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ABSTRACT

AN AIRPORT GATE REASSIGNMENT PROBLEM WITH TWO
CRITERIA

Poyraz, Dursen Deniz
Master of Science, Industrial Engineering
Supervisor : Prof. Dr. Meral Azizoglu

July 2022, 79 pages

In this study, we consider an airport gate reassignment problem where the aircraft
are already assigned to the gates and a disruption occurs at some of the gates. After
the disruption, the aircraft are reassigned to the gates considering efficiency and
stability measures. Our efficiency criterion focuses on the maximum utilization of
the gates in terms of both the number of aircraft and the number of passengers in
these aircraft. On the other hand, our stability criterion is concerned with remaining

as close to the initial plan as possible.

We propose solution approaches for generating two extreme, extreme supported, and
all nondominated objective vectors with respect to our efficiency and stability
criteria. We also present an optimal decomposition rule that reduces the complexity
of the solution. Our extensive experiments have shown the satisfactory behavior of

our solution algorithms.

Keywords: Airport Gate Reassignment Problem, Nondominated Objective Vectors,

Mixed Integer Linear Programming



0z

IKi KRITERLI HAVALIMANI KAPISI YENIDEN ATAMA PROBLEMI

Poyraz, Dursen Deniz
Yiksek Lisans, Endiistri Miithendisligi
Tez Yoneticisi: Prof. Dr. Meral Azizoglu

Temmuz 2022, 79 sayfa

Bu calismada, ucaklarin kapilara atandigi ve bazi kapilarda aksama olan bir
havalimani kapis1 yeniden atama problemini ele aliyoruz. Arizanin akabinde, ucaklar
verimlilik ve stabilite 6l¢iileri dikkate alinarak yeniden atanmaktadir. Verimlilik
kriterimiz, ucak sayist ve ugaklardaki yolcu sayisina gore kapilarin maksimum
kullanimi iizerine odaklanmaktadir. Ote yandan, stabilite kriterimiz ilk plana

miimkiin oldugunca yakin kalmay1 dikkate almaktadir.

Verimlilik ve stabilite kriterlerimize gore iki ekstrem, destekli ekstrem ve tiim baskin
amag vektorleri tiretmek icin ¢6ziim yaklasimlar: oneriyoruz. Ayrica ¢dziimlerin
karmagikligin1 azaltan bir optimal ayristirma kurali sunuyoruz. Kapsaml

deneylerimiz, ¢6ziim algoritmalarimizin bagarili sonuglar verdigini gostermektedir.

Anahtar Kelimeler: Havalimani1 Kapisi Yeniden Atama Problemi, Baskin Amag

Vektorleri, Karisik Tamsay1 Lineer Programlama
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CHAPTER 1

INTRODUCTION

The gates are important resources of airports whose efficient allocations are crucial
in effective air transport operations. The gate assignment problem is to assign the
aircraft having prespecified arrival and departure times to the available gates to
optimize the prespecified objective. Several objectives are studied in the literature,
including but not limited to maximizing the number of aircraft assigned to gates,
maximizing the number of passengers assigned to gates, and minimizing the walking
distances of the passengers. The aircraft that could not be assigned to the gates are
assigned to the remote gate, so-called apron. The satisfactory solutions to almost all
gate assignments problems avoid airport assignments to the apron, due to its remote

nature.

The airport operations are prone to disturbances due to changes in the flight
schedules, cancellation of flights, and gate shutdowns due to maintenance and
breakdowns. As a result of disturbances, so-called disruptions, the optimal solution
to any gate assignment problem may no longer be preferred or may even become

infeasible to implement. Hence, a need arises for reassigning the aircraft to the gates.

We consider a gate reassignment problem where the aircraft are already assigned to
the gates or to the apron and disruption that affects a subset of the gates is observed.
After the disruption, the aircraft assigned to the disrupted gates should be shifted to
the remaining available gates or the apron. This shift may also trigger some
assignment changes for the aircraft of the non-disrupted gates to give room for the
aircraft of the disrupted gates. Such adjustments which are referred to as
reassignment should ensure efficiency en route to low airport operating costs and

stability en route to low setup costs. We assume that the initial plan was efficient so



our new plan should have its objective function as an efficiency measure. Moreover,
we assume that the preparations are already made according to the initial plan, hence

the new plan should stay faithful to the initial one.

In our efficiency criterion, we focus on an airport’s vital need of utilizing its gate
resources most efficiently. The gates are used both by aircraft and by passengers. We
define our efficiency criterion with two objectives in hierarchy. The first objective
that goes into our efficiency criterion is the maximization of the number of aircraft
assigned to gates. With this objective, the number of ungated aircraft is minimized,
i.e., the gate utilization is maximized, thus a most efficient assignment plan is
obtained in terms of apron related costs. The second objective that goes into our
efficiency criterion is the maximization of the number of passengers assigned to
gates. By assigning the aircraft with the higher number of passengers to a gate, a
contribution to the minimization of passenger walking distance or to the general
customer satisfaction, since a smaller number of passengers will be routed to the
remote apron, is inherently being made. Therefore, with our efficiency criteria, we
maximize primarily the number of aircraft assigned to gates and secondarily the
number of passengers in these aircraft. We show that the gate assignment problem

that minimizes our efficiency measure is solvable in polynomial time.

In our stability criterion, we look for a new plan which is the most similar to the
initial one. After a disruption, initial plan may no longer be feasible. As the name
suggests, with our stability concern, we focus on staying stable, i.e., the new plan
should resemble the initial plan as much as possible, preserving most of the initial
assignments that remain feasible. In the event of a disruption, first and foremost, we
would like to reassign the already gated aircraft to a gate again. We believe that
reassigning an already gated aircraft to apron, will give a high deviation from the
initial plan in terms of similarity to the initial plan and also passenger discomfort.
Secondly, we would like to focalize on the number of passengers in the already
assgned set of aircraft. This consideration is in parallel with that of the secondary
objective of the efficiency criterion. Lastly, from an opportunistic point of view, we
would like to reassign the ungated aircraft to a gate whenever possible. With the



decreased apron usage, we would be reaping the benefits of increased efficiency.
Thus, a most similar reassignment plan to the initial plan is obtained through
considerations in three-fold: we maximize the number of aircraft reassigned to gates
that were initially assigned to gates as the primary objective, the number of
passengers in these aircraft as the secondary objective, and the number of aircraft
reassigned to gates that were initially assigned to apron as the tertiary objective. We
show that the gate assignment problem that minimizes our stability measure is NP-
Hard.

Our performance measures are studied in a multicriteria context as an increase in the
efficiency value would lead to a decrease in the stability value, and vice versa, hence
very fruitful trade-off analysis could be made.

Recognizing this fact, we study several trade-off problems. First, a hierarchical
optimization is considered such that the efficiency (stability) value is maximized
while the stability (efficiency) value is kept at its optimal, i.e., maximal level. This
approach returns two extreme points and is important for the decision makers who

have a strong preference for one objective.

Second, we assume that the decision maker has a linear preference (utility) function
that is expressed as a weighted combination of two measures. We produce the set of
objective vectors each of which is optimal for a particular weight range. These
objective vectors altogether form the extreme supported nondominated objective

vectors.

Finally, we assume that the decision maker has an unknown utility function of
efficiency and stability criteria. We produce the set of nondominated objective
vectors, one of which is optimal for a particular nonincreasing utility function. Using
this set, the decision maker can make a trade-off between a certain amount of
increase in efficiency value and a certain amount of decrease in stability value, and

vice versa.



We present a model-based optimization approach to generate the exact
nondominated set of objective vectors and a heuristic approach to generate an
approximate set of all nondominated objective vectors. The heuristic approach uses
the similarities of the extreme nondominated objective vectors and produces

approximate nondominated set of objective vectors.

All trade-off problems that we consider are NP-Hard as the single objective problem
that minimizes our stability measure is NP-Hard.

We also develop a decomposition rule where the problem is decomposed into
subproblems, where each of which is dealt with independently, and then their
corresponding solutions are combined by a mathematical model. We observe that if
one is faced with instances for which the decomposition rule can be applied, the exact

nondominated objective vectors can be found considerably easier.

To the best of our knowledge, we propose the first exact approaches for the airport
gate reassignment problem. Our experiments have shown that the exact approaches
can be used to tackle the real-life instances with many aircraft and many gates. We
make an application for the airports in the three largest cities in Turkey: Istanbul
Airport in Istanbul, Esenboga Airport in Ankara, and [zmir Adnan Menderes Airport

in Izmir, namely.

The rest of the thesis is organized as follows. In Chapter 2, we review the related
literature on assignment and reassignment problems. Chapter 3 defines our gate
reassignment problem and gives basic mathematical models, where one is
assignment based and the other is network based. Chapter 4 presents the solution
approaches that are used to generate two extreme nondominated objective vectors,
all extreme supported nondominated objective vectors, and all nondominated
objective vectors. We report the results of our extensive experiments in Chapter 5.
Chapter 6 concludes the study by pointing out the main conclusions and suggestions

for future research.



CHAPTER 2

LITERATURE REVIEW

We give literature reviews on the airport gate assignment problem (AGAP) and

airport gate reassignment problem (AGRP) in the following sections.

2.1  Gate Assignment Studies

Firstly, we give the most similar works to ours in this section. The two mathematical
models presented in Chapter 3, namely Assignment Based Model and Network
Based Model are similar to the works of Karsu et al. (2021) and Yan and Chang
(1998), respectively, in which their models are developed for the Airport Gate
Assignment Problem (AGAP), where we further develop them for the Airport Gate
Reassignment Problem (AGRP).

Karsu et al. (2021) studied a gate assignment problem with two objectives:
minimization of apron assignments and minimization of total passenger walking
distance. They give exact and heuristic solution approaches. Their problem instances
mimic the real-life airports in Turkey, namely Esenboga Airport in Ankara and
Atatiirk Airport in Istanbul.

Yan and Chang (1998) studied an airport gate assignment problem where they
formulated their model as a multi-commodity network flow problem. They defined
their objective as minimization of total passenger walking distance and case studied

an international airport in Taiwan.

In an AGAP review by Das et al. (2020), many objective functions of this assignment
problem are classified under three categories. The first category, passenger-oriented

objective functions, consists of objectives such as minimizing total/average



passenger walking distance, minimizing passenger waiting/transit time, minimizing

baggage transferring distance and minimizing some expected passenger discomfort.

The second category, airline/airport-oriented objective functions, includes objectives
such as minimizing the number of un-gated aircraft, maximizing the total duration
of aircraft assigned to gates, minimizing towing cost/number of towing moves,
minimizing taxi time/related fuel consumption, minimizing aircraft waiting time for
a gate, maximizing total flight-gate preferences, maximizing aircraft-gate size
compatibility, maximizing potential airport commercial revenues, and maximizing
the number of passengers at gates close to shopping facilities to increase potential

revenues.

In the last category, robustness-oriented objective functions, we have minimizing
idle times at gates at peak times, minimizing range/variance/expected variance of
idle times, maximizing robustness by avoiding the assignment of two flights with
low buffer times to the same gate, minimizing the expected number of gate
conflicts/expected gate conflict cost/worst case gate conflict, and minimizing the

absolute deviation of new gate assignment from a reference schedule.

Such a large variety of objective functions is employed in a multi-objective problem
setting. In the literature, according to Das et al. (2020), multi-objective AGAP is

widely handled by using weighted sum approaches.

A multi-commodity flow model is developed by Wang et al. (2022) where they focus
on two objectives: robustness and taxiing times. In their multi-commodity flow
model, gates are represented as commodities. The multi-objective nature of their
problem is managed using a linear scalarization parameter, a€[0,1], which monitors
the attention given to either objective, including foregoing an objective when set to
either 0 or 1. They used real-life data from the Paris-Charles-de-Gaulle international

airport in France.

Another two objective gate assignment problem is studied by Cai et al. (2019). In

the study, they worked to minimize the total passenger walking distance and the total



robust cost of the gate assignment. They also put a limit on the number of aircraft
that can be assigned to the apron. Moreover, compatibility related constraints such
as gate sizes: small/large, gate and airline leasing contracts, and flight types:
international/domestic are employed. They made an application for the Baiyun

airport in Guangzhou, China.

Yu et al. (2017) simultaneously focused on both the robustness and some traditional
costs: the expected conflict cost, tow cost, and passenger transfer distance. they
designed an adaptive large neighborhood search with some novel multiple local

search operators.

