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ABSTRACT

Generative model based approaches have led to significant advances in zero-shot
learning (ZSL) over the past few years. These approaches typically aim to learn a
conditional generator that synthesizes training samples of classes conditioned on
class definitions. The final zero-shot learning model is then obtained by training a
supervised classification model over the real and/or synthesized training samples
of seen and unseen classes, combined. Therefore, naturally, the generative model
needs to produce not only relevant samples, but also those that are sufficiently rich
for classifier training purposes, which is handled by various heuristics in existing
works. In this paper, we introduce a principled approach for training generative
models directly for training data generation purposes. Our main observation is
that the use of closed-form models opens doors to end-to-end training thanks to
the differentiability of the solvers. In our approach, at each generative model up-
date step, we fit a task-specific closed-form ZSL model from generated samples,
and measure its loss on novel samples all within the compute graph, a procedure
that we refer to as sample probing. In this manner, the generator receives feed-
back directly based on the value of its samples for model training purposes. Our
experimental results show that the proposed sample probing approach improves
the ZSL results even when integrated into state-of-the-art generative models.

1 INTRODUCTION

Zero-shot Learning (ZSL) has recently received great interest for being one of the promising
paradigms towards building very large vocabulary (visual) understanding models with limited train-
ing data. The problem of ZSL can be summarized as the task of transferring information across
classes such that the instances of unseen classes, with no training examples, can be recognized at
test time, based on the training samples of seen classes. Similarly, the term Generalized Zero-Shot
Learning (GZSL) (Chao et al., 2016; Xian et al., 2018a) is used to refer to a practically more valu-
able variant of ZSL where both seen and unseen classes may appear at test time. GZSL brings in
additional challenges since GZSL models need to produce confidence scores that are comparable
across all classes.

Recent work shows that hallucinating unseen class samples through statistical generative models
can be an effective strategy, e.g. (Mishra et al., 2017; Xian et al., 2018b; 2019; Sariyildiz & Cin-
bis, 2019; Zhu et al., 2018; Schonfeld et al., 2019; Arora et al., 2018; Narayan et al., 2020). These
approaches rely on generative models conditioned on class embeddings, obtained from auxiliary se-
mantic knowledge, such as visual attributes (Xian et al., 2019), class name word embeddings (Schon-
feld et al., 2019), or textual descriptions (Zhu et al., 2018). The resulting synthetic examples, typi-
cally in combination with existing real examples, are used for training a supervised classifier.

In generative GZSL approaches, the quality of class-conditional samples is crucial for building
accurate recognition models. It is not straight-forward to formally define the criteria of good training
samples. Arguably, however, samples need to be (i) realistic (e.g. free from unwanted artifacts), (ii)
relevant (i.e. belong to the desired class distribution) and (iii) informative (i.e. contain examples
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Figure 1: Illustration of the proposed framework for the end-to-end sample probing of conditional
generative models. At each training iteration, we take synthetic training examples for some subset
of seen classes (probe-train classes) from the conditional generative models, train a closed-form
solvable zero-shot learning model (sample probing ZSL model) over them and evaluate it on the real
examples of a different subset of seen classes (probe-validation classes). The resulting cross-entropy
loss of the probing model is used as a loss term for the generative model update.

defining class boundaries) to train an accurate classifier. Clearly, a primary factor affecting the
quality of generated samples is the loss driving the conditional generative model training process.

In this work, we aim to address the problem of training data generating models via an end-to-end
mechanism that we call sample probing.1 Our main goal is to directly evaluate the ability of a
generative model in synthesizing training examples. To this end, we observe that we can leverage
classification models with closed-form solvers to efficiently measure the quality of training samples,
in an end-to-end manner. More specifically, we formulate a simple yet powerful meta-learning ap-
proach: at each training iteration, (i) take a set of samples from the generative model for a randomly
selected subset of classes, (ii) train a zero-shot probing model using only the synthesized samples,
and (iii) evaluate the probing model on real samples from the training set. We then use the loss value
as an end-to-end training signal for updating the generative model parameters. Since we specifically
focus on probing models with exact closed-form solutions, the probing model optimization simpli-
fies into a differentiable linear algebraic expression and takes part as a differentiable unit within the
compute graph. A graphical summary of the proposed training scheme is given in Figure 1.

In the rest of the paper, we first provide an overview of related work, and explain our approach
in detail. We then present a thorough experimental evaluation on GZSL benchmarks in Section 4,
where the results show that sample probing yields improvements when introduced into state-of-the-
art baselines. We conclude with final remarks in Section 5.

