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Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Fikriye Nuray YILMAZ
Mathematics Department, Gazi University

Assoc. Prof. Dr. Mustafa AĞGÜL
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ABSTRACT

SECOND ORDER NUMERICAL METHODS FOR NAVIER-STOKES AND
DARCY-BRINKMAN EQUATIONS

Demı̇r, Medı̇ne
Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Songül KAYA MERDAN
Co-Supervisor: Assoc. Prof. Dr. Aytekin Bayram ÇIBIK

June 2022, 145 pages

In this thesis, second-order, efficient and reliable numerical stabilization methods

are considered for approximating solutions to the incompressible, viscous fluid flow

driven by the Navier-Stokes equations and for the Darcy-Brinkman equations driven

by double-diffusive convection. The standard Galerkin finite element method re-

mains insufficient for accurately solving these complex nonlinear equations that cre-

ates some problems such as numerical instabilities and unphysical oscillations in the

solution. A good numerical algorithm should resolve all the scales in the solution to

avoid these problems which requires too much computational effort. Thus, develop-

ing proper and efficient numerical algorithm that exhibits correct physical behaviour

of the flow and accurately approximates solutions over a finite time interval remains

a great challenge in computational fluid dynamics.

First, this thesis proposes a numerical scheme which tests and analyzes a subgrid ar-

tificial viscosity method to model the incompressible Navier-Stokes equations along

a linearly extrapolated BDF2 time discretization method. The method considers the

viscous term as a combination of the vorticity and the grad-div stabilization term. The

method introduces global stabilization by adding a term, then antidiffuses through the
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extra mixed variables. A detailed analysis of conservation laws, including both en-

ergy and helicity balance of the method is presented. It is shown that the approximate

solutions of the method are unconditionally stable and optimally convergent. Sev-

eral numerical tests are presented for validating the support of the derived theoretical

results.

Second, this thesis considers the backward Euler based linear time filtering method

for the developed energy-momentum-angular momentum conserving formulation of

the time dependent, incompressible Navier-Stokes equations in the case of weakly en-

forced divergence constraint. The method adds time filtering as a post-processing step

to the energy-momentum-angular momentum conserving formulation to enhance the

accuracy and to improve the approximate solutions. It is shown that in comparison

with the backward-Euler based energy-momentum-angular momentum conserving

formulation without any filter, the proposed method not only leads to a 2-step, un-

conditionally stable and second order accurate method but also increases numerical

accuracy of solutions. Numerical studies verify the theoretical findings and demon-

strate preeminence of the proposed method over the unfiltered case.

Third, this thesis studies an efficient, accurate, effective and unconditionally stable

time stepping scheme for the Darcy-Brinkman equations in double-diffusive convec-

tion. The stabilization within the proposed method uses the idea of stabilizing the

curvature for velocity, temperature and concentration equations. Accuracy in time is

proven and the convergence results for the fully discrete solution of problem variables

is given. Several numerical examples including a convergence study are provided that

support the derived theoretical results and demonstrate the efficiency and the accuracy

of the method.

Keywords: Subgrid artificial viscosity model, Navier-Stokes equations, linearly ex-

trapolated BDF2, energy-momentum-angular momentum conserving formulation, time

filter, Darcy-Brinkman equations, curvature stabilization, finite element method.
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ÖZ

NAVİER-STOKES VE DARCY-BRİNKMAN DENKLEMLERİ İÇİN İKİNCİ
DERECEDEN SAYISAL YÖNTEMLER

Demı̇r, Medı̇ne
Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Songül KAYA MERDAN
Ortak Tez Yöneticisi: Doç. Dr. Aytekin Bayram ÇIBIK

Haziran 2022 , 145 sayfa

Bu tezde, Navier-Stokes denklemleri tarafından yönlendirilen sıkıştırılamaz, viskoz

akışkan akışına ve çift-yayılımlı taşınım tarafından yönlendirilen Darcy-Brinkman

denklemlerine yaklaşık çözümler bulmak için ikinci mertebeden, verimli ve güveni-

lir sayısal stabilizasyon yöntemleri ele alınmıştır. Standart Galerkin sonlu eleman-

lar yöntemi, çözümde sayısal kararsızlıklar ve fiziksel olmayan salınımlar gibi bazı

problemler yarattığı için bu karmaşık doğrusal olmayan denklemleri doğru bir şekilde

çözmek için yetersiz kalmaktadır. İyi bir sayısal algoritma, çok fazla hesaplama ça-

bası gerektiren bu problemlerden kaçınmak için çözümdeki tüm ölçekleri çözmelidir.

Bu nedenle, akışın doğru fiziksel davranışını sergileyen ve sonlu bir zaman aralığında

çözümlere doğru şekilde yaklaşan uygun ve verimli sayısal algoritma geliştirmek,

hesaplamalı akışkanlar dinamiğinde büyük bir zorluk olarak devam etmektedir.

İlk olarak, bu tez sıkıştırılamaz Navier-Stokes denklemlerini modellemek için bir alt

ızgara yapay viskozite yöntemini doğrusal ekstrapolasyonlu BDF2 zaman ayrıklaş-

tırması ile birlikte kullanarak sayısal bir şema önerir, test eder ve analizini yapar.

Yöntem, viskoz terimini, girdap ve grad-div stabilizasyon terimlerinin birleşimi ola-
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rak ele alır. Bu alt ızgara yapay viskozite yöntemi, bir terim ekleyerek global sta-

bilizasyonu tanıtır, ardından ekstra karışık değişkenler aracılığıyla yayılmayı önler.

Yöntemin hem enerji hem de sarmallık dengesi dahil olmak üzere koruma yasala-

rının ayrıntılı analizini gösterilir. Ayrıca yöntemin ürettiği yaklaşık çözümlerin ko-

şulsuz, kararlı ve optimal yakınsak olduğu da gösterilir. Elde edilen teorik sonuçları

desteklemek ve doğrulamak için çeşitli sayısal testler sunulmuştur.

İkinci olarak, bu tez zayıf zorlanmış divergens kısıtlaması durumunda, sıkıştırılamaz,

zamana bağlı Navier-Stokes denklemlerinin enerji-momentum-açısal momentum ko-

ruyucu (EMAC) formülasyonu geliştirilen model için geri-Euler tabanlı doğrusal za-

man filtreleme yöntemini ele alır. Yöntem ile bu formülasyona doğruluğu artırmak

ve yaklaşık çözümleri geliştirmek için bir işlem sonrası adım olarak zaman filtreleme

ekler. Geri-Euler tabanlı EMAC formülasyonu ile herhangi bir filtre içermeyen for-

mülasyon karşılaştırmalı olarak gösterilir, önerilen yöntem yalnızca 2 adımlı, koşul-

suz kararlı ve ikinci dereceden doğru yöntem değil, aynı zamanda çözümlerin sayısal

doğruluğunu da arttıran bbir yöntemdir. Sayısal çalışmalar teorik bulguları doğrular

ve önerilen yöntemin filtrelenmemiş duruma göre üstünlüğünü gösterir.

Üçüncü olarak, bu tez verimli, doğru, etkili ve koşulsuz olarak kararlı bir zaman adımı

şemasını çift yayılmalı taşınmada Darcy-Brinkman denklemleri için çalışır. Önerilen

yöntemdeki stabilizasyon hız, sıcaklık ve konsantrasyon denklemleri için eğriliği sta-

bilize etme fikrini kullanır. Zamandaki doğruluğu kanıtlanmıştır ve problem değiş-

kenlerinin tamamen ayrık çözümleri için yakınsama sonuçları verilmiştir. Elde edilen

teorik sonuçları destekleyen ve yöntemin etkinliği ve doğruluğunu ortaya koyan, ya-

kınsama çalışması dahil olmak üzere çeşitli sayısal örnekler sunulmuştur.

Anahtar Kelimeler: Alt ızgara yapay viskozite modeli, Navier-Stokes denklemleri,

lineer ekstrapolasyonlu BDF2, enerji-itme-açısal itme formülasyonu, zaman filtresi,

Darcy-Brinkman denklemleri, eğrilik stabilizasyonu, sonlu eleman yöntemi.
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CHAPTER 1

INTRODUCTION

Mathematical modeling is the process of expressing a real-life problem by using

mathematical concepts and language, particularly used in natural sciences such as

physics, biology, earth science, chemistry, and engineering disciplines such as com-

puter science and electrical engineering and also in social science like sociology, eco-

nomics, and psychology. Mathematical models can take a variety of forms such as in

dynamical systems, statistical models, differential equations, or game-theoretic mod-

els. Numerous models in natural and applied sciences describe the interaction of

several distinct physical fields including structural deformation, fluid flow, electric

field, temperature, pore-pressure, etc. In this thesis, we consider the mathematical

models that include fluid flows. The mathematical formulation of these fluid flow

problems consists of systems of coupled partial differential equations subject to suit-

able boundary conditions. Due to their complex structures, it is generally impossible

or extremely difficult to obtain analytical or closed-form solutions for partial differ-

ential equations, except for some basic problems in simple geometries. Also, finding

solutions from some laboratory experiments requires a very realistic experimental

setup which is not easily applicable and results in scaling problems, measurement

difficulties, and operating costs. Hence, numerical methods are the most attractive

methods for solving these complex nonlinear equations thanks to the rapid increase

in computer speed day by day.

Computational fluid dynamics (CFD) is the field of numerically solving these prob-

lems using computational power, applied to a wide range of fields such as aerodynam-

ics, hypersonics, weather simulation, natural science, and environmental engineer-

ing, industrial system design and analysis, biological engineering, fluid flows, and
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heat transfer, engine and combustion analysis, and visual effects for film and games.

There are two numerical approaches in CFD, namely Eulerian and Lagrangian. The

basic idea in the Eulerian approach is to discretize the computational space with a

finite set of points called the grid (or mesh) and compute the approximate solution

at these grid points [34]. On the other hand, the Lagrangian approach discretizes the

computational region by a series of particles moving at the local flow rate and cal-

culates approximate solutions at each particle’s position at each separate time [34].

Some of Langrangian techniques include the discrete element method [40], immersed

particle method [137], smoothed particle hydrodynamics [85] and finite volume par-

ticle method [110]. In addition to these, there are some other numerical methods to

solve fluid flow problems such as the Boundary Element Method (BEM) and Dual

Reciprocity Boundary Element method (DRBEM) which also gives very promising

results. The Eulerian approach to compute approximate solutions to fluid flow prob-

lems which can be accomplished using several different ways includes the Finite Dif-

ference Method (FDM), Finite Volume Method (FVM) and Finite Element Method

(FEM). The main differences among these numerical methods are the type of ap-

proach to the variables, discretization of the problem domain and the computational

cost of the technique.

The finite difference method approximates the unknown solutions in the governing

differential equation by using the finite differences for the derivatives of the unknowns

and inserting the given boundary conditions. FDM methods transform the governing

nonlinear differential equation into a system of linear equations which can be solved

by matrix algebra techniques. FDM methods are one of the commonly used numerical

methods due to their simplicity, efficiency, and low computational cost. The major

disadvantage is the difficulty of discretizing curved boundaries and adding boundary

conditions involving derivatives.

The basic idea of the finite volume method is to divide the domain into a number

of control volumes (elements) whose centroid consists of the variable of interest and

to integrate the differential forms of the governing equation over each control vol-

ume which results in the conservation equations for the variable inside the control

volume. The primary advantage of this method is that it is conservative, i.e. its so-

lution satisfies the conservation laws for the quantities like mass, momentum, energy

2



etc. Another advantage is that, unlike finite difference methods, it is easily applied

for irregular or complex domains. Also, it produces more accurate and stable solu-

tions, especially for the problems with interfaces and strong shocks. Moreover, it is

preferable for calculating discontinuous solutions of compressible flows and partial

differential equations containing discontinuous coefficients since the local continu-

ity property does not need to be retained. However, obtaining higher-order accurate

solutions is difficult which is the main drawback of this method.

The finite element method, which is used in this thesis, is the most commonly used

and popular numerical method in engineering designed in the 1980s to fix the dis-

cretization problem in complex geometry and facilitates the addition of boundary

conditions. The main idea is to discretize the domain into small portions called as

elements and interpolating the solution by using polynomial interpolation functions

over this finite domain which are then combined into a larger system of equations

that models the entire problem. Then, a solution is approximated by minimizing an

associated error function [100,106,122]. It is commonly used in computer and indus-

trial applications [20,48,80], biomedical, thermal and fluid flows, structural analysis,

solid mechanics, thermal and electrical analysis, mechanical engineering disciplines

like aeronautical (design of aircraft) and biomechanical etc.

The accurate and fast approximation to the solutions to fluid flow problems is vital for

many applications in engineering, power generation, chemical manufacturing, poly-

mer processing, petroleum exploration, medical research, meteorology, astrophysics,

etc. In this thesis, we consider two types of fluid flow problems, namely the incom-

pressible, viscous fluid flow and the fluid flow driven by double-diffusive convection.

The motion of incompressible, viscous fluid flow is governed by Navier Stokes equa-

tions (NSE) which are given as follows:

ut − ν4u + u · ∇u +∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) for x ∈ Ω,∫
Ω
pdx = 0 in (0, T ].

(1.0.1)

Here, Ω denotes a bounded and regular flow domain in Rd (d = 2 or 3), u(x, t)

represents the velocity, p(x, t) the zero-mean pressure, f(x, t) an external force , ν
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the kinematic viscosity and u0 is a weakly divergence-free initial condition. The first

equation in (1.0.1) describes the conservation of momentum in which ut is the rate

of change in velocity, the term u · (∇ · u) is the convective term that governs the

inertial effects, the term −ν∆u is the diffusive term describing the process of the

relative motion of different components in a mixture and the term ∇p is the pressure

describes the forces acting on the surface of each fluid volume. The control parameter

in (1.0.1) is Reynolds number Re and is given as

Re =
UL

ν

where L and U are the characteristic length and velocity scales of the flow respectively

and ν are the kinematic viscosity of the flow. The second equation in (1.0.1) is the

incompressibility constraint describing the conservation of mass. Furthermore, the

last equation in (1.0.1) is the usual normalization condition on pressure meaning that

the pressure has zero mean value. The reader is referred to [8] for the derivation of

these equations.

Since NSE is the broadly applied set of mathematical models and are based on the

conservation of mass and the conservation of momentum laws. They describe the

physics of many important phenomena of scientific and engineering interest such as

weather forecasts [15, 136], ocean currents, flow in pipes [32, 33, 125] and channels,

blood flow [25, 90, 163], pollution analysis [39, 107], the design of aircraft and cars.

These equations are extensions of famous Euler’s equations in the 18th century that

describe the flow of incompressible and frictionless fluids, i.e. ν = 0. In 1822,

Claude-Louis Navier introduced the notion of a Newton viscous term for a more real-

istic and more difficult problem of viscous fluids [22]. Later, in 1845, George Gabriel

Stokes enhanced the NSE analysis with a different definition of internal friction in the

fluids, making the equation more convincing [47].

The NSE is so complex equations that, despite great efforts of more than a century

ago, it still seems far away to exactly predict their solutions and understand their con-

sequences. There are several difficulties in solving NSE. Firstly, the reduction of the

physical problems defined in continuous space and time to a large system of equa-

tions in discrete and finite space and time naturally creates some undesirable effects

such as numerical instability and unphysical oscillations in the solution. As a result,
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it causes loss of important physically conserved quantities like energy, momentum,

angular momentum, enstrophy, helicity, etc. Moreover, the NSE is a set of coupled

nonlinear equations that can not be solved analytically, except for some very basic

flows and boundary conditions.

The mathematical theory starts with the Leray’s paper [62] which describes NSE’s so-

lutions using weak solutions. Within that study, he proved the existence and unique-

ness of the weak solutions for NSE for all cases in two dimensions but the existence

and uniqueness of the solutions in three dimensions is still unknown and is a one

million dollar Clay prize problem [21]. Also, it is well known that at high Re num-

bers, the convective term becomes dominant which leads to complex, turbulent fluid

flow requiring high computer capacity in simulations. The application of a direct nu-

merical simulation (DNS) of equation (1.0.1) such as by the Galerkin finite element

method both in time and space remains incapable to cope with these difficulties and

simulating turbulent flows determined by the Kolmogorov theory which reported that

a resolved DNS requiresO(Re9/4) mesh points [74] which exceeds the limits of com-

puting power available today. Furthermore, the DNS of the NSE creates more prob-

lems such as truncation errors, boundary condition problems, convergence, accuracy,

and stability problems and violation of many important conservation laws including

energy, momentum, angular momentum and others. Thus, stabilization methods are

required to obtain high-fidelity solutions. Hence, designing a cost-effective, accurate

and reliable numerical algorithm with high-fidelity solutions remains a great chal-

lenge in the computational fluid dynamics community.

Double-diffusive convection models describe convection phenomena in fluid driven

by the combination of different density temperature and concentration gradients in

the porous medium. A detailed derivation of the modelscan be found in [29]. The

physical model includes the momentum forced by the combined heat and mass trans-

fer which causes natural convection. Double diffusive convection plays a significant

role in many scientific, engineering and industrial applications such as, metallurgy,

oceanography, geology, biology, chemical processes, the heating, and cooling pro-

cesses in solid oxide fuel cells, petroleum drilling, contaminant transport in ground-

water, etc [66,69,127,135]. Moreover, the model incorporates the velocity fields and

pressure fields as well as contains the temperature and concentration fields, which are
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often used in the industry [7, 19], astrophysics [49], the oceanography [43, 121], and

so on. A common example describing double-diffusive convection is certain motions

in the ocean. The flow of saltwater in the ocean occurs due to the changes in tem-

perature and salt concentration gradients and diffusivity. The temperature dissipates

faster than the concentration (salinity). Double-diffusive convection in oceanogra-

phy is a vertical motion and there are two modes as salt fingers and diffusive. These

salt fingers of rising water occur when warm, saltwater lies over higher density, cold

freshwater. As the diffusion of heat is faster than salt, the water loses its heat faster

than its salinity. Since the water becomes cooler but remains salty, it becomes denser.

This causes the downward motion of the salt fingers. On the other hand, diffusive

convection occurs when cold and freshwater lies over salty and warmer water.

Under the assumption of Boussinesq approximation that ignores density variations in

fluid except in the buoyancy term including the thermal expansion coefficient [51], the

governing equations of double-diffusive convection phenomena in a confined porous

enclosure are given by the Darcy-Brinkman system (see [16]),

ut − ν∆u + (u · ∇)u +Da−1u +∇p = (βTT + βSS)g in (0, t]× Ω,

∇ · u = 0 in (0, t]× Ω,

u = 0 on (0, t]× ∂Ω,

Tt − γ∆T + u · ∇T = 0 in (0, t]× ∂Ω,

St −Dc∆S + u · ∇S = 0 in (0, t]× ∂Ω,

T, S = 0 on ΓD,

∂T

∂n
= 0,

∂S

∂n
= 0 on ΓN ,

u(0,x) = u0, T (0,x) = T0, S(0,x) = S0 in Ω. (1.0.2)

Here u is the fluid velocity, u0, the initial velocity, p the pressure, T the temperature,

T0, the initial temperature, S the concentration, S0, the initial concentration. We also

have the kinematic viscosity ν > 0, the Darcy number Da, the thermal diffusivity

γ > 0, the mass diffusivity Dc > 0,the gravitational acceleration vector g and the

thermal and solutal expansion coefficients are βT , βS , respectively. The dimensionless

parameters are the buoyancy ratio N =
βS∆S

βT∆T
, the Schmidt number Sc =

ν

Dc

,

Prandtl number Pr =
ν

γ
, the Darcy number Da =

K

H2
, the Lewis number Le =

Sc

Pr
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and the thermal Rayleigh number Ra =
gβT∆TH3

νγ
. ΓD be a regular open subset

and ΓD = ∂Ω \ ΓN . H is the cavity height, K is the permeability, ∆T and ∆S are

the temperature and concentration differences, respectively.

Several works are studying the physical mechanism of double-diffusive convection,

e.g., [9, 86]. Darcy-Brinkman equations (1.0.2) are difficult to solve due to both its

physical mechanism and the structure of its modeling equation. First of all, since

Darcy-Brinkman equations (1.0.2) includes the NSE, it inherits the same difficulties

as the NSE. After that, this model has different boundary layers formed due to the

coupling between fluid flow, and the heat and mass transfer equations which makes

the system very difficult to solve analytically. Thus, many researchers tried to solve

Darcy-Brinkman equations numerically by using different types of numerical tech-

niques such as the finite volume method (FVM) [64,68,82] and the boundary element

method (BEM) [59, 60] as well as the FEM in different flow configurations in a cav-

ity [72] and a porous medium [13, 67, 88]. Besides the coupling of multiple physical

fields, the system expresses heat transfer with Rayleigh number (Ra) which is defined

as

Ra =
gβT (Tbottom − Ttop)L

3

νγ

where g denotes gravitational acceleration vector, βT denotes thermal expansion coef-

ficient, L denotes the vertical length, ν denotes kinematic viscosity, γ denotes thermal

diffusivity, Tbottom and Ttop denote the temperature in the bottom and in the top, respec-

tively. The size of Ra determines whether the flow is laminar or turbulent. High Ra

numbers lead to numerical instabilities due to the dominance of the convective term.

As a result, the flow behaves turbulent. All these obstacles have prompted scien-

tists to seek efficient and reliable stabilization methods for the standard finite element

discretization to get physically correct solutions of the Darcy-Brinkman equations.

This thesis aims to develop second-order, efficient and reliable numerical algorithms

for two-fluid flow problems: the incompressible, Newtonian fluid flow driven by the

NSE and Darcy-Brinkman equations with double-diffusive convection. The first goal

is to extend the mathematical support of a subgrid artificial viscosity (SAV) method

of [73] to simulate the incompressible NSE to better perform a linearly extrapolated

BDF2 (BDF2LE) time discretization. The method considers the viscous term as a
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combination of the vorticity and the grad-div stabilization term. SAV method intro-

duces global stabilization by adding a term, then anti-diffuses through the extra mixed

variables. As a result, a succesful stabilization method is obtained with optimal accu-

racy in time without choosing computationally inefficient time steps in case of small

viscosity. The second goal is to investigate the effect of the backward Euler-based

linear time filtering method of [140] for the developed energy-momentum-angular

momentum conserving (EMAC) formulation of the time-dependent incompressible

Navier-Stokes equations in the case of weakly enforced divergence constraint. The

proposed method yields a two-step time filtered Backward Euler method which is

efficient, optimally accurate in both space and time, A-stable and easy to adapt into

any existing code. The third goal is to study the idea of curvature stabilization of [94]

for a family of second-order time-stepping methods for the Darcy-Brinkman system.

The main idea of the method is to incorporate linearizations and stabilization terms

such that the discrete curvature solution in velocity, temperature, concentration, and

pressure are proportional to this combination. This leads to sufficient stabilization

along with optimal accuracy in time.

Chapter 2 presents some necessary mathematical preliminaries and notations used in

the analysis of the NSE and the double-diffusive Darcy-Brinkman system.

Chapter 3 provides the numerical analysis of the subgrid artificial viscosity (SAV)

method for the incompressible NSE equipped with BDF2LE temporal discretization.

A detailed analysis of conservation laws, including both the energy and helicity bal-

ance of the method, is presented. A complete numerical analysis of SAV method

along with the proofs of unconditional stability and convergence is provided. The

derived theoretical results are validated with some numerical experiments.

Chapter 4 focuses on the backward Euler based linear time filtering method for the

EMAC formulation of the time-dependent incompressible NSE in the case of weakly

enforced divergence constraint. The time filtering is added as a modular step to the

standard backward Euler code leading to a two-step method that can be easily imple-

mented into any existing legacy code. Conservation properties are studied and a com-

plete stability and convergence analysis of the method is presented. Several numerical

experiments are provided that both verify the theoretical findings and demonstrate the
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preeminence of the proposed method over the unfiltered case.

Chapter 5 studies the numerical approximation of a family of second-order time-

stepping methods for the Darcy-Brinkman system. The proposed algorithm is con-

structed by using the idea of stabilizing the curvature for velocity, temperature and

concentration equations. The stability and convergence analysis of the method are

provided. Several numerical examples are performed to support the derived theoreti-

cal results and demonstrate the efficiency and accuracy of the method.

Chapter 6 is devoted to the conclusions of this dissertation and the discussion for

possible future research directions.

9



10



CHAPTER 2

MATHEMATICAL PRELIMINARIES AND NOTATIONS

In this chapter, we present some mathematical preliminaries and notations frequently

used throughout this thesis. Additionally, C stands for generic constants independent

of all flow parameters and also from meshsize h and time-step size ∆t.

Standard notations of [109] for function spaces with their definitions will be used

throughout the thesis. We also introduce some important definitions and theorems

from [122, 143].

Assume that Ω in Rd, (d = 2, 3) is a convex polygonal or polyhedral domain with a

boundary ∂Ω. For a function g : Ω −→ Rd, define the partial derivative of order |α|
by

Dαg =
∂|α|g

∂xα1
1 ∂x

α2
2 ....∂x

αd
d

(2.0.1)

where α = (α1, α2, ...., αd) is a multi-index of non-negative integer numbers and its

length is defined by |α| = α1 + α2 + · · · ·+αd.

Definition 2.0.1 A measurable function f defined on Ω is said to be essentially bounded

if there exists a constant M such that

|f(x)| ≤M, for almost everywhere (a.e.) on Ω .

The essential supremum of Ω is the greatest lower bound of such constants M and is

denoted by

‖f‖L∞ := ess sup
x∈Ω

|f(x)|,
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Definition 2.0.2 Let g ∈ C(Ω).

• Then the support of g is defined as follows:

supp(g) = {x ∈ Ω : g(x) 6= 0}. (2.0.2)

• u is said to have a compact support in Ω if supp(g) ⊂ Ω is compact in Rd. This

means that u vanishes on the boundary ∂Ω.

• C∞0 (Ω) := {g ∈ C∞(Ω) : g has a compact support in Ω}.

Definition 2.0.3 ( The Lebesgue Spaces) The Lebesgue spaces are the class of all

measurable functions whose p-th powers are integrable and are denoted by

Lp(Ω) := {g : g is also a measurable function and
∫

Ω

|g(x)|pdx <∞} (2.0.3)

for all 1 ≤ p ≤ ∞.

Lp(Ω)-norm is defined by

‖g‖Lp =
( ∫

Ω

|g(x)|pdx
)1/p

, 1 ≤ p ≤ ∞ (2.0.4)

‖g‖L∞ = ess sup
x∈Ω

|u(x)|, p =∞. (2.0.5)

The special case p = 2 gives L2(Ω), a Hilbert space equipped with the following

inner product

(g, h) =

∫
Ω

g(x)h(x)dx, ‖u‖ =
√

(g, g).

The zero-mean subspace of L2(Ω) is defined by

L2
0(Ω) := {g ∈ Lp(Ω) :

∫
Ω

g(x)dx = 0}.

Definition 2.0.4 (The Sobolev Spaces ) Sobolev spaces are defined as

W k,p(Ω) := {g ∈ Lp(Ω) : Dαg ∈ Lp(Ω) for |α| ≤ k} (2.0.6)

for any k ∈ N, 1 ≤ p ≤ ∞.
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The Sobolev spaces are Banach spaces with the following norms:

‖g‖Wk,p(Ω) =
( ∑
|α|≤k

∫
Ω

‖Dαg‖pLp
)1/p

, 1 ≤ p ≤ ∞ (2.0.7)

‖g‖Wk,∞(Ω) =
∑
|α|≤k

ess sup
x∈Ω

|Dαg|. (2.0.8)

• For k = 0,W 0,p(Ω) = Lp(Ω).

• For p = 2,W k,2(Ω) = Hk(Ω) are Hilbert spaces equipped with the norm ‖·‖k
and the semi-norm | · |k .

• The most important Soboloev space used in this thesis is the closed subspace of

H1(Ω), defined by

H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 ∈ ∂Ω}.

The dual space of H1
0 (Ω) is denoted by H−1 with norm

‖f‖−1 = sup
v∈H1

0 (Ω)

|(f, v)|
‖∇v‖

.

Definition 2.0.5 For any (scalar or vector valued) function v(x, t) defined on Ω ×
(0, T ], the following norms are used

‖v‖∞,k := ess sup
0≤t≤T

‖v(·, t)‖k , ‖v‖p,k =
( ∫ T

0

‖v(·, t)‖kp dx
)1/p

where T > 0 is a given finite last time. Discrete norms are defined with the following

notations

‖|v|‖∞,k := ess sup
0≤n≤N

‖vn‖k , ‖|v|‖p,k =
(
∆t

N∑
n=0

‖vn‖kp dx
)1/p

where ∆t is the time step such that tn = n∆t with n = 0, 1, ..., N and we denote

v(tn) = vn.

Lemma 2.0.1 If
1

p
+

1

q
= 1, then

1 ≤ x

p
+
x1−q

q

holds for all real x > 0.
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Proof. Consider the function

f(x) =
x

p
+
x1−q

q

which satisfies

f(1) =
1

p
+

11−q

q
=

1

p
+

1

q
= 1.

The proof follows by showing that f takes its mininmum value of 1 at x = 1. Taking

the derivative of f

f ′(x) =
1

p
+

1− qx−q

q
=
q + p(1− q)x−q

pq

=
q + (p− pq)x−q

pq
=
q + (p− (p+ q))x−q

pq

=
q − qx−q

pq
=

1− x−q

p
,

it follows that the only critical point of f is x = 1. Then, as

f
′′
(x) =

qx−q−1

p
> 0

for all x > 0, the function f attains its mininmum value of 1 at the critical point

x = 1. �

Lemma 2.0.2 (Young’s Inequality) For a, b ≥ 0, the following inequality holds

ab ≤ ε

p
ap +

ε−
q
p

q
bq

for any ε > 0, p, q ≤ 1 and
1

p
+

1

q
= 1.

