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ABSTRACT

STOCHASTIC ASSEMBLY LINE BALANCING PROBLEMS INVOLVING
ROBOTS AND RELIABILITY RESTRICTION

SAHIN, MUHAMMET CEYHAN
M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

July 2022,[99 pages

When considering assembly processes in the manufacturing ecosystem, the task times
may vary from cycle to cycle, especially in assembly lines where manual operations
are abundant. Line stops, defective products, and off-line tasks caused by the uncer-
tainty in assembly processes can be highly costly for companies. Stochastic assembly
line balancing problems (SALBPs) consider the task processing times as random vari-

ables to deal with uncertainty in real-life assembly operations.

The difficulties faced due to uncertainties in assembly processes can be alleviated
by using advanced technological solutions. Manufacturing companies replace human
workers with robots in their assembly processes to keep up with the Industry 4.0 tech-
nological revolution and get the upper hand over competitors. A popular approach in
the manufacturing industry is to design an assembly line with human-robot collabo-
ration. In the first part of this thesis, we investigate a robotic stochastic assembly line
balancing problem (RSALBP), with the motivation to observe the effects of robots on
the cycle time in stochastic assembly lines where human workers and robots operate

in different workstations.



In the literature, robotic assembly line balancing is only studied with deterministic
task times. However, assembly line balancing contains stochastic processes in real
life. We assume that the processing time of each task follows a normal distribution
whose parameters depend on the type of the operator performing the task, with robots
having much less (possibly zero) variation in task times than human workers. It is
assumed that human workers are fully capable while robots can perform a subset of
the tasks. We study type-II RSALBP, which aims to minimize the cycle time for an
assembly line with stochastic task times, given a fixed number of workstations and
robots, and fixed confidence levels for the workstations. This problem is NP-hard
and includes non-linearity. We propose a mixed-integer second-order cone program-
ming formulation and a constraint programming formulation to solve the problem.
Instances from the literature are used to test the effectiveness of the proposed formu-
lations. Additionally, the effects of robots on cycle times are evaluated by conducting

a computational study with a comprehensive experimental design.

In the second part of this thesis, we consider a type-II stochastic assembly line balanc-
ing problem with a reliability restriction (type-II SALBP-R) where all the operators
are identical. Given a fixed cycle time, the reliability of an assembly line is defined as
the probability that the workload of none of the workstations exceeds the cycle time.
In type-II SALBP-R, we aim to minimize the cycle time for an assembly line with
stochastic task times, given a fixed number of workstations and a fixed lower bound
on reliability. This problem has been investigated in only a few studies in the litera-
ture. We propose the first matheuristic for the problem and compare its performance

with an existing heuristic from the literature.

Keywords: Assembly lines, Robotic assembly line balancing, Stochastic assembly

line balancing, Industry 4.0, Human-robot collaboration, Reliability
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ROBOTLARI VE GUVENILIRLIK KISITLAMASINI ICEREN STOKASTIK
MONTAJ HATTI DENGELEME PROBLEMLERI

SAHIN, MUHAMMET CEYHAN
Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Dr. Ogr. Uyesi. Mustafa Kemal Tural

Temmuz 2022 ,[99|sayfa

Imalat ekosistemindeki montaj siiregleri gbz oniine alindiginda, dzellikle manuel is-
lemlerin yogunlukta oldugu montaj hatlarinda gorev siireleri cevrimden ¢evrime degi-
sebilir. Montaj siireclerindeki belirsizligin neden oldugu hat duruslari, arizal iiriinler
ve hat dis1 isler sirketler icin olduk¢a maliyetli olabilir. Stokastik montaj hatt1 denge-
leme problemleri (SALBP’ler), gercek hayattaki montaj islemlerindeki belirsizlikle

basa cikmak icin ig siirelerini rastgele de8iskenler olarak ele alir.

Montaj siireclerindeki belirsizlikler nedeniyle yasanan zorluklar, ileri teknolojik ¢6-
ziimler kullanilarak azaltilabilir. Imalat sirketleri, Endiistri 4.0 teknolojik devrimine
ayak uydurmak ve rakiplerine iistiinliik saglamak i¢cin montaj siireglerinde iscileri ro-
botlarla degistiriyor. Imalat endiistrisinde popiiler bir yaklasim, insan-robot isbirligi
ile bir montaj hatt1 tasarlamaktir. Bu tezin ilk boliimiinde, iscilerin ve robotlarin farkli
is istasyonlarinda calisti1 stokastik montaj hatlarinda robotlarin ¢evrim siiresi iize-
rindeki etkilerini gozlemlemek amaciyla bir robotik stokastik montaj hattt dengeleme

problemini (RSALBP) arastirtyoruz.

vii



Literatiirde robotik montaj hatt1 dengeleme sadece deterministik ig siireleri ile ¢ali-
silmaktadir. Ancak montaj hatt1 dengeleme, gercek hayatta stokastik siirecleri igerir.
Her is siiresinin, robotlarin is siirelerinde is¢ilerden ¢cok daha az (muhtemelen sifir)
varyasyona sahip oldugu, parametreleri gorevi gerceklestiren operatoriin tiiriine baglh
olan bir normal dagilim izledigini varsayiyoruz. Insan iscilerin tiim isleri yapma ye-
tenegi oldugu, robotlarin ise islerin bir alt kiimesini yapabildigi varsayilmaktadir. Is
istasyonu sayisi, robot sayisi, ve is istasyonlar1 i¢in giiven seviyeleri sabit kabul edi-
len, stokastik is siirelerine sahip bir montaj hatt1 i¢in ¢evrim siiresini en aza indir-
meyi amaclayan tip-Il RSALBP’yi inceliyoruz. Bu problem NP-zordur ve dogrusal
olmayan kisitlar igerir. Problemi ¢6zmek i¢in bir karma tamsayili ikinci dereceden
koni programlama formiilasyonu ve bir kisit programlama formiilasyonu oneriyoruz.
Onerilen formiilasyonlarin etkinligini test etmek icin literatiirden drnekler kullanil-
maktadir. Ayrica kapsamli bir deneysel tasarim ile hesaplamali bir calisma yapilarak

robotlarin ¢evrim siireleri lizerindeki etkileri degerlendirilmektedir.

Bu tezin ikinci boliimiinde, tiim operatorlerin 6zdes oldugu, bir giivenilirlik kisit-
lamasi ile tip-II stokastik montaj hatt1 dengeleme problemini (tip-II SALBP-R) ele
aliyoruz. Sabit bir ¢cevrim siiresi verildiginde, bir montaj hattinin giivenilirligi, is is-
tasyonlarinin hicbirinin is yiikiiniin ¢evrim siiresini asmama olasilig1 olarak tanimla-
nir. Tip-II SALBP-R’de, sabit sayida is istasyonu ve sabit bir giivenilirlik alt sinir
ile, stokastik is siirelerine sahip bir montaj hatt1 i¢in ¢evrim siiresini en aza indirmeyi
amacliyoruz. Bu problem literatiirde ¢ok az calismada incelenmistir. Problem i¢in ilk
mat-sezgisel yontemi Oneriyoruz ve performansini literatiirdeki mevcut bir sezgisel

yontem ile kargilastirtyoruz.

Anahtar Kelimeler: Montaj hatlari, Robotik montaj hatti dengeleme, Stokastik montaj

hatt1 dengeleme, Endiistri 4.0, Insan-robot isbirligi, Giivenilirlik
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CHAPTER 1

INTRODUCTION

An assembly line consists of workstations in different arrangements, where each
workstation has a series of tasks to be performed repeatedly by one or more operators.
Deciding on which tasks should be performed in which workstation is a fundamen-
tal problem in assembly line balancing. Assembly line balancing problems (ALBPs)
can be classified according to the number of models produced on the line, the nature
of task duration, the pattern of flow, and the objective function [1]. Depending on
the number of product models produced on the same line, it can be a single-model
or mixed-model assembly line. The processing times of the tasks can be constant or
may include some randomness. In highly automated lines, it is reasonable to assume
that the processing times of the tasks are constant which brings about deterministic
ALBPs. However, the task times in assembly operations usually vary in real life, es-
pecially when tasks are performed manually. Problems that consider the task process-
ing times as random variables are called stochastic assembly line balancing problems

(SALBPs).

For a human worker, the processing times of tasks may vary due to several reasons
including lack of experience, distraction, task complexity, or environmental factors
[2]. By the nature of the process, task times may differ even when the operator is a
robot. For example, a robot may spend different times for searching or finding the
part to be assembled from a stack. Moreover, the orientation or condition of the part
(e.g., the part can be defective) may also result in variations in task times. Similarly,
the semi-assembled product on which the assembly will be done may come in front
of the robot with different orientations which may also cause variations in task times.

Assembly lines can be investigated in two categories: unpaced or paced assembly



lines [3]]. In unpaced lines, the operator is allowed to complete the tasks assigned to
the workstation before the semi-assembled product is moved to the next workstation.
On the other hand, in paced lines, an operator in a workstation can complete the tasks
assigned to that workstation only within a given cycle time. To deal with possible
incomplete tasks due to the cycle time violation by workstations in stochastic paced
lines, one common approach is assigning tasks to workstations such that the total
task time of each workstation is less than or equal to the cycle time with at least a
given probability [4]]. In this thesis, we study two stochastic assembly line balancing
problems, where in each problem the line is assumed to be paced. In the first one,
we work on an SALBP with human-robot collaboration considering different cases
in our experiments for the variability in the task times. In some experiments, it is
assumed that the processing time of each task is a random variable whose parameters
depend on the type of the operator performing the task with robots having much less,
but non-zero, variation in task times than human workers. In some other experiments,
the task times are constant for robots, while they are still random variables for human
workers. In the second one, we work on an SALBP involving identical operators
where there is a restriction on the probability that the cycle time will be violated in at

least one workstation.

The flow pattern, which depends on the arrangement of workstations, is another de-
terminant to classify assembly lines [S)]. For example, in a U-shape layout, the flow
takes place along a U-shaped line and operators that are located inside this “U" shape
can perform tasks on both sides of the line. In a straight-line layout; however, the flow
occurs along a straight, one-way line. Another important aspect of the classification
of ALBPs in the literature is the objective function. ALBPs are studied with many
different objectives such as minimizing cost, maximizing line efficiency, and mini-
mizing idle time subject to some constraint sets accordingly. However, minimizing
the number of workstations or the cycle time are the most common objectives. As
Scholl [6] presented, in type-I ALBP, the cycle time is given, and the aim is to find
the minimum number of workstations, whereas, in type-II ALBP, the objective is to

find the minimum cycle time for a given number of workstations.

Assembly lines are essential parts of manufacturing processes. With the Industry 4.0

paradigm, significant changes are observed in the production ecosystem [7]. An as-



sembly company needs to catch up with the speed and quality standards of its supply
chain to avoid problems. Holding on in the long term in a supply chain that has as-
similated Industry 4.0 depends on catching the trends promptly and adapting quickly.
In addition to what Industry 4.0 brings, production volumes need to increase to meet
the increasing demand. Also, products are diversified in line with customer needs,
which makes the assembly processes more complicated. When we add the increasing
competition to all these, an assembly company cannot survive for long with tradi-
tional methods. As a reflection, robots are replacing human workers day by day in
assembly processes bringing in several benefits, such as cost reduction and quality
improvement. Moreover, with robots, variations in processing times of the tasks can
be reduced which may possibly result in decreased cycle times. In this study, the cost
component of the assembly line is neglected. The analysis in this thesis is made by
changing the number of robots used in the assembly line. We expect the decision
maker to evaluate the cost in each case and determine the number of robots to be used

in the assembly line.

An assembly line is called a robotic assembly line if it consists of workstations where
robots perform tasks instead of some or all of the human workers. A robotic assem-
bly line balancing problem (RALBP) studies the traditional assembly line balancing
problems with the challenges and improvements brought by robots replacing human
workers. RALBP with stochastic task times has not been studied in the literature to
the best of our knowledge. To fill in this gap in the literature, we first investigate in
this thesis the effects of robots on the cycle time in type-II robotic stochastic assembly
line balancing problem (type-II RSALBP), where we assume that the processing time
of each task follows a normal distribution whose parameters depend on the type of the
operator (human worker or robot) performing the task, where it is possible to set the
standard deviations of the task times to zero for robots. To this end, we first propose
three mathematical programming formulations (one of which is a transient formula-
tion) to solve type-II RSALBP to optimality. We then set up an experimental design
by varying several parameters of the problem including the number of robots, capa-
bilities of them, and the parameters of the normal distributions and test the models on

four well-known assembly line balancing problems from the literature.

In the second part of this thesis, we investigate a stochastic assembly line balancing



problem with identical operators, where there is a lower bound on the reliability of the
assembly line (type-II SALBP-R). In this problem, we aim to find the lowest possible
cycle time such that the probability that the cycle time is not violated in any of the

workstations is greater than or equal to the given lower bound on the reliability.

The organization of the remainder of the thesis is as follows. In Chapter 2| we
provide a review of the related literature. Chapter [3] starts with the description of
type-II RSALBP in Section [3.1] A non-linear mixed-integer programming and a
mixed-integer second-order cone programming formulations are presented for type-
IT RSALBP in Section 3.1.1] In Section [3.1.2] a constraint programming formula-
tion is developed for type-II RSALBP. Section [3.2] presents the computational stud-
ies for type-II RSALBP: experimental settings in Section [3.2.1] illustrative examples
in Section [3.2.2] and computational results in Section [3.2.3] Type-II SALBP-R is
described in Section [4.1] of Chapter ] A constraint programming formulation for
type-II SALBP is given in Section {.1.1] which is used in the proposed matheuristic
algorithm for type-II SALBP-R. This matheuristic is described in Section Re-
sults of the computational experiments for type-II SALBP-R are given in Section[4.2]

Conclusion and some future research directions are provided in Chapter [5]



CHAPTER 2

LITERATURE REVIEW

The progressive assembly of products manufactured by operators has been practiced
in the industry since the times of Henry Ford. The assembly line balancing problem
is a significant manufacturing problem that emerged in the early 1950s, and it was
formulated mathematically by Salveson (1955) [8] for the first time. Since then,
different types of ALBPs have been studied in the academia and industry. To the best
of our knowledge, however, there are no studies directly related to RSALBP, and there
is only a few studies on type-II SALBP-R in the literature. Therefore, we review the

relevant literature for SALBP and RALBP.

2.1 Review on SALBP

SALBP was studied by Moodie and Young (1965) [9] for the first time. The authors
assumed that the task times are normally distributed random variables and developed
a heuristic method which assigns tasks to workstations in such a way that the total task
time of each workstation, i.e., workload, is less than or equal to a given cycle time
with probability at least a given constant «. This given probability « is called the
confidence level throughout this thesis. After this study, different types of SALBPs

were investigated in the literature.

A heuristic procedure to minimize the sum of incompletion cost and labor cost of a
paced assembly line with stochastic task times was developed by Kottas and Lau [10].
Incompletion cost occurs when a task and its followers cannot be completed within
the given cycle time and hence have to be processed off the line. Labor cost on the

other hand is taken as the number of workstations multiplied by the cycle time. A
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bidirectional heuristic algorithm (BHA) was developed by Liu et al. [11] for type-II
SALBP-R to minimize the cycle time of a stochastic assembly line with normally dis-
tributed task times. The assembly line reliability, which is the probability that none of
the workstations’ workloads exceeds the cycle time, and the number of workstations
are predefined. The algorithm involves a bidirectional assignment procedure to assign
tasks to workstations, and a trade and transfer procedure to balance the workloads of

the workstations.

In the study of Carraway [12]], the objective was to minimize the number of worksta-
tions for a given cycle time and a confidence level a. The author proposed a dynamic
programming (DP) approach which is an extension of the DP approach of Held et
al. [13] that was developed for the deterministic ALBP. Nkasu and Leung [14]] pro-
posed a methodology for stochastic assembly line balancing where different proba-
bility distributions (exponential, gamma, normal, uniform, and Weibull) and different
objective functions (including minimizing the number of workstations, minimizing
the balance delay, and minimizing the cycle time) were considered. W. Zhang et al.
[LS]] proposed a multi-objective hybrid evolutionary algorithm to minimize the cycle
time and the total processing cost of the line, considering the task times as uniformly

distributed random variables.

Baykasoglu and Ozbakir [16] used a multiple-rule-based genetic algorithm to balance
U-shaped assembly lines assuming that each task time follows a normal distribution.
Ozcan et al. [[17] studied a stochastic U-shaped mixed-model assembly line balanc-
ing and sequencing problem with normally distributed task times and developed a
genetic algorithm for its solution. Zacharia and Nearchou [18] used a genetic algo-
rithm to balance single-model straight assembly lines considering fuzzy task times.
They employed a multi-objective method to solve the fuzzy SALBP where the mini-
mization of the cycle time is considered as the primary objective and minimization of

the smoothness index or balance delay as the secondary ones.

Constraint programming (CP) has been used as a convenient solution approach in
several assembly line balancing problems. It was first used by Bockmayr and Pis-
aruk (2001) [19] to present a hybrid solution approach for ALBPs, combined with

an integer programming (IP) formulation. The authors developed a branch-and-cut



algorithm with an IP formulation to solve a deterministic ALBP in which CP is used
to prune the search tree. The objective was to minimize the number of workstations,
where the workload of any workstation cannot exceed the given cycle time. Although
several following studies used CP in deterministic ALBPs, there are relatively less
number of studies in the literature which use CP in the context of SALBPs. Pinarbasgi
et al. [20] applied CP to an SALBP to minimize the smoothness index of a single-
model, straight assembly line. They considered variations not only in task times but
also in flow processes between the workstations of the assembly line. Flow process
variations include the arrival process variations to a workstation and the departure
process variations from a workstation. They proposed an algorithm which integrates
CP and queuing theory. In this algorithm, CP was used to implement task assign-
ments to workstations, and queuing theory was used to evaluate the performance of
the assembly line under these task assignment combinations. Pinarbasi and Alakas
[21] studied type-II SALBP with normally distributed task times. They developed
four different mathematical formulations which aim to minimize the cycle time of the
line with given number of workstations and a confidence level a:: a non-linear mixed
integer programming (NLMIP) model, a CP model, and linear approximations of both
NLMIP and CP models. They computationally compared the objective function val-
ues (cycle time) of these solution approaches against that of the BHA proposed by
Liu et al. [11] and show that only the CP model outperforms the BHA.

Despite all these studies, SALBP has been studied in the literature considering only
human workers as operators, not robots. Moreover, type-II SALBP-R has only been
investigated in the study of Liu et al. [11], where a heuristic procedure is developed.
This thesis contributes to the literature by proposing the first matheuristic for type-II

SALBP-R. We next provide a review of the studies on RALBPs in the literature.

2.2 Review on RALBP

Beginning with the use of robots in assembly processes in the industry, RALBP has
found a place in academic studies. This has gained momentum with the increase
in the use of robots in manufacturing enterprises after the adoption of Industry 4.0

paradigm. The RALBP was first studied by Rubinovitz et al. (1993) [22]. The
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authors proposed a heuristic algorithm to assign a robot to each workstation among a
number of different types of robots and to assign tasks to these workstations so that the
number of workstations is minimized for a given cycle time, i.e., the authors studied a
type-I RALBP. They assumed that each task time is deterministic and depend on the
type of the robot that processes the task. After this study, different types of RALBPs

were investigated in the literature.

Nicosia et al. [23] studied a problem similar to a RALBP. The authors proposed a
DP algorithm to assign a set of machines to workstations and to assign tasks to these
workstations in such a way that the workload in each workstation is less than or equal
to a given cycle time. It is assumed that each machine has an associated cost and
the authors aimed to minimize the total cost of assigned machines to the worksta-
tions. Levitin et al. [24] assumed that robots have different capabilities and proposed
a genetic algorithm to minimize the cycle time in a robotic assembly line. Nilakan-
tan et al. [25] considered an RALBP where it takes each robot a certain amount of
time and energy to process each task. Two objectives are considered; namely, the
minimization of the cycle time and energy consumption, assuming a fixed number of
workstations which is equal to the number of robots. The authors proposed a particle
swarm optimization algorithm for each of the objectives. Minimization of the total
energy consumption and makespan in a mixed-model U-shaped RALBP was studied
by B. Zhang et al. [26] with a solution approach based on a mathematical model and
a dragonfly algorithm. Here, the makespan is the completion time of the last model
on the robotic assembly line. Nilakantan et al. [27] developed a mathematical model
and proposed a multi-objective co-operative co-evolutionary algorithm to minimize
the total operation and standby power consumptions of robots in assembly lines and to
maximize the line efficiency simultaneously. In the study of Li et al. [28]], robot pur-
chasing costs are considered as well as the setup times, which depend on the sequence
of the tasks processed on the line. The objective is minimizing total purchasing cost
and cycle time. They proposed an elitist non-dominated sorting genetic algorithm and

an improved multi-objective artificial bee colony algorithm to solve the problem.