Liu et al. (2022) focused on gate utilization and running time of aircraft including
parking time and taxi time. In their future research topics, a special focus on the
number of passengers as a form of the objective function is placed, showing the less

explored nature of this important measure.

2.2  Gate Reassignment Studies

Dorndorf et al. (2007) stated that the deterministic airport gate assignment problem
can be modeled as a quadratic assignment problem as shown by Sahni and Gonzalez
(1976) is NP hard. Dorndorf et al. (2007) further stated that even a small disruption
at the beginning of the day often has severe results by the end of the day due to the

knock-on effect.

Disruptions in the gate reassignment studies are not only limited to maintenance
operations, flight and gate breakdowns, adverse weather conditions, emergency
flights, flight earliness and delays, and flight cancellations but also include major
incidents such as abnormal meteorological conditions and labor strikes of airport
employees, which may result in temporary airport closures. The gate reassignment

problem following such a major event is studied by Yan et al. (2009).

The literature regarding the gate reassignment problem widely consists of multi-
objective studies.



Pternea and Haghani (2019) proposed hierarchical optimization for a gate
reassignment problem to handle their selected multiple objectives: minimization of
some costs of (i) flight assignment, (ii) successful passenger connections, and (iii)
failed passenger connection. They gave several cost coefficient definitions, among
which the most related to our work include number of the flights with gate changes,
number of passengers with gate changes, number of flights assigned to remote gates
but originally assigned to contact gates, number of passengers assigned to remote

gates but originally assigned to contact gates.

Zhang and Klabjan (2017) define an efficient gate reassignment methodology for
occurrences of disruptions. They come up with two multi-commodity network flow
models, one of which for passenger connections, where each gate represents a
commodity, and two heuristic algorithms since the reassignment model is NP hard.
They handle the minimization of total flight delays, the number of gate reassignment
operations, total passenger transfer distance, and the number of missed passenger

connections with the weighted sum approach.

Dorndorf et al. (2012) studied the problem with the objectives: some assignment
preference score, number of unassigned flights during overload periods, number of
tows, some robustness measure, and the one most familiar to our work which is a
deviation from a given reference schedule. With the last objective, they introduce a
stability measure to their work while emphasizing that giving importance to staying
faithful to the initial plan entails a more concise gate schedule which helps with the

passenger satisfaction and is of convenience to the airport staff.

Yan et al. (2011) assumed to handle the uncertainty around aircraft arrival and
departure times: that some flights which are closer to the time of planning
reassignments tend to be more certain, and the further away they are, they become
more stochastic. That’s why they divided flights into the following two categories:
deterministic flights and stochastic flights. They made an application to the Taiwan

Taoyuan Airport in Taiwan.



Flight delays, whether in the form of early or tardy flight arrivals or in the form of
tardy flight departures, in general, constitute the disruptions worked on by Tang et
al. (2010), where they emphasized the crucial need of developing a framework for
the gate reassignment problem, stating that the traditional manual flight reassignment

method has too many shortcomings.

In their study, Deng et al. (2017) worked with multi-objectives that take into
consideration the loss of passengers, cost of airport operating, and economic loss of
airlines, in one criterion and for the other criterion, constructed a measure called the
most important index of disturbance value to manage the deviation from the initial
plan. They integrated two metaheuristics: the genetic algorithm and the ant colony
algorithm to propose a two-stage hybrid method.

Wang et al. (2013) handled flight delays in two categories: certain delay time flights
and uncertain delay time flights. For the former case, they aimed to minimize the
apron and gate disturbance values and for the latter case, they aimed to minimize the
gate disturbance value, time disturbance value, and some penalty value. They applied

an ant colony-based heuristic to their model.

One of the most popular objectives in the gate assignment literature, minimization
of the total walking distance of passengers, is also studied in Maharjan and Matis
(2011). In this particular case, they considered the passengers who are either
connecting to or originating from an airport where their boarding passes were issued
before the reassignment of gates. They implemented their work for the operations of
Continental Airlines at the George W. Bush Intercontinental Airport in Houston,

Texas.

Further literature examples consist of Pternea and Haghani (2018) where they
studied the gate reassignment problem with passenger connections, Gu and Chung
(1999) where they implemented a genetic algorithm for the minimization of extra
delay times, and Ali et al. (2019) where they proposed a passenger-centric model

that minimizes the transit time of transfer passengers.



In this study we consider a gate reassignment problem with efficiency and stability
criteria. Our efficiency criterion aims to maximize the number of aircraft assigned to
gates and the number of passengers in these aircraft and our stability criterion
maximizes the number of same gate assignments from the reference assignment plan
and their number of passengers as well as the number of aircraft assigned to gates.
To the best of our knowledge, there is no reported gate reassignment study that

considers our efficiency and stability criteria simultaneously.

2.3 The Most Closely Related Studies

Our work differs from the existing literature based on selecting fairly unexplored
multi-criteria, applying hierarchical optimization to handle said multi-criteria where
the existing literature mostly applied the weighted-sum method, and proposing and
comparing two mathematical models for the airport gate reassignment problem

(AGRP). Aforesaid points besides, we give the mostly related studies to ours below.

Both Karsu et al. (2021) and Yan and Chang (1998) proposed exact approaches for
the airport gate assignment problem (AGAP). While the former devised an
assignment-based mathematical model, the latter formulated the problem as a multi
commodity network flow. In spirit of these studies, we develop an Assignment Based
Model in Section 3.2.1 and a Network Based Model in Section 3.2.2 for the airport
gate reassignment problem (AGRP).

Furthermore, we define a multi-objective environment for AGRP and handle our
objective functions through hierarchical optimization as proposed in Pternea and
Haghani (2019). Although the logic behind using hierarchical optimization remains
similar, we define widely different criteria for the AGRP than that of Pternea and
Haghani (2019).

10



CHAPTER 3

PROBLEM DEFINITION AND MATHEMATICAL MODELS

We consider an Airport Gate Reassignment Problem (AGRP) with n aircraft, m gates

and an apron. The elements of the problem are illustrated in Figure 3.1.
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Figure 3.1. lllustration of Problem Elements

The apron is assumed to have infinite aircraft capacity, however, is too far away from
the gates, hence is not favored by any reason. The aircraft that cannot be assigned to
a gate, are assigned to apron. Each aircraft has a specified arrival time and a departure
time. From its arrival time until its departure time, the aircraft is either at its assigned
gate or at apron. This is compatible with the real-life application of renting the gates
to airlines for fixed periods of time, i.e., time intervals. Moreover, each aircraft has
a specified number of passengers who either have entered from the entrance point or

transferred from other aircraft.

We assume that there is an initial plan that shows the assignment of each aircraft to
either one of the gates or to the apron. We use the term ‘initial plan’ to refer to the
interchangeably used terms in the literature: ‘current assignment’, ‘initial

assignment’, and ‘reference assignment’. An initial plan is illustrated in Figure 3.2.

11
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Figure 3.2. lllustration of Initial Plan

There is a disruption at the beginning of the planning horizon that affects a specified
set of gates. This disruption may be due to several reasons such as breakdowns or
maintenance operations, as previously sampled in Chapter 2, and makes the affected
gates inoperable. We use the term ‘affected gates’ to refer to ‘disrupted gates’; and
‘affected aircraft’ to refer to ‘disrupted aircraft’. An illustration of a disruption is
shown in Figure 3.3, where two gates are affected by the disruption.

DISRUPTED
AIRCRAFT

GATES

Figure 3.3. lllustration of a Disruption
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After the disruption, a new plan is formed where the affected aircraft are assigned to
one of the nonaffected gates or to the apron. The nonaffected aircraft may be
reassigned to its initial gate or to any one of the nonaffected gates or to the apron.

We use terms ‘new plan’ and ‘reassignment’ interchangeably.

We assume that there are no assignment restrictions, i.e., all aircraft can be assigned
to one of the m gates. Furthermore, the arrival and departure times of the aircraft, the
number of passengers and all other parameters that will be defined later, are known
with certainty and not subject to any change. That is, the system we consider is

deterministic and static.

The initial plan is known and found by the efficiency concerns of the decision
makers. The efficiency and stability concerns define our performance measures, each

of which is discussed next.

3.1 The Two Criteria

From an efficiency perspective and a stability perspective, we discuss our objective

functions in this section.

3.1.1. Efficiency Criterion

From an airport and passenger satisfaction point of view, an assignment plan should
meet the following requirements: (i) its number of aircraft assigned to gates should
be as high as possible, and (ii) if there is a tie among multiple aircraft that are
potentially competing against each other to be assigned to a gate, then the decision
should be in favor of the one with the highest number of passengers. We call such
an assignment plan efficient due to it having the least apron usage both by aircraft

and their corresponding passengers.

The efficiency concern is turned into an objective function, E, with the direction of

maximization. Thus, efficiency objective function is as follows:

13



E1  The primary objective that is number of aircraft assigned to gates
E2  The secondary objective that is number of passengers assigned to gates

E Efficiency objective function, E = E1 + ezE2 where &5 is a sufficiently

small number that gives priority to E1 and breaks the ties in favor of E2.

&g should be set small so that E1 value does not decrease even by one unit for the
highest improvement of the E2 value. Note that, in addition to establishing the
hierarchy between objective functions, the parameter ez, also performs some
rescaling between the objective functions, where one objective is in units of aircraft

and the other is in units of passengers. This follows,

E1+4 €gE2pin = E1 — 14 €gE2 0y (1)
where

E2,,:» = the smallest possible value of E2,

E2,,4 = the largest possible value of E2,

We define p; as the number of passengers in aircraft i.

E2max = 2121 p; (all aircraft are assigned to gates).

E2,,.:, is found by collecting m aircraft having smallest p; values as:

E2pmin = X% v Where py; is the i smallest p; value (all gates are busy with one

and only one aircraft).
Inequality (1) reduces to
SEEzmin = SEEZmax -1

1
Ezmax - Ezmin

EES

Putting E2,,,;,, and E2,,,,, into above expression, we find
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1
?:1 pi — 2:11 Pri)

SES

In our experiments, we set

1
Y pi—Xit P+l

SE:

Putting (2) into our objective function, we get

1
E=E1l+ E2
e Pi — Xisq Py +1

)

To have integer value for E, we multiply it by Y-, p; — X%, pr;) + 1 and get the

following expression for our efficiency measure:

m
Zpi _Zp[i] +1
' im1

E1+E2

3.1.2. Stability Criterion

In the AGRP, the new plan that will be obtained after a gate disruption can surely

have some reminiscence of the initial plan. Aside from our efficiency concern, we

have another perspective from the stability side. We define our stability concern as

staying faithful to the initial plan. Although the initial plan might become infeasible,

per this concern, the number of gate assignments in the initial plan, the corresponding

number of passengers and the number of gate assignments that were initially

assigned to the apron are maximized in this very order. To clarify, we define below

some new sets and objective functions.

Si Set of aircraft that are assigned to gates in the initial plan

S, Set of aircraft that are assigned to the apron in the initial plan

I:S]_USZ

ST1 Number of aircraft in S; assigned to their initial gates

15



ST2  Number of passengers of flights in S; assigned to their initial gates
ST3  Number of aircraft in S, assigned to gates

Our stability aim is primarily to maximize ST1. Among the optimal solutions of ST1,
we prefer the one having maximum ST2. Hence, we first want to maximize ST1 +

esr1ST2, where g4 is found as follows:

&sr1 Should be sufficiently small so that ST1 value does not reduce even by one unit

for the highest improvement of the ST2 value. Accordingly,

ST1 + €571ST2 i = ST1 — 1 + €571ST2 ppax 3)
where

ST2,,i» = minimum possible ST2 value which we set to zero.

ST2pax = maximum possible ST2 value

ST2,,4 1S the number of aircraft assigned to nonaffected gates in the initial
assignment = Y., cu|SA,,| Where [SA,,| is the set of aircraft assigned to gate m in

the initial plan.
Inequality (3) reduces to
&r1 2 Es715T 2max — 1

1 1

&1 <
ST STZmax Z;nzl ISAjl

In our experiments we set ¢4 t0

1
EST1 = S Jsa e (4)

Putting (4) into our objective function, we get

1
ST1 + ST2
mISA| + 1
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We multiply the above expression by Y72, |SA;| + 1 to get an integer value for the

objective function as:
(XL ISA;| + 1)ST1 + ST2 = ST,

Among the optimal solutions to ST, we prefer the one having maximum ST3 value.