Proof. The proof is trivial, if either of a = 0 or b = 0 holds. For the case a > 0 and

b > 0, use the inequality in Lemma 2.0.1 for x = ap−1

b
> 0 to get,

1 ≤ 1

p

(ap−1

b

)
+

1

q

(ap−1

b

1−q)
=
ap−1

pb
+
ap+q−pq−1

qb1−q

=
ap−1

pb
+
b1−q

qa
=

1

ab

(
ap

p
+
bq

q

)
(2.0.9)

Multiplying both sides of (2.0.9) with ab yields the result. �

Lemma 2.0.3 (The Hölder’s Inequality) Let f ∈ Lp(Ω) and g ∈ Lq(Ω) for
1

p
+

1

q
=

1 with p, q ∈ [1,∞]. Then fg ∈ L1(Ω) and

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq . (2.0.10)
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Proof. If either ‖f‖Lp = 0 or ‖g‖Lq = 0, then (2.0.10) holds trivially. Otherwise,

setting ε = 1, a =
|f(x)|
‖f‖Lp

and b =
|g(x)|
‖g‖Lq

in (2.0.2) and integrating over Ω yields

1

‖f‖Lp ‖g‖Lq

∫
Ω

|f(x)g(x)|dx < 1

p ‖f‖pLp

∫
Ω

|f(x)|dx+
1

q ‖g‖qLq

∫
Ω

|g(x)|dx.
(2.0.11)

Using the definition of Lebesgue integral (2.0.4), one writes

1

‖f‖Lp ‖g‖Lq

∫
Ω

|f(x)g(x)|dx < 1

p
+

1

q
= 1. (2.0.12)

Then, multiplying the above inequality by ‖f‖Lp ‖g‖Lq immediately gives the result.

�

Lemma 2.0.4 (Cauchy-Schwarz Inequality) Let f, g ∈ L2(Ω), then the Cauchy-

Schwarz inequality holds

|(f, g)| ≤ ‖f‖ ‖g‖ . (2.0.13)

Proof. The special case for p = q = 2 in Lemma 2.0.3 directly yields the result. �

Lemma 2.0.5 The following inequality is satisfied,∫
Ω

fgh ≤ ‖f‖Lp ‖g‖Lq ‖h‖Lr

where 1 ≤ p, q, r ≤ ∞ with
1

p
+

1

q
+

1

h
= 1.

Proof. Apply (2.0.10) to get∫
Ω

fgh ≤ (

∫
Ω

fp)
1
p (

∫
Ω

(gh)m)
1
mdx

where
1

p
+

1

m
= 1. Apply the (2.0.10) again for the second term of the right hand

side of (2) to obtain∫
Ω

fgh ≤ (

∫
Ω

fp)
1
p (

∫
Ω

gmn)
1
mn (

∫
Ω

hmr)
1
mr dx.

Taking mn = q and mn = r in (2) yields (2.0.5) with
1

p
+

1

q
+

1

h
= 1. �

15



Lemma 2.0.6 ( Poincaré-Friedrichs’ Inequality [31]) Let Ω ⊂ F = {(x1, x2, ..., xn) :

0 < xi < CPF}. Then, for f ∈ H1
0 (Ω),

‖f‖ ≤ CPF‖∇f‖, ∀f ∈ X,

where CPF = CPF (Ω) is a positive constant depends on the size of the domain only.

Proof. To prove (2.0.6), it is enough to show that f ∈ C∞0 (Ω) since C∞0 (Ω) is dense

in H1
0 (Ω). One can write

f(x1, x2, ..., xn) = f(x1, x2, ..., 0) +

∫ xn

0

∂f(x1, x2, ..., a)

∂a
da. (2.0.14)

Then, set f = 0 on F \ Ω and apply (2.0.13) for (2.0.14) to get

|f(x)| ≤
( ∫ xn

0

12da
)1/2 ·

( ∫ xn

0

|∇f(x1, x2, ..., a)|2da
)1/2

≤
( ∫ CPF

0

|∇f(x1, x2, ..., a)|2da
)1/2 (2.0.15)

Integrating over the xn coordinates, one has∫ xn

0

|f(x)|dxn ≤
( ∫ CPF

0

|∇f(x)|2dxn
)1/2 (2.0.16)

Lastly, integrating over the other coordinates results in∫
F

|f |dx ≤
(
CPF

∫
F

|∇f |2dx
)1/2 (2.0.17)

�

Lemma 2.0.7 (Inverse Estimate [141]) Let Th be a quasi-uniform family of triangu-

lation of Ω. Then, for f ∈ H1
0 (Ω),

‖∇f‖ ≤ Ch−1 ‖f‖ . (2.0.18)

Lemma 2.0.8 For any f ∈ H1(Ω), the following relation is satisfied:

‖∇ · f‖ ≤
√
d ‖∇f‖ ,

where d is the dimension of the domain Ω.
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Proof. We prove the estimate only for d = 3, the proof for d = 2 can be done by using

similar arguments. Take f = (u(x, y, z), v(x, y, z), w(x, y, z)) inH1(Ω). Then, using

the definition of the divergence operator and

∇ · f =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
=: ux + vy + wz

and using Young’s inequality gives

‖∇ · f‖2 =

∫
Ω

(ux + vy + wz + 2uxvy + 2uxwz + 2vywz)dx

≤
∫

Ω

3(u2
x + v2

y + w2
z)dx = (

√
3 ‖∇f‖)2

Taking the square root of both sides of the inequality yields the estimate. �

Lemma 2.0.9 (Ladyzhenskaya inequality [95] (2d)) For any ∇f ∈ L2(Ω) and f ∈
L4(Ω) with compact support, there is a constant C satisfying for Ω ⊂ R2

‖f‖L4(Ω) ≤ C
√
‖f‖ ‖∇f‖. (2.0.19)

Proof. We prove the inequality only for Ω = R2. Using (2.0.4), we write

‖f‖4
L4(R2) =

∫
Ω

f 4dx ≤
∫ ∞
−∞

max
x1

f 2dx2

∫ ∞
−∞

max
x2

f 2dx1. (2.0.20)

Note also that

max
xk

f 2(x1, x2) = 2

∫ ∞
−∞
|ffxk |dxk. (2.0.21)

Using (2.0.21), we obtain

‖f‖4
L4(R2) ≤ 4

∫ ∞
−∞

∫ ∞
−∞
|ffx1 |dx1dx2

∫ ∞
−∞

∫ ∞
−∞
|ffx2|dx1dx2

≤ 4

∫
Ω

f 2dx

∫
Ω

fx1fx2dx. (2.0.22)

Applying Young’s inequality to the second factor in (2.0.22), we have

‖f‖4
L4(R2) ≤ 2

∫
Ω

f 2dx

∫
Ω

(f 2
x1

+ f 2
x2

)dx

≤ 2

∫
Ω

f 2dx

∫
Ω

(∇f)2dx (2.0.23)

Lastly, taking the fourth root of both sides in (2.0.23) gives (2.0.19). �
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Theorem 2.0.1 (The Sobolev Embedding Theorem [109]) Let Ω ∈ Rd be a bounded

domain with a locally Lipschitz boundary. Let k be a non-negative integer and let p

satisfies 1 ≤ p ≤ ∞. For kp = d,

W k,p(Ω) ↪→ Lq(Ω), p < q ≤ ∞.

Remark 2.0.1 In this thesis, we use Theorem (2.0.1) for the case k = 1, p = 2 and

q = 4 such that

H1(Ω) ↪→ L4(Ω),

which means

‖f‖L4 ≤ ‖f‖H1 .

Lemma 2.0.10 The norms on H1(Ω) and H1
0 (Ω) are equivalent.

Proof. The norms on H1(Ω) and H1
0 (Ω) are given by, respectively

‖f‖1 = (‖f‖2 + ‖∇f‖2)1/2, ‖f‖1
0 = ‖∇f‖ .

Choose f ∈ H1
0 (Ω). Then, the application of the Poincaré-Friedrichs’ inequality

gives

‖f‖2
1 ≤ (1 + C2

PF ) ‖∇f‖2 ,

and taking the square root of both sides yields

‖f‖1 ≤
√

(1 + C2
PF ) ‖∇f‖ . (2.0.24)

Also,

‖f‖1 ≥ ‖∇f‖ . (2.0.25)

(2.0.24) and (2.0.25) show the equivalence of these norms. �

The analysis of the methods in Chapter 4 and Chapter 5 requires the definition of

G-norm and F -norm.

Definition 2.0.6 Let I ∈ Rn×n be an identity matrix and

u
v

 is a 2n vector. Follow-

ing notation of [27, 94], G ∈ R2n×2n symmetric matrix is defined by

G =

g11 g12

g21 g22


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where

g11 =
θ(2θ + 3)

4

ν + ε

ν
I − θ(2θ + 1)

4

ε

ν
I,

g12 = g21 = −(
(θ + 1)(2θ − 1)

4

ν + ε

ν
I +

(1− θ)(2θ + 1)

4

ε

ν
I),

g22 =
θ(2θ − 1)

4

ν + ε

ν
I − θ(−2θ + 3)

4

ε

ν
I.

with G-norm is defined by

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
2

G

=

(u
v

 , G
u
v

) (2.0.26)

which can be negative. The form of G-matrix is common in BDF2 analysis, see

e.g., [36] and references therein.

Additionally, F ∈ Rn×n symmetric positive definite matrix is defined by

F = θ(2θ − 1)I +
4θ2ε

ν
I (2.0.27)

and for any u ∈ Rn, F norm of the n vector u is defined by

‖u‖F = (u, Fu). (2.0.28)

The following equality is useful for the error analysis in Chapter 4 and Chapter 5.

Lemma 2.0.11 The symmetric positive definite matrix F ∈ Rn×n and the symmetric

matrix G ∈ R2n×2n which are given above satisfy the following equality:

( (θ + 1
2 )wn+1 − 2θwn + (θ − 1

2 )wn−1

∆t
, θ

(ν + ε)

ν
wn+1 +

(
1− θ ν + 2ε

ν

)
wn + θ

ε

ν
wn−1

)
=

∥∥∥∥∥∥
wn+1

wn

∥∥∥∥∥∥
2

G

−

∥∥∥∥∥∥
 wn

wn−1

∥∥∥∥∥∥
2

G

+
1

4

∥∥wn+1 − 2wn + wn−1∥∥2
F
.
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Proof. First, extending the inner product in the left hand side of the equality gives

(
(θ + 1

2
)wn+1 − 2θwn + (θ − 1

2
)wn−1

∆t
, θ

(ν + ε)

ν
wn+1 −

(
1− θν + 2ε

ν

)
wn + θ

ε

ν
wn−1

)

=
1

∆t

[
(wn+1)T

(
θ +

1

2

)
θ
ν + ε

ν
wn+1 − (wn+1)T

(
θ +

1

2

)(
1− θν + 2ε

ν

)
wn

+(wn+1)T
(
θ +

1

2

)
θ
ε

ν
wn−1 − 2(wn)T θ2ν + ε

ν
wn+1 + 2(wn)T θ

(
1− θν + 2ε

ν

)
wn

−2(wn)T θ2 ε

ν
wn−1 + (wn−1)T

(
θ − 1

2

)
θ
ν + ε

ν
wn+1

−(wn−1)T
(
θ +

1

2

)(
1− θν + 2ε

ν

)
wn + (wn−1)T

(
θ − 1

2

)
θ
ε

ν
wn−1

]
. (2.0.29)

Then, extending each term on the right-hand side of the equality using definitions of

the G-norm and F -norm yields

∥∥∥∥∥∥
wn+1

wn

∥∥∥∥∥∥
2

G

= (wn+1)T
θ(2θ + 3)

4

ν + ε

ν
wn+1 − (wn+1)T

θ(2θ + 1)

4

ε

ν
wn+1

−(wn+1)T
(θ + 1)(2θ − 1)

4

ν + ε

ν
wn − (wn+1)T

(1− θ)(2θ + 1)

4

ε

ν
wn

−(wn)T
(θ + 1)(2θ − 1)

4

ν + ε

ν
wn+1 − (wn)T

(1− θ)(2θ + 1)

4

ε

ν
wn+1

+(wn)T
θ(2θ − 1)

4

ν + ε

ν
wn − (wn)T

θ(−2θ + 3)

4

ε

ν
wn (2.0.30)

∥∥∥∥∥∥
 wn

wn−1

∥∥∥∥∥∥
2

G

= (wn)T
θ(2θ + 3)

4

ν + ε

ν
wn − (wn)T

θ(2θ + 1)

4

ε

ν
wn

−(wn)T
(θ + 1)(2θ − 1)

4

ν + ε

ν
wn−1 − (wn)T

(1− θ)(2θ + 1)

4

ε

ν
wn−1

−(wn−1)T
(θ + 1)(2θ − 1)

4

ν + ε

ν
wn − (wn−1)T

(1− θ)(2θ + 1)

4

ε

ν
wn

+(wn−1)T
θ(2θ − 1)

4

ν + ε

ν
wn−1 − (wn−1)T

θ(−2θ + 3)

4

ε

ν
wn−1 (2.0.31)

20



∥∥wn+1 − 2wn + wn−1
∥∥2

F
= (wn+1)T θ(2θ − 1)wn+1 + (wn+1)T

4θ2ε

ν
wn+1

−4(wn+1)T θ(2θ − 1)wn + (wn+1)T
4θ2ε

ν
wn − 4(wn)T θ(2θ − 1)wn

+(wn)T
4θ2ε

ν
wn + 2(wn+1)T θ(2θ − 1)wn−1 + (wn+1)T

4θ2ε

ν
wn−1

+4(wn)T θ(2θ − 1)wn + (wn)T
4θ2ε

ν
wn

+(wn−1)T θ(2θ − 1)wn−1 + (wn−1)T
4θ2ε

ν
wn−1. (2.0.32)

Lastly, multiplying (2.0.30) by 1, (2.0.31) by -1 and (2.0.32) by 1
4

and summing them

gives the terms in the left hand side of (2.0.29), which proves the result. �

In the analysis in Chapter 4 and Chapter 5, we also use the following well-known

properties of G-norm stated in [27, 36].

Lemma 2.0.12 For any u,v ∈ Rn, we have

(u
v

 , G
u
v

) =
2θ + 1

4
‖u‖2 − 2θ − 1

4
‖v‖2

+
(θ + 1)(2θ − 1)

4
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2

≥ 2θ + 1

4
‖u‖2 − 2θ − 1

4
‖v‖2 , (2.0.33)

(u
v

 , G
u
v

) ≤ 2θ + 1

4
‖u‖2 +

(θ + 1)(2θ − 1)

2
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2

≤
(2θ + 1

4
+ (θ + 1)(2θ − 1) +

θε

ν

)
‖u‖2

+
(
(θ + 1)(2θ − 1) +

θε

ν

)
‖v‖2 . (2.0.34)

Proof. Using the G matrix (2.0.6), we have

(u
v

 , G
u
v

) =
θ(2θ + 3)

4

ν + ε

ν
u2 − θ(2θ + 1)

4

ε

ν
u2

−(θ + 1)(2θ − 1)

4

ν + ε

ν
uv − (1− θ)(2θ + 1)

4

ε

ν
uv

−(θ + 1)(2θ − 1)

4

ν + ε

ν
uv − (1− θ)(2θ + 1)

4

ε

ν
uv

+
θ(2θ − 1)

4

ν + ε

ν
v2 − θ(−2θ + 3)

4

ε

ν
v2
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=
2θ + 1

4
‖u‖2 − 2θ − 1

4
‖v‖2

+
(θ + 1)(2θ − 1)

4
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2 (2.0.35)

≥ 2θ + 1

4
‖u‖2 − 2θ − 1

4
‖v‖2 . (2.0.36)

Dropping the positive terms in (2.0.35) gives the result (2.0.33).

Then, eliminating the negative term in (2.0.35) and using the inequality

‖u− v‖ ≤ 2(‖u‖2 + ‖v‖2), we obtain

(u
v

 , G
u
v

) ≤ 2θ + 1

4
‖u‖2 +

(θ + 1)(2θ − 1)

2
‖u− v‖2 +

θ

2

ε

ν
‖u− v‖2

≤ 2θ + 1

4
‖u‖2 + (θ + 1)(2θ − 1) ‖u‖2 +

θε

ν
‖u‖2

+(θ + 1)(2θ − 1) ‖u‖2 +
θε

ν
‖v‖2 (2.0.37)

which yields the estimate (2.0.34). �

Lemma 2.0.13 (Discrete Gronwall’s Lemma) Assume that ∆t, B, and an, bn, cn, dn

(for integers n≥ 0) be non-negative numbers such that if

aN + ∆t
N∑
n=0

bn ≤ ∆t
N−1∑
n=0

dnan + ∆t
N∑
n=0

cn +B ∀N ≥ 0 (2.0.38)

then for ∆t > 0,

aN + ∆t
N∑
n=0

bn ≤ exp
(

∆t
N−1∑
n=0

dn

)(
∆t

N∑
n=0

cn +B
)

for N ≥ 0. (2.0.39)

Proof. For the proof, see reference [57]. �

22



CHAPTER 3

AN ANALYSIS OF A LINEARLY EXTRAPOLATED BDF2 SUBGRID

ARTIFICIAL VISCOSITY METHOD FOR INCOMPRESSIBLE FLOWS

In this chapter, we consider an efficient and accurate numerical approximation of the

Navier-Stokes equations (NSE). Recall from Chapter 1, the governing equations of

NSE are given by

ut − ν4u + u · ∇u +∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) for x ∈ Ω,∫
Ω
pdx = 0 in (0, T ].

(3.0.1)

Here, Ω denotes a bounded and regular flow domain in Rd (d = 2 or 3), u(x, t)

represents the velocity, p(x, t) the zero-mean pressure, f(x, t) an external force , ν

the kinematic viscosity and u0 is a weakly divergence-free initial condition. In the

literature, there are different stabilization techniques used to accurately approximate

the NSE solutions, the Large eddy simulation (LES) method and the variational mul-

tiscale (VMS) method, which is based on the LES method are two of common ap-

proaches among them. In the LES method, the principal idea is to directly compute

large flow scales (resolved scales) by averaging solutions in space via a convolution

filter while modeling the effects of the small flow scales (unresolved scales) [17].

However, there are some challenges in applying the LES method. One of the biggest

challenges is the necessity of choosing an appropriate filter function. Also, the LES

method produces commutation errors arising from limiting the LES method theory

from the unbounded domain to bounded domain. Moreover, instead of incorporat-

ing the effects of unresolved scales into all resolved scales via a turbulence model,

adding its effects to only a portion of the resolved scales would physically indicate
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more real flow characteristics. For further details of the LES method, one can refer

to [61, 101, 105, 117]. An alternative to the LES method is the variational multiscale

(VMS) method which also simulates only large flow scales with some fundamental

differences from the LES method. VMS methods have been proposed by Hughes in

1995, [134] which separates the solution scales as large and small scales and devel-

oped by Guermond [58] in which an artificial diffusion term is added acting only on

small scales. Then, Layton [156] developed a method based on [58] by adding and

then subtracting artificial viscosity terms to reduce instabilities due to extra terms.

Later, Collis [129] introduced the VMS method for turbulent flows which separate

the flow field into three scales (large, small, and unresolved small scales). There

have been a huge number of studies on the framework of VMS method such as for

NSE [150, 151] and convection-diffusion equations [152]. Unlike the LES method,

the VMS method defines large scales with projection into appropriate function spaces.

Also, the VMS method considers a variational formulation of NSE in contrast to the

LES method which is derived from the strong form of NSE. In addition, unlike to the

LES methods, in the VMS method, the turbulence model directly influences the small

flow scales while indirectly affecting the large scales by the subgrid-scale model due

to the intrinsic matching of all scales. Moreover, the VMS method naturally enables

to inclusion of boundary domains and boundary conditions in the mathematical anal-

ysis.

There are various classes and realizations of VMS for different types of fluid prob-

lems, see [149] for an overview. Among them, the popular and commonly applied

VMS methods are residual-based VMS method and projection-based VMS method.

The principal idea in residual-based VMS is to look for the solution of Galerkin dis-

cretization of (3.0.1) by adding control of strong residuals of both momentum and

continuity equation which acts on all scales. The classical residual-based VMS sta-

bilization techniques seen in the literature are the streamline-upwind/Petrov-Galerkin

(SUPG), pressure-stabilizing Petrov-Galerkin (PSPG) and grad-div stabilization. Al-

though there have been a considerable number of studies of such methods [12, 111,

158,159], these residual-based VMS methods have some drawbacks. One of the main

drawbacks of these methods is that they introduce an artificial nonsymmetric term.

Also, they produce a strong coupling of velocity and pressure. This becomes par-
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ticularly challenging for some complex flows with compressible properties or with

additional variables. In addition, all residual-based stabilizations change the right-

hand side f of the NSE problem and this change complicates the application of these

schemes for time-dependent problems. Moreover, the number of matrix blocks that

need to be stored and combined for these methods is quite large. As a remedy to all

these drawbacks, scientists have introduced the projection-based VMS method.

In recent years, the projection-based VMS method has become one of the popular

stabilizations method to obtain more stable approximations. In this method, large

scales are defined by projection into suitable function spaces, and the function spaces

satisfying the Ladyzenskaya-Brezzi-Babuska (LBB) condition are chosen for both

large and small scales. The choice of large-scale space is important for this method.

This choice can be done in two different ways. The first choice is to define large

scale space on the same grid as small scale space using lower degree polynomials

than the standard finite element spaces which is called as one level VMS method,

see [151] for a discussion. The second choice is to define large-scale space on a

coarser grid than the standard finite element spaces which are called two-level VMS

method, see [152]. There are various studies of this method in the literature. The

VMS method is applied to the NSE in [150], to the non-isothermal free convection

problems in [63], to the MHD in [81], and to the steady-state natural convection

in [5], and the Darcy-Brinkman equations in [4]. All these studies reveal that this

VMS method gives more accurate approximations on coarse meshes, can be easily

applied to any existing code, and reduces the need for high computation power.

Due to the proven good theoretical and practical properties of VMS methods, it is

natural to broaden its understanding by developing efficient, accurate, and stable nu-

merical algorithms. The method we consider in this study is first proposed in [156]

which is VMS method, for finding solutions to the convection-dominated convection-

diffusion equation. The VMS method of [156] introduces global stabilization by

adding a term, then anti-diffuses through the extra mixed variables which are chosen

as the large scales of solution. In this way the effective artificial viscosity type stabi-

lization influences only the small scales, thus the method we considered herein can

be thought of as a subgrid artificial viscosity (SAV) method. Based on these ideas,

on page 156 of [156], the new formulation of SAV has been proposed without any
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numerical analysis. In this formulation, the stability process is applied to the viscous

term by using the vector identity ∆u = −∇ × (∇ × u) + ∇(∇ · u) to reduce the

extra storage in 3D. As a result, a two-level method is obtained that combines both

vorticity and the grad-div stabilization in the viscous term. This SAV method greatly

reduces extra storage compared to velocity and its gradient. SAV method was first

analyzed in the study of [73] by using Crank-Nicholson (CN) scheme without any

linearization. As noted in [73], the system is improved in a better way without choos-

ing computationally inefficient time step, that is, the system of method includes just

three variables with the use of a coarse grid of vorticity instead of nine variables for

the full velocity gradient. Thus, the method significantly improves the solution of

the system in case of a small viscosity without choosing a computationally inefficient

time step. The current study extends the mathematical idea of the mixed, conform-

ing SAV finite element method to the multistep the second-order backward-difference

(BDF2) time discretization. Since it exhibits strong stability and damping properties

that are better than those of CN time discretization for the simulation of underresolved

regimes, BDF2 is one of the most popular choices of time-stepping schemes [83]. We

note that the backward differentiation formula is a class of time-stepping schemes

that has been commonly used and studied for the time-dependent ordinary and par-

tial differential equations [36, 44, 65, 130–132, 142, 154, 157]. In light of the previous

literature, herein we consider a successful SAV stabilization scheme to be used with

linearly extrapolated BDF2 (BDF2LE) formula in time without affecting accuracy.

This chapter carefully considers several physical and mathematical questions con-

cerning SAV solutions, and it is arranged as follows. Section 3.2 presents the SAV

algorithm based on the BDF2LE time-stepping method. In Section 3.3, we first in-

vestigate the conservation of the fundamental integral variants of fluid flow energy

and helicity for SAV solutions. It is well known these quantities are important for

the physical fidelity of the model, but many models do not conserve them. In many

Galerkin finite element discretization for incompressible flow problems, energy con-

servation is lost. In typical discretization, for example, by using Taylor-Hood finite

elements, the conservation of mass is only weakly enforced. However, on practi-

cal meshes, the divergence error can still be significant. To preserve the conserva-

tion of energy, the skew-symmetric or rotational formulations of the nonlinear term
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are used, [118]. A finite element formulation of [84] and [77] preserves energy and

helicity with a slightly altered definition of discrete helicity together with the skew-

symmetric formulation of the nonlinear term. In this report, by using underlying ideas

of [77, 84], we show that without viscous or external forces, the energy and helicity

will remain constant in time and they will be correctly balanced when these forces

are present.

Section 3.4 gives a complete numerical analysis of the SAV method along with the

proofs of unconditional stability and convergence. In our scheme, overall accuracy

and mass conservation in the discrete solution depends on the carefully chosen sta-

bilization parameters, namely the artificial viscosity and the grad-div stabilization.

Standard error analysis for the SAV method predicts that the optimal choice for the

artificial viscosity parameter should beO(h2) and the grad-div stabilization parameter

should be O(1).

Section 3.5 presents several numerical examples to present evidence of optimal accu-

racy for an analytical test problem, and also demonstrate the ability of SAV method

to give good results on the flow around a cylinder, flow between two offset circles and

Poisseuille’s Flow.

3.1 Notations and Mathematical Preliminaries

In this section, we present some definitions and inequalities which are necessary for

our numerical analysis. Throughout this thesis, we consider a convex polygonal or

polyhedral simply connected domain Ω in Rd, (d = 2, 3) with smooth boundary ∂Ω.

We use bold letters to denote the vector-valued functions and their spaces. To define

the method precisely, we will approximate the solution of (3.0.1) by using the finite

element method. We consider the standard function spaces for the continuous velocity

field and pressure spaces defined respectively by

X := (H1
0(Ω))d,

Q := L2
0(Ω). (3.1.1)
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The set of weakly divergence-free functions in X is defined by

V := {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

The variational formulation of (3.0.1) reads as follows: Find u : (0, T ] −→ X,

p : (0, T ] −→ Q satisfying

(ut,v) + ν(∇u,∇v) + b(u,u,v)− (p,∇ · v) = (f ,v) ∀v ∈ X, (3.1.2)

(q,∇ · u) = 0 ∀q ∈ Q, (3.1.3)

For a spatial discretization, we need to take the conforming finite element spaces

Xh ⊂ X, Qh ⊂ Q defined on a regular, admissible triangulation πh of the domain Ω

with maximum diameter h. It is assumed that the conforming finite element spaces

of the velocity and pressure spaces satisfy the discrete inf-sup condition ( or LBB

condition [142]), e.g., there is a constant β independent of the mesh size h such that

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)
|| ∇vh || || qh ||

≥ β > 0. (3.1.4)

We introduce the discretely divergence-free subspace Vh ⊂ Xh given by

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

Under the inf-sup condition (3.1.4), Vh is a nonempty, closed subspace of Xh and the

formulation in Xh is equivalent to Vh. Note that in general Vh 6⊂ V, see [141]. In

this thesis, we use the Taylor-Hood element pair (Xh;Qh) = (P d
k ;Pk−1) which are

defined as

Xh = {uh ∈ X : uh|K ∈ P d
k (K),∀K ∈ πh},

Qh = {qh ∈ Q : qh|K ∈ Pk−1(K),∀K ∈ πh}.

As noted in [38, 141], for k ≥ 2, Taylor-Hood finite element pair satisfies LBB-

condition (3.1.4). Additionally, following [122, 143], it is assumed that the finite

element spaces (Xh, Qh) satisfy the following well-known approximation properties

inf
vh∈Xh

(‖(u− vh)‖+ h‖∇(u− vh)‖) ≤ Chk+1‖u‖k+1 u ∈ Hk+1(Ω), (3.1.5)

inf
qh∈Qh

‖p− qh‖ ≤ Chk‖p‖k p ∈ Hk(Ω). (3.1.6)
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We define skew-symmetric trilinear form for the convective term in (3.0.1)

b∗(u,v,w) =
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v) (3.1.7)

From the definition of the skew-symmetric trilinear form, it immediately follows that

b∗(u,v,w) = −b∗(u,w,v), b∗(u,u,u) = 0. (3.1.8)

Error analysis will require the following upper bounds for the skew-symmetric trilin-

ear form (3.1.7).

Lemma 3.1.1 For u,v,w ∈ X, the skew-symmetric trilinear form satisfies the fol-

lowing bounds

b∗(u,v,w) ≤ C1 ‖∇u‖ ‖∇v‖ ‖∇w‖ (3.1.9)

where C1 := C1(Ω) is a constant depending only on the domain Ω.

