

AN AIRPORT GATE REASSIGNMENT PROBLEM WITH TWO CRITERIA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

DURSEN DENİZ POYRAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JULY 2022

Approval of the thesis:

AN AIRPORT GATE REASSIGNMENT PROBLEM WITH TWO

CRITERIA

submitted by DURSEN DENİZ POYRAZ in partial fulfillment of the requirements

for the degree of Master of Science in Industrial Engineering, Middle East

Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Esra Karasakal

Head of the Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Gülser Köksal

Industrial Engineering, METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering, METU

Prof. Dr. Ferda Can Çetinkaya

Industrial Engineering, Çankaya University

Assist. Prof. Dr. Banu Yüksel Özkaya

Industrial Engineering, Hacettepe University

Assoc. Prof. Dr. Mehmet Rüştü Taner

Industrial Engineering, TED University

Date: 05.07.2022

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name Last name : Dursen Deniz Poyraz

Signature :

v

ABSTRACT

AN AIRPORT GATE REASSIGNMENT PROBLEM WITH TWO

CRITERIA

Poyraz, Dursen Deniz

Master of Science, Industrial Engineering

Supervisor : Prof. Dr. Meral Azizoğlu

July 2022, 79 pages

In this study, we consider an airport gate reassignment problem where the aircraft

are already assigned to the gates and a disruption occurs at some of the gates. After

the disruption, the aircraft are reassigned to the gates considering efficiency and

stability measures. Our efficiency criterion focuses on the maximum utilization of

the gates in terms of both the number of aircraft and the number of passengers in

these aircraft. On the other hand, our stability criterion is concerned with remaining

as close to the initial plan as possible.

We propose solution approaches for generating two extreme, extreme supported, and

all nondominated objective vectors with respect to our efficiency and stability

criteria. We also present an optimal decomposition rule that reduces the complexity

of the solution. Our extensive experiments have shown the satisfactory behavior of

our solution algorithms.

Keywords: Airport Gate Reassignment Problem, Nondominated Objective Vectors,

Mixed Integer Linear Programming

vi

ÖZ

İKİ KRİTERLİ HAVALİMANI KAPISI YENİDEN ATAMA PROBLEMİ

Poyraz, Dursen Deniz

Yüksek Lisans, Endüstri Mühendisliği

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Temmuz 2022, 79 sayfa

Bu çalışmada, uçakların kapılara atandığı ve bazı kapılarda aksama olan bir

havalimanı kapısı yeniden atama problemini ele alıyoruz. Arızanın akabinde, uçaklar

verimlilik ve stabilite ölçüleri dikkate alınarak yeniden atanmaktadır. Verimlilik

kriterimiz, uçak sayısı ve uçaklardaki yolcu sayısına göre kapıların maksimum

kullanımı üzerine odaklanmaktadır. Öte yandan, stabilite kriterimiz ilk plana

mümkün olduğunca yakın kalmayı dikkate almaktadır.

Verimlilik ve stabilite kriterlerimize göre iki ekstrem, destekli ekstrem ve tüm baskın

amaç vektörleri üretmek için çözüm yaklaşımları öneriyoruz. Ayrıca çözümlerin

karmaşıklığını azaltan bir optimal ayrıştırma kuralı sunuyoruz. Kapsamlı

deneylerimiz, çözüm algoritmalarımızın başarılı sonuçlar verdiğini göstermektedir.

Anahtar Kelimeler: Havalimanı Kapısı Yeniden Atama Problemi, Baskın Amaç

Vektörleri, Karışık Tamsayı Lineer Programlama

vii

To my mother Gonca and my father İbrahim…

viii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my brilliant supervisor, Prof. Meral

Azizoğlu. I felt so lucky every step of our work, being guided by her wisdom and

ideas. I aspire to become one day as passionate an academician and warm a mentor

as she is. I also would like to thank the jury members for their valuable contributions

and insights.

No words can be enough to thank the two of the best people I know: my parents. I

thank them for their encouragement throughout this study, for their patience and

support, and most importantly for their love. I will forever be indebted to these two

beautiful souls.

One cannot live life as it was without thanking their smart and witty best friends. I

consider myself fortunate to keep the company of such strong young women: Şehnaz

Genç, Pelin Dayan, and Dijan Teymur. Thank you for making me laugh.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTERS

1 INTRODUCTION ... 1

2 LITERATURE REVIEW .. 5

2.1 Gate Assignment Studies .. 5

2.2 Gate Reassignment Studies ... 7

2.3 The Most Closely Related Studies .. 10

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS 11

3.1 The Two Criteria ... 13

3.1.1. Efficiency Criterion ... 13

3.1.2. Stability Criterion .. 15

3.2 Mathematical Models .. 18

3.2.1. Assignment Based Model .. 18

3.2.2. Network Based Model ... 21

4 NONDOMINATED OBJECTIVE VECTORS ... 27

4.1 Nondominated Objective Vectors ... 27

4.2 Extreme Nondominated Objective Vectors .. 27

x

4.2.1 Extreme Nondominated Objective Vector with the Largest 𝑬 Value....... 28

4.2.2 Extreme Nondominated Objective Vector with the Largest 𝑺𝑻 Value 30

4.3 Extreme Supported Nondominated Objective Vectors 34

4.4 Generating All Nondominated Objective Vectors 40

4.5 Generating the Approximate Nondominated Objective Vectors 43

4.6 Optimal Decomposition .. 45

4.7 Heuristic Implementation of Decomposition Algorithm 48

5 COMPUTATIONAL EXPERIMENTS .. 51

5.1 Data Generation Scheme .. 51

5.2 Performance Measures ... 53

5.3 Computational Results .. 54

5.3.1 Comparison of Assignment Based Model and Network Based Model 54

5.3.2 Extreme and Extreme Supported Nondominated Objective Vectors 57

5.3.3 All Nondominated Objective Vectors ... 62

5.3.4 Approximate Nondominated Objective Vectors 65

5.3.5 Optimal Decomposition Rule ... 69

6 CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS 73

REFERENCES .. 77

xi

LIST OF TABLES

TABLES

Table 3.1 Example Network for an Aircraft: 𝑎𝑖, 𝑑𝑖, 𝑝𝑖 .. 24

Table 3.2 Example Network for an Aircraft: 𝑟𝑡, 𝑎𝑑𝑟 ... 24

Table 3.3 Example Network for an Aircraft: 𝑟𝑡, 𝑡𝑖... 25

Table 4.1 Example of a Reduced Problem .. 33

Table 4.2 Example for Extreme Supported Nondominated Objective Vectors:

𝐸𝑚𝑎𝑥, 𝑆𝑇𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛, 𝑆𝑇𝑚𝑎𝑥... 37

Table 4.3 Example for Extreme Supported Nondominated Objective Vectors:

weight range, 𝐸 ∗, 𝑆𝑇 ∗ ... 39

Table 4.4 Example for All Nondominated Objective Vectors: 𝑟, 𝐸 ∗, 𝑆𝑇 ∗ 42

Table 4.5 Example Reduced Problem for the Approximate Nondominated

Objective Vectors .. 44

Table 4.6 Example for Optimal Decomposition: 𝑎𝑖, 𝑑𝑖, 𝑟 = 3, 48

Table 5.1 Comparison of Assignment and Network Based Models for Set 1 55

Table 5.2 Comparison of Assignment and Network Based Models for Set 2 56

Table 5.3 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1 58

Table 5.4 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1

(cont’d) .. 59

Table 5.5 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2 60

Table 5.6 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2

(cont’d) .. 61

Table 5.7 All Exact Nondominated Objective Vectors for Set 1 63

Table 5.8 All Exact Nondominated Objective Vectors for Set 2 64

Table 5.9 Heuristic Procedure for Set 1 .. 66

Table 5.10 Heuristic Procedure for Set 2 .. 67

Table 5.11 Decomposition Algorithm, Set 1, Disruption Type 2, 𝑟 = 2 69

xii

Table 5.12 Decomposition Algorithm, Set 1, Disruption Type 2, 𝑟 = 3 70

Table 5.13 Decomposition Algorithm, Set 1, Disruption Type 3, 𝑟 = 3 71

Table 5.14 Decomposition Algorithm, Set 2, Disruption Type 3, 𝑟 = 2 72

xiii

LIST OF FIGURES

FIGURES

Figure 3.1. Illustration of Problem Elements .. 11

Figure 3.2. Illustration of Initial Plan .. 12

Figure 3.3. Illustration of a Disruption ... 12

Figure 3.4. Network Representation of Aircraft 𝑖 ... 22

Figure 3.5. Example Network for Aircraft 2 ... 26

Figure 4.1. Example for Extreme Supported Nondominated Objective Vectors:

explored weight ranges ... 39

Figure 4.2. Example for All Nondominated Objective Vectors 42

Figure 4.3. Example Time Intervals for a Decomposable Problem 48

xiv

1

CHAPTER 1

1 INTRODUCTION

The gates are important resources of airports whose efficient allocations are crucial

in effective air transport operations. The gate assignment problem is to assign the

aircraft having prespecified arrival and departure times to the available gates to

optimize the prespecified objective. Several objectives are studied in the literature,

including but not limited to maximizing the number of aircraft assigned to gates,

maximizing the number of passengers assigned to gates, and minimizing the walking

distances of the passengers. The aircraft that could not be assigned to the gates are

assigned to the remote gate, so-called apron. The satisfactory solutions to almost all

gate assignments problems avoid airport assignments to the apron, due to its remote

nature.

The airport operations are prone to disturbances due to changes in the flight

schedules, cancellation of flights, and gate shutdowns due to maintenance and

breakdowns. As a result of disturbances, so-called disruptions, the optimal solution

to any gate assignment problem may no longer be preferred or may even become

infeasible to implement. Hence, a need arises for reassigning the aircraft to the gates.

We consider a gate reassignment problem where the aircraft are already assigned to

the gates or to the apron and disruption that affects a subset of the gates is observed.

After the disruption, the aircraft assigned to the disrupted gates should be shifted to

the remaining available gates or the apron. This shift may also trigger some

assignment changes for the aircraft of the non-disrupted gates to give room for the

aircraft of the disrupted gates. Such adjustments which are referred to as

reassignment should ensure efficiency en route to low airport operating costs and

stability en route to low setup costs. We assume that the initial plan was efficient so

2

our new plan should have its objective function as an efficiency measure. Moreover,

we assume that the preparations are already made according to the initial plan, hence

the new plan should stay faithful to the initial one.

In our efficiency criterion, we focus on an airport’s vital need of utilizing its gate

resources most efficiently. The gates are used both by aircraft and by passengers. We

define our efficiency criterion with two objectives in hierarchy. The first objective

that goes into our efficiency criterion is the maximization of the number of aircraft

assigned to gates. With this objective, the number of ungated aircraft is minimized,

i.e., the gate utilization is maximized, thus a most efficient assignment plan is

obtained in terms of apron related costs. The second objective that goes into our

efficiency criterion is the maximization of the number of passengers assigned to

gates. By assigning the aircraft with the higher number of passengers to a gate, a

contribution to the minimization of passenger walking distance or to the general

customer satisfaction, since a smaller number of passengers will be routed to the

remote apron, is inherently being made. Therefore, with our efficiency criteria, we

maximize primarily the number of aircraft assigned to gates and secondarily the

number of passengers in these aircraft. We show that the gate assignment problem

that minimizes our efficiency measure is solvable in polynomial time.

In our stability criterion, we look for a new plan which is the most similar to the

initial one. After a disruption, initial plan may no longer be feasible. As the name

suggests, with our stability concern, we focus on staying stable, i.e., the new plan

should resemble the initial plan as much as possible, preserving most of the initial

assignments that remain feasible. In the event of a disruption, first and foremost, we

would like to reassign the already gated aircraft to a gate again. We believe that

reassigning an already gated aircraft to apron, will give a high deviation from the

initial plan in terms of similarity to the initial plan and also passenger discomfort.

Secondly, we would like to focalize on the number of passengers in the already

assgned set of aircraft. This consideration is in parallel with that of the secondary

objective of the efficiency criterion. Lastly, from an opportunistic point of view, we

would like to reassign the ungated aircraft to a gate whenever possible. With the

3

decreased apron usage, we would be reaping the benefits of increased efficiency.

Thus, a most similar reassignment plan to the initial plan is obtained through

considerations in three-fold: we maximize the number of aircraft reassigned to gates

that were initially assigned to gates as the primary objective, the number of

passengers in these aircraft as the secondary objective, and the number of aircraft

reassigned to gates that were initially assigned to apron as the tertiary objective. We

show that the gate assignment problem that minimizes our stability measure is NP-

Hard.

Our performance measures are studied in a multicriteria context as an increase in the

efficiency value would lead to a decrease in the stability value, and vice versa, hence

very fruitful trade-off analysis could be made.

Recognizing this fact, we study several trade-off problems. First, a hierarchical

optimization is considered such that the efficiency (stability) value is maximized

while the stability (efficiency) value is kept at its optimal, i.e., maximal level. This

approach returns two extreme points and is important for the decision makers who

have a strong preference for one objective.

Second, we assume that the decision maker has a linear preference (utility) function

that is expressed as a weighted combination of two measures. We produce the set of

objective vectors each of which is optimal for a particular weight range. These

objective vectors altogether form the extreme supported nondominated objective

vectors.

Finally, we assume that the decision maker has an unknown utility function of

efficiency and stability criteria. We produce the set of nondominated objective

vectors, one of which is optimal for a particular nonincreasing utility function. Using

this set, the decision maker can make a trade-off between a certain amount of

increase in efficiency value and a certain amount of decrease in stability value, and

vice versa.

4

We present a model-based optimization approach to generate the exact

nondominated set of objective vectors and a heuristic approach to generate an

approximate set of all nondominated objective vectors. The heuristic approach uses

the similarities of the extreme nondominated objective vectors and produces

approximate nondominated set of objective vectors.

All trade-off problems that we consider are NP-Hard as the single objective problem

that minimizes our stability measure is NP-Hard.

We also develop a decomposition rule where the problem is decomposed into

subproblems, where each of which is dealt with independently, and then their

corresponding solutions are combined by a mathematical model. We observe that if

one is faced with instances for which the decomposition rule can be applied, the exact

nondominated objective vectors can be found considerably easier.

To the best of our knowledge, we propose the first exact approaches for the airport

gate reassignment problem. Our experiments have shown that the exact approaches

can be used to tackle the real-life instances with many aircraft and many gates. We

make an application for the airports in the three largest cities in Turkey: İstanbul

Airport in İstanbul, Esenboğa Airport in Ankara, and İzmir Adnan Menderes Airport

in İzmir, namely.

The rest of the thesis is organized as follows. In Chapter 2, we review the related

literature on assignment and reassignment problems. Chapter 3 defines our gate

reassignment problem and gives basic mathematical models, where one is

assignment based and the other is network based. Chapter 4 presents the solution

approaches that are used to generate two extreme nondominated objective vectors,

all extreme supported nondominated objective vectors, and all nondominated

objective vectors. We report the results of our extensive experiments in Chapter 5.

Chapter 6 concludes the study by pointing out the main conclusions and suggestions

for future research.

5

CHAPTER 2

2 LITERATURE REVIEW

We give literature reviews on the airport gate assignment problem (AGAP) and

airport gate reassignment problem (AGRP) in the following sections.

2.1 Gate Assignment Studies

Firstly, we give the most similar works to ours in this section. The two mathematical

models presented in Chapter 3, namely Assignment Based Model and Network

Based Model are similar to the works of Karsu et al. (2021) and Yan and Chang

(1998), respectively, in which their models are developed for the Airport Gate

Assignment Problem (AGAP), where we further develop them for the Airport Gate

Reassignment Problem (AGRP).

Karsu et al. (2021) studied a gate assignment problem with two objectives:

minimization of apron assignments and minimization of total passenger walking

distance. They give exact and heuristic solution approaches. Their problem instances

mimic the real-life airports in Turkey, namely Esenboğa Airport in Ankara and

Atatürk Airport in İstanbul.

Yan and Chang (1998) studied an airport gate assignment problem where they

formulated their model as a multi-commodity network flow problem. They defined

their objective as minimization of total passenger walking distance and case studied

an international airport in Taiwan.

In an AGAP review by Daş et al. (2020), many objective functions of this assignment

problem are classified under three categories. The first category, passenger-oriented

objective functions, consists of objectives such as minimizing total/average

6

passenger walking distance, minimizing passenger waiting/transit time, minimizing

baggage transferring distance and minimizing some expected passenger discomfort.

The second category, airline/airport-oriented objective functions, includes objectives

such as minimizing the number of un-gated aircraft, maximizing the total duration

of aircraft assigned to gates, minimizing towing cost/number of towing moves,

minimizing taxi time/related fuel consumption, minimizing aircraft waiting time for

a gate, maximizing total flight-gate preferences, maximizing aircraft-gate size

compatibility, maximizing potential airport commercial revenues, and maximizing

the number of passengers at gates close to shopping facilities to increase potential

revenues.

