
REWARD SHAPING FOR EFFICIENT EXPLORATION AND ACCELERATION
OF LEARNING IN REINFORCEMENT LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELİS İLAYDA BAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

OPERATIONAL RESEARCH

JULY 2022

Approval of the thesis:

REWARD SHAPING FOR EFFICIENT EXPLORATION AND
ACCELERATION OF LEARNING IN REINFORCEMENT LEARNING

submitted by MELİS İLAYDA BAL in partial fulfillment of the requirements for the
degree of Master of Science in Operational Research Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Gürel
Head of Department, Operational Research

Prof. Dr. Cem İyigün
Supervisor, Industrial Engineering, METU

Prof. Dr. Faruk Polat
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Yaşar Yasemin Serin
Industrial Engineering, METU

Prof. Dr. Cem İyigün
Industrial Engineering, METU

Prof. Dr. Faruk Polat
Computer Engineering, METU

Assoc. Prof. Dr. Seçil Savaşaneril
Industrial Engineering, METU

Assoc. Prof. Dr. Mehmet Tan
Computer Engineering, TOBB ETU

Date: 21.07.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Melis İlayda Bal

Signature :

iv

ABSTRACT

REWARD SHAPING FOR EFFICIENT EXPLORATION AND
ACCELERATION OF LEARNING IN REINFORCEMENT LEARNING

Bal, Melis İlayda

M.S., Department of Operational Research

Supervisor: Prof. Dr. Cem İyigün

Co-Supervisor: Prof. Dr. Faruk Polat

July 2022, 121 pages

In a Reinforcement Learning task, a learning agent needs to extract useful information

about its uncertain environment in an efficient way during the interaction process to

successfully complete the task. Through strategic exploration, the agent acquires

sufficient information to adjust its behavior to act intelligently as it interacts with

the environment. Therefore, efficient exploration plays a key role in the learning

efficiency of Reinforcement Learning tasks.

Due to the delayed-feedback nature of Reinforcement Learning settings with sparse

explicit reward structure, the required time for learning becomes the main cause of

learning inefficiency. This problem is exacerbated particularly in complex tasks with

large state and action spaces. Decomposing the task or modifying the reward structure

to provide frequent feedback to the agent has been shown to accelerate learning.

This thesis proposes two methods with a reward shaping mechanism to address the

aforementioned problems. To attack the efficient exploration problem, a framework

called population-based repulsive reward shaping mechanism using eligibility traces

v

is proposed under the scope of tabular RL representation. The computational study

on benchmark problem domains showed that efficient exploration is achieved with

a significant improvement in learning and state-space coverage with the proposed

framework. Furthermore, to accelerate learning, the thesis also proposes an approach

called potential-based reward shaping using state-space segmentation with the ex-

tended segmented Q-Cut algorithm. Experimental results on sparse-reward bench-

mark domains showed that the proposed method indeed speeds up learning of the

agent without sacrificing computation time.

Keywords: reinforcement learning, coordinated exploration, eligibility traces, potential-

based reward shaping, state-space segmentation

vi

ÖZ

PEKİŞTİRMELİ ÖĞRENMEDE VERİMLİ KEŞİF VE HIZLI ÖĞRENME
İÇİN ÖDÜL ŞEKİLLENDİRME

Bal, Melis İlayda

Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi: Prof. Dr. Cem İyigün

Ortak Tez Yöneticisi: Prof. Dr. Faruk Polat

Temmuz 2022 , 121 sayfa

Bir Pekiştirmeli Öğrenme görevinde, öğrenen etmenin, görevi başarıyla tamamlamak

için etkileşim süreci sırasında belirsiz çevresi hakkında yararlı bilgileri verimli bir

şekilde çıkarması gerekir. Etmen, stratejik keşif sayesinde çevresi hakkında yeterli

bilgiyi elde eder ve bu bilgiyi çevresi ile iletişime girerken akıllıca hareket etmek için

davranışlarını ayarlamada kullanır. Bu nedenle, verimli keşif, Pekiştirmeli Öğrenme

görevlerinin öğrenme verimliliğinde kilit bir rol oynar.

Seyrek ödül yapısına sahip Pekiştirmeli Öğrenme ortamlarının gecikmeli geri bildi-

rim doğasına sahip olması nedeniyle öğrenme için gereken zaman, öğrenme verimsiz-

liğinin ana nedeni haline gelir. Bu sorun, özellikle büyük durum ve eylem uzaylarına

sahip karmaşık görevlerde daha da şiddetlenir. Görevi ayrıştırmanın veya etmene sık

geri bildirim sağlamak için ödül yapısını değiştirmenin öğrenmeyi hızlandırdığı gös-

terilmiştir.

Bu tez, yukarıda bahsedilen sorunları ele almak için ödül şekillendirme mekanizma-

vii

sına sahip iki yöntem önermektedir. Verimli keşif problemini ele almak için, tablo-

sal Pekiştirmeli Öğrenme gösterimi kapsamında niteliklilik izlerini kullanan popü-

lasyona dayalı itici ödül şekillendirme mekanizması adlı bir yapı önerilmiştir. Deney

sonuçları, önerilen yapı kullanıldığında öğrenme ve durum uzayı keşfindeki iyileşme-

lerle birlikte verimli keşif elde edildiğini göstermiştir. Ayrıca, bu tez, öğrenmeyi hız-

landırmak için bölümlenmiş Q-Cut algoritmasının genişletilmiş versiyonu ile durum-

uzayı segmentasyonu kullanarak potansiyele dayalı ödül şekillendirme adlı bir yak-

laşım önermektedir. Seyrek ödül yapısına sahip problemlerdeki deneysel sonuçları,

önerilen yöntemin, hesaplama zamanından ödün vermeden etmenin öğrenmesini hız-

landırdığını göstermiştir.

Anahtar Kelimeler: pekiştirmeli öğrenme, koordineli keşif, niteliklilik izleri, potansi-

yele dayalı ödül şekillendirme, durum uzayı segmentasyonu

viii

To my family, for their infinite love, encouragement, and faith in me

ix

ACKNOWLEDGMENTS

I would like to express my endless gratitude to my venerable advisor Prof. Cem

İyigün. It was a great privilege for me to work with such a great teammate. His cre-

ative insight, open-mindedness, enthusiasm for learning out-of-comfort-zone topics,

unlimited support and guidance always kept me motivated throughout this study.

I also would like to give my sincere gratitude to my dear co-supervisor Prof. Faruk Po-

lat. Without him, I would not be able to think of working on reinforcement learning.

He introduced me my greatest interest, and guided me in the field with his wisdom

and valuable experiences.

I would like the thank the examining committee members of my thesis, Prof. Yasemin

Serin, Assoc. Prof. Dr. Seçil Savaşaneril, and Assoc. Prof. Dr. Mehmet Tan for their

helpful suggestions on my thesis study.

I would like to express my special thanks to soon-to-be Dr. Hüseyin Aydın for helping

me patiently whenever I need. Our useful discussions and his encouraging feedbacks

were so valuable for my study.

I would like to thank the members of the RL research group, for listening my progress,

especially Assist. Prof. Dr. Alper Demir for his spot-on comments about my work.

Finally, I cannot thank enough my dearest family, Birnur, Muzaffer, Başak, and our

little member Zeytin for their infinite love and encouragement. There was never a

moment when I did not feel their support and understanding. They are the joy, energy,

and foundation of my life.

This study is supported by 2210-A program of the Scientific and Technological Re-

search Council of Turkey under Grant No. 1649B022001290.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ALGORITHMS . xx

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

1.1 Contribution of the Thesis . 3

2 BACKGROUND . 5

2.1 Markov Decision Processes . 5

2.2 Reinforcement Learning . 9

2.3 Value-based Methods . 11

2.3.1 Temporal Difference Learning 11

2.3.2 Q-Learning . 12

xi

2.3.3 Sarsa . 13

2.4 Eligibility Traces . 14

2.5 Sarsa(λ) Algorithm . 15

2.6 Reward Shaping . 15

2.6.1 Potential-based Reward Shaping 17

2.7 Graph Theory Basics . 18

2.8 Maximum-Flow/Minimum-Cut Problem 20

2.8.1 Preflow-Push Algorithm . 20

2.9 Segmented Q-Cut Algorithm . 22

3 RELATED WORK . 25

3.1 Single-Agent Exploration . 25

3.2 Coordinated Exploration . 26

3.3 Eligibility Traces . 26

3.4 Potential Based Reward Shaping . 27

4 POPULATION-BASED EXPLORATION WITH REPULSIVE REWARD
SHAPING MECHANISM USING ELIGIBILITY TRACES 29

4.1 Problem Motivation . 29

4.2 Repulsive Reward Shaping Mechanism 30

4.3 Reward Shaper Variations . 34

4.3.1 Bonus-based Variations of the Reward Shaper 34

4.3.1.1 Bonus-based Reward Shaper 34

4.3.1.2 Bonus-with-Memory-based Reward Shaper 38

4.3.1.3 Bonus-with-Limited-Steps Reward Shaper 39

xii

4.3.1.4 Bonus-with-Limited-Episode Reward Shaper 39

4.3.2 Punishment-based Variations of the Reward Shaper 40

4.3.2.1 Punishment-with-Memory-based Reward Shaper 41

4.3.2.2 Punishment-with-Dynamic Threshold Reward Shaper . 42

4.3.2.3 Punishment-with-Normal Distribution Reward Shaper . 42

4.3.2.4 Punishment-with-Delay Reward Shaper 43

4.3.2.5 Punishment-with-Delay-Episode Reward Shaper 44

4.4 Computational Experiments . 45

4.4.1 Sample Problem Domains . 45

4.4.2 Experimental Settings . 49

4.4.3 Experimental Results and Discussion 50

4.4.3.1 RRS-Agent with bonus-based variations of the reward
shaping mechanism 50

4.4.3.2 RRS-Agent with punishment-based variations of the re-
ward shaping mechanism 51

4.4.3.3 Performance comparison between bonus-based and punishment-
based variations of reward shaping mechanism 59

4.4.3.4 Overall performance comparison 67

5 IMPROVING LEARNING EFFICIENCY BY POTENTIAL-BASED RE-
WARD SHAPING USING STATE-SPACE SEGMENTATION WITH THE
EXTENDED SEGMENTED Q-CUT ALGORITHM 87

5.1 Problem Motivation . 87

5.2 Reward Shaping Based on State-Space Segmentation with the Ex-
tended Segmented Q-Cut Algorithm 88

5.2.1 State-Space Segmentation . 90

5.2.1.1 Random Walk . 90

xiii

5.2.1.2 Extended Segmented Q-Cut 94

5.2.2 Reward Shaping Based on State-Space Segmentation 96

5.2.2.1 Value of the Segments 99

5.2.2.2 Potential-based Reward Shaping Using Values of the
Segments . 100

5.3 Computational Experiments . 104

5.3.1 Sample Problem Domains . 104

5.3.2 Experiment Settings . 105

5.3.3 Experiment Results and Discussion 105

6 CONCLUSION AND FUTURE WORK 115

REFERENCES . 117

xiv

LIST OF TABLES

TABLES

Table 4.1 The size of the domains. 46

Table 4.2 Parameter settings for the experiments. 49

Table 4.3 Parameter settings in the experiments used for repulsive reward

shaping. 50

Table 4.4 Learning performances of the methods with bonus-based RRS. . . . 52

Table 4.5 Learning performances of the methods with punishment-based RRS. 60

Table 4.6 Overall performance comparison of the proposed method with bench-

marks. 75

Table 5.1 Parameter settings for the experiments. 106

Table 5.2 Overall performance comparison of the proposed method Q-Segmenter

with benchmarks. 107

xv

LIST OF FIGURES

FIGURES

Figure 2.1 The agent-environment interaction loop. 10

Figure 2.2 The flow network in Maximum-Flow/Minimum-Cut problem. . . 21

Figure 4.1 The general framework of the method. 30

Figure 4.2 The flowchart of the learning process. 33

Figure 4.3 GridWorld experiment domains. 48

Figure 4.4 Tower of Hanoi with 4 disks & 3 rods domain. 48

Figure 4.5 Learning performances of the bonus-based reward shaping meth-

ods for Six-Rooms GridWorld domain under 1000 and 5000 steps

limit. 53

Figure 4.6 Learning performances of the bonus-based reward shaping meth-

ods for Six-Rooms Scaled GridWorld domain under 1000 and

2000 steps limit. 54

Figure 4.7 Learning performances of the bonus-based reward shaping meth-

ods for Zigzag Four-Rooms GridWorld domain under 1000 and

5000 steps limit. 55

Figure 4.8 Learning performances of the bonus-based reward shaping meth-

ods for Zigzag Four-Rooms Scaled GridWorld domain un-

der 1000 and 2000 steps limit. 56

xvi

Figure 4.9 Learning performances of the bonus-based reward shaping meth-

ods for Tower of Hanoi domain under 3 rods and 3 disks version. . 57

Figure 4.10 Learning performances of the bonus-based reward shaping meth-

ods for Tower of Hanoi domain under 3 rods and 4 disks version. . 58

Figure 4.11 Learning performances of the punishment-based reward shaping

methods for Six-Rooms GridWorld domain under 1000 and 5000

steps limit. 61

Figure 4.12 Learning performances of the punishment-based reward shap-

ing methods for Six-Rooms Scaled GridWorld domain under

1000 and 2000 steps limit. 62

Figure 4.13 Learning performances of the punishment-based reward shap-

ing methods for Zigzag Four-Rooms GridWorld domain under

1000 and 5000 steps limit. 63

Figure 4.14 Learning performances of the punishment-based reward shap-

ing methods for Zigzag Four-Rooms Scaled GridWorld do-

main under 1000 and 2000 steps limit. 64

Figure 4.15 Learning performances of the punishment-based reward shap-

ing methods for Tower of Hanoi domain under 3 rods and 3 disks

version. 65

Figure 4.16 Learning performances of the punishment-based reward shap-

ing methods for Tower of Hanoi domain under 3 rods and 4 disks

version. 66

Figure 4.17 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Six-Rooms domain. 68

Figure 4.18 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Six-Rooms Scaled domain. . 69

Figure 4.19 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Zigzag Four-Rooms domain. 70

xvii

Figure 4.20 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Zigzag Four Rooms Scaled

domain. 71

Figure 4.21 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Tower of Hanoi domain with

3 disks. 72

Figure 4.22 Learning performance comparison between punishment-based

and bonus-based RRS frameworks in Tower of Hanoi domain with

4 disks. 73

Figure 4.23 State space coverage of the proposed method for Six-Rooms

GridWorld domain under 1000 and 5000 steps limit. 76

Figure 4.24 State space coverage of the proposed method for Zigzag Four

Rooms GridWorld domain under 1000 and 5000 steps limit. 77

Figure 4.25 State space coverage of the proposed method for Six-Rooms

Scaled GridWorld domain under 1000 and 2000 steps limit. 78

Figure 4.26 State space coverage of the proposed method for Zigzag Four

Rooms Scaled GridWorld domain under 1000 and 2000 steps

limit. 79

Figure 4.27 Learning performances of the proposed method and benchmarks

for Six-Rooms domain under 1000 and 5000 steps limit. 80

Figure 4.28 Learning performances of the proposed method and benchmarks

for Six-Rooms Scaled domain under 1000 and 2000 steps limit. . . 81

Figure 4.29 Learning performances of the proposed method and benchmarks

for Zigzag Four-Rooms domain under 1000 and 5000 steps limit. . 82

Figure 4.30 Learning performances of the proposed method and benchmarks

for Zigzag Four-Rooms Scaled domain under 1000 and 2000

steps limit. 83

xviii

Figure 4.31 Learning performances of the proposed method and benchmarks

for Tower of Hanoi domain under 3 rods and 3 disks version. . . . 84

Figure 4.32 Learning performances of the proposed method and benchmarks

for Tower of Hanoi domain under 3 rods and 4 disks version. . . . 85

Figure 5.1 The model of the proposed method. 88

Figure 5.2 The flowchart of the learning process with the proposed method. 91

Figure 5.3 A schematic representation for random walk phase. 93

Figure 5.4 A schematic representation for the learning phase. 99

Figure 5.5 Locked Shortcut Six-Rooms domain. 105

Figure 5.6 Segments and cuts on the graph after random walk phase for 25

episodes is completed in Six-Rooms GridWorld domain. 108

Figure 5.7 Segments and cuts on the graph after random walk phase for 25

episodes is completed in Zigzag Four-Rooms GridWorld do-

main. 109

Figure 5.8 Segments and cuts on the graph after random walk phase for 25

episodes is completed in Locked Shortcut Six-Rooms domain. 110

Figure 5.9 Learning performances of proposed method Q-Segmenter and

Q-Learning for Six-Rooms GridWorld domain under 1000 and

2000 steps limit. 111

Figure 5.10 Learning performances of proposed method Q-Segmenter and

Q-Learning for Zigzag Four-Rooms GridWorld domain under

1000 and 5000 steps limit. 112

Figure 5.11 Learning performances of proposed method Q-Segmenter and

Q-Learning for Locked Shortcut Six-Rooms GridWorld do-

main under 3000 and 5000 steps limit. 113

xix

LIST OF ALGORITHMS

ALGORITHMS

Algorithm Q-Learning . 13

Algorithm Sarsa . 14

Algorithm Sarsa(λ) . 16

Algorithm Union Find (WCC) . 19

Algorithm Q-Cut . 23

Algorithm CutProcedure() . 23

Algorithm Segmented Q-Cut . 23

Algorithm CutProcedureForSegment() 24

Algorithm 1 Learning with Population-based Exploration Through Repul-

sive Reward Shaping Using Eligibility Traces 35

Algorithm 2 trainSubagents . 36

Algorithm 3 repulsiveRewardShape 37

Algorithm 4 repulsiveRewardShape-BonusBased 38

Algorithm 5 repulsiveRewardShape-BonusWithLimitedSteps 40

Algorithm 6 repulsiveRewardShape-BonusWithLimitedEpisode 41

Algorithm 7 repulsiveRewardShape-PunishwDynamicThreshold 43

Algorithm 8 repulsiveRewardShape-PunishwNormalDist 44

xx

Algorithm 9 repulsiveRewardShape-PunishmentWithDelay . . 45

Algorithm 10 repulsiveRewardShape-PunishmentDelayEpisode 46

Algorithm 11 Learning with Potential-based Reward Shaping Using State-

Space Segmentation with the Extended Segmented Q-Cut Algorithm . . . 92

Algorithm 12 randomWalk . 95

Algorithm 13 ESegQ-Cut . 97

Algorithm 14 Cut . 98

Algorithm 15 getSegmentValues . 100

Algorithm 16 updateSegmentValues 101

xxi

LIST OF ABBREVIATIONS

AI Artificial Intelligence

DM Decision Maker

ESegQ-Cut Extended Segmented Q-Cut

ML Machine Learning

MC Monte Carlo

MDP Markov Decision Process

PBRS Potential-based Reward Shaping

RL Reinforcement Learning

RRS Repulsive-Reward-Shaper

RS Reward Shaping

SegQ-Cut Segmented Q-Cut

TD Temporal Difference

ToH Tower of Hanoi

xxii

CHAPTER 1

INTRODUCTION

Reinforcement learning (RL) [39] is a feedback-based learning paradigm under the

core concept of Artificial Intelligence (AI) research, called Machine Learning (ML).

Reinforcement learning builds upon learning through interaction with the environ-

ment when no prior knowledge regarding the task is provided. During the interaction

process, the RL agent must act in the uncertain environment by taking actions and

observing the consequences to deduce informative data that might be beneficial for

accomplishing the learning task effectively. To this end, exploration of the environ-

ment plays a key role since acquiring sufficient information on the environment di-

minishes the stochasticity involved so that the goal-directed agent can master the task

readily. On the other hand, the agent needs to balance the exploration with the ex-

ploitation to maximize its total reward in the long run. Through exploration the agent

sacrifices from short-run gains to discover actions that may yield higher rewards and

worth to exploit. Therefore, exploring the environment efficiently results in a signif-

icant improvement in accelerating the learning performance and sample efficiency of

RL tasks. In particular, tasks with sparse rewards, which is one of the fundamental

challenges of RL, are demonstrated to be solved more successfully with mechanisms

that encourage efficient exploration [4].

Existing studies consider this major RL problem by introducing random action selec-

tion techniques [8, 11, 41] that mostly emerge from ε-greedy exploration rule [43],

or assigning action selection probabilities using the learned policies, estimated value

functions or rewards [43, 7, 3, 44]. Various approaches provide exploration bonuses

[37, 12] to the agent which are computed based on state-action visitation counts

[38, 4, 21], initial value estimates [39, 6] or a prediction of the environment model

1

[34, 33, 2]. There are also intrinsic-motivation based exploration strategies [4, 30]

which encourage visitation to novel states and very few studies [19, 20, 42, 23] which

focus on exploration with coordination.

Aside from efficient exploration problem, RL methods also suffer from slow learn-

ing due to delayed feedback in sparse-reward environments and large state and action

spaces in real-world tasks. To accelerate the learning efficiency in this type of learn-

ing, common approaches in the RL literature center around task decomposition or

reward-based methods to make reward function denser. Studies that aim to speed up

the learning with task decomposition, divide the complex RL problem into simpler

sub-problems by identifying relatively important states, labeling them as bottlenecks

or subgoals [26] and then learning macro-policies generated with the options frame-

work [40] to reach the identified states. On the other hand, reward-based methods

mostly focus on reward shaping by giving additional rewards to the agent to alleviate

the delayed-feedback nature of the problem and improve the learning speed [29, 13].

In this thesis, we attack the efficient exploration problem by proposing a framework

that serves as a population-based repulsive reward shaping mechanism using eligibil-

ity traces to enhance the exploration of the state-space under the scope of tabular RL

representation. The framework contains a hierarchical structure of RL agents, where

a higher level Repulsive-Reward-Shaper (RRS) agent coordinates the exploration of

its population of sub-agents through repulsion when necessary conditions on their eli-

gibility traces are met. The framework not only encourages the exploration of diverse

regions of the environment via coordination but also implicitly unifies the eligibility

trace information collected from a population of agents. Our experiments on bench-

mark problem domains showed that the framework indeed accelerates the learning

performance of the agent and improves the coverage of the state-space. The positive

impact of the proposed framework is especially observed in the domains with sparse

explicit reward structure.

Furthermore, the thesis also proposes potential-based reward shaping using state-

space segmentation with extended segmented Q-cut algorithm approach to address

the problem of learning efficiency. The method is inspired by the idea of Segmented

Q-Cut algorithm introduced by [26] that handles sub-goal identification problem in

2

RL. However, our perspective is significantly different compared to the study [26],

because we aim to accelerate the learning by providing feedback to the agent with the

potential-based reward shaping mechanism that depends on a state-space segmen-

tation rather than generating macro-policies based on sub-goal identification. The

experimental results in benchmark sparse-reward environments showed that our pro-

posed method accelerates the learning speed notably without having a need to sacri-

fice from computation time.

1.1 Contribution of the Thesis

This thesis contributes to the RL literature with two novel reward shaping-based ap-

proaches called population-based repulsive reward shaping mechanism using eligi-

bility traces and potential-based reward shaping using state-space segmentation with

the extended segmented Q-cut algorithm.

• The first proposed reward shaping framework achieves coordinated exploration

using eligibility trace information of a population of agents. Compared to the

existing methods in the RL literature that perform coordinated exploration, our

method is counted as a novel one since eligibility trace information has not

been employed in reward shaping to achieve coordination. Beyond coordina-

tion mechanism, the method provides an informative initialization for state-

action values in single-agent RL settings. Thus, it significantly enhances the

learning speed of the agent. Furthermore, the proposed approach unifies the el-

igibility trace information of multiple agents. Through this, it provides a unique

way to benefit from such valuable information collected from multiple agents.

Lastly, it notably improves the learning performance and state-space explo-

ration compared to the famous benchmark RL methods in well-known problem

domains.

• The second proposed method presents a way to segment the state-space using

the transition history of the RL agent. Furthermore, it also provides a way

to benefit from extracted segment information in the agent’s learning process

through a potential-based reward shaping mechanism. The method introduces

3

an extension of the segmented q-cut algorithm [26], however, it does not re-

quire to generate additional macro-policies via options framework and learn

options to enhance the agent’s learning. Because the approach solely depends

on the key ingredient of the learning, rewards. The method basically modifies

the reward function using segment information on the state-space rather than

identified sub-goals. Hence, it eliminates the need of generating options. Fi-

nally, our proposed method accelerates the learning performance compared to

Q-Learning algorithm in domains with sparse explicit reward structure. The

method also outperforms Q-Learning regarding computation time.

The proposed methods in this thesis unite under the reward shaping perspective.

The first proposed method employs reward shaping for efficient exploration prob-

lem whilst the second one is for acceleration in learning. Therefore, the structure of

the thesis includes two main chapters corresponding to each proposed method. The

outline of this thesis is as follows. Chapter 1 introduces the problems that the the-

sis focuses on and summarizes the existing methods. Chapter 2 provides the neces-

sary background information. Chapter 3 discusses related works in the RL literature.

Chapter 4 introduces the first proposed method called population-based repulsive re-

ward shaping mechanism using eligibility traces. Moreover, the experimental results

and discussions are also given in this chapter. Then, the thesis addresses the problem

of learning efficiency and presents the second proposed approach, potential-based

reward shaping using state-space segmentation with extended segmented Q-cut al-

gorithm along with the computational outcomes and discussions in the Chapter 5.

Finally, Chapter 6 concludes the work provided in this thesis and suggests possible

future research directions.

4

CHAPTER 2

BACKGROUND

This chapter provides the required background for the addressed problems and the

proposed approaches in this thesis. It gives the information on mathematical back-

ground for RL through Markov Decision Processes and summarizes the relevant

value-based methods. The chapter then presents the eligibility trace and reward shap-

ing mechanisms. Furthermore, it gives the necessary background that covers graph

theory basics and maximum-flow/minimum-cut problem within the context of RL.

2.1 Markov Decision Processes

Sequential decision making problems where earlier decisions influence the later situ-

ations and actions are classically formalized by Markov Decision Processes (MDPs)

[31]. Reinforcement Learning tasks that are represented as a sequential decision mak-

ing processes under uncertainty where earlier decisions have undetermined conse-

quences are modelled with MDPs.

A Markov Decision Process (MDP) is a stochastic control process defined by the

tuple ⟨S,A, T ,R, γ⟩ consisting of

• a finite set of states (state-space) denoted as S ,

• a finite set of actions (action-space) denoted as A,

• a transition function T which maps the state-action pairs to a probability distri-

bution over states, T : S×A×S → [0, 1] where
∑

s′∈S T (s, a, s′) = 1,∀s ∈ S
and ∀a ∈ A. T (s, a, s′) shows the probability of the transition to state s′ after

taking action a in state s.

5

• a reward function R which provides immediate reward after an action choice

in some state ∈ S, R : S × A → R. R(s, a) shows the expected immediate

reward signal given by the environment after taking action a in state s.

• a discount factor γ ∈ [0, 1] that determines the importance of future rewards to

the current state.

A state s ∈ S shows the whole description of the state of the world which the decision

maker is interacting with. An observation o, on the other hand, may capture only the

partial description of the state. Hence, some of the information about the world might

be missing in the observation. Depending on the decision maker’s ability to observe

the complete state of the world, an MDP can be fully observed or partially observed.

If the DM can only observe the partial information on the state of its world, then the

MDP is regarded as partially observed.

The action-space A describes all admissible actions in the world that the decision

maker can choose. The action-space can be discrete if the number of available moves

to the decision maker is finite, or continuous if the moves are defined in terms of

real-values.

As shown with the transition function T (s, a, s′), the probability of moving to the new

state depends only on the current state of the process and action choice of the decision

maker. That is, given current state st = s and action at = a at decision epoch t, the

probability of transitioning to next state st+1 = s′ is conditionally independent of all

previous state and action choices as indicated below.

P (st+1 = s′ | st, . . . , s0, at, . . . , a0) = P (st+1 = s′ | st, at) = P (s, a, s′) (2.1)

The property (2.1) is called as the Markov property and satisfied by the MDPs. Based

on this, the reward distribution also depends only on the current state of the process

and action choice of the decision maker. Therefore, expected reward at decision epoch

t satisfies the following.

E [rt+1 | st, . . . , s0, at, . . . , a0) = E [rt+1 | st = s, at = a] = R(s, a) (2.2)

At each decision epoch t ∈ T where T can be finite or infinite, the decision maker ob-

serves its state s ∈ S and chooses an admissible action a ∈ A in state s. The process

6

transitions to a new state s′ ∈ S according to the transition function T (s, a, s′). De-

pending on the transition function structure, an MDP can be deterministic or stochas-

tic (non-deterministic). In the deterministic case, the process always moves to the

same state when the same action is chosen. Otherwise, different outcomes can be

observed with the same action selections. After the transition, the decision maker

receives an immediate reward rt(s, a) ∈ R based on the reward functionR(s, a).

A policy π, π : S × A → [0, 1] is defined as a probability distribution over the state-

action pairs. πt(s, a) = P (at = a | st = s) denotes the probability of choosing

the action a in state s at decision epoch t. In this definition, πt shows a stochas-

tic/randomized policy. However, a policy π can also be deterministic, if π is defined

as π : S → A. In this case, πt(s) = a denotes the unique action choice a in state s at

decision epoch t. If πt = π,∀t ∈ T , then the policy is called stationary.

The goal of the decision maker is to extract the optimal policy π∗ that yields the

optimal action selections a∗t ∼ π∗(. | st) for each decision epoch t to maximize its

expected discounted return or utility. Return (Gt) shows the sum of the discounted

future rewards discounted by a factor γ ∈ (0, 1) and defined as

Gt
.
= rt+1 + γrt+2 + γ2rt+3 + · · ·

.
=

T∑
k=t+1

γk−t−1rk = rt+1 + γGt+1, (2.3)

for each decision epoch t ∈ T . As shown in (2.3), Gt can be written recursively using

the return of the subsequent decision epoch.

To maximize the expected return, it is conventional to search and evaluate the policies

in the policy space. For this, value functions are helpful representatives of the value of

policies in terms of expected returns for every possible state. The state-value function

of a policy π is a mapping from states to real-values V π : S → R. The value V π(s)

of a state s ∈ S under a policy π defines the expected return starting from state s and

following policy π,

V π(s)
.
= Eπ [Gt | st = s] . (2.4)

The value of a state can be written in a recursive form using the values of possible

successive states. The state-value Bellman equation shows this recursive relationship

7

by
V π(s) = Eπ [rt+1 + γGt+1 | st = s]

=
∑
a∈A

π(s, a)
∑
s′∈S

P (s, a, s′) [R(s, a) + γV π (s′)].
(2.5)

The underlying optimization problem that the decision maker tries to solve is

max
π

V π(s). (2.6)

Hence, the optimal value function V ∗ gives the maximum value that is achieved in

any state,

V ∗(s) = max
π

V π(s). (2.7)

The optimal value function V ∗ satisfies the Bellman optimality equation for state

values

V ∗(s) = max
a∈A

Es′ [R (s, a) + γV ∗(s′)]. (2.8)

[5] showed that there exists a unique optimal value function in a finite MDP. More-

over, for the infinite horizon discounted MDP settings, Theorem 1 by [31] guarantees

the optimal policy under the assumption of finite state-space, finite action-space and

bounded rewards.

Theorem 1 For any infinite horizon discounted MDP, there always exists a determin-

istic stationary policy π that is optimal [31].