In most of the studies on robotic assembly line balancing, only robots are consid-
ered to perform the tasks in workstations. There have also been studies that consider

collaboration between human workers and robots. For a general production environ-



ment, El Zaatari [|29] classified collaboration in four different scenarios, based on the
way human workers and robots operate together: supportive, simultaneous, sequen-
tial, and independent. In the supportive scenario, the human worker and robot work
on the same process of the same work piece, while in the sequential scenario, they
work on different but consecutive processes of the same work piece. The robot and
human worker work on the same work piece but nonsuccessive processes in the si-
multaneous scenario, whereas they independently work on different work pieces in
the independent scenario. In the context of assembly line balancing, Chutima [30]
provides a detailed classification of different types of human-robot collaboration. We
do not go into such a detailed classification here, but mention that human worker and
robot can operate in the same workstation (they may or may not be allowed to work
on the same tasks). On the other hand, human worker and robot can operate in parallel

or serial workstations.

Weckenborg et al. [31] assume that human workers are fully capable, whereas robots
are able to perform a subset of the tasks. Some of the tasks that a robot cannot per-
form alone can be performed in collaboration with a human worker. When a task
is assigned to a workstation where a human worker and a robot both exist, the task
can be performed in collaboration or one of the operators (human worker or robot)
can perform the task. The processing times may vary depending on the operator(s)
performing the tasks: human worker, robot, or both. The authors proposed a hy-
brid genetic algorithm to assign a fixed number robots to workstations and tasks to

operators to minimize the cycle time.

In the study of Li et al. [32]], different types of robots with different task processing
times and purchasing costs are considered. It is allowed for a human worker and
a robot to work in the same workstation. In this case, they cannot work on different
tasks simultaneously, but instead, they either work on different tasks one after another
or work on the same task. The authors proposed a multi-objective migrating bird
optimization algorithm to minimize the total purchasing cost of the robots and the

cycle time of the assembly line.

Samouei and Ashayeri [33]] defined skill levels (low, medium, high) for human work-

ers. In a workstation, a human worker or a robot may operate alone, or an assisting



robot may help a human worker. When a human worker and a robot are assigned to
the same workstation, they work on the same tasks collaboratively. Different costs
and task processing times are assumed depending on the operator(s) and the skill
levels of the human workers. The authors developed two mathematical models for
mixed-model assembly line balancing to assign operators from a limited number of
different types of operators, and tasks to workstations. The first model minimizes the
total cost for a given cycle time and the second one minimizes a weighted sum of the

total cost and the cycle time.

Cil et al. [34]] studied a mixed-model assembly line balancing problem considering
human-robot collaboration with the objective of minimizing the cycle time. In this
study, a human worker and a robot can be assigned to the same workstation, or each
can work in a workstation alone. When assigned to the same workstation, a human
worker and a robot are allowed to work on different tasks one after another, i.e., they
cannot work simultaneously on different tasks or on the same task together. The
authors implemented a bee algorithm and an artificial bee colony algorithm to assign
different types of operators to the workstations and tasks to operators to minimize the

cycle time of the mixed-model assembly line.

In summary, in all these studies, deterministic task times were considered and RALBP
with stochastic task times appears to have never been studied. This thesis con-
tributes to the literature by examining a stochastic assembly line balancing problem
with human-robot collaboration where human workers and robots operate in different
workstations. It is assumed that the variations of the task times are much less (possi-
bly zero) for robots than human workers. The objective is to minimize the line’s cycle
time for a given confidence level a. We developed two novel mathematical models
(and a transition model) to formulate this problem and solve several problem instances
from the literature to optimality. We interpreted the effects and contributions of dif-
ferent types of robots on cycle times of assembly lines by conducting a computational
study with a comprehensive experimental design, in which we variate the confidence
level, robots’ capabilities, mean and variances of the task times, and the number of
robots for four different problem instances. In the next chapter, we first formally de-
fine type-II RSALBP and then present the mathematical programming formulations

we developed for the problem.
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CHAPTER 3

ROBOTIC STOCHASTIC ASSEMBLY LINE BALANCING

3.1 Problem Definition and Mathematical Formulations for Type-II RSALBP

In the first part of this thesis, we consider a type-II robotic stochastic assembly line
balancing problem; namely, type-II RSALBP. In this problem, there are m serially
located workstations. In r of these workstations, the operators are to be robots; while
human workers are to perform the tasks in the remaining m — r workstations. It is
assumed that all robots are identical and their capabilities are limited (i.e., they are
able to perform a subset of the tasks). On the other hand, human workers, who are

also identical, are fully capable.

Each task has associated with it a set of immediate predecessors and a task time which
is assumed to be normally distributed whose parameters (mean and standard devia-
tion) depend on the type of the operator (human worker or robot) performing the task.
In our computational experiments, the variations of the task times (i.e., standard de-
viations) are assumed to be much less (possibly zero) in robots than human workers.
A task cannot be processed before all its immediate predecessors are finished. The
workload of a workstation is the sum of the processing times of the tasks that are
assigned to that workstation. As the task times are random, the workload of a work-
station is also a random variable. For this reason, as commonly done in the stochastic
assembly line balancing literature, we assume that a confidence level « is given and
for each workstation, the probability that the workload exceeds the cycle time should

be kept less than or equal to 1 — a.

In type-II RSALBP, the aims are to allocate given numbers of robots and human work-

ers to workstations and assign tasks to workstations so as to minimize the cycle time
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such that for each workstation, the probability that the workload of the workstation is

less than or equal to the cycle time is at least a.

The assumptions of type-Il RSALBP are given below.

10.

1.

12.

13.

. Only one type of product or different products with very similar assembly fea-

tures are assembled.

. Assembly line is one-sided, paced, and straight.

. Number of workstations is known and given.

Precedence relations of the tasks are known and given.

. A task can be assigned to only one workstation and cannot be divided.
. Each workstation can have only one human worker or a robot.
. Number of robots is known and given.

. Human workers are identical and capable of doing all tasks.

Robots are identical and their capabilities are known.
Task times are independent and normally distributed random variables.

Means and variances of task times are known and depend on the type of the

operator.
The breakdown and maintenance of robots are not considered.

The failures, costs, and defective products led by incomplete tasks are ne-

glected.

Pinarbagi and Alakas [21] studied type-II SALBP which is NP-hard because of its

combinatorial nature [6]. The problem studied in our thesis; namely, type-Il RSALBP,

is also NP-hard, as it generalizes type-II SALBP. Pinarbasi and Alakas [21] formu-
lated type-II SALBP as NLMIP and CP models. The NLMIP model was solved on

some instances from the literature using BARON solver [35]. Inspired by this study,
we first formulated type-II RSALBP as an NLMIP model and used BARON solver
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to solve some instances. The results, however, were not promising. Therefore, we
developed two other formulations: a mixed-integer second-order cone programming
(MISOCP) formulation (see Section[3.1.1)), and a CP formulation (see Section[3.1.2).
Note that our CP formulation is not based on the formulation of Pinarbas1 and Alakas
[21] who do not consider robots in their study. Detailed comparison of the results

obtained from these three formulations is given in Section [3.2.3.1]

The following notation is common in the proposed formulations.

Indices:

1, k: tasks (1,...,n)

7: workstations (1,...,m)

[: operator type ({=1: robot; [=2: human worker)

Parameters:

n: number of tasks

m: number of workstations

r: number of robots

a: confidence level

14;: mean processing time of task ¢ for an operator of type [
2.

o;;: variance of task ¢ for an operator of type [

P(i): set of immediate predecessors of task i

1, if task ¢ can be performed by robots
Cap(i) =

0, otherwise

3.1.1 NLMIP and MISOCP Formulations for Type-II RSALBP

The following decision variables are used in both NLMIP and MISOCP formulations.

Decision variables:
ct: cycle time

1, if'task ¢ is assigned to workstation 7 with operator type [
Lijl=

0, otherwise

1, if arobot is assigned to workstation j

Y=
0, otherwise
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In type-II RSALBP, task times are assumed to be independent and normally dis-
tributed random variables. As a result, the workload of each workstation, which is the
sum of the processing times of the tasks that are assigned to the workstation, is also
a normally distributed random variable. In this problem, the workload of each work-
station should be less than or equal to the cycle time with at least a given probability
a. Let w; denote the workload of workstation j. We have the following constraint for

each workstation.

Plw; <ct) >« vy . (3.1)

Inequality (3.1)) implies that the constraint w; < ct holds for any j with a probability
greater than or equal to a. Let the mean and standard deviation of w; be y; and o,

respectively. Inequality (3.1)) can be written as

gj

P(Z < Ct_—“J) > a Vi, (3.2)

where Z follows the standard normal distribution.

Letting ®(-) denote the cumulative distribution function of the standard normal dis-

tribution, inequality (3.2) can be rewritten as

Ll gt (a) vj (33)

gj

which is equivalent to

ct > p;+ 0 (a)o; Vi (3.4)

We know that w; is the sum of the processing times of the tasks that are assigned to
workstation j. Task assignments to workstations are represented by binary decision

variables x;;;’s. x;; takes the value of 1 if task ¢ is assigned to workstation j with
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operator type [ and 0 otherwise. The distribution of the workload of workstation j

can be expressed as

n 2 n 2

w; ~ N(ZZMilxijlaZZUileijl) V.

i=1 [=1 i=1 [=1

Finally, we can rewrite (3.4) using the mean and variance of w; as

n 2

n 2
ct Z Z Z Hi1Ziji + (I)il(Oé) : Z Z O'Z'leijl VJ . (35)

i=1 =1 i=1 =1

Using constraint (3.5]), an NLMIP formulation for type-II RSALBP is given next.

min ct (3.6)
S.t.
n 2 n 2
ct > N pawig + @) - > odai Vi, (37
=1 [=1 =1 [=1

m 2 m 2
SN @i i =)0 wwied Vk € P(i), Vi, (3.8)

j=1 1=1 =1 1=1

m 2

DD wp=1 Vi, (3.9
j=1 [l=1
Cap(i) > Y i Vi, (3.10)

j=1

Yj = Tij Vi, 5, (3.11)
1-— Y; Z Tij2 Viaja (312)
> yi=r, (3.13)
j=1
zi; € {0,1} Vi, i, 0, (3.14)
y; € {0,1} Vi. (3.15)

15



The objective function (3.6) minimizes the cycle time. Constraint ensures that
the cycle time cannot be exceeded by any workload with a given confidence level a.
Note that this constraint is non-linear. Constraint (3.8)) indicates that a task cannot be
assigned to an earlier workstation than its immediate predecessor. Constraint (3.9)
guarantees that each task is assigned to one workstation. Constraint (3.10) ensures
that a task is not assigned a workstation with a robot if the robots are not capable of
doing it. Constraints (3.11)) and (3.12)) relate the x and y decision variables. Constraint
(3.13) makes sure that exactly r robots are used. Constraints (3.14) and (3.15)) are

binary restrictions.

We next propose an MISOCP formulation for type-II RSALBP. A second order cone
programming (SOCP) problem is a convex optimization problem which minimizes a

linear objective function over second-order cone constraints of the form

Az +b]| < "z +d. (3.16)

In constraint (3.16)), « stands for the vector of decision variables, A is a parameter
matrix, b and c represent parameter vectors in appropriate sizes, d indicates a scalar
parameter, and ||-|| is the Euclidean norm. Note that linear constraints are SOCP con-
straints [36]. An MISOCP problem is an SOCP problem where some of the variables

are restricted to be integer-valued.

In the NLMIP formulation of type-II RSALBP that we proposed, the only nonlinear
constraint is constraint (3.7). Assuming that @ > 0.5 and hence ¢~ '(a) > 0, this

constraint can be written as an SOCP constraint as follows.

n 2 :
Z Z Z HilZiji + (I) ) . OilTij51 \V/] . (317)
1,0

Therefore replacing constraint (3.7 in the NLMIP formulation of type-II RSALBP
by constraint (3.17), we obtain an MISOCP formulation of the problem. MISOCP

problems can be solved using branch-and-bound by solving an SOCP problem at each
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node of the branch-and-bound tree. Such solution approaches have been implemented
in some commercial solvers which are used to solve several difficult problems in the

literature (see e.g., [37, 38]).

3.1.2 CP Formulation for Type-II RSALBP

Some combinatorial optimization problems (e.g., RSALBPs) can be challenging to
solve using conventional mathematical programming formulations, especially if the
formulations are weak. Constraint programming is an alternative solution approach
to formulate and solve combinatorial optimization problems which borrows a wide
range of techniques from operations research, computer science, artificial intelli-
gence, and logic. CP has been successfully used to solve different types of combi-
natorial optimization problems including scheduling problems [39] and ALBPs [40].
Finding solutions to CP problems is possible via commercial solvers like CPLEX CP
Optimizer. A CP formulation can contain discrete decision variables, (linear or non-
linear) expressions involving these variables, and constraints involving arithmetic and
logical operators. A CP formulation for type-II RSALBP is provided next after intro-

ducing its decision variables.

Decision variables:

ct: cycle time

x;: the workstation task ¢ is assigned to
(

1, if arobot is assigned to workstation 7,
Y=
0, otherwise.
\
4

1, 1if task ¢ is assigned to a robot,

0, otherwise.
\

Auxiliary decision variables:

wj: the cut-off value of the workload of workstation j

1, if task ¢ is assigned to workstation j with an operator of type [,

Y

Eiji=
0, otherwise.
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min ¢t = max{w,} (3.18)
j

S.t.

Ejn=(zi=1ANx;,=7) Vi, 5, (3.19)

Eip=(2i=0Ax; =) Vij, (3.20)
noo2 no 2

wij =Y > paky + O a) (| DD R B Vi, (.21
i=1 =1 =1 1=1

T; > Tp Vk e P(i), Vi, (3.22)

Cap(i) > z; Vi, (3.23)

(zi=1Ay;=0)V(z;=0Ay;=1) = x; #J Vi,j, (3.24)

doyi=r, (3.25)

=1

z; € {1,...,m} Vi, (3.26)

y; € {0,1} Vi, (3.27)

e {0,1) Vi, (3.28)

By € {0,1} Vi, 0, (3.29)

w; >0 Vi, (3.30)

The objective function (3.18)) minimizes the cycle time, which is equal to the largest
cut-off value of the workloads of the workstations. Auxiliary variable F;; is a set of
logical expressions indicated by Constraints and (3.20). It takes the value of
1 if task ¢ is assigned to workstation j with an operator of type [, and O otherwise.
Value of £;;; depends on the statement with a conjunction (A) operator: £;;; takes the
value of 1, if and only if the statements on both sides of the conjunction operator are
true. Constraint @, which is a non-linear expression, keeps each of the stochastic
workloads less than or equal to the cycle time with a given confidence level o. Con-
straint (3.22) is to satisfy the precedence relations between tasks. Constraint (3.23)
prevents task ¢ to be assigned to a robot, if robot(s) are not capable of performing
task ¢. Constraint (3.24), which is a logical expression, relates the task assignments
to robots, and robot assignments to workstations. Here, the value of x; depends on

the statement with a disjunction (V) and an implication ( = ) operators: x; can take
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the value of j, if and only if the statements on both sides of the disjunction are false.
Constraint (3.25) makes the number of workstations with a robot equal to the given

number of robots. Constraints (3.26))—(3.30) are domain restrictions.

In the next section, we first detail the settings used in our computational experiments
and provide some illustrative examples. Then we compare the performances of the
three proposed mathematical programming formulations for type-II RSALBP on the

instances selected from the literature.

3.2 Computational Study for Type-II RSALBP

3.2.1 Experimental Settings

In our computational experiments, we used a computer with Intel Xeon E2246G, a
3.6 GHz processor, and 16 GB RAM. The proposed MISOCP and CP formulations
are coded in ILOG CPLEX Optimization Studio 20.1 [41]], while the NLMIP for-
mulation is coded in GAMS IDE 23.9.5. BARON solver, CPLEX Optimizer, and
CPLEX CP Optimizer are used to solve the NLMIP, MISOCP, and CP formulations,
respectively. We set the CPU time limit to 3600 seconds for all experiments. Four
well-known problem instances from the assembly line balancing literature are used:
25-task problem from the study of Nkasu and Leung [14]; Sawyer’s 30-task, Gunther
et al.’s 35-task, and Kilbridge and Wester’s 45-task problems [42]. Deterministic pro-
cessing times of the tasks (j4;2) and their immediate predecessors (P(i)) are given for
the 25-task problem in Table and for the 30-task, 35-task, and 45-task problems
in Tables [A.THA.3]in Appendix [A] Precedence diagrams of the problem instances are
used directly, and deterministic task processing times in the benchmark problems are
used as the mean task processing times (;2) for human workers. The standard de-
viations of the task times for human workers (0;5) are obtained using the coefficient
of variation (cv) as shown in Equation (3.31). In our computational experiments, we

used two different cv values.

042 = CU - U2 Vi . (331)

19



Mean task processing times of robots (j;1) are assumed to be a constant multiple
of those of the human workers (see Equation (3.32))). This constant is called as the
coefficient of mean of robots (cmr). Note that if cmr < 1, then the robots work faster
than human workers on average. On the other hand when e¢mr > 1, then the robots
are slower on average. In our computational experiments, we tried four different cmr

values.

i1 = CMT + (Lo Vi . (3.32)

The standard deviations of the task times of robots (o0;;) are obtained using Equation
(3.33), where cvr denotes the constant of variability for robots. If cur < 1, then the
variations in the task times of robots are less than those of the human workers. If cur is
equal to zero, on the other hand, then the task times for robots become deterministic.

In our computational experiments, we tried two different cur values.

01 — CUT - 042 Vi . (333)

The capabilities of robots are stated as a percentage of the total number of tasks.
According to this percentage, the task capabilities are set by randomly generating a
0-1 vector called the capability vector whose size is equal to the number of tasks.
The fraction of ones in this capability vector is equal to the capability of robots. For
example, in a 30-task problem where the robots are capable of doing 60% of all tasks,
the capability vector consists of 18 ones and 12 zeros. To better compare the results,
for each problem instance, 10 different randomly generated capability vectors are
used. These randomly generated capabilities of the robot(s) to perform each task for
all problem instances can be seen in Tables [B.1HB.8|in Appendix B} For instance, for
the above example, while all other parameters are the same, 10 different problems are
solved for 10 differently generated capability vectors consisting of 18 ones and 12

Z€ros.

In our computational study, we set an experimental design by changing several pa-

rameters. This allows us to understand the effects of different parameters on the
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solutions of type-II RSALBP. The parameters used in our experimental design and

their corresponding values are shown in Table[3.1]

Table 3.1: Value sets of parameters in experimental design

Parameter Values

cv 0.2,04

cmr 0.6,0.8,1.0,1.2

cur 0.0, 0.5

Capability  40%, 60%, 80%, 100%
o 0.90, 0.95

r 1,2

In the next section, we provide some illustrative examples and in Section [3.2.3] we

provide the results of our comprehensive computational experiments.