2 RELATED WORK

The generalized zero-shot learning problem has been introduced by Xian et al. (2017) and Chao
et al. (2016). The extensive study in Xian et al. (2018a) has shown that the success of methods can
greatly vary across zero-shot and generalized zero-shot learning problems. The additional challenge
in the generalized case is the need for deciding whether an input test sample belongs to a seen or
unseen class. Discriminative training of ZSL models, such as those based on bilinear compatibility
functions (Weston et al., 2011; Frome et al., 2013), are likely to yield higher confidence scores
for seen classes. To alleviate this problem, a few recent works have proposed ways to regularize
discriminative models towards producing comparable confidence scores across all classes and avoid
over-fitting, e.g. Jiang et al. (2019); Liu et al. (2018); Chou et al. (2021b).

Generative approaches to zero-shot learning naturally address the confidence score calibration prob-
lem. However, in general, generative modeling corresponds to a more sophisticated task than learn-
ing discriminant functions only (Vapnik & Vapnik, 1998). In this context, the problem is further
complicated by the need of predicting zero-shot class distributions. To tackle this challenging task,
a variety of techniques have been proposed (Mishra et al., 2017; Xian et al., 2018b; 2019; Sariyildiz

1Our use of the sample probing term is not closely related to the natural language model analysis technique
known as probing (Belinkov et al., 2017; Peters et al., 2018; Hewitt & Liang, 2019).
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& Cinbis, 2019; Zhu et al., 2018; Schonfeld et al., 2019; Arora et al., 2018; Elhoseiny & Elfeki,
2019; Narayan et al., 2020) by adapting generative models, such as VAEs (Kingma & Welling,
2014; Rezende et al., 2014) and GANs (Goodfellow et al., 2014). To enforce class conditioning, the
state-of-the-art approaches use a mixture of heuristics: Xian et al. (2018b) uses the loss of a pre-
trained classifier over the generated samples during training. Narayan et al. (2020) additionally uses
the loss of a sample-to-attribute regressor, in combination with a feedback mechanism motivated
from feedback networks (Zamir et al., 2017). Sariyildiz & Cinbis (2019) uses projection discrimi-
nator (Miyato & Koyama, 2018) and gradient matching loss as a gradient based similarity measure
for comparing real versus synthetic data distributions. None of these generative ZSL approaches,
however, directly measure the value of the generated samples for training classification models. The
main difficulty lies in the need for back-propagating over long compute chains, which is both ineffi-
cient and prone to gradient vanishing problems. To the best of our knowledge, we introduce the first
end-to-end solution to this problem by the idea of using probing models with closed-form solvers to
monitor the sample quality for model training purposes.

Our approach is effectively a meta-learning (Snell et al., 2017) scheme. Meta-learning is a promi-
nent idea in few-shot learning, where the goal is learning to build predictive models from a limited
number of samples. The main motivation is the idea that general-purpose classification models may
behave suboptimally when only a few training samples are provided. A variety of meta-learning
driven few-shot learning models have been proposed, such as meta-models that transform few sam-
ples to classifiers (Gidaris & Komodakis, 2018; Snell et al., 2017), set-to-set transformations for
improving sample representations (Ye et al., 2020; Bronskill et al., 2020), fast adaptation networks
for few examples (Finn et al., 2017; Rusu et al., 2019; Nichol et al., 2018). In contrast to such
mainstream learning to classify and learning to adapt approaches, we aim to address the problem of
learning to generate training examples for GZSL.

There are only a few and recent studies that aim to tackle generative ZSL via meta-learning prin-
ciples. Verma et al. (2020; 2021) embrace the learning-to-adapt framework of MAML (Finn et al.,
2017), which originally aims to learn the optimal initialization for few-shot adaptation. The MAML
steps are incorporated by iteratively applying a single-step update to the generative model using
the generative model (VAE/GAN) loss terms, and then back-propagating over the re-computed gen-
erative loss terms on new samples from a disjoint subset of classes using the single-step updated
model. Our approach differs fundamentally, as we propose to use the discriminative guidance of
ZSL models fully-trained directly from generated sample batches. In another work, Yu et al. (2020)
proposes an episodic training-like approach with periodically altered training sets and losses during
training, to learn non-stochastic mappings between the class-embeddings and class-centers. Chou
et al. (2021a), similarly inspired by meta-learning and mixup regularization (Zhang et al., 2018),
proposes to train a novel discriminative ZSL model over episodically defined virtual training classes
obtained by linearly mixing classes. Neither of these approaches learn sample generating models,
therefore, they have no direct relation to our work focusing on the problem of measuring the sample
quality for ZSL model training purposes, with end-to-end discriminative guidance.