In the last category, robustness-oriented objective functions, we have minimizing

idle times at gates at peak times, minimizing range/variance/expected variance of

idle times, maximizing robustness by avoiding the assignment of two flights with

low buffer times to the same gate, minimizing the expected number of gate

conflicts/expected gate conflict cost/worst case gate conflict, and minimizing the

absolute deviation of new gate assignment from a reference schedule.

Such a large variety of objective functions is employed in a multi-objective problem

setting. In the literature, according to Daş et al. (2020), multi-objective AGAP is

widely handled by using weighted sum approaches.

A multi-commodity flow model is developed by Wang et al. (2022) where they focus

on two objectives: robustness and taxiing times. In their multi-commodity flow

model, gates are represented as commodities. The multi-objective nature of their

problem is managed using a linear scalarization parameter, α∈[0,1], which monitors

the attention given to either objective, including foregoing an objective when set to

either 0 or 1. They used real-life data from the Paris-Charles-de-Gaulle international

airport in France.

Another two objective gate assignment problem is studied by Cai et al. (2019). In

the study, they worked to minimize the total passenger walking distance and the total

7

robust cost of the gate assignment. They also put a limit on the number of aircraft

that can be assigned to the apron. Moreover, compatibility related constraints such

as gate sizes: small/large, gate and airline leasing contracts, and flight types:

international/domestic are employed. They made an application for the Baiyun

airport in Guangzhou, China.

Yu et al. (2017) simultaneously focused on both the robustness and some traditional

costs: the expected conflict cost, tow cost, and passenger transfer distance. they

designed an adaptive large neighborhood search with some novel multiple local

search operators.

Liu et al. (2022) focused on gate utilization and running time of aircraft including

parking time and taxi time. In their future research topics, a special focus on the

number of passengers as a form of the objective function is placed, showing the less

explored nature of this important measure.

2.2 Gate Reassignment Studies

Dorndorf et al. (2007) stated that the deterministic airport gate assignment problem

can be modeled as a quadratic assignment problem as shown by Sahni and Gonzalez

(1976) is NP hard. Dorndorf et al. (2007) further stated that even a small disruption

at the beginning of the day often has severe results by the end of the day due to the

knock-on effect.

Disruptions in the gate reassignment studies are not only limited to maintenance

operations, flight and gate breakdowns, adverse weather conditions, emergency

flights, flight earliness and delays, and flight cancellations but also include major

incidents such as abnormal meteorological conditions and labor strikes of airport

employees, which may result in temporary airport closures. The gate reassignment

problem following such a major event is studied by Yan et al. (2009).

The literature regarding the gate reassignment problem widely consists of multi-

objective studies.

8

Pternea and Haghani (2019) proposed hierarchical optimization for a gate

reassignment problem to handle their selected multiple objectives: minimization of

some costs of (i) flight assignment, (ii) successful passenger connections, and (iii)

failed passenger connection. They gave several cost coefficient definitions, among

which the most related to our work include number of the flights with gate changes,

number of passengers with gate changes, number of flights assigned to remote gates

but originally assigned to contact gates, number of passengers assigned to remote

gates but originally assigned to contact gates.

Zhang and Klabjan (2017) define an efficient gate reassignment methodology for

occurrences of disruptions. They come up with two multi-commodity network flow

models, one of which for passenger connections, where each gate represents a

commodity, and two heuristic algorithms since the reassignment model is NP hard.

They handle the minimization of total flight delays, the number of gate reassignment

operations, total passenger transfer distance, and the number of missed passenger

connections with the weighted sum approach.

Dorndorf et al. (2012) studied the problem with the objectives: some assignment

preference score, number of unassigned flights during overload periods, number of

tows, some robustness measure, and the one most familiar to our work which is a

deviation from a given reference schedule. With the last objective, they introduce a

stability measure to their work while emphasizing that giving importance to staying

faithful to the initial plan entails a more concise gate schedule which helps with the

passenger satisfaction and is of convenience to the airport staff.

Yan et al. (2011) assumed to handle the uncertainty around aircraft arrival and

departure times: that some flights which are closer to the time of planning

reassignments tend to be more certain, and the further away they are, they become

more stochastic. That’s why they divided flights into the following two categories:

deterministic flights and stochastic flights. They made an application to the Taiwan

Taoyuan Airport in Taiwan.

9

Flight delays, whether in the form of early or tardy flight arrivals or in the form of

tardy flight departures, in general, constitute the disruptions worked on by Tang et

al. (2010), where they emphasized the crucial need of developing a framework for

the gate reassignment problem, stating that the traditional manual flight reassignment

method has too many shortcomings.

In their study, Deng et al. (2017) worked with multi-objectives that take into

consideration the loss of passengers, cost of airport operating, and economic loss of

airlines, in one criterion and for the other criterion, constructed a measure called the

most important index of disturbance value to manage the deviation from the initial

plan. They integrated two metaheuristics: the genetic algorithm and the ant colony

algorithm to propose a two-stage hybrid method.

Wang et al. (2013) handled flight delays in two categories: certain delay time flights

and uncertain delay time flights. For the former case, they aimed to minimize the

apron and gate disturbance values and for the latter case, they aimed to minimize the

gate disturbance value, time disturbance value, and some penalty value. They applied

an ant colony-based heuristic to their model.

One of the most popular objectives in the gate assignment literature, minimization

of the total walking distance of passengers, is also studied in Maharjan and Matis

(2011). In this particular case, they considered the passengers who are either

connecting to or originating from an airport where their boarding passes were issued

before the reassignment of gates. They implemented their work for the operations of

Continental Airlines at the George W. Bush Intercontinental Airport in Houston,

Texas.

Further literature examples consist of Pternea and Haghani (2018) where they

studied the gate reassignment problem with passenger connections, Gu and Chung

(1999) where they implemented a genetic algorithm for the minimization of extra

delay times, and Ali et al. (2019) where they proposed a passenger-centric model

that minimizes the transit time of transfer passengers.

10

In this study we consider a gate reassignment problem with efficiency and stability

criteria. Our efficiency criterion aims to maximize the number of aircraft assigned to

gates and the number of passengers in these aircraft and our stability criterion

maximizes the number of same gate assignments from the reference assignment plan

and their number of passengers as well as the number of aircraft assigned to gates.

To the best of our knowledge, there is no reported gate reassignment study that

considers our efficiency and stability criteria simultaneously.

2.3 The Most Closely Related Studies

Our work differs from the existing literature based on selecting fairly unexplored

multi-criteria, applying hierarchical optimization to handle said multi-criteria where

the existing literature mostly applied the weighted-sum method, and proposing and

comparing two mathematical models for the airport gate reassignment problem

(AGRP). Aforesaid points besides, we give the mostly related studies to ours below.

Both Karsu et al. (2021) and Yan and Chang (1998) proposed exact approaches for

the airport gate assignment problem (AGAP). While the former devised an

assignment-based mathematical model, the latter formulated the problem as a multi

commodity network flow. In spirit of these studies, we develop an Assignment Based

Model in Section 3.2.1 and a Network Based Model in Section 3.2.2 for the airport

gate reassignment problem (AGRP).

Furthermore, we define a multi-objective environment for AGRP and handle our

objective functions through hierarchical optimization as proposed in Pternea and

Haghani (2019). Although the logic behind using hierarchical optimization remains

similar, we define widely different criteria for the AGRP than that of Pternea and

Haghani (2019).

11

CHAPTER 3

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS

We consider an Airport Gate Reassignment Problem (AGRP) with n aircraft, m gates

and an apron. The elements of the problem are illustrated in Figure 3.1.

Figure 3.1. Illustration of Problem Elements

The apron is assumed to have infinite aircraft capacity, however, is too far away from

the gates, hence is not favored by any reason. The aircraft that cannot be assigned to

a gate, are assigned to apron. Each aircraft has a specified arrival time and a departure

time. From its arrival time until its departure time, the aircraft is either at its assigned

gate or at apron. This is compatible with the real-life application of renting the gates

to airlines for fixed periods of time, i.e., time intervals. Moreover, each aircraft has

a specified number of passengers who either have entered from the entrance point or

transferred from other aircraft.

We assume that there is an initial plan that shows the assignment of each aircraft to

either one of the gates or to the apron. We use the term ‘initial plan’ to refer to the

interchangeably used terms in the literature: ‘current assignment’, ‘initial

assignment’, and ‘reference assignment’. An initial plan is illustrated in Figure 3.2.

12

Figure 3.2. Illustration of Initial Plan

There is a disruption at the beginning of the planning horizon that affects a specified

set of gates. This disruption may be due to several reasons such as breakdowns or

maintenance operations, as previously sampled in Chapter 2, and makes the affected

gates inoperable. We use the term ‘affected gates’ to refer to ‘disrupted gates’; and

‘affected aircraft’ to refer to ‘disrupted aircraft’. An illustration of a disruption is

shown in Figure 3.3, where two gates are affected by the disruption.

Figure 3.3. Illustration of a Disruption

13

After the disruption, a new plan is formed where the affected aircraft are assigned to

one of the nonaffected gates or to the apron. The nonaffected aircraft may be

reassigned to its initial gate or to any one of the nonaffected gates or to the apron.

We use terms ‘new plan’ and ‘reassignment’ interchangeably.

We assume that there are no assignment restrictions, i.e., all aircraft can be assigned

to one of the m gates. Furthermore, the arrival and departure times of the aircraft, the

number of passengers and all other parameters that will be defined later, are known

with certainty and not subject to any change. That is, the system we consider is

deterministic and static.

The initial plan is known and found by the efficiency concerns of the decision

makers. The efficiency and stability concerns define our performance measures, each

of which is discussed next.

3.1 The Two Criteria

From an efficiency perspective and a stability perspective, we discuss our objective

functions in this section.

3.1.1. Efficiency Criterion

From an airport and passenger satisfaction point of view, an assignment plan should

meet the following requirements: (i) its number of aircraft assigned to gates should

be as high as possible, and (ii) if there is a tie among multiple aircraft that are

potentially competing against each other to be assigned to a gate, then the decision

should be in favor of the one with the highest number of passengers. We call such

an assignment plan efficient due to it having the least apron usage both by aircraft

and their corresponding passengers.

The efficiency concern is turned into an objective function, 𝐸, with the direction of

maximization. Thus, efficiency objective function is as follows:

14

𝐸1 The primary objective that is number of aircraft assigned to gates

𝐸2 The secondary objective that is number of passengers assigned to gates

𝐸 Efficiency objective function, 𝐸 = 𝐸1 + 𝜀𝐸𝐸2 where 𝜀𝐸 is a sufficiently

small number that gives priority to 𝐸1 and breaks the ties in favor of 𝐸2.

𝜀𝐸 should be set small so that 𝐸1 value does not decrease even by one unit for the

highest improvement of the 𝐸2 value. Note that, in addition to establishing the

hierarchy between objective functions, the parameter 𝜀𝐸, also performs some

rescaling between the objective functions, where one objective is in units of aircraft

and the other is in units of passengers. This follows,

𝐸1 + 𝜀𝐸𝐸2𝑚𝑖𝑛 ≥ 𝐸1 − 1 + 𝜀𝐸𝐸2𝑚𝑎𝑥 (1)

where

𝐸2𝑚𝑖𝑛 = the smallest possible value of 𝐸2,

𝐸2𝑚𝑎𝑥 = the largest possible value of 𝐸2,

We define 𝑝𝑖 as the number of passengers in aircraft 𝑖.

𝐸2𝑚𝑎𝑥 = ∑ 𝑝𝑖
𝑛
𝑖=1 (all aircraft are assigned to gates).

𝐸2𝑚𝑖𝑛 is found by collecting m aircraft having smallest 𝑝𝑖 values as:

𝐸2𝑚𝑖𝑛 = ∑ 𝑝[𝑖]
𝑚
𝑖=1 where 𝑝[𝑖] is the ith smallest 𝑝𝑖 value (all gates are busy with one

and only one aircraft).

Inequality (1) reduces to

𝜀𝐸𝐸2𝑚𝑖𝑛 ≥ 𝜀𝐸𝐸2𝑚𝑎𝑥 − 1

𝜀𝐸 ≤
1

𝐸2𝑚𝑎𝑥 − 𝐸2𝑚𝑖𝑛

Putting 𝐸2𝑚𝑖𝑛 and 𝐸2𝑚𝑎𝑥 into above expression, we find

15

𝜀𝐸 ≤
1

∑ 𝑝𝑖
𝑛
𝑖=1 − ∑ 𝑝[𝑖]

𝑚
𝑖=1

In our experiments, we set

𝜀𝐸 =
1

∑ 𝑝𝑖
𝑛
𝑖=1 −∑ 𝑝[𝑖]

𝑚
𝑖=1 +1

 (2)

Putting (2) into our objective function, we get

𝐸 = 𝐸1 +
1

∑ 𝑝𝑖
𝑛
𝑖=1 − ∑ 𝑝[𝑖]

𝑚
𝑖=1 + 1

𝐸2

To have integer value for 𝐸, we multiply it by ∑ 𝑝𝑖
𝑛
𝑖=1 − ∑ 𝑝[𝑖]

𝑚
𝑖=1 + 1 and get the

following expression for our efficiency measure:

𝐸 = [∑𝑝𝑖

𝑛

𝑖=1

−∑𝑝[𝑖]

𝑚

𝑖=1

+ 1]𝐸1 + 𝐸2

3.1.2. Stability Criterion

In the AGRP, the new plan that will be obtained after a gate disruption can surely

have some reminiscence of the initial plan. Aside from our efficiency concern, we

have another perspective from the stability side. We define our stability concern as

staying faithful to the initial plan. Although the initial plan might become infeasible,

per this concern, the number of gate assignments in the initial plan, the corresponding

number of passengers and the number of gate assignments that were initially

assigned to the apron are maximized in this very order. To clarify, we define below

some new sets and objective functions.

𝑆1 Set of aircraft that are assigned to gates in the initial plan

𝑆2 Set of aircraft that are assigned to the apron in the initial plan

𝐼 = 𝑆1 ∪ 𝑆2

𝑆𝑇1 Number of aircraft in 𝑆1 assigned to their initial gates

16

𝑆𝑇2 Number of passengers of flights in 𝑆1 assigned to their initial gates

𝑆𝑇3 Number of aircraft in 𝑆2 assigned to gates

Our stability aim is primarily to maximize 𝑆𝑇1. Among the optimal solutions of 𝑆𝑇1,

we prefer the one having maximum 𝑆𝑇2. Hence, we first want to maximize 𝑆𝑇1 +

𝜀𝑆𝑇1𝑆𝑇2, where 𝜀𝑆𝑇1 is found as follows:

𝜀𝑆𝑇1 should be sufficiently small so that 𝑆𝑇1 value does not reduce even by one unit

for the highest improvement of the 𝑆𝑇2 value. Accordingly,

𝑆𝑇1 + 𝜀𝑆𝑇1𝑆𝑇2𝑚𝑖𝑛 ≥ 𝑆𝑇1 − 1 + 𝜀𝑆𝑇1𝑆𝑇2𝑚𝑎𝑥 (3)

where

𝑆𝑇2𝑚𝑖𝑛 = minimum possible 𝑆𝑇2 value which we set to zero.

𝑆𝑇2𝑚𝑎𝑥 = maximum possible 𝑆𝑇2 value

𝑆𝑇2𝑚𝑎𝑥 is the number of aircraft assigned to nonaffected gates in the initial

assignment = ∑ |𝑆𝐴𝑚|𝑚∈𝑀 where |𝑆𝐴𝑚| is the set of aircraft assigned to gate m in

the initial plan.

Inequality (3) reduces to

𝜀𝑆𝑇1 ≥ 𝜀𝑆𝑇1𝑆𝑇2𝑚𝑎𝑥 − 1

𝜀𝑆𝑇1 ≤
1

𝑆𝑇2𝑚𝑎𝑥
=

1

∑ |𝑆𝐴𝑗|
𝑚
𝑗=1

In our experiments we set 𝜀𝑆𝑇1 to

𝜀𝑆𝑇1 =
1

∑ |𝑆𝐴𝑗|
𝑚
𝑗=1 +1

 (4)

Putting (4) into our objective function, we get

𝑆𝑇1 +
1

∑ |𝑆𝐴𝑗|
𝑚
𝑗=1 + 1

𝑆𝑇2

17

We multiply the above expression by ∑ |𝑆𝐴𝑗|
𝑚
𝑗=1 + 1 to get an integer value for the

objective function as:

(∑ |𝑆𝐴𝑗|
𝑚
𝑗=1 + 1)𝑆𝑇1 + 𝑆𝑇2 = 𝑆𝑇𝐴

Among the optimal solutions to 𝑆𝑇𝐴, we prefer the one having maximum 𝑆𝑇3 value.