The action-value Qπ(s, a) of state-action pair s, a under policy π, Qπ : S × A → R,

defines the expected return starting from state s, taking an arbitrary action a and then

following policy π,

Qπ(s, a)
.
= Eπ [Gt | st = s, at = a] . (2.9)

The action-value function can also be written in a recursive form as shown in the

state-action Bellman equation by

Qπ(s, a) = Eπ [rt+1 + γGt+1 | st = s, at = a]

=
∑
s′∈S

P (s, a, s′) [R(s, a) + γ
∑
a′∈A

π(s′, a′)Qπ(s′, a′)].
(2.10)

8

The optimal action-value function Q∗ gives the maximum expected value that is

achieved in any state-action pair,

Q∗(s, a) = max
π

Qπ(s, a). (2.11)

Q∗ satisfies the Bellman optimality equation for state-action values

Q∗(s, a) = Es′

[
R (s, a) + γmax

a′∈A
Q∗ (s′, a′)

]
. (2.12)

If Q∗ is known for each state-action pair, then the optimal policy can be extracted

from optimal actions a∗(s) for any state s ∈ S as

a∗(s) = argmax
a

Q∗(s, a). (2.13)

In well-known RL strategies, estimating the value functions or action-value functions

is a common step towards discovering the optimal policy.

2.2 Reinforcement Learning

Reinforcement learning builds upon learning through interaction with the environ-

ment to achieve a goal when no prior knowledge regarding the task is provided [39].

The key ingredients of RL are the agent i.e. the learner or the decision maker as

described in the Section 2.1, the uncertain environment (world) which the agent inter-

acts with, the reward signal which is the feedback provided to the agent to evaluate

its movements and a value function that helps to represent the goal of the agent. Dur-

ing the interaction process, the RL agent must act in the uncertain environment by

taking actions in each time step (decision epoch) and observing the consequences in

the form of successive states and rewards to deduce informative data that might be

beneficial for accomplishing the learning task effectively.

The interaction process illustrated in the Figure 2.1, consists of the RL agent ob-

serving the state of the environment and selecting an admissible action, followed by

receiving a feedback from the environment as a reward or punishment and environ-

ment changing to a new state and so on. The feedback of the environment (reward

9

signal) shows the agent how good or bad its action choice was depending on the en-

vironment state. If this interaction process continues until the agent reaches its goal

or terminal condition, then it is called as an episodic task and an episode is defined

as the complete sequence of agent-environment interactions from initial to ending

state. On the other hand, if the interaction process does not include a terminal state

or condition, then the task never ends and regarded as continuous or non-episodic.

The learning is based on collected experiences during the training instead of an ex-

plicit supervision or using a static data set which include labels indicating the best

actions to take. Trajectories are regarded as the main source of data for the agent’s

learning. A trajectory τ shows the complete sequence of states and actions in an

episode, τ = (s0, a0, s1, a1, . . .). Moreover, the feedback provided to the agent dur-

ing the interaction is often delayed in most of the RL tasks. That means, the impact

of an action choice can only be observed in the reward signal many steps later instead

of instantaneous reaction. This repeated trial-and-error fashioned learning combined

with a goal-directed learner in a dynamic environment distinguishes RL from other

machine learning paradigms.

Action 𝑎𝑡

h

State 𝑠𝑡

Reward 𝑟𝑡

𝑠𝑡+1

𝑟𝑡+1

Agent Environment

Figure 2.1: The agent-environment interaction loop.

The goal of the RL agent is to extract the optimal policy which gives the optimal

sequential decisions that maximizes its long term total rewards by utilizing the feed-

back it receives in the absence of the environment model. That means, the agent has

no former information on the transition and reward functions ⟨T ,R⟩ of the underly-

ing MDP. The long term total rewards of the agent is called return and described as

10

the future discounted cumulative reward that the agent receives.

A majority of model-free RL algorithms in which the agent does not extract the model

of the environment, estimating value functions or Q-functions has significant role to

learn the optimal policies. Originated from this idea, value-based methods constitute

an essential portion of the RL literature. The following section summarizes the tabular

versions of the value-based approaches which mainly work for small scale MDPs.

2.3 Value-based Methods

The basic steps of value-based RL methods are to first estimate the value functions

and then derive optimal policies using the estimated values. A trivial way to learn

these value functions is with Monte Carlo (MC) methods. MC methods provide an

unbiased estimation of state-values or Q-values and optimal policies through averag-

ing the complete returns of sampled experiences.

In an episodic task, for a sampled episode (st, at, rt, st+1) , t ∈ T , MC updates the

state-action values with the rule

Q (st, at)← Q (st, at) + α [Gt −Q (st, at)] , (2.14)

where the actual return following time step t, Gt is defined by (2.3) for each t in the

episode and α ∈ (0, 1) denotes the learning rate. Contrary to their simplicity, MC

methods suffer from high variance as the variance of the sampled returns can be high,

and slow convergence since the value update is performed only after the completion

of an episode, which makes the learning process offline. On the other hand, learning in

an online (step-by-step) sense introduced with Temporal Difference methods speeds

up the convergence and is explained in detail in the following section.

2.3.1 Temporal Difference Learning

Temporal-difference (TD) learning is the central idea of the most RL algorithms that

stands on incremental computation of value estimations. TD approaches differ from

MC methods as they bootstrap i.e. they update the value estimates based on the

11

learned value estimates of successor state-action pairs with the update rule

Qt+1 (st, at)← Qt (st, at) + αδt. (2.15)

where δt is the one-step TD error for state-action value after transition to next state

st+1 and receiving rt+1 which is computed as

δt = rt+1 + γQt (st+1, at+1)−Qt (st, at) . (2.16)

(2.15) is applied in Sarsa [32] algorithm which is a well-known on-policy TD con-

trol approach extends from standard one-step TD learning, or TD(0). The off-policy

version of the error computation introduced in (2.17) is used in the Q-Learning [43]

algorithm.

δt = rt+1 + γmax
a

Qt (st+1, a)−Qt (st, at) . (2.17)

An extension of one-step TD that employs multi-step bootstrapping is n-step TD

learning, TD(n), in which the bootstrapping considers n-step successor state-action

pairs as

Qt+n (st, at)← Qt+n−1 (st, at) + αδt:t+n (2.18)

where δt:t+n is the n-step TD error computed by

δt:t+n = Gt:t+n −Qt+n−1 (st, at) + αδt:t+n (2.19)

where Gt:t+n denotes the n-step return defined as

Gt:t+n
.
= rt+1 + γrt+1 + · · ·+ γn−1rt+n + γnQt+n−1 (st+n, at+n) . (2.20)

TD methods are faster due to online learning, but less stable because of their sensitiv-

ity to initial estimates.

2.3.2 Q-Learning

Q-Learning is the prominent off-policy model-free TD control algorithm that finds the

optimal action-value function by learning the Q-values in an online manner [43, 39].

Q-Learning does not require the model of the environment and is independent of the

policy being followed. Therefore, most of the RL methods inspired by the Q-Learning

due to its characteristics and simplicity. The pseudocode of the Q-Learning is given

in the Algorithm .

12

Algorithm: Q-Learning
Input : ⟨S,A, T ,R⟩

Learning rate α ∈ [0, 1]

Exploration rate ε ∈ [0, 1]

Discount factor γ ∈ [0, 1]

Number of episodes M ≥ 1

Output: Q

1 Initialization:

Initialize Q(s, a) arbitrarily ∀s ∈ S, a ∈ A
episode = 0

2 for episode = 0 to M do

3 Initialize s

4 while s is not terminal do

5 Choose a← EPSILON-GREEDY(Q, ε)

6 Take action a, observe r, s′

7 δ ← r + γmaxa′ Q(s′, a′)−Q(s, a)

8 Update Q(s, a)← Q(s, a) + αδ

9 s← s′

10 end while

11 end for

12 return Q

2.3.3 Sarsa

Sarsa [32] algorithm that is named based on the agent’s experience tuple ⟨s, a, r, s′, a′⟩
is the on-policy model-free TD control algorithm for state-action values. Compared

to the Q-Learning, Sarsa uses the same policy both in action-selection and Q-value

update stages. The pseudocode of the Sarsa is provided in the Algorithm .

13

Algorithm: Sarsa
Input : ⟨S,A, T ,R⟩

Learning rate α ∈ [0, 1]

Exploration rate ε ∈ [0, 1]

Discount factor γ ∈ [0, 1]

Number of episodes M ≥ 1

Output: Q

1 Initialization:

Initialize Q(s, a) arbitrarily ∀s ∈ S, a ∈ A
episode = 0

2 for episode = 0 to M do

3 Initialize s, a

4 while s is not terminal do

5 Take action a, observe r, s′

6 Choose a′ ← EPSILON-GREEDY(Q, ε)

7 δ ← r + γQ(s′, a′)−Q(s, a)

8 Update Q(s, a)← Q(s, a) + αδ

9 s← s′, a← a′

10 end while

11 end for

12 return Q

2.4 Eligibility Traces

Eligibility trace mechanism (λ) [36] builds a bridge between MC methods and TD

learning to approach temporal credit assignment problem more efficiently. Eligibility

traces generalize TD methods to TD(λ) and allow us to perform bootstrapping over

multiple time intervals concurrently while behaving as a short term memory for the

agent. Furthermore, the mechanism achieves computational efficiency compared to

the n-step TD methods since storing only a single trace vector for each state e(s)

or for each state-action pair e(s, a) is required. Eligibility trace associated with a

14

state-action pair (s, a) at time t denoted by et(s, a), is defined by

et+1(s, a) =

1, if s = st and a = at.

γλet(s, a) otherwise.
(2.21)

et(s, a) is called a replacing eligibility trace [35] that decays by the discount rate γ

and trace-decay parameter λ ∈ [0, 1] at each time step. There is also another version

of eligibility trace called accumulating eligibility trace in which the trace value is

incremented by 1 each time the pair (s, a) is visited and then fades away by γλ after

the Q-value update.

2.5 Sarsa(λ) Algorithm

The extension of Sarsa algorithm with eligibility traces called Sarsa(λ) [39], imple-

ments a compound update by

Qt+1 (s, a)← Qt (s, a) + αδtet (s, a) , ∀s ∈ S, a ∈ A (2.22)

where δt is the one-step TD error for the action values and et (s, a) is defined by

(2.21) for all s, a. Through the eligibility of state-action pairs, the temporal difference

after a transition is propagated back to all (s, a) pairs recently visited by the agent.

Algorithm provides the complete pseudocode for Sarsa(λ).

2.6 Reward Shaping

In sparse and/or delayed reward environments, learning becomes challenging since

the RL agent receives no reinforcement to update its behavior and knowledge on

the environment. To guide the agent in such settings, additional reward signals are

provided through reward shaping mechanisms [25]. These additional rewards can be

designed in the form of bonuses [12], belief-based signals [24] or intrinsic motivation-

based signals depending on state novelty [34] or curiosity [30]. In the most general

form of reward shaping, original MDP M defined as M = ⟨S,A, T ,R, γ⟩ is trans-

formed into M ′, M ′ = ⟨S,A, T ,R′, γ⟩ whereR′ = R+F is the transformed reward

function and F : S ×A → R denotes the shaping reward function [28, 22]. With the

15

Algorithm: Sarsa(λ)
Input : ⟨S,A, T ,R⟩

Learning rate α ∈ [0, 1]

Exploration rate ε ∈ [0, 1]

Discount factor γ ∈ [0, 1]

Number of episodes M ≥ 1

Trace decay rate λ ∈ [0, 1]

Output: Q

1 Initialization:

Initialize Q(s, a) arbitrarily, ∀s ∈ S, a ∈ A
Initialize e(s, a) = 0,∀s ∈ S, a ∈ A
episode = 0

2 for episode = 0 to M do

3 Initialize s, a

4 while s is not terminal do

5 Take action a, observe r, s′

6 Choose a′ ← EPSILON-GREEDY(Q, ε)

7 δ ← r + γQ(s′, a′)−Q(s, a)

8 e(s, a) = 1 ; /* replacing trace */

9 for all s ∈ S, a ∈ A do

10 Q(s, a)← Q(s, a) + αδ

11 e(s, a)← γλe(s, a)

12 end for

13 s← s′, a← a′

14 end while

15 end for

16 return Q

16

addition of shaping reward function, the agent is stimulated to improve its knowledge

on the environment.

In particular, the bonus form of reward shaper is commonly used to encourage agent

to explore novel states, hence achieve better exploration. The bonus term Bt(s, a)
introduced by [37], is provided to the agent after receiving extrinsic (environmental)

reward signal rt(s, a) for visiting state-action pair (s, a) at time step t. Thus, the final

reward value [2] at time step t, r̃t(s, a), is defined as

r̃t(s, a) = rt(s, a)⊕ Bt(s, a) (2.23)

where ⊕ denotes the aggregation of extrinsic reward with the bonus term.

2.6.1 Potential-based Reward Shaping

Potential-based reward shaping (PBRS) is a way to shape rewards to deal with sparse

reward function while preserving policy invariance [28]. To speed up the learning in

sparse-reward RL tasks, additional rewards in the form of potentials are provided to

the agent without changing the optimal policy for the task.

In PBRS, shaping reward function denoted with F, F : S × S → R is defined as

the difference between real-valued potential functions of the successive states for a

state transition. The potential of a state represented by the function Φ,Φ : S → R

expresses some knowledge on the environment as a real-value given state information.

As an example, potential functions can be subgoal-based [29], distance-based [45],

plan-based [16] or auxiliary reward functions-based [17].

Formally, the potential-based shaping function F (s, s′) for a state transition s→ s′ is

defined by

F (s, s′) = γΦ(s′)− Φ(s), (2.24)

where γ is the discount factor.

[28] proves that if F is a potential-based reward shaping function as defined in the

Equation (2.24), then every optimal policy for the modified MDP M ′ will be an op-

timal policy in the original MDP M and vice versa. Hence, defining F of the form

given in (2.24) is sufficient to guarantee the policy invariance.

17

2.7 Graph Theory Basics

Our second proposed method in Chaper 5 is a graph-theoretic approach based on the

idea of Segmented Q-Cut algorithm [26] which is basically to find the subgoal (bottle-

neck) states, transitioning the agent’s interactions in the environment to a graph struc-

ture and modeling the problem as a maximum-flow/minimum-cut problem. There-

fore, a brief review on graph theory within the context of RL is presented in this

section.

A graph G is a capacitated directed network G = ⟨N,A⟩ defined over a set of nodes

N and a set of arcs A with a non-negative capacity cij associated with each arc (i, j) ∈
A.

A subgraph Gsub = ⟨Nsub, Asub⟩ is a graph whose nodes and arcs are subsets of node

and arc sets of G. Gsub is an induced graph of G if it is induced by the node set Nsub

where Nsub ⊆ N and contains all the arcs of the nodes Nsub from G.

The degree of a node i denotes the number of arcs adjacent to node i. In a directed

graph G, the degree of a node is expressed as indegree and outdegree measures. The

indegree of a node i where i ∈ N , is the number of arcs that are coming into the node

i, and the outdegree of a node i shows the number of arcs that are going out from the

node i.

A connected graph is a graph in which we can find a path between every pair of nodes

in the graph. Otherwise, the graph is called disconnected. A directed graph is said to

be weakly connected if we can obtain a connected graph when we replace all of the

directed arcs with undirected ones, and strongly connected if we can find a directed

path between each pair of nodes in the graph in both directions.

A connected component of an undirected graph is a subgraph in which we can find a

path between each pair of nodes. Weakly connected component of a directed graph is a

maximal subgraph that is unreachable from other nodes in the graph and in which we

can find an undirected path between each pair of nodes. On the other hand, strongly

connected component of a directed graph is a maximal subgraph that is unreachable

from other nodes in the graph and in which we can find directed path between every

18

pair of nodes in both directions.

Weakly Connected Components (WCC) a.k.a Union Find algorithm introduced by

[14], finds the distinct set of weakly connected components of the directed graph.

The pseudocode for Union Find is given in the Algorithm .

Algorithm: Union Find (WCC)
Input : A directed graph G

Output: components

1 Initialization: visited_nodes = ∅, components = ∅, connected_nodes = ∅
2 for each node n in the graph G do

3 if n is not in visited_nodes then

4 connected_nodes = BFS(n) ; /*breadth-first search*/

5 Append connected_nodes to visited_nodes

6 Append connected_nodes to components

7 end if

8 end for

9 return components

Let G be a connected graph. A cut set of graph G is the subset of arcs whose deletion

from G makes G disconnected. An arc is called cut arc if is the element of the cut set.

A minimum cut of graph G is the set of arcs whose removal from G divides G into

two disjoint sets and minimal with respect to some measure. For instance, the cut can

be minimal in terms of the capacity of the cut arcs, the sum of the weights of the cut

arcs, or the number of cut arcs etc.

Ratio cut bi-partitioning metric measures the quality or significance of a cut. Let s−t
cut be a cut of connected graph G that separates the graph into two partitions denoted

as s and t. The quality of s− t cut is computed by

qcut(s, t) =
| Ns || Nt |
| A(Ns, Nt) |

, (2.25)

where Ns and Nt are the set of nodes in the partitions s and t of graph G, respec-

tively, and | A(Ns, Nt) | is the number of arcs connecting both partitions. Based on

this, a high-quality or significant cut is defined as the cut with small number of arcs

19

separating balanced partitions in the graph.

A transition graph in the RL context, is a special kind of graph structure that stores

the state transitions in an MDP. Let Gt be a transition graph defined as Gt = ⟨Nt, At⟩.
Gt is a capacitated directed network in which the nodes denote the states whereas the

arcs denote the state transitions. To illustrate, the transition from state s → s′ is

reflected in the graph Gt with arc (s, s′) ∈ At. The arc capacity definition depends on

the focused RL task. Previous studies that aim to find subgoal states mostly use state

visitation frequency-based arc capacities [26].

2.8 Maximum-Flow/Minimum-Cut Problem

Decomposing the RL tasks by finding subgoals (bottleneck states) to speed up the

learning have been a major focus of the previous works in the RL literature. One way

of finding subgoals in an RL setting is to express the subgoal-identification problem

as a Maximum Flow-Minimum Cut problem [26].

A flow network Gf = ⟨Nf , Af⟩ as shown in the Figure 2.2 is a special directed graph

with capacitated arcs in which a flow goes through each arc of the network. The flow

and the capacity of an arc (i, j) ∈ Af are denoted as fij and cij , respectively.

The Maximum Flow problem is the problem of finding maximum flow that can be

sent from a single-source node s ∈ Nf to single-sink node t ∈ Nf in a flow network.

The equivalent problem is called Minimum Cut problem that tries to find minimum

capacity s− t cut in the network. The capacity of the s− t cut is defined as the sum

of the capacity of the arcs in the cut set [1]. The Max-Flow Min-Cut theorem states

that the maximum amount of flow that can be sent from s to t is equal to the capacity

of the minimum s− t cut of a flow network [9].

2.8.1 Preflow-Push Algorithm

Preflow-Push (push–relabel) is a class of algorithms to solve maximum flow problem.

The fundamental idea of this type of algorithms is to maintain a preflow at each in-

termediate stage and progressively transform it into maximum flow by applying two

20

s

i j

t

.

.

.

.

.

.

𝑓𝑖𝑗 , 𝑐𝑖𝑗

source sink

Figure 2.2: The flow network in Maximum-Flow/Minimum-Cut problem.

basic operations called push and relabel.

• A preflow x, x : Af → R is a function over arcs showing that for all nodes

except the source s, net flow entering the node is non-negative while preflow of

each arc does not exceed the arc capacities.

• Flow balance constraints may not be satisfied in the execution of these algo-

rithms; hence, excess flow can occur. Excess of a node is defined as the differ-

ence of total flow coming into the node minus total flow going out of the node.

If a node has a positive excess, then it is said as active node.

• In addition to excess value, each node is also associated with a label called

height value. Height of a node is used to determine if the node can push flow

or not.

• Depending on height and excess values of nodes, push operation is performed.

By pushing flow from the nodes having excess flow with greater height values

to the nodes with smaller height values, the flow proceeds on arcs from source

to sink.

• Relabel operation is performed to change the height value of a node.

• The algorithm runs until no active node is present in the flow graph.

21

Preflow-push algorithms are shown to be more powerful and flexible than augmenting

path algorithms [1]. A specific variant called highest-label push–relabel algorithm is

regarded as benchmark with time complexity of O(N2
√
A). Therefore, we benefit

from this algorithm in our second proposed method introduced in Chapter 5.

2.9 Segmented Q-Cut Algorithm

To accelerate the Q-Learning algorithm [26] proposes automatic identification of sub-

goals (bottlenecks) in a dynamic environment with Segmented Q-Cut algorithm. Seg-

mented Q-Cut is an extension of Q-Cut algorithm, also proposed by [26] in which the

general idea is to create a directed graph of the transition history of the agent and use

a Max-Flow/Min-Cut algorithm to find bottlenecks.

A subgoal or bottleneck is defined as the border state of strongly connected areas of

the transition history graph of the agent. Transition graph as explained in the Section

2.7 holds the agent’s experiences as state transitions in a directed and capacitated

graph. The capacity of the arcs in the transition graph is defined with the relative

frequency measure. Relative frequency crf is computed by

crf =
n(i→ j)

n(i)
, (2.26)

where n(i → j) denotes the number of times transition from state i to state j is

occurred and n(i) shows the number of times state i is visited.

Q-Cut algorithm as given in the Algorithm chooses source and sink nodes if condi-

tions for performing cut are met, and then applies a cut procedure described in the

Algorithm . If the cut quality which is measured by ratio cut bi-partitioning metric is

good, meaning that if it is greater than some pre-defined quality threshold, then the

identified subgoal is used to create options to speed up learning process.

Segmented Q-Cut algorithm extends the idea of Q-Cut by using previously identi-

fied subgoals for state-space partitioning and then finding additional subgoals from

generated partitions. The outline of the approach is given in the Algorithm . In this

approach, cut procedure is not applied only once, but for each created partition as

given in the Algorithm .

22

Algorithm: Q-Cut

1 while True do

2 Interact with environment and learn using Macro- Q Learning

3 Save state transition history

4 If activating cut conditions are met, choose s, t ∈ S perform

CutProcedure (s, t)

5 end while

Algorithm: CutProcedure()
Input : source node s, sink node t

1 Translate state transition history to a graph representation

2 Find a Minimum Cut partition [Ns, Nt] between nodes s and t

3 if the cut’s quality is "good" then

4 Learn the option for reaching new derived bottlenecks from every state in

Ns, using Experience-Replay
5 end if

Algorithm: Segmented Q-Cut

1 Initialization:

Create an empty segment N0

Include starting state s0 in segment N0

Include starting state s0 in S (N0)

2 while True do

3 Interact with environment/Learn using Macro-Q Learning

4 Save state transition history

5 for each segment N do

6 if activating cut conditions are met then

7 Perform CutProcedureForSegment(N)

8 end if

9 end for

10 end while

23

Algorithm: CutProcedureForSegment()
Input : Segment N

1 Extend segment N by connectivity testing

2 Translate state transition history of segment N to a graph representation

3 for each s ∈ S(N) do

4 Perform Min-Cut on the extended segment (s as source, choice of t is

task depended) if the cut’s quality is good (bottlenecks are found) then

5 Separate the extended N into two segments Ns and Nt

6 Learn the Option for reaching the bottlenecks from every state in Ns,

using Experience Replay

7 Save new bottlenecks in S (Nt)

8 end if

9 end for

24

CHAPTER 3

RELATED WORK

In this chapter, we provide related studies on efficient exploration and acceleration

of learning problems in the RL literature. To address the aforementioned RL prob-

lems, this thesis proposes two approaches in which reward shaping is a common

aspect. Thus, related works having a reward shaping aspect are presented in this

chapter. While Section 3.1 explains the studies on efficient exploration under the

single-agent RL perspective, Section 3.2 summarizes works on exploration with co-

ordinated agents. Section 3.3 discusses existing approaches in the literature which

use eligibility trace mechanism and establishes a connection between coordinated ex-

ploration and eligibility traces. Finally, Section 3.4 explains works on potential-based

reward shaping for improvement of learning efficiency.

3.1 Single-Agent Exploration

The exploration problem is addressed with numerous rules and strategies in the single-

agent RL literature. Starting with pure randomization, previous works have evolved

from basic exploration rules such as ε-greedy [43] a.k.a. pseudo-stochastic mecha-

nism [8] and optimistic initialization [39] to more intelligent methods which make

use of exploration-specific knowledge to direct the agent’s exploration [2].

Recent studies mostly focus on this problem with directed exploration methods [2].

Randomized action selection approaches assign action selection probabilities depend-

ing on the estimated value functions/rewards or learned policies [41, 43, 7, 3, 44]. Un-

der the same category, intrinsically-motivated exploration techniques utilize internal

incentives to promote visiting unexplored regions of the environment. The intrinsic

25

information can be computed based on the notion of curiosity [34, 33], state novelty

[30] or state visitation counts [4] to minimize the error in the agent’s predictions on

the environment. In the sparse reward domains, existing studies mostly center around

providing bonuses for agents to support transition to novel states. Bonus-based explo-

ration methods give a bonus term to the agent in the form of intrinsic reward which

can be calculated using state-action visitation counts [38, 4, 21], agent’s prediction

error of the environment dynamics [34, 33, 2] or the initial value estimates [39, 6].

Whilst our framework introduced in the Chapter 4 seem to have similar taste with

count-based bonus approaches, using recency-based state-action visit information

embedded in eligibility trace mechanism to measure additional reward term stands

its difference.

3.2 Coordinated Exploration

In multi-agent settings, independent exploration of agents is ineffective since agents

may visit already explored areas of state-space redundantly. This problem is exac-

erbated when the reward and transition dependency among agents are ignored. To

address this, [42] coordinates agents’ exploration with two methods that consider in-

fluence among agents for learning in cooperative settings. Their approaches provide

influence-based rewards for agents to encourage them to visit critical regions where

they can affect the trajectory and rewards of the other agents in the environment.

Similarly, [19] introduces a framework which designs multi-agent intrinsic rewards

with respect to explored regions by agents to support coordinated exploration. Al-

though these works promote coordination among multiple agents, our perspective

for efficient exploration problem is somewhat disparate since they work under fully-

cooperative multi-agent tasks.

3.3 Eligibility Traces

The studies which utilize eligibility traces to improve exploration efficiency is notably

scarce in the RL literature. [15] only analyzes the influence of various λ values on the

different exploration strategies with Sarsa(λ) algorithm. [44] proposes Team Q(λ)

26

algorithm that combines multiple trajectories generated by parallel agents to create

new trajectories. However, their results on the maze environments show that there is

no significant difference over the independent learning setting since newly generated

trajectories may be derived from "bad" trajectories that are generated in the early

stages of the simulation. On the other hand, our experimental studies in the proposed

framework provided in Chapter 4 show that usage of eligibility traces is a beneficial

approach for a coordinated exploration.

3.4 Potential Based Reward Shaping

To enhance the learning performance of the RL approaches in terms of speed, most of

the studies either apply task decomposition or reward shaping. Task-decomposition

methods require identification of subgoals or bottlenecks [26] to divide the task into

smaller sub-tasks and learn useful skills to successfully complete each sub-task. For

instance, Q-Cut [26] identifies subgoals by solving Max-Flow Min-Cut problem on

the transition graph of the agent’s experiences in the MDP and finds cuts of the en-

tire state-space. Moreover, LCut [10] method focuses on local transition graphs and

uses a partitioning algorithm to extract the local cuts. Both studies suggest generat-

ing macro-actions in the form of options framework [40] for agent to learn skills to

reach those subgoals. On the other hand, reward shaping [25] based methods form a

mechanism to provide additional rewards to the agent to improve exploration. PBRS

is a specific version of RS which maintains the policy invariance. [29] introduces a

PBRS approach in which the potentials are defined in terms of subgoal achievements.

However, the agent acquires subgoals from human participants instead of automatic

identification. Furthermore, [13] proposes a landmark-based reward shaping to ad-

vance learning speed and quality. They define the potentials in terms of the value

of landmarks, however, they focus on partially-observable MDPs. Conversely, our

approach, introduced in Chapter 5, works on MDPs and uses state-space segment

information in the computation of potentials.

27

28

CHAPTER 4

POPULATION-BASED EXPLORATION WITH REPULSIVE REWARD

SHAPING MECHANISM USING ELIGIBILITY TRACES

This chapter introduces the problem motivation and the proposed method for efficient

exploration problem in detail. The proposed approach called population-based re-

pulsive reward shaping mechanism using eligibility traces is explained in the Section

4.2. The extensions and variations of the reward shaping mechanism are described

in the Section 4.3. The experimental study for the method along with the results and

discussion are presented in the Section 4.4.

4.1 Problem Motivation

From the AI point of view, efficient exploration has an important role in accelerat-

ing the agent’s learning process, however, it may serve a bigger role considering the

real-world contexts. For instance, in a search-and-rescue mission after a hazardous

situation, avoiding redundant search is crucial to complete the mission effectively.

Therefore, multiple rescue teams follow a "divide-and-conquer" approach to investi-

gate the different regions of the hazardous area to find missing people and gather them

in an emergency recovery location. Based on the communication between the teams,

they share the area repulsively and perform a coordinated search. Inspired by this

critical real-world example, we can think of rescue agents that need to perform the

same mission instead of the teams. In this case, a method which coordinates agents’

exploration in a way that they repel each other when necessary, would be very helpful

to complete the mission. Motivated by this example, we propose a framework to at-

tack the problem of efficient exploration by encouraging agents to discover different

29

regions of the environment repulsively via shaping the rewards.

4.2 Repulsive Reward Shaping Mechanism

The proposed repulsive reward shaping mechanism uses eligibility traces of a popu-

lation of agents that is stimulated to explore the undiscovered segments of the state-

space. We model the mechanism as a framework having a hierarchical structure

of agents such that the upper-level is responsible from leading the learning process

through reward shaping whereas the lower-level is from the execution of coordinated

exploration directed by the upper-level. The general framework of the repulsive re-

ward shaping mechanism is depicted on Figure 4.1.

s,r

Q1(s,a), e1(s,a)
SARSA(λ) SUB-AGENT 1

Q1(s,a), e1(s,a)
SARSA(λ) SUB-AGENT 1

Q1(s,a), e1(s,a)
SARSA(λ) SUB-AGENT 1

RRS-AGENT

REWARD-SHAPER

RRS-AGENT

REWARD-SHAPER

QRRS(s,a)
RRS-AGENT

REWARD-SHAPER

QRRS(s,a)

EnvironmentEnvironmentEnvironmentAction

State,
Reward

Action

State,
Reward

Q2(s,a), e2(s,a)
SARSA(λ) SUB-AGENT 2

Q2(s,a), e2(s,a)
SARSA(λ) SUB-AGENT 2

QN(s,a), eN(s,a)
SARSA(λ) SUB-AGENT N

QN(s,a), eN(s,a)
SARSA(λ) SUB-AGENT N

Sub-agent 1
Environment
Sub-agent 1
Environment
Sub-agent 1
Environment

Sub-agent 2
Environment
Sub-agent 2
Environment
Sub-agent 2
Environment

Sub-agent N
Environment
Sub-agent N
Environment
Sub-agent N
Environment

… ...

S1, r1 a1S1, r1 a1 S2, r2 a2S2, r2 a2 SN, rN aNSN, rN aN

r’1 r’2 r’N
S1,a1, r1

e1(s,a)

S2,a2, r2

e2(s,a)

SN,aN, rN

eN(s,a)

… ...

Figure 4.1: The general framework of the method.