3.2.2 Illustrative Examples

In this section, we provide some illustrative results on the 25-task problem of Nkasu
and Leung [[14]. There are 6 workstations in the original problem. Deterministic task

times (p;0) of the tasks and their immediate predecessors (P(i)) are given in Table

B2
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Table 3.2: Deterministic task times and immediate predecessors of the tasks for the

25-task problem

Task wpn  P(i) Task pwpn  P(i)

1 6 - 14 5 13

2 6 1 15 4 14

3 5 1 16 12 10,12,15
4 8 1 17 10 16

5 9 2 18 5 17

6 5 3 19 15 17

7 4 3 20 10 17

8 5 4 21 5 18

9 6 4 22 6 19,20,21
10 10 5 23 10 22
11 5 6,7 245 22,23
12 6 9 25 8 24
13 2 8,11

Our aim is to assign tasks with stochastic processing times to the workstations; and
assign 7 robots to workstations and m — 1 human workers to the rest while minimizing
the cycle time. For human workers, the mean task times are given in Table 3.2} If we
take cv as 0.2, the standard deviation of the task time of the first task becomes 1.2,
which is calculated according to Equation (3.31). For a robot, on the other hand, when
cmr 1s 0.6, the mean task time for task-1 is calculated as 3.6 using Equation (3.32]).
Taking cur as 0.5, the standard deviation of the task time for task 1 is calculated
as 0.6 for robots according to Equation (3.33). With a similar approach, all means
and standard deviations of the task times for both robots and human workers are
calculated using the parameters n = 25, cv = 0.2, emr = 0.6, and cvr = 0.5 and are
reported in Table[3.3] Here a dash means that the robots are not capable of doing the
corresponding task. Moreover, we took the value of the confidence level a as 0.90

and the capabilities of robots as %80 in our illustrative examples.
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Table 3.3: Means and standard deviations of the task times used in illustrative exam-

ples

Robots Human workers

Task ;1 o o 02
1 36 06 6.0 1.2
2 36 06 6.0 1.2
3 30 05 5.0 1.0
4 48 08 80 1.6
5 54 09 90 1.8
6 30 05 5.0 1.0
7 24 04 40 0.8
8 30 05 5.0 1.0
9 - - 6.0 1.2
10 6.0 1.0 10.0 2.0
11 - - 50 1.0
12 36 06 6.0 1.2
13 - - 20 0.4
14 30 05 5.0 1.0
15 - - 40 0.8
16 72 1.2 12.0 2.4
17 6.0 1.0 10.0 2.0
18 30 05 5.0 1.0
19 90 15 15.0 3.0
20 - - 10.0 2.0
21 30 05 5.0 1.0
22 36 06 6.0 1.2
23 6.0 1.0 10.0 2.0
24 30 05 5.0 1.0
25 48 0.8 8.0 1.6

As the first example, we consider the case when all the operators are human workers,
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re., r = 0. Figure displays the optimal assignments of 25 tasks to 6 workstations
which is obtained by solving type-II SALBP. As the task times are random variables,
the workload of each workstation is also a random variable. The values shown in
black rectangles at the bottom of Figure represent the cut-off values (i.e., the
(100cr)™ percentiles) of the workloads that can be exceeded with probability 0.10
(1 — «). The optimal cycle time of type-II SALBP will be equal to the maximum of
these cut-off values which will guarantee that the workload of each workstation will
be less than or equal to the cycle time with probability at least 0.90 (o). Hence, in

this example, the optimum cycle time is found as 34.80 seconds.

A A A A A A
v v v v v v
[AA [AA [AA [AA [AAY [AA

Station-1 Station-2 Station-3 Station-4 Station-5 Station-6

+ Task-l | Task-6 |  Task-5 | | Task-16 | { Task-19 | | Task-22 |
| Task-2 | | Task-7 | { Task-10 |  |{ Task-17 |  |{ Task-20 |  { Task-23 |
- Task-3 | o Task-8 | o Task-12 | H Task-18 | H Task-21 | H Task-24 |
[ Toska | [Tkl ] Tosks
{Toks | { Tkt

Figure 3.1: Optimal task assignments and cut-off values of the workloads in the illus-

trative example when r = 0

As the second example, we consider the case with two robots (r = 2). Figure [3.2]
represents the optimal assignments of 25 tasks, 2 robots, and 4 human workers to 6
workstations which was obtained by solving type-II RSALBP. In the optimal solution,
the robots are assigned to workstations 2 and 4, and human workers are assigned to
the other workstations. The cut-off values of the workloads of the workstations are
shown at the bottom of Figure[3.2]in black rectangles. The optimum cycle time which
is the maximum of these cut-off values is found as 28.05 seconds. This value was
34.80 when all the operators were human workers. The user can then compare the

benefit (i.e., improvement in cycle time) obtained by using these robots and the cost
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of the robots to make a purchasing decision.

Y = 'S ;‘ A 'S
w w w w
FAAY ; FAAY FAAY FAAY

A Task-1 | || Task2 | | Task6 | || Task-16 | || Task-20 | || Task-23 |
- Task-4 | Task-3 | || Task-7 | | Task-17 | | Task-21 | | Task-24 |
- Task-9 | | Task-5s | | Task-11 | | Task-18 | | Task-22 | | Task-25 |
[ Toks | (TaskD3
- Task-10 | H{ Task-14 |
- Task-12 | H Task-15 |

Figure 3.2: Optimal task assignments and cut-off values of the workloads in the illus-

trative example when r = 2

Finally, to show that the optimal solution can be affected by the capabilities of the
robots, we made 10 replications by generating different capability vectors assuming
again %80 capability for the robots while keeping all other parameters the same.
Table [3.4] displays the optimal solutions of the resulting 10 replications where first
result corresponds to the solution depicted in Figure In this table, we provide
the optimal cycle time, the cut-off values of the workloads of the workstations, the
number of tasks assigned to each workstation, and the workstations the robots were
assigned to. The results show that even though the capabilities of all the robots are
the same in these 10 replications, the tasks that the robots are capable of doing may
have a significant impact on the optimal solutions. For example, while the optimal
cycle time is 27.20 seconds in the fifth replication, it is 29.50 seconds in the seventh
one. On the other hand, while the robots are not identical in replications 5, 6, and 8,
the optimal cycle time turned out to be 27.20 seconds in all. If the decision maker is
to choose among these three types of robots, s/he can choose the cheapest one if the

only concerns are cost and the cycle time.
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Table 3.4: Optimal cycle times, cut-off values of the workloads, and robot assign-

ments to workstations

Cut-off values of the workloads (sc) Nb. of tasks assigned Robots assigned
# ct(sc) j=1 2 3 4 5 6 12345 6 1 2 3 45 6
1 2805 2299 2683 27.70 28.05 2425 2652 3 6 6 4 3 3 - R - R - -
2 2774 2714 26.65 2409 2774 2514 2652 4 7 4 5 2 3 - R - R - -
3 2839 2825 2833 2839 2833 2405 2243 4 4 4 6 2 5 - - - R - R
4 29.12 2483 2556 27.89 26.00 23.14 2912 4 3 8§ 2 3 5 - - R - - R
5 2720 2533 2720 2660 26.00 2720 2652 7 5 3 25 3 R - - - R -
6 2720 2537 27.20 2720 26.00 2720 2652 7 5 3 25 3 R - - - R -
7 2950 2483 21.68 2841 2868 2950 2652 4 6 4 4 4 3 - R - R - -
8§ 2720 2299 26.76 2621 27.11 2720 2652 3 5 4 5 5 3 - - - R R -
9 29.12 2568 2881 2372 2600 2651 2912 5 6 4 2 3 5 R - - - - R
10 2770 2726 27.70 2724 2405 2425 2652 7 6 4 2 3 3 R - R - - -

In the next section, we first compare the performances of the three formulations of
type-II RSALBP on a subset of selected instances. These experiments show that the
performance of the NLMIP formulation is way below the performances of the other
formulations in terms of solution time and the solution quality within the given time
limit. Following this observation, we then perform the comprehensive experiments

only using the MISOCP and CP formulations of type-II RSALBP.

3.2.3 Computational Results

In this section, we provide the results of our computational study which was per-
formed using a comprehensive experimental design by changing several parameters
(see Table [3.1] for the list of parameters and their values used in the experiments).
Before providing these results, we conducted an initial experiment to evaluate the
performances of the three formulations proposed for type-II RSALBP. Pinarbas1 and
Alakas [21] proposed an NLMIP formulation for type-II SALBP and solved some
instances using BARON. In our initial experiments, we wanted to evaluate the per-
formance of an extension of this formulation in contrast with the MISOCP and CP

formulations.
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3.2.3.1 Comparative Results of the Three Formulations

In Tables [3.5] and [3.6] we present the comparative results of the solutions of type-II
RSALBP using the proposed mathematical formulations on some selected instances.
Each row in these tables correspond to one replication of an instance with some spe-
cific parameters. The first column displays the instance number, and the parameter
values are shown in the next six columns. Columns 8 to 10 display the optimal ob-
jective function values if the instances were solved to optimality within the given 1
hour time limit. Otherwise, the objective function values of the best found solutions

are reported. The last three columns include the solution times in CPU seconds.

Table 3.5: Comparative results of the three formulations on 30-task instances with a

subset of selected parameters

ct (sc) CPU time (sc)

Ins. # cur cmr cv Cap. o NLMIP MISOCP CP NLMIP MISOCP CP

<

1 0 1 02 40% 1 090 62.39 62.39 62.39 336.3 132 519
2 0 I 02 40% 1 095 64.44 6444 6444 1767.2 17.8  30.0
3 0 1 02 40% 2 090 64.92 64.92 6492 1329.7 10.8  19.1
4 0 1 02 40% 2 095 67.17 67.17 67.17 683.1 6.6 144
5 0 I 02 80% 1 090 60.52 60.15 60.15 3600.0 107.6  267.5
6 0 I 02 8% 1 095 62.00 61.94 6194 3600.0 81.8 278.5
7 0 1 02 8% 2 090 58.75 58.75 58.75 3600.0 70.2 3283
8 0 I 02 80% 2 095 60.18 60.15 60.15 3600.0 59.1 295.7
9 - - 02 - 0 090 61.85 61.84 61.84 1092.7 23.0 599
10 - - 02 - 0 09 63.79 63.78 63.78 1524.1 27.1 678

Table|3.5|shows the comparative results for the 30-task problem instances. CPU times
used to obtain the solutions with the NLMIP formulation are much larger than those
of the others for all the problem instances. When the capabilities of the robots are
40%, all formulations were able to solve the instances to optimality within an hour.
Still, the solution times of the MISOCP and CP formulations are much smaller than
those of the NLMIP formulation. The NLMIP formulation cannot solve the instances
to optimality when the capabilities of the robots are 80%. For these instances, i.e.,

instances 5 to 8, the relative gap values reported by BARON at termination were 4.3%,
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5.2%, 2.2%, and 3.7%, respectively. The other formulations can successfully solve
these instances within at most 6 minutes. When we evaluate the performance of the
NLMIP formulation for the instances where no robot usage is allowed (i.e., instances
of type-II SALBP), the same conclusions can be drawn in terms of the solution times

(see the instances 9 and 10 in Table [3.5).

Table 3.6: Comparative results of the three formulations on 45-task instances with a

subset of selected parameters

ct (sc) CPU time (sc)

Ins.# cvor emr c Cap. » «o NLMIP MISOCP CP NLMIP MISOCP CP

1 0 1 02 40% 1 090 69.91 69.36 69.10 3600.0 3600.1 1590.9
2 0 1 02 40% 1 095 73.85 73.10 73.10 3600.0 272.4 15.0
3 0 I 02 40% 2 090 70.35 69.10 69.10 3600.0 3600.1 15.1
4 0 1 02 40% 2 0.95 76.99 73.10 73.10 3600.0 333.8 25.8
5 0 1 02 8% 1 0.90 NSF* 68.72 68.40 3600.0 3600.1 3600.1
6 0 1 02 8% 1 095 122.11 70.60 70.47  3600.0 3602.6 3599.9
7 0 1 02 80% 2 090 116.18 67.76  67.50  3600.0 3600.3 3600.1
8 0 1 02 8% 2 095 NSF* 69.08 69.00 3600.0 3600.1 3600.1
9 - - 02 - 0 09 70.21 70.31 70.09 3600.0 3600.1 3600.3
10 - - 02 - 0 095 73.10 73.10 73.10 3600.0 619.9 12.1

*NSF: No solution found

Table [3.6] shows the comparative results for the 45-task problem instances. Only
for instance 9, where o« = 0.90 and » = 0, the NLMIP formulation found a better
objective function value than that of the MISOCP formulation within an hour. For
other instances, the objective function values of the best solutions found by NLMIP
formulation were worse than those of the MISOCP and CP formulations. For in-
stances 5 and &, the NLMIP formulation was not even able to find a feasible solution
within an hour. The results shown in Tables [3.5]and [3.6] clearly show that the NLMIP
formulation has the worst performance. Accordingly, we set up a comprehensive ex-
perimental design and perform a computational study only using the MISOCP and

CP formulations to solve the instances of type-Il RSALBP.

We performed a comprehensive computational study to solve the instances generated
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from the 25-task, 30-task, 35-task, and 45-task problems by changing several parame-
ters whose values are given in Table 3.1} In addition, 10 different replications of each
instance are created by randomly generating vectors of robot capabilities. For these
experiments, we provided the average objective function values (average cycle times)

of 10 replications of each instance solved by the MISOCP and CP formulations.

3.2.3.2 Detailed Computational Results of 25-task and 30-task Problem In-

stances

The results of our computational experiments for the 25-task and 30-task problem
instances are displayed in Tables [3.8]and [3.10} respectively. In these tables, the first
column displays the instance setting number and the next four columns show the
parameter values of cur, cmr, cv, and .. The first two rows show the parameter values
of capability and r. The last eight columns show the averages of optimal objective
function values obtained by using the MISOCP and CP formulations. The number of
workstations m is taken as 6 in all of the 25-task and 30-task problem instances. For
all replications of the 25-task and 30-task problem instances, the optimal solution is

obtained within the given 1 hour time limit by using both formulations.

For the 25-task problem instances, when no robot is used (i.e., 7 = 0), the optimal
cycle times were found as 34.80, 36.16, 39.59, and 42.31 seconds, when the pairs of
values of (cv, «) are (0.2, 0.90), (0.2, 0.95), (0.4, 0.90), and (0.4, 0.95), respectively
(see Table . For example, in the case when cv = 0.2 and a = 0.90, if we have
a robot that is 80% capable and that has the properties cor = 0 and cmr = 0.6 (see
instance with instance setting 1, capability=80%, and r = 1), the average cycle time
becomes 29.54 seconds resulting in an average saving of 5.26 seconds (34.80—29.54).
Detailed results of the related 10 replications whose average cycle time value is 29.54

seconds can be seen in Table[C.T|in Appendix

On the other hand, when the robot is not that much capable, the average cycle time
may even show an increase with respect to the case with no robots. It can be seen
from Table [3.§]that keeping all other parameters the same, as the capability increases,
a decreases, cmr decreases, cur decreases, or cv decreases, the average cycle time

decreases. Depending on the capabilities of the robots, a second robot may or may
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not provide an additional benefit on top of the first one (in terms of the average cycle
time). For the 25-task problem instances, when the robots are 40% or 60% capable,
the average cycle time increases if we increase the number of robots from one to two.
On the other hand, when the robots are 80% or 100% capable, the addition of a second

robot usually decreases the average cycle time.

Table 3.7: Optimal cycle times of 25-task problem instances for MISOCP and CP

formulations when r = 0

Cut-off values of the workloads (sc) Nb. of tasks assigned

Ins. # cv a ct(sc) j=1 2 3 4 5 6 1 2 3 4 5 6
1 0.2 090 3480 34.80 34.80 3299 3120 3480 3285 4 4 7 3 3 4

2 02 095 36.16 3562 3512 2847 3240 36.16 3394 5 4 6 3 3 4

3 04 090 39.59 3582 31.62 39.15 3541 3959 3669 5 6 4 3 3 4

4 0.4 095 4231 4024 38.73 3375 37779 4231 3887 5 6 4 3 3 4

The robots may be beneficial even when they work at the same speed with the human
workers or even when they are slower. Consider the replications of a problem instance
with cor = 0.0, emr = 1.2, cv = 0.4, a = 0.95, and capability=80%. If no robot
is used, the optimal cycle time is 42.31 seconds when cv = 0.4 and o = 0.95. On
the other hand, when one robot with 80% capability is used, which is on average
20% slower than the human worker (as cmr = 1.2), the average cycle time over (10
replications) becomes 39.46 seconds (see instance setting 16 with capability=80%
and r = 1). Detailed results of the related 10 replications whose average cycle time
value is 39.46 seconds can be seen in Table [C.2]in Appendix [C]This saving in cycle
time is due to the robot being very robust in performing the tasks in comparison with
the human worker. Indeed, for this instance the standard deviations of the task times
for the robot are all zero. This observation shows that robots can be beneficial even

when they are slower if they can reduce or eliminate uncertainty in task times.
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Table 3.8: Average optimal cycle times of 10 replications for MISOCP and CP for-

mulations on 25-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor omr cv a cr=1) c(r=2) c(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2)

I 00 06 02 090 34.18 39.62 31.70 32.56 29.54 26.62 29.40 26.40
2 00 06 02 095 35.37 40.87 32.83 33.50 30.57 27.08 29.94 26.40
3 00 06 04 09 38.41 43.93 35.63 36.14 32.37 29.22 31.53 27.23
4 00 06 04 09 40.82 46.38 37.89 38.24 33.74 30.67 33.35 28.20
5 00 08 02 09 34.36 39.62 33.11 33.63 31.74 29.77 31.30 29.18
6 00 08 02 095 35.43 40.87 33.89 34.48 32.46 30.57 32.24 29.60
7 00 08 04 090 38.41 4393 36.00 37.07 34.53 32.70 34.40 31.51
8§ 00 08 04 095 40.82 46.38 38.09 38.96 36.31 33.83 35.85 32.80

9 00 10 02 0.90 34.84 39.66 34.02 34.99 33.24 32.95 32.85 32.39
10 00 1.0 02 095 36.13 40.87 35.26 35.99 34.37 33.87 33.94 33.35
1 00 1.0 04 090 38.86 43.93 37.62 38.30 36.33 35.58 35.78 34.24
12 00 1.0 04 095 41.13 46.38 39.24 40.04 38.03 36.76 37.80 36.00

1300 12 02 090 35.16 39.95 34.85 36.31 34.80 34.80 34.80 34.80
14 00 12 02 095 36.34 41.15 36.14 37.29 36.09 36.09 36.00 36.00
15 00 12 04 090 39.43 44.06 38.94 39.79 37.95 37.89 36.69 36.00
16 00 12 04 095 41.99 46.38 40.71 41.62 39.46 39.03 38.87 37.80

17 05 06 02 090 34.18 39.62 31.90 32.78 30.21 28.12 30.13 27.20
18 05 06 02 095 35.37 40.87 32.96 33.88 31.24 28.92 30.93 27.93
19 05 06 04 090 38.41 4393 35.79 36.62 33.96 30.97 33.39 30.05
20 05 06 04 095 40.82 46.38 38.07 38.70 35.96 32.66 35.03 32.05

21 05 08 02 090 34.49 39.62 33.42 34.18 32.61 31.36 32.39 30.45
22 05 08 02 09 35.68 40.87 34.42 35.15 33.51 32.12 33.35 31.25
23 05 08 04 090 38.72 43.93 37.03 37.74 35.72 34.41 35.45 33.84
24 05 08 04 095 41.13 46.38 39.08 39.91 37.35 36.33 36.86 35.26

25 05 1.0 02 090 34.84 39.82 34.47 35.46 33.81 33.77 32.85 32.40
26 05 1.0 02 095 36.13 41.02 35.60 36.54 34.78 34.72 33.94 33.35
27 05 1.0 04 090 39.43 43.95 38.45 39.28 37.24 36.89 36.69 35.78
28 05 1.0 04 095 41.90 46.38 40.65 41.55 39.35 38.58 38.87 37.80

29 05 12 02 090 35.20 40.19 34.85 36.82 34.80 35.14 34.80 34.80
30 05 12 02 095 36.50 41.33 36.19 37.99 36.16 36.27 36.16 36.16
31 05 12 04 090 39.84 44.22 39.60 40.72 39.59 39.59 39.59 39.59
32 05 12 04 095 42.35 46.48 42.29 42.95 4225 4225 42.16 42.16

Results obtained using the proposed formulations for the 30-task problem instances
are given in Table @} When no robot is used (i.e., » = 0), the optimal cycle times
were found as 61.84, 63.78, 68.69, and 72.77 seconds when the pairs of values of
(cv, ) are (0.2, 0.90), (0.2, 0.95), (0.4, 0.90), and (0.4, 0.95), respectively (see Table
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[3.9). For example, adding a robot with 60% capability, which has the properties of
cvr = 0.5 and ecmr = 0.8 to the assembly line in place of a human worker in the case
where cv = 0.4 and a = 0.95 can save 4.44 seconds (72.77-68.33) on average (see
instance setting 24 with capability=60% and » = 1). Detailed results of the related
10 replications whose average cycle time value is 68.33 seconds can be seen in Table
[C.3]in Appendix [C] In cases where the robots are operating slower than the human
workers (i.e., cmr = 1.2), the average cycle time usually increases by replacing a
human worker with a robot. On the other hand, in the case where cv = 0.4 and
cvr = 0.0, the average cycle time decreases if the robot is capable of performing
more than 40% of the tasks even when the robots operate slower than human workers
(i.e., cmr = 1.2) (see instances settings 15 and 16 in Table [3.10). This shows us that
using robots can be very beneficial in assembly lines (in terms of average cycle times)
when the variability of task processing times are high, even if the robots perform the

tasks slower than the human workers.