Hence, we want to maximize

𝑆𝑇 = 𝑆𝑇𝐴 + 𝜀𝑆𝑇2𝑆𝑇3 (5)

where 𝜀𝑆𝑇2 is a sufficiently small number, which is found using the ideas of 𝜀𝐸 and

𝜀𝑆𝑇1. Similarly, parameters 𝜀𝑆𝑇1 and 𝜀𝑆𝑇2 perform rescaling between the objective

functions as well as handling the hierarchy between them. This follows,

𝑆𝑇𝐴 + 𝜀𝑆𝑇2𝑆𝑇3𝑚𝑖𝑛 ≥ 𝑆𝑇𝐴 − 1 + 𝜀𝑆𝑇2𝑆𝑇3𝑚𝑎𝑥

where 𝑆𝑇3𝑚𝑖𝑛 is set to zero and 𝑆𝑇3𝑚𝑎𝑥 is set to the number of aircraft assigned to

apron in the initial assignment, i.e., |𝑆𝐴𝑚+1|.

Rearranging (5) with 𝑆𝑇3𝑚𝑖𝑛 = 0 and 𝑆𝑇3𝑚𝑎𝑥 = |𝑆𝐴𝑚+1|, we get 𝜀𝑆𝑇2 ≥
1

𝑆𝑇3𝑚𝑎𝑥
=

1

|𝑆𝐴𝑚+1|
 and use 𝜀𝑆𝑇2 =

1

|𝑆𝐴𝑚+1|+1
 in our experiments.

The overall stability measure is expressed as

𝑆𝑇 = 𝑆𝑇𝐴 +
1

|𝑆𝐴𝑚+1|+1
𝑆𝑇3.

To get an integer valued objective function, we multiply the above expression with

|𝑆𝐴𝑚+1| + 1.

The overall stability measure 𝑆𝑇 becomes

𝑆𝑇 = (|𝑆𝐴𝑚+1|+1)(∑ |𝑆𝐴𝑗|
𝑚
𝑗=1 + 1)𝑆𝑇1 + (|𝑆𝐴𝑚+1|+1)𝑆𝑇2 + 𝑆𝑇3.

To sum up, our problem has the following two objective functions:

Max 𝐸

Max 𝑆𝑇

18

In the next section, we discuss the mathematical models used to solve the multi-

objective problem.

3.2 Mathematical Models

In this section, we define two mathematical models to the airport gate reassignment

problem (AGRP) with efficiency and stability criteria.

Our efficiency measure maximizes the number of aircraft and then the number of

passengers, assigned to gates. The stability measure tries to keep the assignments

close to their initial plan counterparts.

The first mathematical model is a classical assignment-based model that is also used

by Karsu et al. (2021) for a gate assignment problem. The second model is a network-

based model that takes its spirit from the network-based model of Yan and Chang

(1998) that is defined for the gate assignment problem. We next discuss the details

of the models.

3.2.1. Assignment Based Model

The Assignment Based Model uses the following sets and parameters:

𝐼 Set of aircraft

𝐾 Set of gates (gates and apron)

𝑛 Number of aircraft (|𝐼|)

𝑚 Number of gates (|𝐾| − 1 gates, gate 𝑚+ 1 is apron)

𝑝𝑖 Number of passengers in aircraft 𝑖, 𝑖 = 1,… , 𝑛

𝑎𝑖 Arrival time of aircraft 𝑖, 𝑖 = 1, … , 𝑛

𝑑𝑖 Departure time of aircraft 𝑖, 𝑖 = 1, … , 𝑛

19

𝑅 Number of distinct 𝑎𝑖 and 𝑑𝑖 values, where 𝑅 − 1 is the number of time

intervals

During [𝑎𝑖, 𝑑𝑖], aircraft 𝑖 stays at the airport.

{𝑎𝑑1, 𝑎𝑑2, … , 𝑎𝑑𝑅} Set of distinct 𝑎𝑖 and 𝑑𝑖 values in chronological order

During interval (𝑎𝑑𝑟, 𝑎𝑑𝑟+1) there is no arrival or departure.

𝑜𝑖𝑟 = {
1, if aircraft 𝑖 is in the airport at interval 𝑟, 𝑟 = 1,… , 𝑅 − 1

 0, otherwise

Stability related parameter, 𝑐𝑖𝑘, is defined as:

𝑐𝑖𝑘 = {
1, if aircraft 𝑖 is assigned to gate 𝑘 in the initial plan

 𝑖 = 1,… , 𝑛 𝑘 = 1,… ,𝑚 + 1
0, otherwise

The assignment decision variable is defined as:

𝑥𝑖𝑘 = {
1, if aircraft 𝑖 is assigned to gate 𝑘 in the new plan

 𝑖 = 1, … , 𝑛 𝑘 = 1,… ,𝑚 + 1
0, otherwise

The constraint sets are as given below:

∑ 𝑥𝑖𝑘
𝑚+1
𝑘=1 = 1 𝑖 = 1,… , 𝑛 (A)

∑ 𝑜𝑖𝑟𝑥𝑖𝑘
𝑛
𝑖=1 ≤ 1 𝑘 = 1,… ,𝑚 𝑟 = 1,… , 𝑅 − 1 (B)

𝑥𝑖𝑘 ∈ 0 or 1 𝑖 = 1,… , 𝑛 𝑘 = 1,… ,𝑚 + 1 (C)

Constraint (A) ensures each aircraft 𝑖 is assigned to a single gate. The overlapping

of aircraft is handled using binary parameter 𝑜𝑖𝑟, where in constraint (B) aircraft that

are in the system at the same time interval cannot be assigned to the same gate.

Lastly, Constraint (C) states that the decision variable 𝑥𝑖𝑘 is binary.

We refer to the constraint sets (A), (B), and (C) as 𝑥 ∈ 𝑋𝐴.

Efficiency measures are stated in their priority order:

𝐸1 Max ∑ ∑ 𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1 (primary)

20

𝐸2 Max ∑ ∑ 𝑝𝑖𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1 (secondary)

𝐸1 maximizes the number of gated aircraft, and 𝐸2 maximizes the corresponding

number of passengers. The aggregate objective function, 𝐸𝐴 is as follows:

Max 𝐸𝐴
1

𝜀𝐸
∑ ∑ 𝑥𝑖𝑘

𝑚
𝑘=1

𝑛
𝑖=1 + ∑ ∑ 𝑝𝑖𝑥𝑖𝑘

𝑚
𝑘=1

𝑛
𝑖=1 where 𝜀𝐸 =

1

∑ 𝑝𝑖
𝑛
𝑖=1 −∑ 𝑝[𝑖]

𝑚
𝑖=1 +1

.

Karsu et al. (2021) showed that the problem of maximizing the number of aircraft

assigned to gates (Max ∑ ∑ 𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1) is solved in polynomial time using a network

flow model. The same network structure holds when the arc costs of ‘1’, for the arcs

that emanate from the node representing aircraft 𝑖, are replaced by
1

 𝜀𝐸
+ 𝑝𝑖. This

follows, our efficiency problem can be solved in polynomial time.

Stability measures are stated in their priority order:

𝑆𝑇1 Max ∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1 (primary)

𝑆𝑇2 Max ∑ ∑ 𝑝𝑖𝑐𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1 (secondary)

𝑆𝑇3 Max ∑ ∑ 𝑥𝑖𝑘
𝑚
𝑘=1𝑖|𝑐𝑖𝑚+1=1

 (tertiary)

𝑆𝑇1 maximizes the number of aircraft assigned to their initial gate. 𝑆𝑇2 maximizes

the number of passengers assigned in these aircraft. 𝑆𝑇3 maximizes the number of

aircraft assigned to gates that were initially assigned to the apron.

The aggregate objective function, 𝑆𝑇𝐴, is as follows:

Max 𝑆𝑇𝐴
1

𝜀𝑆𝑇1𝜀𝑆𝑇2
∑ ∑ 𝑐𝑖𝑘𝑥𝑖𝑘

𝑚
𝑘=1

𝑛
𝑖=1 +

1

𝜀𝑆𝑇2
∑ ∑ 𝑝𝑖𝑐𝑖𝑘𝑥𝑖𝑘

𝑚
𝑘=1

𝑛
𝑖=1 +

∑ ∑ 𝑥𝑖𝑘
𝑚
𝑘=1𝑖|𝑐𝑖𝑚+1=1

 where 𝜀𝑆𝑇1 =
1

∑ ∑ 𝑐𝑖𝑘
𝑚
𝑖=1 +1𝑛

𝑖=1

 and 𝜀𝑆𝑇2 =
1

∑ 𝑐𝑖𝑚+1+1
𝑛
𝑖=1

.

As mentioned in Jaehn (2010) the problem of maximizing the total aircraft-gate

preference score (Max ∑ ∑ 𝑝𝑖𝑘𝑥𝑖𝑘
𝑚
𝑘=1

𝑛
𝑖=1) is NP-Hard. Our stability measure reduces

to the total aircraft-gate preference score when 𝑝𝑖𝑘 =
1

𝜀𝑆𝑇1𝜀𝑆𝑇2
𝑐𝑖𝑘 +

1

𝜀𝑆𝑇2
𝑝𝑖𝑐𝑖𝑘 + 1.

This follows, our stability problem can be solved in polynomial time.

21

Assignment Based Model can be summarized as:

Max 𝐸𝐴

Max 𝑆𝑇𝐴

subject to 𝑥 ∈ 𝑋𝐴

3.2.2. Network Based Model

Yan and Chang (1998) formulated the gate assignment problem as a multi-

commodity network flow model. We use the basics of Yan and Chang (1998) model

to define our network-based formulation. For the sake of completeness, we use the

sets and parameters defined for the Assignment Based Model.

For each aircraft a network is presented. The network for aircraft 𝑖, 𝑁𝑇𝑖, has a source

node 𝑆𝑖 and an end node 𝑇𝑖. There are 𝑚 + 1 arcs departing from 𝑆𝑖, each arc

representing the flow to a particular gate or apron.

Let 𝑡𝑖 be the set of chronological time intervals from the set {𝑎𝑑1, 𝑎𝑑2, … , 𝑎𝑑𝑅}

where aircraft 𝑖 is in the airport and let 𝑟𝑖 be the number of time intervals from the

set {𝑎𝑑1, 𝑎𝑑2, … , 𝑎𝑑𝑅} where aircraft 𝑖 is in the airport such that 𝑡𝑖 = 𝑡1, … , 𝑡𝑟𝑖. That

is, in the chronological list of 𝑎𝑑𝑟 values, if 𝑎𝑑𝑡1 = 𝑎𝑖 then 𝑎𝑑𝑡1+𝑟𝑖−1 = 𝑑𝑖.

We say that 𝑟𝑖 many nodes are defined for each gate leg. Hence there are 𝑟𝑖(𝑚 + 1) +

2 nodes in 𝑁𝑇𝑖.

22

Figure 3.4. Network Representation of Aircraft 𝑖

For 𝑁𝑇𝑖, we define node set, 𝑁𝑆𝑖 and arc set, 𝐴𝑆𝑖 as follows:

𝑁𝑆𝑖 = ⋃ 𝑁𝑆𝑖𝑘𝑘=1,…,𝑚+1 ⋃𝑆𝑖⋃𝑇𝑖 where 𝑁𝑆𝑖𝑘 = {[𝑘, 𝑡1], … , [𝑘, 𝑡𝑟𝑖]}

𝐴𝑆𝑖 = ⋃ 𝐴𝑆𝑖𝑘
𝑘=1,…,𝑚+1

where 𝐴𝑆𝑖𝑘 = {[𝑆𝑖, (𝑘, 𝑡1)], . . . , [(𝑘, 𝑡𝑟𝑖−1), (𝑘, 𝑡𝑟𝑖)], [(𝑘, 𝑡𝑟𝑖), 𝑇𝑖]}

The basic parameter is the gain of each arc. The arc gains from node 𝑆𝑖 to its neighbor

node are defined as 𝐸𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)] and 𝑆𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)] where 𝑘 ≠ 𝑚 + 1 for

efficiency and stability measures, respectively. For both measures, all other arc gains

are zero.

For an arc, let’s show it by its starting node 𝑠 and its ending node 𝑒.

The decision variable is defined as:

𝑥(𝑠,𝑒)
𝑖 =

{

1, if arc (𝑠, 𝑒) is selected

𝑖 = 1,… , 𝑛

𝑠 ∈ ⋃ 𝑁𝑆𝑖𝑘
𝑘=1,…,𝑚+1

⋃𝑆𝑖

𝑒 ∈ ⋃ 𝑁𝑆𝑖𝑘
𝑘=1,…,𝑚+1

⋃𝑇𝑖

0, otherwise

23

The constraint sets are defined as below:

∑ 𝑥(𝑠,𝑒)
𝑖

𝑠∈⋃ 𝑁𝑆𝑖𝑘𝑘=1,…,𝑚+1 ⋃𝑆𝑖
𝑒∈⋃ 𝑁𝑆𝑖𝑘𝑘=1,…,𝑚+1 ⋃𝑇𝑖

− ∑ 𝑥(𝑗,𝑠)
𝑖

𝑗∈⋃ 𝑁𝑆𝑖𝑘𝑘=1,…,𝑚+1 ⋃𝑆𝑖
𝑠∈⋃ 𝑁𝑆𝑖𝑘𝑘=1,…,𝑚+1 ⋃𝑇𝑖

= {

1, 𝑠 = 𝑆𝑖
0, 𝑠 ≠ 𝑆𝑖, 𝑇𝑖
−1, 𝑠 = 𝑇𝑖

 𝑖 = 1,… , 𝑛 (D)

∑ 𝑥(𝑠,𝑒)
𝑖𝑛

𝑖=1 ≤ 1 ∀(𝑠, 𝑒) ∈ ⋃ 𝐴𝑆𝑖𝑖=1,…,𝑛 (E)

𝑥(𝑠,𝑒)
𝑖 ∈ {0,1} 𝑖 = 1,… , 𝑛, ∀(𝑠, 𝑒) ∈ 𝐴𝑆𝑖 (F)

Constraint sets (D) work as a classical flow balance constraint, ensuring an assigned

aircraft be assigned to the same gate all throughout its present time intervals. An

aircraft can only be assigned to a single gate as guaranteed by Constraint (E). Lastly,

decision variable 𝑥(𝑠,𝑒)
𝑖 is binary as stated by Constraint (F). We hereafter refer to the

constraint sets (D), (E), and (F) as 𝑥 ∈ 𝑋𝑁. We now discuss the efficiency and

stability measures for each aircraft 𝑖.

Efficiency Measure

Max 𝐸𝑁 ∑ ∑ 𝐸𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)](𝑠,𝑒)∈𝐴𝑆𝑖
𝑥(𝑠,𝑒)
𝑖𝑛

𝑖=1

where 𝐸𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)] =
1

𝜀𝐸
+ 𝑝𝑖.

Stability Measure

Max 𝑆𝑇𝑁 ∑ ∑ 𝑆𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)](𝑠,𝑒)∈𝐴𝑆𝑖
𝑥(𝑠,𝑒)
𝑖𝑛

𝑖=1

where 𝑆𝐴𝐶[𝑆𝑖, (𝑘, 𝑡1)] =
1

𝜀𝑆𝑇1𝜀𝑆𝑇2
𝑐𝑖𝑘 +

1

𝜀𝑆𝑇2
𝑝𝑖𝑐𝑖𝑘 + 𝑐𝑖𝑚+1 if 𝑘 = 1,… ,𝑚

The Network Flow Based Model can be summarized as:

Max 𝐸𝑁

Max 𝑆𝑇𝑁

subject to 𝑥 ∈ 𝑋𝑁

24

A small-sized example is provided to illustrate a network for aircraft 𝑖, 𝑁𝑇𝑖. In this

example with 𝑛 = 5,𝑚 = 3, let’s assume the following sets and parameters:

Table 3.1 Example Network for an Aircraft: 𝑎𝑖, 𝑑𝑖, 𝑝𝑖

Aircraft, 𝑖 Arrival time, 𝑎𝑖 Departure time, 𝑑𝑖 Passengers, 𝑝𝑖

1 1 53 200

2 65 99 100

3 189 226 150

4 186 232 100

5 71 129 200

The distinct and chronological time intervals are derived as:

Table 3.2 Example Network for an Aircraft: 𝑟𝑡, 𝑎𝑑𝑟

Interval, 𝑟𝑡 Distinct time value, 𝑎𝑑𝑟

1 1

2 53

3 65

4 71

5 99

6 129

7 186

8 189

9 226

Then, the parameter 𝑜𝑖𝑟 is found as:

25

𝑜𝑖𝑟 =

[

1
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
1
0
0
1

0
1
0
0
1

0
0
0
0
1

0
0
0
1
0

0
0
1
1
0

0
0
1
1
0]

We demonstrate the 𝑟𝑖 and 𝑡𝑖 values below.

