intelligent computer components capable of seeing, directing, and 

controlling it. Unlike traditional embedded systems, which are designed to be 

isolated devices, the focus of Industry 4.0 cyber-physical systems, according to 

Jazdi, is on networking multiple devices (2014). According to Santos et al. (2017), 

cyber-physical systems are an extension of embedded systems that bridge the 



 

 

10 

physical and digital worlds by incorporating complex information processing from 

several networked physical elements (sensors, people, machinery, equipment, etc.). 

According to Lee et al. (2015), a cyber-physical system has two key 

functional components: enhanced connectivity and smart data management, 

analysis, and computing capabilities. Based on this abstract guideline, a "5C 

(Connection, Conversion, Computation, Cognition, and Configuration)" architecture 

was established for practical reasons. (Muhuri et al., 2019) 

2.1.2 Technological Building Blocks of Industry 4.0 

There is no apparent consensus among scholars on the key technologies for 

Industry 4.0. (Vaidya et al., 2018). The figures differ depending on the researchers' 

perspective and understanding of Industry 4.0. The technological foundation for 

Industry 4.0, in our opinion (engineering), consists of six pillars: 

1. Internet of People (IoP). A radically different Internet paradigm in which 

individuals are viewed as active participants rather than passive users of the Internet. 

(2017) (Conti et al.) This paradigm connects consumers, suppliers, designers, and 

manufacturers into a single whole by using historical Internet services. 

2. Internet of Things (IoT). IoT technologies provide flawless interoperability and 

enhanced communication between the physical and digital worlds, with possible 

applications including smart homes, smart buildings, smart cities, and others 

(Faheem et al., 2018). The idea is to link everything that is sophisticated enough to 

be connected to the Internet and routed via it through a switch. Finally, everything 

that important will be outfitted with smart sensors that will monitor what is going on 

around them in real time. (Klinc & Turk, 2019) 

3. Robotization and other forms of computer-aided manufacturing (CAM). It may 

translate digital data into material world layout (for instance, mounting, adding – 

digital printing, or deleting). The German I4.0 Working Group (2013) proposed the 
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phrase "smart factory" to characterize this new paradigm, which allows for 

significant improvements to previously established industrial processes. 

4. Digital twin. The digital twin acts as a representation of the physical entity in the 

cyber-physical system, which is a vital component of Industry 4.0. (Uhlemann et al., 

2017). A digital twin is a virtual replica of a physical adversary (Klinc & Turk, 2019). 

5. Cognitive computing. This umbrella phrase includes big data, machine learning, 

cognitive algorithms, and artificial intelligence. This employs the previously 

described digital twin to attempt to simulate human cognitive processes in a 

computer model (Conti et al., 2017). proven that cognitive computing emulates how 

individuals examine and handle data in the real world (in the cyber world) (Klinc & 

Turk, 2019). 

6. Computer cloud. Infrastructure for information and communication technology 

(ICT) offers storage, processing, and communication services as a utility, similar to 

how individuals pay for water, electricity, and heating. Virtualization of hardware 

and networks enables efficient access to required capabilities while also ensuring 

privacy, security, and resilience. Cloud-based solutions serve as platforms for 

improved integration of Industry 4.0 partners (Erboz, 2017), giving a variety of 

services to future smart factories to combine better production and logistics 

operations (Marques et al., 2017), and ultimately lead to cloud manufacturing 

(Marques et al., 2017) (Smit et al., 2016). 

2.1.3 Construction 4.0 

When incorporating highly creative concepts embracing cutting-edge technology 

into the conventional heavy industry, it is critical to note that, while being one of the 

most important industries, construction has one of the lowest R&D intensity levels. 

Similarly, worker productivity in the AEC has fallen over time, but it has almost 

grown in other industries (Oesterreich & Teuteberg, 2016). Oesterreich and 

Teuteberg (2016) identify and explain a number of structural difficulties in the 
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industry that lead to the aforementioned poor numbers. (1) the intricacies of building 

projects, (2) the uncertainty of tangible and intangible constraints within each 

project, (3) a highly fragmented supply chain, (4) short-term thinking owing to the 

transient nature of construction projects, and (5) a rigid, change-resistant culture. 

Nonetheless, the goal of Construction 4.0 is to maximize the benefits of huge 

digitalization of information and material processes, as well as large amounts of 

digital data about building items and the built environment provided by different 

sensors, cameras, builders, and users. Academic research agendas arise, as does the 

industrial context in which the AEC sector is co-shaping (Oesterreich & Teuteberg, 

2016). (FIEC, 2017). 

2.1.4 Digitalization of the construction industry 

Although it is acknowledged that digital technologies are transforming and will 

eventually alter the built environment business (Salamak & Januszka, 2018), the 

construction industry has a reputation for being hesitant to adopt new technology 

(Klinc et al., 2009; Klinc, Turk & Dolenc, 2010). The digitalization of construction 

involves several sophisticated processes and technologies, including (FIEC, 2015b): 

“• Industrial production (prefabrication, automation, 3D printing, etc.). 

• Robotics (for performing repetitive and/or dangerous processes, use of drones for 

surveying, etc.). 

• Digitally controlled building sites (equipment with sensors, inter-connected 

machines and processes leading to more fluid, faster construction with less errors, 

BIM, etc.).” 

However, it should be highlighted that the AEC business is adopting Industry 

4.0 in a different way than other industries. Construction 4.0 is closing in on the 

pattern for mass-production of consumer-specific items (one of Industry 4.0's goals) 

by searching for potential for industrialization and repetition of manufacturing, as 
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well as keeping ever-unique products rather than mass and serial production. 

Building has always been concerned with the creation of one-of-a-kind, one-of-a-

kind goods, and there have never been true examples of serial manufacturing inside 

the construction process. The AEC's manufacturing strategy may be regarded as 

large-scale craft production, with the end result often being a skyscraper, bridge, or 

dwelling. The primary goal of the industry is thus to industrialize the production of 

one-of-a-kind objects, as opposed to other industries, which aim to personalize the 

production of industrialized products. By digitizing them, dynamic and non-static 

value networks can become as successful as static value chains in traditional sectors 

(Klinc & Turk, 2019). 

Despite the apparent benefits of adopting digitization in order to bring the 

construction industry up to speed, Oesterreich and Teuteberg (2016) identify a 

number of concerns that must be addressed when assessing digital readiness.  

After declaring that cyber-physical systems are a critical component of 

Industry 4.0 and Building 4.0, it is vital to acknowledge that no other industry is 

more physically demanding than construction, which generates bigger volumes of 

products or products that span larger regions. 

Construction 4.0 addresses the complete built environment, including its 

infrastructure. It is a massive effort for the building industry, with far-reaching 

ramifications for human existence, work, and leisure. As a result, Sector 4.0 

represents a substantial challenge for the construction industry. The difficulty is 

worsened by the lack of an innovation culture in the construction sector, as well as 

the industry's demographics, which include a limited number of business leaders and 

a big number of small and medium firms with varied levels of technological maturity 

(Klinc & Turk, 2019). 
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2.2 Robotics in Architecture 

Robots, or automatically reprogrammable, controlled machines, are 

commonly used to host a wide range of physical production activities, including 

"material processing (mechanical grinding, laser cutting), disassembling and 

assembling, drawing, welding, and handling inspection, bending, casting, and 

packaging operations" (Oxford Economics, 2019). The same robots may be fixed, 

mobile, or installed, and the latest versions are substantially AI-powered, making 

them even more sensitive and aware to their surroundings. According to the 

International Federation of Robotics, by the end of 2016, these robots accounted for 

around 86 percent of the global operating stock. The same industry has led in robots 

applications (Oxford Economics, 2019). Manufacturing, however, is evolving. There 

are AI collaborative categories in the modern day, including such cloud-enabled 

robots, that have come out to completely eliminate the gap between automated 

production and manual assembly (Hashim, 2014) (M. Rapanyane & F. Sethole, 

2020). 'These cobots' will offer a lot of value to automated and/or mixed 

manufacturing, which demands a lot of handling, creativity, and vision (Oxford 

Economics, 2019). AI and robotics are both seen as critical components and branches 

of the forthcoming Fourth Industrial Revolution. As a result, significant scientific 

advances in biotechnology, quantum computing, AI, autonomous vehicles, and 

robotics are set to revolutionize the relationship between machines and humans, with 

robots at the forefront. Robots are rapidly being employed in logistics and storage, 

as well as other sectors of manufacturing (M. Rapanyane & F. Sethole, 2020). 