Table 3.9: Optimal cycle times of 30-task problem instances for MISOCP and CP

formulations when r = 0

Cut-off values of the workloads (sc) Nb. of tasks assigned

Ins. # cv a ct(se) j=1 2 3 4 5 6 1 2 3 45 6
1 0.2 090 61.84 61.61 61.78 6133 61.84 60.09 59.67 6 5 4 5 4 6

2 0.2 095 6378 6348 63.70 63.41 6378 6238 6156 6 5 4 5 4 6

3 04 090 68.69 6822 68.55 68.68 68.69 68.18 6634 6 5 4 5 4 6

4 04 095 7277 72.62 7255 7259 7200 72777 7012 6 5 5 4 4 6

For all 30-task problem instances where robots are 40% capable, the average cycle
time increases as the number of robots increases from 1 to 2. On the other hand, if
the robots are more skilled (i.e., 60%, 80%, or 100% capable), increasing the number
of robots from 1 to 2 usually results in a decrease in average cycle time. Exceptions
for this generally occur when the robots are operating with some uncertainty in task
processing times and are slower than human workers (i.e., when cor = 0.5 and cmr =
1.2). For example, for instance settings 29, 30, 31, and 32, the average cycle time
increases with an increase in the number of robots from 1 to 2 irrespective of the

capabilities of the robots.
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Table 3.10: Average optimal cycle times of 10 replications for MISOCP and CP

formulations on 30-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor omr cv a cr=1) c(r=2) c(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2)

I 00 06 02 090 58.22 63.21 54.93 53.54 53.90 47.89 53.65 47.40
2 00 06 02 095 59.98 65.27 56.48 55.13 55.23 48.88 54.88 48.60
3 00 06 04 09 64.26 70.60 60.21 59.03 58.39 51.09 58.04 50.40
4 00 06 04 09 68.14 74.73 63.35 62.64 61.00 52.54 60.60 52.11
5 00 08 02 09 59.54 64.13 57.80 55.82 57.60 54.39 57.58 53.93
6 00 08 02 095 61.37 66.07 59.37 57.60 59.11 55.56 58.96 55.09
7 00 08 04 090 65.72 71.01 63.10 61.74 62.75 58.07 62.49 57.60
8§ 00 08 04 095 69.36 75.01 66.82 65.11 65.74 60.21 65.58 59.24

9 00 10 02 0.90 61.24 65.07 60.46 59.86 60.11 58.91 60.09 58.75
10 00 1.0 02 095 63.00 66.79 62.00 60.98 61.67 60.13 61.56 60.00
1 00 1.0 04 090 67.33 71.90 65.93 64.24 65.64 63.08 65.53 62.84
12 00 1.0 04 095 70.76 75.83 69.00 67.25 68.73 65.56 68.30 65.00

1300 12 02 090 62.63 66.27 62.14 63.44 62.06 62.40 62.02 62.18
14 00 12 02 095 64.48 68.17 64.06 64.73 63.96 64.04 63.78 63.78
15 00 12 04 090 68.86 72.90 68.15 68.18 67.87 67.24 67.79 66.71
16 00 12 04 095 72.53 76.61 71.58 70.97 71.07 69.78 70.80 69.60

17 05 06 02 090 58.38 63.39 55.46 54.21 55.14 49.97 54.88 49.58
18 05 06 02 095 60.36 65.43 57.48 56.12 56.91 51.51 56.44 51.19
19 05 06 04 090 65.28 70.69 62.36 60.77 61.19 55.35 60.96 54.84
20 05 06 04 095 69.12 74.75 66.11 64.33 64.70 58.32 64.44 57.83

21 05 08 02 090 60.11 64.42 58.59 56.58 58.38 55.62 58.14 55.51
22 05 08 02 09 62.06 66.37 60.37 58.22 60.13 57.46 60.05 57.20
23 05 08 04 090 66.56 71.57 64.81 63.05 64.46 61.58 64.35 61.17
24 05 08 04 095 70.38 75.74 68.33 67.01 68.08 64.61 68.07 64.19

25 05 1.0 02 090 61.96 65.63 61.22 61.32 60.98 60.41 60.96 60.09
26 05 1.0 02 095 63.84 67.64 62.92 62.92 62.59 62.02 62.46 61.84
27 05 1.0 04 090 68.38 72.46 67.37 66.79 67.08 66.01 67.00 65.76
28 05 1.0 04 095 72.01 76.30 71.25 70.20 70.86 69.18 70.59 68.92

29 05 12 02 090 62.97 66.68 62.65 64.48 62.41 63.69 62.33 63.63
30 05 12 02 095 64.88 68.56 64.60 66.18 64.40 65.35 64.39 65.20
31 05 12 04 090 69.66 73.59 69.20 70.53 69.12 69.34 69.05 69.22
32 05 12 04 095 73.48 77.53 73.08 73.80 72.94 73.07 72.77 72.78

Similarly, it can be seen from instance setting 25 in Table [3.10| that when robots are
working at the same speed with human workers (i.e., when cmr = 1.0), but with
some uncertainty in task times (cvr = 0.5), increasing the number of robots with

60% capability from 1 to 2 may increase the average cycle time. A careful decision
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on whether to use a robot in an assembly line has to be made by considering the

robots’ speed, capabilities, and level of uncertainty of the task processing times.

3.2.3.3 Detailed Computational Results of 35-task and 45-task Problem In-

stances

Tables [3.12]and [3.14] show the averages of the optimal or overall best found objective
function values (for instances not solved to optimality within an hour) for the 35-task
and 45-task problem instances, respectively. The number of workstations m is taken
as 9 in all of the instances. The cycle time values in the tables are the averages of
10 overall best objective function values obtained from the replications generated by
using random robot capabilities. All of the rows and columns of Tables [3.12]and [3.14]
are similar to those of Tables [3.§] and [3.10] except the last two rows and columns.
In the last two rows of Tables [3.12] and [3.14] the number of times each formulation
(MISOCP and CP) finds the overall best objective function value are given out of a
total of 320 replications for a fixed capability and r. On the other hand, in the last two
columns of Tables [3.12] and [3.14] the number of times each formulation (MISOCP
and CP) finds the overall best objective function value are given out of a total of 80
replications for fixed cur, cmr, cv, and « values. Note that for a fixed instance setting
and for fixed values of capability and r, if the relative difference between the best
objective function values found by the MISOCP and CP formulations in an hour is
less than 1074, then both formulations are assumed to have found the overall best
solution. When we compare the formulations in terms of the number of times the
overall best solution is found, it can be seen that the CP formulation performs better

than the MISOCP formulation for both 35-task and 45-task problem instances.

Table 3.11: Optimal cycle times of 35-task problem instances for MISOCP and CP

formulations when r = 0

Cut-off values of the workloads (sc) Nb. of tasks assigned
Ins. # e a ct(sc) j=1 2 3 4 5 6 7 8 9 123 456 7289
1 02 090 6399 6249 63.55 6395 62.69 6399 6278 6336 6242 6036 4 3 5 2 4 4 4 4 5
2 02 095 6654 6490 66.26 6649 6544 66.54 6498 6573 6538 6330 4 3 5 2 4 4 4 4 5
3 04 090 73.02 73.02 7126 7272 7238 7299 7056 7171 7285 7072 5 4 3 2 4 4 4 4 5
4 04 095 7851 77.84 7851 7787 7797 77.15 77.63 7790 7559 7457 5 3 2 5 3 5 4 4 4
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For the 35-task problem instances, when no robot is used (i.e., 7 = 0), the optimal
cycle times were found as 63.99, 66.54, 73.02, and 78.51 seconds, when the pairs of
values of (cv, «) are (0.2, 0.90), (0.2, 0.95), (0.4, 0.90), and (0.4, 0.95), respectively
(see Table 3.11). Adding, for example, a robot with 100% capability in place of a
human worker, which has the properties of cvr = 0.0 and cmr = 0.8 to the assembly
line in the case where cv = 0.4 and o = 0.95 can reduce the average cycle time by
6.82 (78.51-71.69) seconds (see instance setting 8 with capability 100% and r = 1).
Detailed results of the related instance whose cycle time value is 71.69 seconds can
be seen in Table [C.4] in Appendix [C| When Table [3.12]is examined in detail, it can
be seen that replacing one of the human workers with a robot always decreases the
average cycle except when cmr = 1.2 (i.e., when the robot is slower). Still, when the
robot is slower, the average cycle time may decrease by replacing a human worker

with a robot depending on the robots’ skills.
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Table 3.12: Average cycle times of 10 replications for MISOCP and CP formulations

on 35-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability Best Sol.
Ins. # cur cmr cv @ ct(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2) MISOCP CP
1 00 06 02 0.90 59.94 60.11 58.32 56.05 58.12 54.00 58.10 52.80 80 80
2 00 06 02 0.95 62.09 62.54 60.42 57.99 59.94 55.48 59.51 54.60 80 80
3 00 06 04 0.90 68.36 69.09 66.30 64.29 65.80 60.93 65.67 58.69 79 80
4 00 06 04 0.95 73.50 73.95 70.85 68.96 70.27 64.27 69.00 61.63 80 80
5 00 08 02 0.90 62.31 61.53 62.09 58.71 61.47 58.29 60.80 58.26 80 80
6 00 08 02 0.95 64.73 63.93 63.84 60.45 63.17 59.92 62.70 59.51 80 80
7 00 08 04 0.90 69.93 69.61 68.43 65.93 67.95 64.90 67.80 64.25 80 80
8§ 00 08 04 0.95 74.62 74.43 72.99 70.75 72.25 68.72 71.69 67.20 80 80
9 00 1.0 02 0.90 63.30 63.54 62.81 62.28 62.70 61.81 62.69 61.66 80 80
10 00 1.0 02 0.95 65.52 64.93 65.03 63.48 64.94 63.17 64.90 63.00 80 80
11 00 1.0 04 0.90 71.25 70.92 70.98 68.35 70.88 68.01 70.56 67.82 80 80
12 00 1.0 04 0.95 76.35 75.62 75.80 72.79 74.96 71.87 74.63 71.08 80 80
13 00 12 02 0.90 64.51 65.46 64.17 64.35 64.04 64.08 63.99 63.99 80 80
14 00 1.2 02 0.95 66.88 67.85 66.41 66.42 66.03 65.92 66.00 65.58 80 80
15 00 1.2 04 0.90 72.88 73.26 72.42 71.64 72.18 70.87 72.00 70.80 70 80
16 00 12 04 0.95 76.92 76.94 76.58 75.54 76.44 74.94 76.44 74.69 80 80
17 05 06 02 0.90 61.13 60.47 59.24 56.81 58.93 55.74 58.90 55.09 80 80
18 05 06 02 0.95 63.29 62.93 61.63 59.31 61.37 58.01 61.28 57.15 80 80
19 05 06 04 0.90 69.32 69.52 67.86 65.62 67.47 63.72 66.89 62.53 80 80
20 05 06 04 0.95 74.42 74.43 72.71 70.45 72.10 68.99 71.52 68.35 80 80
21 05 08 02 0.90 62.42 62.24 62.18 59.99 62.18 59.58 62.18 59.41 80 80
22 05 08 02 0.95 64.91 64.61 64.68 62.14 64.61 61.60 64.50 61.43 80 80
23 05 08 04 0.90 71.21 70.62 70.81 68.05 70.35 67.38 69.98 66.96 79 80
24 05 08 04 0.95 76.32 75.54 75.65 72.70 74.92 71.80 74.63 71.08 80 80
25 05 1.0 02 0.90 63.87 64.48 63.30 63.09 63.02 62.53 63.02 62.45 80 80
26 05 1.0 02 0.95 66.29 66.97 65.64 65.38 65.45 64.89 65.44 64.72 80 80
27 05 1.0 04 0.90 72.59 72.97 72.06 71.17 71.85 70.69 71.71 70.36 70 80
28 05 1.0 04 0.95 77.40 77.69 76.76 75.68 76.47 75.08 76.45 74.74 69 80
29 05 1.2 02 0.90 64.71 66.45 64.41 65.13 64.17 64.69 63.99 64.57 80 80
30 05 12 02 0.95 67.36 68.72 67.00 67.46 66.63 67.10 66.54 67.05 80 80
31 05 12 04 0.90 73.29 74.81 73.03 73.34 73.02 73.02 73.02 73.02 80 80
32 05 12 04 0.95 78.53 79.52 78.14 78.23 77.88 77.85 77.87 77.84 80 80
Best | MISOCP 319 320 320 319 319 320 320 290
Sol. Cp 320 320 320 320 320 320 320 320

It can be seen from Table [3.12] that in 35-task problem instances, when the mean
task processing times of robots are less than or equal to those of the human workers,
1.e., when cmr < 1.0, the average cycle time usually decreases with an increase in
the number of robots from 1 to 2. However, even if the robots are operating at least
as fast as the human workers, i.e., when cmr < 1.0, when their capability is 40%,

the average cycle time may show an increase as the number of robots increases from

36



1 to 2. When the robots are operating slower than the human workers, i.e., when
cmr = 1.2, the average cycle time generally increases as we increase the number
of robots from 1 to 2 if the robots are not very capable (i.e., for capabilities 40% or
60%). On the other hand, when the robots are very skilled (capability=80% or 100%),
the average cycle time may decrease with the increase in the number of robots from

1to 2.

Table 3.13: Optimal cycle times of 45-task problem instances for MISOCP and CP

formulations when r = 0

Cut-off values of the workloads (sc) Nb. of tasks assigned
Ins. # cv a ct(sc) j=1 2 3 4 5 6 7 8 9 1 23 456 789
1 02 090 70.15 70.14 70.15 70.04 70.15 69.93 69.10 70.15 70.12 7000 8 6 3 6 4 1 6 3 8
2 02 095 73.10 71.09 73.09 73.10 7241 7198 71.88 73.01 73.07 7219 6 8 1 4 3 3 7 6 7
3 04 090 8320 7639 7692 82.68 81.65 83.20 8240 7854 7795 6756 8 7 5 6 1 4 3 5 6
4 04 095 91.19 89.76 91.19 50.27 88.61 83.71 86.07 8295 88.00 90.73 8 1 3 4 3 4 4 9 9

Table [3.14] shows the averages of the optimal or overall best found objective function
values obtained for the 45-task problem instances found by the MISOCP and CP
formulations. If no robot is used (i.e., » = 0), the optimal cycle times were found as
70.15, 73.10, 83.20, and 91.19 seconds, when the pairs of values of (cv, «v) are (0.2,
0.90), (0.2, 0.95), (0.4, 0.90), and (0.4, 0.95), respectively (see Table[3.13). Average
cycle time is usually decreased when one of the human workers is replaced by a robot
whose capability is greater than 40%. The effect of adding a second robot on top of
the first one for the 45-task problem instances is similar to our earlier observations
that we made for other problem instances. As an extreme example, when two robots
are used instead of human workers, the average cycle time decreases by 26.69 (91.19-
64.50) seconds when the robots are 100% capable and their operating characteristics
are cur = 0.0 and emr = 0.6 and when cv = 0.4 and o = 0.95 (see instance setting
4 with capability=100% and r = 2). Detailed results of the related instance whose
cycle time value is 64.50 seconds can be seen in Table|C.5]in Appendix [C|
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Table 3.14: Average cycle times of 10 replications for MISOCP and CP formulations

on 45-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability Best Sol.
Ins. # cur cmr cv @ ct(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2) ct(r=1) ct(r=2) MISOCP CP
1 00 06 02 0.90 69.10 69.10 68.54 68.03 65.15 61.47 63.44 58.20 46 80
2 00 06 02 0.95 73.10 73.10 72.30 71.75 67.41 63.51 64.86 59.40 46 80
3 00 06 04 0.90 83.20 83.20 81.82 81.18 73.36 68.67 69.12 62.40 53 80
4 00 06 04 0.95 91.19 91.19 89.34 88.61 78.05 72.67 72.40 64.50 44 80
5 00 08 02 0.90 69.10 69.10 68.84 68.57 67.25 65.27 66.40 63.57 44 80
6 00 08 02 0.95 73.10 73.10 72.63 72.30 69.67 67.35 68.19 64.85 44 80
7 00 08 04 0.90 83.20 83.20 82.16 81.77 75.92 72.96 72.80 68.80 53 80
8§ 00 08 04 0.95 91.19 91.19 89.73 89.27 80.87 77.26 76.45 71.20 45 80
9 00 1.0 02 0.90 69.10 69.10 69.04 68.92 68.65 67.89 68.41 67.26 36 80
10 00 1.0 02 0.95 73.10 73.10 72.84 72.69 71.26 70.23 70.47 69.00 45 80
11 00 1.0 04 0.90 83.20 83.20 82.41 82.18 77.63 76.07 75.25 73.00 45 80
12 00 1.0 04 0.95 91.19 91.19 89.99 89.71 82.72 80.60 79.10 76.00 45 80
13 00 12 02 0.90 70.58 71.01 70.44 70.83 69.98 70.30 69.75 70.11 2 80
14 00 1.2 02 0.95 73.10 73.11 72.99 72.99 72.24 72.27 71.88 71.84 44 80
15 00 1.2 04 0.90 83.20 83.20 82.57 82.51 78.79 78.34 76.88 76.20 44 80
16 00 12 04 0.95 91.19 91.19 90.17 90.06 84.05 83.01 80.97 79.29 44 80
17 05 06 02 0.90 69.10 69.10 68.68 68.24 66.12 63.06 64.80 60.44 44 80
18 05 06 02 0.95 73.10 73.10 72.49 72.04 68.83 65.63 66.97 62.44 44 80
19 05 06 04 0.90 83.20 83.20 82.13 81.61 75.65 72.06 72.44 67.32 44 80
20 05 06 04 0.95 91.19 91.19 89.75 89.21 81.10 77.21 76.76 71.20 44 80
21 05 08 02 0.90 69.10 69.10 68.94 68.73 68.00 66.52 67.57 65.46 44 80
22 05 08 02 0.95 73.10 73.10 72.76 72.52 70.73 69.06 69.69 67.41 44 80
23 05 08 04 0.90 83.20 83.20 82.41 82.12 77.64 75.64 75.17 72.41 45 80
24 05 08 04 0.95 91.19 91.19 90.04 89.72 83.15 80.84 79.75 76.35 44 80
25 05 1.0 02 0.90 69.62 69.13 69.54 69.07 69.35 68.92 69.26 68.87 5 79
26 05 1.0 02 0.95 73.10 73.10 72.93 72.88 71.98 71.55 71.49 70.90 44 80
27 05 1.0 04 0.90 83.20 83.20 82.59 82.50 78.98 78.27 77.17 76.16 45 80
28 05 1.0 04 0.95 91.19 91.19 90.23 90.10 84.49 83.48 81.61 80.17 44 80
29 05 1.2 02 0.90 71.04 72.05 71.04 71.97 71.00 71.93 70.99 71.93 5 80
30 05 12 02 0.95 73.13 73.98 73.10 7391 73.10 73.85 73.10 73.81 2 80
31 05 12 04 0.90 83.20 83.20 82.89 82.89 81.03 81.03 80.10 80.10 80 80
32 05 12 04 0.95 91.19 91.19 90.48 90.48 86.22 86.22 84.10 84.10 80 80
Best | MISOCP 279 280 253 259 98 108 20 41
Sol. Cp 319 320 320 320 320 320 320 320

3.2.3.4 Comparative Performance Measures of MISOCP and CP Formulations

In Table [3.15] a summary of the performances of the MISOCP and CP formulations
is provided. For each problem and formulation, the CPU times, relative gaps, % cal-
culated gaps, percent deviations from the overall best solutions, percentage of proven

optimal solutions, and percentage of optimal solutions are given in the table. For
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each problem size and each formulation, the minimum, average, and the maximum
of 2560 values are reported in the table. Note that 2560 is the number of different
combinations of the parameter values given in Table [3.1| multiplied with the number

of replications 10 (i.e., 2560 = 2 x 4 x 2 x 4 x 2 x 2 x 10).