Furthermore, it will be assumed that if v,∇v ∈ L∞(Ω), the following bound holds

b∗(u,v,w) ≤ 1

2

(
‖u‖ ‖∇v‖∞ ‖w‖+ ‖u‖ ‖v‖∞ ‖∇w‖

)
. (3.1.10)

Proof. For the proof of the first estimate, we start with the triangle inequality

|b∗(u,v,w)| ≤ 1

2

(∣∣(u · ∇)v,w)
∣∣+
∣∣(u · ∇)w,v)

∣∣) (3.1.11)

Then, we apply the inequality (2.0.5) to the first convective term in (3.1.11) with

p = r = 4 and q = 2

∣∣(u · ∇)v,w)
∣∣ ≤ ‖u‖L4(Ω) ‖∇v‖L2(Ω) ‖w‖L4(Ω) . (3.1.12)

Similarly, the application of (2.0.5) to the second convective term in (3.1.11) with

p = r = 4 and q = 2 gives

∣∣(u · ∇)w,v)
∣∣ ≤ ‖u‖L4(Ω) ‖∇w‖L2(Ω) ‖v‖L4(Ω) (3.1.13)

Lastly, inserting (3.1.12) and (3.1.13) to (3.1.11), applications of the Ladyzhenskaya

(2.0.19) inequality and the Sobolev imbedding theorem gives the estimate (3.1.9).
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To prove the second estimate, apply (2.0.5) inequality to the first convective term in

(3.1.11) with p = r = 2 and q =∞ and to the second convective term with p = q = 2

and r =∞ to get

b∗(u,v,w) ≤ 1

2

(
‖u‖ ‖∇v‖L∞(Ω) ‖w‖+ ‖u‖ ‖∇w‖ ‖v‖L∞(Ω)

)
(3.1.14)

Finally, by applying the Poincaré-Friedrichs inequality we get the estimate (3.1.10).

�

We define the discretely divergence-free function space by

Vh := {vh ∈ Xh |(∇ · vh, qh) = 0, ∀qh ∈ Qh}.

Under the inf-sup condition (3.1.4), the variational formulation of NSE (1.0.1) in

(Xh, Qh) is equivalent to in (Vh, Qh), see, e.g., [141]. We also assume that (Xh, Qh)

satisfy the well-known approximation properties (3.1.5)-(3.1.6) for the choice of typ-

ical piecewise polynomials of degree (k, k − 1). To formulate the SAV discretization

method, we need some further notations. Let πH be a family of triangulations of Ω

and let πh be a refinement of πH . We also introduce a coarse or large scale space

LH ⊂ L2(Ω)d on a regular mesh πH . We define LH on the same grid as (Xh, Qh)

by using lower degree polynomials in the case of (Xh, Qh) being a higher-order finite

element spaces. Specifically, we consider piecewise polynomials with degree k for

velocity space LH on the coarse mesh, we use piecewise polynomials with degree

k − 1 for discretization.

In addition, for the proposed method, the size of coarse mesh H , connected with LH ,

must be balanced between efficiency and accuracy. The larger H reduces storage and

yields more efficient projections into LH . However, in this case accuracy decreases.

In our case, as a result of error analysis, one has H = O(h1/2) in the case of k = 2

for not spoiling the asymptotic convergence rate. This choice has been used through

numerical experiments. Another common choice is to use a single mesh i.e., H = h,

which is also a very convenient way of programming to strike a good balance but it

requires computational resources.

Definition 3.1.1 The L2 projection PLH : (L2(Ω))d −→ LH is also defined by

(PLHφ− φ, lH) = 0 ∀lH ∈ LH . (3.1.15)

30



In addition, approximation on coarse mesh space LH is given by

‖φ− PLHφ‖ ≤ CHk|φ|k+1, φ ∈ L2(Ω) ∩ (Hk+1(Ω))d. (3.1.16)

Lemma 3.1.2 There exists C > 0 such that∥∥∥∥3wn+1 − 4wn + wn−1

2∆t

∥∥∥∥ ≤ 1

∆t

∫ tn−1

tn+1

‖wt‖2dt (3.1.17)∥∥∥∥3w(tn+1)− 4w(tn) + w(tn−1)

2∆t
− wt(tn+1)

∥∥∥∥ ≤ C∆t3
∫ tn+1

tn−1

‖wttt‖2dt (3.1.18)

∥∥2wn − wn−1 − wn+1
∥∥ ≤ C∆t3

∫ tn+1

tn−1

‖wtt‖2dt (3.1.19)

Proof. For the first estimate, we expand each term in BDF2 around tn+1 using the

fundamental theorem of calculus

wn+1 = wn+1 (3.1.20)

wn = wn+1 +

∫ tn

tn+1

wt(t)dt (3.1.21)

wn−1 = wn+1 +

∫ tn−1

tn+1

wt(t)dt (3.1.22)

Then, multiplying (3.1.20) with 3
2∆t

, (3.1.21) with −4
2∆t

, and (3.1.22) with 1
2∆t

and sum

them gives the remainder term of BDF2:

3wn+1 − 4wn + wn−1

2∆t
≤ 1

∆t

∫ tn+1

tn−1

w2
t (t)dt (3.1.23)

Integrating (3.1.23) yields the estimate (3.1.17). The second estimate is proved in a

similar manner using the Taylor’s theorem with integral remainders

wt(t
n+1) = wt(t

n+1) (3.1.24)

wn+1 = wn+1 (3.1.25)

wn = wn+1 − wt(tn+1)∆t+ wtt(t
n+1)

∆t2

2

+

∫ tn

tn+1

wttt(t)
(tn − t)2

2
dt (3.1.26)

wn−1 = wn+1 − 2wt(t
n+1)∆t+ 2wtt(t

n+1)∆t2

+

∫ tn−1

tn+1

wttt(t)
(tn−1 − t)2

2
dt (3.1.27)
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Then, multiplying (3.1.24) with −1, (3.1.25) with 3
2∆t

, (3.1.26) with −4
2∆t

and (3.1.27)

with 1
2∆t

and adding them we obtain(
3wn+1 − 4wn + wn−1

2∆t
− wt(tn+1)

)
≤ 1

4∆t

(∫ tn−1

tn+1

‖wttt‖2(tn−1 − t)2dt− 4

∫ tn+1

tn
‖wttt‖2(tn − t)2dt

)
(3.1.28)

Integrating (3.1.28) yields the estimate (3.1.18).

For the proof of the last estimation, we utilize the Taylor’s theorem with integral

remainders for each term in the linear extrapolation around tn+1

w(tn+1) = wn+1 (3.1.29)

wn = wn+1 − wt(tn+1)∆t+

∫ tn

tn+1

wtt(t)(t
n − t)dt (3.1.30)

wn−1 = wn+1 − 2wt(t
n+1)∆t+

∫ tn−1

tn+1

wtt(t)(t
n−1 − t)dt (3.1.31)

Then, multiply (3.1.29) and (3.1.31) by −1, (3.1.30) with 2, and add them gives

(2wn − wn−1)− w(tn+1)

≤ 2

∫ tn

tn+1

wtt(t)(t
n − t)dt−

∫ tn+1

tn−1

wtt(t)(t
n−1 − t)dt (3.1.32)

Integrating (3.1.32), the estimate (3.1.19) is obtained. �

3.2 Numerical Scheme

We approximate the solution of the NSE (3.0.1) by a second-order accurate SAV al-

gorithm based on BDF2LE by the following algorithm. In this method, for the linear

term, implicit time discretization and for the nonlinear term, two-step linear extrap-

olation have been used. Let a positive number N be given and define the step size

∆t = T/n, n = 1, , ..., N with given at time tn = n∆t as follows.

Scheme(BDF2LE Based SAV Method): Let SH be the new coarse mesh variable

and the initial condition u0 be given. Define u0
h,u

−1
h as the nodal interpolants of u0.
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Then, given unh, un−1
h , find (un+1

h , pn+1
h , Sn+1

H ) ∈ (Xh, Qh, LH) satisfying ∀(vh, qh, lH) ∈
(Xh, Qh, LH)(

3un+1
h − 4unh + un−1

h

2∆t
,vh

)
+ ν(∇un+1

h ,∇vh) + b∗(2unh − un−1
h ,un+1

h ,vh)

−(pn+1
h ,∇ · vh) + α1(∇× un+1

h ,∇× vh)− α1(Sn+1
H ,∇× vh)

+α2(∇ · un+1
h ,∇ · vh) = (f(tn+1),vh), (3.2.1)

(∇ · un+1
h , qh) = 0, (3.2.2)

(Sn+1
H −∇× unh, lH) = 0. (3.2.3)

Herein, α1 = α1(x, h) is the user-selected artificial (subgrid) viscosity parameter and

α2 is the grad-div stabilization parameter.

Remark 3.2.1 In this thesis, we assume that α1 and α2 are known positive constants.

Remark 3.2.2 In (3.2.1)-(3.2.3), the application of α1 can be thought of as follows.

The first term in (3.2.1) adds stabilization via artificial viscosity to all scales and the

second term in (3.2.1) via (3.2.3) subtracts the stabilization for the large scales. In

this way, the effective stabilization in the scheme acts only on small scales.

Remark 3.2.3 As it is mentioned in [73], Scheme (3.2.1)-(3.2.3) requires coarse grid

storage of vorticity with three variables, instead of the full velocity gradient with nine

variables of projection-based VMS, see [156]. In addition, the method adds and

subtracts the stabilization for consistency but the subtracted term is treated as extra

variable in a mixed method. BDF2LE-based SAV method is augmented with the grad-

div stabilization term adding such term improves the conservation of mass in finite

element approximation, [76].

3.3 Conservation Laws for BDF2LE Based SAV Solution

This section studies the discrete conservation laws of Scheme (3.2.1)-(3.2.3). We

present both the energy and helicity balance of the algorithm. In general, helicity

is not generally preserved for usual boundary conditions, see [78]. An alternative
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discrete helicity definition, proposed in [84], uses the solution of the discrete vorticity

equation instead of being the curl of the velocity. In this way, helicity balance is

recovered up to the boundary effect. Following the underlying ideas of [84], we

choose X̃h to be the vorticity space which is the same as velocity discrete space

but without imposing homogeneous Dirichlet boundary conditions. Herein, discrete

helicity definition for Galerkin discretization of the NSE which is denoted by Hh(t)

and computed as

Hh(t) =

∫
Ω

uh(t) ·wh(t).

Herein wh = ∇ × uh denotes the solution of a discrete vorticity equation which is

obtained by applying the rotation operator to Scheme (3.2.1)-(3.2.3). The discrete

vorticity equation is as follows: For given uh(t), for all t > 0, find (wh(t), λh, DH) ∈
(X̃h, Qh, LH) satisfying ∀(χh, τh, ρH) ∈ (Xh, Qh, LH)(

3wn+1
h − 4wn

h + wn−1
h

2∆t
,χh

)
+ ν(∇wn+1

h ,∇χh)− b∗(2wn
h −wn−1

h ,un+1
h ,χh)

+b∗(2unh − un−1
h ,wn+1

h ,χh)− (λn+1
h ,∇ · χh) + α1(∇×wn+1

h ,∇× χh)

−α1(Dn+1
H ,∇× χh) + α2(∇ ·wn+1

h ,∇ · χh) = (∇× f(tn+1),χh), (3.3.1)

(∇ ·wn+1
h , τh) = 0, (3.3.2)

(Dn+1
H −∇×wn

h, ρH) = 0, (3.3.3)

wn+1
h = Ih(∇× un+1

h ) on ∂Ω, (3.3.4)

wn+1
h = Ih(∇× u0

h) for t = 0,(3.3.5)

where Ih : ∇×Xh −→ X̃h is an interpolation operator and λh is a multiplier which

stands for the discrete divergence-free condition for vorticity. Note that due to (3.3.2),

wh is also in Xh.

We first state the energy balance of the SAV method.

Theorem 3.3.1 Solutions of Scheme (3.2.1)-(3.2.3) satisfy the discrete energy bal-

ance:∥∥uNh ∥∥2
+
∥∥2uNh − uN−1

h

∥∥2

+∆t
N−1∑
n=1

(
ν
∥∥∇un+1

h

∥∥2
+ α1(∇× (un+1

h − unh),∇× un+1
h ) + α2

∥∥∇ · un+1
h

∥∥2
)

=
∥∥u1

h

∥∥2
+
∥∥2u1

h − u0
h

∥∥2
+ (f(tn+1),un+1

h ). (3.3.6)
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Proof. Set vh = un+1
h in (3.2.1) and qh = pn+1

h in (3.2.2), and use the identity

a(3a− 4b+ c) =
1

2
((a2 − b2) + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2).

This yields

1

4∆t

∥∥un+1
h

∥∥2 − 1

4∆t
‖unh‖

2 +
1

2∆t

∥∥2un+1
h − unh

∥∥2 − 1

2∆t

∥∥2unh − un−1
h

∥∥2

+
1

2∆t

∥∥un+1
h − 2unh + un−1

h

∥∥2
+ α1(∇× (un+1

h − unh),∇× un+1
h )

+ν
∥∥∇un+1

h

∥∥2
+ α2

∥∥∇ · un+1
h

∥∥2
= (f(tn+1),un+1

h ).(3.3.7)

Now, summing from n = 1 to N − 1 and multiplying each term by 4∆t proves the

stated result. �

We give the helicity balance of the scheme by using (3.3.1)− (3.3.5).

Theorem 3.3.2 Solutions of Scheme (3.2.1)-(3.2.3) satisfy the following discrete he-

licity balance:

(wN
h ,u

N
h ) + (2wN

h −wN−1
h , 2uNh − uN−1

h )

+
N−1∑
n=1

(wn+1
h − 2wn

h + wn−1
h ,un+1

h − 2unh + un−1
h )

+ ∆tν
N−1∑
n=1

(∇wn+1
h ,∇un+1

h ) + ∆tα1

N−1∑
n=1

(∇×wn+1
h ,∇× (un+1

h − unh))

+ ∆tα2

N−1∑
n=1

(∇ ·wn+1
h ,∇ · un+1

h ) = (w1
h,u

1
h) + (2w1

h −w0
h, 2u

1
h − u0

h)

+ 2∆t
N−1∑
n=1

(
(f(tn+1),wn+1

h ) + (∇× f(tn+1),un+1
h )

)
. (3.3.8)

Proof. Choose vh = wn+1
h in (3.2.1) and χh = un+1

h in (3.3.1). Then, the pressure

term and one of the nonlinear terms in (3.3.1) vanish and we get(
3un+1

h − 4unh + un−1
h

2∆t
,wn+1

h

)
+ ν(∇un+1

h ,∇wn+1
h ) + b∗(2unh − un−1

h ,un+1
h ,wn+1

h )

+α1(∇× un+1
h ,∇×wn+1

h )− α1(Sn+1
H ,∇×wn+1

h )

+α2(∇ · un+1
h ,∇ ·wn+1

h ) = (f(tn+1),wn+1
h ) (3.3.9)

and

35



(
3wn+1

h − 4wn
h + wn−1

h

2∆t
,uh

)
+ ν(∇wn+1

h ,∇un+1
h ) + b∗(2unh − un−1

h ,wn+1
h ,un+1

h )

+α1(∇×wn+1
h ,∇× un+1

h )− α1(Dn+1
H ,∇× un+1

h )

+α2(∇ ·wn+1
h ,∇ · un+1

h ) = (∇× f(tn+1),un+1
h ). (3.3.10)

Now, setting lH = ∇×wn+1
h in (3.2.3) and ρH = ∇× un+1

h in (3.3.3) we get

(Sn+1
H ,∇×wn+1

h ) = (∇× unh,∇×wn+1
h ), (3.3.11)

and

(Dn+1
H ,∇× un+1

h ) = (∇×wn
h,∇× un+1

h ). (3.3.12)

Then, substituting (3.3.11) into the equation (3.3.9) and (3.3.12) into the equation

(3.3.10) leads to(
3un+1

h − 4unh + un−1
h

2∆t
,wn+1

h

)
+ ν(∇un+1

h ,∇wn+1
h )

+b∗(2unh − un−1
h ,un+1

h ,wn+1
h ) + α1(∇× (un+1

h − unh),∇×wn+1
h )

+α2(∇ · un+1
h ,∇ ·wn+1

h ) = (f(tn+1),wn+1
h ), (3.3.13)

and (
3wn+1

h − 4wn
h + wn−1

h

2∆t
,uh

)
+ ν(∇wn+1

h ,∇un+1
h )

+b∗(2unh − un−1
h ,wn+1

h ,un+1
h ) + α1(∇× (wn+1

h −wn
h),∇× un+1

h )

+α2(∇ ·wn+1
h ,∇ · un+1

h ) = (∇× f(tn+1),un+1
h ). (3.3.14)

Next, rewriting the first terms on the left hand sides of (3.3.13) and (3.3.14) yields

1

4∆t
(un+1

h ,wn+1
h )− 1

4∆t
(unh,w

n
h)

+
1

4∆t
(2un+1

h − unh,w
n+1
h −wn

h)− 1

4∆t
(2unh − un−1

h ,wn
h −wn−1

h )

+
1

4∆t
(un+1

h − 2unh + un−1
h ,wn+1

h − 2wn
h + wn−1

h )

+ ν(∇un+1
h ,∇wn+1

h ) + b∗(2unh − un−1
h ,un+1

h ,wn+1
h )

+ α1(∇× (un+1
h − unh),∇×wn+1

h ) + α2(∇ · un+1
h ,∇ ·wn+1

h ) = (f(tn+1),wn+1
h ),
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and

1

4∆t
(wn+1

h ,un+1
h )− 1

4∆t
(wn

h,u
n
h)

+
1

4∆t
(2wn+1

h −wn
h,u

n+1
h − unh)− 1

4∆t
(2wn

h −wn−1
h ,unh − un−1

h )

+
1

4∆t
(wn+1

h − 2wn
h + wn−1

h ,un+1
h − 2unh + un−1

h )

+ ν(∇wn+1
h ,∇un+1

h ) + b∗(2unh − un−1
h ,wn+1

h ,un+1
h )

+ α1(∇× (wn+1
h −wn

h),∇× un+1
h ) + α2(∇ ·wn+1

h ,∇ · un+1
h )

= (∇× f(tn+1),un+1
h ).

Add these two equations and use (3.1.8) to obtain

1

2∆t
(un+1

h ,wn+1
h )− 1

2∆t
(unh,w

n
h) +

1

2∆t
(2un+1

h − unh,w
n+1
h −wn

h)

− 1

2∆t
(2unh − un−1

h ,wn
h −wn−1

h )

+
1

2∆t
(un+1

h − 2unh + un−1
h ,wn+1

h − 2wn
h + wn−1

h )

+ 2α1(∇× (un+1
h − unh),∇×wn+1

h ) + 2ν(∇un+1
h ,∇wn+1

h )

+ 2α2(∇ · un+1
h ,∇ ·wn+1

h ) = (f(tn+1),wn+1
h ) + (∇× f(tn+1),un+1

h ).

Finally, summing over time steps and multiplying both sides by 2∆t gives the re-

quired helicity balance. �

3.4 Numerical Analysis

This section provides unconditional stability results and convergence analysis of the

proposed Algorithm 3.2. To do this, for theoretical analysis we present the finite

element discretization in Vh.

Then, BDF2LE based SAV method in Vh reads as follows: Find (un+1
h , Sn+1

H ) ∈
(Vh, LH) satisfying ∀(vh, lH) ∈ (Vh, LH).(

3un+1
h − 4unh + un−1

h

2∆t
,vh

)
+ ν(∇un+1

h ,∇vh) + b∗(2unh − un−1
h ,un+1

h ,vh)

+α1(∇× un+1
h ,∇× vh)− α1(Sn+1

H ,∇× vh)

+α2(∇ · un+1
h ,∇ · vh) = (f(tn+1),vh) (3.4.1)

(Sn+1
H −∇× unh, lH) = 0 (3.4.2)
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The following lemma is required for proving the existence of discrete solutions to

(3.4.1)-(3.4.2), see [155]. This motivates the more detailed error analysis that follows.

Lemma 3.4.1 Let f ∈ L∞(0, T ;H−1(Ω)) and uh be a solution of Scheme (3.2.1)-

(3.2.3). Then, for any ∆t > 0 and N ≥ 1

‖uNh ‖2 + ‖2uNh − uN−1
h ‖2 + 2∆t

N−1∑
n=1

(
ν‖∇un+1

h ‖2 + 2α2‖∇ · un+1
h ‖2

)
+2α1∆t

∥∥∇× uNh
∥∥2 ≤ ‖u1

h‖2 + ‖2u1
h − u0

h‖2

+2α1∆t
∥∥∇× u1

h

∥∥2
+ 2∆t

N−1∑
n=1

ν−1‖f(tn+1)‖2
−1. (3.4.3)

Proof. To start the proof, we first choose vh = un+1
h in (3.4.1), vanishing the skew-

symmetric trilinear term to obtain(
3un+1

h − 4unh + un−1
h

2∆t
,un+1

h

)
+ v(∇un+1

h ,∇un+1
h ) + α1(∇× un+1

h ∇× un+1
h )

+α2(∇ · un+1
h ,∇ · un+1

h ) = α1(Sn+1
H ,∇× un+1

h ) + (f(tn+1),un+1
h ).(3.4.4)

Next, for the first term in the left-hand side of (3.4.4), we use the identity;

1

2
(3a− 4b+ c)a =

1

4
[a2 + (2a− b)2]− 1

4
[b2 + (2b− c)2] +

1

4
(a− 2b+ c)2.(3.4.5)

Then, one has

1

4∆t

[
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

]
− 1

4∆t

[
‖unh‖2 + ‖2unh − un−1

h ‖2

]
+

1

4∆t
‖un+1

h − 2unh + un−1
h ‖2 + ν‖∇un+1

h ‖2 + α1‖∇ × un+1
h ‖2

+α2‖∇ · un+1
h ‖2 = α1(Sn+1

H ,∇× un+1
h ) + (f(tn+1),un+1

h ) (3.4.6)

The application of Cauchy-Schwarz inequality, Young’s inequality, and the dual norm

on the right-hand side terms of (5.3.5) gives

1

4∆t

[
‖un+1

h ‖2 + ‖2un+1
h − unh‖2

]
− 1

4∆t

[
‖unh‖2 + ‖2unh − un−1

h ‖2

]
+

1

4∆t
‖un+1

h − 2unh + un−1
h ‖2 +

ν

2
‖∇un+1

h ‖2 +
α1

2
‖∇ × un+1

h ‖2

+α2‖∇ · un+1
h ‖2 ≤ α1

2

∥∥Sn+1
H

∥∥2
+

1

2ν
‖f(tn+1)‖2

−1 (3.4.7)
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Note that choosing lH = Sn+1
H in (3.4.2) and using the Cauchy-Schwarz and Young’s

inequalities, we obtain the following bound for the first term on the right-hand side of

(3.4.7)

‖Sn+1
H ‖2 = (Sn+1

H ,∇× unh) ≤ ‖∇× unh‖‖Sn+1
H ‖ ≤ 1

2
‖∇ × unh‖2 +

1

2
‖Sn+1

H ‖2,

so that

‖Sn+1
H ‖ ≤ ‖∇ × unh‖. (3.4.8)

Using the above inequality, dropping the non-negative term
1

4∆t
‖un+1

h − 2unh + un−1
h ‖2

and rearranging terms in (3.4.7), we obtain

1

4∆t

[
‖un+1

h ‖2 − ‖unh‖2

]
+

1

4∆t

[
‖2un+1

h − unh‖2 − ‖2unh − un−1
h ‖2

]
+
ν

2
‖∇un+1

h ‖2

+
α1

2
‖∇ × un+1

h ‖2 + α2‖∇ · un+1
h ‖2 ≤ α1

2
‖∇ × unh‖2 +

ν−1

2
‖f(tn+1)‖2

−1.

Multiplying both sides of the inequality by 4∆t and taking the sum from n = 1 to

n = N − 1 yields the required stability bound. �

We proceed to present an error analysis of our method. To obtain the optimal error

estimations, we assume that the following regularity assumptions are satisfied by the

analytical solution:

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)) ∩H2(0, T ;H1(Ω)),

p ∈ L2(0, T ;Hk(Ω)).

(3.4.9)

Theorem 3.4.1 Let (u, p) be the solution of the NSE such that the regularity as-

sumptions (3.4.9) are satisfied. Then, for any N , the following bound holds for the

difference en = un − unh:
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‖eN‖2 + ‖2eN − eN−1‖2 +
N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ν∆t
N−1∑
n=1

∥∥∇en+1
∥∥2

≤ exp(Cν−1T )

[
‖e1‖2 + ‖2e1 − e0‖2 + ν−1h2k+2 ‖|ut|‖2

2,k+1

+ν−1h2k ‖|u|‖2
2,k+1 ‖|∇u|‖

2
∞,0 + (ν + ν−1α2

1 + α2 + ν−2)h2k ‖|u|‖2
2,k+1

+α−1
2 h2k+2 ‖|p|‖2

2,k+1 + α1h
2k ‖|u|‖2

2,k+1 + α1H
2k ‖|u|‖2

2,k+1

+α1∆t2 ‖|ut|‖2
∞,0 + ν−1∆t4 ‖|uttt|‖2

2,0

+ν−1∆t4 ‖|∇u|‖2
∞,0 ‖|∇utt|‖

2

]
(3.4.10)

Proof. To obtain the error equation, denote u(tn) = un. Then, the true solutions

(un+1
h , pn+1

h , Sn+1
H ) at time level tn+1 satisfy(

3un+1 − 4un + un−1

2∆t
,vh

)
+ ν
(
∇un+1,∇vh

)
+ b∗

(
2un − un−1,un+1,vh

)
+α1

(
∇× un+1,∇× vh

)
− α1

(
∇× un+1,∇× vh

)
+ α2

(
∇ · un+1,∇ · vh

)
−
(
pn+1,∇ · vh) =

(
fn+1,vh

)
+ Intp(un+1;vh) (3.4.11)

where the local truncation error is

Intp(un+1,vh) =

(
3un+1 − 4un + un−1

2∆t
− un+1

t ,vh

)
+b∗
(
2un − un−1,un+1,vh

)
− b∗

(
un+1,un+1,vh

)
.

Subtracting the equation (3.4.1) from (3.4.11) yields(
3en+1 − 4en + en−1

2∆t
,vh

)
+ ν(∇en+1,∇vh) + b∗(2un − un−1,un+1,vh)

− b∗(2unh − un−1
h ,un+1

h ,vh) + α1(∇× en+1,∇× vh) + α2(∇ · en+1,∇ · vh)

= α1(∇× un+1 − Sn+1
H ,∇× vh) + (pn+1,∇ · vh) + Intp(un+1;vh) (3.4.12)

Adding and subtracting terms for the convective terms, by using the properties (3.1.8),

one gets

b∗(2un − un−1,un+1,vh)− b∗(2unh − un−1
h ,un+1

h ,vh)

= b∗(2un − un−1,un+1,vh)− b∗(2unh − un−1
h ,un+1,vh)

+b∗(2unh − un−1
h ,un+1,vh)− b∗(2unh − un−1

h ,un+1
h ,vh)

= b∗(2en − en−1,un+1,vh) + b∗(2unh − un−1
h , en+1,vh). (3.4.13)
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Decompose the velocity error in the usual way:

en =
(
un − Iu(un)

)
+
(
Iu(un)− unh

)
= ηn + φn

h, (3.4.14)

where Iu(un) is an interpolant of un in Vh.