Hence, we want to maximize
ST = STA + ESTZSTS (5)

where g1, is a sufficiently small number, which is found using the ideas of & and
egr1. Similarly, parameters g7, and &g, perform rescaling between the objective

functions as well as handling the hierarchy between them. This follows,
STu + €5728T3min = STa — 1 + £572ST 3 max

where ST3,,in 1S Set to zero and ST3,,,,, IS set to the number of aircraft assigned to

apron in the initial assignment, i.e., [SA,41]-

Rearranging (5) with ST3,,,;, = 0 and ST3,,0x = |SAm+1], We get egrp, = S

and use &g, = in our experiments.

[SAm+1l [SAm+1]+1

The overall stability measure is expressed as

1
T =8Ty + ——=ST3.
S S A+|SAm+1|+1S 3

To get an integer valued objective function, we multiply the above expression with
|SAm+a| + 1.

The overall stability measure ST becomes

ST = (|SAm+1 |+ D) (XTL4|SA;| + 1)ST1 + (ISAp41|+1)ST2 + ST3.
To sum up, our problem has the following two objective functions:
Max E

Max ST
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In the next section, we discuss the mathematical models used to solve the multi-

objective problem.

3.2 Mathematical Models

In this section, we define two mathematical models to the airport gate reassignment
problem (AGRP) with efficiency and stability criteria.

Our efficiency measure maximizes the number of aircraft and then the number of
passengers, assigned to gates. The stability measure tries to keep the assignments

close to their initial plan counterparts.

The first mathematical model is a classical assignment-based model that is also used
by Karsu et al. (2021) for a gate assignment problem. The second model is a network-
based model that takes its spirit from the network-based model of Yan and Chang
(1998) that is defined for the gate assignment problem. We next discuss the details
of the models.

3.2.1. Assignment Based Model

The Assignment Based Model uses the following sets and parameters:
I Set of aircraft

K Set of gates (gates and apron)

n Number of aircraft (|/])

m Number of gates (|K| — 1 gates, gate m + 1 is apron)

Di Number of passengers in aircrafti, i =1, ...,n

a; Arrival time of aircrafti, i = 1,...,n

d; Departure time of aircrafti, i =1,...,n
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R Number of distinct a; and d; values, where R — 1 is the number of time

intervals

During [a;, d;], aircraft i stays at the airport.

{adq,ad,, ...,adg} Setof distinct a; and d; values in chronological order
During interval (ad,, ad, 1) there is no arrival or departure.

o = {1, if aircraft i is in the airport at intervalr,r = 1,...,R — 1
e 0, otherwise

Stability related parameter, c;, is defined as:

i=1...nk=1,... m+1

1,if aircraft i is assigned to gate k in the initial plan
Cik =
0, otherwise

The assignment decision variable is defined as:

i=1..,nk=1,..,m+1

1,if aircraft i is assigned to gate k in the new plan
Xik =
0, otherwise

The constraint sets are as given below:

et Xy =1 i=1..,n(A
Vi 0 X <1 k=1,..mr=1,..,R—1(B)
X €E0or1l i=1,..,nk=1,..,.m+1(C)

Constraint (A) ensures each aircraft i is assigned to a single gate. The overlapping
of aircraft is handled using binary parameter o;,., where in constraint (B) aircraft that
are in the system at the same time interval cannot be assigned to the same gate.

Lastly, Constraint (C) states that the decision variable x; is binary.
We refer to the constraint sets (A), (B), and (C) as x € X,.
Efficiency measures are stated in their priority order:

E1  Max X, Yty Xy (primary)
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E2  MaxYr, Y i, pixi (secondary)
E1 maximizes the number of gated aircraft, and E2 maximizes the corresponding
number of passengers. The aggregate objective function, E, is as follows:

1 1
Max E =YY x4+ Y YT pox;. where g = }
A € i=1 Zk—l ik 21—1 Zk_l DiXik E Z?=1m—2?_i1p[i]+1

Karsu et al. (2021) showed that the problem of maximizing the number of aircraft
assigned to gates (Max /=, M7= xi) is solved in polynomial time using a network

flow model. The same network structure holds when the arc costs of ‘1°, for the arcs

that emanate from the node representing aircraft i, are replaced by gi + p;. This
E

follows, our efficiency problem can be solved in polynomial time.
Stability measures are stated in their priority order:

ST1  Max ¥iq Xieq Cixxyge (Primary)

ST2  Max Xit; Xty PicirXix (secondary)

ST3  MaX Xjc,....=1 2k=1 Xi (tertiary)

ST1 maximizes the number of aircraft assigned to their initial gate. ST2 maximizes
the number of passengers assigned in these aircraft. ST3 maximizes the number of
aircraft assigned to gates that were initially assigned to the apron.

The aggregate objective function, ST, is as follows:

1

1
n m n m
Max ST, i=1 k=1 CikXix + T Nimq Lk=1PiCirXire +

EST1EST2
1
n ym
Yiz1 iz, Cigt1

1

and & =
ST2 7 S Cimer+1

m —
Dl cims1=1 2k=1Xik Where ey =

As mentioned in Jaehn (2010) the problem of maximizing the total aircraft-gate

preference score (Max Y. ; Yre1 PixXir) 1S NP-Hard. Our stability measure reduces

to the total aircraft-gate preference score when p;;, = %Cik + %picik + 1.
ST1<¢ST2 ST2

This follows, our stability problem can be solved in polynomial time.
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Assignment Based Model can be summarized as:
Max E,
Max ST,

subjectto x € X,

3.2.2. Network Based Model

Yan and Chang (1998) formulated the gate assignment problem as a multi-
commaodity network flow model. We use the basics of Yan and Chang (1998) model
to define our network-based formulation. For the sake of completeness, we use the

sets and parameters defined for the Assignment Based Model.

For each aircraft a network is presented. The network for aircraft i, NT;, has a source
node S; and an end node T;. There are m + 1 arcs departing from S;, each arc

representing the flow to a particular gate or apron.

Let t; be the set of chronological time intervals from the set {ad,, ad,, ..., adg}
where aircraft i is in the airport and let r; be the number of time intervals from the

set {ad,, ad,, ..., adg} where aircraft i is in the airport such that ¢; = ¢, ..., t,,. That

is, in the chronological list of ad, values, if ad;, = a; then ad;, 4,,_, = d;.

We say that r; many nodes are defined for each gate leg. Hence thereare r;(m + 1) +
2 nodes in NT;.
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Figure 3.4. Network Representation of Aircraft i

For NT;, we define node set, NS; and arc set, AS; as follows:

NS; = Ucr,..me1 NSy U S; UT; where NSy = {[k, t,], .., [k, t,,]}

AS; ASi

k=1,..m+1

where ASy, = {[S;, (k, t)],.... [(k. tr-1), (k. t)] [ (k. ), T:]}

The basic parameter is the gain of each arc. The arc gains from node S; to its neighbor
node are defined as EACIS;, (k,t;)] and SACIS;, (k,t;)] where k #m + 1 for
efficiency and stability measures, respectively. For both measures, all other arc gains

are zero.
For an arc, let’s show it by its starting node s and its ending node e.
The decision variable is defined as:

(1,if arc (s, e) is selected
i=1,..,n

S € U NSik US,_

xés‘e) = < k=1,..m+1

e e U NSikUTi

k=1,..m+1
\ 0, otherwise
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The constraint sets are defined as below:

1, S = Si
xés'e) - xéj‘s) = {0, S #+ Si' Ti
S€Ug=1,.,m+1 NSix U S; JEUk=1,..m+1 NSir US; -1, s=T;
€€Uk=1,..m+1 NSir UT; S€Uk=1,.,m+1 NSix UT;
i=1,..,n(D)
Nl Xy < 1 V(s,e) € Ui=1,.,n AS; (E)
X(se) € {0,1} i=1,..,n VY(se) €AS; (F)

Constraint sets (D) work as a classical flow balance constraint, ensuring an assigned
aircraft be assigned to the same gate all throughout its present time intervals. An

aircraft can only be assigned to a single gate as guaranteed by Constraint (E). Lastly,
decision variable x(is_e) is binary as stated by Constraint (F). We hereafter refer to the

constraint sets (D), (E), and (F) as x € X5. We now discuss the efficiency and

stability measures for each aircraft i.

Efficiency Measure

Max Ey  XiL; Z(sepeas, EACISy (e, tr)] s e
where EACIS;, (k, t))] = é + p;.

Stability Measure

Max STy Xity X(seyeas; SACIS:, (k, t1)] x{s o

where SACIS;, (k, t))] = LI - PiCik + Cimy1 Tk =1,...,m
T2

ik
EST1EST2 Es’

The Network Flow Based Model can be summarized as:
Max Ey
Max STy

subjectto x € Xy
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A small-sized example is provided to illustrate a network for aircraft i, NT;. In this

example with n = 5,m = 3, let’s assume the following sets and parameters:

Table 3.1 Example Network for an Aircraft: a;, d;, p;

Aircraft, i Arrival time, a; Departure time, d; Passengers, p;

1 1 53 200
2 65 99 100
3 189 226 150
4 186 232 100
5 71 129 200

The distinct and chronological time intervals are derived as:

Table 3.2 Example Network for an Aircraft: 1, ad,

Interval, r; Distinct time value, ad,
1
53
65
71
99
129
186
189
226

© 0O N oo o B~ W N

Then, the parameter o;,- is found as:
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We demonstrate the r; and t; values below.

Table 3.3 Example Network for an Aircraft: r;, t;

Aircraft, i Number of time intervals, r;  Time intervals, t;

1 2 {1,53}

2 3 {65, 71, 99}
3 2 {226, 232}

4 3 {189, 226, 232}
5 3 {71, 99, 129}

So, t, = {ads, ad,, ads} = {65,71,99}.

Let’s calculate the & to demonstrate arc gains on this network. To do so, we first
find the E2,,,, and E2,,,;,.

n

EZmax = Zpl =750

i=1

m
E2min = Z pri = 100 + 100 + 150 = 350
i=1
1 1 1

€ = YL pi—IM b+l = 750-350+1 401
Efficiency measure for aircraft 2, is found as below for k = 1,2,3.

EACIS,, (k, 65)] = é +p, = 401 + 100 = 501.

Figure 3.5 demonstrates the network for aircraft 2.
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Figure 3.5. Example Network for Aircraft 2
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CHAPTER 4

NONDOMINATED OBJECTIVE VECTORS

In this chapter, we discuss the nondominated objective vectors and their generation
method. We define the nondominated objective vectors in Section 4.1. In Section 4.2
and Section 4.3, we define algorithms to generate extreme nondominated objective
vectors. Section 4.4 discusses the generation of all nondominated objective vectors.
In Section 4.5, a procedure to generate approximate nondominated objective vectors
is proposed. In Section 4.6 and Section 4.7, we introduce an optimal decomposition

rule and propose its heuristic implementation, respectively.

The problems that we work in Sections 4.3, 4.4 and 4.5 are all NP-Hard due to the
NP-Hardness of our stability problem.

4.1  Nondominated Objective Vectors

A gate assignment solution r in x € X, (or x € Xy) is called efficienct if there is no
other solution q in x € X, (or x € Xy) with in E, > E,. and ST, = ST, with strict
inequality holding at least once (E, > E, and ST, = ST, or E; = E, and ST, > ST;.).
The associated objective vector (E,, ST.) is said to be nondominated objective vector
(ndov). The solution g is dominated by solution r and the nondominated objective

vector (E,, ST, ) is dominated by the nondominated objective vector (E;, ST;.).

4.2  Extreme Nondominated Objective Vectors

An efficient solution is called an extreme efficient solution if it has the largest

objective function value for one objective.
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A nondominated objective vector corresponding to an extreme efficient solution is
called extreme nondominated objective vector. We discuss the generation of the
nondominated objective vectors with the largest E and the largest ST values in
subsections 4.2.1 and 4.2.2, respectively. We used the Assignment Based Model in

the generation methods.

Our efficiency concern and stability concern make up two different perspectives to
the problem. Hence, their resulting solutions are treated as the two extreme ends of

a solution spectrum.

4.2.1 Extreme Nondominated Objective Vector with the Largest E Value

Consider the following problem:

Max E

subject to

X € Xy

Let E* be the optimal objective function value.