For decades, manufacturing industries have celebrated the advancement of 

automation, and the automobile industry is a good illustration of this trend, as the 

entire process, from the fabrication of single parts to final assembly, is frequently 

totally automated (Balaguer & Abderrahim, 2008). However, architecture is lagging 

behind, particularly on-site construction. In comparison to other industries, the 

construction business has distinct characteristics that make automating a process 

difficult. In contrast to vehicle manufacturing, where a well-established system 
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produces a standard piece repeatedly, each construction site or project is unique, 

necessitating a great deal of modification for each project. Furthermore, because 

there is no established or pre-existing reference that solves a similar set of issues, 

robotic automation in the construction industry is falling behind due to differences 

in building regulations, worker technical abilities, site conditions, and rigorous 

schedule and budget plans (Xu et al., 2019). 

2.2.1 Three Reasons Why Robots Are Rising So Fast 

1: Robots are becoming cheaper than human labor. Because of the falling real 

costs of the elderly population and other expensive machines, robots have been given 

priority. As with alternative exponential growth and advanced technologies in the 

power processing of extended battery lives, microchips, and smarter network 

benefits, the per-unit value of a wide range of technological components has 

increased dramatically, while the total unit price of robots has fallen by 11% from 

2011 to 2016. In practice, growing labor costs in major manufacturing economies 

will have a significant impact on pricing dynamics. A suitable example would be 

China, where labor expenses in the industrial sector have risen steadily since 2008, 

reaching 65 percent in 2019. (Global Payroll Association, 2019) This is the norm not 

only in China, but also in South Korea, the United States (US), Japan, Germany, 

South Africa, and other nations, especially as the populations of these latter countries 

age. (2019, Oxford Economics) Having said that, it is also important to highlight that 

the aging population is being influenced, and this is occurring with the advent of 

robots, which do not age and are more effective since they are machines that can be 

taught to execute a certain task without payment. (Eureka, 2018) (M. B. Rapanyane 

& F. R. Sethole, 2020) 

2: Robots are rapidly improving their skills. As robot technologies advance, 

they are employed in a wider range of contexts, in more sophisticated operations, 

and are installed more quickly. These robots have become more sensitive and 

collaborative to their surroundings due to modern technological advancements. This 
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is all since for artificial intelligence, which has made learning and making judgments 

easier when they interact with other robots of their sort (Schwab, 2015). This practice 

also contributes to the deployment of robots in industries other than manufacturing 

(Oxford Economics, 2019). 

3: Demand for manufactured goods is rising, and China is investing in 

robotics to establish itself as the world's largest manufacturer. Furthermore, 

increased demand for produced goods is increasing demand for robot inventory. 

China is usually regarded as a crucial role in this transition. This is due to China's 

growth as the world's largest car manufacturing site, as well as a significant 

manufacturer of consumer electrical batteries, gadgets, and semi-conductors, all of 

which are robot-intensive industrial businesses. 2019 (Investopedia) Despite this 

trend, China continues to make significant investments in its automation journey, 

with at least 68 robots per 10,000 people in general manufacturing, compared to 303 

in Japan and 631 in South Korea. (Oxford Economics, 2019) (M. Rapanyane & F. 

Sethole, 2020) 

Architectural construction is considered as one of the oldest crafts of the 

human being. As soon as ancient people settled down from nomadic life, they started 

building shelters for themselves. Since then, many advancements have taken place 

in terms of design strategies and materials for buildings, but the construction process 

still relies on human labor and techniques mostly. Despite huge advancements in 

technology, construction sites are considerably far from automation strategies. (Liu, 

2009) One way of changing the old rules to gain more efficiency and safety in 

construction is deploying robotic systems in the process. 

Robots, generally, have been designed to aid humans in complex, dangerous, 

and difficult tasks. The effectiveness of employing robots in different workflows has 

been proved in many industries. However, the architecture and construction industry 

have started putting these systems into their main process later than other industries. 

(Altobelli et al., 1993) 
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According to the findings of previous studies, construction managers 

consider that robot deployment is one of the most important aspects in increasing 

productivity (Bröchner & Olofsson, 2012) (Todhunter et al., 2019). To accomplish 

this, construction companies will need IT and computational programming experts 

on staff. A robot is made up of two parts: software and hardware, each of which 

requires a unique set of talents (Boulos et al., 2020). In the last couple of years, the 

interest in applying robotic systems in construction and architectural projects has 

increased. The main reason for this increasing interest is to enhance productivity and 

build up more effective control on fabrication and construction projects. In this 

context, robotic systems are used to mimic, and, finally, replace the existing manual 

construction processes. (Bonwetsch, 2015) 

Furthermore, architects and designers are trying to investigate how different 

robotic systems and their variations can affect and change the primary stages of the 

architectural design. (Gandia et al., 2018) Hence, it can be declared that today, 

architects are not only using robotics for final construction purposes but also for 

design exploration. (Bonwetsch, 2015) 

Below are some examples of implementation of robots in construction 

industry. 

• Bricklaying robots: A bricklaying robot, often known as SAM (semi-

Automated Mason), is one of the most recent potential innovations in 

construction. This bricklaying robot employs mechanical arms to pick up 

bricks, cover them with mortar, and precisely lay each brick. The workers' 

only responsibility is to fill the machine with bricks and clear up any excess 

mortar. The bricklaying robot (SAM) can lay 300-400 bricks per hour, easily 

5 times faster than workers who can only lay 60-75 bricks per hour, indicating 

increased productivity and lower project costs. It can also free up workers' 

time so they can focus on more difficult jobs that humans are better at. 

(Boulos et al., 2020) 
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• 3D printing robots: 3D printing, which is utilized in design and architecture, 

is another technology that is having a significant impact. The 3D printer is 

controlled by a movable robotic arm that follows instructions. The first 3D 

printed bridge was produced in the Netherlands, and other 3D robots can 

construct a structurally sound building. With the advancement of new robotic 

technology, more and more buildings will be constructed using an automated 

construction method, increasing project productivity while lowering costs. 

(Boulos et al., 2020) 

• Welding arms: Robotic welding is another example of the most advanced 

technologies that has been developed. To weld rapidly and precisely, robotic 

welding employs mechanized arms, welding positioners, and robot controls. 

Only a few workers are required to supervise robotic welding. There will be 

fewer injuries and no need to use manpower for manual chores if robotic 

welding is adopted. Project teams may focus on more critical tasks such as 

meeting deadlines, controlling budgets, and assuring productivity with the 

support of robotic welding equipment that performs the operation on its own. 

(Boulos et al., 2020) 

2.2.2 Industrial Robots 

Although the term robot covers a wide spectrum of mechanical machines 

used for automation, in this research, this term refers to 6-axis articulated arm robots, 

which are famously known as industrial robots or robotic arms. These robots, having 

three articulations to position in the space and three more for positioning their hand, 

are spectacularly established to handle material and different fabrication tasks. 

(Bonwetsch, 2015)  

Robotic arms, in terms of being programmable machines, can correlate with 

Computer Numerically Controlled (CNC) tools such as laser-cutters, mills, and 

routers which have been adopted in fabrication processes during last decades. The 

combination of these machines with digital design tools has filled the gap between 
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designing and having physical executions by allowing the designers to have a 

seamless flow of information with their fabrication tools. Additionally, this flow lets 

the designers have increased control over different steps of creating architectural 

artifacts compared to traditional methods. (Bonwetsch, 2015) 

Figure 1: The kinematics of an industrial robot (left), and the use of robotic 

arms in the automotive industry (right). 

 

However, industrial robots are not intelligent machines by themselves and their 

function is dependent on their control programmers. (Gandia et al., 2018) This fact 

results in opening a new space for research and exploration of how architects and 

designers can manipulate and combine robotic arms with other emerging 

technologies in order to design more intelligent and efficient processes of using these 

machines in AEC industry.  

2.3 Robotic Brickwork 

According to Altobelli et al. (1993), bricklayers are using the same methods 

used by the ancient builders in the City of Ur in ancient Iraq 6000 years ago. 

Brickwork is probably the oldest building method and material invented by human 

and it is remarkably adaptive and suitable for many architectural styles and purposes. 

(Bonwetsch, 2015) Even it is subject to many new research areas in architecture and 

design field. 
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Figure 2: Conventional Bricklaying (left), and a labyrinth constructed by 

robotic bricklaying (right). (Piškorec et al., 2018) 

 

Automation in brickwork by means of robots has been subject to research since 

1990s. (Altobelli et al., 1993) There are multiple reasons that make brickworks a 

suitable process to investigate the potentials of robotic fabrication in architecture. 