Table 3.15: Comparative performance measures of MISOCP and CP formulations on

all instances

CPU time % Gap 9% Calculated gap %Deviation %Proven Optimal % Optimal

Problem  Att. MISOCP CP  MISOCP MISOCP CP MISOCP CP MISOCP CP MISOCP CP

Avg. 75 19.3 0.0% 0.0%  0.0% 0.0% 0.0%

n=25m=6 max 27.7 70.2 0.0% 0.0%  0.0% 0.0% 0.0% 100.0% 100.0%  100.0% 100.0%
min 1.6 9.4 0.0% 0.0%  0.0% 0.0% 0.0%
Avg. 89.8 4299 0.0% 0.0%  0.0% 0.0% 0.0%

n=30 m=6 max 1260.0 35559 0.0% 0.0%  0.0% 0.0% 0.0% 100.0% 100.0%  100.0% 100.0%
min 53 73 0.0% 0.0%  0.0% 0.0% 0.0%
Avg. 759.0 7512 0.2% 0.1%  0.1% 0.0% 0.0%

n=35m=9 max 3600.3 3600.9 17.6% 6.5%  6.5% 1.0% 0.0% 94.7%  92.0% 96.0%  96.5%
min 25.9 15.3 0.0% 0.0%  0.0% 0.0% 0.0%

Avg. 2014.0 1730.7 4.4% 42%  4.0% 02% 0.0%
n=45m=9 max 3756.9 3600.6 30.4% 223% 21.3% 1.1% 0.0% 48.7%  52.7% 50.6%  52.7%
min 2.1 5.0 0.0% 0.0%  0.0% 0.0% 0.0%

When the CPU times are examined in Table [3.15] it can be concluded that the MIS-
OCP formulation performs better in small-size problems, i.e., in 25-task and 30-task
problems. On the other hand, the CP formulation outperforms the MISOCP formula-
tion in larger size problems, i.e., in 35-task and 45-task problems. Average CPU time
results of 10 replications for both proposed formulations on all problem instances can
be seen in Tables [D.THD.§| in Appendix [D] where a table for each formulation and

benchmark problem is provided separately.

The absolute gap is the difference between the objective function value of the best
found integer solution and the best lower bound. On the other hand, the relative gap
is the ratio of the absolute gap to the objective function value of the best found integer
solution. If an optimal solution cannot be found within the given time limit, CPLEX
returns a positive relative gap value as an output for the MISOCP formulations. In
Table [3.15] we provided the relative gap values as one of the performance measures.

Since CPLEX does not provide the gap values for the CP formulations, the relative
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gap values are provided only for the MISOCP formulations. In the %Calculated Gap
columns, the relative gaps are calculated with respect to the optimal objective function
values if at least one of the MISOCP or CP formulations finds the optimal solution.
Otherwise, the gaps are calculated with respect to the best lower bound given by
CPLEX for the MISOCP formulation. For example, it is possible that the MISOCP
formulation finds the optimal solution, but cannot prove it in the given time limit. In
this case, if the CP finds the optimal solution, then the %Calculated Gap value for the
MISOCP formulation will be taken as zero. Table [3.15] shows that the relative gap

values are similar for both formulations.

The deviation is the difference between the objective function value of the best solu-
tion found by one of the formulations, and the objective function value of the overall
best solution. For example, if the objective function values of the best solutions found
by the MISOCP and CP formulations are a and b, respectively, then the deviations of
the MISOCP and CP solutions will be a — min{a, b} and b —min{a, b}, respectively.
On the other hand, the percent deviation is the ratio of the deviation to the objec-
tive function value of the overall best solution. Percent deviations from the overall
best objective function values found for each problem instance are provided under the
%Deviation column in Table It can be seen from the table that the CP formula-
tion was able to find the overall best solutions for almost all problem instances which

is consistent with the results provided in the previous tables (3.8H3.14).

Percentage of proven optimal solutions is the ratio of the number of times the optimal
solution is found and proven to be optimal by CPLEX within the given time limit to
2560, and are given under %Proven optimal column in Table [3.15] for both formula-
tions. It can be seen from the table that, for small-size problems (i.e., for 25-task and
30-task problems), both formulations always find proven optimal solutions in 1 hour.
On the other hand, for 35-task problems, the MISOCP and CP formulations find a
proven optimal solution in 94.7% and 92.0% of the cases, respectively. On the other
hand, for the largest size problems, the CP formulation finds more proven optimal

solutions.

In some cases, both formulations return the same solution, but only one of them is a

proven optimal solution. In this case, both formulations have the optimal solution, but
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one formulation cannot prove it in the given time limit. For such cases, we counted
both solutions as optimal and presented the percentage of times the optimal solutions
are found in the last column of Table [3.15] The table shows that the optimal solutions
are found by using both formulations for all 25-task and 30-task problems within the
given time limit. For both formulations, more than 95% and 50% of the solutions are
optimal for the 35-task and 45-task problem instances, respectively. The MISOCP
formulation solves a replication of an instance of the 45-task problem with a relative
gap of 22.3% in an hour (maximum relative gap value in the table). When we solve
the same instance with a 24 hour CPU time limit, a solution with 12.1% relative gap
is obtained when the time limit is reached. There is a trade-off between the solution
time and the returned relative gap. As assembly line design problems are strategic

level problems, use of very large time limits can be justified.
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CHAPTER 4

STOCHASTIC ASSEMBLY LINE BALANCING WITH RELIABILITY
RESTRICTION

This chapter describes a type-II stochastic assembly line balancing problem given a
fixed lower bound on the whole assembly line reliability (type-II SALBP-R). The
objective is to minimize the cycle time given normally distributed task processing
times and a fixed number of workstations. In this problem, all operators are assumed
to be identical. First, we give a constraint programming (CP) formulation to solve
type-II stochastic assembly line balancing problem (type-II SALBP) in Section[4.1.1}
This formulation is then used to develop a matheuristic algorithm for solving type-
IT SALBP-R, which is provided in Section The proposed matheuristic finds a
solution such that the workloads of all workstations do not exceed the cycle time with

probability equal to the predefined assembly line reliability.

The algorithm starts with solving the CP formulation of type-II SALBP with a given
set of confidence levels for workstations, satisfying the given assembly line relia-
bility. After a solution is obtained, the algorithm compares the workstations’ given
confidence levels and their realized probabilities of not exceeding the cycle time. Ac-
cording to this comparison, the algorithm defines a new set of confidence levels that
also satisfies the predefined assembly line reliability. With the new set of confidence
levels, a solution from the CP formulation of type-II SALBP is obtained again. Note

that the algorithm updates the set of confidence levels in a way that the previous so-

lution satisfies the new set of confidence levels (see Sections 4.1.2|and 4.2.1)). After

some iterations, the algorithm stops accepting new solutions to the problem when the
realized assembly line reliability becomes equal to the predefined lower bound on

the assembly line reliability or the number of iterations limit is reached. As a final
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improvement, the cycle time obtained from the last solution is reduced to a minimum
possible cycle time that satisfies the assembly line reliability without changing the

assignments.

The proposed algorithm is applied to Sawyer’s 30-task and Kilbridge and Wester’s
45-task problems [42] to compare the performance of the algorithm with the Bidirec-
tional Heuristic Algorithm (BHA) of Liu et al. [11]. Computational results show that

the proposed matheuristic can be a good alternative of BHA.

4.1 Problem Definition and Solution Approach for Type-II SALBP-R

In the literature, type-II SALBP is mostly studied considering the confidence level for
each workstation so that the workload of each workstation cannot exceed the cycle
time with at least a given probability ov. However, the probability of not exceeding
the cycle time in all the workstations (i.e., the assembly line reliability) can be quite
different from the defined confidence levels. Assuming that the confidence level of
each workstation is «, the assembly line reliability can be o™ in the worst case, which

might be much smaller than a.

Consider an assembly line with normally distributed task processing times where
m = 6 and predefined confidence level « 1s 0.900 for all workstations. The assem-
bly line reliability can then be 0.900° = 0.531 in the worst case. For an assembly
line where the number of workstations is greater (e.g., m = 9), the assembly line

reliability can be even smaller (0.900° = 0.387) in the worst case.

A similar concept to assembly line reliability is first discussed by Reeve and Thomas
[43]]. The authors assumed that if the workload of a workstation exceeds the cy-
cle time, where the task times are normally distributed random variables, the line
is stopped, or the assembled product becomes defective. With this motivation, they
aimed to minimize the probability of exceeding the cycle time in any of the work-
stations, given an initial balance and cycle time by reassigning the tasks to the work-
stations with the trade and transfer method. The same problem was later studied by

Suresh et al. [44] by using a genetic algorithm.
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For solving type-Il SALBP-R, a heuristic; namely the BHA, is proposed by Liu et al.
[L1]. Given the number of workstations and an assembly line reliability, the authors’
objective was to minimize the cycle time by initially assigning tasks to workstations
bidirectionally (i.e., tasks are first assigned to workstation 1 considering the prece-
dence relations, then to workstation m, then to workstation 2, then to workstation
m-1 etc.) and reassigning the tasks to the workstations by a trade and transfer pro-
cedure. Based on this assembly line reliability idea, and to ensure a more reliable
assembly line balance in today’s competitive manufacturing environment, we inves-
tigated the type-II SALBP with reliability restriction. The following notation is used
in the description of the problem.

Indices:

i, k: tasks (1,...,n)

j: workstations (1,...,m)

Parameters:

n: number of tasks

m: number of workstations

a;: confidence level of workstation j

14;: mean processing time of task ¢

o0,: standard deviation of the processing time of task ¢

P(7): set of immediate predecessors of task i

R: assembly line reliability

In type-II SALBP-R, task processing times are assumed to be normally distributed
random variables with known mean p; and standard deviation ;. The workload of

workstation j is also a normally distributed random variable with known mean

n

> mils = j) Vi,

=1

and standard deviation

> o2 (x; = j) Vj.
=1
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Given a cycle time ct, the confidence level «; is the probability that the workload of

workstation j does not exceed the cycle time, and it can be represented as

n

ct — 3 i@ = j)
o = @( =l ) Vi . (4.1)

n

o} (z; = j)
=1

On the other hand, the probability that the workload of any workstation j in the whole
assembly line not exceeding the cycle time is the assembly line reliability, which is
the product of the realized confidence levels of all workstations in the assembly line.
In this problem, the reliability of the assembly line, where the number of workstations

is m, has to be at least the predefined lower bound R as follows:

[[o =R (4.2)
j=1

In this problem, our aim is to assign tasks to workstations so as to minimize the cycle

time such that the reliability of the whole assembly line is at least given probability

R (see Equation (4.2))).

The assumptions of type-II SALBP-R are given below.

1. Only one type of product or different products with very similar assembly fea-

tures are assembled.
2. Assembly line is one-sided, paced, and straight.
3. Number of workstations is known and given.
4. Precedence relations of the tasks are known and given.
5. A task can be assigned to only one workstation and cannot be divided.
6. Each workstation can have only one operator.
7. Operators are identical and capable of doing all tasks.

46



8. Task times are independent and normally distributed random variables.

9. Means and variances of task times are known.

10. The failures, costs, and defective products led by incomplete tasks are ne-

glected.

4.1.1 CP Formulation for Type-1I SALBP

For type-II SALBP-R, we propose a matheuristic which solves a CP formulation of

type-II SALBP with fixed confidence levels as subproblems. We next provide the

details of this CP formulation.

Decision variables:

ct: cycle time

x;: the workstation task i is assigned to
Auxiliary decision variables:

wj: cut-off value of the workload of workstation j

min ¢t = max{w;}
J

S.t.

n

wj:ZMi(CCi:j)"‘q)fl(aj)' Zaf(azizj) v
i=1 i=1
—_— Vk € P(i), Vi,

x; € {1,,m} Vi

The objective function (#.3)) minimizes the cycle time. Constraint (4.4) keeps the

workload of workstation j less than or equal to the cycle time with a given confidence

level o for all j. Constraint (4.5)) is to satisfy the precedence relations between tasks.

Constraint (4.6)) defines the domain restrictions.
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4.1.2 A Matheuristic Algorithm for Type-II SALBP-R

The pseudocode of the matheuristic proposed for solving type-1I SALBP-R is pro-
vided in Algorithm

Algorithm 1: A matheuristic algorithm for type-II SALBP-R

1 Initialization: Let u = 0 and define confidence level of each workstation,
such that 'H1 af =R.
j:
2 Solve the following CP with given confidence level afs:

min ct" = mjax{w;?}

S.t.

wj = Z(ﬂ:?:j)ﬂﬁ@—l(ay) ;(xy:j)af Vi,
zv > xt Vi, Yk e P(i),

e {l,..,m} Vi,

3 Return off* = @((ct“* — > (z* = j)ui)/1 [ (v = j)a?) Vj.
i=1 i=1

4 While(ﬁa;f*>R+5)/\(u<l) do
=1

5 for j = 1t0omdo

6 if a;‘* = a}‘ then
ut+l _ ux _ _u
7 ‘ Oéj = Ozj g
8 else
u+1l _ ux
9 ‘ a7 = af
10 end
11 end

m
12 | Find ane® such that [T of™' = R.
Jj=1

13 u=u-+1

14 Solve CP with new a;-‘s.
15 Return oz]”*s and ct**.
16 end

m

17 while H1 af* > Rdo
Jj=

18 ct* = ct** —0.01,

ooy =0 (e — S =)y [ =) Vi

20 Return aj”*s and ct"*.

21 end
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The algorithm starts with defining a confidence level for each workstation in a way
that their product is equal to the lower bound on the assembly line reliability. Given
these confidence levels (i.e., a; values), a CP for type-II SALBP is solved. Then, the
cycle time and the task assignments obtained from the CP solution is used to calculate
the realized confidence levels o} ’s. Note that the realized confidence levels are greater
than or equal to their corresponding predefined confidence levels. If we define o’s as

the given confidence levels, and a}‘*s as the realized ones, we have that oz}‘* > a}‘ for
m m

each workstation j and iteration u. Hence, || a;* > 11 04;? holds in every iteration.

j=1 j=1
After the initialization procedure, the algorithm checks whether each workstation’s
realized and predefined confidence levels are equal. If they are equal, the predefined
confidence level of the corresponding workstation in the next iteration (a}‘“) will
be equivalent to " — . For the workstations that do not have equal realized and

predefined confidence levels, the predefined confidence levels in the next iteration

y+1

(o

) will be taken as their realized confidence levels in the current iteration (™).

u+1 —

m
The algorithm computes € in each iteration in such a way that the equality H ;

R holds true. The procedure applied after the initialization is carried oé?luntil the
iteration limit is reached (u = [) or the realized reliability of the solution becomes
less than or equal to a predefined assembly line reliability limit which is taken as a real
number that is ¢ bigger than R, where ¢ is a very small number, i.e., if ﬁ oz}”‘ # R+6,
then the procedure stops. Note that there might be some rounding ejr:r(l)rs due to the
decimal place differences between the parameters used and the solutions returned by
CPLEX. Here, ¢ is added to the predefined assembly line reliability R to specify a
stopping condition on the realized reliability ﬁ a;”, in order to avoid such possible
rounding errors. =

As a final improvement, value of cycle time obtained from the last iteration’s CP
solution is decreased gradually, until the reliability of assignments with the minimum

possible cycle time becomes equal to the predefined assembly line reliability.

Next, our computational experiments using the proposed matheuristic algorithm are
presented in detail in Section [4.2) by first providing an illustrative example in Section

4.2.1] and then giving the detailed computational results in Section 4.2.2]
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4.2 Computational Study for Type-II SALBP-R

In our computational experiments, we used a computer with Intel Xeon E2246G,
a 3.6 GHz processor, and 16 GB RAM. The algorithm is coded in ILOG CPLEX
Optimization Studio 20.1 [41]], and CPLEX CP Optimizer is used for solving the CP
formulation of type-II SALBP in each iteration. We set the CPU time limit to 3600
seconds for all CP solutions in each iteration. Two well-known problem instances
from the assembly line balancing literature are used: Sawyer’s 30-task and Kilbridge
and Wester’s 45-task problems [42]. Deterministic task times of the tasks and their
immediate predecessors are given for 30-task and 45-task problems in Tables[A.T|and
in Appendix [A] respectively. Precedence diagrams of the problem instances are
used directly, and deterministic task processing times in the benchmark problems are
used as the mean task processing times (1;). The standard deviations of the task times
(0;) are obtained using the coefficient of variation (cv) as shown in Equation (4.7). In

our computational experiments, we used five different cv values.

O; = CU - [ Vi. 4.7)

In our computational study, we set an experimental design by changing values of cv
and predefined assembly line reliability R. This allows us to understand the effects

of different parameters on the solutions of type-1I SALBP-R.

4.2.1 Illustrative Example

In this section, we provide some illustrative results on the 30-task problem of Sawyer
[42]]. There are 6 workstations in the original problem. Our aim is to assign tasks
with stochastic processing times to the workstations to minimize the cycle time while
satisfying the predefined assembly line reliability restriction. If we take cv as 0.3, the
standard deviation of the processing time of the first task (z = 1) becomes 2.4, which
is calculated according to Equation (4.7). Deterministic task times (y;) and standard
deviations (o;) calculated for cv = 0.3, and the immediate predecessors (P(i)) of

the tasks are given in Table Moreover, we took the value of the assembly line
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reliability R as 0.950 in our illustrative example.

Table 4.1: Means, standard deviations, and immediate predecessors of the tasks used

in illustrative examples

Task # i g; P(Z) Task # i g; P(l)

1 8 24 - 16 10 3.0 3
2 7 21 - 17 2 06 3
3 19 57 - 18 10 3.0 17
4 10 3.0 1 19 18 54 18
5 2 06 1 20 16 4.8 14,16
6 6 18 5 21 21 63 20
7 14 42 4,6 22 14 42 15,21
8§ 10 3.0 7 23 16 4.8 22
9 1 03 8 24 7 2.1 10,20
10 4 12 - 25 17 5.1 24
11 14 42 2 26 9 27 9,25
12 15 45 2 27 25 7.5 23,26
I35 15 12 280 7 21 27
14 12 36 13 29 14 42 27
I5 9 27 14 30 2 06 29

As the illustrative example, we consider the case when all the values of predefined
confidence levels () are equal to 0.9915 for the initial problem, i.e., o = RY/™ Vj,
where R = 0.950 and m = 6. As the task times are random variables, the workload
of each workstation is also a random variable. In Table the first column shows
the iteration number (u), the second column displays the optimal cycle time values,
the next six columns represent the number of tasks assigned to each workstation, and
the last six columns demonstrate the cut-off values (i.e., the (10004;?)“Z percentiles) of

the workloads that can be exceeded with probability 1 — «.
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Table 4.2: Optimal cycle times, task assignments to workstations, and cut-off values

of the workloads of 30-task problem, when R = 0.950 and cv = 0.3

Number of tasks assigned Cut-off values of the workloads

te.# ct(sc) j=1 j=2 j=3 j=4 j=5 j=6 j=1 j=2 j=3 j=4 j=5 j=6

u=0 7451 7 5 4 4 4 6 74.51 7421 7411 7446 7320 71.61
u=1 7447 5 4 5 6 4 6 7324 7425 7400 74.03 7446 7447
u=2 7429 4 6 3 7 4 6 7429 7426 7332 7419 7399 72.08
u=3 7425 5 7 3 5 4 6 7371 7397 7422 73.61 7425 74.23
u= 74.16 4 7 6 3 4 6 74.07 7416 7391 73.68 73.74 73.21
u=>5 7415 6 5 6 3 4 6 73.99 7359 7414 7413 7411 74.15
u=6 74.15 6 5 6 3 4 6 74.15 7414 73.62 73.63 73.84 73.56
u="7 7411 7 4 3 6 4 6 73.96 74.07 73.86 73.85 74.11 74.08
u=28 7410 7 4 3 6 4 6 74.09 74.10 74.04 7407 73.84 7348
u=9 74.08 7 4 3 6 4 6 74.00 7399 73.82 73.88 74.06 74.08
u=10 74.07 7 4 3 6 4 6 74.03 74.04 74.04 74.07 7393 73.68
u=11 74.06 7 4 3 6 4 6 7398 7397 7392 7398 74.06 74.00

The optimal cycle time of type-II SALBP will be equal to the maximum of these cut-
off values which will guarantee that the workload of workstation j will be less than
or equal to the cycle time with probability at least o, or with probability equal to
«;*. Hence, in the first example iteration (u = 0), the optimum cycle time is found as
74.51 seconds, which is the cut-off value of the first workstation’s (; = 1) workload.
In Table 4.3] the first column displays the iteration number, the next six columns
represent the predefined o values for the workloads, and the last six columns show
the realized o;* values obtained from the optimal solutions by solving type-Il SALBP

in each iteration.
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Table 4.3: Predefined and realized confidence levels for the 30-task problem, when
R =0.950 and cv = 0.3

Given af values Realized aj* values

Ite# j=1 j=2 j=3 j=4 j=5 j=6 j=1 j=2 j=3 j=4 j=5 j=6

uw=0 09915 09915 09915 0.9915 0.9915 0.9915 0.9915 0.9923 0.9925 0.9916 0.9942 0.9971
u=1 09815 09923 09925 09916 0.9942 0.9971 0.9873 0.9928 0.9936 0.9929 0.9942 0.9971
uw=2 09873 09928 0.9936 0.9929 0.9899 0.9928 0.9873 0.9928 0.9952 0.9931 0.9908 0.9968
u=3 09839 09894 0.9952 0.9931 0.9908 0.9968 0.9863 0.9905 0.9952 0.9944 0.9908 0.9968
u=4 09863 09905 0.9936 0.9944 09892 0.9952 0.9866 0.9905 0.9944 0.9951 0.9903 0.9966
u=5 09866 09863 0.9944 0.9951 0.9903 0.9966 0.9873 0.9886 0.9944 0.9951 0.9903 0.9966
u=06 09873 09886 0.9935 0.9943 0.9895 0.9958 0.9873 0.9886 0.9947 0.9951 0.9904 0.9966
u="7 09855 09868 0.9947 0.9951 0.9904 0.9966 0.9863 0.9870 0.9951 0.9956 0.9904 0.9966
u=38 09863 09870 0.9951 0.9956 0.9895 0.9957 0.9863 0.9870 0.9951 0.9956 0.9903 0.9965
u=9 09859 09866 0.9947 0.9952 0.9903 0.9965 0.9861 0.9869 0.9950 0.9955 0.9903 0.9965
u=10 09861 0.9869 0.9950 0.9955 0.9897 0.9960 0.9861 0.9869 0.9950 0.9955 0.9902 0.9965
uw=11 09858 0.9866 0.9948 0.9953 0.9902 0.9965 0.9860 0.9868 0.9950 0.9955 0.9902 0.9965

Figure demonstrates the comparison of predefined confidence level oz?s (repre-
sented with the dashed lines) and realized confidence level cv?*s (represented with the
continuous lines) for each workstation j that are obtained by solving type-II SALBP
(see iteration O in Table . The algorithm starts with setting the parameters ozg-’s
to 0.9915, then using these values, a CP for type-II SALBP is solved. Values of a?*
are calculated by using the optimal solution values as in Equation 4.1] For the work-
stations which have the same a?* and oz? values, the algorithm defines the ozjl» values
as a?* — £9 On the other hand, for the workstations which have different a?* and
o values, o) values are determined to be equal to their corresponding af*s. In this
iteration of the illustrative example (u = 0), the algorithm sets o} to a¥* — £, and the

rest of the a}s are set to a?* values.
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Figure 4.1: Predefined %Q and realized oz?* values when cv = 0.3, B = 0.950, and

u=0>0

m
Algorithm finds an £ satisfying the condition [] oz]l = R. In this iteration, £° is

7j=1
found as 0.0100, and it can be seen from Table 4.3| that o} = 0.9815, which comes
from o = o — £°, or equivalently, 0.9815 = 0.9915 — 0.0100.