Table 3.3 Example Network for an Aircraft: 𝑟𝑡, 𝑡𝑖

Aircraft, 𝑖 Number of time intervals, 𝑟𝑖 Time intervals, 𝑡𝑖

1 2 {1, 53}

2 3 {65, 71, 99}

3 2 {226, 232}

4 3 {189, 226, 232}

5 3 {71, 99, 129}

So, 𝑡2 = {𝑎𝑑3, 𝑎𝑑4, 𝑎𝑑5} = {65, 71, 99}.

Let’s calculate the 𝜀𝐸 to demonstrate arc gains on this network. To do so, we first

find the 𝐸2𝑚𝑎𝑥 and 𝐸2𝑚𝑖𝑛.

𝐸2𝑚𝑎𝑥 =∑𝑝𝑖

𝑛

𝑖=1

= 750

𝐸2𝑚𝑖𝑛 =∑𝑝[𝑖]

𝑚

𝑖=1

= 100 + 100 + 150 = 350

𝜀𝐸 =
1

∑ 𝑝𝑖
𝑛
𝑖=1 −∑ 𝑝[𝑖]

𝑚
𝑖=1 +1

=
1

750−350+1
=

1

401

Efficiency measure for aircraft 2, is found as below for 𝑘 = 1,2,3.

𝐸𝐴𝐶[𝑆2, (𝑘, 65)] =
1

𝜀𝐸
+ 𝑝2 = 401 + 100 = 501.

Figure 3.5 demonstrates the network for aircraft 2.

26

Figure 3.5. Example Network for Aircraft 2

27

CHAPTER 4

4 NONDOMINATED OBJECTIVE VECTORS

In this chapter, we discuss the nondominated objective vectors and their generation

method. We define the nondominated objective vectors in Section 4.1. In Section 4.2

and Section 4.3, we define algorithms to generate extreme nondominated objective

vectors. Section 4.4 discusses the generation of all nondominated objective vectors.

In Section 4.5, a procedure to generate approximate nondominated objective vectors

is proposed. In Section 4.6 and Section 4.7, we introduce an optimal decomposition

rule and propose its heuristic implementation, respectively.

The problems that we work in Sections 4.3, 4.4 and 4.5 are all NP-Hard due to the

NP-Hardness of our stability problem.

4.1 Nondominated Objective Vectors

A gate assignment solution 𝑟 in 𝑥 ∈ 𝑋𝐴 (or 𝑥 ∈ 𝑋𝑁) is called efficienct if there is no

other solution 𝑞 in 𝑥 ∈ 𝑋𝐴 (or 𝑥 ∈ 𝑋𝑁) with in 𝐸𝑞 ≥ 𝐸𝑟 and 𝑆𝑇𝑞 ≥ 𝑆𝑇𝑟 with strict

inequality holding at least once (𝐸𝑞 > 𝐸𝑟 and 𝑆𝑇𝑞 ≥ 𝑆𝑇𝑟 or 𝐸𝑞 ≥ 𝐸𝑟 and 𝑆𝑇𝑞 > 𝑆𝑇𝑟).

The associated objective vector (𝐸𝑟 , 𝑆𝑇𝑟) is said to be nondominated objective vector

(ndov). The solution 𝑞 is dominated by solution 𝑟 and the nondominated objective

vector (𝐸𝑞 , 𝑆𝑇𝑞) is dominated by the nondominated objective vector (𝐸𝑟 , 𝑆𝑇𝑟).

4.2 Extreme Nondominated Objective Vectors

An efficient solution is called an extreme efficient solution if it has the largest

objective function value for one objective.

28

A nondominated objective vector corresponding to an extreme efficient solution is

called extreme nondominated objective vector. We discuss the generation of the

nondominated objective vectors with the largest 𝐸 and the largest 𝑆𝑇 values in

subsections 4.2.1 and 4.2.2, respectively. We used the Assignment Based Model in

the generation methods.

Our efficiency concern and stability concern make up two different perspectives to

the problem. Hence, their resulting solutions are treated as the two extreme ends of

a solution spectrum.

4.2.1 Extreme Nondominated Objective Vector with the Largest 𝑬 Value

Consider the following problem:

Max 𝐸

subject to

𝑥 ∈ 𝑋𝐴

Let 𝐸∗ be the optimal objective function value.

𝐸∗ is an upper bound on the efficiency values of all efficient solutions. However, any

feasible solution with efficiency value of 𝐸∗ is not necessarily efficient as there may

exist another solution with a larger 𝑆𝑇 value. The solution having the maximum 𝑆𝑇

value among the solutions having efficiency value of 𝐸∗ can be found using the

following two-step procedure.

29

Procedure 1 Finding an Extreme Nondominated Objective Vector with the

Largest 𝐸 Value

Step 1. Solve the Max 𝐸 subject to 𝑥 ∈ 𝑋𝐴 problem. Let 𝐸1
∗ be the optimal

 objective function value.

Step 2. Solve the following problem

 Max 𝑆𝑇

 subject to

 𝐸 = 𝐸1
∗

 𝑥 ∈ 𝑋𝐴

 Let 𝑆𝑇1
∗ be the optimal objective function value. Then, the first extreme

 nondominated vector is (𝐸, 𝑆𝑇) = (𝐸1
∗, 𝑆𝑇1

∗).

An alternative model that delivers (𝐸1
∗, 𝑆𝑇1

∗) is given below:

Max 𝐸 + 𝜀𝐸𝑆𝑇

subject to

𝑥 ∈ 𝑋𝐴

where 𝜀𝐸 is a sufficiently small number.

𝜀𝐸 should be small enough so that 𝐸 value does not increase even one unit for the

maximum value of 𝑆𝑇.

This follows,

𝐸 + 𝜀𝐸𝑆𝑇𝑚𝑖𝑛 ≥ 𝐸 − 1 + 𝜀𝐸𝑆𝑇𝑚𝑎𝑥

𝜀𝐸 ≤
1

𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛

We observe that 𝑆𝑇𝑚𝑎𝑥 can be so large, making the 𝜀𝐸 value so small, that the

hierarchical relation between the objectives be lost due to rounding problems. Hence,

30

we use the two-step procedure to generate the efficient extreme nondominated

objective vector.

4.2.2 Extreme Nondominated Objective Vector with the Largest 𝑺𝑻

Value

Consider the following problem:

Max 𝑆𝑇

subject to

𝑥 ∈ 𝑋𝐴

In the optimal solution to the above problem, the initial plan should be implemented

to its the maximum extent. To achieve this, we fix the aircraft that are not affected

by disruptions to their initial gates. In doing so, the first and second parts of the

stability objective are maximized. Hence, a great emphasis is put on fixing the

aircraft that are not affected by disruptions. By keeping the initial plan for the

aircraft, that were initially assigned to gates and are not affected by disruptions, we

ensure that the new plan will be the most faithful one to the initial plan. To this end,

we pre-process our Stability Model input and create a so-called “Reduced Problem”

to run our model on. The steps to create a reduced problem are shown below.

31

Procedure 2 Creating a Reduced Problem for Stability Model

Step 1. Assign the aircraft that are not affected by disruptions to their initial

 gates

Step 2. From the remaining unassigned aircraft, find which ones can only be

 assigned to the apron, make the apron assignment for these “must-go”

 aircraft

Step 3. From the remaining unassigned aircraft, find which ones have a one-

 to-one relationship with an open time interval at a gate, meaning

 that an aircraft can only be assigned to a specific gate and this specific

 gate have no other possible unassigned aircraft for this open time

 interval. Make this one-to-one assignment.

Step 4. After making the pre-assignments, we have a partial assignment plan,

 and the remaining unassigned aircraft form the reduced problem that

 will be worked on.

In a reduced problem, for each aircraft of the reduced problem, we define a network.

This network has only arcs for the gates that the aircraft can be assigned. Note that

an aircraft now has a set of eligible gates due to the fixed gates.

The resulting network-based model is as stated below:

𝑛′ Number of unfixed aircraft

𝑆(𝑖) Set of gates that are eligible for aircraft 𝑖, 𝑖 = 1,… , 𝑛′

The objective function is:

Max 𝑆𝑇 +∈𝑆𝑇
′ 𝐸 where 𝑆𝑇 =

1

𝜀𝑆𝑇1𝜀𝑆𝑇2
𝑆𝑇1 +

1

𝜀𝑆𝑇2
𝑆𝑇2 + 𝑆𝑇3, 𝐸 =

1

𝜀𝐸
𝐸1 + 𝐸2, and

∈𝑆𝑇
′ =

1

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛+1
. 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 are found by considering only the unassigned

aircraft as follows:

32

𝐸𝑚𝑎𝑥 𝐸 value under the assumption that all aircraft in the reduced problem are

assigned to gates, 𝐸𝑚𝑎𝑥 =
1

𝜀𝐸
𝑛′ +∑ 𝑝𝑖

𝑛′

𝑖=1 .

𝐸𝑚𝑖𝑛 𝐸 value under the assumption that none of the aircraft in the reduced problem

can be assigned to a gate, 𝐸𝑚𝑖𝑛 = 0.

The constraint sets are

∑ 𝑥𝑖𝑘𝑘∈𝑆(𝑖) = 1 𝑖 = 1,… , 𝑛′

∑ 𝑐𝑜𝑚𝑝𝑖𝑟𝑥𝑖𝑘
𝑛′

𝑖=1 ≤ 1 ∀𝑘 ∈ ⋃ 𝑆(𝑖)𝑖=1,…,𝑛′ 𝑟 = 1, … , 𝑅 − 1

𝑥𝑖𝑘 ∈ 0 or 1 𝑖 = 1, … , 𝑛′ ∀𝑘 ∈ ⋃ 𝑆(𝑖)𝑖=1,…,𝑛′

Let (𝐸′, 𝑆𝑇′) be the optimal solution to the above model.

To find, (𝐸2, 𝑆𝑇2) vector, that is the nondominated vector for the second extreme

nondominated objective vector, we consider the fixed aircraft as well. The resulting

vector is found as:

𝐸2 = 𝐸
′ +

1

𝜀𝐸
𝐸1 + 𝐸2 where

1

𝜀𝐸
𝐸1 + 𝐸2 is the efficiency term of the fixed aircraft.

𝑆𝑇2 = 𝑆𝑇
′ +

1

𝜀𝑆𝑇1𝜀𝑆𝑇2
𝑆𝑇1 +

1

𝜀𝑆𝑇2
𝑆𝑇2 + 𝑆𝑇3 where

1

𝜀𝑆𝑇1𝜀𝑆𝑇2
𝑆𝑇1 +

1

𝜀𝑆𝑇2
𝑆𝑇2 + 𝑆𝑇3

is the stability term of the fixed aircraft.

We give a small example with 𝑛 = 10,𝑚 = 4 with a disruption that closes two gates

randomly, to demonstrate creating a reduced problem below.

Let’s assume a problem with the following parameters and initial plan where a

disruption causes gates 2 and 4 to be closed.

33

Table 4.1 Example of a Reduced Problem

Aircraft, 𝑖 Initial assignment, 𝑘 Reduced problem

1 1
Aircraft is not affected by the disruption, fix

its gate.

2 4 (closed)

Aircraft is affected by the disruption,

no gate is available to this aircraft, it is

assigned to apron.

3 2 (closed)

Aircraft is affected by the disruption,

only gate 3 is available to this aircraft, aircraft

9 is also affected and overlaps with aircraft 3,

so it is in the reduced problem.

4 2 (closed)

Aircraft is affected by the disruption,

there are multiple gates available to this

aircraft, it is in the reduced problem.

5 4 (closed)

Aircraft is affected by the disruption,

only gate 1 is available to this aircraft, there

are no affected aircraft overlapping with

aircraft 5, it is assigned to gate 1.

6 5 (apron)
Aircraft is not affected by the disruption, fix

its gate.

7 4 (closed)

Aircraft is affected by the disruption,

only gate 3 is available to this aircraft, aircraft

3 is also affected and overlaps with aircraft 7,

so it is in the reduced problem.

8 5 (apron)
Aircraft is not affected by the disruption, fix

its gate.

Then, from Table 4.1, we see that a reduced problem is created with aircraft 3, 4, and

9, and gates 1 and 3.

34

4.3 Extreme Supported Nondominated Objective Vectors

An efficient solution is called supported efficient solution if it is optimal for the linear

combination of 𝐸 and 𝑆𝑇, i.e., 𝑤𝐸 + (1 − 𝑤)𝑆𝑇 for any positive 𝑤. If the efficient

solution does not optimize 𝑤𝐸 + (1 − 𝑤)𝑆𝑇 for all positive 𝑤, then it is non-

supported efficient.

A supported efficient solution is called extreme supported efficient solution if it can

be found by changing the value of 𝑤. A supported efficient solution is nonextreme

supported efficient solution if it is on the linear combination of two extreme

supported efficient solutions.

The nondominated objective vectors corresponding to supported, non-supported,

extreme supported and nonextreme supported efficient solutions are referred to as

supported, non-supported, extreme supported and nonextreme supported

nondominated objective vectors, respectively.

We generate the nondominated objective vectors through the solutions of the

following objective function:

𝑤 (
𝐸−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
) + (1 − 𝑤) (

𝑆𝑇−𝑆𝑇𝑚𝑖𝑛

𝑆𝑇𝑚𝑎𝑥−𝑆𝑇𝑚𝑖𝑛
) where (𝐸𝑚𝑎𝑥, 𝑆𝑇𝑚𝑖𝑛) is the extreme

nondominated objective vector with the largest 𝐸 value, whereas (𝐸𝑚𝑖𝑛, 𝑆𝑇𝑚𝑎𝑥) is

the extreme nondominated objective vector with the largest 𝑆𝑇 value.

According to the above scaling, the weights would be more dispersed. However, the

same extreme supported vectors without the scaling would be obtained. We rewrite

our scaled objective as 𝑤𝐸𝑠𝑐𝑎𝑙𝑒𝑑 + (1 − 𝑤)𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑 for the sake of simplicity.

We adapt the method used in Özlen and Azizoğlu (2009) to generate all

nondominated objective vectors. As in Özlen and Azizoğlu (2009), we first generate

two extreme nondominated objective vectors by setting 𝑤 = 0 and 𝑤 = 1. Then we

find a range for 𝑤 by solving the following relation:

35

𝑤𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) + (1 − 𝑤)𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) = 𝑤𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2) + (1 − 𝑤)𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) where

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑖) is the 𝐸𝑠𝑐𝑎𝑙𝑒𝑑 value of the 𝑖𝑡ℎ extreme nondominated objective vector and

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑖) is the 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑 value of the 𝑖𝑡ℎ extreme nondominated objective vector.

Rearranging the terms in the equality, we get

𝑤 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) − 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2)

For the above 𝑤, the extreme nondominated objective vectors have the objective

function value, when the weight is in [0, 𝑤), the first extreme point is favored.

Otherwise, i.e., when the weight is in (𝑤, 1], the second extreme point is favored.

The the following problem is solved to get the third extreme supported nondominated

objective vector.

Max 𝑤𝐸𝑠𝑐𝑎𝑙𝑒𝑑 + (1 − 𝑤)𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑

subject to

𝑥 ∈ 𝑋𝐴

The optimal solution to the above problem is (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(3), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(3)). We reorder

the already found three extreme supported solutions so that 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) <

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2) < 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(3) and 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) < 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) < 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(3). Then, we

solve the below relations:

𝑤1 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) − 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2)

𝑤2 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(3) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(3) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(3)

In [0, 𝑤2], [𝑤2, 𝑤1], [𝑤1, 1], (1), (2) and (3) are the optimal solutions, respectively.

When a new schedule is added to the 𝑖𝑡ℎ order, then we find two weights 𝑤𝑡 and

𝑤𝑡+1 by forming two weight equation between 𝑆𝑡 and 𝑆𝑡+1, such as 𝑤1 and 𝑤2.

The stepwise description of the procedure is stated below:

36

Procedure 3 Generating Extreme Supported Nondominated Objective Vectors

Step 0. Solve the model in section 4.2.1 to get the extreme nondominated

 objective vector with the largest 𝐸 value. Let this optimal solution be

 (𝐸𝑚𝑎𝑥, 𝑆𝑇𝑚𝑖𝑛). Solve the model in section 4.2.2 to get the extreme

 nondominated objective vector with the largest 𝑆𝑇 value. Let this

 optimal solution be (𝐸𝑚𝑖𝑛, 𝑆𝑇𝑚𝑎𝑥).