Firstly, brickwork can be isolated from the whole construction process and looked 

as an independent single project for automation. (Xu et al., 2019) Additionally, 

bricks, as small building units, have standardized shapes and their size and weight 

are perfectly suitable to be handled by industrial robots. More importantly, bricks 

and their geometry make it possible to develop large-scale purposeful geometries 

with a considerably high degree of freedom. (Bonwetsch, 2015) In other words, 

complex and large forms can be abstracted and constructed with a large number of 

bricks and their interrelations. Thus, controlling these members and their relations in 

a large quantity is one of the areas where digitally controlled design and fabrication 

gains advantages compared to traditional and human-based solutions. (Bonwetsch, 

2015) In addition, brickwork is a good candidate for automation using robots because 

it is tedious, physically demanding, time-consuming, and causes irreversible back 

injuries for construction labor over time. (Liu, 2009) 

For brickwork automation, Bonwetsch (2015) distinguishes between top-

down and bottom-up representations. Bottom-up representation concentrates on the 

arrangement of the units and their local interactions while ignoring greater limits, 

whereas top-down representation divides a big, well-defined structure (wall borders) 

into smaller units (bricks). Top-down techniques are highly technical, stifling 

creativity and, as a result, neglecting boundary constraints, limiting bottom-up 



 

 

21 

applicability to real-world situations. 2015 (Bonwetsch) A better representation 

would include both techniques, addressing a range of forms while being constrained 

by a boundary. Image-to-image machine learning translation models are viable 

alternatives to more declarative techniques. Machine learning models may 

generalize the content of the filler for any boundary condition based on picture 

representations (Isola et al., 2017). Simultaneously, machine vision technologies 

increase the robot's flexibility by enhancing its capacity to deal with variations in a 

present job. (Zandavali & Jimenez Garcia, 2019) 

 

 

Figure 3: A robotically constructed brick wall. (Gandia, 2018) 

 

Despite the fact that brickworks automation has been accessible for over 30 

years, researchers have only just begun to investigate the programmability potential 

of the technology, turning away from engineering-oriented techniques and toward a 

design-oriented approach. The most significant disadvantages of brickwork 

automation were their inability to adapt to the site environment and handle deviations 

in the prescribed task. Previous research added mobility elements and feedback 

systems to industrial robots to improve the robot's response to site conditions. 

Developing a container to move the robot on site (Bärtschi et al., 2010), modifying 

tracks in the robot (Arch Union, 2018), and using an aerial structure to 'suspend' the 

robots are all options for mobility (Gramazio & Kohler, 2016) (Dörfler et al., 2016; 

Helm et al., 2014). (2016) combined mobility and data capture by outfitting 
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industrial robots with a mobile track system and 2D and 3D scanners that detected 

objects or impediments. Collaborative robots with mobility systems are also another 

option for increasing robot site adaption (Willmann et al., 2012). (2014) published 

an Aerial Robotic Construction workflow that was tested using blocks assembling. 

One of the difficulties was ensuring the accuracy and consistency of placing a brick 

in the 'proper spot.' The 'flying' conditions' inconstancy was reflected in system 

precision. These efforts centered on combining hardware devices to expand the 

robot's site adaption capabilities, with small efforts to boost its flexibility in the 

bricklaying activity (Zandavali & Jimenez Garcia, 2019). 

 Two independent studies focused on task flexibility with clever algorithm 

solutions for two distinct reasons. These robots collect data from their surroundings 

and calibrate their precision based on the task at hand. Nair et al. (2017) trained a 

robot to manage a rope using a self-supervised machine learning model and imitation 

(Nair et al., 2017). EVA (Automata, 2018) is a tiny, unexpansive robot meant to learn 

by imitation. The human performs the movement and placement first, and the robot 

follows suit while calibrating the system to the surroundings. This study posits that 

rather than simply perceiving the world, the embodiment of automation might focus 

on building a system that understands it. It implies that the process of capturing the 

area to be filled, defining the borders, and calculating each brick location is intuitive 

and can be automated with the help of artificial intelligence (Zandavali & Jimenez 

Garcia, 2019). 

2.4  Artificial Intelligence in Architecture 

AI is a subfield of computer science concerned with the creation of intelligent 

machines that behave like humans. AI intelligent computer functions include 

learning, problem solving, speech recognition, and prediction (Habeeb, 2017). (M. 

B. Rapanyane & F. R. Sethole, 2020). As part of computer science's objective of 

generating machine intelligence, AI has become an essential feature of the 

technology industry. The vast majority of AI-related research is highly sophisticated 
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and technical. Among the basic core AI goals are fundamental knowledge, vision, 

and the capacity to handle and move objects, with knowledge generation as an 

engineering significant part of AI research (Castrounis, 2019). However, it is equally 

important to demonstrate that the primary goal is to construct robots that can respond 

and behave like humans and are packed with tremendous amounts of information 

about the environment. (Habeeb, 2017) 

Artificial Intelligence (AI) is widely being used in many industries such as 

healthcare, finance and banking, and even in agriculture. It has also been embedded 

in our daily life while we are using Google Search, Voice Assistants, and our 

smartphones. In all these cases, AI deploys computer processing for performing 

actions such as reasoning and decision-making that human brain does in a faster and 

more accurate way. (Russel & Norvig, 2002) 

AI is also a good complementary for automation in AEC. Using construction 

robots for performing routine tasks such as bricklaying can noticeably be beneficial 

to accomplish the construction goals faster and, moreover, improve the precision, 

quality, and safety. However, every architectural and construction project has its own 

unique conditions and environments and this can bring about difficulties for 

employing robots in different projects. (Mohammadpoura et al. 2019) 

In recent years, Architecture, Engineering, and Construction (AEC) Industry 

is looking forward to increasing automation in many fields to enhance not only 

productivity but also safety. Nevertheless, it is crucial to note that AEC is falling 

behind other industries in terms of implementing AI and other emerging technologies 

into its working processes. (Oesterreich & Teuteberg, 2016) 

Since the Architecture, Engineering, and Construction (AEC) industry is one 

of the most important production sectors, it has a significant impact on economic 

balances, societal stability, and global climate change concerns. Its status quo, slow 

innovation rate, and conservative methods are also acknowledged in terms of its 

adoption of technology, applications, and procedures. However, in a highly 

competitive global technology landscape and sociopolitical landscape, a new 
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technological era - Industry 4.0 fueled by AI - is driving productive sectors. 

(Maureira et al., 2021) 

Artificial Intelligence can come up with numerous alternative options with a 

considerably more pace than architects and designers by helping them to overcome 

human limitations in handling large amounts of data. This, consequently, enhances 

the design process, planning, construction and operating in the Architecture, 

Engineering, and Construction Industry (AEC) which has been remarkably under-

digitized compared to other Industries. In equipping AI in AEC, however, selecting 

a suitable technique for successful decision-making based on the knowledge 

acquired from the environment can be one of the important challenges. These 

techniques in AEC can be classified into two main areas: 1) Decision-making 

algorithms, and 2) Learning algorithms and methods. (Mohammadpoura et al. 2019)  

2.4.1 Machine Learning Algorithms 

Machine Learning is the study of mathematical and statistical models, 

algorithms, models, and application of Artificial Intelligence techniques that 

machines use for improving their performance by learning and improving from their 

experiences. Computers, with the help of machine learning techniques, can analyze 

data and learn from them similar to the way the human brain thinks and interprets 

information. (Mohammadpoura et al. 2019) In other words, machine learning is the 

technique of passing data, acquiring information about it, and making predictions or 

determinations about anything in the world via algorithms. Instead of using a set of 

instructions and hand-coding software routines, the machine is taught to use 

enormous volumes of data and programs that give it the ability to learn how to 

perform the task. (Habeeb, 2017) 
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 Machine Learning (ML) has the ability to simplify and adapt the traditionally 

time-consuming and expensive setup of digital integrated design to manufacturing 

workflows, opening new possibilities for architectural production. The capacity to 

swiftly construct and change these processes is crucial in the context of Industry 4.0, 

especially in order to generate mass customized goods, referred to as lot size in the 

Industry 4.0 paradigm ( Ramsgaard Thomsen et al., 2020). 

Figure 4. Positioning the two discrete moments for machine learning in fabrication 

within the Digital Chain's existing stages. The graphic depicts a cyclical 

relationship between design and fabrication, with forward channels showing how 

design influences fabrication and backward channels showing how design and 

fabrication data must be adjusted in response to feedback. (Ramsgaard Thomsen et 

al., 2020) 

Hence, combining Artificial Intelligence techniques with construction 

robots can fill in this gap and result in more intelligent robotic techniques with the 

power of learning and decision-making in different circumstances. 

2.4.2 Unsupervised Learning and Clustering 

Unsupervised Learning is a type of machine learning employed in the 

processes in which there are only input data but no output data. The aim of using 

unsupervised learning is to find regulations and patterns among the input data 
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independent from the output. (Darko, 2020) One method of unsupervised learning is 

Clustering, which is used to find groupings or cluster the input data based on their 

similar features. (Alpaydin, 2016) With this method, we can easily separate the 

clusters, label them as classes and try to classify them according to their special 

properties and features. 

In this study, clustering is going to be used for detecting and classifying the 

different types of bricks and then use these clustered bricks wherever they are needed 

in the bricklaying process. 