After finding all ajl. values, a CP for type-IIl SALBP is solved. Values of a}* are calcu-
lated by using the optimal solution values as in Equation4.1] Figure4.2]demonstrates
the comparison of predefined confidence level ozjl- s (represented with the dashed lines)
and realized confidence level a]l*s (represented with the continuous lines) in iteration
1 for each workstation j that are obtained by solving type-II SALBP (see iteration 1
in Table . For the workstations which satisfy the equality 04]1-* = ozjl, the algorithm
defines the aJQ- values as ajl-* — ¢!, On the other hand, for the workstations which have
different a;* and o} values, o values are determined to be equal to their correspond-
ing ozjl»*s. In this iteration of the illustrative example (u = 1), the algorithm sets a?

and ag values to o* — ' and ag* — &', respectively. The rest of the a7 values are set
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to ozjl-* values.

1 .000 T T T T T T

0.998

T
1

T
1

0.996

0.992 .lllllllh...lll._

T
1

T
1

0.990

T
1

T
1

0.988

Confidence level

©
O
(ee]
~
T
1

0980 [ 1 1 1 1 1 1
j=1 j=2 =3 j=4 j=5 j=6

Workstation
Figure 4.2: Predefined ozjl» and realized ozjl-* values when cv = 0.3, R = 0.950, and

u=1

Algorithm finds an ! satisfying the condition ﬁ oF = R. In this iteration, £' is found
as 0.0043, and it can be seen from Table Jt_hlat ag* = 0.9942 and af* = 0.9971,
while o = 0.9899 and of = 0.9928, which come from o} = oj* — ¢’ for j = 5
and j = 6. Algorithm continues to make iterations with the same logic that it does

m

in iteration 1 until the condition || a?* > R + ¢ does not hold, or until the iteration

7j=1
limit is reached (v = [). In this illustrative example, the value of [ is chosen to

be 50 and the algorithm terminates at u = 11, since [] ajl-l* # 0.950 +0. Asa
j=1

final step, ct'! (74.06 seconds) is decreased without changing the task assignments,

while the assembly line reliability condition still holds, i.e., [] ajl-l* > 0.950. As a

Jj=1
result, keeping the final optimal task assignments, the final cycle time becomes 74.00

seconds, and the algorithm ensures that this solution still satisfies the assembly line

reliability condition.
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Table 4.4: Optimal cycle times, task assignments to workstations, and cut-off values

of the workloads of 30-task problem, when R = 0.950 and cv = 0.3

Number of tasks assigned Cut-off values of the workloads

Rep. # Ite.# ct(sc) j=1 j=2 j=3 j=4 j=5 j=6 j=1 j=2 j=3 j=4 j=5 ;=6

u=0 7451 7 5 4 4 4 6 7451 7421 7411 7446 7320 71.61
u=1 7447 5 4 5 6 4 6 7324 7425 7400 74.03 7446 7447
u=2 7429 4 6 3 7 4 6 7429 7426 7332 74.19 73.99 72.08
u=3 7425 5 7 3 5 4 6 7371 7397 7422 73.61 7425 74.23
u=4 7416 4 7 6 3 4 6 7407 74.16 7391 73.68 73.74 7321
wu=>5 7415 6 5 6 3 4 6 7399 7359 74.14 74.13 74.11 74.15

1 u=6 7415 6 5 6 3 4 6 7415 74.14 73.62 73.63 73.84 73.56
w=7 7411 7 4 3 6 4 6 7396 74.07 73.86 73.85 74.11 74.08
u=8 7410 7 4 3 6 4 6 7409 74.10 74.04 7407 73.84 73.48
w=9 7408 7 4 3 6 4 6 7400 7399 7382 73.88 74.06 74.08
w=10 7407 7 4 3 6 4 6 7403 7404 7404 7407 7393 73.68
u=11 7406 7 4 3 6 4 6 7398 7397 7392 7398 74.06 74.00

7400 7 4 3 6 4 6
wu=0 7510 5 7 4 5 3 6 7506 73.81 7424 7459 75.10 75.09
u=1 7493 6 5 4 6 3 6 7419 7332 7422 7492 7493 74.09
u=2 7481 6 5 4 6 3 6 7471 73.63 7481 7338 7439 74.47
w=3 7466 6 5 4 6 3 6 7427 74.60 7438 7438 74.66 73.53

2 u=4 7453 6 5 4 6 3 6 7439 7393 7447 7391 7453 74.47
u=5 7448 6 5 4 6 3 6 7438 73.62 7447 7438 7448 7446
u=06 7447 6 5 4 6 3 6 7439 73.63 7447 7437 7430 7447
u=7 7447 6 5 4 6 3 6 7438 73.62 7447 7438 7430 74.46

7441 6 5 4 6 3 6
wu=0 7566 6 5 5 4 6 4 7566 7479 7474 7495 75.07 73.60
wu=1 7434 6 6 4 5 3 6 7433 7433 7429 7434 7418 73.38
u=2 7434 6 6 4 5 3 6 7420 74.13 7428 7434 74.18 73.69

3 u=3 7432 6 6 4 5 3 6 7420 7432 7429 73.85 74.18 73.68
u=4 7431 7 5 5 4 3 6 7408 7431 7395 73.98 74.18 73.69
u=5 7418 7 5 5 4 3 6 7408 74.13 7395 73.98 74.18 73.68

7413 7 5 5 4 3 6
u=0 7466 6 5 4 6 3 6 7434 7443 7465 7431 74.66 72.09
u=1 7452 5 5 7 4 3 6 7335 74.12 73.66 7451 7452 74.47
wu=2 7426 4 6 4 6 4 6 7426 74.18 73.60 73.98 7320 73.37

4 u=3 7400 4 6 7 3 4 6 7389 7355 73.94 74.00 73.81 73.69
u=4 7400 4 6 4 6 4 6 7400 73.69 73.99 73.83 73.80 73.68
u=5 7400 4 6 4 6 4 6 7400 73.69 73.60 73.84 73.81 73.69
u=6 7381 4 6 7 3 4 6 7377 73.69 73.62 7359 73.81 73.68

7381 4 6 7 3 4 6
u=0 7469 6 4 6 5 3 6 7358 74.52 7451 7469 7382 71.97
wu=1 7447 8 4 4 4 4 6 7415 7444 7430 7423 72.89 7447
u=2 7445 8 4 4 4 4 6 7398 7430 74.11 7445 73.79 74.08

5 u=3 7444 8 4 4 4 4 6 7415 7444 7430 7438 7349 73.52
u=4 7430 8 4 4 4 4 6 7415 74.16 7430 7423 73.79 73.69
u=5 7423 8 4 4 4 4 6 7415 74.16 7398 7423 73.79 73.68

7422 8 4 4 4 4 6

N
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Finally, to show that the solution can be affected by the initialization of the values
0 . . . . 0 . .
of o;s, we made five replications by generating different «; values, assuming again

R = 0.950 while keeping all other parameters the same. In the first replication of
0
J
to all workstations. For the other replications, a confidence level set consisting of

each problem instance, a’s are set to R'/™ which gives equal confidence levels
random a? values is generated such that each oz? can take a value between R and
1. Until the product of the confidence levels (]] 042) is greater than or equal to the
j=1
predefined confidence level R, a new set of confidence levels is generated. If this
value is greater than R, the largest a? is gradually decreased until || Oz? = R holds
j=1

true.

Table [4.4] displays the optimal solutions of the resulting five replications where the
first replication corresponds to the solution depicted in Tables 4.2 and 4.3| and Fig-
ures and In this table, we provide the optimal cycle times, the number of
tasks assigned to each workstation, and the cut-off values of the workloads of the

workstations. The a? values used in these replications can be seen in Table

Table 4.5: Initial predefined confidence levels in replications for 30-task problem,

when R = 0.950 and cv = 0.3

Given a? values

1 0.9915 0.9915 0.9915 0.9915 0.9915 0.9915
2 0.9927 0.9932 0.9867 0.9994 0.9794 0.9977
3 0.9942 09752 0.9953 0.9935 0.9917 0.9993
4 0.9809 0.9939 0.9920 0.9935 0.9960 0.9928
5 0.9921 0.9886 0.9940 0.9870 0.9948 0.9925

The results show that even though the reliabilities of the assembly line are the same
in these five replications, initial predefined confidence levels may have a significant
impact on the optimal solutions, as well as the number of iterations, which changes
the solution time. For example, while the final optimal cycle time is found as 74.41

seconds in the second replication, it is found as 73.81 seconds in the fourth one.
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On the other hand, although the algorithm terminates at « = 11 with ct'! = 74.06
seconds in the first replication, it terminates at u = 6 with a better cycle time ct® =

73.81 seconds in the fourth replication.

4.2.2 Computational Results

We compared the performance of the proposed matheuristic with that of the Liu et
al’s BHA [[11]]. The method of Liu et al. has two procedures. In the first procedure;
namely, the bidirectional assignment procedure, from both sides of the assembly line,
the tasks are assigned to the workstations in such a way that the cut-off value of the

workload in each workstation does not exceed a pre-computed lower bound. All the

remaining tasks are assigned to the middle workstation, i.e., workstation j = [™5

Due to the bidirectional assignment procedure, the cut-off value of the workload for
the middle workstation can be larger than the predefined lower bound of the cycle
time. In contrast, for the rest of the workstations, the cut-off values of the workloads
are smaller. Therefore, the second procedure is applied to reduce the difference be-
tween cut-off values of the workloads of the workstations. The trade and transfer pro-
cedure initializes by using the assignments made in the first procedure and makes task
trades between the workstations or transfers a task from one workstation to another
if a decrease in difference between the cut-off values of the workloads is possible.
Then, an upper bound is set to be equal to the highest cut-off value of the workloads.
If the upper bound is greater than the lower bound, the lower bound is increased by
a certain amount, and the algorithm iterates starting from the first procedure until the
lower bound becomes greater than or equal to the upper bound. Finally, the cycle
time is reduced gradually until the minimum cycle time satisfying the assembly line

reliability condition is found.

In this computational study, the performance of the two algorithms is tested on 30-
task and 45-task problems, using five different coefficient of variation values (cv =
0.1,0.2,0.3,0.4,0.5) and four different predefined assembly line reliabilities (R =
0.900, 0.925,0.950, 0.975), which gives 40 (2 x 5 x 4) distinct problems. We further
use five replications of these problems by setting different initial predefined confi-

dence levels, in which Replication 1 stands for the ones initialized with equal pre-
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defined confidence levels, i.e. a? = Rw for every workstation j. In total, solutions
of 200 (40 x 5) instances are presented to evaluate the performance of the proposed

matheuristic algorithm.

Table 4.6: Comparative results of the BHA and proposed matheuristic on the 30-task

instances

Proposed algorithm

Ins. # R cv BHA Bestrep. Rep.1 Rep.2 Rep.3 Rep.4 Rep.5

0.900 0.1 61.89 59.94 60.29 60.13 60.24 59.94 60.68
0.900 0.2 66.05 65.81 6581 6597 66.05 66.10 66.58
0.900 0.3 71.60 7155 71.55 7220 7198 72.67 72.22
0900 04 77.64 7720 7728 78.01 77.20 78.30 78.36
0900 0.5 83.21 83.28 83.28 83.63 83.52 8492 84.10

[, T SO 'S R NS BN

0925 0.1 61.14 60.41 6045 60.66 60.65 60.60 60.41
0.925 0.2 66.68 6642 6642 66.76 6696 66.59 66.68
0925 03 7297 72790 72777 73.87 72770 72776 72.85
0925 04 78.98 78.63 78.63 79.61 7892 79.12 7891
10 0925 0.5 84.81 84.80 8480 8696 86.76 8544 85.02

O o0 3 O

11 0950 0.1 61.56 60.86 60.86 61.03 6092 61.16 60.86
12 0950 0.2 67.97 6729 6729 67.65 68.04 67.67 67.37
13 0950 0.3 73.89 73.81 7400 7441 7413 7381 74.22
14 0950 04 80.71 80.38 80.38 81.50 81.75 80.87 80.77
I5 0950 0.5 87.40 87.06 87.06 87.64 87.62 8738 87.14

16 0975 0.1 63.68 6153 61.80 61.54 61.80 61.78 61.53
17 0975 0.2 70.57 68.73 6874 69.07 6931 68.73 68.74
18 0975 0.3 76.20 75.87 75.87 76.81 7593 76.15 75.99
19 0975 04 83.17 83.06 83.06 83.84 8390 83.66 83.43
20 0975 0.5 90.39 90.46 9046 91.13 91.01 90.85 90.69

In Tables 4.6 and 4.7, we present the comparative results of the solutions of type-
IT SALBP-R, using the proposed matheuristic and the BHA. Each row in these ta-
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bles corresponds to an instance with some specific parameters. The first column
displays the instance number, and the parameter values are shown in the following
two columns. Column 4 displays the cycle time values found by the BHA, while col-
umn 5 represents the best cycle time value among five replications solved using the
proposed matheuristic. Cycle time values for five replications of an instance by the
proposed matheuristic are given in the last five columns. To ease the comparison, the
better cycle time value among the BHA and the proposed matheuristic is highlighted

for each instance.

Table [.6] shows the comparative results for the 30-task problem instances. For the
30-task problem instances, the cycle times are the minimum possible values of the
optimal cycle times found by the CP for type-II SALBP. Only for instance 5, where
R = 0.90 and cv = 0.5, and instance 20, where R = 0.90 and cv = 0.5 the BHA
found a better cycle time value than that of the proposed matheuristic. For other
instances, the cycle time values of the proposed matheuristic were better than those

of the BHA.
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Table 4.7: Comparative results of the BHA and proposed matheuristic on the 45-task

instances

Proposed algorithm

Ins. # R cv BHA Bestrep. Rep.1 Rep.2 Rep.3 Rep.4 Rep.5

1 0900 0.1 69.11 69.05 69.16 69.15 69.20 69.18 69.05
2 0900 0.2 76.96 76.63 7690 76.70 76.63 76.85 76.88
3 0900 03 84.74 8442 85.69 8553 8456 84.42 84.45
4 0900 04 9292 9238 93.15 9342 93.09 92779 92.38
5 0.900 0.5 100.59 100.55 101.13 101.82 100.87 100.73 100.55
6 0925 0.1 69.93 69.51 69.56 69.61 6951 6952 69.53
7 0925 02 77.60 7744 7749 78.06 7749 7757 T77.44
& 0925 03 85.79 85.79 86.00 87.06 87.02 85.79 85.98
9 0925 04 9449 9428 9457 9570 9549 9538 94.28

10 0.925 0.5 102.89 102.83 103.07 104.19 108.04 102.83 103.02

11 0950 0.1 70.33 69.94 70.00 70.07 6994 70.08 70.20
12 0950 0.2 78.64 78.50 79.38 7850 7936 7858 78.54
13 0950 0.3 87.77 87.53 8790 88.76 88.80 87.74 87.53
14 0950 04 96.89 96.70 96.87 97.55 9744 9691 96.70
15 0950 0.5 106.11 106.17 10640 106.47 106.63 106.47 106.17

16 0975 0.1 70.84 70.72  70.75 70.73  70.72  70.78  70.84
17 0975 0.2 80.66 80.34 81.81 80.34 83.06 80.44 80.36
18 0975 0.3 90.79 90.52 90.52 91.85 91.85 90.55 90.52
19 0975 04 101.22 101.21 102.82 101.74 101.60 101.50 101.21
20 0975 0.5 111.96 111.92 112.05 112.40 11452 111.92 112.19

Table shows the comparative results for the 45-task problem instances. For the
45-task problem instances, the cycle times are the minimum possible values of the
best cycle times found by CP for type-II SALBP within the given one hour time limit.
Only for instance 15, where R = 0.950 and cv = 0.5, the BHA found a better cycle
time value than that of the proposed matheuristic. For instance 8, where R = 0.925

and cv = 0.3, both algorithms end up with the same cycle time value. For other
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instances, the cycle time values of the proposed matheuristic were better than those

of the BHA.

Table 4.8: CPU time results of the replications on 30-task problem instances

CPU time (sc)

R cv Rep.1 Rep.2 Rep.3 Rep.4 Rep.5

0.900 0.1 370 759 284 841 220
0.900 0.2 652 274 248 450 400
0.900 0.3 212 403 347 256 332
0.900 0.4 293 247 200 134 142
0.900 0.5 357 114 182 246 107

0.925 0.1 624 268 361 423 275
0925 0.2 469 365 528 461 385
0925 03 364 131 281 221 204
0925 04 501 361 481 116 183
0925 05 415 82 220 133 306

0.950 0.1 1802 756 1693 170 375
0.950 0.2 373 454 247 319 378
0.950 0.3 383 286 175 271 228
0.950 0.4 236 61 38 209 400
0.950 0.5 192 147 335 162 174

0975 0.1 166 2233 329 128 1800
0975 0.2 2301 2145 114 265 283
0.975 0.3 122 46 349 144 94
0975 04 92 819 33 53 98
0975 05 84 50 90 129 123

Tables [4.8] and 4.9 show the CPU time results of replications using the proposed
matheuristic algorithm on 30-task and 45-task problem instances, respectively. De-
pending on the problem size and the number of iterations to terminate, CPU times

are changing. Due to the different configurations of computers used in the study of
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Liu et al. and this thesis, direct CPU time comparison is not possible. For CPU time
results of BHA, one can refer to the related research, i.e., see [[L1]. Since a mathemat-
ical formulation (CP for type-II SALBP) is solved in every iteration of the proposed
matheuristic algorithm for type-II SALBP-R, the BHA proposed by Liu et al. finds

solutions much faster than our proposed solution approach.