 Let 𝑘 be the number of extreme supported efficient solutions.

 Set 𝑘 = 1

 For a current solution (𝐸, 𝑆𝑇), define 𝐸𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐸−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
 and

 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑆𝑇−𝑆𝑇𝑚𝑖𝑛

𝑆𝑇𝑚𝑎𝑥−𝑆𝑇𝑚𝑖𝑛
.

 Find the scalarized weight from the below relation:

 𝑤1 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)+𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1)−𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2)

Step 1. Solve Max 𝑤1𝐸𝑠𝑐𝑎𝑙𝑒𝑑 + (1 − 𝑤1)𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑

 subject to

 𝑥 ∈ 𝑋𝐴

 Let (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)) be the optimal solution.

 If (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)) is one of the extreme solutions,

 (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)) or (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2)) then go to Step3.

Step 2. If (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)) is either (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘 − 1), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘 − 1)) or

 (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘 − 2), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘 − 2)), fix 𝑤𝑘, let 𝑘 = 𝑘 + 1, go to Step 1.

 If (𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘), 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)) is a new solution, then reorder the solutions,

 update 𝑤𝑘 and 𝑤𝑘+1 as follows:

 𝑤𝑘 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)+𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘)−𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)

 𝑤𝑘+1 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+2)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+2)−𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)+𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+1)−𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑘+2)

 If all 𝑤𝑘 values are fixed then go to Step 3, else go to Step 1.

Step 3. Stop, all extreme supported solutions are generated.

37

The procedure returns an extreme supported nondominated objective vector at each

iteration. The returned nondominated objective vector is either a new nondominated

objective vector or an already known one. If it is one of the two extreme

nondominated objective vectors at the first iteration, then we stop. If it is one of the

other known nondominated objective vectors, then its weight is fixed.

We demonstrate Procedure 3 in an example with 𝑛 = 75,𝑚 = 10 where a disruption

closes two gates randomly. The numeric values of the extreme nondominated

objective vectors for this instance are shown in Table 4.2.

Table 4.2 Example for Extreme Supported Nondominated Objective Vectors:

𝐸𝑚𝑎𝑥, 𝑆𝑇𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛, 𝑆𝑇𝑚𝑎𝑥

The extreme nondominated objective vector with the largest 𝐸 value, (1)

𝐸𝑚𝑎𝑥 17992

𝑆𝑇𝑚𝑖𝑛 114174

The extreme nondominated objective vector with the largest 𝑆𝑇 value, (2)

𝐸𝑚𝑖𝑛 16888

𝑆𝑇𝑚𝑎𝑥 154134

We calculate the scaled objective function values as shown below:

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) =
𝐸 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
=
17992 − 16888

17992 − 16888
= 1

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2) =
𝐸 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
=
16888 − 16888

17992 − 16888
= 0

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) =
𝑆𝑇 − 𝑆𝑇𝑚𝑖𝑛

𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛
=
114174 − 114174

154134 − 114174
= 0

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) =
𝑆𝑇 − 𝑆𝑇𝑚𝑖𝑛

𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛
=
154134 − 114174

154134 − 114174
= 1

38

𝑤1 =
𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1)

𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(2) − 𝑆𝑇𝑠𝑐𝑎𝑙𝑒𝑑(1) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(1) − 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(2)

𝑤1 =
1 − 0

1 − 0 + 1 − 0
= 0.5

Then, we solve the following model:

Max 0.5
𝐸−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
+ (1 − 0.5)

𝑆𝑇−𝑆𝑇𝑚𝑖𝑛

𝑆𝑇𝑚𝑎𝑥−𝑆𝑇𝑚𝑖𝑛

subject to

𝑥 ∈ 𝑋𝐴

The optimal solution is found as (𝐸∗, 𝑆𝑇∗) = (17242, 143982) which is said to be

the second extreme supported nondominated objective vector when we reorder the

extreme supported nondominated objective vectors. Then, we look for new ones

employing new weights ranges.

We keep generating new nondominated objective vectors between the two found

extreme supported nondominated objective vectors, as long as a new nondominated

objective vectors are found in between. When no new nondominated objective vector

is found between the two found extreme supported nondominated objective vectors,

we move on the next pair of the found extreme supported nondominated objective

vectors, thus generating all extreme supported nondominated objective vectors,

reported in Table 4.3 and described by Figure 4.1.

39

Table 4.3 Example for Extreme Supported Nondominated Objective Vectors:

weight range, 𝐸∗, 𝑆𝑇∗

Extreme Supported

Nondominated Objective

Vector, 𝑟

Weight (𝑤) range 𝐸∗ 𝑆𝑇∗

1

2

3

4

5

6

𝑤 = 1

𝑤 = 0

[0,1]

[0.5,1]

[0.5,0.91694]

[0.91694,1]

17992

16888

17242

17842

17742

17942

114174

154134

143982

134136

137466

127512

Figure 4.1. Example for Extreme Supported Nondominated Objective Vectors:

explored weight ranges

As seen from Figure 4.1, weights between 0 and 0.5 did not produce any new extreme

supported nondominated objective vectors. Then, we explored a new weight range,

between 0.5 and 1, and found that 𝑤 = 0.91694 produced a new extreme supported

nondominated objective vector, after fixing it, we looked for a new one in the range

0.5 and 0.91694 and found that 𝑤 = 0.82009 produced a new extreme supported

nondominated objective vector and so on.

40

4.4 Generating All Nondominated Objective Vectors

Haimes et al. (1971) showed that an optimal solution to the following problem

produces an efficient solution:

Max 𝐸 + 𝜀𝐸𝑆𝑇

subject to

𝑆𝑇 ≤ 𝑘

𝑥 ∈ 𝑋𝐴

or equivalently

Max 𝐸

subject to

𝑥 ∈ 𝑋𝐴

Let 𝐸∗ be the optimal 𝐸 value.

Max 𝑆𝑇

subject to

𝐸 = 𝐸∗

𝑥 ∈ 𝑋𝐴

Using this result, we propose a procedure that generates a nondominated objective

vector at each iteration. This procedure uses the fact that (𝐸, 𝑆𝑇) is in fact integer.

41

Procedure 4 Generating All Nondominated Objective Vectors

Input: Initial gate assignment plan, arrival and departure times of the aircraft

Step 0. Solve the following problem to find the extreme nondominated

 objective vector with the largest 𝐸 value.

 Max 𝐸

 subject to

 𝑥 ∈ 𝑋𝐴

 Let 𝐸(1) be the optimal 𝐸 value.

 Max 𝑆𝑇

 subject to

 𝐸 = 𝐸(1) and 𝑥 ∈ 𝑋𝐴

 (𝐸(1), 𝑆𝑇(1)) is the first nondominated objective vector. Set 𝑟 = 1.

Step 1. Solve the following problem

 Max 𝑆𝑇

 subject to

 𝑆𝑇 ≥ 𝑆𝑇(𝑟) + 1

 𝑥 ∈ 𝑋𝐴

 If the problem is infeasible, go to Step 3.

Step 2. 𝑟 = 𝑟 + 1

 Let 𝐸(𝑟) be the optimal solution.

 Max 𝑆𝑇

 subject to

 𝐸 = 𝐸(𝑟) and 𝑥 ∈ 𝑋𝐴

 Let ST(𝑟) be the optimal solution. (𝐸(𝑟), 𝑆𝑇(𝑟)) is the 𝑟𝑡ℎ

 nondominated objective vector. Go to Step 1.

Step 3. Stop, all 𝑟 nondominated objective vectors are generated.

Output: All nondominated objective vector and an optimal gate assignment plan

 corresponding to each vector.

42

Continuing with the example given in Section 4.3, we present all nondominated

objective vectors of this example instance below.

Table 4.4 Example for All Nondominated Objective Vectors: 𝑟, 𝐸∗, 𝑆𝑇∗

Ndov, 𝑟 𝐸∗ 𝑆𝑇∗ Ndov, r 𝐸∗ 𝑆𝑇∗

1 16888 154134 9 17442 140652

2 16988 150822 10 17742 137466

3 17088 150804 11 17792 134154

4 17142 144018 12 17842 134136

5 17188 147492 13 17892 130824

6 17242 143982 14 17942 127512

7 17288 144180 15 17992 114174

8 17342 140724

Figure 4.2. Example for All Nondominated Objective Vectors

The trade-off between the two objectives can clearly be seen in Figure 4.2.

114000

118000

122000

126000

130000

134000

138000

142000

146000

150000

154000

S
T

E

43

4.5 Generating the Approximate Nondominated Objective Vectors

Our experiments have shown that the exact algorithm becomes computationally

intractable when the number of aircraft and the number of gates get bigger. This rises

a need for a heuristic procedure.

To get approximate set of nondominated objective vectors, we fix some aircraft at

some gates and solve the reduced problem. In doing so, we check for the two extreme

nondominated objective vectors, each of which obtained in reasonable times.

The similarity of assigned aircraft for each gate between the two extreme

nondominated objective vectors is detected. If the aircraft assigned to a particular

gate, say gate 𝑘, in the first extreme nondominated objective vector (the one having

the largest 𝐸 value) are also asisgned to gate 𝑘, in the second extreme solution (the

one having the largest 𝑆𝑇 value), then we fix the aircraft of the latter extreme

nondominated objective vector to gate 𝑘 and reduce the problem by ignoring the

fixed aircraft and gate 𝑘.

The idea behind these reductions is that if the two aircraft are assigned to the same

gate in two extreme, i.e., the furthest, nondominated objective vectors, then it is very

likely that those aircraft be assigned to gate 𝑘 in the nondominated objective vectors

in between.

Procedure 5 is the stepwise description of the heuristics procedure.

44

Procedure 5 Generating the Approximate Nondominated Objective Vectors

Step 0. Find two extreme nondominated objective vectors, 𝑟 = 1 with the

 largest 𝐸 and 𝑟 = 2 with the largest 𝑆𝑇.

 Let 𝑆𝑘𝑟 be the set of aircraft assigned to gate 𝑘 in extreme

 nondominated objective vector 𝑟

 Let 𝑁 be the set of all aircraft

 Let 𝑀 be the set of all gates

 Set 𝑘 = 1

Step 1. If 𝑆𝑘2 is superset of 𝑆𝑘1, i.e., all aircraft in 𝑆𝑘1 𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑖𝑛 𝑆𝑘2 at gate 𝑘,

 then 𝑁 = 𝑁/{𝑆𝑘2} and 𝑀 = 𝑀/{𝑘}

Step 2. If 𝑘 = 𝑚, then go to Step 3.

 𝑘 = 𝑘 + 1

 Go to Step 1

Step 3. For the reduced problem with gates in 𝑀 and aircraft in 𝑁 find all

 nondominated objective vectors using Procedure 4.

We give a small example with 𝑛 = 15,𝑚 = 5 to demonstrate the reduction described

in Procedure 5. Let’s assume that due to a disruption, gate 4 is closed.

Table 4.5. shows the aircraft-gate assignments for the two extreme nondominated

objective vectors.

Table 4.5 Example Reduced Problem for the Approximate Nondominated Objective

Vectors

Extreme

Solution
m=1 m=2 m=3 m=4 m=5

with the largest 𝑆𝑇 1,2,4,13,15 6,8,9 11,12,14
closed

3,5,7,10

With the largest 𝐸 1,2,4,10,11 6,8,9 12,14 3,5,7,13,15

45

We see that the list of aircraft assigned to gate 2 in the extreme nondominated

objective vector with the largest 𝑆𝑇 value is in fact a superset of the list of aircraft

assigned to gate 2 in the extreme nondominated objective vector with the largest 𝐸

value. Similarly, this also holds true for the case of gate 3. Then, we fix the

assignments of the extreme nondominated objective vector with the largest 𝑆𝑇 value

for gates 2 and 3 and do not include these gates in the reduced problem. A reduced

problem is created for the remaining set of aircraft and gates, which consists of gates

1 and 5; and aircraft 1, 2, 3, 4, 5, 7, 10, 13, 15. Procedure 4 will be applied to this

reduced problem that is clearly of smaller size.

4.6 Optimal Decomposition

A meaningful question regarding generating an assignment plan would be “What

would happen if the problem could be decomposed?”. Depending on how many,

preferably equal-sized, small instances a problem consists of, obtaining an

assignment for each small piece and combining them to get a full solution for the big

problem might be a good idea to be explored.

The optimal decomposition of an AGRP would mean that the problem set at hand

has time intervals where no aircraft occupies the gates, i.e., in such time intervals no

aircraft is present in the system. Thus, at such time intervals, the problem could be

decomposed where independent smaller-sized problems are obtained. What should

follow would be to solve each decomposed problem and then combine the solutions

to get a full assignment plan for the main problem.

We first find the set of nondominated objective vectors for each decomposed

problem, using Procedure 4.

We let 𝐴(𝑣) be the set of nondominated objective vectors, 𝑣 = 1,… , 𝑉.

𝐴 =⋃𝐴(𝑣)

𝑉

𝑣=1

46

𝐸𝐹𝐹𝑢 𝐸 value of solution 𝑢 in 𝐴

𝑆𝑇𝐴𝑢 𝑆𝑇𝐴 value of solution 𝑢 in 𝐴

We combine the solution by taking a solution from each decomposed problem and

get a complete nondominated objective vector.

To form the complete vectors, we use two models. The models use the following

decision variable

𝑧𝑢 = {
1 if solution 𝑢 is selected

0 otherwise
 𝑢 ∈ 𝐴

The combined models are stated as:

(𝑃𝐸) Max ∑ ∑ 𝐸𝐹𝐹𝑢𝑧𝑢
𝑢∈𝐴(𝑣)

𝑉

𝑣=1

subject to

∑ ∑ 𝑆𝑇𝐴𝑢𝑧𝑢
𝑢∈𝐴(𝑣)

𝑉

𝑣=1

≥ 𝑡

∑ 𝑧𝑢𝑢∈𝐴(𝑣) = 1 𝑣 = 1, … , 𝑉

𝑧𝑢 = 0 or 1 𝑢 ∈ 𝐴

Let 𝐸𝐹𝐹∗ be the optimal solution.

(𝑃𝑆𝑇) Max ∑ ∑ 𝑆𝑇𝐴𝑢𝑧𝑢
𝑢∈𝐴(𝑣)

𝑉

𝑣=1

subject to

∑ ∑ 𝐸𝐹𝐹𝑢𝑧𝑢
𝑢∈𝐴(𝑣)

𝑉

𝑣=1

= 𝐸𝐹𝐹∗

∑ 𝑧𝑢𝑢∈𝐴(𝑣) = 1 𝑣 = 1, … , 𝑉

47

𝑧𝑢 = 0 or 1 𝑢 ∈ 𝐴

Let 𝑆𝑇𝐴∗ be the optimal solution.

(𝐸𝐹𝐹∗, 𝑆𝑇𝐴∗) is a nondominated objective vector once 𝑡 is between the minimum

and maximum stability values of all efficient solutions.

The minimum stability value is 𝑆𝑇𝐿𝐵 = ∑ min
𝑢∈𝐴

{𝑆𝑇𝐴𝑢}
𝑉
𝑣=1 and maximum stability

value 𝑆𝑇𝑈𝐵 = ∑ max
𝑢∈𝐴

{𝑆𝑇𝐴𝑢}
𝑉
𝑣=1 .

The following procedure gives the set of all nondominated objective vectors.

Procedure 6 Generating All Nondominated Objective Vectors with Optimal

Decomposition Rule

Step 0. Find set 𝐴(𝑣) for all 𝑣 = 1,… , 𝑉 by using Procedure 4.

 Find 𝑆𝑇𝐿𝐵 and 𝑆𝑇𝑈𝐵.

 Set 𝑡 = 𝑆𝑇𝐿𝐵, 𝑟 = 1.

Step 1. Solve 𝑃𝐸 and then 𝑃𝑆𝑇 .

 The optimal solutions of 𝑃𝐸 and 𝑃𝑆𝑇 (𝐸𝐹𝐹∗, 𝑆𝑇𝐴∗) gives the 𝑟𝑡ℎ efficient

 solution.

Step 2. If 𝑆𝑇𝐴∗ < 𝑆𝑇𝑈𝐵, then let 𝑡 = 𝑆𝑇𝐴∗ + 1, 𝑟 = 𝑟 + 1 and go to Step 2, else

 stop, all 𝑟 nondominated objective vectors are generated.

A small example with 𝑛 = 15,𝑚 = 5 is given in Table 4.6 that is decomposable into

three smaller problems (𝑟 = 3).