 

 

Figure 5: A diagram of the Gaussian Mixture where attributes are defined to 

determine groupings. (Nate, 2018) 

2.4.3 Deep Learning and Neural Networks 

In the last half-century there has been a significant success in achieving high-

accuracy learning algorithms with the help of big data and powerful computers. This 

advancement has caused less manual interference and brought about an autonomous 

approach that learns and is not fixed only for specific tasks. These algorithms, called 

deep neural networks, start from the raw input, combine the values of preceding 

levels in each hidden layer and learns more complicated aspects and functions of the 
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input and provide outputs that are learned by the most abstracts concepts in the final 

layer. (Alpaydin, 2016) According to Yeh (2006), neural networks are strong 

algorithms for optimization which work with developing systems that demonstrate 

self-organization and adaptation in a similarly simplified manner to the biological 

systems. The main idea in deep learning is to learn feature levels of increasing 

abstraction with minimum human interaction. This is due to the fact that in most 

cases the structure of the input is so complicated that becomes almost a hidden 

concept and it is essential to extract these patterns and regulations during training 

from a large sample of examples using developed algorithms. (Alpaydin, 2016) 

2.4.4 Reinforcement Learning 

Reinforcement learning, according to Alpaydin (2016), is a method of 

learning with critics. In this method there is a decision-maker called an Agent which 

is placed in an environment. A reinforcement learning program, basically, generates 

an internal value for the different actions and states of the agent inside the 

environment to define how they affect the process to lead to the final goal. Once such 

an internal reward mechanism is learned, the agent develops to take actions that 

maximize the reward and achieves the final solution to the task. In contrast with other 

learning methods, there are no external resources that provide the training data in 

reinforcement learning. Here, the agent itself performs actions in the environment 

and generates data by gaining feedback as a reward. This feedback updates the 

agents’ brain and teaches it to take actions that return higher rewards. 

Reinforcement learning algorithms have wider opportunity of application and 

have the potential to create better learning machines even though these algorithms 

are slower than supervised learning algorithms. The advantages of this method such 

as learning with no supervision needed end-to-end training, from raw input to 

actions, encourages the researchers to scale its applications into more complex 

scenarios. (Alpaydin, 2016) 
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Figure 6: An overview of how Reinforcement Learning works. (Lee, 2020) 

2.4.5 Q-learning and Its Paradigms 

One of the most often used representative reinforcement learning algorithms 

is Q-learning, which is an off-policy technique. Since its inception, several studies 

have detailed Q-learning applications in reinforcement learning and artificial 

intelligence difficulties. However, there is a knowledge gap on how to apply and 

combine these complex algorithms in a larger artificial intelligence process. 

Primitive Q-learning algorithms were inefficient in a variety of ways and could only 

be used to solve a small number of issues. This highly strong algorithm has also been 

observed to learn inappropriately and overestimate the action values on occasion, 

decreasing overall performance. However, as a consequence of recent advances in 

machine learning, new variants of Q-learning, such as Deep Q-learning, which 

integrates basic Q learning with deep neural networks, have been developed and 

widely used (Jang et al., 2019). 

Reinforcement learning (Chapman & Kaelbling, 1991) has received 

considerable attention recently, and it has had a great success in fields including 

game theory, operations research, information theory, simulation-based 

optimization, control theory, and statistics. Reinforcement learning, a type of 

machine learning, is quickly gaining popularity in computational intelligence as a 
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method for allowing computers to make their own judgments in a given environment 

without prior knowledge or labeled data (Jordan & Mitchell, 2015). With new 

varieties of reinforcement learning being launched and the possibilities of future 

reinforcement learning usage rising substantially, artificial intelligence will continue 

to push cross-cutting improvements (Parisotto et al., 2019). 

Reinforcement learning is a powerful learning algorithm that learns the 

optimum policy without having to model it by interacting with the environment 

(Kober et al., 2013). It utilizes an agent that learns the value function for a specific 

policy through interaction with the environment in order to foresee an ideal solution, 

and it evolves and learns the best policy based on the value function on a continuous 

basis (Tesauro, 1995). Temporal-Difference (TD) learning (Boyan, 2002) is the most 

widely used approach in reinforcement learning applications. It combines the Monte 

Carlo (Gilks et al., 1995) method of evaluating value without the need of a model 

with the advantages of dynamic programming (Puterman, 2014), which can 

approximate the value using only current estimates. Q-learning uses an off-policy 

control that divides the deferral and learning policies and uses Bellman optimal 

equations and the e-greed policy to update action selection (Watkins & Dayan, 

1992). 

Q-learning has been the basis for many new reinforcement learning 

algorithms because it has easy Q-functions comparing to other reinforcement 

learning algorithms (Dearden et al., 1998). However, early Q-learning systems were 

limited by the incentive storage problem (Lazaric, 2012). As the number of actions 

rises, the available storage space becomes insufficient, preventing the problem from 

being solved. In other words, obtaining effective learning for complicated learning 

problems with large state-action contexts is difficult. Furthermore, in compared to 

single-agent environments, the state storage space for multi-agent environments 

expands, and this storage occupies a significant percentage, if not all, of the computer 

memory (Lazaric, 2012). As a result, the machine is unable to deliver the proper 

response. To handle this challenge in varied situations, many Q-learning algorithms 

have been created. 
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Temporal-Difference (TD) learning (Boyan, 2002) combines the Monte 

Carlo (Gilks et al., 1995) method of assessing value without a model with the 

advantages of dynamic programming (Puterman, 2014), which may estimate value 

using just current estimations. Q-learning uses an off-policy control to segregate the 

deferral and learning policies and to update action selection using Bellman optimal 

equations and the e-greed policy (Watkins & Dayan, 1992). (Zhang & Yang, 2017) 

(Gu et al., 2017) (Ghavamzadeh et al., 2015). 

Deep Q-learning (Hester et al., 2018), developed by Google in 2016, is a 

well-known technique for single-agent situations. In this paper, we look at 

techniques for coping with Q-learning issues in multi-agent systems. Modular Q-

learning (Tham & Prager, 1994) is a multi-agent Q-learning system that separates a 

single learning issue into many portions and applies a Q-learning algorithm to each. 

Ant Q-learning (Dorigo & Gambardella, 1996) is a technique in which agents share 

reward values with one another, in the same way as ants reject lower reward values 

and solve problems with higher reward values. In a multi-agent system, this makes 

it easier to acquire the action's reward values. The Nash Q-learning algorithm (Yang 

et al., 2020) is a multi-agent adaptation of the standard Q-learning algorithm. 

Q-learning was primarely used in the fields of process control (Jiang et al., 

2017), chemical process, industrial process automatic control, and airplane control 

(Khan et al., 2012). Q-learning is now employed in network management (Alsheikh 

et al., 2014), mostly for route optimization and reception processing in network 

communication. With the introduction of AlphaGo, substantial study in the field of 

game theory is underway (Vamvoudakis et al., 2017). The properties of 

reinforcement learning via trial and error are quite identical to those of the human 

learning process (Moerland et al., 2018). As a result, Q-learning is excelling in the 

field of robotics, particularly in the fields of autonomous vehicles, drones, and 

humanoid robots (Plappert et al., 2018). Figure 7 depicts the evolution of 

reinforcement learning.  
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Figure 7: The flow of reinforcement learning 

“The Markov decision process (MDP) (White III & White, 1989) defines the 

sequential behavior decision problem that is the foundation of reinforcement 

learning. The MDP specifies an agent that introduces the concept of the value 

function for learning, and the value function is associated to the Bellman equation. 

To develop the Bellman equation, reinforcement learning use MDP and the value 

function, followed by Q-learning to solve the problem. It is critical to select an 

efficient method that solves the Bellman equation” (Sutton, 1995) to enhance the 

efficiency of reinforcement learning. MDP, the value function, and the Bellman 

equation are all discussed in this section. 

2.4.5.1 Markov Decision Process 

The sequential action choice problem is mathematically defined as MDP. The 

environment is probabilistic, which implies that the state of the transition and the 

compensation are random after the action. Policies are rules for selecting actions to 

be performed in a certain state, and MDP can be used to formulate reinforcement 

learning algorithms. (Even-Dar & Mansour, 2001) 
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1) State 

The state is a group of S observable agent states. "Observation of your 

situation" (Cassandra, 1998) is what state means. 