The use of recognition models with closed-form solvers has attracted prior interest in various con-
texts. Notably, Romera-Paredes & Torr (2015) proposes the ESZSL model as a simple and effective
ZSL formulation. We leverage the closed-form solvability of the ESZSL model as part of our ap-
proach. Bertinetto et al. (2019) utilizes ridge-regression based task-specific few-shot learners within
a discriminative meta-learning framework. In a similar fashion, Bhat et al. (2020); Liu et al. (2020)
tackle the problem of video object segmentation (VOS) and use ridge regression based task-specific
segmentation models within a meta-learning framework. None of these approaches aim to use recog-
nition models with closed form solvers to form guidance for generative model training.

Another related research topic is generative few-shot learning (FSL), where the goal is learning to
synthesize additional in-class samples from a few examples, e.g. Hariharan & Girshick (2016); Wang
et al. (2018); Gao et al. (2018); Schwartz et al. (2018); Lazarou et al. (2021). Among these, Wang
et al. (2018) is particularly related for following a similar motivation of learning to generate good
training examples. This is realized by feeding generated samples to a meta-learning model to obtain
a classifier, apply it to real query samples, and use its query loss to update the generative model.
Apart from the main difference in the problem definition (GZSL vs FSL), our work differs mainly
by fully-training a closed-form solvable ZSL model from scratch at each training step, instead of a
few-shot meta-learners that are jointly trained progressively with the generative model.
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Finally, we note that meta-learning based approaches have also been proposed for a variety of dif-
ferent problems, such as learning-to-optimize (Li & Malik, 2016; Chen et al., 2017) and long-tail
classification (Liu et al., 2019; Ren et al., 2020).

3 METHOD

In this section, we first formally define the generalized zero-shot learning problem and then define a
mathematical framework to summarize the core training dynamics of mainstream generative GZSL
approaches. We then express our approach in the context of this mathematical framework.

3.1 PROBLEM DEFINITION

In zero-shot learning, the goal is to learn a classification model that can recognize the test instances
of unseen classes Yu, which has no training examples, based on the model learned over the training
examples provided for the disjoint set of seen classes Ys. We refer to the class-limited training set
by Dtr, which consists of sample and class label pairs (x ∈ X , y ∈ Ys). In our work, we focus on
ZSL models where X is the space of image representations extracted using a pre-trained ConvNet.
In generalized zero-shot learning, the goal is to build the classification model using the training data
set Dtr, such that the model can recognize both seen and unseen class samples at test time. For
simplicity, we restrict our discussion to the GZSL problem setting below.

In order to enable the recognition of unseen class instances, it is necessary to have visually-relevant
prior knowledge about classes so that classes can visually be related to each other. Such prior
knowledge is delivered by the mapping ψ : Y → A, where A expresses the prior knowledge
space. In most cases, the prior knowledge is provided as dψ-dimensional vector-space embeddings
of classes, obtained using visual attributes, taxonomies, class names combined with word embedding
models, the textual descriptions of classes combined with language models, see e.g. Akata et al.
(2015). Following the common terminology, we refer to ψ as the class embedding function.

Generative GZSL. In our work, we focus on generative approaches to GZSL. The main goal is
to learn a conditional generative model G : A × Z → X , which takes some class embedding
a ∈ A and stochasticity-inducing noise input z, and yields a synthetic sample x ∈ X . Once such a
generative model is learned, synthetic training examples for all classes can simply be sampled from
the G-induced distribution PG, and the final classifier over Y can be obtained using any standard
supervised classification model. We refer to the trainable parameters of the model G by θG.

As summarized in Section 2, existing approaches vary greatly in terms of their generative model
details. For the purposes of our presentation, most of the GZSL works (if not all) can be summarized
as the iterative minimization of some loss function that acts on the outputs of the generative model:

LG = E
(x,a)∼Dtr

[`G (G(a, zx), a)] (1)

where zx refers to the noise input associated with the training sample (x, y) and `G is the generative
model learning loss. (x, a) ∼ Dtr is a shorthand notation for (x, ψ(y)) ∼ Dtr At each iteration, the
goal is to reduce LG approximated over a mini-batch of real samples and their class embeddings.

In our notation, we deliberately keep certain details simple. Noticeably, zx greatly varies across
models. For example, in the case of a conditional GAN model, zx ∼ p(z) can simply be a sample
from a simple prior distribution p(z), e.g. as in (Xian et al., 2018b; Sariyildiz & Cinbis, 2019;
Elhoseiny & Elfeki, 2019). In contrast, in variational training, zx is the latent code sampled from a
variational posterior, i.e. zx ∼ q(z|x), where the variational posterior q(z|x) is given by a variational
encoder trained jointly with G, e.g. as in (Narayan et al., 2020; Xian et al., 2019).