Concretely, we formulate the framework as a hierarchical structure for agents in

which the high-level consists of a Repulsive-Reward-Shaper agent (RRS-agent) and

in the low-level a population of identical sub-agents of type Sarsa(λ) with their own

Q-tables and policies exist. RRS-agent behaves as the principal agent that leads the

learning process through acting in the environment and shaping the environmental

30

reward signal to create repulsion when necessary for its sub-agents that traverse in

their own copy of the same environment. RRS-agent also learns and updates a global

Q-table, QRRS , using extrinsic environmental reward signals and depending on the

observations of all agents in the structure. While Sarsa(λ) sub-agents interact in their

own copy of the environment simultaneously, they update their local Q-tables accord-

ing to the individual experiences and modified rewards sent from the RRS-agent in

a coordinated manner. The coordination among the population of sub-agents is pro-

vided implicitly by the RRS-agent. It receives the extrinsic rewards information from

its sub-agents and sends the shaped-rewards back to them. Overall, inspired by the

parallel computation idea, the main role of sub-agents in this framework is to train a

global Q-table with coordinated exploration through repulsive reward shaping based

on eligibility traces which will provide an informative start for the RRS-agent’s explo-

ration. However, one should notice that although we take the advantage of parallelism

idea in this structure, the setting is not perceived completely as distributed agents

setting since the actions of sub-agents are implicitly affected by the coordinated ex-

ploration mechanism while traversing in their own copy of the same environment.

The mechanism also unifies eligibility trace information collected from sub-agents’

population, implicitly. If an agent visits a specific state-action pair (s, a) ∈ (S,A)
that is already visited recently by all other sub-agents, then that sub-agent receives a

punishment to repel it from such state-action pairs and to encourage exploring undis-

covered regions of the environment.

Consider for a set of N sub-agents, each sub-agent i ∈ N receives an extrinsic

reward signal rit(s, a) from the environment for a specific state s ∈ S and action

choice a ∈ A. The sub-agent i is punished by an amount of ci(s, a) depending on its

eligibility trace value ei(s, a) for state-action pair (s, a), in the case of the eligibility

trace values of other sub-agents, ej(s, a) ≥ k, ∀j ∈ N \ {i}, where k denotes a

trace threshold constant, k ∈ (0, 1).

The final reward value for sub-agent i at a specific state action pair (s, a) and time

31

step t, r̃ti(s, a) is computed by RRS-agent as

r̃t
i(s, a) =

rit(s, a)− cit(s, a), if ej(s, a) ≥ k, ∀j ∈ N \ {i}.

rit(s, a), otherwise.
(4.1)

Here, the punishment amount for visiting the recently observed (s, a) pair at time step

t for sub-agent i, symbolized with cit(s, a), is computed as

cit(s, a) = eit(s, a). (4.2)

The choice of such punishment amount makes sense in a way that it creates a distinct

repulsion force for sub-agents regarding their previously and recently visited state-

action pairs of each agent since the punishment value dynamically changes during

an episode while being domain-free. Another effect is that the sub-agent receives a

higher punishment when it visits a state-action pair that is more recently visited by

the population. This choice also supports balancing exploration and exploitation as

the trace values fade away during an episode, the repulsion force diminishes. For

the trace type, we employed the replacing eligibility trace defined in (2.21) since it is

shown by [35, 39] that the replacing traces perform better than accumulating traces.

The flowchart of the overall learning process is given in the Figure 4.2. Learning with

the population-based exploration through repulsive reward shaping using eligibility

traces has two main sub-processes called training of RRS-agent and training of sub-

agents. Learning process starts with the training of sub-agents and then continues

with the training of RRS-agent. During the sub-agents’ training, sub-agents interact in

their own environment and their environmental reward signals are shaped according

to some criteria on their eligibility traces to create repulsion. Based on the shaped

rewards, sub-agents learn their Q-value estimates and update their eligibility traces.

At this point, the Q-value estimates of RRS-agent that are stored in QRRS table is also

updated using sub-agents’ experiences and original (non-shaped) rewards. After the

phase of training of subagents is completed, the actual learning process starts with a

pre-trained Q-table. This time RRS-agent interacts with its environment and learns

the QRRS table. Upon the completion of the last episode, the process terminates and

outputs value estimates for each state-action pair.

The detailed pseudocode of learning with population-based exploration through re-

32

START

If initial
episode?

Yes

Choose an
admissible

action

Update Q-value
estimates
QRRS(s,a)

Train RRS-Agent

Observe reward
signal and next

state

Move to next
state

No

Train Sarsa(λ) Sub-agents

Choose an
admissible

action

Observe reward
signal and next

state

Shape sub-
agents’ rewards

repulsively

Update Q-value
estimates

Update
eligibility traces

Interaction process
of Sub-agents

Learning of Sub-agents

If reached to goal
state or steps limit?

If completed the
last episode?

END

Yes

Yes

Increment
episode number

by one
No

If all sub-agents
reached to goal state

or steps limit?

If completed the
last sub-episode?

Increment sub-
episode number

by one

Yes

No

Yes

No

No

Pre-trained
QRRS table

Update QRRS
with sub-agents’

experiences &
original rewards

Figure 4.2: The flowchart of the learning process.

pulsive reward shaping mechanism using eligibility traces is given in Algorithm 1. At

the beginning of the learning process, before the RRS-agent’s training on global QRRS

table starts, sub-agents are trained with trainSubagents procedure given in Al-

gorithm 2. This procedure consists of parallel & coordinated training of sub-agents

with the reward shaping mechanism. The interesting part of the trainSubagents

procedure compared to distributed training of independent Sarsa(λ) agents is that af-

ter each step, extrinsic rewards received by sub-agents are shaped with the

repulsiveRewardShape procedure given in Algorithm 3. This procedure takes

the necessary information regarding the sub-agents’ experiences at a certain time step,

shapes the reward signals using repulsion rule explained in (4.1) and returns the mod-

ified rewards back. The shaped rewards are then used in the calculation of TD error

(line 13 of Algorithm 2) for individual learning. On top of that, the global Q-table

QRRS is also updated with TD error computed using extrinsic rewards (ri) and sub-

agents’ experiences (line 14 of Algorithm 2). Sub-agents’ training procedure lasts

either all of them reach the goal state or steps limit and outputs a pre-trained QRRS

table which will serve as an informative start for the RRS-agent’s state-action value

33

estimates. After training of sub-agents is actualized, RRS-agent starts its training on

QRRS table that is initialized with trainSubagents procedure. RRS-agent then

behaves as a Sarsa learner and finally outputs the global state-action value estimates

with QRRS .

4.3 Reward Shaper Variations

Repulsion can be enforced not only with the punishment on sub-agents as introduced

in the previous section but also by giving support to the agents who discovered the

unexplored regions of the environment. Moreover, we can use different punishment

strategies to create repulsion in a coordinated manner. Thus, we investigated the vari-

ations and extensions of repulsive reward shaping mechanism under two categories

as bonus-based and punishment-based variations of the reward shaper.

4.3.1 Bonus-based Variations of the Reward Shaper

In this section, we introduce the bonus-based variations of the reward shaper mech-

anism. The overall idea of the following variations is that instead of punishing the

sub-agents for moving to the recently visited regions of the environment, we can pro-

vide bonus to the ones who transitions to novel state-action pairs as in the related

studies under the category of bonus-based exploration.

4.3.1.1 Bonus-based Reward Shaper

In the bonus-based repulsive reward shaping mechanism, if an agent visits a specific

state-action pair (s, a) ∈ (S,A) that is not visited recently by all other sub-agents,

then that sub-agent receives a bonus term to encourage such behavior. The novelty of

a state-action pair for a specific sub-agent is described as having no recent visitation

by all other sub-agents.

Again, consider for a set ofN sub-agents, each sub-agent i ∈ N receives an extrinsic

reward signal rit(s, a) from the environment for a specific state s ∈ S and action

34

Algorithm 1: Learning with Population-based Exploration Through Repul-

sive Reward Shaping Using Eligibility Traces
Input : ⟨S,A, T ,R⟩

Set of agents N ∪ {RRS}
Learning rate α ∈ [0, 1]

Exploration rate ε ∈ [0, 1]

Discount factor γ ∈ [0, 1]

Trace decay rate λ ∈ [0, 1]

Trace threshold constant k ∈ [0, 1]

Step limit steps ≥ 1

Number of episodes M ≥ 1

Number of sub-episodes Msub ≥ 1

Output: QRRS

1 Initialization:

QRRS(s, a) = 0, ∀s ∈ S, a ∈ A
episode = 0

2 for episode = 0 to M do

3 Initialize s ∈ S, a ∈ A arbitrarily for RRS agent

4 if episode = 0 then

5 QRRS ← trainSubagents()

6 end if

7 while s is not terminal or steps is not reached do

8 Take action a, observe r, s′

9 Choose a′ ← EPSILON-GREEDY(QRRS, ε)

10 δ ← r + γQRRS(s
′, a′)−QRRS(s, a)

11 Update QRRS(s, a)← QRRS(s, a) + αδ

12 s← s′, a← a′

13 end while

14 end for

15 return QRRS

35

Algorithm 2: trainSubagents
Input : N ,S,A, T ,R, α, ε, γ, λ, k,Msub

Output: QRRS

1 Initialization :

Qi(s, a) = 0, ∀s ∈ S, a ∈ A, i ∈ N
2 for subepisode = 0 to Msub do

3 Initialization pre-episode :

ei(s, a) = 0, ∀s ∈ S, a ∈ A, i ∈ N
observations = ∅, actions = ∅, traces = ∅
rewards = ∅, shaped_rewards = ∅
Initialize si ∈ S, ai ∈ A arbitrarily ∀i ∈ N

4 while si is not terminal or steps is not reached ∀i ∈ N do

5 for each i ∈ N do

6 Take action ai, observe ri, s′i
7 Append si to observations, ai to actions,

ri to rewards, ei to traces

8 Choose a′i ← EPSILON-GREEDY(Qi, ε)

9 end for

10 shaped_rewards← repulsiveRewardShape()

11 for each i ∈ N do

12 ei(si, ai) = 1 ; /* replacing trace */

13 δi ← shaped_rewards[i] + γQi(s
′
i, a

′
i)−Qi(si, ai)

14 δRRS
i ← ri + γQRRS(s

′
i, a

′
i)−QRRS(si, ai)

15 Update QRRS(si, ai)← QRRS(si, ai) + αδRRS
i

16 for s ∈ S and a ∈ A do

17 Update Qi(s, a)← Qi(s, a) + αδiei(s, a)

18 Decay ei(s, a)← γλei(s, a)

19 end for

20 end for

21 Empty rewards, shaped_rewards, traces

22 end while

23 end for

24 return QRRS

36

Algorithm 3: repulsiveRewardShape
Input : observations, actions, traces, rewards, shaped_rewards, k

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize punishment amount */

4 if min
∀j∈N\{i}

traces[j](s∗, a∗) ≥ k then

5 ci = traces[i](s∗, a∗)

6 end if

7 rewards[i]← rewards[i]− ci

8 end for

9 Append rewards[i] to shaped_rewards

10 return shaped_rewards

choice a ∈ A. Sub-agent i receives a bonus by an amount of ci(s, a) depending on its

eligibility trace value ei(s, a) for state-action pair (s, a), in the case of the eligibility

trace values of other sub-agents, ej(s, a) < k, ∀j ∈ N \ {i}, where k denotes a

trace threshold constant, k ∈ (0, 1).

Then, the final reward value for sub-agent i at a specific state action pair (s, a) and

time step t, r̃ti(s, a) is computed by RRS-agent as

r̃t
i(s, a) =

rit(s, a) + cit(s, a), if ej(s, a) < k, ∀j ∈ N \ {i}.

rit(s, a), otherwise.
(4.3)

The bonus amount cit(s, a) for visiting the recently observed (s, a) pair at time step t

for sub-agent i is calculated by

cit(s, a) = k − eit(s, a), (4.4)

where k denotes the trace threshold constant, k ∈ [0, 1] and eit(s, a) is the eligibility

trace value for (s, a) pair of the time step t. Compared to the punishment case, such

bonus term is sensible to use because if the value of eit(s, a) gets bigger (but still

less than k), then this means that the pair (s, a) becomes more recently visited by

the sub-agent i. Hence, the sub-agent will receive smaller bonus amount. Similar

37

to the punishment version, this choice creates a different encouragement force for

sub-agents considering each one’s own visits to state-action pairs. The exploration-

exploitation dilemma is also handled with the dynamically changing encouragement

support since eligibility trace values decay during an episode.

For this version of the reward shaper, Algorithm 3 should be modified to Algorithm 4

as shown below.

Algorithm 4: repulsiveRewardShape-BonusBased
Input : observations, actions, traces, rewards, shaped_rewards, k

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize bonus amount */

4 if traces[j](s∗, a∗) < k, ∀j ∈ N \ {i} then

5 ci = k − traces[i](s∗, a∗)

6 end if

7 rewards[i]← rewards[i] + ci

8 end for

9 Append rewards[i] to shaped_rewards

10 return shaped_rewards

4.3.1.2 Bonus-with-Memory-based Reward Shaper

In the bonus-based reward shaper version introduced in Section 4.3.1, the evaluation

of whether (s, a) pair is recently visited or not is done considering only the other sub-

agents’ eligibility trace values. Since we do not take into account the trace value of the

sub-agent we are focusing on, this may create a cycling problem. In other words, the

sub-agent may visit the same state-action pair which was already discovered by itself

again and again, when the pair is not visited by the other sub-agents. To avoid such a

case, we introduce bonus-with-memory-based reward shaper, in which the condition

for giving a bonus depends also on the trace value of the considered sub-agent. The

term "memory" in the name of this version comes from the idea that sub-agent’s short-

term memory itself (eligibility trace) is used to influence its action choices so that it

38

needs to somehow remember which selections it has done recently.

For the same set of N sub-agents, RRS-agent computes the final reward value of

sub-agent i for visiting the state-action pair (s, a) at time step t, r̃ti(s, a) by

r̃t
i(s, a) =

rit(s, a) + cit(s, a), if ej(s, a) < k, ∀j ∈ N

rit(s, a), otherwise
(4.5)

where the bonus term cit(s, a) is evaluated as in (4.4). Note that, in this version the

condition in (4.5) considers the complete set of sub-agents, N .

4.3.1.3 Bonus-with-Limited-Steps Reward Shaper

Bonus-with-limited-steps reward shaper approach provides bonus term to the pop-

ulation of sub-agents up to a certain time step. The motivation for this approach

comes from the exploration & exploitation trade-off. With the plain bonus-based re-

ward shaper defined in the previous section, it might be a case towards the end of an

episode that sub-agents can still be encouraged for visiting state-action pairs which

have been discovered in the earlier stages of an episode. Since those state-action pairs

have already been visited, redundant exploration might occur if we continue to give

bonus to the population. To avoid such problem and balance the trade-off, one way is

to limit the time steps in which bonus can be given.

In addition to the parameters of the Algorithm 4, we use no_bonus_after_step pa-

rameter to indicate the step number after which the bonus is not given to any sub-

agent. We determine the value of the parameter no_bonus_after_step as a constant

between 0 and steps limit. For this variant of reward shaper, we modify the Algorithm

4 to the Algorithm 5 below.

4.3.1.4 Bonus-with-Limited-Episode Reward Shaper

Similar to the limited-steps variation, we can also limit the bonus provided to the

sub-agents up to a certain episode. By this, we aim to stabilize the learning process

and make agents to exploit their learned policies while an efficient exploration of the

environment is achieved.

39

Algorithm 5: repulsiveRewardShape-BonusWithLimitedSteps
Input : observations, actions, traces, rewards, shaped_rewards, k

steps, no_bonus_after_step ∈ (0, steps)

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize bonus amount */

4 if step_no ≤ no_bonus_after_step then

5 if traces[j](s∗, a∗) < k, ∀j ∈ N \ {i} then

6 ci = k − traces[i](s∗, a∗)

7 end if

8 rewards[i]← rewards[i] + ci

9 end if

10 end for

11 Append rewards[i] to shaped_rewards

12 return shaped_rewards

In this variant, we use no_bonus_after_episode parameter to denote the episode

number after which the bonus is not given to any sub-agent. We determine the value of

the parameter no_bonus_after_episode as a constant ∈ (0,M) where M shows the

number of episodes. The pseudocode of this procedure is provided in the Algorithm

6.

4.3.2 Punishment-based Variations of the Reward Shaper

In this section, we introduce punishment-based variations of the reward shaper. The

general idea of the following reward shaper variations is to prevent redundant ex-

ploratory behavior and handle exploration-exploitation trade-off more effectively.

40

Algorithm 6: repulsiveRewardShape-BonusWithLimitedEpisode
Input : observations, actions, traces, rewards, shaped_rewards, k

Msub, no_bonus_after_episode ∈ (0,Msub)

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize bonus amount */

4 if subepisode ≤ no_bonus_after_episode then

5 if traces[j](s∗, a∗) < k, ∀j ∈ N \ {i} then

6 ci = k − traces[i](s∗, a∗)

7 end if

8 rewards[i]← rewards[i] + ci

9 end if

10 end for

11 Append rewards[i] to shaped_rewards

12 return shaped_rewards

4.3.2.1 Punishment-with-Memory-based Reward Shaper

As explained in the Section 4.3.1.2, cycling problem may also arise in the plain

punishment-based reward shaper introduced with (4.1). Since the agent is not pun-

ished for visiting already explored state-action pairs in the case that such pairs have

not been discovered by all other sub-agents yet, there is no discouragement for sub-

agent to visit those regions and take the same actions again. This problem can be

handled by embedding the eligibility trace value of the sub-agent itself to the punish-

ment condition, so that we obtain the following final reward calculation

r̃t
i(s, a) =

rit(s, a)− cit(s, a), if ej(s, a) < k, ∀j ∈ N .

rit(s, a), otherwise.
(4.6)

where the punishment amount cit(s, a) is determined as in (4.2). Notice that in this

type of reward shaper, the condition in (4.6) is based on the complete set of sub-

agents, N .

41

4.3.2.2 Punishment-with-Dynamic Threshold Reward Shaper

Instead of a constant trace threshold parameter k ∈ (0, 1), we can use dynamically

changing and preferably decreasing threshold parameter to balance exploration and

exploitation. With a high trace threshold value at the beginning of the learning pro-

cess, we punish the sub-agents only when they visit very recently explored regions of

the state-space. Hence, exploration is enhanced as the agents are expected to be pun-

ished less frequently when there are still major portions of undiscovered regions in

the environment. However, as the trace threshold decays during the learning process

while episodes are completed, the environment will be discovered gradually by the

sub-agents which motivates us to punish them more often to find the smaller regions

still waiting to be discovered.

In this type of reward shaper, we define the trace threshold parameter as a function of

the episode number,

kt = m− (a ∗ t) (4.7)

where kt denotes trace threshold parameter in episode t, m is a constant that deter-

mines the initial value of the threshold, a shows the step size or the rate at which

the threshold will decay, and t is the episode number. As shown in the Algorithm 7,

the only modification we need to perform on punishment-based reward shaper is that

episode number should also be given as input to repulsiveRewardShape func-

tion. Furthermore, before checking the condition on eligibility traces, trace threshold

parameter should be set according to (4.7).

4.3.2.3 Punishment-with-Normal Distribution Reward Shaper

In this version of the punishment-based reward shaper, we inspired by the shape of

normal (Gaussian) distribution in the choice of punishment amount. The idea be-

hind this version is, punishment severity should increase gradually over the course

of an episode as sub-agents will progressively improve their exploration. After some

point, the severity of the punishment should be lessened to avoid unnecessary repul-

sion since the environment is expected to be already explored towards the end of an

episode. Inspired by this, the version is called punishment-with-normal distribution.

42

Algorithm 7: repulsiveRewardShape-PunishwDynamicThreshold
Input : observations, actions, traces, rewards, shaped_rewards,

m, a, episode

Output: Modified shaped_rewards

1 k = m− (a ∗ episode)
2 for each i ∈ N do

3 s∗ = observations[i], a∗ = actions[i]

4 ci = 0 ; /* Initialize punishment amount */

5 if min
∀j∈N\{i}

traces[j](s∗, a∗) ≥ k then

6 ci = traces[i](s∗, a∗)

7 end if

8 rewards[i]← rewards[i]− ci

9 end for

10 Append rewards[i] to shaped_rewards

11 return shaped_rewards

For this, we generate a list of random samples from a normal (Gaussian) distribution

having mean 0 and standard deviation of 1. The size of the list is taken as steps limit.

The complete pseudocode of this version is provided in the Algorithm 8.

4.3.2.4 Punishment-with-Delay Reward Shaper

Punishment-with-delay reward shaper approach generates a repulsion force in a de-

layed manner instead of directly repelling sub-agents after each time step. No sub-

agent is penalized for visiting a discovered state-action pair up to a certain time step

in an episode. This approach promotes exploration as we force the sub-agents popu-

lation to discover unvisited segments of the environment after they gather individual

information on their environment without any restrictions.

Here, we use a parameter delay_step to define the number of steps in which the

sub-agents are not punished in an episode. We determine the value of delay_step

as a constant between 0 and steps limit. To reflect the idea of delay, we modify the

Algorithm 3 to the Algorithm 9.

43

Algorithm 8: repulsiveRewardShape-PunishwNormalDist
Input : observations, actions, traces, rewards, shaped_rewards, step_no

Output: Modified shaped_rewards

1 Initialize samples← []

2 samples← Generate random samples from Normal(0, 1)

3 Sort samples according to the probability density

4 for each i ∈ N do

5 s∗ = observations[i], a∗ = actions[i]

6 ci = 0 ; /* Initialize punishment amount */

7 if min
∀j∈N\{i}

traces[j](s∗, a∗) ≥ k then

8 ci =| samples[step_no] |
9 end if

10 rewards[i]← rewards[i]− ci

11 end for

12 Append rewards[i] to shaped_rewards

13 return shaped_rewards

4.3.2.5 Punishment-with-Delay-Episode Reward Shaper

Punishment-with-delay-episode reward shaping strategy is used to create delayed re-

pulsion force similar to the variant described in the Section 4.3.2.4. However, in-

stead of a certain time step, we begin to penalize sub-agents for transitioning to ex-

plored regions of the environment after a specific episode. We use a parameter called

delay_episode to denote the number of episodes in which the sub-agents are not pun-

ished during the learning process and determine its value as a constant between 0

and M , where M shows the total number of episodes. To obtain this version of the

mechanism, we need to change the repulsiveRewardShape procedure as in the

Algorithm 10.

44

Algorithm 9: repulsiveRewardShape-PunishmentWithDelay
Input : observations, actions, traces, rewards, shaped_rewards, k

steps, delay_step ∈ (0, steps)

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize punishment amount */

4 if step_no > delay_step then

5 if min
∀j∈N\{i}

traces[j](s∗, a∗) ≥ k then

6 ci = traces[i](s∗, a∗)

7 end if

8 end if

9 rewards[i]← rewards[i]− ci

10 end for

11 Append rewards[i] to shaped_rewards

12 return shaped_rewards

4.4 Computational Experiments

In this section, the performance of the proposed method is evaluated with a compu-

tational study. In Section 4.4.1, sample problem domains used as the experiment set

are introduced. Experiment settings are provided in the Section 4.4.2. Results and

discussion are presented in the Section 4.4.3.

4.4.1 Sample Problem Domains

To evaluate the performance of our proposed framework, we carried out the experi-

ments using the experiment set given in the Table 4.1. The set consists of well-known

versions of GridWorld navigation domains with varying sizes [27] and two versions

of Tower of Hanoi [18] mathematical puzzle game.

• GridWorld

45

Algorithm 10: repulsiveRewardShape-PunishmentDelayEpisode
Input : observations, actions, traces, rewards, shaped_rewards, k

Msub, delay_episode ∈ (0,Msub)

Output: Modified shaped_rewards

1 for each i ∈ N do

2 s∗ = observations[i], a∗ = actions[i]

3 ci = 0 ; /* Initialize punishment amount */

4 if subepisode > delay_episode then

5 if min
∀j∈N\{i}

traces[j](s∗, a∗) ≥ k then

6 ci = traces[i](s∗, a∗)

7 end if

8 end if

9 rewards[i]← rewards[i]− ci

10 end for

11 Append rewards[i] to shaped_rewards

12 return shaped_rewards

Table 4.1: The size of the domains.

Domain Size | S | | A |

Six-Rooms 32× 21 606 4

Six-Rooms Scaled 11× 7 60 4

Zigzag Four-Rooms 43× 10 403 4

Zigzag Four-Rooms Scaled 15× 3 39 4

Tower of Hanoi 3x3 3 disks, 3 rods 81 4

Tower of Hanoi 4x3 4 disks, 3 rods 243 4

46

In the experiments we used several GridWorld navigation tasks: Six-Rooms

[26], Zigzag Four-Rooms and scaled versions of these as illustrated in (a),

(b), (c) and (d) of Figure 4.3. These domains include several rooms connected

by hallways. In these domains, the agent tries to find the goal state starting

from an arbitrary state in the upper-left room. The state-space includes a set

of possible locations the agent can occupy, whereas the action-space consist

of four actions north, south, east, and west. The agent receives a reward of

+10 for reaching the goal state denoted with the letter G in all domains. If the

agent hits a wall, it receives a reward of −0.1, and for any other movements,

there is a small punishment of 0.01 for each step in the Six-Rooms Scaled

and Zigzag Four-Rooms Scaled settings. To observe the performance

in sparse reward problems, movements that do not yield to the goal state are not

given any reward in Six-Rooms and Zigzag Four-Rooms environments.

The experiments are performed in these domains with the sizes of state-space

and action-space as in the Table 4.1.

• Tower of Hanoi

Tower of Hanoi [18] is a mathematical puzzle played with 3 rods and a number

of disks having different diameters. The puzzle with 4 disks begins with a

shape illustrated in (a) of Figure 4.4, where the stack of disks having a conical

structure and the goal is to move the entire stack to the last rod by sliding the

disks onto rods while obeying the puzzle rules to achieve the shape in the (b)

of Figure 4.4. To solve the puzzle accurately, the agent should comply the

following rules:

– In each time step, only one disk can be moved.

– An accurate move is defined as taking the upper disk from one of the rods

and placing it to another.

– In each move, the conical shape in each rod must be preserved, if the rod

contains any disk. In other words, a larger disk cannot be placed onto a

rod having smaller-diameter disk.

For this setting, the state is defined as the tuple ⟨disk 1 location, disk 2 location,

. . . , arm location⟩. There are 4 possible actions, namely moving left, moving

47

G

(a) Six-Rooms

G

(b) Six-Rooms Scaled

G

(c) Zigzag Four-Rooms

G

(d) Zigzag Four-Rooms Scaled

Figure 4.3: GridWorld experiment domains.

1

2

3

4

1

2

3

4

(a) Tower of Hanoi initial state

1

2

3

4

1

2

3

4

(b) Tower of Hanoi goal state

Figure 4.4: Tower of Hanoi with 4 disks & 3 rods domain.

48

right, pickup a disk and putdown a disk. The agent receives a reward of +10

upon reaching the goal state and 0 for all other cases. We experimented with

two versions of this domain having different number of disks as stated in the

Table 4.1.

4.4.2 Experimental Settings

In the experiments, learning parameters are set as in the Table 4.2. For repulsive

reward shaping mechanisms, we used the parameter set as shown in the Table 4.3.

The limit on steps in an episode denoted with steps is set to two different values

for each environment. The value is determined as 1000 and 5000 for Six-Rooms

and Zigzag Four-Rooms environments; 1000 and 2000 for scaled versions of

these domains. For ToH, 500 and 1000 steps limits are tried. The number of sub-

agents is set depending on the domain. The parameter is set to 6 for Six-Rooms

and its scaled version, 4 for Zigzag Four-Rooms and its scaled version, 2 for

ToH environments. At the beginning of each episode, the agents are initialized at a

random state in the upper left room for GridWorld tasks and the state shown with (a)

of Figure 4.4 for ToH task.

All of the experiments are carried out using workstation having Intel® Core™ i7

3.10 GHz processors and 16 GB RAM with 64-bit Microsoft Windows 10 operating

system. Each experiment is run for 50 times and the average performance of the runs

are reported in the following section.

Table 4.2: Parameter settings for the experiments.

Parameter Value

Learning rate (α) 0.05

Discount rate (γ) 0.9

Exploration probability (ε) linearly decaying from 0.1 to 0.05

Trace decay rate (λ) 0.9

Number of episodes (M) 1000

Step limit (steps) domain-dependent

Number of sub-agents domain-dependent

49

Table 4.3: Parameter settings in the experiments used for repulsive reward shaping.

Parameter Value

Number of sub-episodes (Msub) 1000

Trace threshold (k) 0.5

no_bonus_after_step 200

no_bonus_after_episode 200

delay_step 50

delay_episode 100

4.4.3 Experimental Results and Discussion

This section provides the results of the experiments for performance evaluation of the

proposed approaches. First of all, the performances of the frameworks with bonus-

based reward shaping mechanisms are presented. Then, the results for punishment-

based frameworks are given. Finally, the overall performance comparison is made

with the benchmark algorithms.

The learning performances of the methods are evaluated by measuring the average

number of steps taken to reach the goal state, average reward per step, and average

elapsed time required for learning. Average reward is calculated via dividing total

reward in an episode by the episode length and taking the average for all episodes.

Since the convergence rate is the significant measure for performance comparison of

the methods in the RL literature, we reported the average number of steps and average

reward with the 95% bootstrapped confidence intervals in the form of figures. The

results display the average of 50 runs for each experiment.

4.4.3.1 RRS-Agent with bonus-based variations of the reward shaping mecha-

nism

The performances of the RRS-Agent with bonus-based variations of the reward shap-

ing mechanism are summarized in the Table 4.4. Moreover, Figure 4.5 through Figure

4.10 depict the convergence speed of the methods for average number of steps and

average reward measures in various problem domains.

50

As shown in the Table 4.4, RRS-bonus-withlimitedsteps outperforms other bonus-

based RRS methods in terms of all performance measures in Six-Rooms domain and

its scaled version. Figures 4.5 and 4.6 supports this result as RRS-bonus-withlimitedsteps

converges much faster to smaller number of steps and higher average reward com-

pared to the others. On the other hand, in a more difficult problem domain which is

the Zigzag Four-Rooms with limited interaction time (1000 steps), RRS-bonus-

withlimitedepisode performs better than the others. However, it is also the most ineffi-

cient method regarding computation time in this domain. When the interaction time is

increased to 5000 steps, RRS-bonus-withlimitedsteps becomes again the outperform-

ing framework. However, there is no significant difference between the frameworks

considering the converged average number of steps and reward. In the scaled version

of this domain, providing limited steps of bonus term works notably better than the

others since RRS-bonus-withlimitedsteps converges fastest as depicted in the Figure

4.8. For ToH environments, we cannot conclude a framework that improves learning

performance significantly better in all of them.

4.4.3.2 RRS-Agent with punishment-based variations of the reward shaping

mechanism

The performances of the RRS-Agent with punishment-based variations of the reward

shaping mechanism are provided in Table 4.5. Furthermore, Figure 4.11 through

Figure 4.16 sketch the convergence speed of the methods for average number of steps

and average reward measures in various problem domains.

As an overall observation, there is no remarkable difference in average steps and

average reward measures among the punishment-based frameworks. Specifically, in

the Six-Rooms domain, RRS-punish-dynamicthreshold beats the other punishment-

based frameworks. Although it starts from worse points, RRS-punish-dynamicthreshold

converges fast to a better number of steps and average reward as depicted in Figure

4.11. However, its good performance does not apply to the rest of the problem do-

mains since it struggles to converge particularly in a more difficult domain, Zigzag

Four-Rooms with 1000 steps. Considering the rest of the results, we cannot iden-

tify a punishment-based framework that performs best among all. Because although

51

Table 4.4: Learning performances of the methods with bonus-based RRS.