2) Action 

In a state S, an action is a collection (Sutton et al., 1999) of possible actions 

A. In most cases, an agent's set of actions are similar in every state. As a result, one 

A set is represented. (Littman, 2001) 

3) State Transition Probiblity Matrix 

When an agent performs action A, the state transition probability is a 

numerical representation of the agent's migration from state S to state S'. The 

following states and MDP compensation are decided completely by the current state 

and actions. As a result, the likelihood and size of the next state being compensated 

by the following compensation are given by. “The probability is: 

Pass’ = P[St+1 = s’|St = s, At = a] 

where Pass’ is the probability recorded in the matrix P of moving to state s’ when 

action a is performed in state s, and t denotes the time.” (Littman, 2001) 

4) Reward 

The reward is the information that is delivered to the agent in the environment 

so that the agent can learn it. “When the state is s and the action is an at time t, the 

agent obtains the following reward: 

Rass’ = E[Rt+1|St = s, At = a] 

where Rass’ is the definition of the reward function. t is the time, and E is the 

expected value for the reward to be given as action a occurs when it moves from a 

state to s’.” (Littman, 2001) The agent can describe the compensation value as an 

anticipated value since it can offer various rewards even if the same activity is 

performed in the same state depending on the environment. When the agent takes 
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action A in state S, the environment informs the agent about the next state S' the 

agent will reach and the reward it will get. The agent receives information from the 

environment at time t + 1. As a result, Rt+1 represents the pay that the agent will 

receive. 

5) DISCOUNT FACTOR 

The notion of a discount factor was established in response to complications 

caused by compensatory procedures. After operating in each state, the agent gets 

rewarded. The value of a reward decreases with time, giving rise to the idea of 

depreciation. Depreciation has a value between 0 and 1, and it decreases the agent's 

income over time (Sutton et al., 1999). 

6) Policy 

When an agent reaches a given state, it selects an action based on the policy. 

π(a|s) = P[At = a|St = s] 

where π is the probability of policy that the agent selects a in state at time t. 

Reinforcement learning progressively learns better policies than the present one to 

attain an optimum policy. (Dietterich, 2000) 

 

2.4.5.2 Value Function 

The agent must chose the action it will perform in order to determine the 

future reward. The criterion that decides which policy is optimal is the value 

function. The value function is the total of the projected benefits when the policy is 

implemented from its present state (Dietterich, 2000) as follows: 

“vπ (s) = Eπ [Rt+l + γ vπ (St+1)|St = s) 

where the expectation equation Vπ (s) is the expected value Eπ, Rt+1 is the reward 

value to be awarded next and l is the discount factor. (Littman, 2001)” The state 
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value function computes the total of the rewards that will be gained when the state 

is supplied using the formula above, allowing the agent to pick a more advantageous 

state. 

The action value function checks at the state as well as the action. The agent 

chooses an action based on the Q-function. The Q-function is defined further down: 

qπ (s, a) = Eπ [Rt+1 + γ qπ (St+1, At+1|St = s, At+1 = a) 

The following equation expresses the relationship between the Q-function 

and the value function: 

vπ (s) = Σa∈A π(a|s)qπ (s, a) 

For all actions, the policy and the Q-function value are merged together. The 

Q-function and value function are expressed using Bellman equations. The Bellman 

equation displays the link between the value function of the present state and the 

value function of the future state. 

2.4.6 Bellman Equation 

1) Bellman Expectation Equation 

The value function represents the expected value of a state. The value 

function of a state is the total of the rewards to be collected when the agent moves to 

the next state, and it is impacted by the present agent's policy. The Bellman equation, 

which reflects policy, explains the link between the value function of the present 

state and the value function of the next state. (Dietterich, 2000), (Irodova & Sloan, 

2005). 

Vπ’(s) = Σa∈A π(a|s)(Rt+1 + γ Σs’∈S Pass’vπ(s’)) 

Above is the Bellman expectation equation. Σa∈A π(a|s) is the probability policy to 

do the action Σs’∈S Pass’ is the state transition probability matrix. As in previous 

equations, Rt+1 is the reward, and γ is the discount factor. 
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2) Bellman Optimality Equation 

The purpose of reinforcement learning in the MDP scenario is to obtain the 

optimal policy. The policy is determined by the value function, and the optimum 

policy is the one which delivers the highest expectation for all policies. The Bellman 

optimum equation is a policy that uses the value function to find the best value. The 

Bellman optimum equation is as follows: 

v∗(s) = maxa Eπ[Rt+1 + γ v∗(St+1)|St = s] 

where maxa Eπ is the maximum expected value among the policies that agents can 

receive. To address the MDP issue, reinforcement learning employs the Bellman 

expectation equation and the Bellman optimum equations. 

2.5 Basic Q-Learning 

Unlike previous algorithms that did not differentiate between behavior and learning, 

Q-learning used an off-policy method to separate the acting and learning rules. As a 

result, even if the action taken in the next state was mediocre, the information will 

not be incorporated in the updating of the present state's Q-function, creating a 

quandary (Dietterich, 2000). Q-learning, on the other hand, solves the problem by 

utilizing an off-policy method. The Q-value equation is as follows: 

“Q(s, a) ← Q(s, a) + α[R + γ max Q(s’, a’) − Q(s, a)] 

where α is the learning rate and has a value between 0 and 1. R is a reward and γ is 

the reduction rate of the reward as time passes.” (Dietterich, 2000) 

The action's Q-value for the current state S is Q. (S, A). To update S, the sum 

of the existing value Q (S, A) and the equation calculating the best action in the 

current state is employed. To continue Q-learning, the Q-value for each state is 

continuously updated using the above equation. Before beginning Q-learning, the Q-

table contains rewards. If an agent uses a policy to pick an action in the first state, it 

then advances to the next state using a state transition probability matrix. When the 
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Q-table is used to solve a problem, this procedure is repeated until the total Q-value 

converges to a certain value (Irodova & Sloan, 2005). Q-learning is a Bellman 

problem solution that combines dynamic programming and Monte Carlo methods. 

Q-learning has been the core of various reinforcement learning algorithms because, 

unlike other approaches, it is simple and exhibits good learning capacity in single-

agent circumstances. However, with Q-learning, a value is only altered once per 

action. As a result, it is difficult to handle complicated problems efficiently in a large 

state-action context since the agent may be inexperienced with the multiple states-

actions. In addition, because the Q-table for rewards is pre-programmed, a large 

quantity of storage memory is necessary (Shoufeng et al., 2008). In a multi-agent 

system with two or more agents, a large state-action memory is required, which poses 

issues. As a result, simple Q-learning algorithms have limited ability to perform 

effective learning in a multi-agent setting (Jang et al., 2019). 

2.6 Robotic Control via Reinforcement Learning 

In the context of Industry 4.0, one of the most critical challenges of Cyber-

Physical Production is to have not only economically efficient but also adaptive and 

flexible production methods under different circumstances. Motion planning of the 

industrial robots is one of the areas that employing more flexible techniques is crucial 

due to their variability in motion tasks and their need to adaptively cope with the 

variations in the environment. (Oesterreich & Teuteberg, 2016) Commonly, the 

movements of these robotic arms are programmed in a non-adaptive way that a small 

change in the environment or circumstances will lead to error and failure in the whole 

process. For example, programming a pick-and-place movement requires the exact 

coordinates of the object to pick and the detailed location of the point to locate the 

object. (Meyes et al. 2017) In this method, a slight deviation in these coordinates or 

the path between can cause a total failure. 

To solve this type of problem and achieve adaptability in robotic fabrication, 

one approach is to adopt artificial intelligence techniques such as Reinforcement 
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Learning algorithms. Previous researches have proven that RL agents and 

simulations are capable of learning how to perform specific actions and movements 

with industrial robots without any prior programming and path planning. 

(Andrychowicz, 2017) 

Additionally, extending these robots with visual sensors or cameras has been 

tested to successfully generalize the learned actions for further various actions with 

no need for more learning processes. The idea is to provide the robots with the 

capability of observing their environment using sensor technologies and cameras and 

gather experiences while taking actions. Using these observations, robots can adapt 

their movements according to the changes in their environment. (Meyes et al. 2017) 

In general, augmenting the industrial robots with Reinforcement Learning 

algorithms and training them with RL-based simulations, provides the ability to 

adaptively deal with the variations in performing particularly similar tasks without 

the need to program them from scratch over the time. This fact results in saving large 

amounts of time and costs in fabrication projects and, moreover, is a fundamental 

step to allow robots to accumulate expertise over their lifetime similar to human 

labor. (Meyes et al. 2017)  
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CHAPTER 3  

3 PROBLEM DEFINITION 

3.1 Problem Definition 

As discussed previously, the architecture and construction sector has not fully 

developed dominant strategies to exploit the potentials of new technologies such as 

artificial intelligence and robotic systems which have been used effectively by other 

industries since couple of decades ago. These technologies can be put into action in 

many phases of architectural process from basic design stages to final on-site 

construction and increase the efficiency of projects in terms of time, economy, and 

accuracy. Moreover, implementing intelligent unsupervised robotic techniques in the 

construction phase of architectural projects could be a fundamental and game-

changing solution for on-site risks and threats for human labor in terms of work 

safety. 