Another important simplification that we intentionally make in Eq. (1) is the fact that we define
the generative model learning loss `G as a function of generator output and class embedding, to
emphasize its sample-realisticity and class-relevance estimation goals. However, the exact do-
main of `G heavily depends on its details, which typically consists of multiple terms and/or (ad-
versarially) trained models. In most of the state-of-the-art approaches, this term is a combination
of VAE reconstruction loss (Xian et al., 2019), conditional or unconditional adversarial discrim-
inator network (Xian et al., 2018b; Narayan et al., 2020; Sariyildiz & Cinbis, 2019; Xian et al.,
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2019), a sample-to-class classifier for measuring class relevance (Xian et al., 2018b) and sample-to-
embedding mappings (Narayan et al., 2020). The loss LG may also incorporate additional regular-
ization terms, such as `2 regularization or a gradient penalty term (Sariyildiz & Cinbis, 2019).

In the following, we explain our sample probing approach as a loss term that can, in principle, be
used in conjunction with virtually any of the mainstream generative zero-shot learning formulations.

3.2 SAMPLE PROBING AS GENERATIVE MODEL GUIDANCE

The problem that we aim to address is the enforcement of G to learn to produce samples maximally
beneficial for zero-shot model training purposes. We approach this problem through a learning to
generate training samples perspective, where we aim to monitor the quality of the generative model
through the synthetic class samples it provides.

In the construction of our approach, at each training iteration t, we first randomly select a subset
of Y tpb-tr ⊂ Y of seen classes. We refer to these classes as probe-train classes. This subset defines
the set of classes that are used for training the iteration-specific probing model over the synthetic
samples. More specifically, we first take samples from the model G with the parameters θtG for
these classes, and fully train a temporary ZSL model over them using regularized loss minimization:

Γt = arg min
Γ

E
x=G(z,a∼Atpb-tr)

[`pb (fpb(x, a), a)] (2)

where fpb is the scoring function of the temporary probing model parameterized by Γ and `pb is its
training loss. Atpb-tr is the set of class embeddings of classes in Y tpb-tr. Regularization term over Γ is
not shown explicitly for brevity.

The result of Eq. (2), gives us a purely synthetic sample driven model Γt, which we leverage as a
way to estimate the success of the generator in synthesizing training examples. For this purpose, we
sample real examples from the training set Dtr as validation examples for the probe model. Since
we use a (G)ZSL model as the probing model, we can evaluate the model on examples of the classes
not used for training the model. Therefore, we sample these probe-validation examples from the
remaining classes Ypb-val = Ys \ Y tpb-tr, i.e. the classes with real training examples but unused for
probe model training, and use softmax cross-entropy loss over these samples as the probing loss:

Lpb = − E
(x,y)∼Dpb-val

[
log p(y|x; Γt)

]
(3)

where Dpb-val ⊂ Dtr is the data subset of classes Ypb-val. p(y|x; Γt) is the target class likelihood
obtained by applying softmax to fpb(x, ψ(y); Γt) scores over the set of target class set. Here, as the
target class set, one can use only the classes in Ypb-val (ZSL probing) or those in both Ypb-tr and Ypb-val
(GZSL probing). We treat this decision as a hyper-parameter and tune on the validation set.

We use a weighted combination of Lpb and LG, as our final loss function. Therefore, the gradients
∇θGLpb act effectively as the training signal for guiding G towards yielding training examples that
result in (G)ZSL probing models with minimal empirical loss.

3.3 CLOSED-FORM PROBE MODEL

A critical part of the construction is the need for a probing model where minimization of Eq. (2) is
both efficient and differentiable, so that the solver itself can be a part of the compute graph. Probing
models that require iterative gradient descent based optimization are unlikely to be suitable as one
would need to make a large number of probing model updates for each single G update step, which
is both inefficient and prone to gradient vanishing problems. We address this problem through the
use of a ZSL model that can be efficiently fit using a closed-form solution.

For this purpose, we opt to use the ESZSL (Romera-Paredes & Torr, 2015) as the main closed-form
probe model in our experiments. The model is formalized by the following minimization problem:

min
Γ
‖XTΓA− Y ‖2Fro + Ω (Γ) (4)

whereX ∈ Rdx×m andA ∈ Rdψ×k represent the feature and class embeddings corresponding tom
input training examples and k classes, Y is the {0, 1}m×k matrix of groundtruth labels, Γ ∈ Rdx×dψ
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Figure 2: The compute graph view of the proposed approach, at some training iteration t. The upper
half shows sampling from the generative model and the lower half shows sample probing model loss.
Circles denote generator and probing model parameters. Blue arrows show the back-propagation
path for updating the generative model. Best viewed in color.

is the compatibility model matrix, and Ω (Γ) is the regularization function, defined as:

Ω (Γ) = λx‖ΓA‖2Fro + λa‖XTΓ‖2Fro + λn‖Γ‖2Fro (5)

where λx, λa, λn correspond to term weights. When the regularization term weights are set such
that λn = λxλa, the optimal solution to Eq. (4) can be computed in a closed-form:

Γ? = (XXT + λxI)−1XY AT(AAT + λaI)−1 (6)

This approach was originally proposed as a standalone label-embedding based ZSL model in
Romera-Paredes & Torr (2015), with the practical advantage of having an efficient solver. Here,
we re-purpose this approach as a probing model in our framework, where the fact that the model is
solvable in closed-form is critically important, enabling the idea of end-to-end sample probing. For
this purpose, we utilize the solver given by Eq. (6) as the implementation of Eq. (2), which takes a
set of synthetic training samples and estimates the corresponding probing model parameters.