48

Table 4.6 Example for Optimal Decomposition: 𝑎𝑖, 𝑑𝑖 , 𝑟 = 3,

Aircraft, 𝑖
Arrival

time, 𝑎𝑖

Departure

time, 𝑑𝑖
Aircraft, 𝑖

Arrival

time, 𝑎𝑖

Departure

time, 𝑑𝑖

1 41 72 9 163 193

2 33 78 10 145 176

3 55 95 11 280 339

4 52 97 12 300 344

5 14 58 13 286 343

6 138 189 14 277 317

7 174 228 15 287 319

8 165 206

Figure 4.3. Example Time Intervals for a Decomposable Problem

As seen from Figure 4.3, there are no aircraft in the system in the boldface time

intervals. Thus, we can decompose our problem into three smaller problems, solve

them separately, and apply Procedure 6 obtain the solutions for the original problem.

4.7 Heuristic Implementation of Decomposition Algorithm

Our experiments have revealed a satisfactory behavior of our decomposition

algorithm. The basic difficulty is that many instances do not have many intervals

with no aircraft, hence the application of the decomposition algorithm may not be

possible.

In case there are no intervals with no aircraft, one may use our decomposition-based

algorithm to get approximate nondominated objective vectors.

49

The following procedure may be applied to get such solutions.

Procedure 7 Generating Approximate Nondominated Objective Vectors with

Heuristic Implementation of Decomposition Algorithm

Step 0. Find 𝑟 intervals with minimum number of aircraft

Step 1. Let 𝐴 be the set of aircraft that are present in at least one of the 𝑟

 intervals.

Step 2. Apply our decomposition algorithm for 𝑟 individual subproblems and

 set of 𝑁\𝐴 aircraft

Step 3. For each nondominated objective vector, insert the aircraft in 𝐴.

The future research may point out development of efficient insertion and interchange

mechanisms for Step 3.

50

51

CHAPTER 5

5 COMPUTATIONAL EXPERIMENTS

We design an experiment to test the performances of the algorithms. In Section 5.1,

the data generation scheme is discussed and in Section 5.2, the performance

measures are stated. Section 5.3 analyzes the result of our computational experiment.

5.1 Data Generation Scheme

We select the parameter 𝑚 compatible with the layouts of airports in Turkey where

we make a real-life application. The airports in the largest three cities in Turkey are

İstanbul Airport in İstanbul, Esenboğa Airport in Ankara, and İzmir Adnan Menderes

Airport in İzmir, and have about 40, 20, and 10 gates, respectively. So, in our

experiments, we use 𝑚 as 40, 20, and 10 gates.

As for the parameter 𝑛, we set the number of aircraft, starting from 50 and increase

it increments of 25, for each 𝑚 scenario.

For each aircraft 𝑖, arrival time 𝑎𝑖 and departure time 𝑑𝑖 are generated as stated in

Karsu et al. (2021). According to this scheme, the following two sets are defined:

Set I 𝑎𝑖~𝑈[0,300]

 𝑑𝑖~𝑈[0,30] + 30 + 𝑎𝑖

Set II 𝑎𝑖~𝑈[0,150]

 𝑑𝑖~𝑈[0,60] + 60 + 𝑎𝑖

Set I and Set II represent low and high waiting instances, hence having low and high

chances of apron assignments, respectively. Furthermore, the time unit used for the

arrival and departure times is minutes. For example, when an aircraft has an arrival

52

time of 65, it means that this aircraft will be in the airport in the 65th minute of the

planning horizon, which is compatible with the time intervals used in real-life.

For each aircraft 𝑖, number of passengers 𝑝𝑖 are generated as follows.

𝑝𝑖~𝑇(50,100,300) where 𝑇 is the triangular distribution and 50 is the minimum

number of passegers in an aircraft, 100 is the mode, and 300 is the maximum. Note

that, we round this random number to an integer value.

We use an initial plan that is optimal for the efficiency measure. Then, we assume

that disruptions occur at time zero and the affected gates do not become available

thereafter. We define three types of disruption scenarios for our experiments, where

affected gates are selected randomly.

Type I – one gate is affected by the disruption

Type II – one fifth of the gates are affected by the disruption

Type III – half of the gates are affected by the disruption

Disruption Type I depicts a small disruption where only a single gate is closed.

Disruption Type II shows a more serious case where one fifth of the gates are

affected. For the sake of completeness, Disruption Type III depicts the more severe

incidents where half the gates become inoperable.

For each 𝑛, arrival and departure time set, and disruption type, 10 problem instances

are randomly generated. We set a termination limit of two hours for the execution of

each mathematical model.

MATLAB is used for random parameter generation and reduced problem creation

efforts. All mathematical models and algorithms are developed using ILOG CPLEX

Optimization Studio 20.1.0, and solved by CPLEX Optimizer 20.1.0. Furthermore,

a computer with quad-core Intel(R) Core(TM) i7-10510U CPU @1.80GHz-2.30

GHz, 16 GB RAM, and Windows 11 is used. Reported CPU times are expressed in

seconds.

53

5.2 Performance Measures

We report the average and maximum (worst case) CPU times for all procedures. We

also include the statistics for the number of nondominated objective vectors.

To evaluate the performance of the heuristic algorithm that generates the

approximate set of nondominated objective vectors, we first use 𝑃, the average of

exact nondominated objective vectors found by the heuristic.

We let

𝑃 =
|𝐸𝑆∩𝐻𝑆|

|𝐻𝑆|
∗ 100 where

𝐸𝑆 exact set of nondominated objective vectors

𝐻𝑆 approximate set of nondominated objective vectors

|𝐸𝑆 ∩ 𝐻𝑆| number of exact nondominated objective vectors found by heuristic

Hence, 𝑃 is the percentage of |𝐸𝑆 ∩ 𝐻𝑆| in |𝐻𝑆| (the number of exact nondominated

objective vectors)

To evaluate the closeness of the non-exact solutions to their exact counterparts, we

use the following two statistics, 𝐷1 and 𝐷2, defined in Czyzżak and Jaszkiewicz

(1998). They define 𝐷1 and 𝐷2 as the average and maximum distance between the

exact and heuristic nondominated objective vectors, respectively.

To find 𝐷1 and 𝐷2, we assume (𝐸𝑟 , 𝑆𝑇𝑟) is in 𝐸𝑆 and (𝐸𝑞 , 𝑆𝑇𝑞) is in 𝐻𝑆, and

calculate the ranges of 𝐸 values, 𝑅(𝐸), and 𝑆𝑇 values, 𝑅(𝑆𝑇), as follows:

𝑅(𝐸) = max
(𝐸𝑟,𝑆𝑇𝑟) ∈ES

𝐸𝑟 − min
(𝐸𝑟,𝑆𝑇𝑟) ∈ES

𝐸𝑟

𝑅(𝑆𝑇) = max
(𝐸𝑟,𝑆𝑇𝑟) ∈ES

𝑆𝑇𝑟 − min
(𝐸𝑟,𝑆𝑇𝑟) ∈ES

𝑆𝑇𝑟

𝐷1 and 𝐷2 measures are calculated as follows:

54

𝑓((𝐸𝑞 , 𝑆𝑇𝑞), (𝐸𝑟 , 𝑆𝑇𝑟)) = max {0,
1

𝑅(𝐸)
(𝐸𝑞 − 𝐸𝑟),

1

𝑆𝑇(𝐸)
(𝑆𝑇𝑞 − 𝑆𝑇𝑟)

𝐷1 =
1

|𝐸𝑆|
∑ min

(𝐸𝑞,𝑆𝑇𝑞) ∈HS
{𝑓((𝐸𝑞 , 𝑆𝑇𝑞), (𝐸𝑟 , 𝑆𝑇𝑟))}

(𝐸𝑟,𝑆𝑇𝑟)∈𝐸𝑆

𝐷2 = max
(𝐸𝑟,𝑆𝑇𝑟)∈𝐸𝑆

{ min
(𝐸𝑞,𝑆𝑇𝑞)∈HS

{𝑓((𝐸𝑞 , 𝑆𝑇𝑞), (𝐸𝑟 , 𝑆𝑇𝑟))}}

In our computational efforts, higher percentage of nondominated objective vectors,

𝑃, will be preferred over lower 𝑃 values. Furthermore, lower average and maximum

distance between the exact and heuristic nondominated objective vectors, 𝐷1 and 𝐷2

respectively, will be preferred over higher 𝐷1 and 𝐷2 values.

5.3 Computational Results

In this section, we discuss the computational results for mathematical models in

Chapter 3 and solution algorithms in Chapter 4. Note that an optimal initial plan

under our efficiency criterion is used in the following computations.

5.3.1 Comparison of Assignment Based Model and Network Based Model

First and foremost, we compare the performances of mathematical models presented

in Chapter 3, namely Assignment Based Model and Network Based Model. Since

these two mathematical models are used to obtain feasible assignment plans, we test

them on getting an initial assignment plan with our efficiency concern in mind. We

make a comparison based on average and maximum CPU times where we run our

models for Set 1 and Set 2 i.e., low and high apron usage scenarios, in Table 5.1 and

Table 5.2, respectively, and several aircraft-gate pairings, before any disruption in

the system.

55

Table 5.1 Comparison of Assignment and Network Based Models for Set 1

n m

CPU Time

Assignment Based

Model

Network Flow Based

Model

Avg Max Avg Max

50

10 0.16 0.22 0.99 1.61

20 0.27 0.36 1.55 1.88

40 0.45 0.53 3.66 4.77

75

10 0.31 0.47 1.87 2.72

20 0.46 0.58 3.18 4.25

40 0.84 1.33 6.94 7.95

100

10 0.51 0.92 3.35 4.31

20 0.72 1.02 5.47 6.44

40 0.90 1.08 12.15 13.06

125

10 1.00 1.59 4.88 5.52

20 2.52 4.95 9.77 11.27

40 1.25 1.30 20.39 22.19

150

10 1.32 1.73 6.12 7.42

20 4.68 10.23 13.64 16.28

40 1.71 1.92 25.97 28.80

175

10 1.84 2.80 11.13 14.50

20 11.59 18.47 28.37 34.66

40 3.43 5.50 49.92 67.45

200

10 2.31 2.98 9.23 10.11

20 16.77 20.97 37.52 47.36

40 6.61 8.98 62.47 70.28

56

Table 5.2 Comparison of Assignment and Network Based Models for Set 2

n m

CPU Time

Assignment Based

Model

Network Flow Based

Model

Avg Max Avg Max

50

10 0.21 0.41 0.89 1.00

20 0.41 0.61 1.98 2.34

40 0.75 0.83 5.19 6.11

75

10 0.38 0.44 1.85 2.09

20 0.89 1.03 4.27 5.14

40 1.83 2.16 10.35 11.84

100

10 0.59 0.72 3.24 4.94

20 1.48 2.55 7.22 7.89

40 3.15 3.80 19.00 20.52

125

10 0.84 0.92 4.46 4.70

20 1.82 2.17 10.50 11.47

40 5.17 6.25 29.30 32.14

150

10 0.99 1.11 6.09 6.94

20 2.43 2.95 14.72 17.48

40 6.16 7.58 43.27 53.95

175

10 1.26 1.47 12.66 13.84

20 2.57 3.63 30.88 33.09

40 8.26 9.69 77.32 94.20

Table 5.1 and Table 5.2 show that as the number of aircraft increases, so do the CPU

times. This is due to the increased complexity with the increases in the problem size.

Table 5.1 demonstrates that as the number of gates increases, generally the CPU time

also increases. However, for the larger number of aircraft, we observe that as the

number of gates reaches 40, CPU times tend to decrease with the Assignment Based

Model in the low apron usage scenario. Furthermore, Table 5.2 demonstrates that an

increase in the number of the gates results in higher CPU times for both models in

the high apron usage scenario. High apron usage inherently means that the problem

setting is in need of more gates. Thus, as 𝑚 increases, the solution space gets wider,

taking longer to solve.

57

Strikingly, both Table 5.1 and Table 5.2 report lower CPU times for the Assignment

Based Model than the Network Based Model. In some instances, the CPU time of

the Network Based Model reaches up to ten times that of the Assignment Based

Model. For example, in Table 5.1, when 𝑛 is 200 and 𝑚 is 40, the average CPU time

for Assignment Based Model is reported as 6.61 seconds, whereas for Network

Based Model, it is 62.47 seconds. We deduce that the Assignment Based Model is a

better fit to our problem. Hence, we continue with the Assignment Based Model in

our solution algorithms.

5.3.2 Extreme and Extreme Supported Nondominated Objective Vectors

We discuss the performance of the extreme and extreme supported algorithms given

under Procedures 1, 2, and 3 in this section.

Table 5.3 and Table 5.4 report average and maximum CPU times for extreme

nondominated objective vector with the largest 𝐸 value, extreme nondominated

objective vector with the largest 𝑆𝑇 value, extreme supported nondominated

objective vectors, and average and maximum number of extreme supported

nondominated objective vectors, for Set 1 and Set 2, respectively.

58

Table 5.3 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1

Disruption

Type
n m

ES-

Efficiency

ES-

Stability
ESS

CPU Time
Number

of ESSs
CPU Time

Avg Max Avg Max Avg Max Avg Max

1

50
10 0.31 0.41 0.20 0.83 3.6 5 1.05 1.52

20 0.39 0.47 0.39 0.84 1 1 0.78 1.23

75
10 0.50 0.66 0.11 0.45 4.6 7 1.62 2.72

20 0.79 1.41 0.35 0.66 1.4 3 1.43 2.52

100

10 1.22 1.58 0.03 0.11 4.7 7 3.93 6.11

20 2.37 3.58 0.31 0.89 4.3 6 5.92 9.36

40 2.37 3.78 0.78 1.77 1 1 3.15 5.38

125

10 2.10 2.55 0.04 0.11 4.5 7 5.51 8.05

20 5.10 8.55 0.19 0.45 4.5 6 10.36 13.56

40 3.13 3.58 1.26 3.41 1 1 4.39 6.66

150

10 3.80 4.84 0.07 0.27 4.2 6 8.06 11.36

20 10.62 16.83 0.15 0.39 6.3 8 23.99 38.67

40 3.89 4.28 1.12 2.00 1 1 5.01 5.92

175

10 5.02 7.05 0.12 0.38 4.9 7 10.74 17.53

20 21.38 30.14 0.10 0.33 5.6 7 36.70 46.56

40 10.34 15.22 1.90 3.19 2.1 3 16.17 23.42

200

10 4.07 4.98 0.10 0.47 4.3 7 10.05 17.36

20 22.87 30.61 0.21 0.67 5.6 8 45.57 55.48

40 15.93 37.44 1.39 2.33 3.2 4 28.52 55.53

2

50
10 0.29 0.52 0.21 0.47 5.9 8 1.80 2.50

20 0.39 0.45 0.56 1.28 1 1 0.95 1.66

75
10 0.55 0.81 0.18 0.53 6.9 12 4.58 10.38

20 0.88 1.06 0.61 1.22 4.2 7 4.16 5.50

100

10 0.74 1.00 0.05 0.11 7 8 5.26 7.17

20 2.32 3.02 0.60 0.88 11.3 16 18.68 29.36

40 2.33 2.55 2.77 5.31 1 1 5.10 7.69

125

10 1.52 1.92 0.06 0.19 6.8 9 7.35 11.80

20 5.10 7.28 0.35 0.80 11.5 19 29.49 49.91

40 3.36 3.77 3.80 7.08 1 1 7.16 10.23

150

10 2.21 2.67 0.07 0.22 6.5 10 12.37 21.03

20 8.10 11.91 0.13 0.28 14.6 18 52.71 68.92

40 6.06 8.25 3.57 5.30 2.4 6 15.63 35.08

175

10 3.83 4.50 0.08 0.28 7.6 11 13.81 19.77

20 14.65 21.55 0.36 0.77 13 17 60.23 71.94

40 24.97 48.19 3.08 5.13 10.4 18 95.67 217.11

59

Table 5.4 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 1

(cont’d)