The Fourth Industrial Revolution is taking place and changing many 

industries and manufacturing methods. In the context of Industry 4.0, one of the most 

critical challenges of Cyber-Physical Production is to have not only economically 

efficient but also adaptive and flexible production methods under different 

circumstances. However, by a simple investigation in AEC Industry and especially 

the construction sites, it will be obvious that the existing techniques and methods are 

remarkably far from the standards of Industry 4.0, the era that we are living in. 

Hence, the problem with applying old methodologies in architectural 

construction processes can be abstracted in four main parts: 

• The construction process is inefficient and inadequate compared to the 

standards of Industry 4.0 which emphasize automation, smart manufacturing, 

flexibility, and adaptive processes. 
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• Manual fabrication techniques include several types of risks for human labor 

on construction sites. 

• It also, limits the creative design process due to insufficiencies in existing 

fabrication methods and lack of flow between concept design, prototyping, 

and fabrication. 

• Furthermore, the mentioned technologies use of which can be noticeably 

advantageous for developing automation in AEC, generally, have technical 

difficulties to be directly occupied by architects and construction 

professionals. These difficulties include demand for high programming skills 

for deploying AI methods and being familiar with robotic control. 

Hence, these problems should be solved by introducing more intelligent 

processes where human interaction and manipulation are minimized and replaced 

with smarter automation processes and methods of human-robot collaboration on 

construction sites. 

3.2 The Objectives of This Research 

By investigating the potentials of new technologies in hand, this research is 

going to introduce an intelligent process for architectural robotic fabrication using 

artificial intelligence techniques and algorithms. The primary goal is to minimize the 

manual decision-making and manipulation of robot movements by architects or 

construction specialists. The provided method has the capacity to assist architects 

and designers to easily adopt automation in their workflow without the need to focus 

on complex technical concepts and techniques of AI and robotic systems, which can 

be tedious and demanding for them in many terms. With approaching this level of 

automation in robotic construction, manual and outdated human labor construction 

process could be replaced with a convenient flow of collaboration between laborers 

and smart agents of construction, providing safety, precision, and speed. 
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Due to the reasons discussed previously, this research focuses on a case study 

of intelligent robotic bricklaying using a simulation-based research design and can 

be extended to other tasks that need smart automation with robots in the process of 

design and fabrication.  

Mainly, this research aims to explore the potentials of using reinforcement 

learning algorithms and environments for robotic fabrication in architecture and 

building industry. To explore these potentials, objectives of the research are as 

followed:  

• Simulate an environment consisting of: 

o A primitive form designed to be built by bricklaying, 

o And an intelligent decision-making agent which will perform the process 

of bricklaying; in this case, the intelligent agent is a simulation of an 

industrial robotic arm in the environment. 

• Training the intelligent agent for unsupervised bricklaying using 

reinforcement learning algorithms and dynamic programming. 

3.3 Hypothesis 

The hypothesis of this research states that by integration of latest AI 

advancements to the existing robotic construction methods, we can train robots as 

intelligent agents to perform human labor tasks on construction sites.
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CHAPTER 4  

4 METHODOLOGY AND RESEARCH DESIGN 

4.1 Research Design and Methodology 

 As discussed, this research is going to investigate the potentials of 

implementing artificial intelligence techniques into existing robotic bricklaying 

methods in order to establish a smart process of employing robots by architects, 

designers and construction specialists. For this purpose, different artificial 

intelligence algorithms and techniques have been explored and tested to find the 

suitable options that meet the requirements and objectives of the research. Exploring 

the potentials of Evolutionary Algorithms, Genetic Algorithms and Metaheuristic 

methods, it was discovered that in addition to these existent methods, Reinforcement 

Learning algorithms could also feasibly satisfy the objectives of this research. The 

advantageous features which make these types of algorithms to pave the way for a 

novel area of research and fit our demands can be listed as below: 

• Certain Reinforcement learning algorithms are simulation-based and can be 

properly integrated with architectural and fabrication simulations providing 

real-time visual and physical feedback and analyses. 

• These algorithms consist of an environment and an agent or multiple agents 

trying to learn to perform a wide range of tasks which they are assigned for. 

• Various types of RL environments are suitable for solving complex problems 

not only in discrete but also in continuous action spaces. This can provide a 

range of dynamic tools in hand for training agents to accomplish multiple 

types of tasks. 

• More importantly, these algorithms are considerably more enhanced and 

evolved compared to other groups of AI algorithms that can provide a human 

level precision, intelligence, and control in learning and performing assigned 



 

 

44 

tasks in architectural projects that formerly only human labor were capable 

of. 

4.1.1 Research Tools 

To approach the objectives of this research, a set of tools and materials are 

required. As the aim of the research is to prove the hypothesis based on a set of 

simulations, the tools and materials are computer software, object-oriented 

programing languages, a series of artificial intelligence algorithms, and a personal 

computer to run the simulations on. 

The software adopted for this set of simulations are Rhinoceros which is a 

Computer Aided Drawing tool and Grasshopper plug-in, a visual programming 

interface to carry on the primitive design and connect the algorithms on a platform 

which will provide practical control features specially for designers and architects. 

Other plug-ins such as KUKA PRC are employed to simulate and visualize robotic 

arm application on required objectives. 

In addition to the mentioned tools, Python, an object-oriented programing 

language and related libraries such as NumPy are used to construct the core 

algorithm and environments for training and controlling the agents. These algorithms 

include codes for generating the environment, RL algorithms which are the main 

training algorithms and other supplementary dynamically programmed codes to 

complete the process. 

4.2 Research Design 

4.2.1 Simulation Process 

To explore and test the application of suggested methods, a simulation 

process is designed to interconnect the capabilities of Rhino and Grasshopper 
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software as conventional CAD and visual programming tools for architects and 

designers with the outstanding potentials of RL algorithms. Therefore, the different 

stages of this simulation are designed in different environments which are connected 

and synchronized dynamically. 

The simulation design for this research is divided into four main stages: 

a. Primitive form design: 

First, the geometry and other characteristics of the prototype that is going 

to be the subject to construction in the simulation are designed. This prototype 

can vary from a simple flat wall to more complicated forms and patterns which 

have the brick as their building units. The form is developed via conventional 

CAD or parametric design environments such as Rhinoceros and Grasshopper. 

This step is the starting but raw phase of the project which makes the foundations 

for the next stages.  

b. Block and stacking layout generation: 

After having the basic design in hand, the next step will be to generate a 

layout of blocks of the wall and another layout of bricks as a pile; at the next 

stages, the first layout will be used as the target of placing the bricks and the 

second one as the target of picking the bricks in the process of bricklaying 

simulation. 

For generating the brick layout for robotic assembly, the initial prototype 

mesh will be divided into smaller segments of the size of the blocks that will be 

used as construction units. At this step, the center points of each of the segments 

are the center points of the blocks. These center points, at the next step of the 

simulation, which is training the robotic arm the pick and place process, will be 

used as the target points for the agent to try to place the bricks on. 
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The second generated layout of blocks is the layout of a pile consisting of 

the required number of bricks in a certain array. The center points of each block 

in this array are the target of robotic arm to reach and pick bricks.  

The dimensions of the layouts in ‘number of bricks’ are defined after 

initiation. These dimensions are the width and height of the prototype wall, and 

length, width, and height of the pile of bricks which will be used in the next steps 

for the training and tracking the observations of the agent. This step of the 

simulation is also performed by supplementary plug-ins of Grasshopper in Rhino 

platform. 

c. Pick and Place Training for the Arm: 

The most important stage of the simulation is where the robotic arm will 

be trained for bricklaying via reinforcement learning algorithms. Reinforcement 

learning is a method of training an agent in an environment with a system of 

reward and critics. In this method, the intelligent agent starts to explore the 

environment within several episodes and steps.  In any of the steps, the agent gets 

a positive or negative reward based on its performance compared to its goal and 

at the end of each episode, the accumulation of these rewards will give the agent 

a statistical insight of its performance to evolve for the next steps and episodes. 

Thus, by deploying these algorithms, the simulated robotic arm needs to take 

actions and cumulate positive or negative critics based on the system of rewards 

which is programmed based on the goal of the simulation. By collecting these 

rewards, the agent learns to take the actions which are in favor of the main goals 

of the process and avoid unnecessary and sometimes adverse actions. 

There are successful examples of employing RL algorithms for industrial 

robot motion planning for different purposes such as pick-and-place, laser 

cutting, or even playing the wire-loop game. (Andrychowicz et al., 2017).  

However, in this case, these algorithms are going to be used to train the robotic 

arm two main objectives: 
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i. Selecting a series of blocks from the pile layout for picking 

ii. And, selecting a series of targets from the prototype wall layout for 

placing the block in. 