Using error decomposition, vh = φn+1
h in the (3.1.8) yields

1

4∆t

[
‖φn+1

h ‖2 + ‖2φn+1
h − φn

h‖2

]
− 1

4∆t

[
‖φn

h‖2 + ‖2φn
h − φn−1

h ‖2

]
+

1

4∆t
‖φn+1

h − 2φn
h + φn−1

h ‖2 + ν‖∇φn+1
h ‖2

+α1‖∇ × φn+1
h ‖2 + α2‖∇ · φn+1

h ‖2

= −
(

3ηn+1 − 4ηn + ηn−1

2∆t
,φn+1

h

)
− ν(∇ηn+1,∇φn+1

h )

−b∗(2unh − un−1
h ,ηn+1,φn+1

h )− b∗(2ηn − ηn−1,un+1,φn+1
h )

−b∗(2φn
h − φn−1

h ,un+1,φn+1
h )− α1(∇× ηn+1,∇× φn+1

h )

+α1(∇× un+1 − Sn+1
H ,∇× φn+1

h )− α2(∇ · ηn+1,∇ · φn+1
h )

+(pn+1 − qh,∇ · φn+1
h ) + Intp(un+1;φn+1

h ) (3.4.15)

The terms on the right-hand side of (3.4.15) have to be bounded. For the first term,

applying Cauchy-Schwarz, Poincaré-Friedrichs inequalities, the estimation (3.1.17)

and Young’s inequality, one gets

∣∣∣∣− (3ηn+1 − 4ηn + ηn−1

2∆t
,φn+1

h

)∣∣∣∣ ≤ ∥∥∥∥3ηn+1 − 4ηn + ηn−1

2∆t

∥∥∥∥∥∥∇φn+1
h

∥∥
≤ Cν−1

∆t

∫ tn+1

tn−1

‖ηt‖2dt

+
ν

16
‖∇φn+1

h ‖2. (3.4.16)

The viscosity term is bounded by using Cauchy-Schwarz and Young’s inequalities:∣∣− ν(∇ηn+1,∇φn+1
h )

∣∣ ≤ ν‖∇ηn+1‖‖∇φn+1
h ‖

≤ Cν‖∇ηn+1‖2 +
ν

16
‖∇φn+1

h ‖2. (3.4.17)

We proceed to bound the convective terms using Cauchy-Schwarz, Poincaré-Friedrichs,

Young’s inequalities and the estimation (3.1.9):∣∣− b∗(2unh − un−1
h ,ηn+1, φn+1

h )
∣∣ ≤ C

(
‖∇unh‖+ ‖∇un−1

h ‖
)
‖∇ηn+1‖‖∇φn+1

h ‖

≤ Cν−1‖∇ηn+1‖2
(
‖∇unh‖2 + ‖∇un−1

h ‖2
)

+
ν

16
‖∇φn+1

h ‖2, (3.4.18)
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and

∣∣− b∗(2ηn − ηn−1,un+1,φn+1
h ))

∣∣ ≤ C
(
‖∇ηn‖+ ‖∇ηn−1‖

)
‖∇un+1

h ‖‖∇φn+1
h ‖

≤ Cν−1‖∇un+1‖2
(
‖∇ηn‖2 + ‖∇ηn−1‖2

)
+
ν

16
‖∇φn+1

h ‖2. (3.4.19)

Using (3.1.10), one gets for the last convective term

∣∣− b∗(2φn
h − φn−1

h ,un+1,φn+1
h )

∣∣
≤ 1

2

(∥∥2φn
h − φn−1

h

∥∥∥∥∇un+1
∥∥
∞

∥∥φn+1
h

∥∥+
∥∥2φn

h − φn−1
h

∥∥∥∥un+1
∥∥
∞

∥∥∇φn+1
h

∥∥)
≤ C

(
‖φn

h‖+ ‖φn−1
h ‖

) ∥∥∇φn+1
h

∥∥ (
∥∥∇un+1

∥∥
∞ + ‖un+1‖∞)

≤ Cν−1
(
‖φn

h‖
2 + ‖φn−1

h ‖2
)
(
∥∥∇un+1

∥∥2

∞ + ‖un+1‖2
∞) +

ν

16

∥∥∇φn+1
h

∥∥2
. (3.4.20)

The next couple of estimates will use Cauchy-Schwarz and Young’s inequalities and

they will also contribute to the error bound. One obtains in a straightforward way

∣∣− α1(∇× ηn+1,∇× φn+1
h )

∣∣ ≤ Cν−1α2
1‖∇ηn+1‖2 +

ν

16
‖∇φn+1

h ‖2,(3.4.21)∣∣− α2(∇ · ηn+1,∇ · φn+1
h )

∣∣ ≤ α2‖∇ · ηn+1‖
∥∥∇ · φn+1

h

∥∥∣∣− ν(∇ηn+1,∇φn+1
h )

∣∣ ≤ Cα2‖∇ηn+1‖2 +
α2

2
‖∇ · φn+1

h ‖2. (3.4.22)

Next, we bound the coarse mesh projection term. Using the definition of the L2-

projection operator PLH (3.1.15) and from (3.4.2), one can write Sn+1
H = PLH (∇ ×

unh). Then, we add and subtract PLH (∇×un) and∇×un to the coarse mesh projec-

tion term and use error definition, one gets

∣∣α1

(
∇× un+1 − Sn+1

H ,∇× φn+1
h

)∣∣
=
∣∣α1

(
PLH (∇× en) + (I − PLH )(∇× un) + (∇× (un+1 − un)),∇× φn+1

h

)∣∣.
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Using error decomposition (3.4.14), Cauchy-Schwarz, and Young’s inequalities, in-

verse estimation and (3.4.8) yields∣∣α1

(
PLH (∇× en) + (I − PLH )(∇× un) + (∇× (un+1 − un))

)
,∇× φn+1

h

∣∣
= α1

(
PLH (∇× en) + (I − PLH )(∇× un) + (∇× un+1 −∇× un),∇× φn+1

h

)
= α1(PLH (∇× ηn),∇× φn+1

h ) + α1(PLH (∇× φnh),∇× φn+1
h )

+ α1((I − PLH )(∇× un),∇× φn+1
h ) + α1((∇× un+1 −∇× un),∇× φn+1

h )

≤ Cα1

∥∥PLH (∇× ηn)‖2 + Cα1‖PLH (∇× φn
h)‖2

+Cα1‖(I − PLH )(∇× un)‖2 + Cα1‖∇ × (un+1 − un)‖2 +
α1

2

∥∥∇× φn+1
h

∥∥2

≤ Cα1‖∇ηn‖2 + Cα1h
−2‖φn

h‖2 + Cα1‖(I − PLH )(∇× un)‖2

+Cα1‖∇ × (un+1 − un)‖2 +
α1

2
‖∇ × φn+1

h ‖2. (3.4.23)

To bound the pressure term, we use the fact that (∇ ·φh, qh) = 0, ∀qh ∈ Vh together

with Cauchy-Schwarz and Young’s inequalities:∣∣(p(tn+1),∇ · φn+1
h

)∣∣ ≤ Cα−1
2 ‖p(tn+1)− qh

∥∥2
+
α2

4
‖∇ · φn+1

h ‖2.(3.4.24)

Finally, the local truncation error Intp(un+1;φn+1
h ) can be bounded as follows. The

first term of Intp(un+1;φn+1
h ) is estimated by using Cauchy-Schwarz, Poincaré Friedrichs,

Young’s, and Hölder’s inequalities together with the estimation (3.1.18)∣∣∣∣− (ut(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2∆t
,φn+1

h

)∣∣∣∣
≤

∥∥∥∥3u(tn+1)− 4u(tn) + u(tn−1)

2∆t
− ut(t

n+1)

∥∥∥∥∥∥φn+1
h

∥∥
≤ C∆t3ν−1

∫ tn+1

tn−1

‖uttt‖2dt+
ν

16
‖∇φn+1

h ‖2. (3.4.25)

To bound the convective terms in Intp(un+1;φn+1
h ), we first rearrange the terms.

Using the bound (3.1.9) and applying Cauchy-Schwarz, Young’s and Hölder’s in-

equalities together with the the estimation (3.1.19), we get

b∗
(
2un − un−1,un+1,vh

)
− b∗

(
un+1,un+1,vh

)
= b∗

(
2un − un−1 − un+1,un+1,vh

)
≤ C

∥∥∇(2un − un−1 − un+1)
∥∥∥∥∇un+1

∥∥∥∥φn+1
h

∥∥
≤ C∆t3ν−1

∥∥∇un+1
∥∥2
∫ tn+1

tn−1

‖∇utt‖2dt

+
ν

16
‖∇φn+1

h ‖2. (3.4.26)
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Collecting all estimates (3.4.16)-(3.4.26) and the equality (3.4.15) simplifies to

1

4∆t

[
‖φn+1

h ‖2 − ‖φn
h‖2

]
+

1

4∆t

[
‖2φn+1

h − φn
h‖2 − ‖2φn

h − φn−1
h ‖2

]
+

1

4∆t
‖φn+1

h − 2φn
h + φn−1

h ‖2 +
7ν

16
‖∇φn+1

h ‖2

+
α1

2

∥∥∇× φn+1
h

∥∥2
+
α2

4
‖∇ · φn+1

h ‖2

≤ Cν−1

∆t

∫ tn+1

tn−1

‖ηt‖2dt

+Cν−1‖∇ηn+1‖2
(
‖∇unh‖2 + ‖∇un−1

h ‖2
)

+Cν−1‖∇un+1‖2
(
‖∇ηn‖2 + ‖∇ηn−1‖2

)
+Cν−1

(
‖φn

h‖
2 + ‖φn−1

h ‖2
)
(
∥∥∇un+1

∥∥2

∞ + ‖un+1‖2
∞)

+C(ν + ν−1α2
1 + α2 + ν−2)‖∇ηn+1‖2 + Cα−1

2

∥∥ inf
qh∈Qh

∥∥p(tn+1)− qh
∥∥2

+Cα1‖∇ηn‖2 + Cα1h
−2‖φn

h‖2 + Cα1‖(I − PLH )(∇× un)‖2

+Cα1‖∇ × (un+1 − un)‖2 + C∆t3ν−1

∫ tn+1

tn−1

‖uttt‖2dt

+C∆t3ν−1
∥∥∇un+1

∥∥2
∫ tn+1

tn−1

‖∇utt‖2dt. (3.4.27)

Multiplication of each term by 4∆t, summation from n = 1 to n = N − 1, Lemma

3.4.1 and the approximation properties along with (3.1.5)-(3.1.6) and (3.1.16) yields

‖φN
h ‖2 + ‖2φN

h − φN−1
h ‖2 +

N−1∑
n=1

‖φn+1
h − 2φn

h + φn−1
h ‖2

+∆t
N−1∑
n=1

(ν
∥∥∇φn+1

h

∥∥2
+ α1

∥∥∇× φn+1
h

∥∥2
+ α2

∥∥∇ · φn+1
h

∥∥2
)

≤ ‖φ1
h‖2 + ‖2φ1

h − φ0
h‖2 + C

(
ν−1h2k+2 ‖|ut|‖2

2,k+1

+ν−1h2k ‖|u|‖2
2,k+1 ‖|∇u|‖

2
∞,0 + (ν + ν−1α2

1 + α2 + ν−2)h2k ‖|u|‖2
2,k+1

+α−1
2 h2k+2 ‖|p|‖2

2,k+1 + α1h
2k ‖|u|‖2

2,k+1 + α1H
2k ‖|u|‖2

2,k+1 + α1∆t2 ‖|ut|‖2
∞,0

+ν−1∆t4 ‖|uttt|‖2
2,0 + ν−1∆t4 ‖|∇u|‖2

∞,0 ‖|∇utt|‖
2

)
+C∆t(ν−1 + α1h

−2)
N−1∑
n=1

‖φn
h‖

2 . (3.4.28)

�

Theorem 3.4.1 and the estimation (3.1.16) immediately yield the following Corollary,

proving second-order accuracy both in time and space.
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Corollary 3.4.1 In addition to the regularity assumptions of (3.4.9), consider the

Taylor-Hood finite element spaces (Xh, Qh) = (P2, P1), the coarse mesh size H =

O(
√
h) , the artificial viscosity parameter α1 = O(h2) and the grad-div stabilization

parameter α2 ≤ O(1). Then, the error in velocity satisfies second order accuracy

both in space and time such that for all ∆t > 0

‖eN‖2 + ‖2eN − eN−1‖2 +
N−1∑
n=1

‖en+1 − 2en + en−1‖2 + ν∆t
N−1∑
n=1

∥∥∇en+1
∥∥2

≤ C

(
‖e1‖2 + ‖e0‖2 + h4 + ∆t4

)
.

Remark 3.4.1 The initial approximation of velocity u0
h has to be weakly divergence-

free for the method to be stable. Moreover, to obtain optimal order of accuracy,

it needs to be suitably interpolated in Vh in such a way that ‖e0‖ is optimal, that is

‖e0‖ ≤ Ch2‖u‖2. Since we use a two-step method in this study, two initial conditions

u0
h and u1

h are needed. Herein, for simplicity, we consider u0
h = u1

h = Iu(u0) for

some interpolation Iu in Vh, which guarantees second-order accuracy both in space

and time. Alternatively, u1
h can be obtained from the Crank-Nicolson method by using

u0
h as described in [87, 164].

3.5 Numerical Experiments

In this part, we provide four numerical illustrations testing a numerical solution of

(3.2.1)-(3.2.3), namely the BDF2LE-SAV method. The first test verifies the order of

the convergence rates which are obtained in Corollary 3.4.1. In addition, we demon-

strate the efficiency of the BDF2LE-SAV method on the flow around a cylinder, two-

dimensional flow between two offset circles problems, and Poisseuille’s Flow. All

solutions are compared with the CN-SAV method of [73]. Simulations are carried out

by considering Taylor-Hood finite element spaces (P2, P1) to approximate velocity

and pressure and P1 for the large scale space LH . All the numerical experiments are

implemented with the finite element software package Freefem++, [42].
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3.5.1 Convergence Rates

This subsection verifies the predicted convergence rates of our numerical scheme

(3.2.1)-(3.2.3). For this purpose, we consider (3.0.1) with the prescribed solution

given by

u =

 (1 + 0.01t)sin(2πy)

(1 + 0.01t)cos(2πx)

 , p = x+ y (3.5.1)

which satisfies (3.0.1). Simulations are performed in a unit square Ω := [0, 1]2 with

ν = 1 and the last time T = 0.01. The coarse mesh size H =
√
h, the parameters

α1 = h2 and α2 = 1 are chosen. The external force f is determined by the true

solution (3.5.1). Boundary conditions are set to be true solutions on ∂Ω. We compute

approximate solutions on successive mesh refinements and the velocity errors are

computed in the discrete norm L2(0, T ;H1(Ω))

‖u− uh‖2,1 =

{
∆t

N∑
n=1

‖u(tn)− unh‖2

}1/2

.

Results for errors are shown in Table 3.1 and second order accuracy is observed,

exactly as the theory predicts.

Table 3.1: Errors and convergence rates for the Scheme (3.2.1)-(3.2.3).

h ∆t ‖u− uh‖2,1 Rate

1/4 0.01 5.25977e-1 –

1/8 0.005 1.3403e-1 1.96

1/16 0.0025 3.397e-2 1.98

1/32 0.00125 8.50843e-3 1.99

1/64 0.000625 2.13204e-3 1.99

1/128 0.0003125 5.32992e-4 2.00
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3.5.2 Flow Around a Cylinder

The second example is considered to verify the efficiency of our scheme (3.2.1)-

(3.2.3) on two-dimensional flow along a rectangular channel in which a cylinder is

depicted as seen in Figure 3.1 ( [92]). This famous benchmark problem is highly

preferable since it exhibits real flow characteristics and provides highly reliable data

that allows measuring the accuracy of codes. In addition, simulating this flow accu-

rately is critical to observing the behavior of eddies. The study [92] has addressed

this problem and presented the computational results to define the reference values.

The accuracy of these reference values has been significantly improved in [144].

Figure 3.1: Domain Ω of the test problem

The inflow and outflow velocities are presented as

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin
(πt

8

)
y(0.41− y),

u2(0, y, t) = u2(2.2, y, t) = 0.

We enforce no-slip boundary conditions at the cylinder and walls. We choose zero

initial condition u(x, y, t) = 0, the kinematic viscosity ν = 10−3 and the forcing

f = 0. Also, we choose artificial viscosity parameters as α1 = h2 and α2 = 0.001 for

regular mesh size h and the coarse mesh size H =
√
h. In all computations, we use a

very coarse mesh consisting of only 10210 total degrees of freedom with the last time

T = 8 and time-step ∆t = 0.01. We first present the flow development in Figure 3.2

which matches with the results of [92, 144]. With increasing inflow, we observe the
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appearance of two vortices behind the cylinder, see t = 2 and t = 4. Then vortices

leave the cylinder and the formation of a vortex street is clearly seen, which lasts until

t = 8. The most frequently monitored quantities of interest that are considered in

Figure 3.2: The velocity contours of the scheme (3.2.1)-(3.2.3) at t = 2, 4, 5, 6, 7, 8

(from up to down).

the literature for this flow are the drag cd(t), the lift coefficient cl(t), and pressure

drop across the object ∆p(t). These values are defined in [92] as follows:

cd(t) =
2

ρLU2
max

∫
S

(
ρν
∂utS
∂n

ny − p(t)nx
)
dS

cl(t) = − 2

ρLU2
max

∫
S

(
ρν
∂utS
∂n

nx + p(t)ny
)
dS

∆p(t) = p(t; 0.15, 0.2)− p(t; 0.25, 0.2)
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where S is the boundary of the cylinder, Umax is the maximum mean flow, L is the

diameter of the cylinder, n = (nx, ny)
T is the normal vector on the circular boundary

S and utS is the tangential velocity for tS = (ny,−nx)T the tangential vector. The

plots of evolution of the drag and lift coefficient and the pressure difference are also

presented in Figure 3.3 and the graphs are consistent with DNS results of [92, 144].

Note that in Table 3.2, we take only the maximum drag cd,max and maximum lift

cl,max values behind the cylinder together with the times at which they occur. The

following reference intervals are given in [92, 144]:

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49].

We compare drag and lift coefficients of the CN-SAV method which provides 10239

degrees of freedom with time step size ∆t = 0.001. The computed coefficients of

Scheme (3.2.1)-(3.2.3) (BDF2LE-SAV) and CN-SAV are compared with reference

values in [144] that are provided by using about 500000 degrees of freedom in space

and time step size ∆t = 0.00125. In Table 3.2, we observe that in each case, the

Table 3.2: Comparison of maximum drag and lift coefficients and the times at which

they occur.

Method cd,max t(cd,max) cl,max t(cl,max)

CN-SAV(Ref [73]) 2.87198 3.685 0.436564 5.784

Ref [144] 2.95092 3.93 0.47795 5.69

BDF2LE-SAV 2.96523 3.93 0.452956 5.78

BDF2LE-SAV method provides the best prediction of the maximum drag coefficient

compared with [73]. Also, the proposed method predicts the maximum lift coefficient

better than the CN-SAV method. In each case, the results are much closer to the

reference values of [144]. Thus, it is fair to say with the BDF2LE-SAV method more

accurate results are obtained with a relatively small number of degrees of freedom.

49



(a) Evolution of cd,max (b) Evolution of cl,max (c) Evolution of ∆p

Figure 3.3: Evolution of maximum value of drag values, lift values and pressure

differences obtained when using the scheme (3.2.1)-(3.2.3) with ∆t = 0.01

3.5.3 Flow Between Two Offset Circles

The third experiment demonstrates the stability of SAV with BDF2LE method on two

dimensional flow in annular region between two offset circles. The domain we use

is a circle with an interior decentralized circle inside. Pick r1 = 1, r2 = 0.1 and

c = (c1, c2) =
(

1
2
, 0
)
. The domain is then given by

Ω =
{

(x, y) : x2 + y2 ≤ r2
1

}
∩
{

(x, y) : (x− c1)2 + (y − c2)2 ≥ r2
2

}
.

The numerical solutions are computed on a Delunay-generated triangular mesh and

an example mesh can be seen in Figure 3.4. Zero initial conditions have been used

Figure 3.4: The domain of the test problem

and no-slip boundary conditions are considered on both circles. We choose time step

size ∆t = 0.025 and the last time T = 5. The flow is generated by the body force
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rotating in the counterclockwise direction

f(x, y, t) = (−4y(1− x2 − y2), 4x(1− x2 − y2))T .

In this problem, the rotational force f = 0 at the outer circle and thus the flow motion

is due to the interaction of the flow with the inner circle. Under the influence of the

body force, the flow interacts with the inside disk. Then, we observe the formation of

a vortex street called von Kármán which re-interacts with the immerse circle creating

more complex structures. Figure 3.5 shows this behavior, in which some snapshots

of velocity streamlines are presented for Re = 200. Further studies on this flow can

be found in [93, 128, 145, 148].

(a) t = 0.025 (b) t = 1.25

(c) t = 3 (d) t = 5

Figure 3.5: Velocity contours for Re = 200
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Popular quantities of interest in this experiment are the kinetic energy and the enstro-

phy values for 0 ≤ t ≤ 5, defined by

Energy =
1

2
‖u‖2 , Enstrophy =

1

2
ν ‖∇ × u‖2 .

Figure 3.6 and Figure 3.7 show kinetic energy and enstrophy statistics for different

Reynolds numbers. The curves marked with ‘NSE-BDF2LE’ denote the computation

of the flow problem by using BDF2LE method without SAV. Figures show that while

all three methods’ energy and enstrophy are stable for Re = 200, energy and en-

strophy values of the CN-SAV increase with increasing values of Re. However, time

evolutions of energy and enstrophy of BDF2LE-SAV remain constant and the graphs

of the BDF2LE-SAV stay close to the approximation of NSE-BDF2LE. Observe also

that with the proposed scheme, energy and enstrophy oscillate less and stay stable in

comparison with NSE-BDF2LE. This verifies the greater stability properties of the

BDF2LE-SAV method.
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Figure 3.6: Time evolutions of energy for Re = 200, 800, 1200 from left to right.
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Figure 3.7: Time evolutions of enstrophy for Re = 200, 800, 1200 from left to right.
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3.5.4 Poisseuille’s Flow

In the last experiment, our goal is to test the contribution of Scheme (3.2.1)-(3.2.3)

and again to compare CN-SAV method for Poisseuille’s flow. This test, discussed in

[18], is a well-known academic example having numerical instabilities in the case of

small viscosity. The computations are performed in [0, 4]× [0, 1] rectangular domain

with ν = 10−4, ∆t = 1, f = 0, h = 0.1, and T = 1500. Numerical results for

α1 = h2, α2 = 0.001, and the coarse mesh size H =
√
h are presented. We take the

parabolic inflow and outflow velocity profiles as

u =

(
4y(1− y)

0

)
(3.5.2)

and use it also for initial conditions and enforce the no-slip boundary conditions on

the top and bottom of the boundary.

We first provide plots of velocity fields obtained from CN-SAV and BDF2LE-SAV

methods given in Figure 3.8 and Figure 3.9, respectively. During the computation of

this result, it is observed that after t = 15, while the flow computed by the CN-SAV

method loses its features, the velocity fields computed by the BDF2LE-SAV method

are appropriately simulated and stay stable even at the final time, see Figure 3.9.
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Figure 3.8: Velocity field for CN-SAV.

Results of the numerical studies of relative velocity error and energy versus time are

presented in Figure 3.10. It can be seen from part (a) of Figure 3.10 that the velocity
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Figure 3.9: Velocity field for BDF2LE-SAV.

errors of the CN-SAV method are larger than the ones with the BDF2LE-SAV method.

In part (b) of Figure 3.10, from the simulations, we observe that solution of the CN-

SAV starts to oscillate from t = 160 and continues till t = 580 with small oscillations,

which is hard to observe from the figure, then it reaches its equilibrium position.

Unlike the CN-SAV method, the solution of the BDF2LE-SAV method reaches its

equilibrium position in a very short time at t = 10, and then maintains the same

energy throughout the simulation as seen in part (b) of Figure 3.10.
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(a) Relative velocity error for BDF2LE-SAV and CN-SAV.
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Figure 3.10: Time evolutions of relative velocity error and energy
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CHAPTER 4

TIME FILTERED SECOND ORDER BACKWARD EULER METHOD FOR

EMAC FORMULATION OF NAVIER-STOKES EQUATIONS

This chapter studies an efficient and accurate numerical approximation of the Navier-

Stokes equations (NSE) which are given by

ut − ν4u + u · ∇u +∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) for x ∈ Ω,∫
Ω
pdx = 0 in (0, T ].

(4.0.1)

Here, Ω denotes a bounded and regular flow domain in Rd (d = 2 or 3), u(x, t)

represents the velocity, p(x, t) the zero-mean pressure, f(x, t) an external force , ν

the kinematic viscosity and u0 is a weakly divergence-free initial condition.

It is known that, in classical H-conforming methods, the divergence constraint is

only weakly enforced [146] leading to some divergence error and this results in loss

of numerical accuracy as well as many important conservation laws, including en-

ergy, momentum, angular momentum, and others. It is well-known that a good way

to measure the accuracy of a model is by how much physical balance it retains. This

idea was recognized by Arakawa, Fix, Lam, and others in [1] by constructing en-

ergy and enstrophy conserving scheme for the 2D NSE, for ocean circulation models

in [46], for the shallow water equations in [2] and for many many different equations

from physics, e.g. [14, 26, 53, 55, 77, 116, 120]. The success of numerical simulation

of NSEs depends on physically motivated discretization schemes. For this purpose,

practitioners have developed many numerical methods with the typical formulations

of the nonlinearity such as convective, conservative, rotational, and skew-symmetric
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formulations, see e.g. [55,77,84]. Among them, the skew-symmetric form of nonlin-

earity conserves energy and helicity [77,84,119] while it fails to conserve momentum

and angular momentum shown in [123]. It was also shown in [123] that the rotational

form only conserves energy, the conservative form only conserves momentum and

angular momentum and the convective form conserves neither energy, momentum

and angular momentum. Hence, none of them conserve all the balances of physi-

cal quantities such as energy-momentum-angular momentum conserving (EMAC) at

the same time. To handle this issue, in the study [123], the authors introduce a new

formulation of NSE by reformulating the nonlinear term, named the EMAC formu-

lation which is the first scheme conserving all of these mentioned quantities even

under the weakly enforced divergence constraint as well as properly defined vorticity,

helicity, and 2D enstrophy. It is worth noting that, utilizing pointwise divergence-

free approximations such as those newly developed in [30, 53, 56, 133] makes all of

these formulations equivalent and each of them will conserve all of these quantities

in a suitable sense. However, the choice of such particular elements is not so prac-

tical due to the need of non-standard meshing, approximating polynomial degrees,

and not included in open source FE software for large scale computing [153]. Fol-

lowing the original paper [123], there have been a considerable number of studies of

the EMAC formulation for various problems such as vortex-induced vibration [35],

turbulent ow simulation [97], cardiovascular simulations and hemodynamics [98,99],

noise radiated by an open cavity [114] and others e.g. [35, 50, 96, 124]. In the light

of these studies, the EMAC formulation has proven to exhibit superior performance,

especially over longer periods [91] compared to traditionally used schemes based

on skew-symmetric formulations. All these studies agree with the opinion that the

EMAC formulation reduces numerical dissipation and significantly increases numer-

ical accuracy compared to previously studied ones thanks to its ability to conserve all

the physical quantities.

The central challenge in the CFD community is time accuracy to reflect important

physical features of solutions. From the practical point of view, incorporating mini-

mum complexity into existing codes and increasing numerical accuracy are critical for

many purposes. In general, backward Euler (BE) time discretization is well-known to

be one of the most commonly used methods to approximate the time-dependent vis-
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cous flow problems, [54, 147]. BE is the basis for the construction of more complex

methods due to its stability, rapid convergence to analytical solutions, and easy im-

plementation. However, it causes spurious oscillations inflow physics [115] for larger

time step sizes even if the method is stable. The way to increase numerical accuracy

and enhance physical features for fully implicit and BE methods was first proposed

in the study [6] for the ODEs.

As stated in [115], by adding only one additional line of code to BE scheme, it is

possible to reduce numerical dissipation, increase accuracy from the first order to the

second-order, and obtain an A-stable method with a useful error estimator. Besides

constant time steps, the methods could be extended also to variable time step sizes.

The method, called time filtering, is extended to the incompressible NSE in [140], to

MHD equations in [3] and to the Boussinesq equations in [79]. The common theme in

these studies is to apply the linear time filtering method to BE scheme with constant

time step resulting in two uncoupled steps at each time level. In the first step, the

required equation is solved by using BE time-stepping method and in the second step,

the approximate solutions obtained in the first step are post processed with a second-

order, linear time filtering. The resulting algortihm achieves a second-order, more

accurate, and an A-stable method. Moreover, combining the second step with the

first step yields a second-order accurate method akin to the backward differentiation

(BDF2) formula and performs a consistent and simple stability/convergence analysis.

While a family of general variable step size time filter algorithms is investigated by

[138], general linear methods by using pre-filter or post-filter by using constant step

size have been considered in [139]. Such filtering processes yield embedded higher-

order methods with minimum complexity, see [139].

The purpose of this chapter is to investigate the effect of this novel idea from [140]

on the EMAC formulation of time-dependent, incompressible fluid flows for constant

time steps. Herein, based on the success of EMAC formulation in [123] and time

filtering on BE for constant time step in [140], we naturally took the step of combining

these two ideas to see whether the time filtering method will improve the accuracy of

solutions of NSE with EMAC formulation. The proposed numerical scheme is a

two-step time filtered BE method which is efficient, O(∆t2), A-stable and easy to

adapt into any existing code. In the first step, velocity solutions of the EMAC scheme
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are calculated with the usual BE finite element discretization, which we call BE-

EMAC. The second step post proceeds this velocity approximation by using a second-

order time filtering under constant step size. Thus, by combining the BE discretized

EMAC formulation of NSE with time filtering, one benefits from the simplicity of BE

method and does not suffer from its mentioned drawbacks. The EMAC treatment of

non-linearity uses the Newton method. Although the BE time-stepping scheme does

not conserve energy exactly as the Crank-Nicolson scheme does, our aim here is to

show the improvement which has been done due to the addition of time filter post-

processing. We do not assert the superiority of the scheme over Crank-Nicolson-

based time stepping schemes in terms of conservation of total kinetic energy. We

show the conservation of the physically conserved quantities such as (a modified)

energy, momentum, and angular momentum and we refer to it as energy, momentum,

and angular momentum conserving time filtered formulation (EMAC-FILTERED).

Additionally, we provide that the method is both stable and optimally accurate. To the

best of the authors’ knowledge, this is the first attempt to combine EMAC formulation

with a time filtering post-processing for solving NSE numerically.

The presentation of this chapter is as follows. Section 4.1 provides some notations

and mathematical preliminaries needed for a smooth analysis to follow. In Section

4.2, EMAC-FILTERED method is described. Conservation properties are studied in

Section 4.3. Section 4.4 is devoted to a complete stability and convergence analysis

of the EMAC-FILTERED method. In Section 4.5, several numerical experiments are

performed which test the conservation properties, the accuracy, and the efficiency of

the method and compares it with BE-EMAC solutions.

4.1 Notations and Mathematical Preliminaries

We consider the same function spaces and their properties as in Section 3.1 of the

Chapter 3. The variational formulation of (4.0.1) reads as follows: Find u : (0, T ] −→
X, p : (0, T ] −→ Q satisfying

(ut,v) + ν(∇u,∇v) + b(u,u,v)− (p,∇ · v) = (f ,v) ∀v ∈ X, (4.1.1)

(q,∇ · u) = 0 ∀q ∈ Q, (4.1.2)
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In this chapter, we use a different trilinear form called EMAC formulation for the

nonlinear term in NSE. To obtain EMAC formulation, let the symmetric part of ∇u
be denoted by D(u) = ∇u+∇uT

2
and the skew-symmetric part by ∇nu := ∇u−∇uT

2
.

Also note that for any u,v ∈ H1(Ω) the following holds

(∇nu)v =
1

2
(∇× u)× v (4.1.3)

Then, for any u,v ∈ H1(Ω) the following vector identities are obtained by straight-

forward calculations

(u · ∇u)u = (∇× u)× u +∇1

2
|u|2 =: (∇× u)× u +∇q, (4.1.4)

(∇u)u = D(u)u + (∇nu)u = D(u)u +
1

2
(∇× u)× u (4.1.5)

where q := |u|2
2

. Then, identities (4.1.3)-(4.1.5) yields the following identity which

is the key idea for the EMAC formulation

(u · ∇)u = 2D(u)u− 1

2
∇|u|2 (4.1.6)

for which the inertia term is split into the acceleration driven by 2D(u) and the poten-

tial term further absorbed by redefined pressure. Following [123], the trilinear form

for EMAC formulation is defined by

c(u,v,w) = 2(D(u)v,w) + ((∇ · u)v,w) (4.1.7)

For purpose, it is important to assume that u,v,w ∈ X, i.e. no divergence free

condition is assumed for any of u,v,w. It is critical to add the divergence term in the

definition of c(·, ·, ·) to satisfy the cancellation property, c(v,v,v) = 0.