Problem Method
Average Steps (stdev) Average Reward (stdev) Average Elapsed

Time sec (stdev)over all episodes of the last episode over all episodes of the last episode

Six-rooms (1000 steps)

RRS-bonus 88.29 (27.16) 77.10 (131.99) 0.16 (0.01) 0.17 (0.04) 7709.77 (1004.57)

RRS-bonus-withlimitedsteps 59.93 (11.53) 51.22 (5.42) 0.19 (0.01) 0.20 (0.02) 6222.48 (886.797)

RRS-bonus-withlimitedepisode 75.65 (27.90) 56.28 (7.39) 0.17 (0.01) 0.18 (0.03) 7319.60 (978.770)

RRS-bonus-withmemory 84.56 (43.02) 57.12 (8.47) 0.16 (0.02) 0.18 (0.03) 6835.96 (939.540)

Six-rooms (5000 steps)

RRS-bonus 61.85 (28.60) 54.72 (7.82) 0.17 (0.01) 0.19 (0.03) 50065.9 (8683.82)

RRS-bonus-withlimitedsteps 49.41 (1.95) 47.36 (6.81) 0.21 (0.01) 0.22 (0.03) 26711.6 (7038.28)

RRS-bonus-withlimitedepisode 62.39 (34.20) 56.56 (7.57) 0.17 (0.01) 0.18 (0.02) 51383.6 (10380.4)

RRS-bonus-withmemory 70.27 (50.68) 55.68 (7.62) 0.17 (0.01) 0.18 (0.03) 49848.0 (6439.23)

Six-rooms-scaled (1000 steps)

RRS-bonus 20.06 (8.77) 15.40 (1.93) 0.62 (0.03) 0.65 (0.08) 585.108 (112.018)

RRS-bonus-withlimitedsteps 14.95 (0.42) 14.50 (1.93) 0.67 (0.02) 0.69 (0.09) 318.736 (56.7895)

RRS-bonus-withlimitedepisode 16.59 (4.50) 15.14 (2.17) 0.63 (0.02) 0.66 (0.09) 523.279 (92.3877)

RRS-bonus-withmemory 62.05 (38.46) 34.78 (137.76) 0.59 (0.05) 0.65 (0.13) 574.727 (109.589)

Six-rooms-scaled (2000 steps)

RRS-bonus 16.06 (1.35) 15.24 (2.46) 0.63 (0.02) 0.66 (0.09) 3542.46 (848.830)

RRS-bonus-withlimitedsteps 15.02 (0.46) 14.84 (1.87) 0.67 (0.02) 0.67 (0.08) 768.155 (75.6613)

RRS-bonus-withlimitedepisode 15.92 (2.95) 15.28 (2.13) 0.64 (0.02) 0.66 (0.09) 3193.67 (687.978)

RRS-bonus-withmemory 36.05 (49.83) 15.08 (1.72) 0.62 (0.05) 0.66 (0.08) 4208.24 (824.806)

Zigzag-four-rooms (1000 steps)

RRS-bonus 188.32 (57.63) 123.80 (188.31) 0.11 (0.01) 0.12 (0.03) 5303.89 (820.236)

RRS-bonus-withlimitedsteps 222.99 (23.71) 135.16 (219.01) 0.11 (0.01) 0.12 (0.04) 4186.33 (592.293)

RRS-bonus-withlimitedepisode 149.25 (59.54) 80.34 (6.60) 0.11 (0.01) 0.13 (0.01) 5304.15 (957.071)

RRS-bonus-withmemory 376.98 (89.78) 205.94 (316.42) 0.08 (0.02) 0.11 (0.05) 5025.88 (688.050)

Zigzag-four-rooms (5000 steps)

RRS-bonus 89.31 (61.47) 77.10 (6.79) 0.12 (0.01) 0.13 (0.01) 36440.2 (6591.01)

RRS-bonus-withlimitedsteps 76.64 (2.91) 74.24 (5.42) 0.13 (0.00) 0.14 (0.01) 24147.0 (5841.83)

RRS-bonus-withlimitedepisode 103.42 (80.16) 79.50 (8.68) 0.12 (0.01) 0.13 (0.01) 38837.9 (6184.14)

RRS-bonus-withmemory 126.63 (157.05) 77.52 (8.03) 0.12 (0.01) 0.13 (0.01) 34711.4 (4358.15)

Zigzag-four-rooms-scaled (1000 steps)

RRS-bonus 943.46 (35.75) 881.56 (318.03) -0.01 (0.00) -0.00 (0.02) 1748.47 (352.145)

RRS-bonus-withlimitedsteps 73.71 (9.29) 59.64 (191.76) 0.03 (0.00) 0.04 (0.01) 183.406 (87.4870)

RRS-bonus-withlimitedepisode 840.76 (56.49) 764.06 (418.08) -0.00 (0.00) 0.00 (0.02) 1671.21 (333.816)

RRS-bonus-withmemory 968.96 (15.22) 959.88 (191.65) -0.01 (0.00) -0.01 (0.01) 2032.61 (264.136)

Zigzag-four-rooms-scaled (2000 steps)

RRS-bonus 1647.07 (170.27) 1445.06 (888.28) -0.00 (0.00) 0.00 (0.02) 3451.70 (594.500)

RRS-bonus-withlimitedsteps 60.75 (1.81) 60.46 (276.95) 0.04 (0.00) 0.04 (0.01) 76.2364 (33.0434)

RRS-bonus-withlimitedepisode 1715.21 (100.47) 1557.66 (817.56) -0.01 (0.00) 0.00 (0.02) 3349.12 (755.856)

RRS-bonus-withmemory 1854.01 (53.22) 1829.50 (539.05) -0.01 (0.00) -0.01 (0.01) 4225.52 (544.098)

ToH-3x3 (500 steps)

RRS-bonus 422.21 (105.96) 150.22 (197.34) 0.05 (0.07) 0.22 (0.13) 780.969 (98.6998)

RRS-bonus-withlimitedsteps 420.65 (101.06) 163.58 (204.49) 0.05 (0.06) 0.21 (0.14) 761.058 (92.3989)

RRS-bonus-withlimitedepisode 410.30 (110.99) 158.80 (200.41) 0.05 (0.07) 0.21 (0.13) 789.379 (90.8507)

RRS-bonus-withmemory 414.13 (105.37) 152.50 (201.64) 0.05 (0.06) 0.23 (0.13) 482.048 (64.7716)

ToH-3x3 (1000 steps)

RRS-bonus 240.20 (349.89) 33.68 (5.51) 0.22 (0.11) 0.30 (0.04) 1760.16 (219.155)

RRS-bonus-withlimitedsteps 236.11 (342.60) 32.48 (2.94) 0.22 (0.11) 0.31 (0.02) 1840.21 (175.273)

RRS-bonus-withlimitedepisode 237.08 (344.74) 34.24 (5.76) 0.22 (0.11) 0.30 (0.04) 1717.61 (196.593)

RRS-bonus-withmemory 245.48 (349.03) 34.88 (6.12) 0.22 (0.11) 0.29 (0.04) 1165.64 (165.134)

ToH-4x3 (5000 steps)

RRS-bonus 3733.75 (1422.31) 508.58 (1157.88) 0.03 (0.04) 0.11 (0.05) 12185.3 (1378.40)

RRS-bonus-withlimitedsteps 3838.83 (1359.60) 788.28 (1637.92) 0.02 (0.03) 0.11 (0.06) 12173.1 (1344.51)

RRS-bonus-withlimitedepisode 3740.56 (1479.83) 457.26 (1252.39) 0.03 (0.04) 0.12 (0.04) 12294.1 (1307.49)

RRS-bonus-withmemory 3848.42 (1382.75) 824.66 (1594.96) 0.02 (0.03) 0.10 (0.06) 9424.61 (1284.33)

ToH-4x3 (7000 steps)

RRS-bonus 3277.04 (2868.85) 75.70 (7.54) 0.06 (0.06) 0.13 (0.01) 42879.1 (3964.84)

RRS-bonus-withlimitedsteps 2912.14 (2839.66) 75.90 (8.68) 0.07 (0.06) 0.13 (0.01) 45505.9 (578.810)

RRS-bonus-withlimitedepisode 2999.94 (2850.85) 71.60 (3.35) 0.07 (0.06) 0.14 (0.01) 44525.9 (4681.59)

RRS-bonus-withmemory 3068.99 (2898.19) 77.20 (12.97) 0.06 (0.06) 0.13 (0.02) 22262.7 (2370.24)

52

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

5:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
S
i
x
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r
10

00
an

d

50
00

st
ep

s
lim

it.

53

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward Per Step

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

6:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
S
i
x
-
R
o
o
m
s

S
c
a
l
e
d

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r

10
00

an
d

20
00

st
ep

s
lim

it.

54

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward Per Step

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

7:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r

10
00

an
d

50
00

st
ep

s
lim

it.

55

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

4

0
.0

2

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

2

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

8:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

S
c
a
l
e
d

G
r
i
d
W
o
r
l
d

do
-

m
ai

n
un

de
r1

00
0

an
d

20
00

st
ep

s
lim

it.

56

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r5
00

st
ep

s
lim

it.

0
2

0
0

4
0

0
6
0

0
8

0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r5

00
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6
0

0
8

0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r1

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

9:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
T
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r
3

ro
ds

an
d

3
di

sk
s

ve
rs

io
n.

57

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

4
di

sk
s

ve
rs

io
n

un
de

r5
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
4

di
sk

s
ve

rs
io

n
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Steps

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

4
di

sk
s

ve
rs

io
n

un
de

r7
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Average Reward

R
R

S
-b

o
n
u
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
e
p
is

o
d
e

R
R

S
-b

o
n
u
s-

w
it

h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
4

di
sk

s
ve

rs
io

n
un

de
r7

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

10
:L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

bo
nu

s-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
rT
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r3
ro

ds
an

d
4

di
sk

s

ve
rs

io
n.

58

RRS-punish has outstanding performance in non-grid world environment ToH with

3 disks, delayed versions of RRS-punish come into the picture in a more complex

version of ToH with 4 disks.

4.4.3.3 Performance comparison between bonus-based and punishment-based

variations of reward shaping mechanism

Since sub-agents are trained with an equal number of sub-episodes in each frame-

work, we can directly refer to Tables 4.4 and 4.5 for the learning performance com-

parison of bonus-based and punishment-based RRS methods.

Each RRS with punishment method outperforms all bonus-based frameworks in Grid-

World problem settings. For non-grid domain ToH, bonus category converges to

a slightly better number of steps and reward values. Hence, for a better comparison

convergence speeds and average elapsed times should be evaluated. As observed from

the results, punishment-based frameworks require less amount of time for learning.

Thus, a slight improvement on average steps and average reward requires longer com-

putation times with bonus-based frameworks. Based on the previous discussion on

bonus-based variations of the reward shaper, we select RRS-bonus-withlimitedsteps to

compare with punishment-based approaches. From punishment-based frameworks,

we determine RRS-punish-dynamicthreshold and RRS-punish to illustrate the learn-

ing speeds on Figures from 4.17 to 4.22.

As can be noted from these figures, punishment-based RRS learns significantly faster

than RRS-bonus-withlimitedsteps. We would expect such an outcome because pro-

viding bonus to the sub-agents may misdirect them. If a sub-agent receives a bonus

after visiting an unexplored state-action pair, then the agent might misinterpret that

state-action pair as a subgoal so that it should achieve that high-rewarding pair again

and again. Therefore, it is more difficult for the sub-agent to distinguish between re-

ceiving a reward for visiting an undiscovered state rather than visiting those specific

states. As a result, regional concentrations might be observed in the bonus-based

frameworks contrary to repulsion. On the other hand, there is no such misleading

in the punishment-based frameworks because the agent will avoid visiting explored

state-action pairs as it receives a punishment.

59

Table 4.5: Learning performances of the methods with punishment-based RRS.

Problem Method
Average Steps (stdev) Average Reward (stdev) Average Elapsed

Time sec (stdev)over all episodes of the last episode over all episodes of the last episode

Six-rooms (1000 steps)

RRS-punish 54.23 (1.91) 51.00 (6.76) 0.19 (0.01) 0.20 (0.03) 1450.73 (193.26)

RRS-punish-dynamicthreshold 48.88 (1.37) 45.78 (5.23) 0.21 (0.01) 0.22 (0.03) 1487.48 (172.30)

RRS-punish-normaldist 54.25 (1.98) 52.04 (7.24) 0.19 (0.01) 0.20 (0.03) 1414.85 (207.68)

RRS-punish-withdelay 53.96 (1.86) 52.28 (8.17) 0.19 (0.01) 0.20 (0.03) 1428.41 (204.16)

RRS-punish-withdelayepisode 54.23 (2.05) 53.06 (7.45) 0.19 (0.01) 0.19 (0.03) 1059.43 (152.86)

RRS-punish-withmemory 54.48 (1.87) 53.54 (6.85) 0.19 (0.01) 0.19 (0.02) 1440.28 (207.92)

Six-rooms (5000 steps)

RRS-punish 52.93 (1.74) 51.20 (5.67) 0.19 (0.01) 0.20 (0.02) 3759.99 (367.69)

RRS-punish-dynamicthreshold 47.77 (3.50) 45.80 (5.92) 0.21 (0.01) 0.22 (0.03) 3945.60 (406.97)

RRS-punish-normaldist 52.43 (1.71) 50.76 (7.72) 0.20 (0.01) 0.20 (0.03) 3844.82 (375.83)

RRS-punish-withdelay 52.19 (1.64) 52.44 (8.25) 0.20 (0.01) 0.20 (0.03) 3866.24 (370.06)

RRS-punish-withdelayepisode 52.38 (1.72) 49.12 (5.55) 0.19 (0.01) 0.21 (0.02) 2222.18 (224.54)

RRS-punish-withmemory 52.99 (1.73) 51.60 (7.00) 0.19 (0.01) 0.20 (0.03) 3959.42 (414.75)

Six-rooms-scaled (1000 steps)

RRS-punish 15.12 (0.45) 14.80 (1.94) 0.66 (0.02) 0.68 (0.09) 718.742 (78.574)

RRS-punish-dynamicthreshold 15.10 (0.43) 14.88 (1.69) 0.66 (0.02) 0.67 (0.08) 368.702 (72.224)

RRS-punish-normaldist 15.15 (0.44) 14.66 (1.82) 0.66 (0.02) 0.68 (0.08) 517.660 (98.078)

RRS-punish-withdelay 15.10 (0.46) 14.64 (1.83) 0.66 (0.02) 0.68 (0.08) 381.415 (72.927)

RRS-punish-withdelayepisode 15.09 (0.45) 14.86 (2.07) 0.66 (0.02) 0.67 (0.09) 263.277 (46.708)

RRS-punish-withmemory 15.08 (0.41) 14.28 (1.80) 0.66 (0.02) 0.70 (0.08) 389.838 (75.570)

Six-rooms-scaled (2000 steps)

RRS-punish 15.15 (0.44) 14.42 (1.61) 0.66 (0.02) 0.69 (0.07) 1350.57 (139.89)

RRS-punish-dynamicthreshold 15.09 (0.44) 14.68 (2.15) 0.66 (0.02) 0.68 (0.10) 1368.67 (138.39)

RRS-punish-normaldist 14.97 (0.43) 14.22 (1.66) 0.67 (0.02) 0.70 (0.08) 1378.18 (140.94)

RRS-punish-withdelay 15.09 (0.44) 14.06 (1.50) 0.66 (0.02) 0.71 (0.07) 1369.04 (143.47)

RRS-punish-withdelayepisode 15.08 (0.43) 14.22 (1.66) 0.66 (0.02) 0.70 (0.08) 646.543 (60.064)

RRS-punish-withmemory 15.14 (0.44) 14.40 (1.87) 0.66 (0.02) 0.69 (0.09) 1436.75 (149.57)

Zigzag-four-rooms (1000 steps)

RRS-punish 77.21 (1.74) 72.86 (6.40) 0.13 (0.00) 0.14 (0.01) 2128.26 (749.87)

RRS-punish-dynamicthreshold 79.43 (3.11) 75.56 (5.88) 0.13 (0.00) 0.13 (0.01) 3462.65 (729.94)

RRS-punish-normaldist 76.85 (1.76) 75.06 (7.27) 0.13 (0.00) 0.13 (0.01) 2409.07 (935.23)

RRS-punish-withdelay 77.35 (1.87) 75.44 (7.14) 0.13 (0.00) 0.13 (0.01) 2056.08 (807.81)

RRS-punish-withdelayepisode 77.17 (1.91) 73.84 (6.20) 0.13 (0.00) 0.14 (0.01) 2084.22 (788.45)

RRS-punish-withmemory 76.82 (1.83) 74.28 (7.28) 0.13 (0.00) 0.14 (0.01) 2070.72 (690.95)

Zigzag-four-rooms (5000 steps)

RRS-punish 78.31 (1.95) 75.30 (6.29) 0.13 (0.00) 0.13 (0.01) 777.433 (143.21)

RRS-punish-dynamicthreshold 76.57 (6.43) 75.00 (0.00) 0.13 (0.01) 0.13 (0.00) 873.549 (296.62)

RRS-punish-normaldist 78.24 (1.96) 74.28 (7.15) 0.13 (0.00) 0.14 (0.01) 729.784 (116.45)

RRS-punish-withdelay 77.65 (1.89) 75.20 (6.47) 0.13 (0.00) 0.13 (0.01) 740.091 (164.36)

RRS-punish-withdelayepisode 78.23 (1.93) 75.38 (7.93) 0.13 (0.00) 0.13 (0.01) 755.566 (141.14)

RRS-punish-withmemory 78.24 (1.97) 75.76 (7.44) 0.13 (0.00) 0.13 (0.01) 753.330 (110.05)

Zigzag-four-rooms-scaled (1000 steps)

RRS-punish 20.94 (0.49) 19.68 (1.53) 0.04 (0.00) 0.04 (0.00) 43.6584 (10.669)

RRS-punish-dynamicthreshold 20.89 (0.50) 20.50 (1.75) 0.04 (0.00) 0.04 (0.01) 43.4500 (11.609)

RRS-punish-normaldist 20.94 (0.49) 20.52 (1.93) 0.04 (0.00) 0.04 (0.01) 43.0697 (10.189)

RRS-punish-withdelay 20.95 (0.50) 20.92 (2.12) 0.04 (0.00) 0.04 (0.01) 38.8097 (11.667)

RRS-punish-withdelayepisode 20.91 (0.49) 20.28 (2.16) 0.04 (0.00) 0.04 (0.01) 39.0218 (6.3556)

RRS-punish-withmemory 20.95 (0.51) 20.16 (2.14) 0.04 (0.00) 0.04 (0.01) 40.0525 (6.7515)

Zigzag-four-rooms-scaled (2000 steps)

RRS-punish 20.88 (0.49) 19.86(1.67) 0.04 (0.00) 0.04 (0.00) 41.9938 (9.9399)

RRS-punish-dynamicthreshold 20.90 (0.50) 20.28 (1.87) 0.04 (0.00) 0.04 (0.01) 40.0634 (8.3209)

RRS-punish-normaldist 20.95 (0.48) 20.76 (2.25) 0.04 (0.00) 0.04 (0.01) 40.2862 (13.876)

RRS-punish-withdelay 20.90 (0.49) 20.42 (1.98) 0.04 (0.00) 0.04 (0.01) 34.8034 (6.6774)

RRS-punish-withdelayepisode 20.97 (0.48) 20.28 (1.72) 0.04 (0.00) 0.04 (0.00) 38.7256 (6.5398)

RRS-punish-withmemory 20.91 (0.48) 19.96 (2.12) 0.04 (0.00) 0.04 (0.01) 41.9240 (9.7160)

ToH-3x3 (500 steps)

RRS-punish 242.88 (343.56) 34.24 (5.97) 0.22 (0.11) 0.30 (0.04) 384.977 (54.139)

RRS-punish-dynamicthreshold 232.62 (340.36) 34.06 (5.29) 0.22 (0.11) 0.30 (0.04) 408.789 (49.509)

RRS-punish-normaldist 243.76 (347.61) 33.76 (5.67) 0.22 (0.11) 0.30 (0.04) 387.715 (44.941)

RRS-punish-withdelay 249.28 (340.81) 35.54 (6.66) 0.22 (0.11) 0.29 (0.04) 398.664 (53.845)

RRS-punish-withdelayepisode 239.21 (341.74) 36.12 (6.88) 0.22 (0.11) 0.29 (0.04) 754.467 (78.650)

RRS-punish-withmemory 252.36 (350.62) 34.66 (6.09) 0.22 (0.12) 0.30 (0.04) 388.170 (48.296)

ToH-3x3 (1000 steps)

RRS-punish 409.02 (117.85) 110.44 (170.79) 0.05 (0.07) 0.25 (0.12) 828.401 (108.28)

RRS-punish-dynamicthreshold 417.03 (105.60) 194.20 (206.76) 0.05 (0.07) 0.18 (0.14) 875.337 (110.59)

RRS-punish-normaldist 424.78 (96.77) 158.00 (201.98) 0.04 (0.06) 0.22 (0.14) 847.627 (119.00)

RRS-punish-withdelay 417.08 (102.95) 183.34 (216.71) 0.05 (0.06) 0.20 (0.14) 869.209 (128.37)

RRS-punish-withdelayepisode 411.08 (111.81) 163.86 (199.29) 0.05 (0.07) 0.21 (0.14) 1915.63 (200.41)

RRS-punish-withmemory 423.34 (100.83) 170.36 (206.04) 0.04 (0.06) 0.20 (0.14) 855.488 (116.71)

ToH-4x3 (5000 steps)

RRS-punish 3739.23 (1490.55) 684.54 (1338.11) 0.03 (0.04) 0.10 (0.06) 5412.95 (578.28)

RRS-punish-dynamicthreshold 3912.02 (1303.52) 1086.30 (1843.99) 0.02 (0.03) 0.10 (0.06) 5559.18 (723.00)

RRS-punish-normaldist 3814.14 (1450.31) 767.48 (1633.72) 0.02 (0.04) 0.11 (0.05) 6338.78 (592.09)

RRS-punish-withdelay 3832.95 (1375.77) 670.90 (1519.27) 0.02 (0.03) 0.11 (0.05) 5737.12 (702.62)

RRS-punish-withdelayepisode 3720.50 (1508.66) 746.76 (1606.35) 0.03 (0.04) 0.11 (0.05) 19315.9 (2138.8)

RRS-punish-withmemory 3784.42 (1403.10) 522.20 (1150.69) 0.02 (0.03) 0.11 (0.05) 5514.82 (701.58)

ToH-4x3 (7000 steps)

RRS-punish 3016.79 (2859.61) 72.30 (6.21) 0.07 (0.06) 0.14 (0.01) 23990.5 (3469.5)

RRS-punish-dynamicthreshold 3207.83 (2861.76) 72.10 (2.39) 0.06 (0.06) 0.14 (0.00) 18182.3 (1548.9)

RRS-punish-normaldist 3043.02 (2872.44) 70.60 (3.07) 0.07 (0.06) 0.14 (0.01) 14766.0 (2658.4)

RRS-punish-withdelay 2939.96 (2915.50) 76.30 (12.70) 0.07 (0.06) 0.13 (0.02) 18343.0 (2020.7)

RRS-punish-withdelayepisode 3282.46 (2827.45) 79.60 (15.81) 0.06 (0.06) 0.13 (0.02) 57395.1 (489.74)

RRS-punish-withmemory 3108.34 (2818.36) 75.60 (7.31) 0.06 (0.06) 0.13 (0.01) 17605.9 (1593.0)

60

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

4
5

5
0

5
5

6
0

6
5

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

0
.2

2
5

0
.2

5
0

0
.2

7
5

0
.3

0
0

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

11
:L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

pu
ni

sh
m

en
t-

ba
se

d
re

w
ar

d
sh

ap
in

g
m

et
ho

ds
fo

rS
i
x
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0

an
d

50
00

st
ep

s
lim

it.

61

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
3

1
4

1
5

1
6

1
7

1
8

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward Per Step

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
3

1
4

1
5

1
6

1
7

1
8

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

12
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pu

ni
sh

m
en

t-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
S
i
x
-
R
o
o
m
s

S
c
a
l
e
d

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0
an

d
20

00
st

ep
s

lim
it.

62

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward Per Step

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

13
:L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

pu
ni

sh
m

en
t-

ba
se

d
re

w
ar

d
sh

ap
in

g
m

et
ho

ds
fo

rZ
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0
an

d
50

00
st

ep
s

lim
it.

63

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
9

2
0

2
1

2
2

2
3

2
4

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

14
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pu

ni
sh

m
en

t-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
r
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

S
c
a
l
e
d

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0
an

d
20

00
st

ep
s

lim
it.

64

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r5
00

st
ep

s
lim

it.

0
2

0
0

4
0

0
6
0

0
8

0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r5

00
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.1

0
.2

0
.3

0
.4

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r1

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

15
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pu

ni
sh

m
en

t-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
rT
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r3
ro

ds
an

d
3

di
sk

s
ve

rs
io

n.

65

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

4
di

sk
s

ve
rs

io
n

un
de

r5
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
4

di
sk

s
ve

rs
io

n
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Steps

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

4
di

sk
s

ve
rs

io
n

un
de

r7
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

R
R

S
-p

u
n
is

h
-n

o
rm

a
ld

is
t

R
R

S
-p

u
n
is

h
-w

it
h
d
e
la

y
R

R
S
-p

u
n
is

h
-w

it
h
d
e
la

ye
p
is

o
d
e

R
R

S
-p

u
n
is

h
-w

it
h
m

e
m

o
ry

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
4

di
sk

s
ve

rs
io

n
un

de
r7

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

16
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pu

ni
sh

m
en

t-
ba

se
d

re
w

ar
d

sh
ap

in
g

m
et

ho
ds

fo
rT
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r3
ro

ds
an

d
4

di
sk

s
ve

rs
io

n.

66

Following these results, our choice is to propose the RRS-punish framework and eval-

uate its learning performance with the benchmarks. Since RRS-punish does not in-

volve a design of dynamic threshold parameter which is an important factor that can

affect the performance, it is easier to implement a plain version of punishment-based

RRS. Hence, in the subsequent discussion, we compare the overall learning perfor-

mance of RRS-punish with the benchmark algorithms.

4.4.3.4 Overall performance comparison

As the benchmark, we used Sarsa and Sarsa(λ) single-agent learners since on-policy

algorithms are more suitable for the evaluation of our method as we defined the sub-

agents with Sarsa(λ) type.

Furthermore, we also provide an "ablation study" to investigate the contribution of

coordination mechanism through repulsive reward shaping in the introduced soft-

hierarchical model between RRS-Agent and sub-agents. We remove the reward-shaping

mechanism between these two levels of agents and call the framework as SuperAgent-

SubAgents. In the SuperAgent-SubAgents framework, there is a hierarchical struc-

ture between a super-agent and Sarsa(λ) sub-agents similar to the RRS-Agent frame-

work excluding the coordination implied by the repulsive reward shaping mecha-

nism. Hence, this framework differs from the RRS-Agent structure only in a way that

rewards are not shaped during the training of sub-agents to create coordination. How-

ever, super-agent still learns from a pre-trained global Q-table with the experiences

of sub-agents. We add SuperAgent-SubAgents framework to the benchmarks and pro-

vide the overall performance comparison in Table 4.6. We also depict the learning

speeds in Figures 4.27 to 4.32. To evaluate the exploration power of the proposed

framework, we illustrate the state-space coverages for GridWorld domains in Figures

4.23 to 4.26.

Through a series of sub-episode number tuning sessions, we determined the number

of sub-episodes for RRS-punish framework as 25. Thus, training of sub-agents will

continue for 25 episodes and the exploration amount after the exploration phase i.e.

training of sub-agents is shown in the state-space coverage figures.

67

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0
Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

17
:L

ea
rn

in
g

pe
rf

or
m

an
ce

co
m

pa
ri

so
n

be
tw

ee
n

pu
ni

sh
m

en
t-

ba
se

d
an

d
bo

nu
s-

ba
se

d
R

R
S

fr
am

ew
or

ks
in
S
i
x
-
R
o
o
m
s

do
m

ai
n.

68

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
3

1
4

1
5

1
6

1
7

1
8

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

18
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
pu

ni
sh

m
en

t-
ba

se
d

an
d

bo
nu

s-
ba

se
d

R
R

S
fr

am
ew

or
ks

in
S
i
x
-
R
o
o
m
s

S
c
a
l
e
d

do
m

ai
n.

69

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

19
:L

ea
rn

in
g

pe
rf

or
m

an
ce

co
m

pa
ri

so
n

be
tw

ee
n

pu
ni

sh
m

en
t-

ba
se

d
an

d
bo

nu
s-

ba
se

d
R

R
S

fr
am

ew
or

ks
in
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

do
m

ai
n.

70

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

2
0

4
0

6
0

8
0

1
0

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

20
:L

ea
rn

in
g

pe
rf

or
m

an
ce

co
m

pa
ri

so
n

be
tw

ee
n

pu
ni

sh
m

en
t-

ba
se

d
an

d
bo

nu
s-

ba
se

d
R

R
S

fr
am

ew
or

ks
in
Z
i
g
z
a
g

F
o
u
r

R
o
o
m
s

S
c
a
l
e
d

do
m

ai
n.

71

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

21
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
pu

ni
sh

m
en

t-
ba

se
d

an
d

bo
nu

s-
ba

se
d

R
R

S
fr

am
ew

or
ks

in
T
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

w
ith

3
di

sk
s.

72

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Steps

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r7

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Average Reward

R
R

S
-b

o
n
u
s-

w
it

h
lim

it
e
d
st

e
p
s

R
R

S
-p

u
n
is

h
R

R
S
-p

u
n
is

h
-d

yn
a
m

ic
th

re
sh

o
ld

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r7
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

22
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
pu

ni
sh

m
en

t-
ba

se
d

an
d

bo
nu

s-
ba

se
d

R
R

S
fr

am
ew

or
ks

in
T
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

w
ith

4
di

sk
s.

73

From Table 4.6, we observe that our proposed framework RRS-punish outperforms all

benchmarks in terms of average steps and average reward criteria in all of the Grid-

World settings with varying interaction times with the exception of the most complex

domain Zigzag Four-Rooms with 1000 steps. However, in that setting, the stan-

dard deviation of the measures for Sarsa(λ) learner is notably high. Furthermore,

learning rates in Figures 4.27 to 4.30 reflect that, RRS-punish starts from a better ini-

tial values of the number of steps and average reward and converge fast with the help

of training of sub-agents.

In terms of average elapsed time, our method is beaten by Sarsa and Sarsa(λ) learners

as expected, due to the large portion of time spent for the training of sub-agents in

the initial episode of the learning process. However, if we focus on the learning time

of RRS-Agent, we see that the agent learns remarkably fast after sub-agents’ training

is completed. This shows us population-based repulsive reward-shaping mechanism

indeed provides an informative start for the RRS-Agent.

Finally, our method performs better in ToH domains regarding converged values of

the number of steps and average reward when the interaction time is longer. However,

for the settings in which the steps limit becomes more restrictive, Sarsa(λ) gives

better results.