Table 4.9: CPU time results of the replications on 45-task problem instances

CPU time (sc)

R cv Rep.1 Rep.2 Rep.3 Rep.4 Rep.5

0.900 0.1 144006 144005 144004 144004 144006
0900 0.2 133240 110488 85043 112908 147604
0.900 0.3 40357 65232 51971 76599 88325
0900 0.4 54976 69371 122872 79583 73129
0900 0.5 84722 33140 54420 87543 90901

0.925 0.1 144005 180005 180007 144004 144005
0.925 0.2 84279 176416 124012 95343 96434
0925 0.3 63041 33280 25734 90871 71012
0.925 04 7241 45055 59338 68421 26647
0925 0.5 79893 22191 3714 84001 40068

0.950 0.1 144005 180007 180006 180006 144005
0950 0.2 39639 106869 176416 100192 103404
0950 0.3 57738 32637 2923 41270 25663
0950 04 61430 25474 18435 69022 29354
0950 0.5 43484 29260 11813 14845 29326

0975 0.1 144004 177534 180006 183608 147605
0975 0.2 36008 43326 460 18097 29458
0975 0.3 3680 457 527 8185 7239
0975 04 5 531 549 21687 3640
0975 0.5 3646 36 236 7267 53
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The results shown in Tables#.6|and .7 show that the proposed matheuristic algorithm
may be used as an alternative solution approach for type-1I SALBP-R. Note that the
results provided for the BHA are taken from the literature. One may replicate this

algorithm as well to have a more fair comparison.
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CHAPTER 5

CONCLUSION

As the first problem of this thesis, type-1I robotic stochastic assembly line balancing
problem (type-II RSALBP) is defined and examined for the first time. In this problem,
given the numbers of robots and human workers, and tasks are to be assigned to a
given number of workstations. The task times are assumed to be independent and
normally distributed random variables whose parameters depend on the type of the
operator performing the task. Robots have much less (possibly zero) variability in
task processing times than human workers. It is assumed that human workers are
capable of performing all the tasks while robots are able to perform a subset of the
tasks. The objective is to minimize the cycle time in such a way that the workload of
each workstation is less than or equal to the cycle time with a probability greater than

or equal to the given confidence level a.

The type-II RSALBP is NP-hard and includes non-linearity. MISOCP and CP for-
mulations are developed to solve the problem to optimality. Some problem instances
from the literature are enriched by considering different values for different parame-
ters in a comprehensive experimental design. The proposed formulations are tested
on the generated instances and the effects of different problem parameters on the opti-
mal cycle times are investigated. Several managerial insights are provided as a result
of our computational experiments in terms of when the usage of robots would be ben-
eficial or when it would be better to include a second robot on top of the first one. It
was shown that the robots may be beneficial even when they are slower than human

workers on average.

Both proposed formulations deliver excellent performance in solving small and mod-

erate size problems in an hour. For the 45-task problems, the average relative and %
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calculated gap values are less than 5% when the time limit is 1 hour. The computa-
tional experiments showed that for 25-task and 30-task problems, the performance of
the MISOCP formulation is better; while the CP formulation outperforms the MIS-

OCP formulation for larger size instances.

As the second problem of this thesis, type-II stochastic assembly line balancing prob-
lem with a reliability restriction (type-II SALBP-R) is studied. Given the number of
workstations and a lower bound on the assembly line reliability, the aim is to find the
minimum cycle time where the probability of not exceeding the cycle time by any
workload in the whole assembly line is greater than or equal to the predefined lower
bound. In this problem, all the operators are identical and the task times are assumed

to be independent and normally distributed random variables.

As a solution approach for type-1I SALBP-R, a matheuristic algorithm is proposed for
the first time. In every iteration of this algorithm, a CP formulation for type-1I SALBP
is solved with fixed confidence levels for the workloads of each workstation satisfying
the assembly line reliability condition. The algorithm iterates by manipulating these
confidence levels while the updated confidence levels maintain the solution of the
previous iteration. This way, the objective function values obtained from the CP

formulation in each iteration are guaranteed to follow a descending trend.

The performance of the proposed matheuristic algorithm is evaluated by compar-
ing the results on some instances for type-II SALBP-R with Liu et al.’s BHA. The
computational experiments showed that the proposed matheuristic algorithm can be

considered as an alternative method to solve type-II SALBP-R.

This thesis is the first to consider stochastic task times in the context of assembly
line balancing with human-robot collaboration and proposes the first matheuristic for
type-II SALBP-R. The thesis can be a good reference point when making decisions,
with the need for changes brought about by the Industry 4.0 paradigm, during the
transition from traditional manual assembly lines to those with human-robot collab-
oration, and developing effective solution approaches to solve type-II RSALBPs as
well as type-II SALBP-Rs. In the future, extensions of type-II RSALBP and type-II
SALBP-R can be studied in the context of other assembly line balancing problems

such as mixed-model or U-shaped ALBPs. Different objective functions such as min-
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imizing the number of workstations, carbon footprint, or cost can be considered in
future works. Heuristic solution approaches can be developed to solve larger size
problems. Moreover, a multi-objective version can be considered by integrating a

cost component into RSALBP and/or SALBP-R.
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Appendix A

DETERMINISTIC TASK TIMES AND IMMEDIATE PREDECESSORS OF
THE TASKS FOR THE 30-TASK, 35-TASK, AND 45-TASK PROBLEM
INSTANCES

Table A.1: Deterministic task times and immediate predecessors of the tasks for the

30-task problem

Task j2 P(i) Task pue  P(i)
1 8 - 16 10 3
2 7 - 17 2 3
3 19 - 18 10 17
4 10 1 19 18 18
5 2 1 20 16 14,16
6 6 5 21 21 20
7 14 4,6 22 14 15,21
8§ 10 7 23 16 22
9 1 8 24 7 10,20
10 4 - 25 17 24
11 14 2 260 9 9,25
12 15 2 27 25 23,26
13 5 12 28 7 27
14 12 13 29 14 27
15 9 14 30 2 29
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Table A.2: Deterministic task times and immediate predecessors of the tasks for the

35-task problem

Task p2  P(i) Task g P(37)
1 29 - 19 19 18
2 3 1 20 29 17,19
3 5 2 21 6 16,20
4 22 3 22 10 21
5 6 1 23 16 22
6 14 5 24 23 23
7 2 1,6 25 5 21
8 5 6 26 5 25
9 22 8 27 5 24,26
10 30 1 28 40 11,13,27
11 23 4 29 2 28
12 30 1 30 5 21
13 23 9 31 5 30
14 2 17,10 32 1 21,31
15 19 14 33 40 11,13,27,32
16 29 15 34 2 27
17 2 - 35 2 33
18 2 7,12
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Table A.3: Deterministic task times and immediate predecessors of the tasks for the

45-task problem

Task p2  P(i) Task jpuo P(i)
1 9 - 24 29 15
2 9 - 25 26 14
3 10 1 26 6 17,25
4 10 2 27 5 17
5 17 3 28 24 22,27
6 17 4 29 4 14
7 13 1 30 5 14
8 13 2 31 7 14
9 20 5,7 32 4 14
10 20 6,8 33 15 20,23,24,27
11 10 - 34 7 26,28, 36,38
12 11 - 35 7 33
13 6 11,12 36 9 33
14 22 7,8,13 37 4 12
15 11 13 38 3 33
16 19 15 39 5 -
17 12 14 40 4 34
18 4 20 41 21 10,29, 30, 31, 32, 39, 40
19 3 15 42 12 41
20 7 16,19 43 6 37
21 55 18 4 5 42
22 14 21 45 5 42
23 27 15
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Appendix B

RANDOMLY GENERATED CAPABILITIES OF THE ROBOT(S) FOR THE
PROBLEM INSTANCES FOR TYPE-II RSALBP

Table B.1: Randomly generated capabilities of the robot(s) to perform each task for

the 25-task problem instances for replications 1 to 5

Randomly generated capabilities of the robot(s) to perform each task

Rep.# Cap. i=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

40% o11ro01r1r100 0 0 o0 01 0 1 0 1 0 0 0 1 0 0 1

1 60% t11r1ro01r1r110 1 0 001 01 01 o0 0 o0 1 1 1 1
80% t11r1r1r1r1r110 1 0 1 01 0 1 1 1 1 O 1 1 1 1 1
100% t11r1r1r1r1r111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% oro0o011ro01r1 01 0 o0 o0 0 1 1 0 0 0 O 0 1 0 1

2 60% o1ro0o0171r1r1r1 o0 11 o0 1 0 1 1 0 0 1 1 0 1 0 1
80% t11r0601r1r1r111 o0 1 1 1 1 1 1 1 1 0O 1 1 0 1 0 1
100% t11tr1r1r1r1r111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% oo01r1tr1ro0o011 o0 1 1 0 0 OO0 1 0 OO0 O 1 0 0 1

3 60% 01 1 11 o1 1 0 1 1 o 1 1 1 0 0 0 1 1 1 1
80% 011111011 o0 1 1 1 1 1 1 1 0 O 1 1 1 1 1 1
100% 111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% 010 0 0 0 0o 0 1 1 1 1.1 0 1 1 0 O 11

4 60% 011 0 0 1 11 1 1 1 1.1 0 1 1 1 0 1 1
80% o111ro00111 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1
100% (111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% oo0oo01t1r1ro0o00 o0 1 1 0 01 1 0O 1T 0 0 0O 1 1 O

5 60% 1P o0011r1ro000 o0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 O
80% t1 01111111 o0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 O
100% t11r1r1r1r1r111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table B.2: Randomly generated capabilities of the robot(s) to perform each task for

the 25-task problem instances for replications 6 to 10

Randomly generated capabilities of the robot(s) to perform each task

Rep.# Cap. =1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
40% oo0oo01roooo0o11 o0 o001 1 o0 1 1 1 1 0 0O 1 0 1 O

6 60% oo0o0111ro01r1 o0 1 o0 1 1 0 1 1 1 1 1 0 1 0 1 0
80% ! o01r1111r1r1 o0 1 o0 1 1 1 1 1 1 1 1 1 1 0 1 0
100% 111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% 000110110 0 0 1 1 0 1 o o0 o0 1 1 0 1 0 O

7 60% 110110110 O 1 1 0 1 1 0o 0 1 1 0 1 1 1
80% 111111110 01 1 1 o0 1 1 1 O 1 1 1 O 1 1 1
100% ()1 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% oo0o1ro0o01ro0o00 o0 o0 o0 01 0 o0 o0 1 1 1 1 1 1 1 0

8  60% o1r1ro001ro0o00 1 0 1 1 1 o0 1 o0 1 1 1 1 1 1 1 O
80% 0111011001 o0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100% 111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% t111ro001ro001 1 0 000 O0 0 OO O T1T O 1 1 0 1

9  60% 111111001 1 1 0 1 0 OO OO T1T 1 0 1 1 0 1
80% t111r1r1r1ro011 1 1 o0 1 0 1 1 0O 1 1 1 O 1 1 1 1
100% 111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40% oo0oo011ro0o0o0o0o01 01 0 01 1 0 0O O 1 1 1 1 0 O

10 60% 001110011 1 0 1 0 1 1 1.0 o0 O 1 1 1 1 1 O
80% ! 1r1r1r11ro01r1 1 o0 1 0 1 1 1 1 0 O 1 1 1 1 1 1
100% ! 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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tances for replications 1 to 5

ns

Randomly generated capabilities of the robot(s) to perform each task for the 35-task problem

Table B.5

Randomly generated capabilities of the robot(s) to perform each task

32 33 34 35

22 23 24 25 26 27 28 29 30 31

19 20 21

11 12 13 14 15 16 17 18

10

2 3456 7 8 9

Rep. # Cap.

1
1
1

1 0 00
0 0 0
0 0 0

1
1
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1
1
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60%

1

1

80%
100%

1 00010
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1
1

0

40%

1
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100%
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Appendix C

DETAILED SOLUTIONS OF SELECTED PROBLEM INSTANCES FOR
TYPE-II RSALBP

Table C.1: Optimal cycle times, cut-off values of the workloads, and robot assign-
ments to workstations of 25-task problem, when capability= 80%, r = 1, cv = 0.2,

a = 0.90, cor =0, and cmr = 0.6

Cut-off values of the workloads (sc) Nb. of assigned tasks Robots assigned

++

ct(sc) j=1 2 3 4 5 6 1 2 3 45 6 1 2 3 45 6

29.40 2825 28.78 27.89 26.52 28.85 29.40
29.62 2942 26.52 2940 29.62 29.50 26.52
29.62 27.89 28.78 28.80 29.62 29.50 26.52
29.62 2825 29.62 28.80 29.62 29.50 26.52
29.50 27.89 29.18 28.78 2820 29.50 26.52
29.50 29.42 2730 2825 2880 29.50 26.52
29.50 27.89 28.78 29.18 28.20 29.50 26.52
29.40 28.25 2831 2940 26.52 28.85 29.40
29.62 2940 27.70 27.77 29.62 29.50 26.52
29.62 2940 29.01 26.52 29.62 29.50 26.52
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Table C.2: Optimal cycle times, cut-off values of the workloads, and robot assign-
ments to workstations of 25-task problem, when capability= 80%, r = 1, cv = 0.4,

a=0.95 cor=0,and cmr = 1.2

Cut-off values of the workloads (sc) Nb. of assigned tasks Robots assigned
# ct(sc) j=1 2 3 4 5 6 1 2345 6 1 2 3 4 5 6
1 3887 3648 3837 3780 3840 3686 3887 5 6 4 4 2 4 - - - R - -
2 3887 38.69 3624 37.67 3840 3591 3887 4 4 7 3 3 4 - - - R - -
3 3887 38.69 38.11 3585 3840 3591 3887 4 6 5 3 3 4 - - - R - -
4 4170 4038 41.70 40.80 36.86 3497 3205 5 7 4 2 4 3 - - R - - -
5 3887 3775 37.09 37.80 3840 3591 3887 5 6 4 3 3 4 - - - R - -
6 3887 3775 37.09 3780 3840 3591 3887 5 6 4 3 3 4 - - - R - -
7 38.87 37775 37.09 37.80 37.79 3600 3887 5 6 4 3 3 4 - - - - R -
8 38.87 38.69 38.09 3584 3840 368 3887 4 5 6 4 2 4 - - - R - -
9 4198 4149 4080 4198 4040 2487 3887 5 5 6 4 1 4 - R - - - -
10 38.87 38.69 38.09 3584 3840 3591 3887 4 5 6 3 3 4 - - - R - -

Table C.3: Optimal cycle times, cut-off values of the workloads, and robot assign-
ments to workstations of 30-task problem, when capability= 60%, r = 1, cv = 0.4,

a = 0.95, cor = 0.5, and cmr = 0.8

Cut-off values of the workloads (sc) Nb. of assigned tasks Robots assigned
#  ct(sc) j=1 2 3 4 5 6 1 23 45 6 1 2 3 4 56
1 68.09 68.09 68.04 67.53 67.83 6799 6745 7 5 4 5 5 4 - - - R - -
2 6845 6845 6830 67.62 6836 6799 6745 5 7 4 5 5 4 - R - - - -
3 6854 6845 6790 6854 6837 6799 6745 5 8 4 4 5 4 - R - - - -
4 6835 6830 6825 66.78 6835 67.76 6807 6 6 5 5 3 5 - - R - - -
5 68.07 6776 6723 68.03 67.63 67.76 6807 7 4 5 6 3 5 - - R - - -
6 6820 6755 6820 6820 6748 6753 6745 6 5 5 5 5 4 - - - R - -
7 6845 6845 6825 6834 68.07 6657 6745 5 6 6 4 5 4 - - R - - -
8 6821 67.76 6723 6821 6799 6694 6807 7 4 5 5 4 5 - - - - R -
9 6852 6852 6763 6752 6836 6799 6745 6 4 6 5 5 4 - - R - - -
10 6845 6845 6825 6834 68.07 6657 6745 5 6 6 4 5 4 - - R - - -
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Appendix D

DETAILED CPU TIME RESULTS OF PROPOSED FORMULATIONS ON
ALL PROBLEM INSTANCES FOR TYPE-II RSALBP
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Table D.1: Average CPU time results of 10 replications for MISOCP formulation on

25-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 090 6.0 53 54 5.0 3.6 4.8 3.0 35
2 00 06 02 095 5.8 59 53 5.2 43 4.9 3.4 4.0
3 00 06 04 090 5.8 53 5.1 5.1 4.3 4.9 4.0 4.8
4 00 06 04 095 6.3 5.8 5.1 5.1 5.1 4.5 4.5 7.0
5 00 08 02 09 5.7 5.6 5.1 4.9 4.1 54 3.1 4.5
6 00 08 02 095 7.2 6.1 54 53 5.0 54 4.0 3.7
7 00 08 04 090 6.0 59 54 52 52 5.6 33 4.7
8 00 08 04 095 5.7 55 5.4 5.2 55 5.7 3.1 5.1
9 00 1.0 0.2 0.90 6.7 5.5 55 5.0 7.6 5.7 3.9 4.0
10 00 1.0 02 095 54 8.5 55 52 7.2 6.2 53 6.9
11 00 10 04 090 59 59 6.0 53 7.8 5.8 5.5 7.6
12 00 1.0 04 095 59 6.3 6.1 5.7 8.5 6.2 4.6 1.2
13 00 12 02 090 6.7 6.8 72 6.8 7.6 73 9.2 9.5
14 00 12 02 095 6.9 6.3 73 7.1 1.7 7.8 10.7 10.0
15 00 12 04 090 6.9 7.5 7.6 7.8 8.5 9.1 8.7 15.9
16 00 12 04 095 7.0 7.9 7.6 7.7 8.9 93 114 18.7
17 05 06 02 090 5.8 7.1 59 6.8 5.5 9.6 4.7 13.0
18 05 06 02 095 59 6.6 5.7 7.1 6.0 8.8 3.8 16.7
19 05 06 04 090 6.0 6.7 6.2 6.6 6.2 9.3 4.7 13.0
20 05 06 04 095 6.3 7.1 59 6.6 6.2 7.9 4.3 13.1
21 05 08 02 090 6.1 1.2 5.9 7.1 6.4 94 2.8 12.2
22 05 08 02 095 6.2 7.2 5.8 6.9 6.5 9.1 3.7 14.9
23 05 08 04 090 6.6 7.0 6.5 73 7.0 10.4 3.9 15.7
24 05 08 04 095 6.8 94 6.7 7.6 7.5 10.2 6.5 17.2
25 05 1.0 02 090 8.1 8.6 8.3 8.6 8.7 109 132 15.5
26 05 1.0 02 095 8.3 8.2 8.5 9.2 8.7 11.0 122 15.9
27 05 1.0 04 090 74 8.4 8.4 9.4 9.6 11.3 110 17.6

28 05 1.0 04 095 8.8 9.2 8.7 94 103 123 14.8 23.7

29 05 12 02 090 6.4 6.7 6.7 6.7 1.7 79 125 12.3
30 05 12 02 095 7.0 6.7 72 6.3 8.3 8.0 9.5 13.8
31 05 12 04 090 6.9 7.1 7.4 7.4 8.9 96 109 21.1
32 05 12 04 095 7.4 73 7.1 7.6 8.9 12.6 144 13.5
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Table D.2: Average CPU time results of 10 replications for CP formulation on 25-task

problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 09 155 142 138 162 143 154 138 332
2 00 06 02 09 151 149 138 17.8  14.2 13.1 165 20.8
3 00 06 04 09 158 16.9 149 154 153 13.8 193 19.2
4 00 06 04 095 16.1 156 144 169 153 135 222 22.6
5 00 08 02 09 141 14.6  13.0 133 17.1 15.1  20.6 23.6
6 00 08 02 095 146 144 12.8 142 144 157 184 40.5
7 00 08 04 090 155 16.0 15.1 16.0 153 16.5 273 41.5
8 00 08 04 09 149 152 146 162 15.6 139 173 46.7

9 00 10 02 09 137 149 132 125 143 170 162 57.8
10 00 1.0 02 095 156 152 132 139 144 172 16.6 45.5
11 00 10 04 09 16.6 163 142 145 15.6 159 19.1 38.4
12 00 10 04 095 15.0 154 15.0 152 170 15.6 208 421

13 00 12 02 090 139 174  13.6 132 1511 159 176 38.6
14 00 12 02 095 15.0 149 134 133 158 162 19.2 523
15 00 12 04 090 155 15.0 140 142 16.1 16.7 142 38.6
16 00 12 04 095 146 154 135 134 133 157 155 37.8

17 05 06 02 09 154 15.7 149 16.0 17.6 175 228 44.6

18 05 06 02 095 163 15.8 158 19.2 169 175 16.1 39.1
19 05 06 04 090 160 174 162 189 18.0 15.7 17.6 334
20 05 06 04 095 16.1 16.7 158 189 178 146 173 38.9