The following lemma is usefull in the analysis.

Lemma 4.1.1 For u,v,w ∈ X, the following identities hold:

(u · ∇v,w) = −(u · ∇w,v)− ((∇ · u)v,w), (4.1.8)

(u · ∇w,w) = −1

2
((∇ · u)w,w), (4.1.9)

(u · ∇v,w) = ((∇v)u,w) = ((∇v)Tw,u). (4.1.10)

Proof. The first follows from the integration by parts:∫
Ω

(u · ∇)v ·w +

∫
Ω

(u · ∇w)v +

∫
Ω

(∇ · u)(v ·w) =

∫
∂Ω

(u · n)(v ·w)(4.1.11)

61



Then, the fact that u = 0 on ∂Ω vanishes the right-hand side term in (4.1.11) which

yields the equation (4.1.8).

The second is obtained by choosing v = w in (4.1.8). To prove the third identity,

take u = [u1,u2,u3], v = [v1,v2,v3], w = [w1,w2,w3] ∈ X. Then, extending the

first inner product gives

(u · ∇v,w) = [u1u2u3]


∂x(v1) ∂x(v2) ∂x(v3)

∂y(v1) ∂y(v2) ∂y(v3)

∂z(v1) ∂z(v2) ∂z(v3)




w1

w2

w3



=


u1∂x(v1) + u2∂y(v1) + u3∂z(v1)

u1∂x(v2) + u2∂y(v2) + u3∂z(v2)

u1∂x(v3) + u2∂y(v3) + u3∂z(v3)


T 

w1

w2

w3


= u1∂x(v1)w1 + u2∂y(v1)w1 + u3∂z(v1)w1

+u1∂x(v2)w2 + u2∂y(v2)w2 + u3∂z(v2)w2

+u1∂x(v3)w3 + u2∂y(v3)w3 + u3∂z(v3)w3 (4.1.12)

Next, extending the inner product ((∇v)u,w) we have

((∇v)u,w) =


∂x(v1)u1 + ∂y(v1)u2 + ∂z(v1)u3

∂x(v2)u1 + ∂y(v2)u2 + ∂z(v2)u3

∂x(v3)u1 + ∂y(v3)u2 + ∂z(v3)u3


T 

w1

w2

w3


= ∂x(v1)u1w1 + ∂y(v1)u2w1 + ∂z(v1)u3w1

+∂x(v2)u1w2 + ∂y(v2)u2w2 + ∂z(v2)u3w2

+∂x(v3)u1u1w3 + ∂y(v3)w3 + u3∂z(v3)u2w3 (4.1.13)

Similarly, the last inner product ((∇v)Tw,u) is extended as

((∇v)Tw,u) = [w1w2w3]


∂x(v1) ∂y(v1) ∂z(v1)

∂x(v2) ∂y(v2) ∂z(v2)

∂x(v3) ∂y(v3) ∂z(v3)




u1

u2

u3


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=


w1∂x(v1) + w2∂x(v2) + w3∂x(v3)

w1∂y(v1) + w2∂y(v2) + w3∂y(v3)

w1∂z(v1) + w2∂z(v2) + w3∂z(v3)


T 

u1

u2

u3


= w1∂x(v1)u1 + w2∂y(v1)u1 + w3∂z(v1)u1

+w1∂x(v2)u2 + w2∂y(v2)u2 + w3∂z(v2)u2

+w1∂x(v3)u3 + w2∂y(v3)u3 + w3∂z(v3)u3 (4.1.14)

It is clearly seen that the extensions of the inner products have the same terms. �

To introduce the time filtering method, we need some further definitions and inequal-

ities. For preliminaries related to time filtering, we first start with G-norm. Since

G-stability refers to A-stability, the G-matrix is often used in BDF2 analysis. Con-

cerning the G-matrix defined in Chapter 2, with the choices of θ = 1 and ν = 2ε,

G-matrix of the described method is as follows:

G =

 3
2
−3

4

−3
4

1
2


with the G-norm and F -norm defined in Chapter 2.

Lemma 4.1.2 The symmetric positive matrix F ∈ Rn×n and the symmetric matrix G

∈ R2n×2n satisfy the following equality:

( 3
2
wn+1 − 2wn + 1

2
wn−1

∆t
,
3

2
wn+1 − wn +

1

2
wn−1

)
=

1

∆t

∥∥∥∥∥∥
wn+1

wn

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 wn

wn−1

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥wn+1 − 2wn + wn−1
∥∥2

F
(4.1.15)

Proof. Taking θ = 1 and ν = 2ε in Lemma 2.0.11 in Chapter 2 gives the result. �

Lemma 4.1.3 For any u,v ∈ Rn, we have

(u
v

 , G
u
v

) ≥ 3

4
‖u‖2 − 1

4
‖v‖2 , (4.1.16)
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(u
v

 , G
u
v

) ≤ 3

2
‖u‖2 +

3

4
‖v‖2 . (4.1.17)

Proof. Taking θ = 1 and ν = 2ε in Lemma 2.0.12 in Chapter 2 yields the estimates.

�

To formulate the method, we use the following interpolation operator F

F [wn+1] =
3

2
wn+1 −wn +

1

2
wn−1. (4.1.18)

In the analysis, we also need the following consistency error estimations.

Lemma 4.1.4 There exists C > 0 such that

∥∥F [wn+1]− wn+1
∥∥2 ≤ C∆t3

∫ tn+1

tn−1

‖wtt‖2 (4.1.19)

Proof. Using Taylor’s theorem with integral remainder, we have

F [wn+1]− wn+1 =
1

2
wn+1 − wn +

1

2
wn−1

=
1

2

(
wn + ∆twnt +

∫ tn+1

tn
wtt(t

n+1 − t)dt
)
− wn

+
1

2

(
wn −∆twnt +

∫ tn−1

tn
wtt(t

n−1 − t)dt
)

= C

(∫ tn+1

tn
wtt(t

n+1 − t)dt+

∫ tn−1

tn
wtt(t

n−1 − t)dt
)

Thus, we have

(
F [wn+1]− wn+1

)2

≤ C

(∫ tn+1

tn
w2
tt(t

n+1 − t)2dt+

∫ tn−1

tn
w2
tt(t

n−1 − t)2dt

)
≤ C∆t3

∫ tn+1

tn−1

w2
ttdt (4.1.20)

Integrating (4.1.20) with respect to x yields the result.

�
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4.2 Numerical Scheme

We consider the following weak formulation of the EMAC formulation of (1.0.1):

Find u : (0, T ] −→ X, P : (0, T ] −→ Q satisfying

(ut,v) + ν(∇u,∇v) + c(u,u,v)− (P,∇ · v) = (f ,v) ∀v ∈ X (4.2.1)

(q,∇ · u) = 0 ∀q ∈ Q, (4.2.2)

where P is defined as P = p − 1

2
|u|2 and u(0,x) = u0(x) ∈ X. Here, we use

the EMAC form of the nonlinear term. We now present the two-step time filtered

numerical scheme of (4.2.1)-(4.2.2) for constant time step. In the first step, the veloc-

ity approximation of the scheme (4.2.1)-(4.2.2) is calculated with the usual BE finite

element (fully implicit) discretization and the second step introduces a simple time

filter which combines this velocity solution linearly with the solutions at previous

time levels. The second step increases time accuracy remarkably although it does not

significantly alter system complexity. The modular time filtered numerical scheme of

(4.2.1)-(4.2.2) of the NSE with EMAC formulation reads as follows:

Algorithm 4.2.1 (EMAC-FILTERED Scheme) Let external force f and the initial

condition u0 be given. Select T as the end time, and let N be the number of time steps

to take the time step size ∆t = T/N . Define u0
h, u−1

h as the nodal interpolants of

u0, then for any n ≥ 1 (n = 1, , ..., N − 1), find (un+1
h , P n+1

h ) ∈ (Xh, Qh) via the

following two steps:

Step 1: Compute (ũn+1
h , P n+1

h ) ∈ (Xh, Qh) such that(
ũn+1
h − unh

∆t
,vh

)
+ ν(∇ũn+1

h ,∇vh) + c(ũn+1
h , ũn+1

h ,vh)

−(P n+1
h ,∇ · vh) = (f(tn+1),vh), (4.2.3)

(∇ · ũn+1
h , qh) = 0. (4.2.4)

Step 2:

un+1
h = ũn+1

h − 1

3
(ũn+1

h − 2unh + un−1
h ) (4.2.5)

for all (vh, qh) ∈ (Xh, Qh).
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Remark 4.2.1 One option in Algorithm 4.2.1 is that also filtering pressure as P n+1
h =

P̃ n+1
h − 1

3
(P̃ n+1

h − 2P n
h +P n−1

h ). However, as noted in [3,140], not filtering pressure

yields better numerical results because of consistency terms arising from pressure

equations. Based on these previous experiences in [3, 140], we choose not to filter

pressure.

We note that Step 1 is the standard backward Euler scheme for the NSE. Step 2

is just a postprocessing step and it can be easily applied into existing codes. This

implemented linear time filter makes the method numerically efficient.

Rewriting (4.2.5) as ũn+1
h = 3

2
un+1
h − unh + 1

2
un−1
h and inserting in (4.2.3)-(4.2.4)

along with (4.1.18), the following equivalent method is obtained.

1

∆t
(
3

2
un+1
h − 2unh +

1

2
un−1
h ,vh) + ν(∇(F [un+1

h ]),∇vh)

+c(F [un+1
h ], F [un+1

h ],vh)− (P n+1
h ,∇ · vh) = (f(tn+1),vh) (4.2.6)

(∇ · (F [un+1
h ]), qh) = 0 (4.2.7)

for all (vh, qh) ∈ (Xh, Qh). We note that to simplify the stability and convergence

analysis, the equivalent formulation (4.2.6)-(4.2.7) will be used. However, the for-

mulation (4.2.3)-(4.2.5) will be considered in the implementation of the method for

computer simulations.

Remark 4.2.2 We emphasize here that although the time derivative is discretized by

using the classical BDF2 time-stepping method, the other terms in (4.2.7) are not.

Thus, the method should not be considered the standard BDF2 method. We refer

to [140], for details of the time filtering approach.

4.3 Conservation Laws

In this section, we investigate the conservation of the integral invariants of fluid flow

energy, momentum, and angular momentum for Algorithm 4.2.1. It is well known

that the physical accuracy of a model is measured by how well its solutions preserve

these quantities. For NSE, energy, momentum, and angular momentum are defined

by
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Kinetic Energy : E =
1

2
(u,u) =

1

2

∫
Ω

|u|2, dx,

Linear Momentum : M =

∫
Ω

u dx,

Angular Momentum : AM =

∫
Ω

u× x dx.

Let ei be the i-th unit vector and φi = x× ei. Then, momentum and angular momen-

tum can be equivalently defined by

Mi =

∫
Ω

ui dx = (u, ei),

(AM)i =

∫
Ω

(u× x) · ei dx = (u, φi).

Let Ωs be a strip around ∂Ω and Ωi be such that Ω = Ωs ∪ Ωi. Based on [123],

we assume that uh = 0 and ph = 0 on Ωs. Thus, it is important to assume that the

solutions u, p have compact support in Ω (e.g. consider an isolated vortex). We first

state the energy balance of the EMAC-FILTERED scheme (4.2.6)-(4.2.7).

Theorem 4.3.1 EMAC-FILTERED scheme (4.2.6)-(4.2.7) conserves a modified ki-

netic energy for ν = 0, f = 0:∥∥∥∥∥∥
 uNh

uN−1
h

∥∥∥∥∥∥
2

G

+ ∆t
N−1∑
n=1

(ν
∥∥∇F [un+1

h ]
∥∥2

) +
1

4

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F

=

∥∥∥∥∥∥
u1

h

u0
h

∥∥∥∥∥∥
2

G

+ ∆t
N−1∑
n=1

(f(tn+1), F [un+1
h ])(4.3.1)

Remark 4.3.1 We should point out here that, one can obtain exact energy conser-

vation by making use of Crank-Nicolson time discretization along with an EMAC

scheme. The aim here is to show the improvement of the classical BE-based scheme

by adding simple time filter post-processing and obtaining second-order accuracy in

terms of time. Also note that the numerical dissipation 3
4

∥∥un+1
h − 2unh + un−1

h

∥∥2 ≈
3
4
∆t4 ‖utt(tn+1)‖2, of the scheme is asymptotically smaller than the numerical dissi-

pation of backward Euler method.
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Proof. Set vh = F [un+1
h ] in (4.2.6), qh = pn+1

h in (4.2.7), then the nonlinear term and

pressure term vanishes. Then with the use of Lemma 4.1.2, one gets

1

∆t

∥∥∥∥∥∥
un+1

h

unh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 unh

un−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥un+1
h − 2unh + un−1

h

∥∥2

F

+ν
∥∥∇F [un+1

h ]
∥∥2

= (f(tn+1), F [un+1
h ]). (4.3.2)

Multiplying both sides of (4.3.2) by ∆t and taking sum from n = 1 to N − 1 proves

the result. �

Next, we consider the conservation of momentum and angular momentum of Algo-

rithm 4.2.1. Let us define χ(g) ∈ X to be the restriction of some arbitrary function

g by setting χ(g) = g in Ω and arbitrarily defined elsewhere to meet the boundary

conditions such that χ(g) = g in Ωi but g|∂Ω = 0.

Theorem 4.3.2 For ν = 0, f = 0, EMAC-FILTERED scheme (4.2.6)-(4.2.7) con-

serves momentum and angular momentum for all t > 0, i.e.,

MEmac-Fil(t) = MEmac-Fil(0)

AMEmac-Fil(t) = AMEmac-Fil(0)

Proof. We start by showing momentum conservation. Choose vh = χ(ei) in (4.2.6)

to get

((uh)t, ei) + ν(∇F [un+1
h ],∇ei) + c(F [un+1

h ], F [un+1
h ], ei) = (f(tn+1), ei). (4.3.3)

For the nonlinear term in (4.3.3), expand the rate of deformation tensor and use the

identity (4.1.8) along with the fact that ei is divergence-free. This yields

c(F [un+1
h ], F [un+1

h ], ei)

= 2(D(F [un+1
h ])F [un+1

h ], ei) + (div(F [un+1
h ])F [un+1

h ], ei)

= (F [un+1
h ] · ∇F [un+1

h ], ei) + (ei · ∇F [un+1
h ], F [un+1

h ])

+((∇ · F [un+1
h ])F [un+1

h ], ei)

= (ei · ∇F [un+1
h ], F [un+1

h ])

= 0.
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Under the assumption ν = 0, f = 0, one gets

d

dt
(uh, ei) = 0

which is precisely the conservation of momentum.

For conservation of angular momentum, take vh = χ(φi) in (4.2.1) to get

((uh)t, φi) + ν(∇F [un+1
h ],∇φi) + c(F [un+1

h ], F [un+1
h ], φi) = (f(tn+1), φi)

In a similar manner, by using the identities (4.1.8) and (4.1.9) respectively along with

∇ · φi = 0, the nonlinear term reduces to

c(F [un+1
h ], F [un+1

h ], φi)

= 2(D(F [un+1
h ])F [un+1

h ], φi) + (div(F [un+1
h ])F [un+1

h ], φi)

= (F [un+1
h ] · ∇F [un+1

h ], φi) + (F [un+1
h ],∇F [un+1

h ], φi)

+((∇ · F [un+1
h ])F [un+1

h ], φi)

= (F [un+1
h ] · ∇F [un+1

h ], φi) + ((∇F [un+1
h ])F [un+1

h ], φi)

= −(F [un+1
h ] · ∇φi, F [un+1

h ])

Note that, expansion of the last term gives (F [un+1
h ] · ∇φi, F [un+1

h ]) = 0, i.e., the

non-linear term vanishes. The use of ν = 0, f = 0 results in

d

dt
(uh, φi) = 0,

which is the required statement of angular momentum conservation. �

4.4 Numerical Analysis

This section provides unconditional stability result and convergence analysis of the

proposed Algorithm 4.2.1. We first provide the stability analysis of the method.

Lemma 4.4.1 Let f ∈ L∞(0, T ;H−1(Ω)). Then for all ∆t > 0 and N ≥ 2, the

solution of Algorithm 4.2.1 is unconditionally stable in the following sense:∥∥uNh ∥∥2
+

1

3

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F
+

2∆tν

3

N−1∑
n=1

∥∥∇F [un+1
h ]

∥∥2

≤
(

1

3

)N ∥∥u0
h

∥∥2
+ 2N(

∥∥u1
h

∥∥2
+
∥∥u0

h

∥∥2
) +

2N∆tν−1

3

N−1∑
n=1

∥∥f(tn+1)
∥∥2
.(4.4.1)
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Proof. We start the proof by the global energy conservation (4.3.1). The application

of Cauchy-Schwarz inequality, Young’s inequality, and the dual norm on the forcing

term gives

(f(tn+1), F [un+1
h ]) ≤ ν−1∆t

2

∥∥f(tn+1)
∥∥2

−1
+
ν∆t

2

∥∥∇F [un+1
h ]

∥∥2
. (4.4.2)

Inserting the estimate in (4.3.1) and applying Lemma 4.1.3 leads to

3

4

∥∥uNh ∥∥2
+

1

4

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F
+
ν∆t

2

N−1∑
n=1

(
∥∥∇F [un+1

h ]
∥∥2

)

≤ 1

4

∥∥uN−1
h

∥∥2
+

3

2

∥∥u1
h

∥∥2
+

3

4

∥∥u0
h

∥∥2
+
ν−1∆t

2

∥∥f(tn+1)
∥∥2

−1
(4.4.3)

Lastly, the proof is completed by multiplying by 4
3

and using the induction. �

We proceed to present a detailed convergence analysis of the proposed time filtered

method for NSE equations with EMAC formulation. We use the following notations

for the discrete norms. For vn ∈ Hp(Ω), we define :

‖|v|‖∞,p := max
0≤n≤N

‖vn‖p, ‖|v|‖m,p :=

(
∆t

N∑
n=0

‖vn‖mp
) 1

m

.

For the optimal asymptotic error estimation, assume that the following regularity as-

sumptions hold for the exact solution of NSE (4.0.1):

u ∈ L∞(0, T ; (Hk+1(Ω))d),

ut ∈ L2(0, T ; (Hk+1(Ω))d),

utt ∈ L2(0, T ; (H1(Ω))d), (4.4.4)

uttt ∈ L2(0, T ; (L2(Ω))d),

P ∈ L2(0, T ; (Hk(Ω))d).

Theorem 4.4.1 Let (u, p) be the solution of NSE (4.0.1) such that the regularity

assumptions (4.4.4) are satisfied. Then, the following bound holds for the error

enu = un − unh
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∥∥eNu ∥∥2
+

1

3

N−1∑
n=1

∥∥en+1
u − 2enu + en−1

u

∥∥2

F
+

2∆tν

3

N−1∑
n=1

∥∥∇F [en+1
u ]

∥∥2

≤ K

[(
1

3

)N ∥∥e0
u

∥∥2
+ 2N(

∥∥e1
u

∥∥2
+
∥∥e0

u

∥∥2
) + ν−1h2k+2 ‖|ut|‖2

2,k+1

+νh2k ‖|u|‖2
2,k+1 + ν−1h2k

∥∥|P n+1|
∥∥2

2,k
+ ν−1∆t4 ‖uttt‖2

L2(0,T ;L2(Ω))

+∆t4
(
ν + ν−1(

∥∥|∇F [un+1]|
∥∥
∞,0 +

∥∥|∇un+1|
∥∥
∞,0)) ‖∇utt‖2

L2(0,T ;L2(Ω))

+ν−1
∥∥|∇F [un+1]|

∥∥
∞,0 h

2k+1 ‖|u|‖2
2,k+1

+ν−1
∥∥|∇F [un+1]|

∥∥
∞,0

∥∥|F [un+1]|
∥∥
∞,0 h

2k ‖|u|‖2
2,k+1

]
(4.4.5)

with K = exp(Cν−1 ‖u‖∞,0), where C is a generic constant independent of h and

∆t.

Theorem 4.4.1 with the most common choice of inf-sup stable finite element spaces,

like the Taylor-Hood element, for the velocity and pressure naturally leads to the

following Corollary, proving second-order accuracy both in time and space.

Proof. The proof starts by deriving the error equations. Denote un+1 = u(tn+1). At

time tn+1, the true solution of the NSE (4.0.1) satisfies(
3un+1 − 4un + un−1

2∆t
,vh

)
+ ν
(
∇F [un+1],∇vh

)
+ c
(
F [un+1], F [un+1],vh

)
−
(
P n+1,∇ · vh) =

(
fn+1,vh

)
+ Intp(u,vh) (4.4.6)

for all vh ∈ Vh where

Intp(un+1,vh) =

(
3un+1 − 4un + un−1

2∆t
− un+1

t ,vh

)
+ ν(∇F [un+1]− un+1,vh)

+c
(
F [un+1], F [un+1],vh

)
− c
(
un+1,un+1,vh

)
denotes the local truncation error.

Subtracting (4.2.6) from (4.4.6) yields(
3en+1

u − 4enu + en−1
u

2∆t
,vh

)
+ ν
(
∇F [en+1

u ],∇vh
)

+ c
(
F [un+1], F [un+1],vh

)
−c
(
F [un+1

h ], F [un+1
h ],vh

)
−
(
P n+1,∇ · vh) = Intp(u,vh) (4.4.7)

Decompose the error as

enu = u(tn)− unh =
(
u(tn)− Ihun

)
+
(
Ihun − unh

)
= ηn + φnh. (4.4.8)
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where Ihun is an interpolant of un in Vh. Choosing vh = F [φn+1
h ] in (4.4.7), using

the error decomposition and Lemma 4.1.2, it follows that

1

∆t

∥∥∥∥∥∥
φn+1

h

φnh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 φnh

φn−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥φn+1
h − 2φnh + φn−1

h

∥∥2

F

+ν
∥∥∇F [φn+1

h ]
∥∥2

=

(
3ηn+1 − 4ηn + ηn−1

2∆t
, F [φn+1

h ]

)
+ ν
(
∇F [ηn+1],∇F [φn+1

h ]
)

−c
(
F [un+1], F [un+1], F [φn+1

h ]
)

+ c
(
F [un+1

h ], F [un+1
h ], F [φn+1

h ]
)

−
(
P n+1,∇ · F [φn+1

h ]
)

+ Intp(u, F [φn+1
h ]) (4.4.9)

Next, estimate the terms on the right hand side of (4.4.9). The first two terms are

bounded by applying Cauchy-Schwarz, the estimation (3.1.17) and Young’s inequal-

ity:∣∣∣∣− (3ηn+1 − 4ηn + ηn−1

2∆t
, F [φn+1

h ]

)∣∣∣∣ ≤ ∥∥∥∥3ηn+1 − 4ηn + ηn−1

2∆t

∥∥∥∥∥∥F [φn+1
h ]

∥∥2

≤ Cν−1

∆t

∫ tn+1

tn−1

‖ηt‖2dt

+
ν

28
‖∇F [φn+1

h ]‖2 (4.4.10)

∣∣ν(∇F [ηn+1],∇F [φn+1
h ])

∣∣ ≤ ν‖∇F [ηn+1]‖‖∇F [φn+1
h ]‖

≤ Cν−1‖∇F [ηn+1]‖2

+
ν

28
‖∇F [φn+1

h ]‖2. (4.4.11)

Following Theorem 3.2 in [91], the nonlinear terms are estimated as,∣∣∣∣− c(F [un+1], F [un+1], F [φn+1
h ]

)
+ c
(
F [un+1

h ], F [un+1
h ], F [φn+1

h ]
)∣∣∣∣

≤ Cν−1

(∥∥∇F [un+1]
∥∥2 ∥∥F [ηn+1]

∥∥∥∥∇F [ηn+1]
∥∥

+
∥∥∇F [un+1]

∥∥∥∥F [un+1]
∥∥∥∥∇F [ηn+1]

∥∥2
)

+Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥F [φn+1
h ]

∥∥2
+

ν

28
‖∇F [φn+1

h ]‖2. (4.4.12)

For the pressure term, use the fact that (∇ · φh, qh) = 0, ∀φh ∈ Vh together with

Cauchy-Schwarz and Young’s inequalities to get∣∣(P n+1,∇ · φn+1
h )

∣∣ =
∣∣(P n+1 − qh,∇ · φn+1

h )
∣∣

≤ Cν−1
∥∥ inf
qh∈Qh

∥∥P n+1 − qh
∥∥2

+
ν

28
‖∇F [φn+1

h ]‖2.(4.4.13)
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We proceed to bound the terms in the local truncation error Intp(u, F [φn+1
h ]). For

the first two terms of Intp(u, F [φn+1
h ]), apply the Cauchy-Schwarz and Young’s in-

equalities together with the estimations (3.1.18) and (4.1.19) to obtain∣∣∣∣(3un+1 − 4un + un−1

2∆t
− un+1

t , F [φn+1
h ]

)∣∣∣∣
≤

∥∥∥∥3un+1 − 4un + un−1

2∆t
− ut(t

n+1)

∥∥∥∥∥∥F [φn+1
h ]

∥∥
≤ C∆t3ν−1

∫ tn+1

tn−1

‖uttt‖2dt+
ν

28
‖∇F [φn+1

h ]‖ (4.4.14)

ν(∇(F [un+1]− un+1),∇F [φn+1
h ]) ≤ Cν

∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν∆t3
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
.

To bound the convective terms in Intp(u, F [φn+1
h ]), we first rearrange the terms.

Adding and subtracting terms for the convective terms and using the definition of

the EMAC formulation gives

c
(
F [un+1], F [un+1], F [φn+1

h ]
)
− c
(
un+1,un+1, F [φn+1

h ]
)

= c
(
F [un+1]− un+1, F [un+1], F [φn+1

h ]
)

+ c
(
un+1, F [un+1]− un+1, F [φn+1

h ]
)

= (F [un+1] · ∇(F [un+1]− un+1), F [φn+1
h ])

+(F [φn+1
h ] · ∇(F [un+1]− un+1), F [un+1])−

((F [un+1]− un+1) · ∇F [un+1], F [φn+1
h ])

−((F [un+1]− un+1) · ∇F [φn+1
h ], F [un+1])

+((F [un+1]− un+1) · ∇un+1, F [φn+1
h ])

+(F [φn+1
h ] · ∇un+1, F [un+1]− un+1))

−(un+1 · ∇(F [un+1]− un+1), F [φn+1
h ])

−(un+1 · ∇F [φn+1
h ], (F [un+1]− un+1)). (4.4.15)

Then, the convective terms in (4.4.15) are estimated by applying the Cauchy-Schwarz

and Young’s inequalities together with the estimation (4.1.19) as

|(F [un+1] · ∇(F [un+1]− un+1), F [φn+1
h ])|

≤ Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇F [un+1]

∥∥2
∫ tn+1

t3n−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.16)
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|(F [φn+1
h ] · ∇F [un+1]− un+1), F [un+1])|

≤ Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇F [un+1]

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.17)

| − ((F [un+1]− un+1) · ∇F [un+1], F [φn+1
h ])|

≤ Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇F [un+1]

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.18)

| − ((F [un+1]− un+1) · ∇F [φn+1
h ], F [un+1])|

≤ Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇F [un+1]

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.19)

|((F [un+1]− un+1) · ∇un+1, F [φn+1
h ])|

≤ Cν−1
∥∥∇un+1

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇un+1

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.20)

|(F [φn+1
h ] · ∇un+1, F [un+1]− un+1))|

≤ Cν−1
∥∥∇un+1

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇un+1

∥∥2
∫ tn+1

t3n−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.21)

| − (un+1 · ∇(F [un+1]− un+1), F [φn+1
h ]))|

≤ Cν−1
∥∥∇un+1

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇un+1

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
, (4.4.22)

| − (un+1 · ∇F [φn+1
h ], (F [un+1]− un+1))|

≤ Cν−1
∥∥∇un+1

∥∥2 ∥∥∇(F [un+1]− un+1)
∥∥2

+
ν

28

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1∆t3
∥∥∇un+1

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt+
ν

28

∥∥∇F [φn+1
h ]

∥∥2
. (4.4.23)
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Inserting (4.4.16)-(4.4.23) into (4.4.6) gives

1

∆t

∥∥∥∥∥∥
φn+1

h

φnh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 φnh

φn−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥φn+1
h − 2φnh + φn1

h

∥∥2

F

+
ν

2

∥∥∇F [φn+1
h ]

∥∥2

≤ Cν−1

∆t

∫ tn+1

tn−1

‖ηt‖2dt+ Cν‖∇F [ηn+1]‖2 + Cν−1
∥∥ inf
qh∈Qh

∥∥P n+1 − qh
∥∥2

+Cν−1∆t3
∫ tn+1

tn−1

‖uttt‖2dt+ Cν∆t3
∫ tn+1

tn−1

‖∇utt‖2 dt

+Cν−1∆t3
( ∥∥∇F [un+1]

∥∥2
+
∥∥∇un+1

∥∥2 ) ∫ tn+1

tn−1

‖∇utt‖2 dt

+Cν−1

(∥∥∇F [un+1]
∥∥2 ∥∥F [ηn+1]

∥∥∥∥∇F [ηn+1]
∥∥

+
∥∥∇F [un+1]

∥∥∥∥F [un+1]
∥∥∥∥∇F [ηn+1]

∥∥2
)

+Cν−1
∥∥∇F [un+1]

∥∥2 ∥∥F [φn+1
h ]

∥∥2

Multiplying by ∆t, summing from n = 1 to n = N − 1 and using approximation

properties (3.1.5)-(3.1.6) yields∥∥∥∥∥∥
 φNh

φN−1
h

∥∥∥∥∥∥
2

G

+
1

4

∥∥φn+1
h − 2φnh + φn−1

h

∥∥2

F
+
ν∆t

2

∥∥∇F [φn+1
h ]

∥∥2

≤

∥∥∥∥∥∥
φ1

h

φ0
h

∥∥∥∥∥∥
2

G

+ C

(
ν−1h2k+2 ‖|ut|‖2

2,k+1 + νh2k ‖|u|‖2
2,k+1 + ν−1h2k

∥∥|P n+1|
∥∥2

2,k

)
+Cν−1∆t4 ‖uttt‖2

L2(0,T ;L2(Ω))

+C∆t4
(
ν + ν−1(

∥∥|∇F [un+1]|
∥∥
∞,0 +

∥∥|∇un+1|
∥∥
∞,0)) ‖∇utt‖2

L2(0,T ;L2(Ω))

+Cν−1

(∥∥|∇F [un+1]|
∥∥
∞,0 h

2k+1 ‖|u|‖2
2,k+1

+
∥∥|∇F [un+1]|

∥∥
∞,0

∥∥|F [un+1]|
∥∥
∞,0 h

2k ‖|u|‖2
2,k+1

)
+Cν−1

∥∥|∇F [un+1]|
∥∥
∞,0 ∆t

N−1∑
n=1

∥∥F [φn+1
h ]

∥∥2 (4.4.24)

Applying the discrete Gronwall inequality with the assumption

∆t ≤ C(
∥∥|∇F [un+1]|

∥∥
∞,0)−1
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and using Lemma 4.1.3 produces

∥∥φN
h

∥∥2
+

1

3

N−1∑
n=1

∥∥φn+1
h − 2φn

h + φn−1
h

∥∥2

F
+

2∆tν

3

N−1∑
n=1

∥∥∇F [φn+1
h ]

∥∥2

≤ K

[(
1

3

)N ∥∥φ0
h

∥∥2
+ 2N(

∥∥φ1
h

∥∥2
+
∥∥φ0

h

∥∥2
) + ν−1h2k+2 ‖|ut|‖2

2,k+1

+νh2k ‖|u|‖2
2,k+1 + ν−1h2k

∥∥|P n+1|
∥∥2

2,k
+ ν−1∆t4 ‖uttt‖2

L2(0,T ;L2(Ω))

+∆t4
(
ν + ν−1(

∥∥|∇F [un+1]|
∥∥
∞,0 +

∥∥|∇un+1|
∥∥
∞,0)) ‖∇utt‖2

L2(0,T ;L2(Ω))

+ν−1
∥∥|∇F [un+1]|

∥∥
∞,0 h

2k+1 ‖|u|‖2
2,k+1

+ν−1
∥∥|∇F [un+1]|

∥∥
∞,0

∥∥|F [un+1]|
∥∥
∞,0 h

2k ‖|u|‖2
2,k+1

]
(4.4.25)

where K = exp(Cν−1 ‖u‖∞,0), where C is a generic constant independent of h and

∆t.The final result follows from the triangle inequality. �

Corollary 4.4.1 Under the assumptions of Theorem 4.4.1, let (Xh, Qh) = (P2, P1)

be the Taylor-Hood finite element spaces for velocity and pressure. Then, the asymp-

totic error estimation satisfies, for all ∆t > 0

∥∥eNu ∥∥2
+

1

3

N−1∑
n=1

∥∥en+1
u − 2enu + en−1

u

∥∥2

F
+

2∆tν

3

N−1∑
n=1

∥∥∇F [en+1
u ]

∥∥2

≤ C

(
h4 + ∆t4 + ‖e0‖2 + ‖e1‖2

)
.