The benefit of the exploration with the proposed RRS mechanism is sketched in the

state-space coverage figures. In the Figures 4.23-4.26, state visitation frequencies

are depicted as heat maps. Since GridWorld tasks are suitable for such illustrations,

we provide the evaluation for those problem domains only. As can be seen from the

figures, almost all states are discovered after the exploration phase i.e. training of

sub-agents. This is a promising result since the sub-agents did not stuck at only one

room during their interaction time. For instance, RRS-punish struggles in Zigzag

Four-Rooms domain with 1000 steps as (a) of Figure 4.24 shows that sub-agents

spent most of their time in the room where they start at. However, for the rest of the

domains, the state-space is well-explored. Furthermore, we also show the state visi-

tation frequencies after the RRS-Agent’s learning phase is completed in these figures.

We can observe that through effective exploration the RRS-Agent is able to converge

to a policy that helps it to find the goal state.

74

For the ablation study, it can be observed from the results that coordinated exploration

with the repulsive reward shaping mechanism significantly impacts the learning per-

formance. Removing the mechanism results in a poorly performing framework that

could not stabilize its policy. Having a hierarchical structure still helps since the learn-

ing performance starts with good points for performance measures, however, learning

from independent sub-agents is not beneficial for state-action value estimates of Su-

perAgent because of the disruption in the temporal structure of experiences to update

SuperAgent’s Q-table.

Table 4.6: Overall performance comparison of the proposed method with bench-

marks.

Problem Method
Average Steps (stdev) Average Reward (stdev) Average Elapsed

Time sec (stdev)

Average Subagents’

Training Time sec (stdev)

Average RRS-Agent

Learning Time sec (stdev)over all episodes of the last episode over all episodes of the last episode

Six-rooms (1000 steps)

RRS-punish 54.33 (29.33) 46.86 (6.31) 0.21 (0.02) 0.22 (0.03) 258.91 (48.63) 251.65 (48.42) 7.25 (1.44)

Sarsa(\lambda) 127.79 (151.22) 67.32 (8.96) 0.13 (0.03) 0.15 (0.02) 254.86 (144.41) - -

Sarsa 984.52 (20.06) 936.20 (224.89) 0.00 (0.00) 0.01 (0.05) 90.73 (8.63) - -

SuperAgent-SubAgents 463.47 (70.32) 518.65 (300.47) 0.04 (0.01) 0.03 (0.03) 691.92 (191.46) - -

Six-rooms (5000 steps)

RRS-punish 52.58 (23.93) 46.04 (6.06) 0.21 (0.02) 0.22 (0.03) 363.71 (116.45) 356.66 (116.38) 7.05 (0.65)

Sarsa(\lambda) 86.73 (176.02) 67.06 (11.93) 0.14 (0.01) 0.15 (0.03) 166.42 (70.7) - -

Sarsa 554.61 (1164.67) 47.96 (4.43) 0.17 (0.07) 0.21 (0.02) 48.08 (7.37) - -

SuperAgent-SubAgents 547.86 (124.56) 431.30 (241.17) 0.00 (0.00) 0.00 (0.00) 1015.03 (186.42) - -

Six-rooms-scaled (1000 steps)

RRS-punish 15.83 (6.90) 13.98 (1.58) 0.65 (0.04) 0.71 (0.07) 10.29 (1.14) 7.99 (1.16) 2.29 (0.07)

Sarsa(\lambda) 19.68 (17.75) 17.40 (2.65) 0.54 (0.03) 0.58 (0.09) 6.65 (0.71) - -

Sarsa 22.65 (32.48) 14.76 (1.54) 0.61 (0.16) 0.67 (0.08) 1.24 (0.11) - -

SuperAgent-SubAgents 57.70 (16.99) 31.20 (19.10) 0.32 (0.03) 0.38 (0.15) 112.71 (23.55) - -

Six-rooms-scaled (2000 steps)

RRS-punish 15.76 (7.31) 13.90 (2.16) 0.66 (0.04) 0.72 (0.09) 10.40 (1.26) 8.10 (1.28) 2.30 (0.06)

Sarsa(\lambda) 18.76 (16.98) 16.84 (3.07) 0.57 (0.04) 0.60 (0.11) 6.3 (0.72) - -

Sarsa 22.69 (31.74) 14.70 (1.47) 0.61 (0.16) 0.68 (0.07) 1.24 (0.11) - -

SuperAgent-SubAgents 39.35 (12.85) 27.85 (13.45) 0.37 (0.04) 0.38 (0.10) 213.76 (43.34) - -

Zigzag-four-rooms (1000 steps)

RRS-punish 991.29 (13.44) 953.24 (189.65) 0.00 (0.00) 0.01 (0.03) 501.03 (18.26) 372.95 (16.10) 128.07 (4.83)

Sarsa(\lambda) 549.64 (223.06) 290.32 (376.45) 0.05 (0.03) 0.09 (0.05) 1097.76 (668.88) - -

Sarsa 998.49 (1.84) 999.00 (0.00) 0.00 (0.00) 0.00 (0.00) 89.16 (8.16) - -

SuperAgent-SubAgents 742.07 (55.10) 671.35 (371.10) 0.02 (0.00) 0.02 (0.03) 1211.71 (566.75) - -

Zigzag-four-rooms (5000 steps)

RRS-punish 96.69 (110.38) 72.74 (5.03) 0.13 (0.01) 0.14 (0.01) 834.0 (214.23) 821.28 (214.68) 12.72 (3.31)

Sarsa(\lambda) 126.53 (277.07) 88.78 (10.52) 0.10 (0.01) 0.11 (0.01) 235.43 (114.61) - -

Sarsa 1193.06 (1764.87) 74.46 (6.61) 0.09 (0.06) 0.14 (0.01) 106.3 (14.15) - -

SuperAgent-SubAgents 1055.99 (293.00) 1485.95 (1504.88) 0.03 (0.01) 0.02 (0.03) 1395.57 (521.14) - -

Zigzag-four-rooms-scaled (1000 steps)

RRS-punish 22.17 (7.23) 20.00 (1.75) 0.04 (0.00) 0.04 (0.01) 16.17 (5.48) 13.05 (5.51) 3.12 (0.11)

Sarsa(\lambda) 33.72 (59.34) 21.34 (2.32) 0.03 (0.01) 0.04 (0.01) 9.93 (4.77) - -

Sarsa 31.70 (36.53) 20.52 (1.75) 0.03 (0.01) 0.04 (0.00) 1.74 (0.12) - -

SuperAgent-SubAgents 29.21 (8.11) 22.48 (2.15) 0.03 (0.00) 0.03 (0.01) 39.51 (10.37) - -

Zigzag-four-rooms-scaled (2000 steps)

RRS-punish 22.67 (11.47) 20.22 (2.25) 0.04 (0.00) 0.04 (0.01) 15.98 (6.65) 12.79 (6.70) 3.19 (0.16)

Sarsa(\lambda) 28.24 (49.31) 20.92 (2.32) 0.03 (0.00) 0.04 (0.01) 8.58 (3.22) - -

Sarsa 31.65 (36.46) 20.58 (1.78) 0.03 (0.01) 0.04 (0.01) 1.66 (0.09) - -

SuperAgent-SubAgents 33.64 (16.02) 22.80 (2.29) 0.03 (0.00) 0.03 (0.01) 37.42 (9.43) - -

ToH-3x3 (500 steps)

RRS-punish 430.92 (97.18) 182.80 (207.29) 0.04 (0.06) 0.19 (0.14) 65.07 (6.2) 9.67 (1.43) 55.39 (6.27)

Sarsa(\lambda) 101.17 (102.88) 44.36 (12.94) 0.21 (0.06) 0.24 (0.07) 75.53 (47.45) - -

Sarsa 411.68 (108.93) 157.42 (196.68) 0.05 (0.07) 0.21 (0.13) 36.25 (5.2) - -

SuperAgent-SubAgents 477.27 (28.72) 444.02 (144.16) 0.01 (0.02) 0.03 (0.09) 173 (15.86) - -

ToH-3x3 (1000 steps)

RRS-punish 250.87 (349.17) 34.02 (5.79) 0.22 (0.11) 0.31 (0.04) 53.73 (6.51) 21.54 (3.63) 32.19 (5.33)

Sarsa(\lambda) 59.66 (90.98) 41.42 (11.35) 0.24 (0.03) 0.26 (0.06) 43.09 (17.26) - -

Sarsa 241.44 (347.19) 32.94 (3.70) 0.22 (0.11) 0.30 (0.03) 21.48 (4.21) - -

SuperAgent-SubAgents 630.30 (190.09) 611.20 (459.50) 0.11 (0.06) 0.12 (0.15) 329.13 (31.39) - -

ToH-4x3 (5000 steps)

RRS-punish 3739.23 (1490.55) 684.54 (1338.11) 0.03 (0.04) 0.10 (0.06) 5412.95 (578.28) 4902.95 (543.74) 510.00 (93.81)

Sarsa(\lambda) 274.40 (707.27) 98.90 (23.24) 0.10 (0.02) 0.11 (0.02) 586.28 (201.10) - -

Sarsa 3723.07 (1432.67) 844.22 (1688.91) 0.03 (0.04) 0.11 (0.06) 356.00 (50.86) - -

SuperAgent-SubAgents 3604.95 (1501.06) 851.68 (1628.02) 0.03 (0.04) 0.11 (0.06) 1886.73 (194.79) - -

ToH-4x3 (7000 steps)

RRS-punish 3016.79 (2859.61) 72.30 (6.21) 0.07 (0.06) 0.14 (0.01) 23990.58 (3469.57) 23567.3 (3467.75) 423.28 (35.56)

Sarsa(\lambda) 192.04 (585.59) 102.50 (25.06) 0.10 (0.01) 0.10 (0.03) 271.67 (105.70) - -

Sarsa 3207.17 (2813.45) 78.70 (11.70) 0.06 (0.05) 0.13 (0.02) 304.26 (33.40) - -

SuperAgent-SubAgents 5413.58 (1574.61) 4921.50 (3173.43) 0.02 (0.03) 0.04 (0.06) 2831.06 (24.14) - -

75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

State Visitation Frequency

0

50

100

150

200

250

300

350

400

(a) After the exploration phase (training of subagents)

under 1000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

State Visitation Frequency

0

200

400

600

800

1000

1200

1400

(b) After the RRS-Agent’s learning phase under 1000

steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

State Visitation Frequency

0

50

100

150

200

250

300

350

(c) After the exploration phase (training of subagents)

under 5000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

State Visitation Frequency

0

200

400

600

800

1000

1200

1400

(d) After the RRS-Agent’s learning phase under 5000

steps limit.

Figure 4.23: State space coverage of the proposed method for Six-Rooms

GridWorld domain under 1000 and 5000 steps limit.

76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0
1
2
3
4
5
6
7
8
9

State Visitation Frequency

0 250 500 750 1000 1250 1500 1750

(a) After the exploration phase (training of subagents)

under 1000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0
1
2
3
4
5
6
7
8
9

State Visitation Frequency

0 2000 4000 6000 8000 10000

(b) After the RRS-Agent’s learning phase under 1000

steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0
1
2
3
4
5
6
7
8
9

State Visitation Frequency

0 200 400 600 800 1000 1200 1400

(c) After the exploration phase (training of subagents)

under 5000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0
1
2
3
4
5
6
7
8
9

State Visitation Frequency

0 500 1000 1500 2000

(d) After the RRS-Agent’s learning phase under 5000

steps limit.

Figure 4.24: State space coverage of the proposed method for Zigzag Four

Rooms GridWorld domain under 1000 and 5000 steps limit.

77

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

State Visitation Frequency

0

50

100

150

200

250

300

350

(a) After the exploration phase (training of subagents)

under 1000 steps limit.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

State Visitation Frequency

0

200

400

600

800

1000

1200

(b) After the RRS-Agent’s learning phase under 1000

steps limit.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

State Visitation Frequency

0

50

100

150

200

250

300

(c) After the exploration phase (training of subagents)

under 2000 steps limit.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

State Visitation Frequency

0

200

400

600

800

1000

1200

1400

(d) After the RRS-Agent’s learning phase under 2000

steps limit.

Figure 4.25: State space coverage of the proposed method for Six-Rooms

Scaled GridWorld domain under 1000 and 2000 steps limit.

78

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

State Visitation Frequency

0 250 500 750 1000 1250 1500 1750

(a) After the exploration phase (training of subagents)

under 1000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

State Visitation Frequency

0 500 1000 1500 2000

(b) After the RRS-Agent’s learning phase under 1000

steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

State Visitation Frequency

0 200 400 600 800 1000 1200

(c) After the exploration phase (training of subagents)

under 1000 steps limit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

State Visitation Frequency

0 500 1000 1500 2000

(d) After the RRS-Agent’s learning phase under 1000

steps limit.

Figure 4.26: State space coverage of the proposed method for Zigzag Four

Rooms Scaled GridWorld domain under 1000 and 2000 steps limit.

79

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps
S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

27
:L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

th
e

pr
op

os
ed

m
et

ho
d

an
d

be
nc

hm
ar

ks
fo

rS
i
x
-
R
o
o
m
s

do
m

ai
n

un
de

r1
00

0
an

d
50

00
st

ep
s

lim
it.

80

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

28
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pr

op
os

ed
m

et
ho

d
an

d
be

nc
hm

ar
ks

fo
r
S
i
x
-
R
o
o
m
s

S
c
a
l
e
d

do
m

ai
n

un
de

r
10

00
an

d
20

00

st
ep

s
lim

it.

81

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

29
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pr

op
os

ed
m

et
ho

d
an

d
be

nc
hm

ar
ks

fo
r
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

do
m

ai
n

un
de

r
10

00
an

d
50

00

st
ep

s
lim

it.

82

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

3

0
.0

2

0
.0

1

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

3

0
.0

2

0
.0

1

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
4.

30
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pr

op
os

ed
m

et
ho

d
an

d
be

nc
hm

ar
ks

fo
r
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

S
c
a
l
e
d

do
m

ai
n

un
de

r
10

00

an
d

20
00

st
ep

s
lim

it.

83

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r5
00

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

Average Reward

S
a
rs

a
La

m
b
d
a

S
a
rs

a
(L

a
m

b
d
a
)_

R
R

S
-1

_e
t_

p
u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r5

00
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r1

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

31
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pr

op
os

ed
m

et
ho

d
an

d
be

nc
hm

ar
ks

fo
r
T
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r
3

ro
ds

an
d

3
di

sk
s

ve
rs

io
n.

84

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
tS

u
b
A

g
e
n
ts

S
a
rs

a

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r5
00

0
st

ep
s

lim
it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
tS

u
b
A

g
e
n
ts

S
a
rs

a

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Steps

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
in

3
di

sk
s

ve
rs

io
n

un
de

r7
00

0
st

ep
s

lim
it.

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

S
a
rs

a
La

m
b
d
a

R
R

S
-p

u
n
is

h
S
u
p
e
rA

g
e
n
t-

S
u
b
A

g
e
n
ts

S
a
rs

a

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

in
3

di
sk

s
ve

rs
io

n
un

de
r7

00
0

st
ep

s
lim

it.

Fi
gu

re
4.

32
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
th

e
pr

op
os

ed
m

et
ho

d
an

d
be

nc
hm

ar
ks

fo
r
T
o
w
e
r

o
f

H
a
n
o
i

do
m

ai
n

un
de

r
3

ro
ds

an
d

4
di

sk
s

ve
rs

io
n.

85

86

CHAPTER 5

IMPROVING LEARNING EFFICIENCY BY POTENTIAL-BASED

REWARD SHAPING USING STATE-SPACE SEGMENTATION WITH THE

EXTENDED SEGMENTED Q-CUT ALGORITHM

This chapter explains the motivation for learning efficiency problem in RL literature

and presents the proposed method which aims to solve this problem. The Section

5.2 introduces our method called potential-based reward shaping using state-space

segmentation with Extended Segmented Q-Cut (ESegQ-Cut) algorithm and Section

5.2.1 elaborates the process of segmentation of the state-space whilst Section 5.2.2

explains the potential-based reward shaping with state-space segment information.

Finally, the computational study along with the results and discussions are presented

in the Section 5.3.

5.1 Problem Motivation

Sparse and/or delayed reward environments have been a major challenge for the RL

approaches. Although RL framework has gained recent success in such domains, it

still suffers from slow learning. Particularly, when it is applied in the real-world prob-

lems, the required time for learning is exacerbated due to large state & action spaces.

An effective direction to deal with this problem is to decompose the complex task

into sub-tasks so that each simpler sub-task can be learned in parallel to reduce the

learning time. Another direction is to utilize the domain knowledge extracted during

the agent-environment interaction into agent’s learning process. Reward shaping is

one of the ways that aims to use the extracted knowledge to improve the speed of

the learning process. Since reward signals are the essential part of the efficiency of

87

the RL approaches, we attack the slow learning problem in terms of rewards. To this

end, our proposed method introduces a potential-based reward shaping mechanism

that depends on the segmentation of the state-space computed with the ESegQ-Cut

algorithm.

5.2 Reward Shaping Based on State-Space Segmentation with the Extended

Segmented Q-Cut Algorithm

The proposed potential-based reward shaping method relies on the state-space seg-

mentation information extracted by the ESegQ-Cut algorithm. The aim of the method

is to use the shaped rewards in the learning process of the RL agent which are com-

puted using potential-based reward shaping function that depends on the segment

information of the states. The state-space segmentation is obtained via translating the

experiences of the agent in the environment into a transition graph and then applying

ESegQ-Cut algorithm. The method is modeled as a nested structure as shown in the

in the Figure 5.1.

Q-SEGMENTER AGENT

SEGMENTER

SUBGOAL IDENTIFIER

EnvironmentEnvironment

Action

State,
Reward

Action

State,
Reward

<s,a,s’>

segments

Transition
graph

Subgoals Segments
ESegQ-Cut

Shaped
rewards

QSEG(s,a) REWARD SHAPING MECHANISM
Segment values

REWARD SHAPING MECHANISM
Segment values

Shaped
rewards

QSEG(s,a) REWARD SHAPING MECHANISM
Segment values

Figure 5.1: The model of the proposed method.

In particular, the model consists of a Q-Segmenter agent designed with a nested struc-

ture. The Q-Segmenter agent behaves as the learning component in this model. It

interacts with the environment and approximates the state-action values with a Q-

table named as QSEG by applying Q-Learning algorithm. Q-Segmenter agent derives

the additional information on the environment through its Segmenter and Subgoal-

Identifier inner components. This additional information is utilized in the agent’s

88

learning process via reward shaping mechanism. After each transition, Q-Segmenter

agent uses shaped rewards when updating its state-action value estimates instead of

directly using extrinsic environmental reward signals. The agent computes the shaped

rewards using the information on the state-space segmentation.

Q-Segmenter agent has a Segmenter component whose main role is to compute the

state-space segments using the subgoals identified by its inner component called

Subgoal-Identifier and then conveying the extracted segments information to the Q-

Segmenter agent. Moreover, Segmenter behaves as a bridge between Q-Segmenter

agent and Subgoal-Identifier component by transferring the transition experience of

Q-Segmenter denoted as a tuple ⟨s, a, s′⟩ to Subgoal-Identifier component.

The innermost element of this model is Subgoal-Identifier whose main task is to first

translate the transition experiences of Q-Segmenter into a transition graph up to a

specific period and then, extract the subgoals by performing ESegQ-Cut algorithm on

the final transition graph. The tasks of this component also include transferring the

identified subgoals information to outer component Segmenter.

The pseudocode for the method is given in the Algorithm 11. The algorithm takes

the necessary inputs for applying the Q-Learning algorithm along with the inputs

related to extract state-space segments information such as number of episodes for

performing random walk and cut-quality threshold. The method starts with initializ-

ing Q-table QSEG for each state and action, required lists to hold segments and the

value of the segments information and then setting episode number to zero. At the

beginning of the initial episode, before learning of the Q-Segmenter agent starts, Q-

Segmenter completes a random walk phase in the environment via randomWalk()

method for the sake of identifying state-space segments. The agent obtains the state-

space segments after completing the random walk, and computes the values of the

segments via getSegmentValues() method if any segment is identified. With

the knowledge on segments and their values, Q-Segmenter agent starts the learning

phase by applying Q-Learning algorithm. Compared to the standard Q-Learning al-

gorithm given in Algorithm , Q-Segmenter agent shapes its environmental reward

signal r after taking action a in state s. The shaped reward signal is denoted by r̃

and computed with the method shapeReward(). Q-Segmenter then uses r̃ in the

89

update rule for its Q-table QSEG. Furthermore, the agent also updates the segment

values with updateSegmentValues() method after each episode.

The flowchart of the learning process with potential-based reward shaping using state-

space segmentation with ESegQ-Cut algorithm is presented in the Figure 5.2. As a

summary, the learning process starts with agent random walking in the environment

for a specific period and accumulating the transitions on a transition graph. After

random walk is completed, ESegQ-Cut algorithm is applied on the transition graph

and subgoal states are identified. Using the identified subgoals, state-space segments

are constructed. After random walk subprocedure is completed in the learning pro-

cess, training of Q-Segmenter agent starts. The agent interacts with the environment

shapes the environmental reward signal using the extracted knowledge on state-space

segments. It then updates its Q-value estimates with Q-Learning update rule. At

the end of each episode, the agent updates its knowledge on state-space segments

in terms of their value which will be utilized in the following episode. Training of

Q-Segmenter is completed after agent performs pre-determined number of episodes.

The details on the methods are given in the following sections.

5.2.1 State-Space Segmentation

5.2.1.1 Random Walk

In the initial episode of the learning, Q-Segmenter goes through random walk phase in

the environment to identify state-space segments. The general idea of this phase is il-

lustrated in the Figure 5.3. The phase starts with the interaction between Q-Segmenter

and the environment. Through random walk, the agent generates trajectories and col-

lected trajectories from all episodes of the random walk phase are transformed into a

transition graph. The transition graph is then given to Extended Segmented Q-Cut al-

gorithm. At this stage, first Segmented Q-Cut algorithm is applied and subgoal states

are determined in the graph, then using these subgoals, the segments of the state-

space are extracted. Random walk phase is finalized when the identified segments

information is returned to the learning phase.

The random walk explained in the Algorithm 12 continues for Mcut many episodes.

90

START

If initial
episode?

Perform random
walk in the

environment for
Mcut many
episodes

Apply ESegQ-Cut
algorithm

Transition graph

Yes

Find state-space
segments

Subgoals

Interact with the
environment

Shape
environmental
reward signal

Update Q-table
with shaped

reward

If reached to goal
state or steps limit?

Update segment
values

If completed the
last episode?END YesYes

Random Walk

No

Train Q-Segmenter Agent

Segments

State-Space
Segments

No

Increment episode
number by one

No

Figure 5.2: The flowchart of the learning process with the proposed method.

91

Algorithm 11: Learning with Potential-based Reward Shaping Using State-

Space Segmentation with the Extended Segmented Q-Cut Algorithm
Input : ⟨S,A, T ,R⟩

Learning rate α ∈ (0, 1]

Exploration rate ε ∈ (0, 1]

Discount factor γ ∈ (0, 1]

Step limit steps ≥ 1

Number of episodes M ≥ 1

Number of episodes for random walk Mcut ≥ 1

Cut quality threshold cq ≥ 1

Output: QSEG

1 Initialization:

QSEG(s, a) = 0, ∀s ∈ S, a ∈ A
segments← [], segments_values←[], episode = 0

2 for episode = 0 to M do

3 if episode = 0 then

4 segments← randomWalk(steps,Mcut, cq, segments)

5 if segments is not empty then

6 segments_values← getSegmentValues()

7 end if

8 end if

9 Initialize s ∈ S
10 while s is not terminal or steps is not reached do

11 Choose a← EPSILON-GREEDY(QSEG, ε)

12 Take action a, observe r, s′

13 r̃ ← shapeReward(r, segments, segments_values)

14 δ ← r̃ + γmaxa′ QSEG(s
′, a′)−QSEG(s, a)

15 Update QSEG(s, a)← QSEG(s, a) + αδ

16 s← s′

17 end while

18 Update segments_values← updateSegmentValues()

19 end for

20 return QSEG

92

GG

IN
PU

T:
St

at
e

tr
an

si
ti

o
ns

 in
 t

he

en
vi

ro
nm

en
t

A
ge

nt
-E

n
vi

ro
nm

en
t

In
te

ra
ct

io
n

GG

R
A

N
D

O
M

 W
A

LK
 P

H
A

SE

Ex
te

nd
ed

 S
eg

m
en

te
d

 Q
-C

u
t

Se
gm

en
ts

LE
A

R
N

IN
G

 P
H

A
SE

• • •

Se
gm

en
te

d
Q

-C
u

t

Su
b

go
al

s

Se
gm

en
te

d
Q

-C
u

t

Su
b

go
al

s

• • •

Se
gm

en
te

d
Q

-C
u

t

Su
b

go
al

s

Tr
an

si
ti

on
 G

ra
ph

Tr
an

si
ti

on
 G

ra
ph

Fi
gu

re
5.

3:
A

sc
he

m
at

ic
re

pr
es

en
ta

tio
n

fo
rr

an
do

m
w

al
k

ph
as

e.

93

Similar to Q-Learning algorithm, each episode of the random walk ends until the ter-

minal (goal) state is found or steps limit is reached. At each time step in an episode,

the agent chooses a random action a ∈ A at a state s and observes its consequences as

reward signal r and next state s′. The tuple ⟨s, a, s′⟩ experienced by the agent is added

to the transition graph G. As explained in the Section 2.7, graph G has nodes which

denote the states and arcs that indicate the transition between the states. At each time

the transition ⟨s, a, s′⟩ is added to the graph G, the frequency of observing transition

from s to s′ is incremented by one. Moreover, the frequency of visiting state s is also

incremented by one. Then, since the arc capacity is defined in terms of relative fre-

quency as defined in the Equation 2.26, the capacity of the arc (s, s′) that reflects the

transition s→ s′ is adjusted accordingly using these updated frequencies. After Mcut

episodes are completed in the random walk, the transition graph is accumulated with

the agent’s experiences. The graph is then given to the ESegQ-Cut() method as

an input that first computes the subgoals and then extracts the segments of the state-

space . Finally, the extracted state-space segmentation information is returned to the

Q-Segmenter agent for use in the learning process.

5.2.1.2 Extended Segmented Q-Cut

The main idea of ESegQ-Cut method is to identify the subgoals with Segmented Q-

Cut algorithm, and then extract the state-space segments using identified subgoals.

The procedure starts with appending all the nodes in transition graph G to segments

list and initializing the required lists to store subgoal related information. In addition,

source and sink nodes are also determined at this point. Since the agent may start

at a different state in each episode of the random walk, source node is selected as a

dummy node added to the graph. Similarly, each episode of the random walk may

terminate at the goal state or an arbitrary state depending on the steps limit. There-

fore, sink node is selected as the goal state if it exists in the graph G, otherwise a

dummy goal state is chosen.

The procedure continues with the application of the Segmented Q-Cut algorithm with

the Cut() method explained in Algorithm 14. While we can identify good-quality

cut point(s) on the graph which is denoted by the boolean variable can_divide, we

94

Algorithm 12: randomWalk
Input : ⟨S,A, T ,R⟩, steps, Mcut, cq, segments

Output: segments

1 Initialization: episode = 0

Graph G = ⟨N,A⟩, N = ∅, A = ∅
2 for episode = 0 to Mcut do

3 Initialize s ∈ S
4 while s is not terminal or steps is not reached do

5 Randomly choose an action a ∈ A
6 Take action a, observe r, s′

7 Add the transition ⟨s, a, s′⟩ to the graph G

Increment the frequency of observing transition s→ s′

Increment the frequency of visiting state s

Adjust the capacity of the arc (s, s′) with updated frequencies

8 s← s′

9 end while

10 end for

11 segments← ESegQ-Cut(G, cq, segments)

12 return segments

95

divide the graph into two segments and proceed with each created segment. Quality

of a cut is expressed as the ratio cut bi-partitioning metric as defined in the Equation

2.25. Since good quality cut should have a small number of arcs while separating sig-

nificant balanced areas, only the cuts having quality level greater than pre-determined

threshold cq are acceptable. Thus, Segmented Q-Cut method runs until no new cut

which satisfies the quality condition is identified. At the end of this method, subgoals

are detected as the cut points.

The extension of the Segmented Q-Cut method starts after obtaining the subgoals. To

extract the state-space segments, we first search for adjacent subgoals in the identified

subgoals list. We group the adjacent subgoals and then for each group, we choose

the subgoal having minimum degree and append it to the selected_subgoals list. The

reason why we choose the subgoal having minimum degree among the group is due to

the definition of a significant i.e good quality cut. As explained in [26], a significant

source-sink cut (s − t cut) is the cut with small number of arcs and the one creates

enough states both in source segment Ns and sink segment Nt. To this end, we aim

to obtain only significant subgoals with this extension.

To move from subgoals to state-space segments, nodes denoting the selected signif-

icant subgoals are removed from transition graph G. With Union Find algorithm,

weakly connected components of the resulting graph are detected. Each detected

weakly connected component is treated as a new segment and added to the segments

list. Finally, each identified subgoal in selected_subgoals is also added to the segments

list as a separate segment. The procedure terminates after extracted segments are re-

turned.

5.2.2 Reward Shaping Based on State-Space Segmentation

Within the completion of the random walk procedure, Q-Segmenter agent gains a

knowledge on the environment through state-space segments. The agent should then

benefit from this knowledge in the learning phase. However, the question is, how

should the agent utilize state-space segment information on its learning process to

speed up the learning? The proposed method suggests applying potential-based re-

ward shaping using the segment information in terms of values. The basic idea is

96

Algorithm 13: ESegQ-Cut
Input : Graph G = ⟨N,A⟩, cq, segments

Output: segments

1 Initialization:

segments← all nodes in the graph G

source← dummy node

sink ← node denoting the goal state if exists in G, otherwise dummy goal

subgoals←[], subgoal_groups←[], selected_subgoals←[], wcc← []

can_divide← True

2 while can_divide do

3 for each segment in the segments do

4 can_divide← can_divide and

Cut(G, cq, segments, source, sink, subgoals)

5 end for

6 end while

7 subgoals← getSubgoals() ; /* call Subgoal-Identifier’s

method */

8 subgoal_groups← Identify the adjacent subgoals in subgoals, if any

9 for each group in subgoal_groups do

10 Append subgoal having minimum degree in the group to

selected_subgoals
11 end for

12 for each node n in selected_subgoals do

13 A← A \ {(n, i)}, ∀i ∈ N

14 A← A \ {(i, n)}, ∀i ∈ N

15 N ← N \ {n}

16 end for

17 wcc← Union Find(G) ; /* weakly connected components of

resulting G */

18 segments← segments ∪ {component}, ∀component ∈ wcc

19 segments← segments ∪ {subgoal}, ∀subgoal ∈ selected_subgoals

20 return segments

97

Algorithm 14: Cut
Input : Graph G = ⟨N,A⟩, cq, segments, source, sink, subgoals

1 Initialization: Subgraph Gsub = ⟨Nsub, Asub⟩, Nsub = ∅, Asub = ∅
2 Gsub ← Induced subgraph of the graph G containing the nodes in segments

and the arcs between those nodes

3 min_cut_value, partitions← minimumCut(Gsub, source, sink)

4 Obtain the source segment list Ns and sink segment list Nt from partitions

5 ns ←| Ns | ; /* size of source segment */

6 nt ←| Nt | ; /* size of sink segment */

7 As,t ← number of nodes connecting Ns&Nt

8 quality ← ns·nt

As,t

9 if quality > cq then

10 Identify sources, sinks for Ns ; /* new source and new sink

for Ns */

11 Identify sourcet, sinkt for Nt ; /* new source and new sink

for Nt */

12 subgoals← subgoals ∪ {sinks}
13 subgoals← subgoals ∪ {sourcet}
14 segments← []

15 segments← segments ∪ {Ns, Nt}
16 return True

17 end if

18 return False

98

to compute the values of the segments and reflect the potential of the states in terms

of segment values. Depending on the potentials, environmental reward signals are

shaped and utilized in the Q-value estimations. The illustration that summarizes the

learning phase is given in the Figure 5.4. In the following sections, potential-based

reward shaping strategy depending on the value of segments is presented.