E™ is an upper bound on the efficiency values of all efficient solutions. However, any
feasible solution with efficiency value of E* is not necessarily efficient as there may
exist another solution with a larger ST value. The solution having the maximum ST
value among the solutions having efficiency value of E* can be found using the

following two-step procedure.
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Procedure 1 Finding an Extreme Nondominated Objective Vector with the

Largest E Value

Step 1. Solve the Max E subject to x € X, problem. Let E; be the optimal
objective function value.
Step 2. Solve the following problem
Max ST
subject to
E=E;
X € Xy
Let ST, be the optimal objective function value. Then, the first extreme

nondominated vector is (E, ST) = (E;, STy).

An alternative model that delivers (E7, STy) is given below:
Max E + ST

subject to

X € Xy

where &g is a sufficiently small number.

e should be small enough so that E value does not increase even one unit for the

maximum value of ST.
This follows,
E+ egSTmin = E — 1+ €5SThax

1
STmax - STmin

SES

We observe that ST,,,, can be so large, making the ¢z value so small, that the

hierarchical relation between the objectives be lost due to rounding problems. Hence,
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we use the two-step procedure to generate the efficient extreme nondominated

objective vector.

4.2.2 Extreme Nondominated Objective Vector with the Largest ST
Value

Consider the following problem:
Max ST

subject to

x € Xy

In the optimal solution to the above problem, the initial plan should be implemented
to its the maximum extent. To achieve this, we fix the aircraft that are not affected
by disruptions to their initial gates. In doing so, the first and second parts of the
stability objective are maximized. Hence, a great emphasis is put on fixing the
aircraft that are not affected by disruptions. By keeping the initial plan for the
aircraft, that were initially assigned to gates and are not affected by disruptions, we
ensure that the new plan will be the most faithful one to the initial plan. To this end,
we pre-process our Stability Model input and create a so-called “Reduced Problem”

to run our model on. The steps to create a reduced problem are shown below.
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Procedure 2 Creating a Reduced Problem for Stability Model

Step 1. Assign the aircraft that are not affected by disruptions to their initial
gates

Step 2. From the remaining unassigned aircraft, find which ones can only be
assigned to the apron, make the apron assignment for these “must-go”
aircraft

Step 3. From the remaining unassigned aircraft, find which ones have a one-
to-one relationship with an open time interval at a gate, meaning
that an aircraft can only be assigned to a specific gate and this specific
gate have no other possibleunassigned aircraft for this open time
interval. Make this one-to-one assignment.

Step 4. After making the pre-assignments, we have a partial assignment plan,
and the remaining unassigned aircraft form the reduced problem that

will be worked on.

In a reduced problem, for each aircraft of the reduced problem, we define a network.
This network has only arcs for the gates that the aircraft can be assigned. Note that
an aircraft now has a set of eligible gates due to the fixed gates.

The resulting network-based model is as stated below:

!

n Number of unfixed aircraft
S(i) Set of gates that are eligible for aircrafti,i =1, ...,n’

The objective function is:

! _s114-2

EST1EST2 EST2

Max ST +€b, E where ST = ST2 +5ST3, E = —E1+ E2, and
E

1

Egr= Epnax @and E,,;, are found by considering only the unassigned

Emax_Emin"'l.

aircraft as follows:
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Enax E value under the assumption that all aircraft in the reduced problem are

assigned to gates, E,qx = én’ + YD

Ein E value under the assumption that none of the aircraft in the reduced problem

can be assigned to a gate, E,,,;;, = 0.

The constraint sets are

Ykes) Xik = 1 i=1,..,n
?;1 compixi <1 Vk € Uiz, nS{) r=1,...,R—-1
Xik €0orl i = 1, ...,Tll vk € Ui=1,...,n’ S(l)

Let (E',ST") be the optimal solution to the above model.

To find, (E,, ST,) vector, that is the nondominated vector for the second extreme
nondominated objective vector, we consider the fixed aircraft as well. The resulting

vector is found as:

E,=E"+ giEl + E2 where giEl + E2 is the efficiency term of the fixed aircraft.
E E

! 714+ -2-5T2 + ST3 where —~—§T1 4+ =

EST1EST2 EST2 EST1EST2 EST2

is the stability term of the fixed aircraft.

ST, = ST' +

ST2 + ST3

We give a small example with n = 10, m = 4 with a disruption that closes two gates

randomly, to demonstrate creating a reduced problem below.

Let’s assume a problem with the following parameters and initial plan where a

disruption causes gates 2 and 4 to be closed.
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Table 4.1 Example of a Reduced Problem

Aircraft, i Initial assignment, k Reduced problem

. L Aircraft is not affected by the disruption, fix
its gate.

Aircraft is affected by the disruption,
2 4 (closed) no gate is available to this aircraft, it is

assigned to apron.

Aircraft is affected by the disruption,
only gate 3 is available to this aircraft, aircraft
3 2 (closed) ) o
9 is also affected and overlaps with aircraft 3,

so it is in the reduced problem.

Aircraft is affected by the disruption,
4 2 (closed) there are multiple gates available to this

aircraft, it is in the reduced problem.

Aircraft is affected by the disruption,
only gate 1 is available to this aircraft, there
5 4 (closed) ) ) _
are no affected aircraft overlapping with

aircraft 5, it is assigned to gate 1.

Aircraft is not affected by the disruption, fix
6 5 (apron) )
its gate.

Aircraft is affected by the disruption,
only gate 3 is available to this aircraft, aircraft
7 4 (closed) ) o
3 is also affected and overlaps with aircraft 7,

so it is in the reduced problem.

Aircraft is not affected by the disruption, fix
8 5 (apron) )
its gate.

Then, from Table 4.1, we see that a reduced problem is created with aircraft 3, 4, and
9, and gates 1 and 3.
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4.3  Extreme Supported Nondominated Objective Vectors

An efficient solution is called supported efficient solution if it is optimal for the linear
combination of E and ST, i.e., wE + (1 — w)ST for any positive w. If the efficient
solution does not optimize wk + (1 —w)ST for all positive w, then it is non-

supported efficient.

A supported efficient solution is called extreme supported efficient solution if it can
be found by changing the value of w. A supported efficient solution is nonextreme
supported efficient solution if it is on the linear combination of two extreme

supported efficient solutions.

The nondominated objective vectors corresponding to supported, non-supported,
extreme supported and nonextreme supported efficient solutions are referred to as
supported, non-supported, extreme supported and nonextreme supported
nondominated objective vectors, respectively.

We generate the nondominated objective vectors through the solutions of the
following objective function:

W( E—Emin )+(1—W)( ST—STmin ) where (Emax'STmin) is the extreme

Emax—Emin STmax—STmin
nondominated objective vector with the largest E value, whereas (Epin, STmax) 1S

the extreme nondominated objective vector with the largest ST value.

According to the above scaling, the weights would be more dispersed. However, the
same extreme supported vectors without the scaling would be obtained. We rewrite

our scaled objective as WE 410q + (1 — W)STscq104 TOr the sake of simplicity.

We adapt the method used in Ozlen and Azizoglu (2009) to generate all
nondominated objective vectors. As in Ozlen and Azizoglu (2009), we first generate
two extreme nondominated objective vectors by settingw = 0 and w = 1. Then we

find a range for w by solving the following relation:
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WEscaled(l) + (1 - W)STscaled(l) = WEscaled (2) + (1 - W)STscaled(z) where
Escateq (D) is the Eg.q04 Value of the it" extreme nondominated objective vector and

STecatea (i) is the STyqqi0q Value of the it" extreme nondominated objective vector.
Rearranging the terms in the equality, we get

— STscaled (2) - STscaled(l)
STscaled(z) - STscaled(l) + Escaled(l) — Escaled(z)

w

For the above w, the extreme nondominated objective vectors have the objective
function value, when the weight is in [0,w), the first extreme point is favored.
Otherwise, i.e., when the weight is in (w, 1], the second extreme point is favored.
The the following problem is solved to get the third extreme supported nondominated

objective vector.

Max WEcqiea + (1 — W)STscqiea
subject to

x € Xy

The optimal solution to the above problem is (Egcqiea(3), STscarea(3)). We reorder
the already found three extreme supported solutions so that Eg.geq(1) <
Escaled(z) < Escaled (3) and STscaled(l) < STscaled(z) < STscaled(3)- Then! we

solve the below relations:

— STscaled(z) - STscaled(l)
STscaled(z) - STscaled(l) + Escaled(]-) - Escaled(z)

— STscaled (3) - STscaled (2)
STscaled(S) - STscaled (2) + Escaled (2) - Escaled (3)

|41

w»

In [0, w,], [wy, wq], [wy, 1], (1), (2) and (3) are the optimal solutions, respectively.

When a new schedule is added to the it order, then we find two weights w, and

w41 by forming two weight equation between S; and S;, 1, such as w; and w,.

The stepwise description of the procedure is stated below:
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Procedure 3 Generating Extreme Supported Nondominated Objective Vectors

Step 0. Solve the model in section 4.2.1 to get the extreme nondominated

Step 1.

Step 2.

Step 3.

objective vector with the largest E value. Let this optimal solution be
(Emax> STmin)- Solve the model in section 4.2.2 to get the extreme
nondominated objective vector with the largest ST value. Let this
optimal solution be (Epnin, STmax)-

Let k be the number of extreme supported efficient solutions.

Setk=1

E—Emin

For a current solution (E,ST), define Es.4ieq = and

Emax—Emin
_ ST—=STnin
STscaled -

STmax_STmin.
Find the scalarized weight from the below relation:

STscaled (2) _STscaled(l)

Y1 ST scatea@—STscatea +Escatea—Escatea @)
Solve Max w; Escqiea + (1 — w1)STscated
subject to

X € Xy

Let (Escatea (K), STscarea (k) be the optimal solution.

If (Escatea (k). STscarea (k) is one of the extreme solutions,

(Escatea(1), STscarea(1)) oF (Escarea(2), STscatea(2)) then go to Step3.

If (Escatea(k), STscarea(K)) is €ither (Escarea(k — 1), STscqrea(k — 1)) or
(Escatea(k = 2), STscqrea(k — 2)), fix wy, let k = k + 1, go to Step 1.

If (Escatea(k), STscarea(k)) is a new solution, then reorder the solutions,

update wy, and wy,,; as follows:

_ STscaled (k+1)—STscqied (k)
STscated (K+1)—STscated (k) +Escated (K)—Escated (k+1)

STscaled(k+2)=STscqieqa(k+1)
STscated (k+2)=STscated (K+1)+Escaled (k+1)—Escalea(k+2)

Wy

Wii1 =
If all w;, values are fixed then go to Step 3, else go to Step 1.

Stop, all extreme supported solutions are generated.
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The procedure returns an extreme supported nondominated objective vector at each
iteration. The returned nondominated objective vector is either a new nondominated
objective vector or an already known one. If it is one of the two extreme
nondominated objective vectors at the first iteration, then we stop. If it is one of the

other known nondominated objective vectors, then its weight is fixed.

We demonstrate Procedure 3 in an example with n = 75, m = 10 where a disruption
closes two gates randomly. The numeric values of the extreme nondominated

objective vectors for this instance are shown in Table 4.2.

Table 4.2 Example for Extreme Supported Nondominated Objective Vectors:
EmaxJ STminJ Eminr STmax

The extreme nondominated objective vector with the largest E value, (1)

Enmax 17992

SToin 114174

The extreme nondominated objective vector with the largest ST value, (2)
Enin 16888

STmax 154134

We calculate the scaled objective function values as shown below:

E—Eppn 17992 — 16888

E 1) = = -
scatea(1) = g = 17997 16888
. @) = E — Epin _ 16888 — 16888 _
scaled - Emax — Emin © 17992 — 16888
ooty e ST ST 114174114174
scaled - STmax — STmin - 154134 — 114174 =
ST — ST.... 154134 — 114174
STscaled(z) = = -

STmax — STmin 154134 — 114174
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STscaled (2) - STscaled (1)

W, =
! STscaled(z) - STscaled(l) + Escaled(l) - Escaled(z)
_ 1-0 05
M1 0+1-0 =

Then, we solve the following model:

Max 0.5 —=—Zmin_ 4 (1 — ,5) ——Tmin
max— Emin STmax_STmin

subject to

x € Xy

The optimal solution is found as (E*,ST*) = (17242, 143982) which is said to be
the second extreme supported nondominated objective vector when we reorder the
extreme supported nondominated objective vectors. Then, we look for new ones

employing new weights ranges.