Proof. Using the regularity assumption (4.4.4) gives the required result. �

4.5 Numerical Experiments

In this section, we perform four different numerical experiments to test the effective-

ness of the proposed Algorithm (4.2.3)-(4.2.5) and compare the results with the non-

filtered BE-EMAC scheme (step 1 without step 2). The first test confirms the order

of convergence rates predicted in Corollary 4.4.1 for an analytic test problem with a

known solution. In the second example, we check the energy, momentum, and angu-

lar momentum conservation of the EMAC-FILTERED scheme in a so-called Gresho

problem. In the third test, we studied a typical benchmark problem of flow around

a cylinder to demonstrate the superiority of the EMAC-FILTERED method over the

76



BE-EMAC scheme. In the last test, we tested the efficiency of the EMAC-FILTERED

method on a channel flow problem over a flat plate. All simulations are carried out

with the Taylor-Hood finite element pairs (Xh, Qh) = (P2, P1) for velocity and pres-

sure on conforming triangular grids. The computations are performed with the public

license finite element software package FreeFem++ [42].

4.5.1 Convergence Rates

In this part, we verify the expected convergence rates of our numerical scheme

(4.2.3)-(4.2.5) described by Corollary 4.4.1. For this purpose, we pick the analytical

solution:

u =

cos(y)et

sin(x)et

 , p = (x− y)(1 + t)

with the kinematic viscosity ν = 1 and from which the external force is determined

so that (4.0.1) is satisfied. Computations are performed in the unit square domain

Ω = [0, 1]2. The boundary conditions are enforced to be the true solution. The

approximate solutions are computed on successive mesh refinements and the velocity

errors are measured in the discrete norm L2(0, T ;H1(Ω))

‖u− uh‖2,1 =

{
∆t

N∑
n=1

‖∇
(
u(tn)− unh

)
‖2

}1/2

.

To test the spatial convergence, we fixed the time step as ∆t = 0.00001 with an

end time T = 10−4 to isolate the spatial error and calculate the errors for varying h.

Results for errors and rates are shown in Table 4.1. Similarly, we fix the mesh size

to h = 1/128 to compute temporal errors and convergence rates by using different

time steps with an end time of T = 1, see Table 4.2. One can observe second-

order accuracy both in time and space, which is the optimal convergence rate found

in Corollary 4.4.1. Thus we can conclude that the addition of time filtering not only

increases the time accuracy but also does not degrade the spatial order of convergence.
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Table 4.1: Spatial errors and rates

h ‖u− uh‖2,1 Rate

1/4 2.32618e-6 –

1/8 5.80867e-7 2.00209

1/16 1.44272e-7 2.00938

1/32 3.5518e-8 2.0221

1/64 9.56472e-9 1.89275

Table 4.2: Temporal errors and rates

∆t ‖u− uh‖2,1 Rate

1/4 0.0281784 –

1/8 0.00693954 2.02165

1/16 0.00124549 2.47811

1/32 0.000227284 2.45412

1/64 4.08335e-5 2.4767

4.5.2 Gresho Problem

The second experiment we consider is the Gresho problem, which is a rotating vortex

problem [102,112] independent of time for the case of inviscid flow. Angular velocity

depends only on radius and centrifugal force is balanced by pressure distributions.

We aim here to numerically verify that the quantities mentioned in Section 4.3 are

conserved by the EMAC-FILTERED scheme. The simulation starts with an initial

condition u0 that is an exact solution of the steady Euler equations. On the domain

Ω = (−0.5, 0.5)2 with r =
√
x2 + y2, the velocity and pressure solutions are defined

by

r ≤ 0.2 :

{
u =

 −5y

5x

 , p = 12.5r2 + C1

0.2 ≤ r ≤ 0.4 :

{
u =

 2y
r

+ 5y

2x
r
− 5x

 , p = 12.5r2 − 20r + 4 log(r) + C2

r > 0.4 :

{
u =

 0

0

 , p = 0

where

C2 = (−12.5)(0.4)2 + 20(0.4)2 − 4 log(0.4), C1 = C2 − 20(0.2) + 4 log(0.2).

The speed plot of this initial condition can be seen in Figure 4.1.

We compute solutions of the EMAC-FILTERED and BE-EMAC schemes by using
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Figure 4.1: Speed contours of true solution of the Gresho prolem at all times.

Newton iterations to solve the nonlinear term with f = 0, ν = 0 and no penetration

boundary conditions up to T = 8. The computations are run on a 48 × 48 uniform

mesh with a time step size ∆t = 0.025. Since the initial condition is the solution

of the steady Euler equation, the accuracy of the method depends on keeping this

solution unchanged over time. In addition, since there are no viscosity and external

force, the problem is highly suitable to test the conservation properties of a numer-

ical method. Plots of energy, momentum, angular momentum, and L2 error versus

time of both the EMAC-FILTERED and the BE-EMAC are shown in Figure 4.2.

We can deduce from the figure that the EMAC-FILTERED scheme we consider con-

serves momentum, and angular momentum and is accurate as predicted in the theory.

Making use of this scheme has no drawbacks in terms of preserving desired physical

quantities when compared to BE-EMAC. For longer time intervals, the energy loss

of the EMAC-FILTERED scheme is slightly better than the BE-EMAC scheme after

t = 5.

In addition, we calculate and compare the physical dissipation and numerical dissi-

pation to support the conservation properties of the scheme for the same test with

Re = 1000 over the time interval of [0, 10]. The results are presented in Figure 4.3.

As seen, numerical dissipation, which is almost zero, is much smaller than the phys-

ical dissipation. This shows that the energy loss of the proposed scheme is very low.

So we can deduce that, in terms of physical quantities, making use of the EMAC-

FILTERED scheme has no disadvantage over the BE-EMAC scheme and is even
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slightly advantageous in terms of energy loss.
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Figure 4.2: Plots of time versus L2 error, energy, momentum and angular momentum.
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Figure 4.3: Numerical and physical dissipation versus time for our scheme

4.5.3 Flow Around a Cylinder

In the next experiment, we test the performance of the EMAC-FILTERED algorithm

on a well-known benchmark problem taken from [92, 144], known as channel flow
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around a cylinder, and compare the results with that of the BE-EMAC scheme. This

problem has been widely studied for the simulation of fluid flows thanks to its real

flow characteristics and highly reliable data to measure the accuracy of methods.

For the problem set-up, we follow the paper [92]. The computational domain is a

[0, 2.2]× [0, 0.41] rectangular channel with a cylinder (circle) of radius 0.05 centered

at (0.2, 0.2), seen in Figure 4.4 ( [92]).

Figure 4.4: Domain Ω of the test problem

The time dependent inflow and outflow velocity profiles are given by

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin
(πt

8

)
y(0.41− y)

u2(0, y, t) = u2(2.2, y, t) = 0

No-slip boundary conditions are enforced at the cylinder and walls. We take zero

initial condition u(x, y, t) = 0 and the kinematic viscosity ν = 10−3. Moreover,

there is no external force acting on the flow. We run the problem on a very coarse

mesh consisting of only 10210 total degrees of freedom with an end time T = 8 and

time-step ∆t = 0.01.

The plots of flow development of both BE-EMAC scheme and EMAC-FILTERED

scheme at time t = 2, 4, 6, 8 are presented in Figure 4.5 and Figure 4.6, respectively.

We observe that although BE-EMAC solutions at t = 2, t = 4 are similar to the

DNS of [92, 144], solutions at t = 6, t = 8 are inaccurate in which even vortices

are not formed which incorrectly predicts velocity solution of turbulent-like flows.

However, the plots of the EMAC-FILTERED scheme match quite well with the DNS

of [92, 144] in which the formation of vortices, which are known as Von-Karman
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street, are clearly observable. The results of this simulation shows the superiority

of the EMAC-FILTERED scheme over the unfiltered case in terms of accuracy and

prove the assertion of reducing the undesirable drawbacks of BE discretization by the

application of a simple time filtering algorithm.

Figure 4.5: The velocity of the BE-EMAC scheme at t = 2, 4, 6, 8 (from up to down).

Figure 4.6: The velocity of the EMAC-FILTERED scheme at t = 2, 4, 6, 8 (from up

to down).
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For further observation of the accuracy of our method, we compute the drag cd(t) and

lift cl(t) coefficients at the cylinder. These values are defined in [92] as follows:

cd(t) =
2

ρLU2
max

∫
S

(
ρν
∂utS
∂n

ny − p(t)nx
)
dS

cl(t) = − 2

ρLU2
max

∫
S

(
ρν
∂utS
∂n

nx + p(t)ny
)
dS

where S is the boundary of the cylinder, Umax is the maximum mean flow, L is the

diameter of the cylinder, n = (nx, ny)
T is the normal vector on the circular boundary

S and utS is the tangential velocity for tS = (ny,−nx)T the tangential vector.

Table 4.3 shows the maximum drag (cd,max) and maximum lift (cl,max) values of both

EMAC-FILTERED and BE-EMAC schemes behind the cylinder together with the

times at which they occur. The following reference intervals are given in [92, 144]:

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49].

Comparing the reference values, we see that while both predict maximum drag co-

efficients correctly, the EMAC-FILTERED scheme provides the best prediction of

maximum lift coefficient compared with the BE-EMAC scheme which is not even in

the reference interval. Thus, this numerical test has revealed that making use of the

EMAC-FILTERED scheme has notable advantages in terms of practical applications

and quantitative means over the BE-EMAC scheme.

Table 4.3: Comparison of maximum drag and lift coefficients and the times at which

they occur.

Method cd,max t(cd,max) cl,max t(cl,max)

EMAC-FILTERED 2.95281 3.94 0.468963 5.79

BE-EMAC 2.95215 3.93 0.0299554 7.13

Ref [144] 2.95092 3.93 0.47795 5.69
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4.5.4 Flow Over a Flat Plate

In the last experiment, we continue to test the efficiency of the EMAC-FILTERED

algorithm on a channel flow over a flat plate with Re = 100, following [10, 123]. It

is modeled on a [−7, 20] × [−10, 10] rectangular channel with a 0.125 × 1 flat plate

placed 7 units into the channel, and vertically centered. The domain is shown in

Figure 4.7 ( [123]).

Figure 4.7: Domain Ω of the test problem

We take inflow velocity as uin =< 1, 0 >T , zero-traction outflow and external force

f = 0. No-slip boundary conditions are considered on the walls and plate. The

simulation is run on a very coarse mesh consisting of only 8745 total degrees of

freedom with time step size ∆t = 0.02 till the end time T = 400 s. The quantities of

interest are the average value of the drag coefficient and Strouhal number which are

defined as

cd(t) =
2

ρLU2
max

∫
S

(
ρν
∂utS
∂n

ny − p(t)nx
)
dS

St =
fL

Umax

where S is the plate, n = (nx, ny)
T is the outward normal vector, utS is the tangential

velocity for tS = (ny,−nx)T the tangential vector, ρ1 is the density, f is the frequency

of vortex shedding, the maximum inlet velocity isUmax = 1 andL = 1 is the length of
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the plate. Average drag values are computed using period-in-time state solutions over

the time period 100 < t < 400. The results are listed in Table 4.4. Our goal here is to

show that, the results obtained from the EMAC-FILTERED scheme are more efficient

than the unfiltered case by using coarser meshes. We observe from the simulations

that this goal has been achieved. The average drag value, which is a very important

quantity to define the efficiency of the considered scheme in this flow simulation,

matches quite well with the values given in literature [10,123]. On the other hand, the

unfiltered cases, BE-EMAC solutions, do not estimate the reference values [10, 123]

as closely as EMAC-FILTERED solutions. Also, the EMAC-FILTERED scheme

possesses not only a dominant advantage over the unfiltered cases, but also catches

the reference values with coarser mesh sizes when compared with the results given

in Table 4.4. Moreover, the Strouhal numbers of both BE-EMAC and the EMAC-

FILTERED solutions are quite consistent with the reference value [10]. Thus we can

conclude that the EMAC-FILTERED scheme is even preferable among other well-

known numerical algorithms which are considered in references.

Table 4.4: The average drag coefficients and the Strouhal number.

Method cd,avg St

EMAC-FILTERED 2.63127 0.1900

BE-EMAC 2.577724 0.1875

Ref [123] (Very fine discretization) 2.6454 not given

Ref [10] 2.60 0.1826
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CHAPTER 5

A FAMILY OF SECOND ORDER TIME STEPPING METHODS FOR THE

DARCY-BRINKMAN EQUATIONS

In this chapter, we focus on double-diffusive convection flow in a confined porous

enclosure which are given by the Darcy-Brinkman system (see [16]). Recall from

Chapter 1, the Darcy-Brinkman system is given by

ut − ν∆u + (u · ∇)u +Da−1u +∇p = (βTT + βSS)g in (0, t]× Ω,

∇ · u = 0 in (0, t]× Ω,

u = 0 on (0, t]× ∂Ω,

Tt − γ∆T + u · ∇T = 0 in (0, t]× ∂Ω,

St −Dc∆S + u · ∇S = 0 in (0, t]× ∂Ω,

T, S = 0 on ΓD,

∂T

∂n
= 0,

∂S

∂n
= 0 on ΓN ,

u(0,x) = u0, T (0,x) = T0, S(0,x) = S0 in Ω. (5.0.1)

Here u is the fluid velocity, u0, the initial velocity, p the pressure, T the temperature,

T0, the initial temperature, S the concentration, S0, the initial concentration. We also

have the kinematic viscosity ν > 0, the Darcy number Da, the thermal diffusivity

γ > 0, the mass diffusivity Dc > 0,the gravitational acceleration vector g and the

thermal and solutal expansion coefficients are βT , βS , respectively.

In literature, there have been many numerical studies devoted to the development

of efficient stabilization methods for (5.0.1) to reduce the drawbacks explained in

Chapter 2 (see [23, 24, 69, 89, 126, 135, 161] and the references therein). Besides,

Shao et al. [108] have used the Fourier–Galerkin spectral method to obtain a high-
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accurate reference solution for the double-diffusive convection in a confined saturated

porous medium. A stabilized finite element method for the solution of combined heat

and mass transfer in a rectangular cavity was studied in [113]. Moreover, Cıbık and

Kaya [4] have presented a projection-based stabilized finite element error analysis.

In addition, Eroglu [41] has studied a reduced-order modeling using proper orthogo-

nal decomposition to flows governed by double diffusive convection. Further, a full

explicitly uncoupled variational multiscale stabilization finite element method was

considered by Yang and Jiang [165]. However, there have been relatively few studies

concerning the development of efficient second-order time-stepping numerical meth-

ods for investigating the Darcy-Brinkman system (5.0.1).

The common solution approach for the numerical solution of the time dependent

multiphysics problems requires their discretization in space and time as well as lin-

earization. Since linear extrapolation schemes require the solution of only one linear

system per time step, they are preferable when it is compared with the fully implicit

schemes that require multiple, time-consuming, nonlinear iterations at each time step.

There have been a considerable number of different studies devoted to such discretiza-

tions, see e.g. [103]. One of the most popular and important linearization examples is

Crank-Nicolson with linear extrapolation (CNLE) proposed by Baker [45]. CNLE is

preferable in terms of stability and accuracy over the more expensive, fully implicit

Crank-Nicolson (CN) method, [37,52,162]. Another important preferrable lineariza-

tion is the linearly extrapolated BDF2 (BDF2LE) time-stepping method which ex-

hibits strong stability and damping properties that are better than those of CN for the

simulation of underresolved regimes, [70,83,130]. In this study, we consider a family

of second-order IMEX time-stepping methods for (5.0.1) which are given by
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(θ + 1
2
)un+1 − 2θun + (θ − 1

2
)un−1

∆t
− νθ∆un+1 − ν(1− θ)∆un

+((θ + 1)un − θun−1) · ∇(θun+1 + (1− θ)un) (5.0.2)

+Da−1(θun+1 + (1− θ)un) + θ∇pn+1 + (1− θ)∇pn

=
(
βT ((θ + 1)T n − θT n−1) + βS((θ + 1)Sn − θSn−1)

)
g,

∇ · un+1 = 0, (5.0.3)

(θ + 1
2
)T n+1 − 2θT n + (θ − 1

2
)T n−1

∆t
− γθ∆T n+1 − γ(1− θ)∆T n

+((θ + 1)un − θun−1) · ∇(θT n+1 + (1− θ)T n) = 0, (5.0.4)

(θ + 1
2
)Sn+1 − 2θSn + (θ − 1

2
)Sn−1

∆t
−Dcθ∆S

n+1 −Dc(1− θ)∆Sn (5.0.5)

+((θ + 1)un − θun−1) · ∇(θSn+1 + (1− θ)Sn) = 0, (5.0.6)

where θ ∈ [1
2
, 1]. The choices of θ = 1 leads to BDF2LE time stepping scheme

whereas θ = 1
2

produce CNLE time stepping scheme. Any other θ ∈ [1
2
, 1] gives also

a second order method.

Besides using linearization at each time step, it is also necessary to use some suc-

cessful stabilization methods for (5.0.2)-(5.0.6) to damp numerical instabilities and

unphysical oscillations without compromising accuracy. A commonly preferable sta-

bilization method for these time-stepping methods is the speed stabilization method

which is obtained by adding−α∆un+1 to the left-hand side and−α∆un to the right-

hand side for a tuning parameter α generally taken as the order of the mesh width h.

This stabilization is relevant to techniques used in turbulence modeling [134], ocean

modeling [71] as well as to the discretization of the ’Voigt term’ in a turbulence model

recently studied by Titi and others, e.g. [104,160]. Some studies in the literature have

used this stabilization for NSE, for more details, one can see [11, 75] and references

therein. These works show the effectiveness of this stabilization for several different

types of flows and the ability to increase the coefficient of the stiffness matrix, e.g. for

the case of BDF2LE, from ν to ν + α which improves the conditioning of linear sys-

tems. On the other hand, this method is O(α∆t) shown in the analysis of [11] and so

can dominate the error in second-order time-stepping methods for the usual choice of

α = O(h). Choosing α = O(∆t) creates the problem of careful readjustment of α at

each time the step size is changed which can make the use of adaptive time-stepping
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very difficult.

The main objective of this chapter is to propose, analyze and test a new stabiliza-

tion for the time-stepping methods of the form (5.0.2)-(5.0.4), by extending an earlier

study of [94] for the Navier-Stokes equations (NSE) based on the pioneering work

of [27, 28]. A successful stabilization method is achieved by using the idea of ’cur-

vature stabilization’ (un+1 + un − un−1) instead of speed stabilization (un+1 + un)

explained above. The paper’s underlying ideas are to incorporate linearizations and

stabilization terms such that the discrete curvature solutions in velocity, temperature,

concentration, and pressure are proportional to this combination. As noted in [94], a

family of the method based on curvature stabilization leads to a sufficient stabiliza-

tion along with the optimal accuracy in time. Moreover, it is more accurate than speed

stabilization in terms of time step ∆t and keeping important flow quantities such as

drag coefficients like speed stabilization.

The chapter is organized as follows. In Section 5.1, some mathematical preliminaries

are presented which are useful in the analysis. In Section 5.2, the numerical scheme

of the second-order time-stepping method for (5.0.1) is described. We give compre-

hensive stability analysis and a priori error analysis of the method in Section 5.3.

Section 5.4 presents numerical illustrations that verify the analytical results.

5.1 Mathematical Preliminaries

In this chapter, we consider the standard function spaces for the continuous velocity

field, pressure, temperature, and concentration spaces defined respectively by

X := (H1
0(Ω))d,

Q := L2
0(Ω),

W := {S ∈ H1(Ω) : S = 0 on ΓD},

Ψ := {Φ ∈ H1(Ω) : Φ = 0 on ΓD}. (5.1.1)
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Define the divergence-free subspace of X by V:

V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

The variational formulation of (5.0.1) reads as follows: Find u : (0, T ] −→ X,

p : (0, T ] −→ Q, T : (0, T ] −→ W , S : (0, T ] −→ Ψ satisfying

(ut,v) + ν(∇u,∇v) + b∗(u,u,v)− (p,∇ · v) = (f ,v) ∀v ∈ X, (5.1.2)

(q,∇ · u) = 0 ∀q ∈ Q, (5.1.3)

(Tt, χ) + ν(∇T,∇χ) + c∗(u, T, χ) = 0 ∀χ ∈ W, (5.1.4)

(St,Φ) + ν(∇S,∇Φ) + d∗(u, S,Φ) = 0 ∀Φ ∈ Ψ. (5.1.5)

For finite element approximation of (5.2.1)-(5.2.4), let Xh ⊂ X, Qh ⊂ Q,Wh ⊂
W,Ψh ⊂ Ψ be conforming finite element spaces defined on a fine mesh πh for which

the usual discrete inf-sup condition (3.1.4) is satisfied.

We define the discretely divergence-free subspace Vh ⊂ Xh given by

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

In this thesis, we use the Taylor-Hood element pair (Xh;Qh) = (P d
k ;Pk−1) which are

defined in Section 3.1 of Chapter 3. We also assume that the finite element spacesWh

and Ψh are composed of piecewise polynomials of degree at most k. Additionally,

following [122, 143], it is assumed that the finite element spaces (Xh, Qh) satisfy the

well-known approximation properties (3.1.5)-(3.1.6) and the spaces (Wh,Ψh) satisfy

the following approximation properties

inf
χh∈Wh

‖T − χh‖ ≤ Chk+1‖T‖k+1 T ∈ Hk+1(Ω), (5.1.6)

inf
Φh∈Ψh

‖S − Φh‖ ≤ Chk+1‖S‖k+1 S ∈ Hk+1(Ω), (5.1.7)

We use the skew symmetric trilinear form (3.1.8) for the convective terms in (5.0.1)

each of which satisfying the properties in (3.1.7) and Lemma 3.1.1.
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Lemma 5.1.1

∥∥Dn+θ(w)− wt(tn+θ)
∥∥2 ≤ Cθ6∆t3

∫ tn+1

tn−1

‖wttt‖2 dt. (5.1.8)

∥∥F ε,ν
n+θ(w)− wn+θ

∥∥2 ≤ Cθ2(1− θ)2∆t3
∫ tn+1

tn
‖wtt‖2 dt

+Cε2θ2ν−2∆t3
∫ tn+1

tn−1

‖wtt‖2 dt. (5.1.9)

‖Hn+θ(w)− wn+θ‖2 ≤ Cθ2(1 + θ2)∆t3
∫ tn+1

tn−1

‖wtt‖2 dt. (5.1.10)

Proof. The first estimate is proved by expanding each term in Dn+θ(w) around tn+θ

by using the Taylor’s theorem with integral remainders

wt(t
n+θ) = wt(t

n+θ) (5.1.11)

wn+1 = wn+θ + (1− θ)∆twt(tn+θ) +
(1− θ)2∆t2

2
wtt(t

n+θ)

+

∫ tn+1

tn+θ
wttt(t)

(tn+1 − t)2

2
dt (5.1.12)

wn = wn+θ − θ∆twt(tn+θ) +
θ2∆t2

2
wtt(t

n+θ)

+

∫ tn

tn+θ
wttt(t)

(tn − t)2

2
dt (5.1.13)

wn−1 = wn+θ − (1 + θ)∆twt(t
n+θ) +

(1 + θ)2∆t2

2
wtt(t

n+θ)

+

∫ tn−1

tn+θ
wttt(t)

(tn−1 − t)2

2
dt (5.1.14)

Then, multiplying (5.1.11) with −1, (5.1.12) with
(
θ + 1

2

)
1

∆t
, (5.1.13) with −2θ

∆t
and

(5.1.14) with
(
θ − 1

2

)
1

∆t
and adding them we obtain

((
θ + 1

2

)
wn+1 − 2θwn +

(
θ − 1

2

)
wn−1

∆t
− wt(tn+θ)

)
≤ 1

4∆t

(
(2θ + 1)

∫ tn+1

tn+θ
‖wttt‖2(tn+1 − t)2dt− 4θ

∫ tn

tn+θ
‖wttt‖2(tn − t)2dt

+(2θ − 1)

∫ tn−1

tn+θ
‖wttt‖2(tn−1 − t)2dt

)
(5.1.15)

Integrating (5.1.15) yields the estimate (5.1.8).
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The proof of the second estimate follows similar lines as above. First, we write by

using the Cauchy-Schwarz inequality

∥∥F ε,ν
n+θ(w)− wn+θ

∥∥2 ≤
∥∥θwn+1 + (1− θ)wn − wn+θ

∥∥2

+ε2θ2ν−2
∥∥wn+1 − 2wn + wn−1

∥∥2 (5.1.16)

Then, by using the Taylor’s theorem with integral remainders, each term in F ε,ν
n+θ(w)

is written around tn+θ

wn+θ = wn+θ (5.1.17)

wn+1 = wn+θ + (1− θ)∆twt(tn+θ) +

∫ tn+1

tn+θ
wtt(t)(t

n+1 − t)dt (5.1.18)

wn = wn+θ − θ∆twt(tn+θ) +

∫ tn

tn+θ
wtt(t)(t

n − t)dt (5.1.19)

wn−1 = wn+θ − (1 + θ)∆twt(t
n+θ) +

∫ tn−1

tn+θ
wtt(t)(t

n−1 − t)dt (5.1.20)

Then, for the estimation of the first term in (5.1.16), multiply (5.1.17) with (−1),

(5.1.18) with θ, (5.1.19) with (1 − θ). Adding them together and then integrating

gives the bound. Similarly, the second term in (5.1.16) can be bounded by multiplying

(5.1.18) with (+1), (5.1.19) with (−2) and (5.1.20) with +1.

The last estimation (5.1.10) is the same as the estimation of the first term in (5.1.16).