Disruption

Type
n m

ES-

Efficiency

ES-

Stability
ESS

CPU Time
Number

of ESSs
CPU Time

Avg Max Avg Max Avg Max Avg Max

2 200

10 3.59 4.08 0.09 0.30 6.7 10 16.88 28.34

20 18.13 20.97 0.33 1.28 12.7 17 81.50 111.67

40 45.41 69.88 2.33 3.41 19.3 24 316.24 701.03

3

50
10 0.33 0.45 0.23 0.77 8.8 14 3.23 6.44

20 0.52 0.66 0.84 1.37 3.3 5 2.33 3.22

75
10 0.58 0.73 0.14 0.44 8.6 11 5.47 7.61

20 0.93 1.13 0.79 1.61 10.7 16 10.58 16.91

100

10 0.78 0.88 0.10 0.42 9.7 14 8.56 14.20

20 1.76 2.17 0.45 0.83 15.6 20 25.06 34.81

40 3.14 4.03 3.60 6.03 3.2 7 11.97 18.58

125

10 1.10 1.47 0.14 0.63 9.1 13 12.68 17.42

20 2.80 3.19 0.35 0.63 17.8 21 51.22 71.86

40 7.18 10.70 4.82 6.69 9.8 15 58.28 98.39

150

10 1.24 1.38 0.12 0.34 9.4 11 10.28 11.66

20 3.73 4.14 0.28 0.84 17.9 20 50.75 56.83

40 11.43 15.95 5.16 7.50 16 19 127.84 244.45

175

10 2.43 3.00 0.08 0.38 9.7 15 17.36 27.84

20 7.15 8.44 0.25 0.56 16.1 19 63.57 80.53

40 35.40 45.08 4.96 8.09 24.2 28 344.99 608.61

200

10 2.15 2.36 0.07 0.25 8.9 11 15.31 19.58

20 5.60 6.17 0.16 0.41 17 21 71.47 108.80

40 33.00 54.36 3.08 5.47 26.1 34 329.08 490.97

60

Table 5.5 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2

Disruption

Type
n m

ES-

Efficiency

ES-

Stability
ESS

CPU Time
Number

of ESSs
CPU Time

Avg Max Avg Max Avg Max Avg Max

1

50
10 0.26 0.30 0.05 0.14 2.4 3 0.84 1.45

20 0.53 0.61 0.07 0.17 2 3 1.30 2.05

75
10 0.47 0.66 0.05 0.17 2.2 3 1.19 2.03

20 1.29 1.83 0.15 0.66 2.3 3 2.38 3.31

100

10 0.76 0.92 0.03 0.09 1.7 3 1.91 3.13

20 1.75 2.23 0.05 0.19 2.3 4 4.32 6.69

40 4.28 5.02 0.25 0.97 2.1 3 5.27 8.47

125

10 1.05 1.16 0.07 0.20 2.2 3 3.04 3.73

20 2.20 2.53 0.09 0.42 2.1 3 6.64 11.14

40 6.04 7.69 0.17 0.42 2.3 3 7.90 11.25

150

10 1.37 1.53 0.08 0.34 1.7 2 4.70 6.16

20 2.89 3.08 0.10 0.25 2.5 3 12.83 19.83

40 9.16 11.42 0.23 0.61 2.8 3 11.90 13.64

175

10 2.02 2.36 0.06 0.27 2 3 5.00 6.23

20 3.82 4.41 0.10 0.39 2.1 3 25.05 32.38

40 13.42 15.33 0.27 1.08 2.4 4 26.00 48.58

2

50
10 0.27 0.34 0.04 0.14 3.2 5 1.09 2.00

20 0.50 0.64 0.19 0.81 4.7 9 2.93 4.81

75
10 0.48 0.67 0.07 0.25 2.8 4 1.61 3.09

20 1.06 1.34 0.13 0.56 4.9 7 4.97 7.05

100

10 0.69 0.78 0.06 0.25 2.9 4 2.13 3.42

20 1.73 2.02 0.11 0.31 4.8 6 6.54 7.89

40 4.09 4.97 0.39 1.08 7.6 12 19.00 28.39

125

10 1.07 1.19 0.07 0.33 2.9 5 3.20 4.83

20 2.04 2.17 0.06 0.20 5.1 7 11.05 14.81

40 5.09 5.86 0.15 0.50 7.8 10 28.27 33.23

150

10 1.58 2.66 0.08 0.38 2.5 4 3.82 4.72

20 2.75 3.11 0.12 0.39 5.1 7 16.28 22.95

40 7.02 7.77 0.34 1.11 8.6 12 42.32 62.45

175

10 1.69 2.02 0.04 0.19 2.4 4 5.75 8.86

20 3.25 3.91 0.14 0.38 4.3 7 27.29 33.42

40 12.33 14.94 0.27 0.59 7.5 11 95.33 147.88

61

Table 5.6 Extreme Solutions (ES), Extreme Supported Solutions (ESS) for Set 2

(cont’d)

Disruption

Type
n m

ES-

Efficiency

ES-

Stability
ESS

CPU Time
Number

of ESSs
CPU Time

Avg Max Avg Max Avg Max Avg Max

3

50
10 0.25 0.28 0.08 0.30 4.1 5 1.37 1.81

20 0.46 0.58 0.19 0.73 6.3 9 4.42 6.91

75
10 0.47 0.56 0.04 0.11 3.7 6 2.14 3.61

20 0.82 1.03 0.13 0.31 7.9 10 6.90 8.83

100

10 0.61 0.67 0.04 0.14 4.2 6 3.37 4.31

20 1.33 1.44 0.09 0.19 7.2 9 8.82 12.88

40 3.03 3.97 0.42 0.94 11.6 14 32.36 49.47

125

10 0.96 1.11 0.07 0.27 4.1 5 4.13 4.78

20 1.91 2.25 0.08 0.23 6.9 9 13.24 18.20

40 4.00 4.50 0.11 0.41 11.4 15 47.86 60.45

150

10 1.23 1.42 0.05 0.23 4 7 4.71 8.16

20 2.35 2.58 0.07 0.20 6.8 9 18.39 27.39

40 5.38 6.14 0.13 0.44 11.4 16 65.88 91.42

175

10 1.60 2.19 0.07 0.23 3.4 4 5.10 6.16

20 2.90 3.17 0.07 0.25 6.8 11 21.97 36.78

40 8.91 10.17 0.21 0.45 10.5 14 85.72 114.05

As expected, both tables demonstrate higher CPU times for the larger number of

aircraft. Under both low and high apron usage scenarios, we observe that CPU times

for finding the extreme nondominated objective vector with the largest 𝑆𝑇 value are

smaller than those of the extreme nondominated objective vector with the largest 𝐸

value. With this finding, the importance of using a reduced problem in Procedure 2,

is emphasized. Especially, in instances with a larger number of aircraft, the

difference between CPU times of the two extreme nondominated objective vectors

is more dramatic, in some cases up to 40 times.

We also observe that CPU times for finding the extreme supported nondominated

objective vectors are higher for Set 1 and it increases with the number of aircraft in

the problem. Based on disruption types, the CPU times increase as the problem

62

becomes more complex. Disruption type 1 seems to be resulting in a less complex

problem than its counterparts, disruption types 2 and 3 where more gates are closed.

Lastly, we observe that the average and maximum number of extreme supported

nondominated objective vectors is higher in Set 1 as opposed to Set 2 which is

compatible with higher CPU times. As expected, under low apron usage scenario,

there exist more solutions compared to the more restrictive high apron usage

scenario. To illustrate, when 𝑛 is 150 and 𝑚 is 20, the average number of extreme

supported nondominated objective vectors is 14.6 (Disruption Type 2) and 17.9

(Disruption Type 3) for Set 1, whereas, for Set 1, it is 5.1 (Disruption Type 2) and

6.8 (Disruption Type 3).

5.3.3 All Nondominated Objective Vectors

Exact solutions are found using Procedure 4 from Chapter 4. We discuss the

performance of the exact algorithm that generates all nondominated objective

vectors. Table 5.5 and Table 5.6 report the average and maximum number of

nondominated objective vectors, average and maximum CPU times, and average

CPU time per nondominated objective vector for Set 1 and Set 2, respectively.

63

Table 5.7 All Exact Nondominated Objective Vectors for Set 1

Disruption

Type
n m

Number of ndovs CPU Time

Average

CPU

Time

per

ndov
Avg Max Avg Max

1

50
10 6.5 12 2.71 7.23 0.42

20 1 1 0.51 0.83 0.51

75
10 10.4 21 10.90 39.91 1.05

20 1.6 3 1.34 2.45 0.84

100

10 9.5 15 13.36 45.27 1.41

20 7.1 14 14.89 30.66 2.10

40 1 1 2.86 4.58 2.86

125

10 9.2 18 18.84 61.80 2.05

20 8.3 13 212.02 1671.61 25.54

40 1 1 5.13 7.83 5.13

2

50
10 11.5 19 7.36 14.00 0.64

20 1 1 0.75 1.08 0.75

75
10 18.2 33 26.83 118.42 1.47

20 6.5 11 8.99 22.69 1.38

100

10 18 25 23.75 54.30 1.32

20 32.8 69 452.11 1338.13 13.78

40 1 1 4.14 4.81 4.14

125

10 16.1 24 28.23 52.33 1.75

20 45.2 72 1330.44 5985.94 29.43

40 1 1 5.17 6.08 5.17

3

50
10 19.2 24 10.78 13.42 0.56

20 4.2 9 3.33 7.23 0.79

75
10 32.6 45 30.85 58.70 0.95

20 26 57 59.60 143.33 2.29

100

10 32.3 54 39.32 82.72 1.22

20 52.4 74 589.38 2840.03 11.25

40 4.3 10 16.84 40.27 3.92

125

10 30.4 56 39.07 71.34 1.29

20 76.3 103 792.51 1309.72 10.39

40 20.8 33 623.93 2850.83 30.00

64

Table 5.8 All Exact Nondominated Objective Vectors for Set 2

Disruption

Type
n m

Number of ndovs CPU Time

Average

CPU

Time

per

ndov
Avg Max Avg Max

1

50
10 2.8 4 0.85 1.28 0.31

20 2.8 5 1.75 2.91 0.63

75
10 2.4 4 1.49 2.88 0.62

20 2.5 4 2.98 4.48 1.19

100

10 1.9 5 1.94 5.05 1.02

20 2.7 7 5.23 11.36 1.94

40 3.1 5 11.72 17.91 3.78

125

10 2.9 6 4.38 11.38 1.51

20 2.3 3 5.47 7.30 2.38

40 2.7 4 13.98 22.56 5.18

2

50
10 4.2 6 1.78 2.88 0.42

20 10 19 7.64 13.28 0.76

75
10 3.6 6 2.18 4.13 0.61

20 8 12 9.51 14.83 1.19

100

10 3.4 6 3.12 6.08 0.92

20 6.1 9 10.55 15.41 1.73

40 28.4 48 118.32 258.56 4.17

125

10 4.4 10 5.82 15.36 1.32

20 7.6 10 15.01 18.23 1.98

40 13.4 22 57.63 96.55 4.30

3

50
10 5.8 10 2.23 4.59 0.38

20 12.3 21 8.93 16.06 0.73

75
10 6 9 3.86 6.97 0.64

20 13.4 22 12.57 24.61 0.94

100

10 6.5 13 5.77 12.77 0.89

20 11.2 16 16.81 26.98 1.50

40 27.4 37 80.59 123.69 2.94

125

10 6.3 8 6.91 9.42 1.10

20 11.8 17 22.25 32.13 1.89

40 25.3 30 91.52 107.95 3.62

From Table 5.5 and Table 5.6, we observe that the number of nondominated

objective vectors is higher in Set 1 than that of Set 2. This is due to the high apron

65

usage nature of Set 2, there are not as many possible aircraft-gate assignments, hence

the solution space is narrower.

Moreover, we observe that CPU times increase as 𝑛 increases for both sets. This can

be attributed to the increase in the complexity of models due to the increase in the

problem size.

Set 1 instances are harder to solve than Set 2 instances. This is consistent with the

higher number of nondominated objective vectors of Set 1. For example, under

disruption type 2, when 𝑛 is 125 and 𝑚 is 20, the average (maximum) CPU times

are 1330.44 (5985.94) seconds for Set 1, whereas it is 15.01 (18.23) seconds for Set

2. Similarly, under disruption type 3, when 𝑛 is 125 and 𝑚 is 20, the average

(maximum) CPU times are 623.93 (2850.83) seconds for Set 1, whereas it is 22.25

(32.13) seconds for Set 2. For both Set 1 and Set 2, we also observe that disruption

type 2 takes longer to solve than its disruption type 3 counterpart.

Furthermore, the average CPU time per nondominated objective vector is higher for

Set 1. Its largest values occur with large number of aircraft and a relatively large

number of gates, for example when 𝑛 is 125 and 𝑚 is 20. As the problem size

increases, so do the solution times for both sets. However, due to its narrower

solution space, there are not as many solutions for Set 2. This results in a higher

average CPU time per nondominated objective vector values for Set 1.

5.3.4 Approximate Nondominated Objective Vectors

Procedure 5 in Chapter 4, where we take advantage of the closeness of the two

extreme nondominated objective vectors to create a reduced problem and unify its

solutions with the extreme supported nondominated objective vectors, is

implemented on our test instances. Their results are given in Table 5.7 and Table 5.8

in which average and maximum CPU times, average and minimum 𝑃, average and

maximum 𝐷1 and 𝐷2 statistics are reported.

66

Table 5.9 Heuristic Procedure for Set 1

Disruption

Type
n m

CPU Time P D1 D2

Avg Max Avg Min Avg Max Avg Max

1

50
10 3.28 8.67 82.85 45.45 0.04 0.25 0.13 0.70

20 0.78 1.23 100.00 100.00 0.00 0.00 0.00 0.00

75
10 8.79 26.02 70.36 28.57 0.05 0.22 0.18 0.67

20 1.72 3.95 100.00 100.00 0.00 0.00 0.00 0.00

100

10 11.70 30.33 92.33 66.67 0.01 0.10 0.06 0.37

20 9.03 16.64 88.29 66.67 0.02 0.06 0.07 0.25

40 3.15 5.38 100.00 100.00 0.00 0.00 0.00 0.00

125

10 13.18 25.34 85.62 36.36 0.02 0.10 0.08 0.23

20 19.00 40.22 77.54 30.77 0.03 0.12 0.10 0.25

40 4.39 6.66 100.00 100.00 0.00 0.00 0.00 0.00

150

10 16.58 28.72

20 101.95 572.41

40 5.01 5.92

2

50
10 8.25 13.86 90.86 75.00 0.01 0.05 0.06 0.25

20 0.95 1.66 100.00 100.00 0.00 0.00 0.00 0.00

75
10 17.13 51.70 76.63 21.21 0.02 0.05 0.09 0.25

20 8.34 20.47 94.11 77.78 0.01 0.07 0.08 0.36

100

10 29.38 98.44 92.17 50.00 0.00 0.01 0.02 0.07

20 232.37 1034.02 92.04 33.33 0.00 0.01 0.01 0.07

40 5.10 7.69 100.00 100.00 0.00 0.00 0.00 0.00

125

10 19.09 35.22 89.63 50.00 0.01 0.03 0.04 0.17

20 706.73 4499.83 83.50 52.00 0.00 0.02 0.05 0.11

40 7.16 10.23 100.00 100.00 0.00 0.00 0.00 0.00

150

10 32.60 55.31

20 1699.25 6493.59

40 18.27 46.08

3

50
10 6.27 21.09 55.86 33.33 0.03 0.06 0.11 0.17

20 3.50 5.56 92.44 44.44 0.02 0.10 0.05 0.27

75
10 10.55 35.22 38.19 17.07 0.03 0.05 0.13 0.24

20 52.58 238.25 76.49 33.33 0.01 0.09 0.05 0.25

100

10 17.53 75.53 44.97 15.91 0.03 0.05 0.15 0.32

20 43.99 214.48 36.94 21.67 0.02 0.02 0.07 0.10

40 18.18 38.55 100.00 100.00 0.00 0.00 0.00 0.00

125

10 19.22 49.86 44.54 14.29 0.04 0.06 0.14 0.26

20 286.75 1030.66 62.78 20.41 0.01 0.03 0.05 0.13

40 761.56 4008.38 95.63 82.14 0.00 0.01 0.01 0.07

150

10 13.37 40.30

20 435.45 2137.91

40 7396.45 59410.89

67

Table 5.10 Heuristic Procedure for Set 2

Disruption

Type
n m

CPU Time P D1 D2

Avg Max Avg Min Avg Max Avg Max

1

50
10 1.05 1.89 94.17 66.67 0.03 0.17 0.08 0.50

20 1.45 2.14 79.00 40.00 0.11 0.35 0.29 0.77

75
10 1.38 2.19 97.50 75.00 0.01 0.08 0.03 0.33

20 2.62 3.69 95.00 50.00 0.03 0.25 0.06 0.63

100

10 2.08 3.69 96.00 60.00 0.01 0.14 0.05 0.49

20 4.70 7.47 98.57 85.71 0.00 0.00 0.00 0.00

40 5.49 9.16 75.67 50.00 0.12 0.23 0.37 0.69

125

10 3.49 4.66 90.00 50.00 0.04 0.17 0.13 0.51

20 6.95 11.41 93.33 66.67 0.03 0.17 0.10 0.50

40 8.19 11.64 90.83 66.67 0.03 0.17 0.10 0.50

150

10 4.98 6.58

20 13.19 20.53

40 12.90 15.62

2

50
10 1.85 3.33 96.00 60.00 0.01 0.08 0.03 0.25

20 6.27 10.77 90.58 68.75 0.00 0.02 0.04 0.24

75
10 2.27 4.72 97.50 75.00 0.01 0.08 0.03 0.33

20 8.27 13.58 94.44 66.67 0.01 0.04 0.06 0.25

100

10 2.77 4.95 94.17 66.67 0.02 0.12 0.08 0.50

20 9.68 11.78 98.89 88.89 0.00 0.02 0.01 0.14

40 48.82 108.78 90.94 68.00 0.00 0.01 0.03 0.11

125

10 5.31 10.41 94.50 70.00 0.01 0.08 0.06 0.33

20 16.94 22.63 99.00 90.00 0.00 0.01 0.01 0.07

40 39.35 54.95 99.55 95.45 0.00 0.00 0.00 0.04

150

10 4.84 7.94

20 20.68 27.91

40 55.37 87.94

3

50
10 2.73 5.22 95.71 57.14 0.01 0.09 0.03 0.29

20 10.44 21.03 99.38 93.75 0.00 0.00 0.00 0.04

75
10 3.87 7.11 98.00 80.00 0.01 0.06 0.03 0.32

20 13.77 23.75 93.26 40.91 0.00 0.03 0.01 0.09

100

10 6.95 12.72 94.53 75.00 0.01 0.03 0.05 0.19

20 18.42 24.89 98.13 87.50 0.00 0.00 0.00 0.01

40 66.34 108.67 98.00 80.00 0.00 0.01 0.00 0.03

125

10 8.23 11.91 96.25 75.00 0.00 0.03 0.03 0.24

20 25.04 36.39 97.39 88.24 0.00 0.01 0.01 0.11

40 92.02 110.06 99.55 95.45 0.00 0.00 0.01 0.07

150

10 8.41 13.84

20 29.31 41.13

40 101.61 137.23

68

As expected, as the problem size increases, the CPU times increase. However, it

takes a much shorter time to solve the same set of problems with the heuristic

procedure compared to the exact algorithm. This becomes more vivid in the

following example: when 𝑛 is 125 and 𝑚 is 20 with disruption type 2 for Set 1, the

average (maximum) CPU time to generate all nondominated objective vectors is

1330.44 (5985.94) seconds as seen in Table 5.5. The same instances are solved using

the heuristic procedure with the average (maximum) CPU time of 706.73 (4499.83)

seconds as shown in Table 5.7. We observe a significant time reduction when the

heuristic procedure is used for this sizeable problem set. In this reduced time, the

average (maximum) of the reported 𝑃 value is 83.50% (52%), which shows many of

the nondominated objective vectors can be generated in a much shorter time.