We keep generating new nondominated objective vectors between the two found
extreme supported nondominated objective vectors, as long as a new nondominated
objective vectors are found in between. When no new nondominated objective vector
is found between the two found extreme supported nondominated objective vectors,
we move on the next pair of the found extreme supported nondominated objective
vectors, thus generating all extreme supported nondominated objective vectors,

reported in Table 4.3 and described by Figure 4.1.
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Table 4.3 Example for Extreme Supported Nondominated Objective Vectors:

weight range, E*, ST*

Extreme Supported
Nondominated Objective Weight (w) range  E* ST*
Vector, r
1 w=1 17992 114174
2 w=0 16888 154134
3 [0,1] 17242 143982
4 [0.5,1] 17842 134136
S [0.5,0.91694] 17742 137466
6 [0.91694,1] 17942 127512

I I L1

I I

= w=1

w=10.5
w=001694
w=0. 82000
w=0.97366

Figure 4.1. Example for Extreme Supported Nondominated Objective Vectors:

explored weight ranges

As seen from Figure 4.1, weights between 0 and 0.5 did not produce any new extreme
supported nondominated objective vectors. Then, we explored a new weight range,
between 0.5 and 1, and found that w = 0.91694 produced a new extreme supported
nondominated objective vector, after fixing it, we looked for a new one in the range

0.5 and 0.91694 and found that w = 0.82009 produced a new extreme supported

nondominated objective vector and so on.
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4.4  Generating All Nondominated Objective Vectors
Haimes et al. (1971) showed that an optimal solution to the following problem
produces an efficient solution:

Max E + ;ST

subject to

ST<k

x € Xy

or equivalently

Max E

subject to

x € Xy

Let E* be the optimal E value.

Max ST

subject to

E=E"

X € Xy

Using this result, we propose a procedure that generates a nondominated objective

vector at each iteration. This procedure uses the fact that (E, ST) is in fact integer.
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Procedure 4 Generating All Nondominated Objective Vectors

Input: Initial gate assignment plan, arrival and departure times of the aircraft
Step 0. Solve the following problem to find the extreme nondominated
objective vector with the largest E value.
Max E
subject to
x € Xy
Let E(1) be the optimal E value.
Max ST
subject to
E=E(l)andx € X,
(E(1),ST(1)) is the first nondominated objective vector. Set r = 1.
Step 1. Solve the following problem
Max ST
subject to
ST=>ST(r)+1
X € Xy
If the problem is infeasible, go to Step 3.
Step2. r=r+1
Let E(r) be the optimal solution.
Max ST
subject to
E=E()andx € X,
Let ST(r) be the optimal solution. (E(r),ST(r)) is the rth
nondominated objective vector. Go to Step 1.
Step 3. Stop, all » nondominated objective vectors are generated.
Output: All nondominated objective vector and an optimal gate assignment plan

corresponding to each vector.
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Continuing with the example given in Section 4.3, we present all nondominated

objective vectors of this example instance below.

Table 4.4 Example for All Nondominated Objective Vectors: r, E*, ST*

Ndov, r E” ST* Ndov, r E* ST
1 16888 154134 9 17442 140652
2 16988 150822 10 17742 137466
3 17088 150804 11 17792 134154
4 17142 144018 12 17842 134136
5 17188 147492 13 17892 130824
6 17242 143982 14 17942 127512
7 17288 144180 15 17992 114174
8 17342 140724
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Figure 4.2. Example for All Nondominated Objective Vectors

The trade-off between the two objectives can clearly be seen in Figure 4.2.
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45  Generating the Approximate Nondominated Objective Vectors

Our experiments have shown that the exact algorithm becomes computationally
intractable when the number of aircraft and the number of gates get bigger. This rises
a need for a heuristic procedure.

To get approximate set of nondominated objective vectors, we fix some aircraft at
some gates and solve the reduced problem. In doing so, we check for the two extreme
nondominated objective vectors, each of which obtained in reasonable times.

The similarity of assigned aircraft for each gate between the two extreme
nondominated objective vectors is detected. If the aircraft assigned to a particular
gate, say gate k, in the first extreme nondominated objective vector (the one having
the largest E value) are also asisgned to gate k, in the second extreme solution (the
one having the largest ST value), then we fix the aircraft of the latter extreme
nondominated objective vector to gate k and reduce the problem by ignoring the

fixed aircraft and gate k.

The idea behind these reductions is that if the two aircraft are assigned to the same
gate in two extreme, i.e., the furthest, nondominated objective vectors, then it is very
likely that those aircraft be assigned to gate k in the nondominated objective vectors

in between.

Procedure 5 is the stepwise description of the heuristics procedure.
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Procedure 5 Generating the Approximate Nondominated Objective Vectors

Step 0. Find two extreme nondominated objective vectors, r = 1 with the
largest E and r = 2 with the largest ST.
Let Sy, be the set of aircraft assigned to gate k in extreme
nondominated objective vector r
Let N be the set of all aircraft
Let M be the set of all gates
Setk=1

Step 1. If Sy, is superset of Sy, i.e., all aircraft in S, are also in Sy, at gate k,
then N = N/{Sy,}and M = M /{k}

Step 2. If k = m, then go to Step 3.
k=k+1
Goto Step 1

Step 3. For the reduced problem with gates in M and aircraft in N find all

nondominated objective vectors using Procedure 4.

We give a small example withn = 15, m = 5 to demonstrate the reduction described

in Procedure 5. Let’s assume that due to a disruption, gate 4 is closed.

Table 4.5. shows the aircraft-gate assignments for the two extreme nondominated

objective vectors.

Table 4.5 Example Reduced Problem for the Approximate Nondominated Objective

Vectors
Extreme
) m=1 m=2 m=3 m=4 m=5
Solution
with the largest ST 1,2,4,13,15 6,89 11,12,14 3,5,7,10

_ closed
With the largest E 1,2,4,10,11 6,8,9 12,14 3,5,7,13,15
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We see that the list of aircraft assigned to gate 2 in the extreme nondominated
objective vector with the largest ST value is in fact a superset of the list of aircraft
assigned to gate 2 in the extreme nondominated objective vector with the largest E
value. Similarly, this also holds true for the case of gate 3. Then, we fix the
assignments of the extreme nondominated objective vector with the largest ST value
for gates 2 and 3 and do not include these gates in the reduced problem. A reduced
problem is created for the remaining set of aircraft and gates, which consists of gates
1 and 5; and aircraft 1, 2, 3, 4, 5, 7, 10, 13, 15. Procedure 4 will be applied to this

reduced problem that is clearly of smaller size.

46  Optimal Decomposition

A meaningful question regarding generating an assignment plan would be “What
would happen if the problem could be decomposed?”. Depending on how many,
preferably equal-sized, small instances a problem consists of, obtaining an
assignment for each small piece and combining them to get a full solution for the big

problem might be a good idea to be explored.

The optimal decomposition of an AGRP would mean that the problem set at hand
has time intervals where no aircraft occupies the gates, i.e., in such time intervals no
aircraft is present in the system. Thus, at such time intervals, the problem could be
decomposed where independent smaller-sized problems are obtained. What should
follow would be to solve each decomposed problem and then combine the solutions

to get a full assignment plan for the main problem.

We first find the set of nondominated objective vectors for each decomposed

problem, using Procedure 4.

We let A(v) be the set of nondominated objective vectors, v =1, ..., V.

14
A= UA(v)
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EFE, E value of solutionu in A
STA, STA value of solution u in A

We combine the solution by taking a solution from each decomposed problem and

get a complete nondominated objective vector.

To form the complete vectors, we use two models. The models use the following

decision variable

L= {1 if solution u is selected ueA

0 otherwise

The combined models are stated as:

%4

(Pg) Max z z EFF,z,

v=1u€A(w)

subject to

%4

Z Z STAyz, >t

v=1u€cA(v)
ZueA(v) Zy = 1 v=1,..,V
z,=0orl1 u€eEAi

Let EFF* be the optimal solution.

%4

(Psr) Max Z Z STA,z,

v=1u€cA(v)

subject to

%4

Z Z EFE,z, = EFF*

v=1u€A(v)

ZueA(v) Zy = 1 v=1,..,V
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z,=0or1 u€eAi
Let STA* be the optimal solution.

(EFF~*,STA") is a nondominated objective vector once t is between the minimum

and maximum stability values of all efficient solutions.
The minimum stability value is ST,z = Y/_, mEiE{STAu} and maximum stability
u

value STyp = YV_, max{STA,}.
UEA

The following procedure gives the set of all nondominated objective vectors.

Procedure 6 Generating All Nondominated Objective Vectors with Optimal

Decomposition Rule

Step 0. Find set A(v) forall v = 1, ...,V by using Procedure 4.
Find ST, 5 and STy.
Sett = ST,5, 7= 1.
Step 1. Solve Py and then Pgy.
The optimal solutions of P; and Psy (EFF*,STA*) gives the rt" efficient
solution.
Step 2. If STA* < STyp, thenlett = STA* + 1,r = r + 1 and go to Step 2, else

stop, all »r nondominated objective vectors are generated.

A small example with n = 15, m = 5is given in Table 4.6 that is decomposable into

three smaller problems (r = 3).
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Table 4.6 Example for Optimal Decomposition: a;, d;,r = 3,

Aircraft, i ,il\rrival D(.eparture Aircraft, érrival Dt?parture
time, a;  time, d; time, a;  time, d;
1 41 72 9 163 193
2 33 78 10 145 176
3 55 95 11 280 339
4 52 97 12 300 344
5 14 58 13 286 343
6 138 189 14 277 317
7 174 228 15 287 319
8 165 206
14 33 4152 55 56 72 76 95 97 138 145 163 165 174 176 189 193 206 228 277 280 286 267 300 317 319 339 343 344
3 3 2,

Figure 4.3. Example Time Intervals for a Decomposable Problem

As seen from Figure 4.3, there are no aircraft in the system in the boldface time
intervals. Thus, we can decompose our problem into three smaller problems, solve

them separately, and apply Procedure 6 obtain the solutions for the original problem.

4.7  Heuristic Implementation of Decomposition Algorithm

Our experiments have revealed a satisfactory behavior of our decomposition
algorithm. The basic difficulty is that many instances do not have many intervals
with no aircraft, hence the application of the decomposition algorithm may not be

possible.

In case there are no intervals with no aircraft, one may use our decomposition-based

algorithm to get approximate nondominated objective vectors.
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The following procedure may be applied to get such solutions.

Procedure 7 Generating Approximate Nondominated Objective Vectors with

Heuristic Implementation of Decomposition Algorithm

Step 0. Find r intervals with minimum number of aircraft

Step 1. Let A be the set of aircraft that are present in at least one of the r
intervals.

Step 2. Apply our decomposition algorithm for r individual subproblems and
set of N\A aircraft

Step 3. For each nondominated objective vector, insert the aircraft in A.

The future research may point out development of efficient insertion and interchange

mechanisms for Step 3.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

We design an experiment to test the performances of the algorithms. In Section 5.1,
the data generation scheme is discussed and in Section 5.2, the performance

measures are stated. Section 5.3 analyzes the result of our computational experiment.

5.1 Data Generation Scheme

We select the parameter m compatible with the layouts of airports in Turkey where
we make a real-life application. The airports in the largest three cities in Turkey are
Istanbul Airport in Istanbul, Esenboga Airport in Ankara, and Izmir Adnan Menderes
Airport in Izmir, and have about 40, 20, and 10 gates, respectively. So, in our

experiments, we use m as 40, 20, and 10 gates.

As for the parameter n, we set the number of aircraft, starting from 50 and increase

it increments of 25, for each m scenario.

For each aircraft i, arrival time a; and departure time d; are generated as stated in

Karsu et al. (2021). According to this scheme, the following two sets are defined:
Setl a;~U[0,300]

d;~U[0,30] + 30 + a;
Setll a;~U[0,150]

d;~U[0,60] + 60 + a;

Set I and Set Il represent low and high waiting instances, hence having low and high
chances of apron assignments, respectively. Furthermore, the time unit used for the

arrival and departure times is minutes. For example, when an aircraft has an arrival
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time of 65, it means that this aircraft will be in the airport in the 65" minute of the

planning horizon, which is compatible with the time intervals used in real-life.
For each aircraft i, number of passengers p; are generated as follows.

p;~T(50,100,300) where T is the triangular distribution and 50 is the minimum
number of passegers in an aircraft, 100 is the mode, and 300 is the maximum. Note

that, we round this random number to an integer value.