�

5.2 Numerical Scheme

In this section, a family of second-order IMEX time-stepping methods for (5.0.1)

is presented in detail. For this purpose, let partition the time interval [0, t] into N

sub intervals with time step size ∆t = T/N and T n+1 = (n + 1)∆t with n =

1, 2, ..., N −1. For simplicity, we consider the constant step sizes ∆t = tn− tn−1 and

the quantities at time level tn are denoted by a subscript n. A family of second-order

IMEX time-stepping methods we propose for (5.0.1) reads as
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(θ + 1
2
)un+1 − 2θun + (θ − 1

2
)un−1

∆t
− θ(ν + ε)∆un+1 − (ν − θ(ν + 2ε))∆un

−θε∆un−1 + ((θ + 1)un − θun−1) · ∇
(
θ
ν + ε

ν
un+1 +

(
1− θν + 2ε

ν
un
)

+ θ
ε

ν
un−1

)
+Da−1

(
θ
ν + ε

ν
un+1 +

(
1− θν + 2ε

ν
un
)

+ θ
ε

ν
un−1

)
+ θ

ν + ε

ν
∇pn+1

+(1− θν + 2ε

ν
)∇pn + θ

ε

ν
∇pn−1

=
(
βT ((θ + 1)T n − θT n−1) + βS((θ + 1)Sn − θSn−1))

)
g, (5.2.1)

∇ · un+1 = 0, (5.2.2)

(θ + 1
2
)T n+1 − 2θT n + (θ − 1

2
)T n−1

∆t
− θ(γ + ε1)∆T n+1 − (γ − θ(γ + 2ε1))∆T n

−θε∆T n−1 + ((θ + 1)un − θun−1) · θγ + ε1

γ
∇T n+1

+
(

1− θγ + 2ε1

γ
∇T n

)
+ θ

ε1

γ
∇T n−1 = 0, (5.2.3)

(θ + 1
2
)Sn+1 − 2θSn + (θ − 1

2
)Sn−1

∆t
− θ(Dc + ε2)∆Sn+1 − (Dc − θ(Dc + 2ε2))∆Sn

−θε2∆Sn−1 + ((θ + 1)un − θun−1) · θDc + ε2

Dc

∇Sn+1

+
(

1− θDc + 2ε2

Dc

∇Sn
)

+ θ
ε2

Dc

∇Sn−1 = 0, (5.2.4)

with the parameters θ ∈ [1
2
, 1] and ε, ε1, ε2 ≥ 0. Numerical realizations suggest that

sufficient stabilizations are obtained with the choices ε = O(ν), ε1 = O(γ) and ε2 =

O(Dc). There are several variants of given time step scheme. By appropriate choices

of θ, ε, ε1 and ε2 well known time stepping schemes are obtained. For instance, the

choices θ = 1, ε = ε1 = ε2 = 0 and θ = 1/2, ε = ε1 = ε2 = 0 lead to just usual

BDF2LE and CNLE, respectively.

To simplify the analysis, we define the following operators

Dn+θ(w) :=
(θ + 1

2
)wn+1 − 2θwn + (θ − 1

2
)wn−1

∆t
, (5.2.5)

F δ,µ
n+θ(w) := θ

(µ+ δ)

µ
wn+1 +

(
1− θµ+ 2δ

µ

)
wn + θ

δ

µ
wn−1, (5.2.6)

Hn+θ(w) := (θ + 1)wn − θwn−1, (5.2.7)

where (δ, µ) = (ε, ν) in the case w = u (for the velocity), (δ, µ) = (ε1, γ) in the case

w = T (for the temperature) and (δ, µ) = (ε2, Dc) (for the concentration). By using
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the operators (5.2.5)-(5.2.6) and the trilinear forms, we state a family of second order

time stepping method (5.2.1)-(5.2.4) in finite dimensional spaces.

Scheme (A family of second order time stepping schemes): Let the initial con-

ditions u0, T 0 and S0 be given. Define u0
h, u−1

h , T 0
h , T−1

h , S0
h and S−1

h as the

nodal interpolants of u0, T 0 and S0, respectively. Then, given time step ∆t and

un,un−1, T n, T n−1, Sn and Sn−1, compute un+1 ∈ Xh, T
n+1 ∈ Wh, S

n+1 ∈ Ψh,

and pn+1 ∈ Qh satisfying

(Dn+θ(uh),vh) + ν(F ε,ν
n+θ(∇uh),∇vh) + b∗(Hn+θ(uh), F

ε,ν
n+θ(uh),vh))

−(F ε,ν
n+θ(ph),∇ · vh) = βT (gHn+θ(Th),vh) + βS(gHn+θ(Sh),vh), (5.2.8)

(∇ · uh, qh) = 0, (5.2.9)

(Dn+θ(Th), χh) + γ(F ε1,γ
n+θ (∇Th),∇χh) + c∗(Hn+θ(uh), F

ε1,γ
n+θ (Th), χh) = 0,

(5.2.10)

(Dn+θ(Sh),Φh) +Dc(F
ε2,Dc
n+θ (∇Sh),∇Φh) + d∗(Hn+θ(uh), F

ε2,Dc
n+θ (Sh),Φh) = 0,

(5.2.11)

for all (vh, χh,Φh, qh) ∈ (Xh,Wh,Ψh, Qh).

Remark 5.2.1 The studied method requires the specifications of the initial condition.

The initial condition u0
h needs to be weakly divergence-free in order to achieve sta-

bility in our method.

Remark 5.2.2 A family of second-order method (5.2.8)-(5.2.11) is a fully decoupled

system and under the certain choices of parameters, it requires only a linear system

to be solved at each time step.

5.3 Numerical Analysis

In this section, the numerical analysis of a fully discrete method for solving Darcy-

Brinkman system (5.0.1) is studied based on (5.2.8)-(5.2.11). We first provide the

stability analysis of the method. Stability bounds are derived by using standard energy

arguments. It turns out that the method (5.2.8)-(5.2.11) doesn’t depend on any time

step sizes.
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Lemma 5.3.1 (Unconditional Stability) The solutions of (5.2.8)-(5.2.11) satisfy at

tn = n∆t

∥∥TNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥T n+1
h − 2T nh + T n−1

h

∥∥2

F
+

4∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇Th)

∥∥2

≤
(

2θ − 1

2θ + 1

)N ∥∥T 0
h

∥∥2
+

4N

2θ + 1

∥∥∥∥∥∥
T 1

h

T 0
h

∥∥∥∥∥∥
2

G

.(5.3.1)

∥∥SNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥Sn+1
h − 2Snh + Sn−1

h

∥∥2

F
+

4∆tDc

2θ + 1

N−1∑
n=1

∥∥∥F ε2,Dc
n+θ (∇Sh)

∥∥∥2

≤
(

2θ − 1

2θ + 1

)N ∥∥S0
h

∥∥2
+

4N

2θ + 1

∥∥∥∥∥∥
S1

h

S0
h

∥∥∥∥∥∥
2

G

.(5.3.2)

∥∥uNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F
+

4∆tDa−1

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(uh)

∥∥2

+
2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇uh)

∥∥2

≤ C∆t(2θ + 1)

ν

[
1−

(2θ − 1

2θ + 1

)N]
(
∥∥T 1

h

∥∥2
+
∥∥T 0

h

∥∥
2
) +

C∆t

2θ + 1

∥∥∥∥∥∥
T 1

h

T 0
h

∥∥∥∥∥∥
2

G

+
C∆t(2θ + 1)

ν

[
1−

(2θ − 1

2θ + 1

)N]
(
∥∥S1

h

∥∥2
+
∥∥S0

h

∥∥2
) +

C∆t

2θ + 1

∥∥∥∥∥∥
S1

h

S0
h

∥∥∥∥∥∥
2

G

+
4N

2θ + 1

∥∥∥∥∥∥
u1

h

u0
h

∥∥∥∥∥∥
2

G

+

(
2θ − 1

2θ + 1

)N ∥∥u0
h

∥∥2
. (5.3.3)

Proof. For stability, one needs to obtain estimation for the temperature and the con-

centration, then use them to estimate the velocity. So, first set χh = F ε1,γ
n+θ (Th) in

(5.2.10), then use the definition of the skew symmetric form (3.1.8) and Lemma

2.0.11 :

1

∆t

∥∥∥∥∥∥
T n+1

h

T nh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 T nh

T n−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥T n+1
h − 2T nh + T n−1

h

∥∥2

F

+γ
∥∥F ε1,γ

n+θ (∇Th)
∥∥2

= 0. (5.3.4)
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Next, multiplying both sides of (5.3.4) by ∆t and taking sum from n = 1 to n = N−1

leads to∥∥∥∥∥∥
 TNh

TN−1
h

∥∥∥∥∥∥
2

G

+
1

4

N−1∑
n=1

∥∥T n+1
h − 2T nh + T n−1

h

∥∥2

F
+ ∆tγ

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇Th)

∥∥2

=

∥∥∥∥∥∥
T 1

h

T 0
h

∥∥∥∥∥∥
2

G

.(5.3.5)

Using Lemma 2.0.12 yields∥∥TNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥T n+1
h − 2T nh + T n−1

h

∥∥2

F
+

4∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇Th)

∥∥2

≤ 2θ − 1

2θ + 1

∥∥TN−1
h

∥∥2
+

4

2θ + 1

∥∥∥∥∥∥
T 1

h

T 0
h

∥∥∥∥∥∥
2

G

.(5.3.6)

The stability estimation (5.3.1) is now obtained by induction for
∥∥TN−1

h

∥∥2
. For the

concentration, we can obtain the stability bound by repeating the estimations of the

temperature by setting Φh = F ε2,Dc
n+θ (Sh) in (5.2.11).

For the stability of the velocity, choose vh = F ε,ν
n+θ(uh) in (5.2.8) and qh = F ε,ν

n+θ(ph)

in (5.2.9). With the definition of the skew-symmetry (3.1.8), this results

(Dn+θ(uh), F
ε,ν
n+θ(uh)) + ν

∥∥(∇F ε,ν
n+θ(uh))

∥∥2
+Da−1

∥∥F ε,ν
n+θ(uh)

∥∥2

= βT (gHn+θ(Th), F
ε,ν
n+θ(uh)) + βS(gHn+θ(Sh), F

ε,ν
n+θ(uh)). (5.3.7)

Apply Cauchy-Schwarz inequality to the right-hand side of (5.3.7) and estimate the

terms as follows: the right-hand side terms in (5.3.7) are bounded with the Poincaré-

Friedrichs inequality and Young’s inequality

|βT (gHn+θ(Th), F
ε,ν
n+θ(uh))| ≤ CβT ‖g‖2

∞ ‖Hn+θ(Th)‖
∥∥F ε,ν

n+θ(∇uh)
∥∥

≤ C(θ + 1)2

ν
‖T nh ‖

2 +
Cθ2

ν

∥∥T n−1
h

∥∥2

+
ν

4

∥∥F ε,ν
n+θ(∇uh)

∥∥2 (5.3.8)

and

|βS(gHn+θ(Sh), F
ε,ν
n+θ(uh))| ≤ CβS ‖g‖2

∞ ‖Hn+θ(Sh)‖
∥∥F ε,ν

n+θ(∇uh)
∥∥

≤ C(θ + 1)2

ν
‖Snh‖

2 +
Cθ2

ν

∥∥Sn−1
h

∥∥2

+
ν

4

∥∥F ε,ν
n+θ(∇uh)

∥∥2 (5.3.9)
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Using Lemma 2.0.11, inserting the estimations (5.3.8) and (5.3.9) and multiplying by

∆t along with summation over the time steps, then the equation (5.3.7) becomes

∥∥∥∥∥∥
 uNh

uN−1
h

∥∥∥∥∥∥
2

G

+
1

4

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F
+ ∆tDa−1

N−1∑
n=1

∥∥F ε,ν
n+θ(uh)

∥∥2

+
∆tν

2

N−1∑
n=1

∥∥F ε,ν
n+θ(∇uh)

∥∥2

≤

∥∥∥∥∥∥
u1

h

u0
h

∥∥∥∥∥∥
2

G

+
C∆tθ2

ν

N−1∑
n=1

(
‖T nh ‖

2 +
∥∥T n−1

h

∥∥2 )
+
C∆t(2θ + 1)

ν

N−1∑
n=1

‖T nh ‖
2

+
C∆tθ2

ν

N−1∑
n=1

(
‖Snh‖

2 +
∥∥Sn−1

h

∥∥2 )
+
C∆t(2θ + 1)

ν

N−1∑
n=1

‖Snh‖
2 . (5.3.10)

The estimation of Lemma 2.0.12 and the use of
θ2

2θ + 1
≤ 1 leads to

∥∥uNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥un+1
h − 2unh + un−1

h

∥∥2

F
+

4∆tDa−1

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(uh)

∥∥2

+
2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇uh)

∥∥2

≤ 2θ − 1

2θ + 1

∥∥uN−1
h

∥∥2
+

4

2θ + 1

∥∥∥∥∥∥
u1

h

u0
h

∥∥∥∥∥∥
2

G

+
C∆t

ν

N−1∑
n=1

(
‖2T nh ‖

2 +
∥∥T n−1

h

∥∥2 )
+
C∆t

ν

N−1∑
n=1

(
‖2Snh‖

2 +
∥∥Sn−1

h

∥∥2 )
. (5.3.11)

Lastly, the result follows from by using induction on N with the stability bounds

(5.3.1) and (5.3.2). �

We now give an error estimation for the second-order time-stepping method of pro-

posed algorithm which converges in space and in time if sufficiently smoothing of the

solution is satisfied. The error analysis requires the true solution of the velocity, tem-

perature, and concentration at time level n+ θ i.e. un+θ = u(tn+θ), T n+θ = T (tn+θ)

and Sn+θ = S(tn+θ). First note that the weak formulation of (5.0.1) at time level

(n+ θ) reads as follows : find (u, T, S, p) ∈ (X,W,Ψ, Q) such that
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(ut(t
n+θ),vh) + ν(∇un+θ,∇vh) + b∗(un+θ,un+θ,vh) +Da−1(un+θ,vh)

−(pn+θ,∇ · vh) = βT (gT n+θ,vh) + βS(gSn+θ,vh), (5.3.12)

(∇ · un+θ, qh) = 0, (5.3.13)

(Tt(t
n+θ), χh) + γ(∇T n+θ,∇χh) + c∗(un+θ, T, χh) = 0, (5.3.14)

(St(t
n+θ),Φh) +Dc(∇Sn+θ,∇Φh) + d∗(un+θ, S,Φh) = 0 (5.3.15)

for all (vh, χh,Φh, qh) ∈ (Xh,Wh,Ψh, Qh).

To obtain the optimal convergence, we assume that the following regularity assump-

tions hold for the true solutions:

u, T, S ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)) ∩H2(0, T ;H1(Ω)),

p ∈ L2(0, T ;Hs+1(Ω)) ∩H2(0, T ;L2(Ω)).

(5.3.16)

Theorem 5.3.1 Let (u, p, T, S) be the solution of the problems (5.0.1) such that the

regularity assumptions (5.3.16) are satisfied. Then, the following bound holds for the

differences enu = un − unh, enT = T n − T nh and enS = Sn − Snh :

∥∥eNu ∥∥2
+
∥∥eNT ∥∥2

+
∥∥eNS ∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
u − 2enu + en−1

u

∥∥2

F

+
2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇eu)

∥∥2
+

4∆tDa−1

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(eu)

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
T − 2enT + en−1

T

∥∥2

F
+

2∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇eT )

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
S − 2enS + en−1

S

∥∥2

F
+

2∆tDc

2θ + 1

N−1∑
n=1

∥∥∥F ε2,Dc
n+θ (∇eS)

∥∥∥2

≤ exp(C̃T )

[(
2θ − 1

2θ + 1

)N(∥∥e0
u

∥∥2
+
∥∥e0

T

∥∥+
∥∥e0

S

∥∥2
)

+C

(
1−

(
2θ − 1

2θ + 1

)N)(∥∥e1
u

∥∥2
+
∥∥e0

u

∥∥2
+
∥∥e1

T

∥∥2
+
∥∥e0

T

∥∥2
+
∥∥e1

S

∥∥2
+
∥∥e0

S

∥∥2
)

+ C

(
1−

(
2θ − 1

2θ + 1

)N)(
ν−1∆t4 ‖|ptt|‖2

2,0 + ν−1h2k+2 ‖|p|‖2
2,k+1

+ ν−1∆t4 ‖|uttt|‖2
2,0 + ν−1h2k+2 ‖|ut|‖2

2,k+1
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+ (ν + ν−1 + ν−1 ‖|∇u|‖2
∞ + γ−1 ‖∇T‖2

∞ +D−1
c ‖∇S‖

2
∞)∆t4 ‖|∇utt|‖2

2,0

+ (ν + ν−1 + ν−1 ‖|∇u|‖2
∞ + γ−1 ‖|∇T |‖2

∞ +D−1
c ‖|∇S|‖

2
∞)h2k ‖|u|‖2

2,k+1

+ (γ + γ−1 + γ−1 ‖|∇u|‖2
∞ + ν−1β2

T ‖g‖
2
∞)∆t4 ‖|∇Ttt|‖2

2,0

+ (γ + γ−1 ‖|∇u|‖2
∞ + ν−1β2

T ‖g‖
2
∞)h2k ‖|T |‖2

2,k+1

+ (Dc +D−1
c +D−1

c ‖|∇u|‖
2
∞ + ν−1β2

S ‖g‖
2
∞)∆t4 ‖|∇Stt|‖2

2,0

+ (Dc +D−1
c ‖|∇u|‖

2
∞ + ν−1β2

S ‖g‖
2
∞)h2k ‖|S|‖2

2,k+1

)
+ γ−1∆t4 ‖|Tttt|‖2

2,0 + γ−1h2k+2 ‖|Tt|‖2
2,k+1

+ D−1
c ∆t4 ‖|Sttt|‖2

2,0 +D−1
c h2k+2 ‖|St|‖2

2,k+1

]
.

Remark 5.3.1 Note that if one formulates Theorem 5.3.1 for the most common choice

of inf-sup stable finite element spaces, like Taylor Hood element, for the velocity and

pressure and piecewise quadratics polynomials for the temperature and the concen-

tration, then the optimal errors for the velocity, temperature and concentration are

obtained. Similarly, second-order accuracy in time is achieved with these finite ele-

ment choices.

Proof. First step is to obtain the error equations. By using the operators (5.2.5)-

(5.2.7), adding and subtracting terms in (5.3.12)-(5.3.14), true solutions

(un+1, pn+1, T n+1, Sn+1) at time level n+ θ satisfy

(Dn+θ(u),vh) + ν(F ε,ν
n+θ(∇u),∇vh) + b∗(Hn+θ(u), F ε,ν

n+θ(u),vh)

+Da−1(F ε,ν
n+θ(u),vh)− (pn+θ,∇ · vh)

= βT (gHn+θ(T ),vh) + βS(gHn+θ(S),vh) + E1(un+θ, T n+θ, Sn+θ;vh), (5.3.17)

(Dn+θ(T ), χh) + γ(F ε1,γ
n+θ (∇T ),∇χh) + c∗(Hn+θ(u), F ε1,γ

n+θ (T ), χh)

= E2(un+θ, T n+θ;χh) (5.3.18)

and

(Dn+θ(S),Φh) +Dc(F
ε2,Dc
n+θ (∇S),∇Φh) + d∗(Hn+θ(u), F ε2,Dc

n+θ (S),Φh)

= E3(un+θ, Sn+θ; Φh) (5.3.19)
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for all (vh, χh,Φh) ∈ (Xh,Wh,Ψh), where

E1(un+θ, T n+θ, Sn+θ;vh) = (Dn+θ(u)− ut(t
n+θ),vh)

+ν(∇(F ε,ν
n+θ(u)− un+θ),∇vh)

+b∗(Hn+θ(u)− un+θ, F ε,ν
n+θ(u),vh)

+b∗(un+θ, F ε,ν
n+θ(u)− un+θ,vh)

+Da−1(F ε,ν
n+θ(u)− un+θ,vh)

+βT (g(Hn+θ(T )− T n+θ),vh)

+βS(g(Hn+θ(S)− Sn+θ),vh), (5.3.20)

E2(un+θ, T n+θ;χh) = (Dn+θ(T )− Tt(tn+θ), χh)

+γ(∇(F ε1,γ
n+θ (T )− T n+θ),∇χh)

+c∗(Hn+θ(u)− un+θ, F ε1,γ
n+θ (T ), χh)

+c∗(un+θ, F ε1,γ
n+θ (T )− T n+θ, χh) (5.3.21)

and

E3(un+θ, Sn+θ; Φh) = (Dn+θ(S)− St(tn+θ),Φh)

+Dc(∇(F ε2,Dc
n+θ (S)− Sn+θ),∇Φh)

+d∗(Hn+θ(u)− un+θ, F ε2,Dc
n+θ (S),Φh)

+d∗(un+θ, F ε2,Dc
n+θ (S)− Sn+θ,Φh). (5.3.22)

Let us decompose the velocity and temperature error in the following way;

enu = un − unh = (un − Ih(un)) + (Ih(u
n)− unh) = ηnu + φn

h,

enT = T n − T nh = (T n − Ih(T n)) + (Ih(T
n)− T nh ) = ηnT + ξnh ,

enS = Sn − Shn = (Sn − Ih(Sn)) + (Ih(S
n)− Snh ) = ηnS + ζnh ,

where Ih(un) ∈ Vh is the interpolant of un in Vh, Ih(T n) ∈ Wh is the interpolant of

T n in Wh and Ih(Sn) ∈ Ψh is the interpolant of Sn in Ψh .

The error equations for the velocity, temperature, and concentration are obtained by

subtracting (5.2.8), (5.2.10),(5.2.11) from (5.3.17), (5.3.18) and (5.3.19), respec-

tively:
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(Dn+θ(eu),vh) + ν(F ε,ν
n+θ(∇eu),∇vh) + b∗(Hn+θ(u), F ε,ν

n+θ(eu),vh)

+Da−1(F ε,ν
n+θ(eu),vh) = E1(un+θ, T n+θ;vh)− (F ε,ν

n+θ(p)− p
n+θ,∇ · vh)

+(F ε,ν
n+θ(p)− qh,∇ · vh)− b

∗(Hn+θ(eu), F ε,ν
n+θ(uh),vh)

+βT (gHn+θ(eT ),vh) + βS(gHn+θ(eS),vh), (5.3.23)

(Dn+θ(eT ), χh) + γ(F ε1,γ
n+θ (∇eT ),∇χh) + c∗(Hn+θ(u), F ε1,γ

n+θ (eT ), χh)

= E2(un+θ, T n+θ;χh)− c∗(Hn+θ(eu), F ε1,γ
n+θ (Th), χh) (5.3.24)

(Dn+θ(eS), χh) +Dc(F
ε2,Dc
n+θ (∇eS),∇Φh) + d∗(Hn+θ(u), F ε2,Dc

n+θ (eS),Φh)

= E3(un+θ, Sn+θ; Φh)− d∗(Hn+θ(eu), F ε2,Dc
n+θ (Sh),Φh).(5.3.25)

Taking vh = F ε,ν
n+θ(φ

n
h) in (5.3.23), χh = F ε1,γ

n+θ (ξnh) in (5.3.24) and Φh = F ε2,Dc
n+θ (ζnh )

in (5.3.25), using the error decompositions and using the skew-symmetry of the tri-

linear form, it follows that

1

∆t

∥∥∥∥∥∥
φn+1

h

φn
h

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 φn

h

φn−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥φn+1
h − 2φn

h + φn−1
h

∥∥2

F

+ν
∥∥F ε,ν

n+θ(∇φ
n
h)
∥∥2

+Da−1
∥∥F ε,ν

n+θ(φ
n
h)
∥∥2

= E1(un+θ, T n+θ, Sn+θ;F ε,ν
n+θ(φh))− (F ε,ν

n+θ(p)− p
n+θ,∇ · F ε,ν

n+θ(φh))

+(F ε,ν
n+θ(p)− qh,∇ · F

ε,ν
n+θ(φh))− (Dn+θ(ηu), F ε,ν

n+θ(φh))

−ν(F ε,ν
n+θ(∇ηu), F ε,ν

n+θ(∇(φh))−Da−1(F ε,ν
n+θ(ηu), F ε,ν

n+θ(φh))

−b∗(Hn+θ(u), F ε,ν
n+θ(ηu), F ε,ν

n+θ(φh))− b∗(Hn+θ(φh), F
ε,ν
n+θ(uh), F

ε,ν
n+θ(φh))

−b∗(Hn+θ(ηu), F ε,ν
n+θ(uh), F

ε,ν
n+θ(φh)) + βT (gHn+θ(ξh), F

ε,ν
n+θ(φh))

+βT (gHn+θ(η
T ), F ε,ν

n+θ(φh)) + βS(gHn+θ(ξh), F
ε,ν
n+θ(φh))

+βS(gHn+θ(ηS), F ε,ν
n+θ(φh)), (5.3.26)

1

∆t

∥∥∥∥∥∥
ξn+1

h

ξnh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 ξnh

ξn−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥ξn+1
h − 2ξnh + ξn−1

h

∥∥2

F

+γ
∥∥F ε1,γ

n+θ (∇ξh)
∥∥2

= E2(un+θ, T n+θ;F ε1,γ
n+θ (ξh))− (Dn+θ(ηT ), F ε,γ

n+θ(ξh))

−γ(F ε1,γ
n+θ (∇ηT ), F ε1,γ

n+θ (∇ξh)− c∗(Hn+θ(u), F ε1,γ
n+θ (ηT ), F ε1,γ

n+θ (ξh))

−c∗(Hn+θ(φh), F
ε1,γ
n+θ (Th), F

ε1,γ
n+θ (ξh))

−c∗(Hn+θ(ηu), F ε1,γ
n+θ (Th), F

ε1,γ
n+θ (ξh)) (5.3.27)
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and

1

∆t

∥∥∥∥∥∥
ζn+1

h

ζnh

∥∥∥∥∥∥
2

G

− 1

∆t

∥∥∥∥∥∥
 ζnh

ζn−1
h

∥∥∥∥∥∥
2

G

+
1

4∆t

∥∥ζn+1
h − 2ζnh + ζn−1

h

∥∥2

F

+Dc

∥∥∥F ε2,Dc
n+θ (∇ζh)

∥∥∥2

= E3(un+θ, Sn+θ;F ε2,Dc
n+θ (ζh))− (Dn+θ(ηS), F ε2,Dc

n+θ (ζh))

−Dc(F
ε2,Dc
n+θ (∇ηS), F ε2,Dc

n+θ (∇ζh)− d∗(Hn+θ(u), F ε2,Dc
n+θ (ηS), F ε2,Dc

n+θ (ζh))

−d∗(Hn+θ(φh), F
ε2,Dc
n+θ (Sh), F

ε2,Dc
n+θ (ζh))

−d∗(Hn+θ(ηu), F ε2,Dc
n+θ (Th), F

ε2,Dc
n+θ (ζh)). (5.3.28)

To bound the first term in the right hand side of (5.3.26), we consider each term in

(5.3.20). Using Cauchy-Schwarz, Young’s, Poincaré-Friedrichs inequalities and the

estimation (5.1.8), the first term in (5.3.20) is bounded by

(Dn+θ(u)− ut(t
n+θ), F ε,ν

n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

∥∥Dn+θ(u)− ut(t
n+θ)

∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ6∆t3

∫ tn+1

tn−1

‖uttt‖2 dt.

Similarly, with the estimation (5.1.9) we have

ν(∇(F ε,ν
n+θ(u)− un+θ),∇F ε,ν

n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν

∥∥∇(θun+1 + (1− θ)un − un+θ)
∥∥2

+Cν−1ε2θ2
∥∥∇(un+1 − 2un + un−1)

∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cνθ2(1− θ)2∆t3

∫ tn+1

tn
‖∇utt‖2 dt

+Cν−1ε2θ2∆t3
∫ tn+1

tn−1

‖∇utt‖2 dt.

We use Cauchy-Schwarz, Young’s inequalities, and the estimations (5.1.10) and (5.1.9)

to bound the nonlinear terms

b∗(Hn+θ(u)− un+θ, F ε,ν
n+θ(u), F ε,ν

n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

∥∥∇(Hn+θ(u)− un+θ)
∥∥2 ∥∥F ε,ν

n+θ(∇u)
∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ2(1 + θ2)∆t3

∥∥F ε,ν
n+θ(∇u)

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt.
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and

b∗(un+θ, F
ε,ν
n+θ(u)− un+θ, F ε,ν

n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

∥∥∇un+θ
∥∥2 ∥∥∇(F ε,ν

n+θ(u)− un+θ)
∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ2(1− θ2)∆t3

∥∥∇un+θ
∥∥2
∫ tn+1

tn
‖∇utt‖2 dt

+Cν−3ε2θ2∆t3
∥∥∇un+θ

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt,

Similarly, we obtain

Da−1(F ε,ν
n+θ(u)− un+θ, F ε,ν

n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

∥∥∇(F ε,ν
n+θ(u)− un+θ)

∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ2(1− θ2)∆t3

∫ tn+1

tn
‖∇utt‖2 dt

+Cν−3ε2θ2∆t3
∫ tn+1

tn−1

‖∇utt‖2 dt,

We proceed to bound the last two terms in (5.3.20) in a similar manner

βT ((gHn+θ(T )− T n+θ), F ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

T ‖g‖
2
∞ ν

−1θ2(1 + θ)2∆t3
∫ tn+1

tn−1

‖∇Ttt‖2 dt.

and

βS((gHn+θ(S)− Sn+θ), F ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

S ‖g‖
2
∞ ν

−1θ2(1 + θ)2∆t3
∫ tn+1

tn−1

‖∇Stt‖2 dt.

We have completed to bound the terms in (5.3.20). To bound the remaining terms on

right-hand side of (5.3.26), we use Cauchy-Schwarz and Young’s inequalities along

with (5.1.9)

(F ε,ν
n+θ(p)− p

n+θ,∇ · F ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

∥∥θpn+1 + (1− θ)pn − pn+θ
∥∥2

+Cν−3ε2θ2
∥∥pn+1 − 2pn + pn−1

∥∥2

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ2(1− θ)2∆t3

∫ tn+1

tn
‖ptt‖2 dt

+Cν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2 dt,
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(F ε,ν
n+θ(p)− qh,∇ · F

ε,ν
n+θ(∇φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1

(∥∥F ε,ν
n+θ(p)− p

n+θ
∥∥2

+
∥∥pn+θ − qh

∥∥2
)

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cν−1θ2(1− θ)2∆t3

∫ tn+1

tn
‖ptt‖2 dt

+Cν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2 dt+ Cν−1
∥∥pn+θ − qh

∥∥2
,

and

(Dn+θ(ηu), F ε,ν
n+θ(φh))

≤ C

∥∥∥∥∥∥∥
1

2
(ηn+1

u − ηn−1
u ) + θ(ηn+1

u − ηnu)− θ(ηnu − ηn−1
u )

∆t

∥∥∥∥∥∥∥
∥∥F ε,ν

n+θ(∇φh)
∥∥

≤ C

(∥∥∥∥∥ 1

2∆t

∫ tn+1

tn−1

ηu
t dt

∥∥∥∥∥
+

∥∥∥∥∥ θ

∆t

∫ tn+1

tn
ηu
t dt

∥∥∥∥∥+

∥∥∥∥ θ

∆t

∫ tn

tn−1

ηu
t dt

∥∥∥∥)∥∥F ε,ν
n+θ(∇φh)

∥∥
≤ Cν−1(θ2 + 4)

∆t

∫ tn−1

tn+1

‖ηu
t ‖

2 dt+
ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
.