Alternative probe models. While we utilize ESZSL in our main experiments, we demonstrate
the possibility of using the proposed approach with different probe models using two additional
alternatives. The first one, which we call Vis2Sem, is the regression model from visual features to
their corresponding class embeddings, defined as follows (using the same notation as in ESZSL):

min
Γ
‖ΓTX −AY T‖2Fro + λn‖Γ‖2Fro. (7)

A discussion of the Vis2Sem model can be found in Kodirov et al. (2017). The second one, which
we call Sem2Vis, is the class embeddings to visual features regression model of Shigeto et al. (2015):

min
Γ
‖X − ΓAY T‖2Fro + λn‖Γ‖2Fro. (8)

Both models, just like ESZSL, are originally defined as non-generative ZSL models, and we re-
purpose them to define our data-dependent generative model training losses. Unlike the bi-linear
compatibility model of ESZSL, however, these models rely on distance based classification, and do
not directly yield class probability estimates. While one can still obtain a probability distribution
over classes, e.g. by applying softmax to negative `2 distances, for simplicity, we directly use the
Sem2Vis and Vis2Sem based distance predictions between the visual features of probe-validation
samples and their corresponding class embeddings to compute Lpb as a replacement of Eq. (3).

Summary. A summary of the final approach from a compute graph point of view, is given in
Figure 2. The proposed approach aims to realize the goal of learning to generate good training
samples by evaluating the synthesis quality through the lens of a closed-form trainable probe model,
the prediction loss of which is used as a loss for the G updates. Therefore, G is expected to be
progressively guided towards producing realistic, relevant and informative samples, through the
reinforcement of which may vary depending on the inherent nature of the chosen probe model.
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4 EXPERIMENTS

Datasets. We use the four mainstream GZSL benchmark datasets: Caltech-UCSD-Birds (CUB)
(Wah et al., 2011), SUN Attribute (SUN) (Patterson & Hays, 2012), Animals with Attributes 2
(AWA2, more simply AWA) (Xian et al., 2018a) and Oxford Flowers (FLO) (Nilsback & Zisserman,
2008). CUB is a medium scale fine-grained dataset consisting of 200 bird species classes, 11.758
images and 312 dimensional attribute annotations. SUN is a fine-grained dataset with 14.340 images
and 102 dimensional attributes. AWA is a coarse-grained dataset with 30.475 images of 50 animal
classes with 85-dimensional attributes. FLO is a medium-scale fine-grained dataset with 102 classes
and 1024-dimensional attributes. Following the state-of-the-art, we use the class embeddings and the
version-2 splits defined by Xian et al. (2018a). We evaluate the results in terms of GZSL-u, GZSL-s
and h-score (H) values (Xian et al., 2018a). The h-score, i.e. the harmonic mean of GZSL-u and
GZSL-s scores, aims to measure how well a model recognizes seen and unseen classes collectively.

In our experiments, we use the image features extracted from ResNet-101 backbone pretrained on
ImageNet 1K. In the experiments based on fine-tuned representations, we use the backbone fine-
tuned with the training images of seen classes, as in Xian et al. (2019); Narayan et al. (2020).

Hyper-parameter tuning policy. In our preliminary studies, we observe that the final GZSL perfor-
mance, especially in terms of h-score, of most models strongly depends on the selection of the hyper-
parameters. We also observe that there is no widely-accepted policy on how the hyper-parameters of
GZSL models shall be tuned. It is a rather common practice in the GZSL literature to either directly
report the hyper-parameters used in experiments without an explanation on the tuning strategy or
simply refer to tuning on the validation set, which we find a vaguely-defined policy as (i) Xian et al.
(2018a) defines an unseen-class only validation split, which does not allow monitoring the h-score,
and, (ii) it is unclear which metric one should use for GZSL model selection purposes.