We use an initial plan that is optimal for the efficiency measure. Then, we assume
that disruptions occur at time zero and the affected gates do not become available
thereafter. We define three types of disruption scenarios for our experiments, where
affected gates are selected randomly.

Type | — one gate is affected by the disruption
Type Il — one fifth of the gates are affected by the disruption
Type 111 — half of the gates are affected by the disruption

Disruption Type | depicts a small disruption where only a single gate is closed.
Disruption Type Il shows a more serious case where one fifth of the gates are
affected. For the sake of completeness, Disruption Type Il depicts the more severe
incidents where half the gates become inoperable.

For each n, arrival and departure time set, and disruption type, 10 problem instances
are randomly generated. We set a termination limit of two hours for the execution of

each mathematical model.

MATLAB is used for random parameter generation and reduced problem creation
efforts. All mathematical models and algorithms are developed using ILOG CPLEX
Optimization Studio 20.1.0, and solved by CPLEX Optimizer 20.1.0. Furthermore,
a computer with quad-core Intel(R) Core(TM) i7-10510U CPU @1.80GHz-2.30
GHz, 16 GB RAM, and Windows 11 is used. Reported CPU times are expressed in

seconds.
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5.2 Performance Measures

We report the average and maximum (worst case) CPU times for all procedures. We

also include the statistics for the number of nondominated objective vectors.

To evaluate the performance of the heuristic algorithm that generates the
approximate set of nondominated objective vectors, we first use P, the average of

exact nondominated objective vectors found by the heuristic.

We let

__|ESNHS|
|HS|

* 100 where
ES  exact set of nondominated objective vectors
HS  approximate set of nondominated objective vectors

|[ES n HS|  number of exact nondominated objective vectors found by heuristic

Hence, P is the percentage of |ES N HS| in |HS| (the number of exact nondominated

objective vectors)

To evaluate the closeness of the non-exact solutions to their exact counterparts, we
use the following two statistics, D1 and D2, defined in Czyzzak and Jaszkiewicz
(1998). They define D1 and D2 as the average and maximum distance between the

exact and heuristic nondominated objective vectors, respectively.

To find D1 and D2, we assume (E”,ST™) is in ES and (E4,ST?) is in HS, and

calculate the ranges of E values, R(E), and ST values, R(ST), as follows:

R(E)= max E"— min E"
(ET,STT) €ES (ET,ST™) €ES
R(ST)= max ST"— min ST"
(ET,ST™) €ES (ET,STT) €ES

D1 and D2 measures are calculated as follows:
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1
B, ST, (B",ST") = max (0, ez (B = B7) 5 (ST = 5T7)
1
D1 =15 (oo B sV (BT, ST, (BT, ST}

(ET,STT)EES

D2 = {F(@e, 579, (7, 51))}

ma
(ET, STT)EES {(Eq STq)eHS

In our computational efforts, higher percentage of nondominated objective vectors,
P, will be preferred over lower P values. Furthermore, lower average and maximum
distance between the exact and heuristic nondominated objective vectors, D1 and D2

respectively, will be preferred over higher D1 and D2 values.

5.3  Computational Results

In this section, we discuss the computational results for mathematical models in
Chapter 3 and solution algorithms in Chapter 4. Note that an optimal initial plan

under our efficiency criterion is used in the following computations.

53.1 Comparison of Assignment Based Model and Network Based Model

First and foremost, we compare the performances of mathematical models presented
in Chapter 3, namely Assignment Based Model and Network Based Model. Since
these two mathematical models are used to obtain feasible assignment plans, we test
them on getting an initial assignment plan with our efficiency concern in mind. We
make a comparison based on average and maximum CPU times where we run our
models for Set 1 and Set 2 i.e., low and high apron usage scenarios, in Table 5.1 and
Table 5.2, respectively, and several aircraft-gate pairings, before any disruption in

the system.
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Table 5.1 Comparison of Assignment and Network Based Models for Set 1

CPU Time
N Assignment Based Network Flow Based
Model Model

Avg Max Avg Max

10 0.16 0.22 0.99 1.61

50 20 0.27 0.36 1.55 1.88
40 0.45 0.53 3.66 4.77

10 0.31 0.47 1.87 2.72

75 20 0.46 0.58 3.18 4.25
40 0.84 1.33 6.94 7.95

10 0.51 0.92 3.35 4.31

100 20 0.72 1.02 5.47 6.44
40 0.90 1.08 12.15 13.06

10 1.00 1.59 4.88 5.52

125 20 2.52 4.95 9.77 11.27
40 1.25 1.30 20.39 22.19

10 1.32 1.73 6.12 7.42

150 20 4.68 10.23 13.64 16.28
40 1.71 1.92 25.97 28.80

10 1.84 2.80 11.13 14.50

175 20 11.59 18.47 28.37 34.66
40 3.43 5.50 49.92 67.45

10 231 2.98 9.23 10.11

200 20 16.77 20.97 37.52 47.36
40 6.61 8.98 62.47 70.28
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Table 5.2 Comparison of Assignment and Network Based Models for Set 2

CPU Time
N Assignment Based Network Flow Based
Model Model

Avg Max Avg Max

10 0.21 0.41 0.89 1.00

50 20 0.41 0.61 1.98 2.34
40 0.75 0.83 5.19 6.11

10 0.38 0.44 1.85 2.09

75 20 0.89 1.03 4.27 5.14
40 1.83 2.16 10.35 11.84

10 0.59 0.72 3.24 4.94

100 20 1.48 2.55 7.22 7.89
40 3.15 3.80 19.00 20.52

10 0.84 0.92 4.46 4.70

125 20 1.82 2.17 10.50 11.47
40 5.17 6.25 29.30 32.14

10 0.99 1.11 6.09 6.94

150 20 2.43 2.95 14.72 17.48
40 6.16 7.58 43.27 53.95

10 1.26 1.47 12.66 13.84

175 20 2.57 3.63 30.88 33.09
40 8.26 9.69 77.32 94.20

Table 5.1 and Table 5.2 show that as the number of aircraft increases, so do the CPU

times. This is due to the increased complexity with the increases in the problem size.

Table 5.1 demonstrates that as the number of gates increases, generally the CPU time
also increases. However, for the larger number of aircraft, we observe that as the
number of gates reaches 40, CPU times tend to decrease with the Assignment Based
Model in the low apron usage scenario. Furthermore, Table 5.2 demonstrates that an
increase in the number of the gates results in higher CPU times for both models in
the high apron usage scenario. High apron usage inherently means that the problem
setting is in need of more gates. Thus, as m increases, the solution space gets wider,

taking longer to solve.
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Strikingly, both Table 5.1 and Table 5.2 report lower CPU times for the Assignment
Based Model than the Network Based Model. In some instances, the CPU time of
the Network Based Model reaches up to ten times that of the Assignment Based
Model. For example, in Table 5.1, when n is 200 and m is 40, the average CPU time
for Assignment Based Model is reported as 6.61 seconds, whereas for Network
Based Model, it is 62.47 seconds. We deduce that the Assignment Based Model is a
better fit to our problem. Hence, we continue with the Assignment Based Model in

our solution algorithms.

5.3.2 Extreme and Extreme Supported Nondominated Objective Vectors

We discuss the performance of the extreme and extreme supported algorithms given

under Procedures 1, 2, and 3 in this section.

Table 5.3 and Table 5.4 report average and maximum CPU times for extreme
nondominated objective vector with the largest E value, extreme nondominated
objective vector with the largest ST value, extreme supported nondominated
objective vectors, and average and maximum number of extreme supported

nondominated objective vectors, for Set 1 and Set 2, respectively.
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Table 5.3 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1

ES- ES- ESS
. . Efficiency Stability

Disruption m ' Number .
Type CPU Time of ESSs CPU Time
Avg Max Avg Max Avg Max Avg Max
0 10 031 041 020 083 36 5 1.05 1.52
> 20 039 047 039 084 1 1 0.78 1.23
75 10 050 066 011 045 46 7 1.62 2.72
20 079 141 035 066 14 3 1.43 2.52
10 122 158 0.03 011 47 7 3.93 6.11
100 20 237 358 031 089 43 6 5.92 9.36
40 237 378 078 177 1 1 3.15 5.38
10 210 255 0.04 011 45 7 551 8.05
125 20 510 855 019 045 45 6 10.36 13.56
1 40 313 358 126 341 1 1 4.39 6.66
10 380 484 0.07 027 42 6 8.06 11.36
150 20 10.62 16.83 0.15 039 63 8 23.99 38.67
40 389 428 112 200 1 1 5.01 5.92
10 502 705 012 038 49 7 10.74  17.53
175 20 21.38 30.14 010 0.33 5.6 7 36.70  46.56
40 1034 1522 190 319 21 3 16.17 23.42
10 407 498 0.10 047 43 7 10.05 17.36
200 20 2287 3061 0.21 067 56 8 4557 5548
40 1593 3744 139 233 32 4 28.52 55.53
50 10 029 052 021 047 59 8 1.80 2.50
20 039 045 056 128 1 1 0.95 1.66
75 10 055 081 0.18 053 6.9 12 4.58 10.38
20 088 106 061 122 42 7 4.16 5.50
10 074 100 005 011 7 8 5.26 7.17
100 20 232 302 060 088 113 16 1868 29.36
40 233 255 277 531 1 1 5.10 7.69
9 10 152 192 006 019 68 9 735 11.80
125 20 510 728 035 080 115 19 29.49 49.91
40 336 377 380 7.08 1 1 7.16 10.23
10 221 267 007 022 65 10 12.37 21.03
150 20 810 1191 0.13 028 146 18 5271 68.92
40 6.06 825 357 530 24 6 15.63  35.08
10 383 450 008 028 76 11 13.81 19.77
175 20 1465 2155 036 0.77 13 17 60.23 71.94
40 2497 4819 3.08 513 104 18 9567 217.11
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Table 5.4 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1

(cont’d)
ES- ES- ESS
. . Efficiency Stability
Disruption m _ Number _
Type CPU Time of ESSs CPU Time
Avg Max Avg Max Avg Max Avg Max
10 359 408 009 030 67 10 16.88 2834
2 200 20 1813 2097 0.33 128 127 17 81.50 111.67
40 4541 69.88 233 341 193 24 316.24 701.03
50 10 033 045 023 0.77 838 14 3.23 6.44
20 052 066 084 137 33 5 2.33 3.22
75 10 058 0.73 014 044 86 11 5.47 7.61
20 093 113 0.79 161 10.7 16 1058 16.91
10 078 088 0.10 042 097 14 8.56 14.20
100 20 176 217 045 083 156 20 25.06 34.81
40 314 403 360 6.03 3.2 7 11.97 18.58
10 110 147 014 063 9.1 13 12.68 17.42
125 20 280 319 035 063 178 21 51.22 71.86
3 40 7.18 1070 482 6.69 98 15 58.28 98.39
10 124 138 012 034 94 11 10.28 11.66
150 20 373 414 028 084 179 20 50.75 56.83
40 1143 1595 516 750 16 19 127.84 244.45
10 243 3.00 0.08 038 097 15 17.36 27.84
175 20 715 844 025 056 161 19 63.57 80.53
40 3540 45.08 4.96 8.09 242 28 34499 608.61
10 215 236 007 025 89 11 1531 1958
200 20 560 6.17 0.16 041 17 21 71.47 108.80
40 33.00 5436 3.08 547 26.1 34 329.08 490.97
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Table 5.5 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2