In other words, during this stage, the agent in the environment will explore 

various actions to learn a policy for solving the bricklaying problem by picking 

correct blocks and placing them at the correct targets. For this, the agent extracts an 

optimal list of blocks from each layout to perform the pick and place of bricklaying 

process. 

iii. Approach: 

To accomplish the mentioned objectives, an approach which is a combination of 

dynamic programming and Q-learning algorithm is designed and employed to train 

the agent. Below is the description of how this approach functions.  

1. Generating a random array of n block IDs to pick: 

With the layout of the pile of bricks generated at previous steps, each brick is 

assigned with a unique ID according to its position in the pile layout. At this step, 

the algorithm generates a random array of these block IDs with the size of n, which 

is the number of total bricks required for building the prototype. This array goes 

through operations and produces the optimal array of suitable bricks for picking from 

the pile after the training phase. 

2. Generating a random array of n block IDs to place: 

Simultaneously, another random array of block IDs is generated that 

demonstrates the list of targets on which the bricks will be placed. The IDs of 

each block is similarly defined by the position of each block in the stacked layout 

of the prototype. The size of this array is n in like manner. 
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Figure 8: Generating arrays and exploring the space for learning 

Pile Array = [n:p Block IDs],  Target Array = [n Bock IDs] 

Where n is the number of blocks needed to construct the prototype and p the number 

of blocks in pile layout (p > n). 

a. Go through each array and check for the availability of the block IDs at each 

step: 

At this stage, the algorithm examines the array of the pile and the array of the 

targets to check for the availability of each item in each array. For this problem, 

available items are the block IDs the corelated bricks of which are positioned in 

the first layers of the layouts at each iteration. After this examination, the first 

layers of each layout are updated if any available items are selected from the 

layout. 

b. Assign a rewards system for the available and unavailable items in each 

array: 

While inspecting the items of each array, the RL agent receives positive or 

negative rewards if the array item is respectively available or unavailable. These 

rewards are the q-value of each action taken by the agent at any step and as the 
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training continues, the agent takes actions that have more q-values; in other 

words, the agent choses the actions that maximize the accumulated reward and 

avoid the actions that minimize this amount. 

3. Training the agent to modify the arrays based on the system of rewards: 

After defining the system of rewards, as the agent starts to take actions, it 

receives positive and negative rewards based on the state of the environment. 

These actions, states, and the rewards are collected as observations of the agent 

in a table named Q-table. Learning the policy and predicting the future actions 

and their q-value are extracted from the data stored in the Q-table. In this method, 

the formula to calculate and predict the q-values for each future action is: 

Q(s, a) ← Q(s, a) + α[R + γ max Q(s’, a’) − Q(s, a)] 

where α is the learning rate and has a value between 0 and 1. R is a reward and γ is 

the reduction rate of the reward as time passes. 

Figure 9: A demonstration of how Q-learning functions 

a. Commencing from the random arrays: 

To begin to explore the action space, the agent takes the initially generated pile and 

target arrays, check availability of their items and collect observations. 
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b. Continue with more random modifications: 

After the first iteration at which the initial arrays are examined, the agent 

starts to modify the arrays randomly at next steps. At the early steps, the agent 

will perform more random actions of modification in order to explore wider 

range of solutions and hence collect more complete sets of observation. 

Therefore, he episodes at which more random actions are performed are 

called exploration episodes. 

c. Decreasing the randomness of the modification based on the observations 

and learnt policy: 

Once the agent passes the exploration episodes of learning and accumulates 

sufficient sets of observations, the q-table will provide more precise insights 

for future actions, states, and q-values. With more observations in hand, the 

agent continues to decrease the randomness of the actions and increase their 

precision around the optimal solutions. These episodes at which the actions 

are more precise rather than random and in favor of accomplishing higher q-

values, are called exploitation episodes. 

d. Iterating until the policy is trained to the agent: 

By increase of the number of episodes in the training phase, while the agent 

has explored and exploited the environment and the action space, the q-table 

provides a certain pattern of actions for the agent to accomplish its goals. This 

pattern is called a policy and once it is learnt by the agent, its decisions will 

evolve in terms of precision. 

4. Finding the optimal solutions: 

After an adequate number of episodes of training and when the policy is learnt by 

the agent, the optimal solutions for the problem emerge. Thereafter, the algorithm 

collects these solutions for the next stages of the simulation. In the scope of this 

research, the optimal solution is extracting two arrays of items: 
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a. The pile array: a list that contains n numbers of the IDs of the blocks to 

be picked from the pile layout by the robotic arm in an optimal order. 

b. The target array: a list containing n numbers of the IDs of the blocks to 

be placed on target in the prototype layout by the robotic arm in an 

optimal order. 

c. Exporting the optimal solutions for pick and place: 

At this stage, the pile array and the target array which are the final outputs 

of the algorithm for the problem are exported to Grasshopper 

environment to function as the inputs of pick and place process by the 

robot. 

d. Robotic bricklaying simulation: 

The last step of the simulation is to perform a complete bricklaying 

application of the robotic arm. At this step, the KUKA PRC plug-in for 

Grasshopper is employed to simulate the operation. The plug-in receives 

the exported arrays as inputs to transfer a set of point-to-point movement 

commands to the robot. Additionally, the type of the industrial robot, the 

type of its virtual tool and other parameters can be selected and 

manipulated using the plug-in. In the case of this simulation a virtual 

KUKA KR30/60 robot and a Schunk PGN160 gripper are assembled to 

perform the assigned tasks.   

Figure 9 demonstrates a summary of research design and tools corelated with each 

phase of process:
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Figure 10: A visual summary of research design and materials 

4.3 Studying Variations to Test the Proposed Simulation 

To test the functionality of the proposed method and algorithm, five different 

scenarios are generated with variations in pattern of layers in four different 

prototypes. In this study, the variations of the prototype is generated within the 

parametric design platform and the functionality of the algorithm to train the agent 

to solve the problem of bricklaying is put into challenge. During each variation, 

separate training sessions have been conducted and the results are put to comparison 

in the next chapter.  
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Figure 11: Robotic setup for pick and place simulation. 

4.3.1 Prototype Variations 

Each initial prototype is individually designed to challenge the different 

capacities of the proposed method in this research. The prototypes vary in number 

of blocks, number of layers, stacking pattern, and environmental constraints. In 

addition, during the training process, the learning parameters have been manipulated 

to explore a wider range of solutions for the bricklaying problem. 

4.3.1.1 Prototype 1 

This prototype is a flat two layered stack of blocks. The total required number of 

blocks to fabricate this prototype is 10. The first prototype is designed to test the 

basic ability of training the arm to fabricate a small-scale layered structure. 



 

 

54 

 

Figure 12. Prototype 1 

4.3.1.2 Prototype 2 

The second prototype consists of total nine blocks which are stacked in three layers 

of three blocks. In terms of form and pattern, this prototype is a flat wall likewise.  

Figure 13. Prototype 2 

The reason to design this prototype for the learning process is to explore the 

capabilities of the method in different dimensions for the layers: more layers but 

fewer blocks in each layer compared to the first scenario. 
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4.3.1.3 Prototype 3 

The prototype number three also contains nine blocks in total three layers. 

However, in this case, the stacking pattern of the layout is different from the previous 

cases. The pattern includes free distances between the blocks of each layer. 

Figure 14. Prototype 3 

Testing the method using this prototype explores the potential of the proposed 

method for performin automated bricklaying of special patterns in small scales. 
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4.3.1.4 Prototype 4 

The final prototype alike the prototype 2 and 3 includes nine blocks in three 

layers. Nevertheless, in this case the stack is put under a different environmental 

circumstance which is an uneven base which affects the pattern of the target layout.  

Figure 15. Prototype 4 

4.3.1.5 A Prototype with Higher Numbers of Blocks 

This prototype is generated to test the capacity of the algorithm in solving 

problems with larger dimensions. Hence, a wall with block number of 30 and layer 

size of six is designed as the prototype. At this simulation the pile layout is updated 

to provide enough blocks for picking. 

4.3.1.6 The Pile Layout 

In the simulations to test the algorithm on different four prototypes, the layout 

of the pile which nests the blocks to be picked is constant and does not change. 

Hence, the pile is a layout of 18 blocks contained in two layers of nine. However, 

the pile is updated in the case of fifth prototype to meet the requirements of the 

problem. 
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Figure 16: Pile Layout 
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5 Results and Conclusion  

5.1 Results and Analysis 

As discussed in the previous chapter, to assess the performance of the 

methodology that has been designed for training a robotic arm to solve a bricklaying 

pick and place problem using Q-learning, a subcategory of reinforcement learning, 

five different cases have been studied. These cases are arranged in different 

circumstances under which the size, pattern, and other characteristics of the 

prototype change. Therefore, the algorithm is put to different challenges by these 

alterations. 