Therefore, to obtain comparable results within our experiments, we use the following policy to tune
the hyper-parameters of our approach and our baselines: we first leave-out 20% of train class sam-
ples as val-seen samples. We periodically train a supervised classifier by taking synthetic samples
from the generative model, and evaluate it on the validation set, consisting of the aforementioned
val-seen samples plus the val-unseen samples with respect to the benchmark splits. We choose the
hyper-parameter combination with the highest h-score on the validation set. We obtain final models
by re-training the generative model from scratch on the training and validation examples combined.

4.1 MAIN RESULTS

In this subsection, we discuss our main experimental results. As we observe that the results are
heavily influenced by hyper-parameter tuning strategy, our main goal throughout our experiments
is the validation of the proposed sample probing idea by integrating it into strong generative GZSL
baselines, and then comparing results using the same tuning methodology. Using this principle, we
present two main types of analysis: (i) the evaluation of the proposed approach using ESZSL as the
probe model in combination with a number of generative GZSL models, and (ii) the evaluation of
alternative closed-form probe models within our framework.

Generative GZSL models with sample probing. To evaluate the sample probing approach as
a general technique to improve generative model training, we integrate it to four recent genera-
tive GZSL approaches: conditional Wasserstein GAN (cWGAN) (Arjovsky et al., 2017; Miyato &
Koyama, 2018), LisGAN (Li et al., 2019), TF-VAEGAN (Narayan et al., 2020) and FREE (Chen
et al., 2021). We additionally report results for the variant of TF-VAEGAN with the fine-tuned rep-
resentations (TF-VAEGAN-FT), as it is the only one among them with reported fine-tuning results.
For the cWGAN, we follow the implementation details described in Sariyildiz & Cinbis (2019), and
tune hyper-parameters using our policy. For LisGAN, TF-VAEGAN and FREE models, we use the
official repositories shared by their respective authors. We use the version of TF-VAEGAN with-
out feedback loop (Narayan et al., 2020), for simplicity, as the model yields excellent performance
with and without feedback loop. In all models (except cWGAN), we only re-tune the number of
training iterations of the original models using our hyper-parameter tuning policy, to make the re-
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Table 1: Evaluation of sample probing with multiple generative GZSL models on four bench-
mark datasets. Each row pair shows the effect of adding sample probing to a particular generative
GZSL model, using ESZSL as the closed-form probe model. We use the same hyper-parameter
optimization policy in all cases to make results comparable. We observe h-score improvements at
varying degrees in 17 out of 19 model, feature & dataset variations.

Sample probing CUB FLO SUN AWA
u s H u s H u s H u s H

cWGAN (Miyato & Koyama, 2018) N 45.1 53.1 48.7 50.7 74.3 60.3 41.6 37.3 39.3 - - -
Y (ESZSL) 48.2 52.4 50.2 51.8 74.1 61.0 44.4 36.6 40.1 - - -

LisGAN (Li et al., 2019) N 40.9 60.5 48.8 53.1 81.7 64.4 41.5 36.6 38.9 44.2 77.0 56.1
Y (ESZSL) 44.2 59.2 50.6 56.7 77.8 65.6 44.0 35.4 39.2 46.2 71.5 56.2

TF-VAEGAN (Narayan et al., 2020) N 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2
Y (ESZSL) 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5

TF-VEAGAN-FT (Narayan et al., 2020) N 64.2 72.7 68.2 70.0 91.3 79.2 46.5 41.7 44.0 41.7 90.2 57.0
Y (ESZSL) 63.1 76.1 69.0 70.2 91.7 79.5 47.8 40.6 43.9 45.6 87.6 60.0

FREE (Chen et al., 2021) N 51.2 61.5 55.9 62.8 80.7 70.6 46.2 37.2 41.2 48.2 78.7 59.8
Y (ESZSL) 51.6 60.4 55.7 65.6 82.2 72.9 48.2 36.5 41.5 51.3 78.0 61.8

Table 2: Sample probing with alternative closed-form models, based on TF-VAEGAN.

Closed-form
probe model

CUB FLO SUN AWA
u s H u s H u s H u s H

- 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2
ESZSL 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5

Sem2Vis 51.9 63.0 56.9 58.6 80.9 68.0 44.7 38.4 41.3 54.9 74.6 63.2
Vis2Sem 37.1 70.4 48.6 58.3 80.1 67.5 46.0 40.1 42.8 55.3 74.3 63.4

sults comparable, as it is unclear how the original values were obtained.2 We keep all remaining
hyper-parameters unchanged to remain as close as possible to the original implementations.

The results over the four benchmark datasets are presented in Table 1. In terms of the h-scores, we
observe improvements in 17 out of 19 cases, at varying degrees (up to 4.6 points ). Only in two cases
we observe a slight degradation (maximum of 0.2 points) in performance. Overall, these improve-
ments over already strong and state-of-the-art (or competitive) baselines validate the effectiveness
of the proposed sample probing approach, suggesting that it is a valid method towards end-to-end
learning of generative GZSL models directly optimized for synthetic train data generation purposes.