ES-

ES-

s . ESS
Disruption . Efficiency Stability Number

Type CPU Time of ESSs CPU Time
Avg Max Avg Max Avg Max Avg Max
50 10 026 030 005 014 24 3 0.84 145
20 053 0.61 0.07 017 2 3 1.30 2.05
75 10 047 066 005 017 22 3 1.19 203
20 129 183 0.15 066 23 3 238 331
10 076 092 003 009 17 3 191 3.13
100 20 175 223 005 019 23 4 432 6.69
40 428 502 025 097 21 3 527 847
1 10 105 116 0.07 020 22 3 3.04 373
125 20 220 253 009 042 21 3 6.64 11.14
40 6.04 769 017 042 23 3 790 11.25
10 137 153 0.08 034 17 2 470 6.16
150 20 289 3.08 010 025 25 3 12.83 19.83
40 9.16 1142 023 061 28 3 1190 13.64
10 202 236 0.06 027 2 3 500 6.23
175 20 382 441 010 039 21 3 2505 3238
40 1342 1533 027 1.08 24 4 26.00 48.58
50 10 027 034 004 014 32 5 1.09 2.00
20 050 064 019 081 47 9 293 481
75 10 048 0.67 0.07 025 28 4 161 3.09
20 1.06 134 0.13 056 4.9 7 497 7.05
10 069 078 006 025 29 4 213 342
100 20 173 202 0.11 031 48 6 6.54 7.89
40 409 497 039 108 76 12 19.00 28.39
5 10 107 119 0.07 033 29 5 3.20 4383
125 20 204 217 006 020 5.1 7 1105 1481
40 509 586 015 050 78 10 28.27 33.23
10 158 266 008 038 25 4 382 472
150 20 275 311 0.12 039 51 7 16.28 22.95
40 7.02 777 034 111 86 12 4232 62.45
10 169 202 004 019 24 4 575 8.86
175 20 325 391 0.14 038 43 7 2729 3342
40 1233 1494 0.27 059 75 11 9533 147.88
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Table 5.6 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2
(cont’d)

ES- ES-

_ . ESS

Disruption . Efficiency -Stablllty Number |
Type CPU Time of ESSs CPU Time
Avg Max Avg Max Avg Max Avg Max
50 10 025 0.28 0.08 030 41 5 137 181
20 046 058 0.19 0.73 6.3 9 442 691
75 10 047 056 0.04 011 37 6 214 361
20 082 103 013 031 79 10 690 8.83
10 0.61 0.67 0.04 014 4.2 6 337 431
100 20 133 144 0.09 019 7.2 9 8.82 12.88
40 303 397 042 094 116 14 3236 4947
3 10 096 111 0.07 027 41 5 413 478

125 20 191 225 008 023 69 9 1324 18.20
40 4.00 450 0.11 041 114 15 4786 60.45
10 123 142 0.05 023 4 7 471 816
150 20 235 258 007 020 68 9 1839 27.39
40 538 6.14 0.13 044 114 16 6588 9142
10 160 219 007 023 34 4 510 6.16
175 20 290 317 0.07 025 6.8 11 2197 36.78
40 891 10.17 021 045 105 14 8572 114.05

As expected, both tables demonstrate higher CPU times for the larger number of
aircraft. Under both low and high apron usage scenarios, we observe that CPU times
for finding the extreme nondominated objective vector with the largest ST value are
smaller than those of the extreme nondominated objective vector with the largest E
value. With this finding, the importance of using a reduced problem in Procedure 2,
IS emphasized. Especially, in instances with a larger number of aircraft, the
difference between CPU times of the two extreme nondominated objective vectors

iIs more dramatic, in some cases up to 40 times.

We also observe that CPU times for finding the extreme supported nondominated
objective vectors are higher for Set 1 and it increases with the number of aircraft in

the problem. Based on disruption types, the CPU times increase as the problem
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becomes more complex. Disruption type 1 seems to be resulting in a less complex

problem than its counterparts, disruption types 2 and 3 where more gates are closed.

Lastly, we observe that the average and maximum number of extreme supported
nondominated objective vectors is higher in Set 1 as opposed to Set 2 which is
compatible with higher CPU times. As expected, under low apron usage scenario,
there exist more solutions compared to the more restrictive high apron usage
scenario. To illustrate, when n is 150 and m is 20, the average number of extreme
supported nondominated objective vectors is 14.6 (Disruption Type 2) and 17.9
(Disruption Type 3) for Set 1, whereas, for Set 1, it is 5.1 (Disruption Type 2) and
6.8 (Disruption Type 3).

5.3.3 All Nondominated Objective Vectors

Exact solutions are found using Procedure 4 from Chapter 4. We discuss the
performance of the exact algorithm that generates all nondominated objective
vectors. Table 5.5 and Table 5.6 report the average and maximum number of
nondominated objective vectors, average and maximum CPU times, and average

CPU time per nondominated objective vector for Set 1 and Set 2, respectively.
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Table 5.7 All Exact Nondominated Objective Vectors for Set 1

Average

Disruption Number of ndovs CPU Time C_PU
m Time

Type per
Avg Max Avg Max ndov

50 10 6.5 12 2.71 7.23 0.42

20 1 1 0.51 0.83 0.51

75 10 10.4 21 10.90 39.91 1.05

20 1.6 3 1.34 2.45 0.84

1 10 9.5 15 13.36 45.27 1.41
100 20 7.1 14 14.89 30.66 2.10

40 1 1 2.86 458 2.86

10 9.2 18 18.84 61.80 2.05
125 20 8.3 13 212.02 1671.61 2554

40 1 1 5.13 7.83 5.13

50 10 115 19 7.36 14.00 0.64

20 1 1 0.75 1.08 0.75

75 10 18.2 33 26.83 118.42 1.47

20 6.5 11 8.99 22.69 1.38

5 10 18 25 23.75 54.30 1.32
100 20 32.8 69 452,11 1338.13 13.78

40 1 1 414 481 414

10 16.1 24 28.23 52.33 1.75
125 20 45.2 72 1330.44 5985.94  29.43

40 1 1 5.17 6.08 517

50 10 19.2 24 10.78 13.42 0.56

20 4.2 9 3.33 7.23 0.79

75 10 32.6 45 30.85 58.70 0.95

20 26 57 59.60 143.33 2.29

3 10 32.3 54 39.32 82.72 1.22
100 20 52.4 74 589.38 2840.03 11.25

40 4.3 10 16.84 40.27 3.92

10 30.4 56 39.07 71.34 1.29
125 20 76.3 103 79251 1309.72 10.39
40 20.8 33 623.93 2850.83  30.00
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Table 5.8 All Exact Nondominated Objective Vectors for Set 2

Average
Disruption Number of ndovs CPU Time C_PU
m Time
Type per
Avg Max Avg Max ndov
50 10 2.8 4 0.85 1.28 0.31
20 2.8 5 1.75 2.91 0.63
75 10 2.4 4 1.49 2.88 0.62
20 2.5 4 2.98 4.48 1.19
1 10 1.9 5 1.94 5.05 1.02
100 20 2.7 7 5.23 11.36 1.94
40 3.1 5 11.72 17.91 3.78
10 2.9 6 4.38 11.38 151
125 20 2.3 3 5.47 7.30 2.38
40 2.7 4 13.98 22.56 5.18
50 10 4.2 6 1.78 2.88 0.42
20 10 19 7.64 13.28 0.76
75 10 3.6 6 2.18 413 0.61
20 8 12 9.51 14.83 1.19
9 10 3.4 6 3.12 6.08 0.92
100 20 6.1 9 10.55 15.41 1.73
40 28.4 48 118.32 258.56 417
10 4.4 10 5.82 15.36 1.32
125 20 7.6 10 15.01 18.23 1.98
40 134 22 57.63 96.55 4.30
50 10 5.8 10 2.23 4.59 0.38
20 12.3 21 8.93 16.06 0.73
75 10 6 9 3.86 6.97 0.64
20 13.4 22 12.57 24.61 0.94
3 10 6.5 13 5.77 12.77 0.89

100 20 11.2 16 16.81 26.98 1.50
40 27.4 37 80.59 123.69 2.94
10 6.3 8 6.91 9.42 1.10
125 20 11.8 17 22.25 32.13 1.89
40 25.3 30 91.52 107.95 3.62

From Table 5.5 and Table 5.6, we observe that the number of nondominated

objective vectors is higher in Set 1 than that of Set 2. This is due to the high apron
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usage nature of Set 2, there are not as many possible aircraft-gate assignments, hence

the solution space is narrower.

Moreover, we observe that CPU times increase as n increases for both sets. This can
be attributed to the increase in the complexity of models due to the increase in the

problem size.

Set 1 instances are harder to solve than Set 2 instances. This is consistent with the
higher number of nondominated objective vectors of Set 1. For example, under
disruption type 2, when n is 125 and m is 20, the average (maximum) CPU times
are 1330.44 (5985.94) seconds for Set 1, whereas it is 15.01 (18.23) seconds for Set
2. Similarly, under disruption type 3, when n is 125 and m is 20, the average
(maximum) CPU times are 623.93 (2850.83) seconds for Set 1, whereas it is 22.25
(32.13) seconds for Set 2. For both Set 1 and Set 2, we also observe that disruption
type 2 takes longer to solve than its disruption type 3 counterpart.

Furthermore, the average CPU time per nondominated objective vector is higher for
Set 1. Its largest values occur with large number of aircraft and a relatively large
number of gates, for example when n is 125 and m is 20. As the problem size
increases, so do the solution times for both sets. However, due to its narrower
solution space, there are not as many solutions for Set 2. This results in a higher

average CPU time per nondominated objective vector values for Set 1.

534 Approximate Nondominated Objective Vectors

Procedure 5 in Chapter 4, where we take advantage of the closeness of the two
extreme nondominated objective vectors to create a reduced problem and unify its
solutions with the extreme supported nondominated objective vectors, is
implemented on our test instances. Their results are given in Table 5.7 and Table 5.8
in which average and maximum CPU times, average and minimum P, average and

maximum D1 and D2 statistics are reported.
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Table 5.9 Heuristic Procedure for Set 1

Disruption CPU Time P D1 D2
Type Avg Max Avg Min Avg Max Avg Max
5o 10 328 8.67 82.85 4545 0.04 025 013 0.70
20 078 1.23  100.00 100.00 0.00 0.00 0.00 0.00
.5 10 879 2602 70.36 2857 005 022 0.8 0.67
20 172 395  100.00 100.00 0.00 0.00 0.00 0.00
10 1170 3033 9233 66.67 001 0.0 0.06 0.37
100 20  9.03 16.64 8829 66.67 002 006 007 025
1 40 315 538  100.00 100.00 0.00 0.00 0.00 0.00
10 1318 2534 8562 3636 002 0.0 0.08 0.23
125 20 19.00 40.22 7754 3077 003 012 010 0.25
40 439 6.66  100.00 100.00 0.00 0.00 0.00 0.00
10  16.58 28.72
150 20 101.95 57241
40 501 5.92
5o 10 825 1386  90.86 75.00 0.01 005 0.06 0.25
20 0.95 1.66  100.00 100.00 0.00 0.00 0.00 0.00
25 10 17.13 51.70  76.63 21.21 0.02 0.05 0.09 0.25
20 834 2047 9411 7778 0.01 0.07 0.08 0.36
10 29.38 98.44 9217 50.00 0.00 0.01 0.02 0.07
100 20 23237 1034.02 9204 3333 0.00 001 001 007
2 40 5.0 7.69  100.00 100.00 0.00 0.00 0.00 0.00
10 19.09 3522  89.63 50.00 0.01 0.03 004 0.17
125 20 706.73 4499.83 83,50 5200 0.00 002 005 0.11
40 7.6 10.23  100.00 100.00 0.00 0.00 0.00 0.00
10 32.60 55.31
150 20 1699.25 6493.59
40  18.27 46.08
5o 10 627 21.09 5586 33.33 003 006 0.11 0.17
20 350 5.56 9244 4444 0.02 010 0.05 027
25 10 10.55 3522 3819 17.07 0.03 005 0.13 0.24
20 5258 23825 7649 3333 0.01 0.09 0.05 025
10 1753 7553 4497 1591 0.03 005 0.15 0.32
100 20 43.99 21448 3694 2167 002 002 007 0.10
3 40 18.18 38.55  100.00 100.00 0.00 0.00 0.00 0.00
10 19.22 49.86 4454 1429 0.04 0.06 0.14 0.26
125 20 286.75 1030.66 62.78 2041 0.01 0.03 005 0.13
40 76156 4008.38 95.63 82.14 0.00 0.01 0.01 0.7
10 1337 40.30
150 20 43545 213791
40 7396.45 59410.89
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Table 5.10 Heuristic Procedure for Set 2