G

LEARNING PHASE

Action

State st

Reward rt

Agent-Environment Interaction

State

SegmentsSegments

Potential-based
reward shaping

Train
Q-table

st+1

rt+1

Figure 5.4: A schematic representation for the learning phase.

5.2.2.1 Value of the Segments

The value of a segment i denoted by vsegi , i ∈ segments, is defined as the expected

return starting from segment i and computed as the average Q-value of all possible

states in segment i for all possible actions with

vsegi =

∑
s∈i

∑
a∈A Q(s,a)

|A|

| i |
, (5.1)

where Q(s, a)
.
= E [Gt | st = s, at = a] shows the expected return starting from state

s and taking action a, | A | represents the size of the action-space and | i | denotes

the size of the segment i i.e. the number of states that belong to segment i.

99

Algorithm 15: getSegmentValues
Input : segments, segment_values,QSEG

Output: segment_values

1 for each segment i in segments do

2 sum = 0

3 for each state s in segments do

4 sum = sum+
∑

a∈A QSEG(s,a)

|A|

5 end for

6 segment_values[i] = sum
|segments[i]|

7 end for

8 return segment_values

If any segment is found by the completion of random walk procedure, the agent com-

putes the segment values with getSegmentValues procedure as given in the Al-

gorithm 16 using the rule (5.1). Since Q-values for each state-action pair are initial-

ized to zero at the beginning of the first episode, initially segment values also become

zero. However, as the Q-values are updated during the learning process, segment val-

ues should be changed accordingly. By doing this, the agent will be able to determine

which segment is good or bad. Therefore, Q-Segmenter updates the segment values

at the end of each episode by updateSegmentValues method. As explained in

more detail in the Algorithm 16, this method updates the segment values with the

update rule

vn+1
segi
← vnsegi + α(γvn+1

segi
− vnsegi), (5.2)

where α ∈ (0, 1] is the learning rate, γ ∈ (0, 1] is the discount factor and n ∈ [0,M]

denotes the episode number.

5.2.2.2 Potential-based Reward Shaping Using Values of the Segments

Following the computation of segment values, Q-Segmenter starts interacting with

the environment by applying Q-Learning algorithm. However, it shapes the reward

signals received from the environment with potential-based reward shaping based on

state-space segmentation and uses shaped rewards to update its Q-value estimates for

100

Algorithm 16: updateSegmentValues
Input : segments, segment_values, α, γ

Output: segment_values

1 new_segment_values← getSegmentValues()

2 for each segment i in segments do

3 q_seg_update = γ(new_segment_values[i])− segment_values[i]

4 segment_values[i] = segment_values[i] + α(q_seg_update)

5 end for

6 return segment_values

state-action pairs.

The potential of a state s denoted with the function Φ(s),Φ : S → R is defined by

Φ(s) =
∑

i∈segments

1s∈ivsegi , (5.3)

where 1s∈i is the indicator function that takes value of 1 if state s is in segment i, 0

otherwise and vsegi represents the value of the segment i. A state can be an element

of only one segment. From this, we can conclude that the potential of a state shows

the value of the segment to which the state belongs.

Let, we define the potential-based reward shaping function F, F : S × S → R in

terms of the difference of the potentials of states s and s′ for transition s→ s′ as

F (s, s′) = γΦ(s′)− Φ(s)

= γ
∑

i∈segments

1s′∈ivsegi −
∑

i∈segments

1s∈ivsegi

= γvsegk − vsegj ,

(5.4)

where s′ ∈ segment k, s ∈ segment j and k, j ∈ segments.

Theorem 2 Let MDP M = ⟨S,A, T ,R, γ⟩ and transformed MDP M ′ is defined as

M ′ = ⟨S,A, T ,R′, γ⟩ whereR′ = R+F and shaping reward function F : S×S →
R is defined as in (5.4). Potential-based reward shaping function F defined in (5.4)

101

preserves the policy invariance i.e. every optimal policy in M ′ is also an optimal

policy in M (and vice versa).

Proof. Optimal Q-function for the original MDP M denoted as Q∗
M satisfies the

Bellman optimality equation:

Q∗
M(s, a) = Es′

[
R (s, a) + γmax

a′∈A
Q∗

M (s′, a′)

]
. (5.5)

When we subtract Φ(s) from both sides

Q∗
M(s, a)− Φ(s) = Es′ [R (s, a) + γΦ (s′)− Φ(s)

+γmax
a′∈A

(Q∗
M (s′, a′)− Φ (s′))

]
.

(5.6)

Since Φ(s) =
∑

i∈segments 1s∈ivsegi , we get

Q∗
M(s, a)−

∑
i∈segments

1s∈ivsegi = Es′ [R (s, a)

+γ
∑

i∈segments

1s′∈ivsegi −
∑

i∈segments

1s∈ivsegi

+γmax
a′∈A

(
Q∗

M (s′, a′)−
∑

i∈segments

1s′∈ivsegi

)]
.

(5.7)

If we define QM ′(s, a) = Q∗
M(s, a)−

∑
i∈segments 1s∈ivsegi and substitute F (s, s′) =

γ
∑

i∈segments 1s′∈ivsegi −
∑

i∈segments 1s∈ivsegi back to (5.7), we obtain

QM ′(s, a) = Es′

[
R (s, a) + F (s, s′) + γmax

a′∈A
QM ′ (s′, a′)

]
= Es′

[
R′ (s, a) + γmax

a′∈A
QM ′ (s′, a′)

]
.

(5.8)

The equation obtained in (5.8) is the Bellman optimality equation applied for trans-

formed MDP M ′. Thus, QM ′ must be optimal state-action value function since it

satisfies the Bellman optimality equation. Therefore,

102

Q∗
M ′(s, a) = QM ′(s, a) = Q∗

M(s, a)−
∑

i∈segments

1s∈ivsegi . (5.9)

Following 5.9, the optimal policy for transformed MDP M ′ satisfies the following

π∗
M ′(s) ∈ argmax

a∈A
Q∗

M ′(s, a)

= argmax
a∈A

Q∗
M(s, a)−

∑
i∈segments

1s∈ivsegi

= argmax
a∈A

Q∗
M(s, a).

(5.10)

□

Since the effect of actions are eliminated in the segment values by averaging the Q-

values over all possible actions as shown in the Equation (5.1), the optimal policy for

M ′ is not affected by the additional −
∑

i∈segments 1s∈ivsegi term. Hence, the optimal

policy for M ′ becomes also optimal for M and policy invariance is preserved with

the policy-based reward shaping function F defined in the Equation (5.4). Similarly,

we can prove that the optimal policy for M will also be optimal in M ′ by considering

the reward shaping function −F .

The shaped reward signal for the transition of Q-Segmenter agent time step t becomes

r̃t = rt + F (st, st+1). (5.11)

Depending on the transition of the agent, the shaped reward can take positive or neg-

ative values. If the agent transitions to a state with greater segment value than the

current one, then F will behave as a bonus for the agent. On the other hand, the

agent will receive a punishment for visiting a state with a lower segment value. Even

though the agent traverses in the same segment, F will take negative value due to

the discount factor. This is especially helpful in sparse reward environments since

the agent receives frequent feedback while being in the same segment and it may

encourage agent to complete the task as fast as possible.

103

5.3 Computational Experiments

This section presents the results of computational experiments for the evaluation of

learning performance of the proposed method. In Section 5.3.1, problem domains

used in the experiments are explained. The parameter settings in the experiments

are provided in the Section 5.3.2. Finally, experiment results and evaluation of the

method is given in the 5.3.3.

5.3.1 Sample Problem Domains

For performance evaluation of the proposed method, we preferred to use sparse-

reward problem benchmarks as diagnostic tasks. Hence, two well-known versions of

GridWorld navigation domains which are Six-Rooms and Zigzag Four-Rooms

were suitable settings for the experiments. As introduced in the Section 4.4.1 of Chap-

ter 4, the RL agent needs to find the goal state labeled as G in an environment having

several rooms connected by hallways as sketched in the (a) and (c) of Figure 4.3. In

each episode of learning, the agent starts from an arbitrary state in the upper-left room

and by taking actions among action set north, south, east, and west, it observes the

consequences of its actions at the very end of the episode either by receiving +10

reward for reaching the goal state or 0 for all other cases.

Furthermore, we also experimented on a more complex version of Six-Rooms do-

main called Locked Shortcut Six-Rooms. In this problem, the south-west

door is locked until the state with the key visited ss illustrated in the Figure 5.5. The

state is defined as a tuple ⟨x, y, 0/1⟩ that shows the x & y-coordinates of the agent’s

location and whether agent has the key i.e. visited the state with key or not. Thus,

the size of the state-space is 32 × 21 × 2. Similar to the Six-Rooms, action space

consists of north, south, east, and west. In each episode of learning, the agent always

starts from the south-west corner of the grid and tries to reach the goal state denoted

with G. This is also a sparse reward environment as the agent receives a reward of

+10 for reaching the goal state or 0 for all other cases in an episode.

The delayed-feedback nature of these problem domains makes them highly suitable

for evaluation of our proposed method in terms of learning speed. We carried out the

104

experiments using the same sizes of state-space and action-space as provided in the

Table 4.1.

G

Figure 5.5: Locked Shortcut Six-Rooms domain.

5.3.2 Experiment Settings

The parameters are set as given in the Table 5.1 for the experimental study. We used

two different steps limit for an episode in the problem domains. We set the parameter

to 1000 and 2000 for Six-Rooms, 2000 and 5000 for Zigzag Four-Rooms, and

3000 and 5000 for Locked Shortcut Six-Rooms environments. By doing so,

we aim to observe the impact of having a limited amount of interaction time on the

agent’s learning and whether our proposed method speeds up learning in such a case

or not.

We performed the experiments using workstation having Intel® Core™ i7 3.10 GHz

processors and 16 GB RAM with 64-bit Microsoft Windows 10 operating system. We

replicate each experiment for 50 times and present the average learning performances

in the next section.

5.3.3 Experiment Results and Discussion

We determined Q-Learning algorithm as the benchmark since SegQ-Cut method is

originally introduced to accelerate Q-Learning algorithm [26]. Furthermore, we com-

105

Table 5.1: Parameter settings for the experiments.

Parameter Value

Learning rate α 0.3

Discount rate γ 0.9

Exploration probability ε linearly decaying from 0.1 to 0.05

Number of episodes M 1000

Steps limit steps domain-dependent

Number of episodes for random walk Mcut 25

Cut quality threshold cq 1000

pared the learning performances in terms of measures such as average number of steps

taken to reach the goal state, average reward per step, and average elapsed time re-

quired for learning. Average reward per step is computed by dividing total reward in

an episode by the episode length. As we run each experiment for 50 times, the aver-

age performance of all experiments are reported in the Table 5.2. In addition, since

convergence rate reflects the learning speed of the approaches in the RL literature, we

also displayed the average reward and average number of steps measures on figures

from 5.9 to 5.11. Each figure shows the average learning performance of 50 runs.

To illustrate the identified state space segments, we provide three examples that shows

segments and cut set on the transition graph after random walk phase for 25 episodes

is completed for each domain. As can be seen from Figures 5.6 to 5.8, Segmenter

component is able to identify each room as a separate segment. However, in some

cases, it aggregates several rooms and gather them in a single segment as depicted in

Figure 5.6. These are only the examples from single run, hence we observed other

combinations of segments (at least two segments) in the rest of the experiments. For

instance, it is observable from Figure 5.8 that Q-Segmenter could not identify the

each room as a separate segment.

As can be noted from Table 5.2, Q-Segmenter outperforms Q-Learning in all domains

regarding the number of steps to reach the goal state and average reward measures.

It also converges to better results in all domains. This indicates that although Q-

Segmenter is able to identify at least two segments in each domain, PBRS mecha-

nism contributes significantly to the improve agent’s learning. In terms of elapsed

time, there is no clear dominant method since in some domains Q-Segmenter beats

106

Q-Learning, and vice versa. However, when the time for learning phase is consid-

ered, we can conclude that there is no substantial difference between learning times.

Finally, when we compare the learning speeds from Figures 5.6 to 5.8, we notice

that the learning is much faster than Q-Learning. This shows us, Q-Segmenter learns

much earlier than 1000 episodes are completed. If we also account the observation

that Q-Segmenter is able to learn much faster than Q-Learning, then the training time

for Q-Segmenter is not need to be that longer. Thus, the actual elapsed time for learn-

ing will be smaller. As a result, our proposed method indeed accelerates the learning

in problem domains with sparse explicit reward structure.

Table 5.2: Overall performance comparison of the proposed method Q-Segmenter

with benchmarks.

Problem Method
Average Steps (stdev) Average Reward (stdev) Average

Elapsed Time

sec (stdev)

Average Elapsed Time (sec) for

over

all episodes

of the

last episode

over

all episodes

of the

last episode

Random Walk

Phase (stdev)

Learning

Phase (stdev)

Six-rooms

(1000 steps)

Q-Segmenter 696.33 (166.83) 444.04 (458.39) 0.06 (0.04) 0.13 (0.11) 121.26 (45.17) 20.58 (9.09) 100.67 (45.83)

Q-Learning 984.99 (17.94) 929.40 (228.14) 0.00 (0.00) 0.01 (0.05) 93.71 (7.15) - -

Six-rooms

(2000 steps)

Q-Segmenter 198.59 (391.22) 43.70 (5.19) 0.18 (0.08) 0.23 (0.03) 67.45 (6.70) 33.47 (1.95) 33.98 (6.09)

Q-Learning 741.70 (800.56) 46.94 (5.20) 0.13 (0.09) 0.22 (0.02) 70.48 (14.89) - -

Zigzag-four-rooms

(2000 steps)

Q-Segmenter 1808.44 (89.51) 1489.18 (806.83) 0.01 (0.00) 0.03 (0.05) 196.59 (42.78) 6.94 (3.96) 189.64 (46.54)

Q-Learning 1924.65 (104.13) 1562.38 (755.86) 0.00 (0.00) 0.02 (0.05) 186.77 (12.23) - -

Zigzag-four-rooms

(5000 steps)

Q-Segmenter 186.45 (473.57) 74.00 (6.39) 0.11 (0.03) 0.14 (0.01) 60.93 (4.44) 30.34 (0.84) 30.58 (4.57)

Q-Learning 1169.62 (1742.68) 75.74 (5.40) 0.09 (0.06) 0.13 (0.01) 116.71 (18.78) - -

Locked Shortcut Six-rooms

(3000 steps)

Q-Segmenter 384.69(669.94) 54.00(2.26) 0.14(0.06) 0.19(0.01) 130.08 (27.19) 53.66 (4.29) 76.42 (28.05)

Q-Learning 1257.07(1301.60) 56.00(3.55) 0.10(0.08) 0.18(0.01) 116.20 (19.80) - -

Locked Shortcut Six-rooms

(5000 steps)

Q-Segmenter 308.39(672.78) 56.30(3.27) 0.14(0.06) 0.18(0.01) 180.84 (15.43) 66.19 (2.38) 114.64 (15.04)

Q-Learning 840.56(1566.00) 56.70(4.30) 0.01(0.01) 0.02(0.00) 84.58 (12.40) - -

107

D
um

m
y

(6
, 5

)
(7

, 6
)

(7
, 7

)

(7
, 9

)

(6
, 4

)

(7
, 3

)

(4
, 5

)

(4
, 2

)

(1
, 0

)

(0
, 0

)

(1
, 1

)

(4
, 6

)

(3
, 5

)

(3
, 4

)

(8
, 5

)(9
, 3

)

(1
, 4

)

(3
, 7

)

(2
, 8

)

(3
, 9

)

(0
, 7

)

(5
, 9

)

(9
, 7

)

(0
, 4

)

(6
, 6

)

(7
, 5

)

(5
, 5

)

(6
, 7

)
(5

, 6
)

(7
, 4

)

(8
, 6

)

(7
, 8

)

(8
, 7

)

(6
, 8

)

(5
, 7

)

(6
, 9

)

(5
, 8

)

(4
, 7

)

(8
, 9

)

(8
, 8

)

(5
, 4

)

(6
, 3

)

(5
, 3

)

(4
, 4

)

(5
, 2

)

(4
, 3

)

(6
, 2

)

(8
, 3

)
(7

, 2
)

(8
, 2

)

(8
, 4

)

(8
, 1

)

(9
, 2

)

(7
, 1

)

(6
, 1

)

(5
, 1

)

(3
, 3

)

(4
, 1

)

(3
, 2

)

(4
, 0

)

(3
, 1

)

(5
, 0

)

(6
, 0

)

(7
, 0

)

(9
, 1

)

(8
, 0

)
(9

, 0
)

(3
, 0

)

(2
, 0

)

(2
, 1

)

(0
, 1

)

(1
, 2

)(2
, 2

)

(0
, 2

)

(2
, 3

)

(3
, 6

)
(2

, 5
)

(2
, 4

)

(9
, 4

)

(9
, 5

)

(1
0,

 4
)

(1
, 3

)

(9
, 6

)

(1
1,

 4
)

(1
0,

 4
)-

(4
, 9

)

(1
2,

 4
)

(1
1,

 5
)

(1
1,

 3
)

(1
2,

 5
)

(1
2,

 3
)

(1
3,

 4
)

(1
2,

 6
)

(1
3,

 5
)

(1
1,

 6
)

(1
1,

 2
)

(1
1,

 1
)

(1
2,

 2
)

(1
1,

 0
)

(1
2,

 1
)

(1
1,

 7
)

(1
1,

 8
)

(1
2,

 7
)

(1
2,

 8
)

(1
1,

 9
)

(1
2,

 9
)

(1
3,

 8
)

(1
3,

 7
)

(1
3,

 6
)

(1
3,

 9
)

(1
4,

 9
)

(1
4,

 7
)

(1
4,

 5
)

(1
4,

 4
)

(1
4,

 6
)

(1
5,

 5
)

(1
4,

 3
)

(1
5,

 4
)

(1
5,

 3
)

(1
3,

 3
)

(1
4,

 2
)

(1
5,

 6
)

(1
4,

 8
)

(1
5,

 8
)

(1
6,

 8
)

(1
5,

 9
)

(1
5,

 7
)

(1
6,

 9
)

(1
6,

 7
)

(1
7,

 8
)

(1
7,

 9
)

(1
6,

 6
)

(1
7,

 7
)

(1
6,

 5
)

(1
7,

 6
)

(1
6,

 4
)

(1
7,

 5
)

(1
6,

 3
)

(1
7,

 4
)

(1
5,

 2
)

(1
8,

 9
)

(1
9,

 9
)

(1
8,

 8
)

(2
0,

 9
)

(1
9,

 8
)

(2
0,

 8
)

(2
0,

 7
)

(2
0,

 6
)

(1
9,

 7
)

(1
9,

 6
)

(2
0,

 5
)

(1
8,

 6
)

(1
9,

 5
)

(1
8,

 5
)(1
8,

 7
)

(1
8,

 4
) (1

8,
 3

)
(1

9,
 4

)

(1
7,

 3
)

(1
9,

 3
)

(1
8,

 2
)

(1
7,

 2
)

(2
0,

 4
)

(2
0,

 3
)

(2
1,

 4
)

(1
6,

 2
)

(1
3,

 2
)

(1
3,

 1
)

(1
4,

 1
)

(1
2,

 0
)

(1
3,

 0
)

(1
4,

 0
)

(1
5,

 1
)

(1
5,

 0
)

(1
9,

 2
)

(1
9,

 1
)

(2
0,

 2
) (2
0,

 1
)

(1
9,

 0
)

(1
8,

 1
)

(2
0,

 0
)

(2
2,

 4
)

(1
0,

 1
5)

-(
21

, 4
)

(1
8,

 0
)

(1
7,

 0
)

(1
7,

 1
)

(1
6,

 0
)

(1
6,

 1
)

(1
, 5

)

(1
, 6

)(0
, 5

)
(2

, 6
)

(2
, 7

)

(4
, 8

)
(3

, 8
)

(2
, 9

)

(1
, 8

)

(4
, 9

)

(1
, 7

)
(0

, 6
)

(1
, 9

)

(0
, 9

)

(0
, 8

)

(4
, 1

0)

(0
, 3

)

(9
, 8

)

(9
, 9

)

(4
, 1

1)

(3
, 1

1)

(4
, 1

2)

(5
, 1

1)

(2
, 1

1)

(3
, 1

2)

(1
, 1

1)

(2
, 1

2)
(3

, 1
3)

(0
, 1

1)
(1

, 1
2)

(2
, 1

3)
(3

, 1
4)

(4
, 1

3)

(5
, 1

2)

(0
, 1

2)

(6
, 1

1)

(7
, 1

1)

(6
, 1

2)
(7

, 1
2)

(8
, 1

1) (6
, 1

3)

(8
, 1

2)

(7
, 1

3)

(8
, 1

3)

(9
, 1

2)

(8
, 1

4)

(9
, 1

3)

(7
, 1

4)

(9
, 1

4)

(8
, 1

5)

(9
, 1

5)

(9
, 1

6)

(1
0,

 1
5)

(8
, 1

6) (9
, 1

7)

(7
, 1

6)

(8
, 1

7)

(7
, 1

5)

(7
, 1

7)

(6
, 1

6)

(8
, 1

8)

(1
1,

 1
5)

(1
2,

 1
5)

(1
1,

 1
4)

(1
1,

 1
6)

(1
3,

 1
5)

(1
2,

 1
4)

(1
2,

 1
6)

(1
4,

 1
5)

(1
3,

 1
4)

(1
3,

 1
6)

(1
4,

 1
4)

(1
5,

 1
5)

(1
4,

 1
6)

(1
2,

 1
3)

(1
3,

 1
3)

(1
4,

 1
3)

(1
5,

 1
4)

(1
5,

 1
3)

(1
4,

 1
2)

(1
3,

 1
2)

(1
6,

 1
3)

(1
5,

 1
2)

(1
6,

 1
4)

(1
6,

 1
5)

(1
7,

 1
4)

(1
7,

 1
5)

(1
6,

 1
6)

(1
7,

 1
3)

(1
6,

 1
2)

(1
7,

 1
2)

(1
8,

 1
3)

(1
8,

 1
2)

(1
7,

 1
1)

(1
6,

 1
1)

(1
5,

 1
1)

(1
8,

 1
4)

(1
8,

 1
1)

(1
9,

 1
2)

(1
9,

 1
1)

(1
4,

 1
1)

(1
2,

 1
2)

(1
3,

 1
1)

(1
1,

 1
2)

(1
2,

 1
1)

(1
1,

 1
3)

(1
1,

 1
1)

(1
5,

 1
6)

(1
5,

 1
7)

(1
5,

 1
8)

(1
6,

 1
7)

(1
4,

 1
7)

(1
4,

 1
8)

(1
6,

 1
8)

(1
5,

 1
9)

(1
4,

 1
9)

(1
3,

 1
8)

(1
4,

 2
0)

(1
3,

 1
9)

(1
3,

 2
0)

(1
5,

 2
0)

(1
2,

 2
0)

(1
2,

 1
9)(1
2,

 1
8)

(1
1,

 1
9)

(1
1,

 1
8)

(1
2,

 1
7)(1

1,
 1

7)

(1
3,

 1
7)

(6
, 1

5)

(6
, 1

4)
(5

, 1
3)

(5
, 1

4)

(5
, 1

5)

(5
, 1

6)

(4
, 1

5)

(5
, 1

7)

(4
, 1

6)

(5
, 1

8)

(6
, 1

7)

(4
, 1

7)

(5
, 1

9)(6
, 1

8)

(4
, 1

8)
(6

, 1
9)

(4
, 1

9)

(5
, 2

0)

(7
, 1

9)

(6
, 2

0)

(7
, 1

8)

(8
, 1

9)

(7
, 2

0)
(3

, 1
8)

(2
, 1

8)

(3
, 1

9)

(3
, 1

7)

(1
, 1

8)

(2
, 1

7)

(2
, 1

9)

(1
, 1

9)

(0
, 1

8)

(1
, 1

7)

(1
, 2

0)

(0
, 1

9)

(0
, 2

0)
(2

, 2
0)

(0
, 1

7)(0
, 1

6)

(1
, 1

6)

(2
, 1

6)
(1

, 1
5)

(0
, 1

5)

(1
, 1

4)

(2
, 1

5)

(0
, 1

4)

(0
, 1

3)

(1
, 1

3)

(2
, 1

4)
(3

, 1
5)

(3
, 1

6)

(4
, 1

4)

(9
, 1

8)

(9
, 1

9)

(9
, 2

0)

(8
, 2

0)

(3
, 2

0)

(1
9,

 1
3)

(1
8,

 1
5)

(1
9,

 1
4)

(1
8,

 1
6)

(1
9,

 1
5)

(1
7,

 1
6)

(1
7,

 1
7)

(1
9,

 1
6)

(1
8,

 1
7)

(2
0,

 1
5)

(1
9,

 1
7)

(2
0,

 1
6)

(2
0,

 1
4)

(1
8,

 1
8)

(1
9,

 1
8)

(1
7,

 1
8)

(1
8,

 1
9)

(1
9,

 1
9)

(2
0,

 1
8)

(2
0,

 1
7)

(2
0,

 1
3)

(2
1,

 1
5)

(1
6,

 1
9)

(1
6,

 2
0)

(1
7,

 1
9)

(1
7,

 2
0)

(1
8,

 2
0)

(1
1,

 2
0)

(1
9,

 2
0)

(2
0,

 2
0)

(2
0,

 1
9)

(2
2,

 1
5)

(2
1,

 1
5)

-(
26

, 1
0)

(2
0,

 1
1)

(2
0,

 1
2)

(2
3,

 1
5)

(2
2,

 1
6)

(2
2,

 1
4)

(2
3,

 1
6)

(2
3,

 1
4)

(2
4,

 1
5)

(2
3,

 1
7)

(2
4,

 1
6)

(2
2,

 1
7)

(2
2,

 1
3)

(2
3,

 1
3)

(2
4,

 1
4)

(2
2,

 1
8)

(2
3,

 1
8)

(2
2,

 1
9)

(2
4,

 1
7)

(2
4,

 1
8)

(2
3,

 1
9)

(2
4,

 1
9)(2

3,
 2

0)

(2
5,

 1
9)(2

4,
 2

0)

(2
5,

 1
8)

(2
6,

 1
8)

(2
5,

 1
7)

(2
5,

 2
0)

(2
6,

 1
9)

(2
2,

 2
0)

(2
6,

 2
0)

(2
7,

 2
0) (2

7,
 1

9)
(2

8,
 2

0)

(2
8,

 1
9)

(2
8,

 1
8)

(2
9,

 2
0)

(3
0,

 2
0)

(2
9,

 1
9)

(3
1,

 2
0)

(3
0,

 1
9)

(2
9,

 1
8)

(4
, 2

0)

(9
, 1

1)

(2
2,

 5
)

(2
3,

 4
)

(2
2,

 3
)

(2
3,

 5
)

(2
2,

 6
)

(2
4,

 4
)

(2
3,

 3
)

(2
4,

 5
)

(2
3,

 6
)

(2
5,

 4
)

(2
4,

 3
)

(2
5,

 3
)

(2
6,

 4
)

(2
5,

 5
)

(2
6,

 3
)

(2
5,

 2
)

(2
7,

 3
)

(2
6,

 2
)

(2
8,

 3
)

(2
7,

 2
)

(2
7,

 4
)

(2
8,

 4
)

(2
8,

 2
)

(2
9,

 3
)

(2
9,

 4
)

(2
8,

 5
)

(2
8,

 1
)

(2
9,

 2
)

(2
7,

 1
)

(2
6,

 1
)

(2
7,

 0
)

(2
5,

 1
)

(2
6,

 0
)

(2
4,

 2
)

(2
4,

 1
)

(2
5,

 0
)

(2
4,

 0
)

(2
3,

 1
)

(2
3,

 0
)

(2
2,

 1
)

(2
3,

 2
)

(2
2,

 0
)

(2
2,

 2
)

(2
8,

 0
)

(2
9,

 1
)(2
9,

 0
)

(3
0,

 1
)

(3
0,

 2
)

(3
1,

 1
)

(3
0,

 0
)

(3
1,

 2
)

(3
0,

 3
)

(3
1,

 0
)

(3
1,

 3
)

(3
0,

 4
)

(3
1,

 4
)

(3
0,

 5
)

(2
9,

 5
)

(2
9,

 6
)

(2
7,

 5
)

(2
8,

 6
)

(3
0,

 6
)

(2
9,

 7
)

(2
7,

 6
)

(2
6,

 5
)

(2
8,

 7
)

(2
6,

 6
)

(2
7,

 7
)

(2
6,

 7
)

(2
5,

 6
)

(2
6,

 8
)

(2
5,

 7
)

(2
7,

 8
)

(2
5,

 8
)

(2
6,

 9
)

(2
7,

 9
)

(2
8,

 8
)

(2
8,

 9
)(2

9,
 9

)

(2
9,

 8
)

(2
4,

 7
)

(2
4,

 6
)

(2
3,

 7
)

(2
3,

 8
)

(2
2,

 7
)

(2
2,

 8
)

(2
4,

 8
)

(2
3,

 9
)

(2
2,

 9
)

(2
4,

 9
)

(2
5,

 9
)

(2
6,

 1
0)

(2
6,

 1
1)

(2
5,

 1
1)

(2
6,

 1
2)

(2
7,

 1
1)

(2
4,

 1
1)

(2
5,

 1
2)

(2
4,

 1
2)

(2
3,

 1
1)

(2
3,

 1
2)

(2
4,

 1
3)

(2
5,

 1
3)

(2
2,

 1
2)

(2
2,

 1
1)

(2
5,

 1
4)

(2
5,

 1
5)

(2
5,

 1
6)

(2
6,

 1
6)

(2
6,

 1
5)

(2
6,

 1
4)

(2
7,

 1
4)

(2
6,

 1
3)

(2
7,

 1
3)

(2
7,

 1
5)

(2
8,

 1
4)

(2
7,

 1
2)

(2
8,

 1
3)

(2
8,

 1
2)

(2
8,

 1
1)

(2
9,

 1
3)

(2
9,

 1
2)

(3
0,

 1
2)

(2
9,

 1
1)

(3
0,

 1
3)

(2
9,

 1
4)

(3
1,

 1
3)

(3
0,

 1
4)

(3
0,

 1
1)

(3
1,

 1
2)

(3
1,

 1
1)

(3
1,

 1
4)

(3
1,

 1
5)

(3
1,

 1
6)

(3
0,

 1
5)

(3
1,

 1
7)

(3
0,

 1
6)

(3
0,

 1
7)

(3
1,

 1
8)

(2
9,

 1
6)

(2
9,

 1
5)

(2
9,

 1
7)

(2
8,

 1
6)

(3
0,

 1
8)

(3
1,

 1
9)

(2
7,

 1
6)

(2
8,

 1
5)

(2
8,

 1
7)

(2
6,

 1
7)

(2
7,

 1
7)

(3
1,

 5
)

(3
1,

 6
)

(3
0,

 7
)

(3
0,

 8
)

(3
1,

 7
)

(3
1,

 8
)

(3
0,

 9
)

(3
1,

 9
)

(1
1,

 1
5)

-(
22

, 4
)

(1
1,

 4
)-

(4
, 1

0)

(2
2,

 1
5)

-(
26

, 1
1)

Fi
gu

re
5.