21 05 08 02 09 149 158 154 148 184 19.7 197 54.1
22 05 08 02 095 163 15.7 149 16.3  18.1 186 289 50.6
23 05 08 04 09 175 174  16.0 16.1 183 181 17.6 31.2
24 05 08 04 095 159 169 149 147 176 176  18.6 454

25 05 1.0 02 090 154 16.1 13.6 144 16.2 17.6  16.0 45.2
26 05 10 02 095 155 17.6  15.1 16.7 184 18.8 195 37.1
27 05 1.0 04 090 165 16.8 16.1 153 17.1 19.8  16.7 36.0
28 05 1.0 04 095 147 16.8 14.8 149 150 19.3 186 39.5

29 05 12 02 090 145 154 14.1 15.0 159 19.0 177 46.9
30 05 12 02 095 156 173 145 152 18.0 186 238 32.6
31 05 12 04 090 165 159 165 164 194 213 259 55.0
32 05 12 04 095 152 17.8  16.2 16.1  20.1 211 226 68.7
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Table D.3: Average CPU time results of 10 replications for MISOCP formulation on

30-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 09 10.7 86 124 85 282 28.7  58.7 135.2
2 00 06 02 095 122 10.1 125 82 333 215 836 143.6
3 00 06 04 09 120 10.0 110 80 292 181  76.7 198.2
4 00 06 04 095 118 11.0 114 9.1 351 174 832 230.8
5 00 08 02 09 149 10.1 198 87 463 29.7 1242 124.3
6 00 08 02 095 137 106 194 93 572 27.6 1854 161.2
7 00 08 04 090 124 10.7 198 10.1 499 28.6 114.8 207.1
8 00 08 04 095 121 10.8 154 9.6 403 39.6  79.0 248.7

9 00 1.0 02 09 208 134 338 137 742 65.1 972 316.6
10 00 1.0 02 095 220 129 308 124  68.8 663 743 288.0
11 00 1.0 04 090 235 17.5  39.0 140 814 449 109.5 141.4
12 00 1.0 04 095 253 13.9 445 16.0 101.1 47.6 190.7 227.2

13 00 12 02 090 225 14.1 293 242 593 48.8 109.5 161.6
14 00 12 02 095 231 162 354 219 716 61.1 105.3 145.4
15 00 12 04 09 27.0 16.5 424 240 814 972 136.5 208.2
16 00 12 04 095 325 206 465 239 116.2 99.2 3470 326.3

17 05 06 02 09 105 121 120 123 733 377 858 3427
18 05 06 02 095 121 132 1438 137 494 444 94.1 404.5
19 05 06 04 090 11.1 126 164 13.9 43.1 49.0 103.1 560.2
20 05 06 04 095 127 153 16.2 129  42.0 52.1 1835 476.8

21 05 08 02 090 145 142 294 152 557 624 159.1 361.3
22 05 08 02 095 174 13.9  30.1 152 62.7 73.7 266.5 226.1
23 05 08 04 090 18.6 145 36.2 142  86.8 577 184.1 332.7
24 05 08 04 095 222 154 342 16.2 103.0 74.0 285.7 461.7

25 05 1.0 02 090 256 184 477 235 835 94.1 3839 307.9
26 05 10 02 095 257 189 479 249 1043 83.1 258.2 447.6
27 05 10 04 09 312 212 458 259 1239 149.7 3225 1216.1
28 05 1.0 04 095 327 19.5 536 24.6 1447 155.2 230.2 526.8

29 05 12 02 09 18.6 16.8 275 274 820 78.9  98.6 564.8
30 05 12 02 095 203 17.8 359 255 897 125.5 183.6 255.3
31 05 12 04 090 27.0 202 458 294 9338 98.2 2255 336.5
32 05 12 04 095 332 21,6 512 30.6 121.0 1179 210.2 608.5



Table D.4: Average CPU time results of 10 replications for CP formulation on 30-task

problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 090 202 145 269 172 739 112.7 2849 22274
2 00 06 02 09 225 16.3 262 16.5 74.6 91.1 3557 2095.8
3 00 06 04 090 202 149 226 151  59.6 74.6 2777 1381.4
4 00 06 04 095 19.1 148 218 149 59.6 464 2725 15258
5 00 08 02 090 312 17.5 595 219 1854 149.1 807.3 1556.3
6 00 08 02 095 317 209 626 19.5 203.2 142.6  948.8 1776.3
7 00 08 04 090 23.0 156 277 16.5 945 96.6 281.6 11749
&8 00 08 04 095 202 170 240 16.3  80.5 107.0  259.0 1682.2

9 00 1.0 02 090 38.6 20.0 843 343 256.1 311.0 9672 3039.6
10 00 1.0 02 095 395 209 803 32.0 230.1 277.6 9183 26019
11 00 10 04 09 352 19.5  66.0 332 200.8 1243 799.3  957.5
12 00 10 04 095 307 18.8  63.1 17.1  209.7 146.4  752.6  1080.5

13 00 12 02 090 37.7 220 895 49.1 2299 3063 7282 17858
14 00 12 02 095 412 23.6  96.6 433 2534 320.0 867.4 2448.7
15 00 12 04 090 43.0 222 864 409 2223 2552 765.1 1856.1
16 00 12 04 095 392 189 826 356 2505 2409 816.8 2120.5

17 05 06 02 090 235 17.7 299 189  86.1 129.7 3369 2635.5
18 05 06 02 095 251 18.7  29.0 184 895 1325 3940 2968.0
19 05 06 04 090 226 16.3 299 182 79.8 1240 325.1 30199
20 05 06 04 095 204 164 26.6 177 80.8 108.7 320.2 2528.3

21 05 08 02 09 403 18.8 717 28.6 2300 2789 9544 1839.8
22 05 08 02 095 339 19.2  70.6 229 2340 194.6 1039.5 2000.8
23 05 08 04 090 345 19.8 704 19.1 215.8 173.1 1037.8 17599
24 05 08 04 095 358 204 735 19.2 2125 1474 11260 1574.4

25 05 1.0 02 090 422 21.3 937 452 250.7  303.7 8999 28419
26 05 10 02 095 399 2277  88.7 44.6 2549 2864 986.8 2853.6
27 05 1.0 04 090 425 205 875 45.0 2575 3165 9832 2767.7
28 05 1.0 04 095 402 226 916 315 2644 3044 7434 29252

29 05 12 02 09 38.6 234 978 572 2404 4392 779.6 33443
30 05 12 02 095 405 235 104.0 49.2 257.1 369.7 857.8 2360.9
31 05 12 04 090 46.1 245  99.6 61.3 273.8 3514 9940 2344.0
32 05 12 04 095 474 222 1042 46.7 283.0 3504 9775 25723
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Table D.5: Average CPU time results of 10 replications for MISOCP formulation on

35-task problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

I 00 06 02 090 722 67.7 101.6 68.0 3146 1672 3404 7959

2 00 06 02 095 1185 89.3 1409 745 306.6 181.4 1581.7 227.2
3 00 06 04 090 1290 1123 1328 69.9 537.0 123.0 2912  486.6
4 00 06 04 095 139.1 139.0 100.4 66.5 2609 1343 418.7 3477
5 00 08 02 09 209.7 97.0 238.0 116.4 4351 343.0 316.6 1801.3
6 00 08 02 095 1399 113.6  202.6 147.7 3055 363.6 3053 893.7
7 00 08 04 090 138.0 125.7 195.5 144.1  372.6  305.7 1376.7 1060.9
8§ 00 08 04 095 186.0 123.1 2332 1269 3979 244.1 715.1 225.4

9 00 10 02 09 2245 181.3 3283 4249 6203 12169 11333 3460.7
10 00 1.0 02 095 3569 140.5 569.2  317.7 1162.8 930.2 1153.1 3600.1
11 00 1.0 04 090 3228 166.5 6023  566.7 637.8 9349 12884 2220.2
12 00 1.0 04 095 317.1 227.6 3802 3220 6552 1036.7 689.5 2357.6

13 00 12 02 090 168.8 1947 275.6  268.6 356.1 6424 9150 2018.9
14 00 12 02 095 2672 163.8 399.3 4654 5812 14535 3259.6 2019.0
15 00 12 04 090 396.1 283.9 5203 5050 844.1 12542 2893.8 3600.1
16 00 12 04 095 5006 3378 512.6 570.5 1028.1 1543.0 979.6 3600.1

17 05 0.6 02 090 1232 139.4 134.1 1583 511.8 447.8 4343 858.3
18 05 0.6 02 095 146.6 118.6 2413 2092 296.7 4089 15433 3600.1
19 05 06 04 09 2019 1422 2259 1647 7735 358.1 1267.3 9122
20 05 06 04 095 1448 2340 2383 2161 4929 393.0 5685 1843.0

21 05 08 02 090 1320 117.1 286.6 229.8 671.7 663.9 911.7 3311.1
22 05 08 02 095 1519 153.5 293.1 223.8 8732 722.0 1536.1 3600.1
23 05 08 04 090 5233 2302 302.8 3319 7364 13458 9272 3600.1
24 05 08 04 095 2137 1655 5456 3668 7113 1050.0 861.3 2274.1

25 05 1.0 02 090 2093 3225 6928 4144 586.8 917.7 884.0 1343.1
26 05 1.0 02 095 280.0 1832 560.1 3629 6594 9953 10149 3600.1
27 05 1.0 04 090 333.1 2629 5260 5815 8414 17904 3600.2 3600.1
28 05 1.0 04 095 2138 2887 531.7 920.1 11258 1474.0 8849 3600.1

29 05 12 02 09 3319 383.6 397.2 365.0 5839 1009.1 419.1 1453.6
30 05 12 02 095 20696 341.6 4638 7226 6682 1025.6 10723 1700.2
31 05 12 04 090 397.0 358.8 4924  703.1 1001.9 1373.6 3600.2 3600.1
32 05 12 04 095 551.7 2984 8246 580.1 1191.1 2364.1 1435.6 3600.1
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Table D.6: Average CPU time results of 10 replications for CP formulation on 35-task

problem instances

40% Capability 60% Capability 80% Capability 100% Capability

Ins.# cor cmr cv a r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2
1 00 06 02 090 496 53.8 748 455 2354 249.5 15552 1652.5
2 00 06 02 095 488 464 753 452 212.5 167.2 925.2 562.8
3 00 06 04 090 4506 467 773 384 199.6 117.7 4744 322.5
4 00 06 04 095 466 48.3  50.7 35.7 129.0 75.5 505.6 358.6
5 00 08 02 09 984 72.1 2333 127.5 648.6 599.5 2096.7 3600.1
6 00 08 02 095 9438 63.6 1904 106.5 363.0 516.7 552.1 3600.1
7 00 08 04 090 69.2 59.8 119.6 71.7 307.1 283.5 1007.2 3549.8
8 00 08 04 095 639 59.8 109.6 56.1 272.7 152.2 1166.8 518.6
9 00 1.0 02 090 87.1 79.1 208.5 298.1 546.0 1318.1 1366.4 3600.1
10 0.0 10 02 095 925 78.9 215.1 236.4 528.1 951.1 1969.4 3600.1
1 00 10 04 090 782 66.2 180.6 168.2 431.2 779.2 1051.2 3600.2
12 00 1.0 04 095 80.6 66.7 1729 151.0 421.6 703.0 1512.8 3600.2
13 0.0 12 02 090 106.3 95.3 2232 311.3 5564 11725 2019.0 3600.2
14 00 12 02 095 964 932 2272 300.0 521.1 1033.3 1411.6 3600.2
15 00 12 04 090 1147 86.6 266.7 2852 7234 687.6 1722.8 3111.8
16 00 12 04 095 8838 76.7 1729 2453 4225 813.0 999.9 3600.2
17 05 06 02 090 82.0 559 9438 70.8 252.8 2554 11889 2971.2
18 05 06 02 095 728 63.6 103.9 70.8 2499 278.3 1418.5 2887.7
19 05 06 04 090 592 66.7 118.7 68.7 355.6 270.2 1646.9 746.2
20 05 06 04 095 645 58.4 108.0 62.1 304.8 178.8 1194.0 769.1
21 05 0.8 02 090 939 78.4 233.0 2409 1701.9 737.8 2609.1 3600.1
22 05 08 02 095 96.6 79.2 2394 180.8 739.4 671.8 2458.6 3600.1
23 05 08 04 090 834 70.9 200.2 175.8 482.8 882.5 1056.3 3600.2
24 05 08 04 095 904 68.0 2094 162.8 512.8 899.7 1181.7 3600.1
25 0.5 1.0 0.2 090 109.7 934 2163 2679 537.8 857.6 1830.1 3600.1
26 0.5 1.0 02 0.95 108.8 97.6 228.0 327.8 543.6 1003.3 1391.9 3600.1
27 0.5 1.0 04 090 1204 1153 3059 312.0 817.0 984.4 2585.1 3600.1
28 0.5 1.0 04 095 108.9 98.8 211.6 302.4 509.6 983.4 1439.0 3600.2
29 0.5 1.2 0.2 090 90.0 105.3 210.0 2539 503.2 866.9 10054 3586.5
30 0.5 1.2 02 095 935 924 219.0 270.6 506.0 9594 1089.3 2624.6
31 0.5 1.2 04 090 101.1 114.3 231.5 3314 598.1 1157.1 1888.2 3600.2
32 05 1.2 04 095 126.3 113.7 2849 3584 637.7 1349.1 2179.6 3600.2
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Table D.7: Average CPU time results of 10 replications for MISOCP formulation on

45-task problem instances

40% Capability  60% Capability  80% Capability 100% Capability

Ins# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 090 3974 4105 4302 750.8 25464 2533.7 3600.2 3607.7

2 00 06 02 095 75.1 1047 396.2 4279 25349 25285 36052 3600.2
3 00 06 04 090 4045 69.1 379.5 367.7 25269 2527.6 3600.6 3600.2
4 00 06 04 09 49.1 649 3949 3702 2528.0 2544.5 3600.3 3600.1
5 00 08 02 09 1247 268.1 5499 436.2 25563 25444 3601.6 3604.3
6 00 08 02 095 1231 2465 4740 437.6 25245 25322 3600.3 36054
7 00 08 04 09 104.1 148.8 4226 3934 25493 2533.6 3600.2 3604.1
8§ 00 08 04 095 70.5 1177 4132 3985 25393 25335 3600.2 3602.3

9 00 1.0 02 090 26849 12524 2658.6 1008.4 3061.2 26264 3612.2 3600.3
10 00 1.0 02 095 3928 8107 9043 701.8 2661.7 2569.6 3600.5 3600.3
11 00 1.0 04 090 331.7 338.8 5347 5244 26187 2546.5 36043 3600.2
12 00 1.0 04 095 2839 259.1 5121 5834 2602.6 2539.3 3603.6 3600.2

13 00 1.2 0.2 090 3602.1 3600.8 3604.0 3603.7 3603.6 3603.8 3605.1 3605.3
14 00 12 02 095 5275 21912 690.0 1493.7 27454 2754.6 36052 3602.0
15 00 12 04 090 2186 8322 6852 7773 2626.1 2676.5 3605.5 3604.7
16 00 12 04 095 4392 2934 6043 736.7 2619.1 2624.5 3600.2 3604.4

17 05 06 0.2 090 427 1945 389.1 4135 25533 25594 3600.7 3604.6
18 05 06 02 095 56.8 99.9 4273 375.8 25325 25355 3600.3 3603.6
19 05 06 04 090 724 196.8 3727 736.5 25349 25259 36003 3603.8
20 05 06 04 095 62.4 86.2 379.3 383.7 2527.3 2523.1 3600.3 3604.0

21 05 08 02 090 2326 4588 559.7 649.8 25259 25254 3600.3 3603.1
22 05 08 02 095 2796 4406 487.8 5642 2599.1 2526.0 3600.3 3604.2
23 05 08 04 090 2080 3672 5294 6489 2568.1 25679 3601.0 3600.6
24 05 08 04 095 1920 1906 4643 536.0 25564 2560.6 3600.4 3606.5

25 05 1.0 02 090 36024 3600.5 3613.1 3355.8 3603.1 3604.6 3603.3 3605.4
26 05 1.0 02 095 7349 9419 11445 1006.7 2828.2 2967.6 3609.2 3604.4
27 05 1.0 04 090 744.1 8228 6244 978.8 27204 2713.7 3603.8 3603.4
28 05 1.0 04 095 3672 6022 6555 831.2 26253 2577.3 3601.3 3600.2

29 05 1.2 02 090 3603.0 3602.0 3602.6 36029 3603.2 3602.2 3600.2 3600.2
30 05 12 02 095 36258 3601.3 3607.0 3604.3 34519 3602.7 3600.4 3600.2
31 05 1.2 04 090 311.6 3455 582.6 5413 2101.8 1865.8 32154 22739
32 05 12 04 095 2254 4049 5299 593.0 2115.8 2368.0 3600.2 3600.2
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Table D.8: Average CPU time results of 10 replications for CP formulation on 45-task

problem instances

40% Capability  60% Capability 80% Capability 100% Capability

Ins# cor cmr cv « r=1 r=2 r=1 r=2 r=1 r=2 r=1 r=2

1 00 06 02 090 12.9 13.5  369.7 369.2 25234 2522.7 3600.1 3600.1

2 00 06 02 095 10.7 129 3703 369.6 2523.8 2523.0 3600.2 3600.1
3 00 06 04 090 9.8 10.0 3694  368.5 2523.8 2522.2 3600.1 3600.2
4 00 06 04 095 8.4 92 3670 367.6 25229 2522.1 3600.1 3600.1
5 00 08 02 090 12.2 13.8 3702 369.8 2523.7 2523.0 3600.1 3600.1
6 00 08 02 095 12.2 12.1 3703  369.4 2523.8 2523.3 3600.2 3600.1
7 00 08 04 090 10.4 11.0  369.8 368.6 2523.7 2522.4 3600.2 3600.2
8 00 08 04 095 8.6 9.6 368.8 368.0 2522.8 2522.6 3600.1 3600.1

9 00 1.0 02 09 2525 147 418.6  369.8 2531.2 2524.1 3600.2 3600.1
10 00 1.0 02 09 11.5 147 3712 369.0 25243 2524.1 3600.1 3600.2
11 00 1.0 04 090 11.4 11.0 3709 368.5 25242 2523.1 3600.2 3600.2
12 00 10 04 09 8.7 9.9 3702 3684 25235 25229 3600.2 3600.1

13 00 1.2 0.2 090 3600.2 3600.1 3600.1 3600.1 3600.1 3600.1 3600.1 3600.1
14 00 12 02 09 16.8 6922 373.6 4377 25244 2525.8 3600.1 3600.1
15 00 12 04 0.90 11.2 115 3714 3689 25244 252377 3600.2 3600.1
16 00 12 04 095 8.7 104 369.7 368.5 25243 2523.3 3600.1 3600.1

17 05 06 0.2 090 13.1 15.1 3714 370.7 25245 2523.5 3600.1 3600.1
18 05 06 02 095 12.2 129 3721 370.0 25243 25232 3600.1 3600.1
19 05 06 04 090 12.1 11.8  371.7 370.0 25239 2523.1 3600.2 3600.2
20 05 0.6 04 095 9.3 109 3702 3699 25232 25225 3600.1 3600.2

21 05 08 02 090 12.9 15.7 3722 3714 25243 25243 3600.1 3600.1
22 05 08 02 095 12.8 134 371.8 369.7 25245 2523.5 3600.1 3600.1
23 05 08 04 090 11.7 11.7  371.8 369.6 25245 2523.4 3600.1 3600.1
24 05 08 04 095 9.5 115 3701  369.6 25244 25233 3600.1 3600.1

25 05 1.0 02 090 3600.1 20623 36002 9353 3600.1 2570.2 3600.1 3600.1
26 05 1.0 02 095 13.1 123 3722 3714 2525.0 2524.7 3600.1 3600.1
27 05 1.0 04 090 12.2 12.1 3721 3705 25253 25237 3600.1 3600.1
28 05 1.0 04 095 10.7 11.3 3712 369.5 2523.8 2524.0 3600.1 3600.1

29 05 1.2 02 090 3600.1 3600.2 3600.1 3600.2 3600.1 3600.1 3600.1 3600.1
30 05 1.2 02 095 2505.1 3600.2 1921.2 3600.1 980.2 3600.2 24933 3600.2
31 05 1.2 04 090 11.6 11.4 14.9 12.5 16.5 15.1 12.6 18.4
32 05 12 04 095 9.9 11.4 12.9 10.7 17.4 14.3 319 18.4
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