Considering the high average (maximum) number of nondominated objective

vectors 45.2 (72), we would be also generating a high number nondominated

objective vectors for the decision maker to choose from.

From Table 5.7, for Set 1, we see high 𝑃 values for disruption type 1 and 2, and

satisfactory 𝑃 values for disruption type 3 when supported with the considerrable

CPU time reductions compared to the exact algorithm and considering the high

number of nondominated objective vectors in Set 1.

From Table 5.8, for Set 2, we observe high 𝑃 values for all disruption types, which

is consistent with the lower number of nondominated objective vectors in Set 2

compared to the Set 1 as shown in Table 5.5 and Table 5.6. To illustrate, for Set 2,

when 𝑛 is 125 and 𝑚 is 40 with disruption type 2, on average 99.55% of all

nondominated objective vectors are generated using the heuristic procedure. The

corresponding average CPU time is 39.35 seconds. On the other hand, for the same

instances, the exact algorithm generates 13.4 nondominated objective vectors on

average with an average CPU time of 57.63 seconds as shown in Table 5.6. We

observe that a good percentage of all nondominated objective vectors can be found

within a reduced time by our heuristic procedure.

69

Table 5.7 and Table 5.8 demonstrate that the heuristic procedure returns very

satisfactory 𝐷1 and 𝐷2 statistics. Their, in general, very low values show the

nondominated objective vectors found by the heuristic procedure are close to the

ones found by the exact algorithm.

5.3.5 Optimal Decomposition Rule

For the optimal decomposition rule proposed in Procedure 6 in Section 4.6, we

generated new instances where the problem can be decomposed into two (𝑟 = 2) or

three (𝑟 = 3) small problems where no aircraft pair between the small problems is in

the system at the same time interval.

Table 5.9, Table 5.10, Table 5.11, and Table 5.12 report the average and maximum

number of nondominated objective vectors, and CPU times without the

decomposition rule and with the decomposition rule.

Table 5.9 is prepared for Set 1, with disruption type 2 and the case where the problem

is decomposed into two small problems.

Table 5.11 Decomposition Algorithm, Set 1, Disruption Type 2, 𝑟 = 2

n m
Number of ndovs

CPU Time

without

decomposition

with

decomposition

Avg Max Avg Max Avg Max

75

10 11.8 19 8.45 13.50 6.09 14.52

20 12.6 19 21.96 73.92 9.37 20.03

40 1 1 2.93 3.45 2.14 2.88

100

10 15 24 14.45 23.45 10.70 25.17

20 23.8 33 76.09 372.23 18.57 29.17

40 1 1 4.13 5.59 3.28 3.86

125

10 16.4 31 20.07 35.00 11.65 19.91

20 27.4 37 72.48 103.42 34.93 52.19

40 1.5 4 7.97 21.00 6.16 14.92

70

Similarly, we observe a more complex problem with the increased problem size. We

also observe as the number of nondominated objective vectors increase, so does the

CPU times. From Table 5.9, we directly observe the improvement in CPU times, that

decomposing the problem provides.

Table 5.10 is prepared for Set 1, with disruption type 2 and the case where the

problem is decomposed into three small problems.

Table 5.12 Decomposition Algorithm, Set 1, Disruption Type 2, 𝑟 = 3

n m
Number of ndovs

CPU Time

without

decomposition

with

decomposition

Avg Max Avg Max Avg Max

75

10 13.4 26 9.00 22.19 4.31 8.84

20 11.4 16 10.16 18.94 4.85 6.27

40 1 1 1.64 1.81 1.84 2.31

100

10 14.3 23 11.36 20.14 6.64 12.47

20 16.3 23 23.38 34.91 8.21 11.69

40 1 1 3.61 4.14 2.49 3.00

125

10 15.4 20 15.43 21.03 5.51 8.34

20 26.8 48 63.31 138.28 14.84 26.86

40 4.9 9 17.25 30.17 7.73 12.33

From Table 5.9 and Table 5.10, the effect of 𝑟 can be clearly observed. Under the

same apron usage scenario with the same disruption type, decomposing the problem

into either two or three small problems result in further decreased CPU times in

general.

Table 5.11 is prepared for Set 1, with disruption type 3 and the case where the

problem is decomposed into two small problems.

71

Table 5.13 Decomposition Algorithm, Set 1, Disruption Type 3, 𝑟 = 3

n m
Number of ndovs

CPU Time

without

decomposition

with

decomposition

Avg Max Avg Max Avg Max

75

10 29.4 44 50.11 107.84 5.00 8.56

20 20.3 25 31.73 46.86 5.52 8.31

40 1.6 3 4.92 8.13 1.52 2.08

100

10 30.9 65 46.10 110.86 7.31 14.69

20 43.5 77 162.39 520.70 12.86 21.98

40 11.1 15 42.48 60.69 7.25 10.38

125

10 25.2 46 41.11 90.72 5.61 7.38

20 71.8 105 470.60 897.23 25.56 35.83

40 21.3 31 133.52 187.25 16.11 22.58

From Table 5.10 and Table 5.11, the effect of disruption, i.e., the number of gates

closed, can be inferred. As the number of closed gates increases, the average CPU

time also increases in Set 1. As a striking example, when 𝑛 is 100 and 𝑚 is 20 with

disruption type 3 for Set 1, the average (maximum) CPU time is reported as 162.39

(520.70) seconds without using the decomposition rule. However, with the

decomposition rule, the average (maximum) CPU time significantly reduces to 12.86

(21.98) seconds.

Table 5.12 is prepared for Set 2, with disruption type 3 and the case where the

problem is decomposed into two small problems.

72

Table 5.14 Decomposition Algorithm, Set 2, Disruption Type 3, 𝑟 = 2

n m
Number of ndovs

CPU Time

without

decomposition

with

decomposition

Avg Max Avg Max Avg Max

75

10 5.4 7 2.19 3.05 1.09 1.94

20 9.6 13 6.94 9.41 3.28 4.31

40 15.9 18 18.00 20.17 8.64 10.17

100

10 4.5 7 2.51 3.67 1.26 1.70

20 8.7 12 9.53 16.31 4.59 7.59

40 18.4 21 33.11 44.98 19.78 24.03

125

10 3.7 5 2.79 3.80 1.84 2.31

20 8.6 10 10.86 13.13 6.74 8.78

40 17.5 22 46.22 65.77 22.31 28.22

We again observe the improved CPU times with the decomposition rule, this time

for the high apron usage scenario that is Set 2.

From Table 5.9, Table 5.10, Table 5.11, and Table 5.12, we deduce that both the

average and maximum CPU times are considerably reduced by using with

decomposition rule.

73

CHAPTER 6

6 CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this thesis, we study an airport gate reassignment problem (AGRP) where the gate

disruptions make the initial plan infeasible to implement. After the disruption, we

reassign the aircraft to the nonaffected gates to maximize our efficiency and stability

criteria.

In our efficiency criterion, we aim to maximize the number of aircraft assigned to

gates and the number of passengers in these aircraft. In our stability criterion, we aim

to maximize the number of same gate assignments from the initial plan and their

number of passengers as well as the number of aircraft assigned to gates. Both the

efficiency criterion and the stability criterion are made up of multi-objectives: two

objective functions are defined for the efficiency criterion and three for the stability

criterion. We formulate the problem with an Assignment Based Model and a

Network Based Model.

We first consider the hierarchical optimization, i.e., maximizing the efficiency

(stability) measure while keeping the stability (efficiency) value at its maximum

level. In doing so, we use the Assignment Based Model whose superiority is shown

over the Network Based Model.

We use the Assignment Based Model to generate all extreme supported

nondominated objective vectors and all nondominated objective vectors with respect

to our efficiency and stability criteria. We make real-life applications for three

airports located in the three largest cities in Turkey: İstanbul Airport in İstanbul,

Esenboğa Airport in Ankara, and İzmir Adnan Menderes Airport in İzmir, namely.

To generate all nondominated objective vectors, we follow two model-based

approaches: optimization and approximation. Our optimization algorithm could

solve instances up to 150 aircraft and 40 gates, in less than two hours. With the

74

approximation algorithm, we handle instances with up to 200 aircraft and 40 gates

and report excellent performance results, in terms of solution times and the power of

representing the exact nondominated objective vectors.

We develop an optimal decomposition rule that decomposes the problem into

subproblems from the time intervals that reside in no aircraft. We find that with the

use of the decomposition rule, the problems could be solved in considerably small

times. We also discuss the potential heuristic application of the decomposition rule

when there are no time intervals with no aircraft.

We anticipate that, in real-life instances, there may be only few cases where our

optimal decomposition rule can be used directly. As further research directions, some

heuristic approaches that may take our decomposition rule as basis can be developed.

We propose first creating a problem that is decomposable by taking out some set of

aircraft, applying our decomposition rule to get a new plan, and then considering the

set of aircraft that were taken out of the problem through some insertion or exchange

heuristics.

As further research directions, we propose some aircraft-gate eligibility constraints,

where some gates are reserved for certain airlines. We foresee that such a restriction

can be made through defining the assignment decision variables only for the eligible

aircraft-gate pairs, hence reduce the complexity of the problem.

Another proposition would be to consider some side-by-side compatibility

constraints, where sizes of the aircraft factor into the decision-making process, i.e.,

two large aircraft cannot be assigned to juxtaposed gates. We foresee that such a

restriction can be made through altering existing constraint sets and may increase the

problem complexity.

We believe implicit enumeration techniques, such as a branch and bound algorithm,

can be designed to generate all nondominated objective vectors, simultaneously as

opposed to our sequential generation methods. Moreover, optimization algorithms

for a known, however complex utility function can be developed and different

75

efficiency and stability measures can be tried out. Lastly, we make an emphasis on

creating robust gate assignment plans that would reduce the effort spent for gate

reassignments.

76

77

REFERENCES

Ali, H., Guleria, Y., Alam, S., & Schultz, M. (2019). A passenger-centric model for

 reducing missed connections at low cost airports with gates

 reassignment. IEEE Access, 7, 179429-179444.

Cai, X., Sun, W., Misir, M., Tan, K. C., Li, X., Xu, T., & Fan, Z. (2019). A bi-

objective constrained robust gate assignment problem: Formulation,

instances and algorithm. IEEE transactions on cybernetics, 51(9), 4488-

4500.

Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A

metaheuristic technique for multiple-objective combinatorial optimization. J.

Multi-Criteria Decis. Anal, 7(1), 34-47.

Daş, G. S., Gzara, F., & Stützle, T. (2020). A review on airport gate assignment

 problems: Single versus multi objective approaches. Omega, 92, 102146.

Deng, W., Li, B., & Zhao, H. (2017). Study on an airport gate reassignment method

 and its application. Symmetry, 9(11), 258.

Dorndorf, U., Jaehn, F., Lin, C., Ma, H., & Pesch, E. (2007). Disruption management

in flight gate scheduling. Statistica Neerlandica, 61(1), 92-114.

Dorndorf, U., Jaehn, F., & Pesch, E. (2012). Flight gate scheduling with respect to a

reference schedule. Annals of Operations Research, 194(1), 177-187.

Gu, Y., & Chung, C. A. (1999). Genetic algorithm approach to aircraft gate

 reassignment problem. Journal of Transportation Engineering, 125(5), 384-

 389.

Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation

of the problems of integrated system identification and system optimization.

IEEE Transactions on Systems, Man and Cybernetics, 1(3), 296–297.

78

Jaehn, F. (2010). Solving the flight gate assignment problem using dynamic

programming. Zeitschrift für Betriebswirtschaft, 80(10), 1027-1039.

Karsu, Ö., Azizoğlu, M., & Alanlı, K. (2021). Exact and heuristic solution

approaches for the airport gate assignment problem. Omega, 103, 102422.

Liu, J., Guo, Z., & Yu, B. (2022). Optimising Gate assignment and taxiway path in

a discrete time–space network: integrated model and state

analysis. Transportmetrica B: Transport Dynamics, 1-23.

Maharjan, B., & Matis, T. I. (2011). An optimization model for gate reassignment in

response to flight delays. Journal of Air Transport Management, 17(4), 256-

261.

Özlen, M., & Azizoğlu, M. (2009). Generating all efficient solutions of a

 rescheduling problem on unrelated parallel machines. International Journal

 of Production Research, 47(19), 5245-5270.

Pternea, M., & Haghani, A. (2018). Mathematical models for flight-to-gate

 reassignment with passenger flows: State-of-the-art comparative analysis,

 formulation improvement, and a new multidimensional assignment

 model. Computers & Industrial Engineering, 123, 103-118.

Pternea, M., & Haghani, A. (2019). An aircraft-to-gate reassignment framework for

 dealing with schedule disruptions. Journal of Air Transport

 Management, 78, 116-132.

Sahni, S., & Gonzalez, T. (1976). P-complete approximation problems. Journal of

 the ACM (JACM), 23(3), 555-565.

Tang, C. H., Yan, S., & Hou, Y. Z. (2010). A gate reassignment framework for real

 time flight delays. 4OR, 8(3), 299-318.

Wang, R., Allignol, C., Barnier, N., Gondran, A., Gotteland, J. B., & Mancel, C.

(2022). A new multi-commodity flow model to optimize the robustness of

79

the Gate Allocation Problem. Transportation Research Part C: Emerging

Technologies, 136, 103491.

Wang, H., Luo, Y., & Shi, Z. (2013). Real-time gate reassignment based on flight

delay feature in hub airport. Mathematical Problems in Engineering, 2013,

10.

Yan, S., & Chang, C. M. (1998). A network model for gate assignment. Journal of

advanced Transportation, 32(2), 176-189.

Yan, S., Chen, C. Y., & Tang, C. H. (2009). Airport gate reassignment following

temporary airport closures. Transportmetrica, 5(1), 25-41.

Yan, S., Tang, C. H., & Hou, Y. Z. (2011). Airport gate reassignments considering

deterministic and stochastic flight departure/arrival times. Journal of

advanced transportation, 45(4), 304-320.

Yu, C., Zhang, D., & Lau, H. Y. (2017). An adaptive large neighborhood search

 heuristic for solving a robust gate assignment problem. Expert Systems with

 Applications, 84, 143-154.

Zhang, D., & Klabjan, D. (2017). Optimization for gate re-assignment.

Transportation Research Part B: Methodological, 95, 260-284.