Sample probing with alternative closed-form models. We now evaluate our approach with
different closed-form probe models, specifically ESZSL, Sem2Vis (Shigeto et al., 2015) and
Vis2Sem (Kodirov et al., 2017), as described in Section 3.3. For these experiments, we use the
TF-VAEGAN as the base generative model.

The results with four configurations over four benchmark datasets are presented in Table 2. First of
all, in terms of h-scores, we observe considerable performance variations across the probe models
and datasets: Sem2Vis performs the best on CUB (+0.9 over the baseline), ESZSL provides a clear
gain on FLO (+4.6) and a relative improvement on AWA (+0.3), and Vis2Sem improves the most
on SUN (+1.8). These results suggest that sample probe alternatives have their own advantages and
disadvantages, and their performances can be data dependent. Therefore, in a practical application,
probe model options can be incorporated into the model selection process. More in-depth under-
standing of closed-form model characteristics for sample probing purposes, and the formulation and
evaluation of other probe models can be important future work directions. Overall, the fact that we
observe equivalent (2) or better (9) h-scores in 11 out of 12 sample probing experiments indicates
the versatility of the approach in terms of compatibility with various closed-form probe models.

Comparison to other generative GZSL approaches. Performance comparisons across indepen-
dent experiment results can be misleading due to differences in formulation-agnostic implementation
and model selection details. Nevertheless, an overall comparison can be found in Appendix A.

2We also tune LisGAN for AWA2 as the original paper reports AWA1 results instead.
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Table 3: ZSL vs GZSL based sample probing losses (using TF-VAEGAN and ESZSL).

Baseline Sample probing
zsl-loss gzsl-loss

u s H u s H u s H
CUB 53.9 58.4 56.0 50.5 63.6 56.3 51.1 63.3 56.6
FLO 59.4 78.3 67.5 62.4 83.8 71.5 63.5 83.2 72.1
SUN 42.9 39.3 41.0 44.0 39.7 41.7 46.0 36.9 41.0
AWA 54.4 75.2 63.2 55.2 74.7 63.5 55.6 72.8 63.0

Table 4: Comparison of mean per-class Fréchet Distance between real and generated unseen class
samples on CUB, AWA and FLO datasets for TF-VAEGAN and Our approach. Lower is better.

CUB FLO AWA
Baseline 21.5 31.0 18.5
Ours 19.8 30.2 17.9

4.2 ANALYSIS

ZSL vs GZSL loss in sample probing. In Table 3, we present a comparison of our approach,
using TF-VAEGAN as the generative model and ESZSL as the probe model, when two different
types of losses (zsl-loss and gzsl-loss) are used as Lpb in Eq. (3). They differ from each other in
terms of classes among which the real examples of probe-validation classes are classified, during
the evaluation of sample probing ZSL model. zsl-loss and gzsl-loss indicate that the examples of
probe-validation classes are classified among only probe-validation classes, and both probe-train
and probe-validation classes, respectively. We observe that using either one during the evaluation of
the sample probing ZSL model, brings its own characteristic results (Table 3). On all datasets, using
zsl-loss increases the seen accuracy while using gzsl-loss increases the unseen accuracy. We choose
among these two options using our same hyper-parameter tuning policy, on the validation set.

1 2 3 4 5 6 7 8
Sample probing loss weight

56.0

56.5

57.0

57.5

58.0

58.5

59.0

h
-s

co
re validation

test

Figure 3: The effect of sample
probing weight on the CUB dataset.

Effect of sample probing loss weight. Figure 3 shows the
validation and test set h-score values as a function of sample
probing loss weight. In the test set results, we observe an over-
all increasing performance trend with larger loss weights, up
to the weight 6, highlighting the contribution of sample prob-
ing. The optimal weight with respect to the validation and the
test sets, however, differs. This observation is an example for
the difficulty of tuning the ZSL model based on validation set.
We set the loss weight to 5 following our hyper-parameter tun-
ing policy, which yields almost 0.5 lower than the maximum
test-set score observed for this single hyper-parameter.

Quantitative analysis of sample quality. We quantitatively
evaluate the sample quality using Fréchet (Wasserstein-2) distance, which is also used in the FID
metric for evaluating GAN models. In Table 4, we provide a comparison for TF-VAEGAN and
our approach for respective mean per-class Fréchet distances between real and synthetic samples
(200 synthetic samples per class) of unseen classes on three datasets. The results show that sample
probing helps generator to generate more realistic samples compared to TF-VAEGAN. We further
investigate the qualitative analysis of the sample quality via t-SNE visualizations in Appendix B.