6:
Se

gm
en

ts
an

d
cu

ts
on

th
e

gr
ap

h
af

te
rr

an
do

m
w

al
k

ph
as

e
fo

r2
5

ep
is

od
es

is
co

m
pl

et
ed

in
S
i
x
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n.

108

Du
m

m
y

(0
, 0

)

(3
, 6

)

(1
, 9

)

(7
, 7

)

(7
, 8

)

(1
, 4

)

(4
, 9

)
(3

, 9
)

(0
, 1

)

(3
, 0

)

(1
, 1

)

(3
, 7

)

(3
, 1

)

(6
, 7

)

(4
, 8

)

(2
, 0

)

(4
, 7

)

(8
, 8

)

(5
, 8

)

(5
, 7

)

(4
, 2

)

(8
, 9

)
(5

, 9
)

(3
, 4

)

(5
, 2

)

(6
, 2

)

(9
, 8

)

(0
, 3

)

(2
, 5

)

(7
, 2

)

(9
, 9

)

(1
, 8

)

(3
, 3

)

(4
, 5

)

(2
, 8

)
(3

, 8
)

(5
, 5

)

(2
, 6

)

(7
, 5

)
(7

, 6
)

(0
, 2

)

(6
, 6

)

(5
, 6

)

(6
, 1

)

(7
, 1

)

(8
, 1

)

(9
, 2

)

(4
, 4

)

(8
, 7

)

(8
, 6

)

(8
, 0

)
(9

, 0
)

(5
, 4

)

(1
, 6

)

(0
, 7

)

(8
, 3

)

(8
, 4

)

(9
, 3

)

(1
, 7

)

(9
, 5

)

(7
, 4

)

(6
, 4

)

(9
, 6

)

(5
, 3

)

(6
, 0

)

(1
, 0

)

(3
, 5

)

(4
, 6

)(2
, 9

)

(0
, 9

)

(5
, 0

)

(4
, 0

)

(5
, 1

)

(4
, 1

)

(6
, 8

)

(7
, 9

)

(0
, 4

)

(0
, 5

)

(1
, 3

)

(1
, 5

)

(2
, 4

)

(1
, 2

)

(2
, 2

)

(2
, 1

)
(2

, 3
)

(3
, 2

)

(2
, 7

)

(0
, 6

)

(0
, 8

)

(4
, 3

)

(6
, 9

)

(6
, 3

)

(9
, 7

)

(8
, 2

)

(7
, 3

)

(6
, 5

)

(8
, 5

)

(7
, 0

)(9
, 1

)

(1
0,

0)

(1
1,

0)

(9
, 4

)

(1
2,

0)

(1
1,

1)

(1
3,

0)

(1
2,

1)(1
4,

0)

(1
3,

1)

(1
5,

0)

(1
4,

1)

(1
5,

1)

(1
6,

0)

(1
5,

2)

(1
6,

1)

(1
4,

2)

(1
3,

2)

(1
4,

3)

(1
2,

2)
(1

3,
3)

(1
2,

3)
(1

1,
2)

(1
2,

4)
(1

1,
3)

(1
1,

4)

(1
3,

4)

(1
2,

5)

(1
1,

5)

(1
1,

6)(1
4,

4)

(1
3,

5)

(1
4,

5)

(1
5,

4)

(1
5,

3)

(1
6,

3)

(1
3,

6)

(1
3,

7)
(1

2,
6)

(1
4,

6)

(1
1,

7)

(1
2,

7) (1
1,

8)

(1
2,

8)

(1
4,

7)

(1
3,

8)(1
5,

7)

(1
4,

8)

(1
6,

7)

(1
5,

6)

(1
5,

8)

(1
4,

9)

(1
5,

9)

(1
3,

9)

(1
7,

0)

(1
6,

9)

(1
8,

0)

(1
7,

1)

(1
6,

8)

(1
7,

9)

(1
7,

8)
(1

6,
6)

(1
7,

7)

(1
7,

6)

(1
6,

5)

(1
5,

5)

(1
6,

4)

(1
8,

6)

(1
7,

5)(1
7,

4)

(1
7,

3)

(1
8,

4)

(1
8,

3)

(1
7,

2)

(1
8,

2)
(1

9,
3)

(1
8,

5)

(1
9,

4)

(1
6,

2)

(1
8,

1)
(1

9,
2)

(1
9,

1)

(1
9,

5)

(2
0,

5) (1
9,

6)(2
0,

4)

(1
8,

7)

(1
9,

7)

(1
8,

8)

(2
0,

3)

(2
0,

2)

(1
1,

9)

(2
0,

1)

(1
2,

9)

(1
9,

0)

(2
0,

0)

(2
0,

6)

(2
0,

7)

(2
0,

8)

(1
9,

8)

(1
9,

9) (1
8,

9)

(2
0,

9)

(2
1,

9)

(2
2,

9)

(2
3,

9)

(2
2,

8)

(2
3,

8) (2
4,

9)

(2
4,

8)(2
3,

7)

(2
4,

7)

(2
5,

8)

(2
5,

9)

(2
5,

7)(2
4,

6)

(2
6,

7)

(2
5,

6)

(2
6,

8)

(2
7,

8)

(2
6,

9)
(2

7,
7)

(2
7,

9)
(2

8,
8)

(2
6,

6)(2
5,

5)

(2
7,

6)

(2
6,

5)

(2
7,

5)

(2
8,

6)

(2
8,

5)

(2
7,

4)

(2
9,

5)

(2
8,

4)

(2
8,

7)

(2
6,

4)

(2
9,

6)

(2
7,

3)

(2
6,

3)

(2
8,

3)

(2
7,

2)

(2
5,

3)
(2

6,
2)

(2
5,

4)

(2
4,

4)

(2
5,

2)
(2

4,
3)

(2
5,

1)
(2

4,
2)

(2
3,

3) (2
3,

4)

(2
4,

5)

(2
3,

5)

(2
2,

4)

(2
3,

2)
(2

2,
3)

(2
3,

1)
(2

2,
2)

(2
4,

1)

(2
3,

0)
(2

2,
1)

(2
4,

0)

(2
5,

0)

(2
2,

0)

(2
6,

1)

(2
6,

0)

(2
7,

0)

(2
2,

5)

(2
3,

6)

(2
2,

6)

(2
2,

7)

(2
8,

9)

(3
0,

6)
(2

9,
7)

(3
0,

5)

(2
9,

4)

(3
0,

4)

(3
1,

5)

(3
1,

4)(3
0,

3)

(3
1,

3)

(3
1,

6) (3
1,

7)

(3
0,

7)

(3
1,

8)

(3
0,

8)

(3
1,

2)

(3
1,

1)
(3

0,
2)

(3
0,

1)

(3
1,

0)(3
0,

0)

(2
9,

1)

(2
9,

0)

(2
9,

2)

(2
8,

2)

(2
9,

3)

(2
8,

1)

(2
8,

0)

(2
9,

8)

(2
9,

9)

(2
7,

1)

(3
2,

0)

(3
3,

0)

(3
0,

9)

(3
1,

9)

(3
3,

1)

(3
4,

0)

(3
4,

1)

(3
3,

2)

(3
5,

1)

(3
4,

2)

(3
5,

0)

(3
6,

1)

(3
5,

2)

(3
6,

0)

(3
7,

0)

(3
7,

1)

(3
6,

2)(3
7,

2)

(3
8,

1)

(3
8,

0)

(3
7,

3)

(3
8,

2)

(3
4,

3)

(3
4,

4)

(3
3,

3)

(3
5,

3)

(3
3,

4)

(3
4,

5)

(3
5,

4)(3
6,

3)

(3
3,

5)

(3
6,

4)

(3
8,

3)

(3
7,

4)

(3
9,

2)

(3
9,

1)

(3
9,

3)

(4
0,

2)

(3
9,

0)

(4
0,

0)

(4
0,

1)

(4
1,

0)

(4
1,

1)

(4
1,

2)(4
2,

1)

(4
2,

0)

(3
8,

4)

(4
0,

3)

(3
9,

4)

(4
0,

4)

(4
1,

3)

(4
0,

5)

(4
1,

4) (3
9,

5)

(3
9,

6)

(3
8,

5)

(4
0,

6)

(4
1,

5)

(4
1,

6)

(4
0,

7)

(4
2,

5)

(4
2,

4)

(4
2,

3)

(4
2,

2)

(4
2,

6)

(4
1,

7) (3
9,

7)

(3
8,

6)
(3

9,
8)

(3
8,

7)

(3
8,

8)

(3
9,

9)

(4
0,

8)

(3
7,

8)

(3
8,

9)

(4
0,

9)

(4
1,

9)

(4
1,

8)
(4

2,
9)

(4
2,

8)

(4
2,

7)

(3
5,

5) (3
4,

6)

(3
5,

6)

(3
6,

5)

(3
3,

6)

(3
3,

7)

(3
4,

7)

(3
3,

8)

(3
5,

7)

(3
4,

8)

(3
5,

8)

(3
6,

7)

(3
6,

6)

(3
7,

6)

(3
4,

9)

(3
3,

9)

(3
5,

9)

(3
6,

8)

(3
6,

9)

(3
7,

9)

(3
7,

7)

(3
7,

5)

Fi
gu

re
5.

7:
Se

gm
en

ts
an

d
cu

ts
on

th
e

gr
ap

h
af

te
rr

an
do

m
w

al
k

ph
as

e
fo

r2
5

ep
is

od
es

is
co

m
pl

et
ed

in
Z
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n.

109

D
u
m

m
y (0

,
2
0
,

0
)

(0
,

1
9
,

0
)

(1
,

2
0
,

0
)

(1
,

1
9
,

0
)

(0
,

1
8
,

0
)

(2
,

2
0
,

0
)(2

,
1
9
,

0
)

(3
,

2
0
,

0
)

(2
,

1
8
,

0
)

(3
,

1
9
,

0
)

(1
,

1
8
,

0
)

(1
,

1
7
,

0
)

(2
,

1
7
,

0
)

(1
,

1
6
,

0
)

(0
,

1
7
,

0
)

(3
,

1
7
,

0
)

(2
,

1
6
,

0
)

(3
,

1
8
,

0
)

(4
,

1
7
,

0
)

(3
,

1
6
,

0
)

(4
,

1
8
,

0
)

(5
,

1
7
,

0
)

(4
,

1
6
,

0
)

(5
,

1
8
,

0
)

(4
,

1
9
,

0
)

(5
,

1
9
,

0
)

(6
,

1
8
,

0
)

(5
,

2
0
,

0
)

(6
,

1
9
,

0
)

(6
,

2
0
,

0
)

(4
,

2
0
,

0
)

(5
,

1
6
,

0
)

(6
,

1
7
,

0
)

(6
,

1
6
,

0
)

(5
,

1
5
,

0
)

(7
,

1
6
,

0
)

(6
,

1
5
,

0
)

(7
,

1
7
,

0
)

(7
,

1
8
,

0
)

(7
,

1
9
,

0
)

(7
,

2
0
,

0
)

(4
,

1
5
,

0
)

(5
,

1
4
,

0
)

(6
,

1
4
,

0
)

(5
,

1
3
,

0
)

(4
,

1
4
,

0
)

(6
,

1
3
,

0
)

(7
,

1
4
,

0
)

(7
,

1
3
,

0
)

(6
,

1
2
,

0
)

(8
,

1
4
,

0
)

(7
,

1
5
,

0
)

(8
,

1
5
,

0
)

(9
,

1
4
,

0
)

(8
,

1
3
,

0
)

(9
,

1
5
,

0
)

(8
,

1
6
,

0
)

(9
,

1
6
,

0
)

(9
,

1
7
,

0
)

(8
,

1
7
,

0
)

(8
,

1
8
,

0
) (9
,

1
8
,

0
)

(7
,

1
2
,

0
)

(5
,

1
2
,

0
)

(4
,

1
3
,

0
)

(6
,

1
1
,

0
)

(3
,

1
4
,

0
)

(3
,

1
5
,

0
)

(2
,

1
4
,

0
)

(3
,

1
3
,

0
)

(2
,

1
5
,

0
)

(1
,

1
5
,

0
)

(0
,

1
5
,

0
)

(1
,

1
4
,

0
)

(0
,

1
4
,

0
)

(0
,

1
6
,

0
)

(0
,

1
3
,

0
)

(1
,

1
3
,

0
)

(0
,

1
2
,

0
)

(8
,

1
9
,

0
)

(8
,

2
0
,

0
)

(9
,

1
9
,

0
)

(9
,

2
0
,

0
)

(9
,

1
3
,

0
)

(9
,

1
2
,

0
)

(9
,

1
1
,

0
)

(8
,

1
2
,

0
)

(8
,

1
1
,

0
)

(7
,

1
1
,

0
)

(5
,

1
1
,

0
)

(4
,

1
2
,

0
)

(4
,

1
1
,

0
)

(2
,

1
3
,

0
)

(1
,

1
2
,

0
)

(2
,

1
2
,

0
)

(3
,

1
2
,

0
)

(2
,

1
1
,

0
)

(3
,

1
1
,

0
)

(1
,

1
1
,

0
)

(0
,

1
1
,

0
)

(4
,

1
0
,

0
)

(4
,

9
,

0
)

(3
,

9
,

0
)

(4
,

8
,

0
)

(5
,

9
,

0
)

(3
,

8
,

0
)

(2
,

9
,

0
)

(2
,

8
,

0
)(3
,

7
,

0
)

(5
,

8
,

0
)

(4
,

7
,

0
)

(6
,

9
,

0
)

(6
,

8
,

0
)

(5
,

7
,

0
)

(7
,

8
,

0
)

(6
,

7
,

0
)

(7
,

9
,

0
)

(7
,

7
,

0
)

(8
,

8
,

0
)

(8
,

9
,

0
)

(6
,

6
,

0
)

(7
,

6
,

0
)

(5
,

6
,

0
)

(6
,

5
,

0
)

(8
,

7
,

0
)

(2
,

7
,

0
)

(1
,

8
,

0
)

(1
,

7
,

0
)

(2
,

6
,

0
)

(1
,

6
,

0
)

(0
,

7
,

0
)

(1
,

9
,

0
)

(0
,

8
,

0
)

(0
,

9
,

0
)

(9
,

9
,

1
)

(8
,

9
,

1
)

(9
,

8
,

1
)

(8
,

8
,

1
)

(7
,

9
,

1
)

(7
,

8
,

1
)

(8
,

7
,

1
)

(9
,

7
,

1
)

(7
,

7
,

1
)

(6
,

8
,

1
)

(7
,

6
,

1
)

(6
,

7
,

1
)

(8
,

6
,

1
)

(7
,

5
,

1
)

(6
,

6
,

1
)

(7
,

4
,

1
)

(8
,

5
,

1
)

(6
,

5
,

1
)

(8
,

4
,

1
)

(7
,

3
,

1
)(6

,
4
,

1
)

(8
,

3
,

1
)

(9
,

4
,

1
)

(9
,

5
,

1
)(9

,
6
,

1
)

(5
,

6
,

1
)

(5
,

7
,

1
)

(5
,

5
,

1
)

(4
,

6
,

1
)

(4
,

7
,

1
)

(5
,

8
,

1
)(4

,
8
,

1
)

(3
,

7
,

1
)

(3
,

8
,

1
)

(4
,

9
,

1
) (3

,
6
,

1
)

(2
,

7
,

1
)

(3
,

9
,

1
)

(2
,

8
,

1
)

(5
,

9
,

1
)

(6
,

9
,

1
)

(4
,

1
0
,

1
)

(4
,

1
1
,

1
) (3

,
5
,

1
)

(2
,

6
,

1
)

(3
,

4
,

1
)

(4
,

5
,

1
)

(2
,

5
,

1
)

(3
,

3
,

1
)

(4
,

4
,

1
)

(2
,

4
,

1
)

(3
,

2
,

1
)

(2
,

3
,

1
)

(4
,

3
,

1
)

(3
,

1
,

1
)

(2
,

2
,

1
)

(4
,

2
,

1
)

(3
,

0
,

1
)

(4
,

1
,

1
)

(2
,

1
,

1
)

(2
,

0
,

1
)

(4
,

0
,

1
)

(1
,

0
,

1
)

(5
,

0
,

1
)

(6
,

0
,

1
)

(5
,

1
,

1
)

(7
,

0
,

1
)

(6
,

1
,

1
)

(8
,

0
,

1
)

(7
,

1
,

1
)

(8
,

1
,

1
)

(9
,

0
,

1
)

(8
,

2
,

1
)

(9
,

1
,

1
)

(7
,

2
,

1
)

(9
,

2
,

1
)

(9
,

3
,

1
)

(5
,

4
,

1
)

(2
,

9
,

1
)

(1
,

9
,

1
)

(0
,

9
,

1
)

(1
,

8
,

1
)

(0
,

8
,

1
)

(1
,

7
,

1
)

(1
,

6
,

1
)

(1
,

5
,

1
)

(0
,

6
,

1
)

(0
,

7
,

1
)

(1
,

3
,

1
)

(1
,

4
,

1
)

(0
,

5
,

1
)

(0
,

4
,

1
)

(0
,

3
,

1
)

(0
,

2
,

1
)

(0
,

1
,

1
)

(1
,

2
,

1
)

(1
,

1
,

1
)

(0
,

0
,

1
)

(5
,

2
,

1
)

(6
,

2
,

1
)

(6
,

3
,

1
)

(5
,

3
,

1
)

(1
0
,

4
,

1
)

(4
,

1
2
,

1
)

(3
,

1
1
,

1
)

(5
,

1
1
,

1
)

(5
,

1
2
,

1
)

(3
,

1
2
,

1
)

(4
,

1
3
,

1
)

(6
,

1
2
,

1
)

(5
,

1
3
,

1
)

(3
,

1
3
,

1
)

(2
,

1
2
,

1
)

(2
,

1
3
,

1
)

(3
,

1
4
,

1
)

(4
,

1
4
,

1
)

(2
,

1
1
,

1
)

(1
,

1
2
,

1
)

(1
,

1
1
,

1
)

(0
,

1
1
,

1
)

(0
,

1
2
,

1
)

(1
,

1
3
,

1
)

(1
,

1
4
,

1
)

(0
,

1
3
,

1
)

(2
,

1
4
,

1
)

(0
,

1
4
,

1
)

(1
,

1
5
,

1
)

(2
,

1
5
,

1
)

(3
,

1
5
,

1
)

(2
,

1
6
,

1
)

(3
,

1
6
,

1
)

(4
,

1
5
,

1
)

(4
,

1
6
,

1
)

(3
,

1
7
,

1
)

(5
,

1
6
,

1
)

(4
,

1
7
,

1
)

(5
,

1
5
,

1
)

(5
,

1
7
,

1
)

(6
,

1
6
,

1
)

(6
,

1
5
,

1
)

(5
,

1
4
,

1
)

(4
,

1
8
,

1
)

(4
,

1
9
,

1
)

(3
,

1
8
,

1
)

(5
,

1
8
,

1
)

(6
,

1
7
,

1
)

(7
,

1
7
,

1
)

(6
,

1
8
,

1
)

(8
,

1
7
,

1
)

(7
,

1
6
,

1
)

(7
,

1
8
,

1
)

(9
,

1
7
,

1
)

(8
,

1
8
,

1
)

(8
,

1
6
,

1
)

(9
,

1
6
,

1
)

(9
,

1
8
,

1
)

(9
,

1
5
,

1
)

(8
,

1
5
,

1
)

(1
0
,

1
5
,

1
)

(9
,

1
4
,

1
)

(8
,

1
9
,

1
)

(7
,

1
5
,

1
)

(7
,

1
9
,

1
)

(7
,

2
0
,

1
)

(6
,

1
9
,

1
)

(8
,

2
0
,

1
)

(9
,

1
9
,

1
)

(9
,

2
0
,

1
)

(6
,

2
0
,

1
)

(5
,

2
0
,

1
)

(5
,

1
9
,

1
)

(4
,

2
0
,

1
)

(3
,

2
0
,

1
)

(3
,

1
9
,

1
)

(2
,

2
0
,

1
)

(2
,

1
9
,

1
)

(2
,

1
8
,

1
)

(6
,

1
4
,

1
)

(1
,

2
0
,

1
)

(1
,

1
9
,

1
)

(2
,

1
7
,

1
)

(1
,

1
8
,

1
)

(0
,

2
0
,

1
)

(0
,

1
9
,

1
)

(0
,

1
8
,

1
)

(0
,

1
7
,

1
)

(7
,

1
4
,

1
)

(8
,

1
4
,

1
)

(8
,

1
3
,

1
)

(8
,

1
2
,

1
)

(7
,

1
3
,

1
)

(9
,

1
3
,

1
)

(7
,

1
2
,

1
)

(8
,

1
1
,

1
)

(9
,

1
2
,

1
)

(7
,

1
1
,

1
)

(6
,

1
3
,

1
)

(6
,

1
1
,

1
)(9
,

1
1
,

1
)

(1
1
,

1
5
,

1
)

(3
,

6
,

0
)

(4
,

6
,

0
)

(3
,

5
,

0
)

(4
,

5
,

0
)

(1
,

5
,

0
)

(0
,

6
,

0
)

(0
,

5
,

0
)

(2
,

5
,

0
)

(1
,

4
,

0
)

(0
,

4
,

0
)

(2
,

4
,

0
)

(8
,

6
,

0
)

(9
,

7
,

0
)

(7
,

5
,

0
)

(9
,

6
,

0
)

(8
,

5
,

0
)

(9
,

8
,

0
)

(9
,

5
,

0
)

(9
,

4
,

0
)

(1
0
,

4
,

0
)

(8
,

4
,

0
)(9
,

3
,

0
)

(1
1
,

4
,

0
)

(1
1
,

3
,

0
)

(1
2
,

3
,

0
)

(1
2
,

2
,

0
)

(1
2
,

4
,

0
)

(1
3
,

2
,

0
)

(1
3
,

4
,

0
)

(1
4
,

4
,

0
)

(1
5
,

4
,

0
)

(1
4
,

5
,

0
)

(1
4
,

6
,

0
)

(1
5
,

5
,

0
)

(1
4
,

7
,

0
) (1

5
,

6
,

0
)

(1
5
,

7
,

0
)

(1
6
,

6
,

0
)

(1
6
,

7
,

0
)

(1
6
,

8
,

0
)

(1
7
,

7
,

0
)

(1
7
,

8
,

0
)

(1
6
,

9
,

0
)

(1
5
,

8
,

0
)

(1
7
,

6
,

0
)

(1
8
,

7
,

0
)

(1
8
,

6
,

0
)

(1
9
,

6
,

0
)

(1
8
,

8
,

0
)

(1
8
,

9
,

0
)

(1
9
,

8
,

0
)

(1
9
,

9
,

0
)

(1
7
,

9
,

0
)

(2
0
,

9
,

0
)

(2
0
,

8
,

0
)

(2
0
,

7
,

0
)

(1
9
,

7
,

0
)

(2
0
,

6
,

0
)

(2
0
,

5
,

0
)

(1
9
,

5
,

0
)

(1
9
,

4
,

0
)

(2
0
,

4
,

0
)

(1
9
,

3
,

0
)

(2
0
,

3
,

0
)

(2
1
,

4
,

0
)

(1
5
,

9
,

0
)

(1
4
,

9
,

0
)

(1
8
,

3
,

0
)

(1
9
,

2
,

0
)

(1
8
,

2
,

0
)

(1
8
,

1
,

0
)

(1
8
,

0
,

0
)

(1
9
,

1
,

0
)

(1
7
,

1
,

0
)

(1
9
,

0
,

0
)

(1
6
,

1
,

0
)

(1
5
,

1
,

0
)

(1
4
,

1
,

0
)

(1
4
,

2
,

0
)

(1
4
,

3
,

0
)

(1
5
,

2
,

0
)

(1
5
,

3
,

0
)

(1
6
,

2
,

0
)

(1
6
,

3
,

0
)

(1
7
,

3
,

0
)

(2
0
,

2
,

0
)

(2
2
,

4
,

0
)

(2
3
,

4
,

0
)

(2
2
,

5
,

0
)

(2
3
,

5
,

0
)

(2
3
,

6
,

0
)

(2
4
,

5
,

0
)

(2
2
,

6
,

0
)

(2
3
,

7
,

0
)

(2
2
,

7
,

0
)

(2
4
,

7
,

0
)

(2
5
,

7
,

0
)

(2
4
,

8
,

0
)

(2
4
,

6
,

0
)

(2
5
,

8
,

0
)

(2
6
,

7
,

0
)

(2
5
,

9
,

0
)

(2
6
,

8
,

0
)

(2
5
,

6
,

0
)

(2
7
,

7
,

0
)

(2
6
,

6
,

0
)

(2
4
,

9
,

0
)

(2
6
,

9
,

0
)

(2
7
,

8
,

0
)

(2
7
,

9
,

0
)

(2
6
,

1
0
,

0
)

(2
8
,

7
,

0
)

(2
7
,

6
,

0
)

(2
8
,

8
,

0
)

(2
8
,

9
,

0
)

(2
9
,

7
,

0
)

(2
8
,

6
,

0
)

(2
9
,

8
,

0
)

(2
9
,

9
,

0
)

(3
0
,

9
,

0
)

(3
0
,

8
,

0
)

(2
7
,

5
,

0
)

(2
6
,

5
,

0
)

(2
5
,

5
,

0
)

(2
6
,

4
,

0
)

(2
7
,

4
,

0
)

(2
8
,

5
,

0
)

(2
7
,

3
,

0
)

(2
8
,

4
,

0
)

(2
7
,

2
,

0
)

(2
6
,

3
,

0
)

(2
8
,

3
,

0
)

(2
7
,

1
,

0
)

(2
6
,

2
,

0
)

(2
8
,

2
,

0
)

(2
6
,

1
,

0
)

(2
7
,

0
,

0
)

(2
8
,

1
,

0
)

(2
5
,

2
,

0
)

(2
5
,

3
,

0
)

(2
5
,

1
,

0
) (2
4
,

2
,

0
)

(2
6
,

0
,

0
)

(2
5
,

0
,

0
)

(2
8
,

0
,

0
)

(2
9
,

0
,

0
)

(2
4
,

0
,

0
)

(2
4
,

1
,

0
)

(2
3
,

0
,

0
)

(2
3
,

1
,

0
) (2

2
,

1
,

0
)

(2
3
,

2
,

0
)

(2
2
,

0
,

0
)

(2
2
,

2
,

0
)

(2
9
,

2
,

0
)

(2
9
,

1
,

0
)

(2
9
,

3
,

0
)

(3
0
,

2
,

0
)

(2
9
,

4
,

0
)

(3
0
,

4
,

0
)(2

9
,

5
,

0
)

(3
1
,

4
,

0
)

(3
0
,

3
,

0
)

(3
0
,

5
,

0
)

(3
1
,

3
,

0
)

(3
1
,

5
,

0
)

(3
1
,

2
,

0
)

(3
0
,

6
,

0
)

(3
0
,

7
,

0
)

(3
1
,

6
,

0
)

(2
9
,

6
,

0
)

(3
1
,

7
,

0
)

(2
5
,

4
,

0
)

(3
0
,

1
,

0
)

(3
0
,

0
,

0
)

(3
1
,

1
,

0
)

(3
1
,

0
,

0
)

(3
1
,

9
,

0
)

(3
1
,

8
,

0
)

(2
6
,

1
1
,

0
)

(2
5
,

1
1
,

0
)

(2
7
,

1
1
,

0
)

(2
5
,

1
2
,

0
)

(2
6
,

1
2
,

0
)

(2
4
,

1
2
,

0
)

(2
5
,

1
3
,

0
)

(2
6
,

1
3
,

0
)

(2
7
,

1
2
,

0
)

(2
4
,

1
3
,

0
)

(2
3
,

1
2
,

0
)

(2
3
,

1
3
,

0
)

(2
5
,

1
4
,

0
)

(2
5
,

1
5
,

0
)

(2
4
,

1
4
,

0
)

(2
6
,

1
4
,

0
)

(2
4
,

1
5
,

0
)

(2
5
,

1
6
,

0
)

(2
6
,

1
5
,

0
)

(2
3
,

1
5
,

0
)

(2
4
,

1
6
,

0
)

(2
3
,

1
6
,

0
)

(2
2
,

1
5
,

0
)

(2
3
,

1
4
,

0
)

(2
3
,

1
7
,

0
)

(2
4
,

1
7
,

0
)

(2
4
,

1
8
,

0
)

(2
5
,

1
7
,

0
)

(2
3
,

1
8
,

0
)

(2
5
,

1
8
,

0
)

(2
4
,

1
9
,

0
)

(2
2
,

1
8
,

0
)

(2
3
,

1
9
,

0
)

(2
2
,

1
7
,

0
)

(2
6
,

1
8
,

0
)

(2
5
,

1
9
,

0
)

(2
2
,

1
9
,

0
)

(2
3
,

2
0
,

0
)

(2
2
,

2
0
,

0
)

(2
4
,

2
0
,

0
)

(2
2
,

1
6
,

0
)

(2
1
,

1
5
,

0
)

(2
2
,

1
4
,

0
)

(2
0
,

1
5
,

0
)

(2
6
,

1
6
,

0
)

(2
7
,

1
5
,

0
)

(2
7
,

1
6
,

0
)

(2
6
,

1
7
,

0
)

(2
8
,

1
6
,

0
)

(2
7
,

1
7
,

0
)

(2
8
,

1
7
,

0
)

(2
9
,

1
6
,

0
)

(2
8
,

1
8
,

0
)

(2
9
,

1
7
,

0
)

(2
7
,

1
8
,

0
)

(2
7
,

1
9
,

0
)

(2
9
,

1
8
,

0
)

(2
8
,

1
9
,

0
)

(2
6
,

1
9
,

0
)

(3
0
,

1
7
,

0
)

(3
0
,

1
8
,

0
)

(3
0
,

1
6
,

0
)

(3
1
,

1
7
,

0
)

(3
1
,

1
8
,

0
)

(2
9
,

1
9
,

0
)

(2
7
,

2
0
,

0
)

(2
6
,

2
0
,

0
)

(2
5
,

2
0
,

0
)

(2
8
,

2
0
,

0
)

(2
9
,

2
0
,

0
)

(2
9
,

1
5
,

0
)

(2
9
,

1
4
,

0
)

(3
0
,

1
5
,

0
)

(2
8
,

1
5
,

0
)

(2
2
,

1
3
,

0
)

(2
2
,

1
2
,

0
)

(2
2
,

1
1
,

0
)

(2
3
,

1
1
,

0
)

(2
4
,

1
1
,

0
)

(2
7
,

1
3
,

0
)

(2
8
,

1
3
,

0
)

(2
7
,

1
4
,

0
)

(2
9
,

1
3
,

0
) (2

8
,

1
2
,

0
)

(2
8
,

1
4
,

0
)

(2
9
,

1
2
,

0
)

(3
0
,

1
3
,

0
)

(2
8
,

1
1
,

0
)

(3
0
,

1
2
,

0
)

(2
9
,

1
1
,

0
)

(3
0
,

1
4
,

0
)

(3
1
,

1
5
,

0
)

(3
1
,

1
4
,

0
)

(3
1
,

1
2
,

0
)

(3
0
,

1
1
,

0
)

(3
1
,

1
6
,

0
)

(3
1
,

1
3
,

0
)

(3
0
,

1
9
,

0
)

(3
1
,

1
9
,

0
)

(3
1
,

2
0
,

0
)

(3
0
,

2
0
,

0
)

(1
9
,

1
5
,

0
)

(2
0
,

1
4
,

0
)

(2
0
,

1
6
,

0
)