Disruption CPU Time P D1 D2
Type Avg Max Avg Min Avg Max Avg Max
50 10 1.05 1.89 94.17 66.67 0.03 0.17 0.08 0.50
20 145 214 79.00 40.00 0.11 0.35 0.29 0.77
75 10 1.38 219 9750 75.00 0.01 0.08 0.03 0.33
20 2.62 3.69 95.00 50.00 0.03 0.25 0.06 0.63
10 2.08 3.69 96.00 60.00 0.01 0.14 0.05 0.49
100 20 4.70 7.47 9857 85.71 0.00 0.00 0.00 0.00
1 40 5.49 9.16 75.67 50.00 0.12 0.23 0.37 0.69
10 349 466 90.00 50.00 0.04 0.17 0.13 051
125 20 6.95 1141 93.33 66.67 0.03 0.17 0.10 0.50
40 819 1164 90.83 66.67 0.03 0.17 0.10 0.50
10 4.98 6.58
150 20 13.19 20.53
40 1290 15.62
50 10 1.85 3.33 96.00 60.00 0.01 0.08 0.03 0.25
20 6.27 10.77 90.58 68.75 0.00 0.02 0.04 0.24
75 10 2.27 472 9750 75.00 0.01 0.08 0.03 0.33
20 827 1358 9444 66.67 0.01 0.04 0.06 0.25
10 277 495 9417 66.67 0.02 0.12 0.08 0.50
100 20 9.68 11.78 98.89 88.89 0.00 0.02 0.01 0.14
2 40 48.82 108.78 90.94 68.00 0.00 0.01 0.03 0.11
10 531 1041 9450 70.00 0.01 0.08 0.06 0.33
125 20 16.94 2263 99.00 90.00 0.00 0.01 0.01 0.07
40 39.35 5495 99,55 9545 0.00 0.00 0.00 0.04
10 4.84 7.94
150 20 20.68 27.91
40 55.37 87.94
50 10 2.73 522 9571 57.14 0.01 0.09 0.03 0.29
20 10.44 21.03 99.38 93.75 0.00 0.00 0.00 0.04
75 10 3.87 7.11 98.00 80.00 0.01 0.06 0.03 0.32
20 13.77 23.75 93.26 4091 0.00 0.03 0.01 0.09
10 6.95 1272 9453 75.00 0.01 0.03 0.05 0.19
100 20 18.42 2489 98.13 87.50 0.00 0.00 0.00 0.01
3 40 66.34 108.67 98.00 80.00 0.00 0.01 0.00 0.03
10 823 1191 96.25 75.00 0.00 0.03 0.03 0.24
125 20 25.04 36.39 97.39 88.24 0.00 0.01 0.01 0.11
40 92.02 110.06 99.55 95.45 0.00 0.00 0.01 0.07
10 841 13.84
150 20 29.31 41.13
40 101.61 137.23
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As expected, as the problem size increases, the CPU times increase. However, it
takes a much shorter time to solve the same set of problems with the heuristic
procedure compared to the exact algorithm. This becomes more vivid in the
following example: when n is 125 and m is 20 with disruption type 2 for Set 1, the
average (maximum) CPU time to generate all nondominated objective vectors is
1330.44 (5985.94) seconds as seen in Table 5.5. The same instances are solved using
the heuristic procedure with the average (maximum) CPU time of 706.73 (4499.83)
seconds as shown in Table 5.7. We observe a significant time reduction when the
heuristic procedure is used for this sizeable problem set. In this reduced time, the
average (maximum) of the reported P value is 83.50% (52%), which shows many of
the nondominated objective vectors can be generated in a much shorter time.
Considering the high average (maximum) number of nondominated objective
vectors 45.2 (72), we would be also generating a high number nondominated

objective vectors for the decision maker to choose from.

From Table 5.7, for Set 1, we see high P values for disruption type 1 and 2, and
satisfactory P values for disruption type 3 when supported with the considerrable
CPU time reductions compared to the exact algorithm and considering the high

number of nondominated objective vectors in Set 1.

From Table 5.8, for Set 2, we observe high P values for all disruption types, which
is consistent with the lower number of nondominated objective vectors in Set 2
compared to the Set 1 as shown in Table 5.5 and Table 5.6. To illustrate, for Set 2,
when n is 125 and m is 40 with disruption type 2, on average 99.55% of all
nondominated objective vectors are generated using the heuristic procedure. The
corresponding average CPU time is 39.35 seconds. On the other hand, for the same
instances, the exact algorithm generates 13.4 nondominated objective vectors on
average with an average CPU time of 57.63 seconds as shown in Table 5.6. We
observe that a good percentage of all nondominated objective vectors can be found

within a reduced time by our heuristic procedure.
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Table 5.7 and Table 5.8 demonstrate that the heuristic procedure returns very
satisfactory D1 and D2 statistics. Their, in general, very low values show the
nondominated objective vectors found by the heuristic procedure are close to the

ones found by the exact algorithm.

5.35 Optimal Decomposition Rule

For the optimal decomposition rule proposed in Procedure 6 in Section 4.6, we
generated new instances where the problem can be decomposed into two (r = 2) or
three (r = 3) small problems where no aircraft pair between the small problems is in

the system at the same time interval.

Table 5.9, Table 5.10, Table 5.11, and Table 5.12 report the average and maximum
number of nondominated objective vectors, and CPU times without the

decomposition rule and with the decomposition rule.

Table 5.9 is prepared for Set 1, with disruption type 2 and the case where the problem

is decomposed into two small problems.

Table 5.11 Decomposition Algorithm, Set 1, Disruption Type 2, r = 2

CPU Time

0 Number of ndovs without with
decomposition decomposition
Avg Max Avg Max Avg Max
10 11.8 19 8.45 13.50 6.09 14.52
75 20 12.6 19 21.96 73.92 9.37 20.03
40 1 1 2.93 3.45 2.14 2.88
10 15 24 14.45 23.45 10.70  25.17
100 20 23.8 33 76.09 372.23 1857  29.17
40 1 1 4.13 5.59 3.28 3.86

10 16.4 31 20.07 35.00 1165 19.91
125 20 27.4 37 72.48 103.42 3493 5219
40 1.5 4 7.97 21.00 6.16 14.92
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Similarly, we observe a more complex problem with the increased problem size. We
also observe as the number of nondominated objective vectors increase, so does the
CPU times. From Table 5.9, we directly observe the improvement in CPU times, that
decomposing the problem provides.

Table 5.10 is prepared for Set 1, with disruption type 2 and the case where the
problem is decomposed into three small problems.

Table 5.12 Decomposition Algorithm, Set 1, Disruption Type 2, r = 3

CPU Time
0 Number of ndovs without with
decomposition decomposition
Avg Max Avg Max Avg Max
10 13.4 26 9.00 22.19 4.31 8.84
75 20 114 16 10.16 18.94 4.85 6.27
40 1 1 1.64 1.81 1.84 2.31

10 14.3 23 11.36 20.14 6.64 12.47
100 20 16.3 23 23.38 34.91 8.21 11.69
40 1 1 3.61 4.14 2.49 3.00
10 154 20 15.43 21.03 5.51 8.34
125 20 26.8 48 63.31 138.28 1484  26.86
40 4.9 9 17.25 30.17 7.73 12.33

From Table 5.9 and Table 5.10, the effect of r can be clearly observed. Under the
same apron usage scenario with the same disruption type, decomposing the problem
into either two or three small problems result in further decreased CPU times in

general.

Table 5.11 is prepared for Set 1, with disruption type 3 and the case where the

problem is decomposed into two small problems.
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Table 5.13 Decomposition Algorithm, Set 1, Disruption Type 3, r = 3

CPU Time
0 Number of ndovs without with
decomposition decomposition
Avg Max Avg Max Avg Max

10 29.4 44 50.11 107.84 5.00 8.56
75 20 20.3 25 31.73 46.86 5.52 8.31
40 1.6 3 4.92 8.13 1.52 2.08
10 30.9 65 46.10 110.86 7.31 14.69
100 20 43.5 77 162.39  520.70 12.86  21.98
40 11.1 15 42.48 60.69 7.25 10.38
10 25.2 46 41.11 90.72 5.61 7.38
125 20 71.8 105 470.60 897.23 2556  35.83
40 21.3 31 13352 187.25 16.11  22.58

From Table 5.10 and Table 5.11, the effect of disruption, i.e., the number of gates
closed, can be inferred. As the number of closed gates increases, the average CPU
time also increases in Set 1. As a striking example, when n is 100 and m is 20 with
disruption type 3 for Set 1, the average (maximum) CPU time is reported as 162.39
(520.70) seconds without using the decomposition rule. However, with the
decomposition rule, the average (maximum) CPU time significantly reduces to 12.86
(21.98) seconds.

Table 5.12 is prepared for Set 2, with disruption type 3 and the case where the

problem is decomposed into two small problems.
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Table 5.14 Decomposition Algorithm, Set 2, Disruption Type 3, r = 2

CPU Time

0 Number of ndovs without with
decomposition decomposition
Avg Max Avg Max Avg Max
10 54 7 2.19 3.05 1.09 1.94
75 20 9.6 13 6.94 9.41 3.28 4.31
40 15.9 18 18.00 20.17 8.64 10.17
10 4.5 7 2.51 3.67 1.26 1.70
100 20 8.7 12 9.53 16.31 4.59 7.59
40 18.4 21 33.11 44,98 19.78  24.03
10 3.7 5 2.79 3.80 1.84 2.31
125 20 8.6 10 10.86 13.13 6.74 8.78

40 175 22 46.22 65.77 2231  28.22

We again observe the improved CPU times with the decomposition rule, this time
for the high apron usage scenario that is Set 2.

From Table 5.9, Table 5.10, Table 5.11, and Table 5.12, we deduce that both the
average and maximum CPU times are considerably reduced by using with

decomposition rule.
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this thesis, we study an airport gate reassignment problem (AGRP) where the gate
disruptions make the initial plan infeasible to implement. After the disruption, we
reassign the aircraft to the nonaffected gates to maximize our efficiency and stability

criteria.

In our efficiency criterion, we aim to maximize the number of aircraft assigned to
gates and the number of passengers in these aircraft. In our stability criterion, we aim
to maximize the number of same gate assignments from the initial plan and their
number of passengers as well as the number of aircraft assigned to gates. Both the
efficiency criterion and the stability criterion are made up of multi-objectives: two
objective functions are defined for the efficiency criterion and three for the stability
criterion. We formulate the problem with an Assignment Based Model and a
Network Based Model.

We first consider the hierarchical optimization, i.e., maximizing the efficiency
(stability) measure while keeping the stability (efficiency) value at its maximum
level. In doing so, we use the Assignment Based Model whose superiority is shown

over the Network Based Model.

We use the Assignment Based Model to generate all extreme supported
nondominated objective vectors and all nondominated objective vectors with respect
to our efficiency and stability criteria. We make real-life applications for three
airports located in the three largest cities in Turkey: Istanbul Airport in Istanbul,

Esenboga Airport in Ankara, and Izmir Adnan Menderes Airport in Izmir, namely.

To generate all nondominated objective vectors, we follow two model-based
approaches: optimization and approximation. Our optimization algorithm could
solve instances up to 150 aircraft and 40 gates, in less than two hours. With the
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approximation algorithm, we handle instances with up to 200 aircraft and 40 gates
and report excellent performance results, in terms of solution times and the power of

representing the exact nondominated objective vectors.

We develop an optimal decomposition rule that decomposes the problem into
subproblems from the time intervals that reside in no aircraft. We find that with the
use of the decomposition rule, the problems could be solved in considerably small
times. We also discuss the potential heuristic application of the decomposition rule

when there are no time intervals with no aircraft.

We anticipate that, in real-life instances, there may be only few cases where our
optimal decomposition rule can be used directly. As further research directions, some
heuristic approaches that may take our decomposition rule as basis can be developed.
We propose first creating a problem that is decomposable by taking out some set of
aircraft, applying our decomposition rule to get a new plan, and then considering the
set of aircraft that were taken out of the problem through some insertion or exchange

heuristics.

As further research directions, we propose some aircraft-gate eligibility constraints,
where some gates are reserved for certain airlines. We foresee that such a restriction
can be made through defining the assignment decision variables only for the eligible

aircraft-gate pairs, hence reduce the complexity of the problem.

Another proposition would be to consider some side-by-side compatibility
constraints, where sizes of the aircraft factor into the decision-making process, i.e.,
two large aircraft cannot be assigned to juxtaposed gates. We foresee that such a
restriction can be made through altering existing constraint sets and may increase the

problem complexity.

We believe implicit enumeration techniques, such as a branch and bound algorithm,
can be designed to generate all nondominated objective vectors, simultaneously as
opposed to our sequential generation methods. Moreover, optimization algorithms

for a known, however complex utility function can be developed and different
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efficiency and stability measures can be tried out. Lastly, we make an emphasis on
creating robust gate assignment plans that would reduce the effort spent for gate

reassignments.
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