 After conducting the simulation and training process for the planned 

scenarios, it has been observed that the algorithm has promising potentials to solve 

the assigned problem in a greedy manner for certain number of blocks. Nevertheless, 

by increasing the number of blocks of the problem to higher numbers, as the 

exploration space enlarges drastically, the pace of the algorithm to approach the 

optimal solution declines by a noticeable amount. 

 The observations accumulated from the different scenarios indicate that, 

employing Q-learning as a method of reinforcement learning has outstanding 

potentials to solve smaller scale bricklaying problems where precision is a key 

requirement of the process. In addition, it has been observed that, solving this 

problem with the proposed method can train robots to handle a wide range of 

variations not only in the fabrication prototype but also in the conditions of the 

environment where the bricklaying is being operated. This, accordingly, exposes the 

advantageous potential of the designed method to be employed in real construction 

site situations, where unanticipated and random working environments are common. 
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5.1.1 Analysis of Scenario 1 

In this scenario, the generated prototype is a linear small-scale wall with 10 

total block numbers. The wall has two layers in which lay five blocks. On the other 

hand, the generated block pile consists of 18 blocks with dimensions of three, three, 

and two as width, length, and height respectively. 

 As it is evident in Figure 17, the algorithm has successfully trained the agent 

to solve the problem in approximately 100 total episodes. In this training, each 

episode consists of 50 steps. Thus, it can be calculated that the agent has learnt the 

policy after 5,000 numbers of actions. 

 The fluctuations in the reward amount around episode number 20, genuinely, 

depicts the tendency of the agent for more exploration of the action space whenever 

the state does not reach noticeable progress by repeating actions. 

 Analyzing the results of the first scenario proves that the proposed method is 

capable of solving the bricklaying problem of a 10-block wall by reaching the 

optimum reward of 20 which represents 10 successful picking actions and 10 

successful placing actions. 

Figure 17: Reward per episode for Scenario 1 
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5.1.2 Analysis of Scenario 2 

The generated prototype in this scenario is another small-scale wall with ten9 

total block numbers. There are three layers to the wall, each with three blocks. The 

created block pile, on the other hand, is made up of 18 blocks with width, length, and 

height measurements of three, three, and two, respectively. 

Figure 18 visualizes the results of the training for this scenario in terms of 

rewards per episodes. As it is clear in the figure, the training has been successful in 

approximately 40 episodes of 50 steps. This implies that the agent has approached 

the optimum solution within 2,000 actions. 

In comparison with scenario 1 where there exists 1 more block in each layout, 

it can be comprehended that the algorithm has solved the problem of the current 

scenario in considerably smaller number of actions. 

The overall ascending fluctuations of the episode rewards in this figure 

indicates that increasing the number of layers of the prototype results in a larger 

exploration space in the problem and reduces the initial learning rate of the agent 

compared to the first scenario. 

 

Figure 18:  Reward per episode for Scenario 2 
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5.1.3 Analysis of Scenario 3 

Within this scenario, the number of the blocks and the dimensions of the 

prototype are the same as the second scenario; nine total blocks divided into three 

layers. Likewise, the pile layout is unaltered. Nonetheless, the distinctness of this 

scenario is the block pattern of the prototype where the blocks of each layer have a 

half-block distance from each other. 

Analysis of Figure 19 demonstrates that in this scenario the optimum solution 

has been discovered within approximately 40 episodes, as same as in the previous 

scenario. This similarity in the learning rate of these two consequent scenarios 

uncovers the fact that the pattern of the block layout is not a decisive factor in the 

process of learning as the agent handles the IDs of the blocks in layers independent 

from the pattern of stack. 

The above-mentioned characteristic of this algorithm makes it an 

advantageous method to perform robotic bricklaying of complex patterns generated 

with bricks. 

 

Figure 19: Reward per episode for Scenario 3 
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5.1.4 Analysis of Scenario 4 

The number of blocks and prototype dimensions in this scenario are the same 

as in two previous ones; nine total blocks separated into three layers. The pile layout 

is also unchanged. However, in this scenario the variable factor is the surface of the 

base of bricklaying. 

Applying automated robotic bricklaying on most of the construction sites faces 

crucial problems when the circumstances of the environment are non-standard. 

Hence, this scenario is dedicated to solving the bricklaying problem under 

circumstances that might be observed in real situations; bricklaying on an irregular 

surface. 

The results visualized in figure 20 indicates that the learning rate has not been 

affected by the changes in the environment drastically and the optimum solution has 

been discovered by approximately equal number of steps and episodes compared to 

previous two scenarios. 

The aim of assessment of the method in this scenario is to disclose its potentials 

for being implemented in non-standard conditions which is a constant issue in actual 

construction projects. 
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Figure 20: Reward per episode for Scenario 4 

5.1.5 Analysis of Scenario 5 

After investigating the potentials of implementing the method proposed within 

the scope of this paper on four different small-scale prototypes under various 

conditions, in the last scenario a large-scale prototype is generated for the simulation. 

In this scenario, a larger flat wall with totally 30 blocks divided into five layers 

is used as the fabrication prototype of the simulation. Consequently, the pile layout 

dimension has been updated to four blocks in width, four blocks in length and three 

blocks in height, producing a sum of 48 blocks of which 30 will be picked to 

construct the prototype. 

Conducting the training simulation with this setup, it was discovered that as 

the number of blocks and layers of the prototype increases, the exploration space 

exponentially multiplies in size. As a result, the learning rate of the agent declines to 

zero after a certain steps of trial. Figure 21 demonstrates that after more than 2,000 

episodes of 50 steps (100,000 actions), the algorithm is not capable of solving the 

problem. Compared to small-scale prototypes, it can be concluded that the proposed 

method, which is training a robotic arm with Q-learning to perform automated 

bricklaying, is not applicable to large-scale prototypes. 
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Figure 21: Reward per episode for Scenario 5 

5.2 Conclusion 

The Fourth Industrial Revolution is underway, transforming numerous 

businesses and manufacturing methods in order to meet the enormous worldwide 

demand for various products and services by utilizing every technological 

advancement accessible. Furthermore, one of the most essential problems of Cyber-

Physical Manufacturing in the context of Industry 4.0 is to have not only 

economically efficient but also adaptable and flexible production techniques under 

various circumstances. However, a basic inspection of the architecture business, 

particularly construction sites, reveals that current procedures and practices are 

remarkably distant from the requirements of Industry 4.0, the period in which we 

now live. By paving the road for the integration of cutting-edge technology into 

diverse industry processes, we can bring about significant improvements to make 
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architecture one of the industries capable of meeting emerging needs in the context 

of Industry 4.0.  

Studies on incorporating elements of Industry 4.0 into architectural 

construction projects have shown that the integration improves the industry in a 

variety of ways which are discussed in the primary chapters of this research. 

In light of this, and with the goal of incorporating certain contemporary 

technologies into an ancient building process, this study looks into the possibilities 

of integrating artificial intelligence (AI) approaches into existing robotic bricklaying 

processes to create a smart procedure for architects and designers to utilize robots. 

Although there have been studies and implementations of robotics in the 

architectural design and fabrication process over the last few decades, the developed 

methods can still be improved in many ways, allowing architects and construction 

specialists to benefit from more intelligent and productive tools in both the design 

and construction phases. Adopting new breakthroughs in artificial intelligence 

approaches that are being developed and employed in other industries is one of the 

numerous features that can be applied in construction employing robotics. 

After investigating through different artificial intelligence methods, the most 

practical set of these algorithms, which is also one of the most advanced artificial 

intelligence algorithms, was selected as a tool to approach the research's objectives. 

Reinforcement Learning algorithms, which function based on a simulation of an 

environment and an intelligent agent being trained to perform certain objectives, are 

chosen for training our intelligent method of employing robots in architectural 

fabrication process.  

To test and validate the hypothesis of this study, which is that by combining 

the latest AI developments with existing robotic building methods, we can train 

robots as intelligent agents to do human labor duties on construction sites, a multi-

step research strategy was implemented. This simulation-based research follows a 

flow from developing basic prototypes to training a robotic arm to build the 

prototypes via bricklaying as the intelligent agent. To meet the research aims, several 

platforms and tools have bene merged in this research design, which have been 
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discussed thoroughly in the related chapters. Finally, several simulations and training 

sessions have been conducted and the produced results have been put to analysis and 

comparison in the first part of this chapter. 

In summary, the analysis of the results of the designed scenarios demonstrated 

that employing reinfocement learning algorithms for training industrial robots to 

perform human labor tasks brings about advantageous outcomes in construction 

scenarios where precision in repeatitive tasks is a fundemental requirement. In 

addition, with the assist of these enhanced algorithms, robotic arms can learn to 

perform these tasks under varying construction and environment situations without 

any need to reprogramming or other prereuirements. With the results observed, we 

can declare the proposed method in the scope of this research is proved to be 

functioning correctly according to the objectives defined in the third chapter. 
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