5 CONCLUSIONS

We propose a principled GZSL approach, which makes use of closed-form ZSL models in genera-
tive model training to provide a sample-driven and end-to-end feedback to the generator. Extensive
experiments over four benchmark datasets show that the proposed sample probing scheme consis-
tently improves the GZSL results and the sample quality, can easily be integrated into the existing
generative GZSL approach and can be utilized with various closed-form probe models.
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Table 5: Comparison against state-of-the-art generative model based GZSL on CUB, FLO,
SUN and AWA datasets. Results obtained with the proposed features are reported, together with
the results obtained with fine-tuned features under fine-tuned (FT). The results are reported in terms
of top-1 accuracy of unseen (u) and seen (s) classes, together with their harmonic mean (H).

CUB FLO SUN AWA
u s H u s H u s H u s H

f-CLSWGAN (Xian et al., 2018b) 3.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 57.9 61.4 59.6
Cycle-WGAN (Felix et al., 2018) 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 59.6 63.4 59.8
LisGAN (Li et al., 2019) 40.9 60.5 48.8 53.1 81.7 64.4 41.5 36.6 38.9 44.2 77.0 56.1
f-VAEGAN (Xian et al., 2019) 48.4 60.1 53.6 56.8 74.9 64.6 45.1 38.0 41.3 57.6 70.6 63.5
TF-VAEGAN (Narayan et al., 2020) 53.9 58.4 56.0 59.4 78.3 67.5 42.9 39.3 41.0 54.4 75.2 63.2
Meta-VGAN (Verma et al., 2021) 55.2 48.0 53.2 - - - - - - 57.4 70.5 63.5
FREE (Chen et al., 2021) 51.2 61.5 55.9 62.8 80.7 70.6 46.2 37.2 41.2 48.2 78.7 59.8
Ours (based on TF-VAEGAN) 51.1 63.3 56.6 63.5 83.2 72.1 44.0 39.7 41.7 55.2 74.7 63.5
f-VAEGAN (Xian et al., 2019) 63.2 75.6 68.9 - - - 50.1 37.8 43.1 57.1 76.1 65.2

FT TF-VAEGAN (Narayan et al., 2020) 64.2 72.7 68.2 70.0 91.3 79.2 46.5 41.7 44.0 41.7 90.2 57.0
Ours (based on TF-VAEGAN) 63.1 76.1 69.0 70.2 91.7 79.5 47.8 40.6 43.9 45.6 87.6 60.0
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APPENDICES

A COMPARISON TO THE STATE-OF-THE-ART

In Table 5, we compare our results with the state-of-the-art generative approaches for GZSL. During
training, we select our best model based on the validation results and report test results on models
that give best validation scores. For consistency and to keep the baseline comparable to our results,
we again report our own results for LisGAN, TF-VAEGAN (without feedback loop) and FREE
using our hyper-parameter tuning policy, but do acknowledge that the original papers typically report
higher results. The upper part of the table contains results with the original image representations,
and the lower part contains those based on fine-tuned representations.

From the results without fine-tuning, we observe that the proposed sample probing based generative
model yields state-of-the-art h-scores in all CUB, FLO, SUN and AWA datasets. We also observe
competitive results in terms of individual unseen and seen class accuracy values. When compared
against results using fine-tuned representations, we again observe state-of-the-art h-scores on CUB
and FLO datasets, with a close second on SUN. On AWA, we observe that f-VAEGAN achieves the
highest results with a significant margin over our TF-VAEGAN based baseline, where the sample
probing improves the baseline yet still achieves a score below that of f-VAEGAN. Overall, while it
is hardly fair to compare models with significant implementation details, these results suggest the
overall competitiveness of the obtained data generating models with sample probing.

B VISUALIZATION OF UNSEEN DATA

To provide additional qualitative insight into the improvements that can be gained using sample
probing, we present t-SNE visualizations of synthetic class samples in Figure 4. In the figure,
each plot corresponds to an unseen class on the FLO dataset, and the points correspond to the t-SNE
embeddings of real samples (× points), generated samples using TF-VAEGAN with sample probing
( points) and those using the baseline TF-VAEGAN model without sample probing (N points).
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(a) (b)

(c) (d)

(e) (f)

Figure 4: t-SNE visualization of different unseen classes from FLO dataset. Each plot shows t-SNE
embeddings of real samples (× points), generated samples using TF-VAEGAN with sample probing
( points) and those using the baseline TF-VAEGAN (Narayan et al., 2020) model without sample
probing (N points).

From the plots, we can observe that the generative model trained with sample probing tends to yield
samples much more aligned with the corresponding true class distributions, compared to those of
the baseline model. Overall, these plots demonstrate how sample probing can improve the overall
sample quality of a generative model, and possibly lead to superior recognition models when the
generated samples are used for classifier training.
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