(1
9
,

1
4
,

0
)

(1
8
,

1
4
,

0
)

(2
0
,

1
7
,

0
)

(2
0
,

1
8
,

0
)

(1
9
,

1
7
,

0
)

(1
9
,

1
8
,

0
)

(1
9
,

1
9
,

0
)

(1
9
,

2
0
,

0
)

(1
8
,

2
0
,

0
)

(2
0
,

2
0
,

0
)

(1
8
,

1
9
,

0
)

(5
,

5
,

0
)

(1
1
,

4
,

1
)

(0
,

1
5
,

1
)

(1
,

1
6
,

1
)

(1
,

1
7
,

1
)

(0
,

1
6
,

1
)

(1
1
,

5
,

1
)

(1
2
,

4
,

1
)

(1
1
,

3
,

1
)

(7
,

4
,

0
)

(8
,

3
,

0
)

(9
,

2
,

0
)

(9
,

1
,

0
)

(8
,

2
,

0
)

(8
,

1
,

0
)(9

,
0
,

0
)

(8
,

0
,

0
)

(7
,

1
,

0
)

(7
,

0
,

0
)

(6
,

0
,

0
) (6

,
1
,

0
)

(5
,

0
,

0
)

(6
,

2
,

0
)

(5
,

1
,

0
)

(6
,

3
,

0
)

(7
,

2
,

0
)

(5
,

2
,

0
)

(7
,

3
,

0
)

(5
,

3
,

0
)

(6
,

4
,

0
)

(4
,

0
,

0
)

(4
,

1
,

0
)

(4
,

4
,

0
)

(3
,

4
,

0
)

(5
,

4
,

0
)

(1
,

3
,

0
)

(0
,

3
,

0
)

(0
,

2
,

0
)

(0
,

1
,

0
)

(1
,

2
,

0
)

(1
,

1
,

0
)

(0
,

0
,

0
)

(1
,

0
,

0
)

(2
,

1
,

0
)

(2
,

2
,

0
)

(2
,

3
,

0
)

(3
,

3
,

0
)

(1
1
,

6
,

1
)

(1
2
,

5
,

1
)

(1
1
,

7
,

1
)

(1
2
,

6
,

1
)

(1
2
,

7
,

1
)

(1
1
,

8
,

1
)

(1
3
,

6
,

1
)

(1
3
,

5
,

1
)

(1
2
,

3
,

1
)

(1
3
,

4
,

1
)

(1
3
,

3
,

1
)

(1
2
,

2
,

1
)

(1
3
,

2
,

1
)

(1
4
,

3
,

1
)(1

2
,

1
,

1
)

(1
1
,

2
,

1
)

(1
1
,

1
,

1
)

(1
3
,

1
,

1
)

(1
2
,

0
,

1
)

(1
4
,

2
,

1
)

(1
1
,

0
,

1
)

(1
4
,

1
,

1
)

(1
3
,

0
,

1
)

(1
5
,

1
,

1
)(1

4
,

0
,

1
)

(1
5
,

2
,

1
)

(1
5
,

3
,

1
)

(1
6
,

2
,

1
)

(1
6
,

3
,

1
)

(1
5
,

4
,

1
)

(1
6
,

1
,

1
)

(1
5
,

0
,

1
) (1

6
,

0
,

1
) (1

7
,

1
,

1
)(1

7
,

0
,

1
)

(1
4
,

4
,

1
)

(1
7
,

2
,

1
)

(1
8
,

2
,

1
)

(1
7
,

3
,

1
)

(1
8
,

1
,

1
)

(1
8
,

0
,

1
)

(1
9
,

1
,

1
)

(1
8
,

3
,

1
)

(1
9
,

2
,

1
) (1
9
,

3
,

1
)

(1
8
,

4
,

1
)

(2
0
,

2
,

1
)

(2
0
,

3
,

1
)

(1
9
,

4
,

1
)

(1
7
,

4
,

1
)

(1
8
,

5
,

1
)

(1
9
,

0
,

1
)

(2
0
,

1
,

1
)

(2
0
,

0
,

1
)

(1
4
,

5
,

1
)

(1
3
,

7
,

1
)

(1
4
,

6
,

1
)

(1
4
,

7
,

1
)

(1
3
,

8
,

1
)

(1
2
,

8
,

1
)

(1
5
,

6
,

1
)

(1
6
,

6
,

1
)

(1
5
,

7
,

1
)

(1
5
,

5
,

1
)

(1
6
,

7
,

1
)

(1
6
,

5
,

1
)

(1
7
,

6
,

1
)

(1
7
,

7
,

1
)

(1
6
,

8
,

1
)

(1
7
,

5
,

1
)

(1
6
,

4
,

1
)

(2
0
,

4
,

1
)

(1
2
,

1
5
,

1
)

(1
1
,

1
6
,

1
)

(1
1
,

1
4
,

1
)

(1
2
,

1
6
,

1
)

(1
3
,

1
5
,

1
)

(1
2
,

1
4
,

1
)

(1
2
,

1
7
,

1
)

(1
3
,

1
6
,

1
)

(1
1
,

1
7
,

1
)

(1
1
,

1
8
,

1
)

(1
3
,

1
7
,

1
)

(1
2
,

1
8
,

1
)

(1
3
,

1
8
,

1
)

(1
4
,

1
7
,

1
)

(1
4
,

1
8
,

1
)

(1
3
,

1
9
,

1
)

(1
4
,

1
6
,

1
)

(1
3
,

1
4
,

1
)

(1
4
,

1
5
,

1
)

(1
2
,

1
3
,

1
)

(1
2
,

1
2
,

1
)

(1
1
,

1
3
,

1
)

(1
3
,

1
3
,

1
)

(1
1
,

1
2
,

1
)

(1
2
,

1
1
,

1
)

(1
3
,

1
2
,

1
)

(1
1
,

1
1
,

1
)

(1
3
,

1
1
,

1
)

(1
4
,

1
4
,

1
)

(1
4
,

1
3
,

1
)

(1
4
,

1
2
,

1
)

(1
4
,

1
1
,

1
)

(1
5
,

1
1
,

1
)

(1
5
,

1
2
,

1
)

(1
6
,

1
1
,

1
)

(1
5
,

1
5
,

1
)

(1
5
,

1
4
,

1
)

(1
6
,

1
5
,

1
)

(1
5
,

1
6
,

1
)

(1
6
,

1
6
,

1
)

(1
6
,

1
4
,

1
)

(1
7
,

1
5
,

1
)

(1
7
,

1
6
,

1
)

(1
6
,

1
7
,

1
)

(1
5
,

1
7
,

1
)

(1
5
,

1
3
,

1
)

(1
6
,

1
2
,

1
)

(1
6
,

1
3
,

1
)

(1
7
,

1
2
,

1
)

(1
7
,

1
1
,

1
)

(1
7
,

1
3
,

1
) (1

8
,

1
2
,

1
)

(1
7
,

1
4
,

1
)

(1
8
,

1
3
,

1
)

(1
8
,

1
4
,

1
)

(1
8
,

1
5
,

1
) (1
9
,

1
4
,

1
)

(1
8
,

1
1
,

1
)

(1
9
,

1
1
,

1
)

(1
9
,

1
2
,

1
)

(2
0
,

1
2
,

1
)

(1
9
,

1
3
,

1
)

(2
0
,

1
1
,

1
)

(2
0
,

1
3
,

1
)

(1
8
,

1
6
,

1
)

(1
9
,

1
5
,

1
)

(1
8
,

1
7
,

1
)

(1
9
,

1
6
,

1
)

(1
7
,

1
7
,

1
)

(1
7
,

1
8
,

1
)

(1
6
,

1
8
,

1
)

(1
8
,

1
8
,

1
)

(1
7
,

1
9
,

1
)

(1
6
,

1
9
,

1
)

(1
5
,

1
8
,

1
)

(1
8
,

1
9
,

1
)

(1
9
,

1
8
,

1
)

(1
8
,

2
0
,

1
)

(1
9
,

1
9
,

1
)

(1
7
,

2
0
,

1
)

(1
6
,

2
0
,

1
)

(1
5
,

2
0
,

1
)

(1
9
,

2
0
,

1
)

(2
0
,

2
0
,

1
)

(1
5
,

1
9
,

1
)

(1
4
,

1
9
,

1
)

(1
4
,

2
0
,

1
)

(1
3
,

2
0
,

1
)

(1
9
,

1
7
,

1
)

(2
0
,

1
4
,

1
)

(2
0
,

1
5
,

1
)

(2
0
,

1
6
,

1
)

(2
0
,

1
7
,

1
)

(2
1
,

1
5
,

1
)

(2
2
,

1
5
,

1
)

(2
2
,

1
6
,

1
)

(2
3
,

1
5
,

1
)

(2
3
,

1
6
,

1
)

(2
2
,

1
7
,

1
)

(2
4
,

1
6
,

1
)

(2
4
,

1
7
,

1
)

(2
5
,

1
6
,

1
)

(2
3
,

1
7
,

1
)

(2
5
,

1
7
,

1
)

(2
4
,

1
8
,

1
)

(2
3
,

1
4
,

1
)

(2
4
,

1
5
,

1
)

(3
,

2
,

0
)

(4
,

3
,

0
)

(4
,

2
,

0
)

(2
,

0
,

0
)

(3
,

1
,

0
)

(3
,

0
,

0
)

(1
4
,

8
,

1
)

(1
3
,

9
,

1
)

(1
8
,

7
,

1
)

(1
7
,

8
,

1
)

(1
8
,

6
,

1
)

(1
9
,

5
,

1
)

(1
9
,

6
,

1
)

(1
8
,

8
,

1
)

(2
0
,

6
,

1
)

(1
9
,

7
,

1
)

(2
0
,

5
,

1
)

(2
0
,

7
,

1
)

(2
1
,

4
,

1
)

(2
2
,

4
,

1
)

(2
2
,

3
,

1
)

(2
3
,

4
,

1
)

(2
2
,

5
,

1
)

(1
5
,

8
,

1
)

(1
6
,

9
,

1
)

(1
5
,

9
,

1
)

(1
4
,

9
,

1
)

(1
1
,

1
9
,

1
)

(1
2
,

1
9
,

1
)

(2
0
,

1
9
,

1
)

(2
0
,

1
8
,

1
)

(1
1
,

9
,

1
)

(1
2
,

9
,

1
)

(1
7
,

9
,

1
)

(1
9
,

8
,

1
)

(2
0
,

8
,

1
)

(1
9
,

9
,

1
)

(2
0
,

9
,

1
)

(1
8
,

9
,

1
)

(2
3
,

3
,

1
)

(2
2
,

2
,

1
)

(2
4
,

3
,

1
)

(2
3
,

2
,

1
)

(2
5
,

3
,

1
)

(2
4
,

4
,

1
)

(2
4
,

2
,

1
)

(2
5
,

2
,

1
)

(2
6
,

3
,

1
)

(2
5
,

4
,

1
)

(2
6
,

2
,

1
)

(2
5
,

1
,

1
)

(2
7
,

2
,

1
)

(2
6
,

1
,

1
)

(2
7
,

3
,

1
)

(2
6
,

4
,

1
)

(2
7
,

4
,

1
)

(2
8
,

3
,

1
)

(2
8
,

2
,

1
)

(2
7
,

1
,

1
)

(2
3
,

5
,

1
)

(2
4
,

5
,

1
)

(2
6
,

0
,

1
)

(2
4
,

1
,

1
) (2

4
,

0
,

1
)

(2
3
,

1
,

1
)

(2
5
,

0
,

1
)

(2
3
,

0
,

1
)

(2
2
,

1
,

1
)

(2
2
,

0
,

1
)

(2
6
,

5
,

1
)

(2
6
,

6
,

1
)

(2
5
,

5
,

1
)

(2
7
,

5
,

1
)

(2
6
,

7
,

1
)

(2
7
,

6
,

1
)

(2
5
,

6
,

1
)

(2
6
,

8
,

1
)

(2
7
,

7
,

1
)

(2
5
,

7
,

1
)

(2
7
,

8
,

1
)

(2
5
,

8
,

1
)

(2
6
,

9
,

1
)

(2
8
,

8
,

1
)

(2
7
,

9
,

1
)

(2
8
,

7
,

1
)

(2
8
,

6
,

1
)

(2
4
,

7
,

1
)

(2
4
,

6
,

1
)

(2
8
,

4
,

1
)

(2
8
,

5
,

1
)

(2
9
,

5
,

1
)

(2
9
,

4
,

1
)

(2
9
,

3
,

1
)

(2
8
,

1
,

1
)

(2
9
,

2
,

1
)

(3
0
,

4
,

1
)

(3
1
,

4
,

1
)

(3
0
,

3
,

1
)

(3
0
,

5
,

1
)

(3
1
,

3
,

1
)

(3
1
,

5
,

1
)

(3
1
,

2
,

1
)

(3
1
,

1
,

1
)

(3
0
,

2
,

1
)

(3
0
,

1
,

1
)

(3
1
,

0
,

1
)

(2
9
,

1
,

1
)

(3
0
,

0
,

1
)

(2
9
,

0
,

1
)

(2
8
,

0
,

1
)

(2
7
,

0
,

1
)

(2
9
,

6
,

1
)

(3
0
,

6
,

1
)

(3
1
,

6
,

1
)

(3
0
,

7
,

1
)

(2
9
,

7
,

1
)

(2
9
,

8
,

1
)

(3
0
,

8
,

1
)

(3
1
,

7
,

1
)

(3
1
,

8
,

1
)

(3
0
,

9
,

1
)

(2
9
,

9
,

1
)

(2
8
,

9
,

1
)

(2
3
,

6
,

1
)

(2
4
,

8
,

1
)

(2
5
,

9
,

1
)

(2
4
,

9
,

1
)

(2
3
,

8
,

1
)

(2
3
,

9
,

1
)

(2
2
,

9
,

1
)

(2
2
,

6
,

1
)

(2
6
,

1
0
,

1
)

(2
2
,

8
,

1
)

(2
3
,

7
,

1
)

(2
2
,

7
,

1
)

(2
6
,

1
1
,

1
)

(2
6
,

1
2
,

1
)

(2
5
,

1
1
,

1
)

(2
7
,

1
1
,

1
)

(2
6
,

1
3
,

1
)

(2
5
,

1
2
,

1
)

(2
7
,

1
2
,

1
)

(2
5
,

1
3
,

1
)

(2
7
,

1
3
,

1
)

(2
6
,

1
4
,

1
)

(2
5
,

1
4
,

1
)

(2
4
,

1
3
,

1
)

(2
4
,

1
4
,

1
)

(2
5
,

1
5
,

1
)

(2
2
,

1
4
,

1
)

(2
6
,

1
5
,

1
)

(2
7
,

1
4
,

1
)

(2
8
,

1
3
,

1
)

(2
4
,

1
2
,

1
)

(2
4
,

1
1
,

1
)

(2
3
,

1
2
,

1
)(2

3
,

1
1
,

1
)

(2
2
,

1
1
,

1
)

(2
2
,

1
2
,

1
)

(2
2
,

1
3
,

1
)

(2
3
,

1
3
,

1
)

(2
5
,

1
8
,

1
)

(2
6
,

1
7
,

1
)

(2
6
,

1
8
,

1
)

(2
5
,

1
9
,

1
)

(2
6
,

1
6
,

1
)

(2
7
,

1
8
,

1
)

(2
6
,

1
9
,

1
)

(2
4
,

1
9
,

1
)

(2
3
,

1
8
,

1
)

(2
3
,

1
9
,

1
)

(2
4
,

2
0
,

1
)

(2
2
,

1
9
,

1
)

(2
3
,

2
0
,

1
)

(2
2
,

1
8
,

1
)

(2
2
,

2
0
,

1
)

(2
5
,

2
0
,

1
)

(2
6
,

2
0
,

1
)

(2
7
,

1
6
,

1
)

(2
7
,

1
5
,

1
)

(2
8
,

1
5
,

1
)

(1
2
,

2
0
,

1
)

(2
8
,

1
1
,

1
)

(2
8
,

1
2
,

1
)

(2
9
,

1
2
,

1
)

(2
9
,

1
3
,

1
)

(3
0
,

1
2
,

1
)

(2
9
,

1
1
,

1
)(2

9
,

1
4
,

1
)

(3
0
,

1
3
,

1
)

(3
0
,

1
4
,

1
)

(2
8
,

1
4
,

1
)

(2
9
,

1
5
,

1
)

(3
0
,

1
5
,

1
)

(3
1
,

1
3
,

1
)

(3
1
,

1
4
,

1
)

(3
1
,

1
2
,

1
)

(2
9
,

1
6
,

1
)

(3
1
,

1
5
,

1
)

(3
0
,

1
6
,

1
)

(3
0
,

1
1
,

1
)

(3
1
,

1
6
,

1
)

(3
1
,

1
7
,

1
)

(3
0
,

1
7
,

1
)

(3
1
,

1
8
,

1
)

(3
0
,

1
8
,

1
)

(2
9
,

1
7
,

1
)

(3
1
,

1
9
,

1
)

(3
0
,

1
9
,

1
)

(3
1
,

2
0
,

1
)

(3
0
,

2
0
,

1
)

(2
9
,

1
9
,

1
)

(2
9
,

2
0
,

1
)

(2
8
,

2
0
,

1
)

(2
8
,

1
9
,

1
)

(2
9
,

1
8
,

1
)

(2
8
,

1
8
,

1
)

(2
7
,

1
9
,

1
)

(2
8
,

1
7
,

1
)

(2
7
,

1
7
,

1
)

(2
8
,

1
6
,

1
)

(2
7
,

2
0
,

1
)

(3
1
,

9
,

1
)

(3
1
,

1
1
,

1
)

(1
1
,

2
0
,

1
)

Fi
gu

re
5.

8:
Se

gm
en

ts
an

d
cu

ts
on

th
e

gr
ap

h
af

te
rr

an
do

m
w

al
k

ph
as

e
fo

r2
5

ep
is

od
es

is
co

m
pl

et
ed

in
L
o
c
k
e
d

S
h
o
r
t
c
u
t

S
i
x
-
R
o
o
m
s

do
m

ai
n.

110

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r1

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r1
00

0
st

ep
s

lim
it.

0
2

0
0

4
0
0

6
0

0
8

0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

Fi
gu

re
5.

9:
L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

pr
op

os
ed

m
et

ho
d

Q
-S

eg
m

en
te

r
an

d
Q

-L
ea

rn
in

g
fo

rS
i
x
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0

an
d

20
00

st
ep

s
lim

it.

111

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r2

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

1

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r2
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0
0

1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

0
.1

7
5

0
.2

0
0

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
5.

10
:L

ea
rn

in
g

pe
rf

or
m

an
ce

s
of

pr
op

os
ed

m
et

ho
d

Q
-S

eg
m

en
te

r
an

d
Q

-L
ea

rn
in

g
fo

rZ
i
g
z
a
g

F
o
u
r
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r1
00

0
an

d
50

00
st

ep
s

lim
it.

112

0
2

0
0

4
0

0
6

0
0

8
0

0
1
0

0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(a
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r3

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(b
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r3
00

0
st

ep
s

lim
it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

N
u
m

b
e
r

o
f

E
p
is

o
d
e
s

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

Steps

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(c
)A

ve
ra

ge
st

ep
s

to
re

ac
h

th
e

go
al

st
at

e
un

de
r5

00
0

st
ep

s
lim

it.

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
N

u
m

b
e
r

o
f

E
p
is

o
d
e
s

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Average Reward

Q
-L

e
a
rn

in
g

Q
-S

e
g
m

e
n
te

r

(d
)A

ve
ra

ge
re

w
ar

d
pe

re
pi

so
de

un
de

r5
00

0
st

ep
s

lim
it.

Fi
gu

re
5.

11
:

L
ea

rn
in

g
pe

rf
or

m
an

ce
s

of
pr

op
os

ed
m

et
ho

d
Q

-S
eg

m
en

te
r

an
d

Q
-L

ea
rn

in
g

fo
r
L
o
c
k
e
d

S
h
o
r
t
c
u
t

S
i
x
-
R
o
o
m
s

G
r
i
d
W
o
r
l
d

do
m

ai
n

un
de

r3
00

0
an

d
50

00
st

ep
s

lim
it.

113

114

CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis focuses on learning efficiency problem in Reinforcement Learning (RL)

tasks. For an RL agent to master a task efficiently, it should improve its behavior

using the extracted information about its environment through strategic exploration.

Hence, efficient exploration is an important step that the agent should reach on the

path of efficient learning.

Furthermore, the required time for learning is a significant factor that impacts the

learning efficiency of an RL agent. In tasks with sparse explicit reward structure, the

RL agent struggles to extract the policy which leads to completing the task success-

fully due to the lack of immediate feedback on its behavior.

In this thesis, we propose two methods with a reward shaping mechanism to attack

efficient exploration and speeding up learning problems in the RL settings. We in-

troduce a framework called population-based repulsive reward shaping mechanism

using eligibility traces for efficient exploration problem. This framework helps to

explore the state-space in a coordinated manner with a population of sub-agents that

employ eligibility traces. The coordinator called RRS-Agent shapes the environmental

reward signals of the sub-agent population and benefits from the experiences of them

in its learning process. Our computational study on various well-known RL prob-

lem domains showed that the framework achieves coordinated exploration with an

improvement in the state-space coverage and learning performance. Furthermore, the

framework brings a new perspective to RL literature by consolidating the eligibility

traces of multiple-agents to create coordination.

Second, we propose potential-based reward shaping using state-space segmentation

115

with the extended segmented Q-Cut algorithm to accelerate learning. In this method,

rather than using a reward shaping mechanism to extract a useful information about

the environment, we apply potential-based reward shaping depending on extracted

information about the environment in the learning process of the agent. That means,

the reward shaping is performed using the state-space segment information. Our anal-

yses on sparse-reward problem settings showed that the proposed method accelerates

the learning of the agent while maintaining policy invariance and without the need to

prolong the computation time.

In future work, the first proposed method can be applied with function approxima-

tion algorithms to evaluate the performance in a wide range of tasks including visual

benchmark problems in the RL literature. For the second method, one can consider

using the Segmenter component periodically rather than identifying segments only

once at the end of the random walk phase. However, in this direction, the question of

how to combine previously identified segment information with the new ones should

be carefully thought out. Moreover, the cut quality threshold can be designed with a

more systematic approach instead of hand-crafted as it significantly affects the quality

of identified segments. Another research direction can be combining both proposed

methods in a single framework. That is, using the population of sub-agents in the

random walk phase of the second method such that the state-space segment informa-

tion is extracted from the experiences of the sub-agent population. Through repulsive

reward shaping, the complete transition graph can be achieved in a faster way and

extracted segment information can be more adequate.

116

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-

rithms, and Applications. Prentice hall, 1993.

[2] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. A survey of

exploration methods in reinforcement learning. CoRR, abs/2109.00157, 2021.

[3] A. G. Barto, S. J. Bradtke, and S. P. Singh. Real-time learning and control us-

ing asynchronous dynamic programming. Technical report, University of Mas-

sachusetts at Amherst, Department of Computer and Information Science, Au-

gust 1991.

[4] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and

R. Munos. Unifying count-based exploration and intrinsic motivation.

NIPS’16, page 1479–1487, Red Hook, NY, USA, 2016. Curran Associates Inc.

[5] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[6] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time

algorithm for near-optimal reinforcement learning. J. Mach. Learn. Res.,

3(null):213–231, mar 2003.

[7] J. S. Bridle. Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition. In F. F. Soulié and

J. Hérault, editors, Neurocomputing, pages 227–236, Berlin, Heidelberg, 1990.

Springer Berlin Heidelberg.

[8] P. V. C. Caironi and M. Dorigo. Training and delayed reinforcements in q-

learning agents. Int. J. Intell. Syst., 12:695–724, 1997.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

117

[10] O. Şimşek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in rein-

forcement learning by local graph partitioning. In Proceedings of the 22nd In-

ternational Conference on Machine Learning, ICML ’05, page 816–823, New

York, NY, USA, 2005. Association for Computing Machinery.

[11] W. Dabney, G. Ostrovski, and A. Barreto. Temporally-extended ϵ-greedy ex-

ploration. ArXiv, abs/2006.01782, 2021.

[12] P. Dayan and T. Sejnowski. Exploration bonuses and dual control. In Machine

Learning, pages 5–22, 1996.

[13] A. Demir, E. Çilden, and F. Polat. Landmark based reward shaping in rein-

forcement learning with hidden states. In Proceedings of the 18th Interna-

tional Conference on Autonomous Agents and MultiAgent Systems, AAMAS

’19, page 1922–1924, Richland, SC, 2019. International Foundation for Au-

tonomous Agents and Multiagent Systems.

[14] B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Commun.

ACM, 7(5):301–303, may 1964.

[15] M. Grzes. Improving exploration in reinforcement learning through domain

knowledge and parameter analysis. University of York, March 2010.

[16] M. Grzes and D. Kudenko. Plan-based reward shaping for reinforcement learn-

ing. volume 31, pages 10–22, 10 2008.

[17] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe. Expressing arbitrary re-

ward functions as potential-based advice. Proceedings of the AAAI Conference

on Artificial Intelligence, 29(1), Feb. 2015.

[18] A. M. Hinz. The tower of hanoi. Enseign. Math, 35(2):289–321, 1989.

[19] S. Iqbal and F. Sha. Coordinated Exploration via Intrinsic Rewards for Multi-

Agent Reinforcement Learning. arXiv:1905.12127 [cs, stat], May 2021. arXiv:

1905.12127.

[20] S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and

K. Tumer. Collaborative evolutionary reinforcement learning. 2019.

118

[21] J. Z. Kolter and A. Y. Ng. Near-bayesian exploration in polynomial time. In

Proceedings of the 26th Annual International Conference on Machine Learn-

ing, ICML ’09, page 513–520, New York, NY, USA, 2009. Association for

Computing Machinery.

[22] A. D. Laud. Theory and application of reward shaping in reinforcement learn-

ing. PhD thesis, University of Illinois at Urbana-Champaign, 2004.

[23] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. Maven: Multi-agent

variational exploration. 2019.

[24] O. Marom and B. Rosman. Belief reward shaping in reinforcement learning.

Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.

[25] M. J. Mataric. Reward functions for accelerated learning. In In Proceedings of

the Eleventh International Conference on Machine Learning, pages 181–189.

Morgan Kaufmann, 1994.

[26] I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic discovery of sub-

goals in reinforcement learning. In Proceedings of the 13th European Con-

ference on Machine Learning, ECML ’02, page 295–306, Berlin, Heidelberg,

2002. Springer-Verlag.

[27] I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic discovery of sub-

goals in reinforcement learning. In ECML, 2002.

[28] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward trans-

formations: Theory and application to reward shaping. In In Proceedings of

the Sixteenth International Conference on Machine Learning, pages 278–287.

Morgan Kaufmann, 1999.

[29] T. Okudo and S. Yamada. Subgoal-based reward shaping to improve efficiency

in reinforcement learning. IEEE Access, 9:97557–97568, 2021.

[30] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration

by self-supervised prediction. In Proceedings of the 34th International Confer-

ence on Machine Learning - Volume 70, ICML’17, page 2778–2787. JMLR.org,

2017.

119

[31] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley amp; Sons, Inc., USA, 1st edition, 1994.

[32] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist sys-

tems. Technical report, 1994.

[33] J. Schmidhuber. Curious model-building control systems. In In Proc. Inter-

national Joint Conference on Neural Networks, Singapore, pages 1458–1463.

IEEE, 1991.

[34] J. Schmidhuber. A possibility for implementing curiosity and boredom in

model-building neural controllers. In Proceedings of the First International

Conference on Simulation of Adaptive Behavior on From Animals to Animats,

page 222–227, Cambridge, MA, USA, 1991. MIT Press.

[35] S. Singh, R. Sutton, and P. Kaelbling. Reinforcement learning with replacing

eligibility traces. Machine Learning, 22, 11 1995.

[36] R. Sutton. Learning to predict by the method of temporal differences. Machine

Learning, 3:9–44, 08 1988.

[37] R. S. Sutton. Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming. In In Proceedings of the Seventh In-

ternational Conference on Machine Learning, pages 216–224. Morgan Kauf-

mann, 1990.

[38] R. S. Sutton. Integrated modeling and control based on reinforcement learning

and dynamic programming. In Proceedings of the 3rd International Confer-

ence on Neural Information Processing Systems, NIPS’90, page 471–478, San

Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[39] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A

Bradford Book, Cambridge, MA, USA, 2018.

[40] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artif. Intell.,

112(1–2):181–211, aug 1999.

120

[41] M. Tokic and G. Palm. Value-difference based exploration: Adaptive control

between epsilon-greedy and softmax. In J. Bach and S. Edelkamp, editors, KI

2011: Advances in Artificial Intelligence, pages 335–346, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[42] T. Wang, J. Wang, Y. Wu, and C. Zhang. Influence-based multi-agent explo-

ration. CoRR, abs/1910.05512, 2019.

[43] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s

College, Cambridge, UK, May 1989.

[44] M. Wiering. Explorations in Efficient Reinforcement Learning. PhD thesis,

Universiteit van Amsterdam, 01 1999.

[45] Z. Yang, M. Preuss, and A. Plaat. Potential-based reward shaping in sokoban.

ArXiv, abs/2109.05022, 2021.

121

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Contribution of the Thesis

	Background
	Markov Decision Processes
	Reinforcement Learning
	Value-based Methods
	Temporal Difference Learning
	Q-Learning
	Sarsa

	Eligibility Traces
	Sarsa() Algorithm
	Reward Shaping
	Potential-based Reward Shaping

	Graph Theory Basics
	Maximum-Flow/Minimum-Cut Problem
	Preflow-Push Algorithm

	Segmented Q-Cut Algorithm

	Related Work
	Single-Agent Exploration
	Coordinated Exploration
	Eligibility Traces
	Potential Based Reward Shaping

	Population-based Exploration with Repulsive Reward Shaping Mechanism Using Eligibility Traces
	Problem Motivation
	Repulsive Reward Shaping Mechanism
	Reward Shaper Variations
	Bonus-based Variations of the Reward Shaper
	Bonus-based Reward Shaper
	Bonus-with-Memory-based Reward Shaper
	Bonus-with-Limited-Steps Reward Shaper
	Bonus-with-Limited-Episode Reward Shaper

	Punishment-based Variations of the Reward Shaper
	Punishment-with-Memory-based Reward Shaper
	Punishment-with-Dynamic Threshold Reward Shaper
	Punishment-with-Normal Distribution Reward Shaper
	Punishment-with-Delay Reward Shaper
	Punishment-with-Delay-Episode Reward Shaper

	Computational Experiments
	Sample Problem Domains
	Experimental Settings
	Experimental Results and Discussion
	RRS-Agent with bonus-based variations of the reward shaping mechanism
	RRS-Agent with punishment-based variations of the reward shaping mechanism
	Performance comparison between bonus-based and punishment-based variations of reward shaping mechanism
	Overall performance comparison

	Improving Learning Efficiency by Potential-Based Reward Shaping Using State-Space Segmentation with the Extended Segmented Q-Cut Algorithm
	Problem Motivation
	Reward Shaping Based on State-Space Segmentation with the Extended Segmented Q-Cut Algorithm
	State-Space Segmentation
	Random Walk
	Extended Segmented Q-Cut

	Reward Shaping Based on State-Space Segmentation
	Value of the Segments
	Potential-based Reward Shaping Using Values of the Segments

	Computational Experiments
	Sample Problem Domains
	Experiment Settings
	Experiment Results and Discussion

	Conclusion and Future Work
	REFERENCES