The next term in (5.3.26) is bounded by using Cauchy-Schwarz and Young’s inequal-

ities, taking into account the expansion of F ε,ν
n+θ. It follows that

ν(F ε,ν
n+θ(∇ηu), F ε,ν

n+θ(∇φh))

≤ ν
∥∥F ε,ν

n+θ(∇ηu)
∥∥∥∥F ε,ν

n+θ(∇φh)
∥∥

≤ Cν−1

((
θ + εθν−1

)2 ∥∥∇ηn+1
u

∥∥2
+
(
1− θ − 2εθν−1

)2 ‖∇ηnu‖
2

+ε2θ2ν−2
∥∥∇ηn−1

u

∥∥2
)

+
ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
.

Similarly, we have

Da−1(F ε,ν
n+θ(ηu), F ε,ν

n+θ(φh))

≤ CDa−1
∥∥F ε,ν

n+θ(∇ηu)
∥∥∥∥F ε,ν

n+θ(∇φh)
∥∥

≤ Cν−1

((
θ + εθν−1

)2 ∥∥∇ηn+1
u

∥∥2
+
(
1− θ − 2εθν−1

)2 ‖∇ηnu‖
2

+ε2θ2ν−2
∥∥∇ηn−1

u

∥∥2
)

+
ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
.
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Applying estimation (3.1.9) for the nonlinear terms and expansion of the operators

along with Cauchy-Schwarz and Young’s inequalities leads to

b∗(Hn+θ(u), F ε,ν
n+θ(ηu), F ε,ν

n+θ(φh))

≤ C ‖Hn+θ(∇u)‖
∥∥F ε,ν

n+θ(∇ηu)
∥∥∥∥F ε,ν

n+θ(∇φh)
∥∥

≤ Cν−1

(
(θ + 1)2 ‖∇un‖2 + θ2

∥∥∇un−1
∥∥2
)((

θ + εθν−1
)2 ∥∥∇ηn+1

u

∥∥2

+
(
1− θ − 2εθν−1

)2 ‖∇ηnu‖
2 + ε2θ2ν−2

∥∥∇un−1
∥∥2
)

+
ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2

and

b∗(Hn+θ(ηu), F ε,ν
n+θ(uh), F

ε,ν
n+θ(φh))

≤ Cν−1
∥∥F ε,ν

n+θ(∇uh)
∥∥2 ‖Hn+θ(∇ηu)‖2 +

ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2

≤ Cν−1

((
θ + εθν−1

)2 ∥∥∇un+1
h

∥∥2
+
(
1− θ − 2εθν−1

)2 ‖∇unh‖
2

+ε2θ2ν−2
∥∥∇un−1

h

∥∥2
)

×
(
(θ + 1)2 ‖∇ηnu‖

2 + θ2
∥∥∇ηn−1

u

∥∥2 )
+

ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
.

Similarly, to bound the next nonlinear term, with the help of (3.1.10), one gets

b∗(Hn+θ(φh), F
ε,ν
n+θ(uh), F

ε,ν
n+θ(φh))

≤ C
∥∥F ε,ν

n+θ(∇uh)
∥∥
∞ ‖Hn+θ(φh)‖

∥∥F ε,ν
n+θ(∇φh)

∥∥
+C

∥∥F ε,ν
n+θ(uh)

∥∥
∞ ‖Hn+θ(φh)‖

∥∥F ε,ν
n+θ(∇φh)

∥∥
≤ Cν−1

(∥∥F ε,ν
n+θ(∇uh)

∥∥2

∞ +
∥∥F ε,ν

n+θ(uh)
∥∥2

∞

)(
(θ + 1)2 ‖φn

h‖
2 + θ2

∥∥φn−1
h

∥∥2
)

+
ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
.

Similarly, the last four terms in (5.3.26) are bounded by

βT (gHn+θ(ξh), F
ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

T ‖g‖
2
∞ ν

−1

(
(θ + 1)2 ‖ξnh‖

2 + θ2
∥∥ξn−1

h

∥∥2
)
,

βT (gHn+θ(ηT ), F ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

T ‖g‖
2
∞ ν

−1

(
(θ + 1)2 ‖∇ηnT‖

2 + θ2
∥∥∇ηn−1

T

∥∥2
)
,
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βS(gHn+θ(ζh), F
ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

S ‖g‖
2
∞ ν

−1

(
(θ + 1)2 ‖ζnh‖

2 + θ2
∥∥ζn−1

h

∥∥2
)
,

βS(gHn+θ(ηS), F ε,ν
n+θ(φh))

≤ ν

64

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+ Cβ2

S ‖g‖
2
∞ ν

−1

(
(θ + 1)2 ‖∇ηnS‖

2 + θ2
∥∥∇ηn−1

S

∥∥2
)
.

Next insert the above bounds into the (5.3.23), use the approximation property (3.1.6),

multiply by ∆t and take the sum from n = 1 to n = N − 1;

∥∥∥∥∥∥
 φN

h

φN−1
h

∥∥∥∥∥∥
2

G

+
1

4

N−1∑
n=1

∥∥φn+1
h − 2φn

h + φn−1
h

∥∥2

F
+

∆tν

2

N−1∑
n=1

∥∥F ε,ν
n+θ(∇φh)

∥∥2

+∆tDa−1

N−1∑
n=1

∥∥F ε,ν
n+θ(φh)

∥∥2

≤

∥∥∥∥∥∥
φ1

h

φ0
h

∥∥∥∥∥∥
2

G

+ C∆t
N−1∑
n=1

[
ν−1θ2(1− θ)2∆t3

∫ tn+1

tn
‖ptt‖2 dt

+ν−3ε2θ2∆t3
∫ tn+1

tn−1

‖ptt‖2 dt+ ν−1h2k+2
∥∥pn+θ

∥∥2

k+1

+ν−1θ6∆t3
∫ tn+1

tn−1

‖uttt‖2 dt+ Cνθ2(1− θ)2∆t3
∫ tn+1

tn
‖∇utt‖2 dt

+Cν−1ε2θ2∆t3
∫ tn+1

tn−1

‖∇utt‖2 dt

+Cν−1θ3(1 + θ)2∆t3
∥∥F ε,ν

n+θ(∇u)
∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt

+Cν−1θ2(1− θ)2∆t3
∥∥∇un+θ

∥∥2
∫ tn+1

tn
‖∇utt‖2 dt

+Cν−3ε2θ2∆t3
∥∥∇un+θ

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt

+Cν−1θ2(1− θ2)∆t3
∫ tn+1

tn
‖∇utt‖2 dt+ Cν−3ε2θ2∆t3

∫ tn+1

tn−1

‖∇utt‖2 dt

+Cβ2
T ‖g‖

2
∞ ν

−1θ2(1 + θ)2∆t3
∫ tn+1

tn−1

‖∇Ttt‖2 dt

+Cβ2
S ‖g‖

2
∞ ν

−1θ2(1 + θ)2∆t3
∫ tn+1

tn−1

‖∇Stt‖2 dt+
(θ2 + 4)ν−1

∆t

∫ tn+1

tn−1

‖ηu
t ‖

2 dt

+Cν

((
θ + εθν−1

)2 ∥∥∇ηn+1
u

∥∥2
+
(
1− θ − 2εθν−1

)2 ‖∇ηnu‖
2
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+ε2θ2ν−2
∥∥∇ηn−1

u

∥∥2
)

+ ν−1

(
(θ + εθν−1)2

∥∥∇ηn+1
u

∥∥2

+(1− θ − 2εθν−1)2 ‖∇ηnu‖
2 + ε2θ2ν−2

∥∥∇ηn−1
u

∥∥2
)

+ ν−1

(
(θ + 1)2 ‖∇un‖2

+θ2
∥∥∇un−1

∥∥2
)(

(θ + εθν−1)2
∥∥∇ηn+1

u

∥∥2
+ (1− θ − 2εθν−1)2 ‖∇ηnu‖

2

+ε2θ2ν−2
∥∥∇ηn−1

u

∥∥2
)

+ ν−1

(
(θ + εθν−1)2

∥∥∇un+1
h

∥∥2

+(1− θ − 2εθν−1)2 ‖∇unh‖
2 + ε2θ2ν−2

∥∥∇un−1
h

∥∥2
)(

(θ + 1)2 ‖∇ηnu‖
2

+θ2
∥∥∇ηn−1

u

∥∥2 )
+ Cβ2

T ‖g‖
2
∞ ν

−1

(
(θ + 1)2 ‖∇ηnT‖

2 + θ2
∥∥∇ηn−1

T

∥∥2
)

+Cβ2
S ‖g‖

2
∞ ν

−1

(
(θ + 1)2 ‖∇ηnS‖

2 + θ2
∥∥∇ηn−1

S

∥∥2
)

+ν−1

(∥∥F ε,ν
n+θ(∇uh)

∥∥2

∞ +
∥∥F ε,ν

n+θ(uh)
∥∥2

∞

)(
(θ + 1)2 ‖φn

h‖
2 + θ2

∥∥φn−1
h

∥∥2
)

+Cβ2
T ‖g‖

2
∞ ν

−1

(
(θ + 1)2 ‖ξnh‖

2 + θ2
∥∥ξn−1

h

∥∥2
)

+Cβ2
S ‖g‖

2
∞ ν

−1

(
(θ + 1)2 ‖ζnh‖

2 + θ2
∥∥ζn−1

h

∥∥2
)]
.

Next we observe that due to Lemma 2.0.12 and approximation results (3.1.5), (5.1.6)

and (5.1.7) we have;

∥∥φN
h

∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥φn+1
h − 2φn

h + φn−1
h

∥∥2

F
+

2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇φh)

∥∥2

+
4Da−1∆t

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(φh)

∥∥2

≤
(2θ − 1

2θ + 1

)N ∥∥φ0
h

∥∥2
+ 2

(
1−

(2θ − 1

2θ + 1

)N)[∥∥∥∥∥∥
φ1

h

φ0
h

∥∥∥∥∥∥
2

G

+C
(
ν−1∆t4 ‖|ptt|‖2

2,0 + ν−1h2k+2 ‖|p|‖2
2,k+1 + ν−1∆t4 ‖|uttt|‖2

2,0

+ν∆t4 ‖|∇utt|‖2
2,0 + ν−1∆t4 ‖|∇utt|‖2

2,0 + ν−1∆t4 ‖|∇u|‖2
∞,0 ‖|∇utt|‖

2
2,0

+ν−1β2
T ‖g‖

2
∞∆t4 ‖|∇Ttt|‖2

2,0 + ν−1β2
S ‖g‖

2
∞∆t4 ‖|∇Stt|‖2

2,0

+ν−1h2k+2 ‖|ut|‖2
2,k+1 + νh2k ‖|u|‖2

2,k+1 + ν−1h2k ‖|u|‖2
2,k+1

+ν−1h2k ‖|∇u|‖2
∞ ‖|u|‖

2
2,k+1 + ν−1h2kβ2

T ‖g‖
2
∞ ‖|T |‖

2
2,k+1

+ν−1h2kβ2
S ‖g‖

2
∞ ‖|S|‖

2
2,k+1

)
+ Cν−1∆t

N−1∑
n=0

‖φn
h‖

2
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+Cν−1β2
T ‖g‖

2
∞∆t

N−1∑
n=0

‖ξnh‖
2 + Cν−1β2

S ‖g‖
2
∞∆t

N−1∑
n=0

‖ζnh‖
2

]
.(5.3.29)

The proof of temperature proceeds along the lines of the velocity error estimation.

The first term E2(un+θ, Tn+θ;F
ε1,γ
n+θ (ξh)) in (5.3.27) is bounded by using Cauchy-

Schwarz, Young’s inequalities, expansion of operators and Taylor’s theorem. Then,

one gets

(Dn+θ(T )− Tt(tn+θ), F ε1,γ
n+θ (ξh))

≤ γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2
+ Cκ−1

∥∥Dn+θ(T )− Tt(tn+θ)
∥∥2

≤ γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2
+ Cγ−1θ6∆t3

∫ tn+1

tn−1

‖Tttt‖2 dt

and

γ(∇(F ε1,γ
n+θ (T )− T n+θ),∇F ε1,γ

n+θ (ξh))

≤ γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2
+ Cκ

∥∥∇(F ε,γ
n+θ(T )− T n+θ)

∥∥2

≤ γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2
+ Cκ

∥∥∇(θT n+1 + (1− θ)T n − T n+θ)
∥∥2

+Cκ−1ε2θ2
∥∥∇(T n+1 − 2T n + T n−1)

∥∥2

≤ γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2
+ Cγθ2(1− θ)2∆t3

∫ tn+1

tn
‖∇Ttt‖2 dt

+Cγ−1ε21θ
2∆t3

∫ tn+1

tn−1

‖∇Ttt‖2 dt.

The trilinear terms are bounded similar as in the velocity case

c∗(Hn+θ(u)− un+θ, F ε1,γ
n+θ (T ), F ε1,γ

n+θ (ξh))

≤ C
∥∥∇(Hn+θ(u)− un+θ)

∥∥F ε,γ
n+θ(∇T )

∥∥F ε,γ
n+θ(∇ξh)

∥∥
≤ γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2
+ Cκ−1

∥∥∇(Hn+θ(u)− un+θ)
∥∥2 ∥∥F ε,γ

n+θ(∇T )
∥∥2

≤ γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2
+ Cγ−1θ2(1 + θ)2∆t3

∥∥F ε1,γ
n+θ (∇T )

∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt
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and

c∗(un+θ, F ε1,γ
n+θ (T )− T n+θ, F ε1,γ

n+θ (ξh))

≤ C
∥∥∇un+θ

∥∥∥∥∇(F ε,γ
n+θ(T )− T n+θ)

∥∥∥∥F ε,γ
n+θ(∇φT )

∥∥
≤ γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2
+ Cκ−1

∥∥∇un+θ
∥∥2 ∥∥∇(F ε,γ

n+θ(T )− T n+θ)
∥∥2

≤ γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2
+ Cγ−1θ2(1− θ)2∆t3

∥∥∇un+θ
∥∥2
∫ tn+1

tn
‖∇Ttt‖2 dt

+Cγ−3ε21∆t3
∥∥∇un+θ

∥∥2
∫ tn+1

tn−1

‖∇Ttt‖2 dt.

Similarly, the remaining terms in (5.3.27) follow analogously the proof of the velocity.

One gets the bound

(Dn+θ(ηT ), F ε1,γ
n+θ (ξh))

≤ ‖Dn+θ(ηT )‖
∥∥F ε,γ

n+θ(ξh)
∥∥

≤ C

∥∥∥∥∥∥∥
1

2
(ηn+1
T − ηn−1

T ) + θ(ηn+1
T − ηnT )− θ(ηnT − ηn−1

T )

∆t

∥∥∥∥∥∥∥
∥∥F ε,γ

n+θ(∇ξh)
∥∥

≤ C

∥∥∥∥∥ 1

∆t

(
1

2

∫ tn+1

tn−1

ηTt dt+ θ

∫ tn+1

tn
ηTt dt− θ

∫ tn

tn−1

ηTt dt

)∥∥∥∥∥∥∥F ε,γ
n+θ(∇ξh)

∥∥
≤ C

(∥∥∥∥∥ 1

2∆t

∫ tn+1

tn−1

ηttdt

∥∥∥∥∥+

∥∥∥∥∥ θ

∆t

∫ tn+1

tn
ηttdt

∥∥∥∥∥+

∥∥∥∥ θ

∆t

∫ tn

tn−1

ηttdt

∥∥∥∥)∥∥F ε,γ
n+θ(∇ξh)

∥∥
≤ Cκ−1(θ2 + 4)

∥∥∥∥∥ 1

∆t

∫ tn−1

tn+1

ηTt dt

∥∥∥∥∥
2

+
γ

64

∥∥F ε,γ
n+θ(∇ξh)

∥∥2

≤ Cγ−1(θ2 + 4)

∆t

∫ tn+1

tn−1

∥∥ηTt ∥∥2
dt+

γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2

and the following bound for the viscous term

γ(F ε1,γ
n+θ (∇ηT ), F ε1,γ

n+θ (∇ξh))

≤ γ
∥∥F ε,γ

n+θ(∇ηT )
∥∥∥∥F ε,γ

n+θ(∇ξh)
∥∥

≤ Cγ

((
θ +

ε1θ

γ

)2 ∥∥∇ηn+1
T

∥∥2
+
(
1− θ − 2ε1θ

γ

)2 ‖∇ηnT‖
2 +

ε21θ
2

γ2

∥∥∇ηn−1
T

∥∥2
)

+
γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2
.
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Applying Cauchy-Schwarz, expansion of the operators along with the Young’s in-

equality yields

c∗(Hn+θ(u), F ε1,γ
n+θ (ηT ), F ε1,γ

n+θ (ξh))

≤ C ‖Hn+θ(∇u)‖
∥∥F ε,γ

n+θ(∇ηT )
∥∥∥∥F ε,γ

n+θ(∇φT )
∥∥

≤ Cγ−1

(
(θ + 1)2 ‖∇un‖2 + θ2

∥∥∇un−1
∥∥2
)((

θ +
ε1θ

γ

)2 ∥∥∇ηn+1
T

∥∥2

+
(
1− θ − 2ε1θ

γ

)2 ‖∇ηnT‖
2 +

ε21θ
2

γ2

∥∥∇ηn−1
T

∥∥2
)

+
γ

64

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2

and

c∗(Hn+θ(ηu), F ε1,γ
n+θ (Th), F

ε1,γ
n+θ (φT ))

≤ C ‖Hn+θ(∇ηu)‖
∥∥F ε,γ

n+θ(∇Th)
∥∥∥∥F ε,γ

n+θ(∇φT )
∥∥

≤ Cκ−1
∥∥F ε,γ

n+θ(∇T
h)
∥∥2 ‖Hn+θ(∇ηu)‖2 +

γ

64

∥∥F ε,γ
n+θ(∇φT )

∥∥2

≤ Cγ−1

((
θ + ε1θκ

−1
)2 ∥∥∇T n+1

h

∥∥2
+
(
1− θ − 2ε1θγ

−1
)2 ‖∇T nh ‖

2

+ε21θ
2γ−2

∥∥∇T n−1
h

∥∥2
)
×
(
(θ + 1)2 ‖∇ηnu‖

2 + θ2
∥∥∇ηn−1

u

∥∥2 )
+
γ

64

∥∥F ε1,γ
n+θ (∇φT )

∥∥2
.

Finally, the last trilinear term is bounded by Lemma 3.1.1:

c∗(Hn+θ(φh), F
ε1,γ
n+θ (Th), F

ε1,γ
n+θ (ξh))

≤ C
∥∥F ε,γ

n+θ(∇Th)
∥∥
∞ ‖(Hn+θ(φh)‖

∥∥F ε,γ
n+θ(∇φh)

∥∥
+C

∥∥F ε,γ
n+θ(Th)

∥∥
∞ ‖(Hn+θ(φh)‖

∥∥F ε,γ
n+θ(∇φh)

∥∥
≤ Cγ−1

(∥∥F ε1,γ
n+θ (∇Th)

∥∥2

∞ +
∥∥F ε1,γ

n+θ (Th)
∥∥2

∞

)(
(θ + 1)2 ‖φn

h‖
2 + θ2

∥∥φn−1
h

∥∥2 )
+
γ

64

∥∥F ε1,γ
n+θ (∇φh)

∥∥2
.

Next, insert the above bounds into the (5.3.24) and take the sum from n = 1 to

n = N − 1 :
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∥∥∥∥∥∥
 ξNh

ξN−1
h

∥∥∥∥∥∥
2

G

+
1

4

N−1∑
n=1

∥∥ξn+1
h − 2ξnh + ξn−1

h

∥∥2

F
+

∆tγ

2

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2

≤

∥∥∥∥∥∥
ξ1

h

ξ0
h

∥∥∥∥∥∥
2

G

+ C∆t
N−1∑
n=1

[
γ−1θ6∆t3

∫ tn+1

tn−1

‖Tttt‖2 dt

+γθ2(1− θ)2∆t3
∫ tn+1

tn
‖∇Ttt‖2 dt+ γ−1ε21θ

2∆t3
∫ tn+1

tn−1

‖∇Ttt‖2 dt

+Cγ−1θ2(1 + θ)2∆t3
∥∥F ε1,γ

n+θ (∇T )
∥∥2
∫ tn+1

tn−1

‖∇utt‖2 dt

+Cγ−1θ2(1− θ)2∆t3 ‖∇un+θ‖2

∫ tn+1

tn
‖∇Ttt‖2 dt

+Cγ−3ε21θ
2∆t2

∥∥∇un+θ
∥∥2
∫ tn+1

tn−1

‖∇Ttt‖2 dt+
(θ2 + 4)γ−1

∆t

∫ tn+1

tn−1

∥∥ηTt ∥∥2
dt

+γ

(
(θ + ε1θγ

−1)2
∥∥∇ηn+1

T

∥∥2
+ (1− θ − 2ε1θγ

−1)2 ‖∇ηnT‖
2

+ε21θ
2γ−2

∥∥∇ηn−1
T

∥∥2
)

+ γ−1

(
(θ + 1)2 ‖∇un‖2 + θ2

∥∥∇un−1
∥∥2
)

(
(θ + ε1θγ

−1)2
∥∥∇ηn+1

T

∥∥2
+ (1− θ − 2ε1θγ

−1)2 ‖∇ηnT‖
2

+ε21θ
2γ−2

∥∥∇ηn−1
T

∥∥2
)

+ γ−1

(
(θ + ε1θγ

−1)2
∥∥∇T n+1

h

∥∥2

+(1− θ − 2ε1θγ
−1)2 ‖∇T nh ‖

2 + ε21θ
2γ−2

∥∥∇T n−1
h

∥∥2
)

+

(
(θ + 1)2 ‖∇ηnu‖

2 + θ2
∥∥∇ηn−1

u

∥∥2
)

+ γ−1

(∥∥F ε1,γ
n+θ (∇Th)

∥∥2

∞ +
∥∥F ε1,γ

n+θ (Th)
∥∥2

∞

)
+

(
(θ + 1)2 ‖φn

u‖
2 + θ2

∥∥φn−1
u

∥∥2
)]
.

Applying the stability bound Lemma 2.0.12 in the last estimation yields;

∥∥ξNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥ξn+1
h − 2ξnh + ξn−1

h

∥∥2

F
+

2∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε1,γ
n+θ (∇ξh)

∥∥2

≤
(

2θ − 1

2θ + 1

)N ∥∥ξ0
h

∥∥2
+ 2

(
1−

(
2θ − 1

2θ + 1

)N)[∥∥∥∥∥∥
ξ1

h

ξ0
h

∥∥∥∥∥∥
2

G

+C
(
γ−1∆t4 ‖|Tttt|‖2

2,0 + γ∆t4 ‖|∇Ttt|‖2
2,0 + γ−1∆t4 ‖|∇Ttt|‖2

2,0

+γ−1∆t4 ‖∇T‖2
∞ ‖|∇utt|‖

2
2,0 + γ−1∆t4 ‖|∇u|‖2

∞ ‖|∇Ttt|‖
2
2,0

+γ−1h2k+2 ‖|Tt|‖2
2,k+1 + γh2k ‖|T |‖2

2,k+1
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+γ−1h2k ‖|∇u|‖2
∞ ‖|T |‖

2
2,k+1 + γ−1h2k ‖|∇T |‖2

∞ ‖|u|‖
2
2,k+1

)
+Cγ−1∆t

N−1∑
n=0

‖φn
h‖

2

]
. (5.3.30)

Repeating the similar arguments of the temperature error, the concentration error

equation (5.3.28) is estimated by

∥∥ζNh ∥∥2
+

1

2θ + 1

N−1∑
n=1

∥∥ζn+1
h − 2ζnh + ζn−1

h

∥∥2

F
+

2∆tDc

2θ + 1

N−1∑
n=1

∥∥∥F ε2,Dc
n+θ (∇ζh)

∥∥∥2

≤
(

2θ − 1

2θ + 1

)N ∥∥ζ0
h

∥∥2
+ 2

(
1−

(2θ − 1

2θ + 1

)N)[∥∥∥∥∥∥
ζ1

h

ζ0
h

∥∥∥∥∥∥
2

G

+C
(
D−1
c ∆t4 ‖|Sttt|‖2

2,0 +Dc∆t
4 ‖|∇Stt|‖2

2,0 +D−1
c ∆t4 ‖|∇Stt|‖2

2,0

+D−1
c ∆t4 ‖∇S‖2

∞ ‖|∇utt|‖
2
2,0 +D−1

c ∆t4 ‖|∇u|‖2
∞ ‖|∇Stt|‖

2
2,0

+D−1
c h2k+2 ‖|St|‖2

2,k+1 +Dch
2k ‖|S|‖2

2,k+1 +D−1
c h2k ‖|∇u|‖2

∞ ‖|S|‖
2
2,k+1

)
+D−1

c h2k ‖|∇S|‖2
∞ ‖|u|‖

2
2,k+1 + CD−1

c ∆t
N−1∑
n=0

‖φn
h‖

2

]
. (5.3.31)

Now, summing (5.3.29), (5.3.30) and (5.3.31) we obtain

∥∥φN
h

∥∥2
+
∥∥ξNh ∥∥2

+
∥∥ζNh ∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥φn+1
h − 2φn

h + φn−1
h

∥∥2

F

+
2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇φh)

∥∥2
+

4∆tDa−1

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(φh)

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥ξn+1
h − 2ξnh + ξn−1

h

∥∥2

F
+

2∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε,γ
n+θ(∇ξh)

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥ζn+1
h − 2ζnh + ζn−1

h

∥∥2

F
+

2∆tDc

2θ + 1

N−1∑
n=1

∥∥∥F ε,Dc
n+θ (∇ζh)

∥∥∥2

≤
(

2θ − 1

2θ + 1

)N(∥∥φ0
h

∥∥2
+
∥∥ξ0

h

∥∥2
+
∥∥ζ0

h

∥∥2
)

+2

(
1−

(
2θ − 1

2θ + 1

)N)[∥∥∥∥∥∥
φ1

h

φ0
h

∥∥∥∥∥∥
2

G

+

∥∥∥∥∥∥
ξ1

h

ξ0
h

∥∥∥∥∥∥
2

G

+

∥∥∥∥∥∥
ζ1

h

ζ0
h

∥∥∥∥∥∥
2

G

+C
(
ν−1∆t4 ‖|ptt|‖2

2,0 + ν−1h2k+2 ‖|p|‖2
2,k+1 + ν−1∆t4 ‖|uttt|‖2

2,0
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+ν∆t4 ‖|∇utt|‖2
2,0 + ν−1∆t4 ‖|∇utt|‖2

2,0 + ν−1∆t4 ‖|∇u|‖2
∞,0 ‖|∇utt|‖

2
2,0

+ν−1β2
T ‖g‖

2
∞∆t4 ‖|∇Ttt|‖2

2,0 + ν−1β2
S ‖g‖

2
∞∆t4 ‖|∇Stt|‖2

2,0

+ν−1h2k+2 ‖|ut|‖2
2,k+1 + νh2k ‖|u|‖2

2,k+1 + ν−1h2k ‖|u|‖2
2,k+1

+ν−1h2k ‖|∇u|‖2
∞ ‖|u|‖

2
2,k+1 + ν−1h2kβ2

T ‖g‖
2
∞ ‖|T |‖

2
2,k+1

+ν−1h2kβ2
S ‖g‖

2
∞ ‖|S|‖

2
2,k+1 + γ−1∆t4 ‖|Tttt|‖2

2,0 + γ∆t4 ‖|∇Ttt|‖2
2,0

+Dc∆t
4 ‖|∇Stt|‖2

2,0 +D−1
c ∆t4 ‖|∇Stt|‖2

2,0 +D−1
c ∆t4 ‖∇S‖2

∞ ‖|∇utt|‖
2
2,0

+D−1
c ∆t4 ‖|∇u|‖2

∞ ‖|∇Stt|‖
2
2,0 +D−1

c h2k+2 ‖|St|‖2
2,k+1 +Dch

2k ‖|S|‖2
2,k+1

+D−1
c h2k ‖|∇u|‖2

∞ ‖|S|‖
2
2,k+1 +D−1

c h2k ‖|∇S|‖2
∞ ‖|u|‖

2
2,k+1

)
+C̃∆t

N−1∑
n=0

(‖φn
h‖

2 + ‖ξnh‖
2 + ‖ζnh‖

2)

]
(5.3.32)

where C̃ := C̃(ν−1, γ−1, D−1
S , β2

T , β
2
S, ‖g‖

2
∞).

We next apply the Lemma 2.0.13 and use the following inequality in (5.3.32),

0 ≤
(2θ − 1

2θ + 1

)N ≤ 1 for any N ≥ 0.

The final result follows from the triangle inequality and Lemma 2.0.12. �

Corollary 5.3.1 Under the assumptions of Theorem 5.3.1, let (Xh,Wh,Ψh, Qh) =

(P2, P2, P2, P1) be the finite element spaces given byRemark 5.3.1. Then the asymp-

totic error estimation satisfies

∥∥eNu ∥∥2
+
∥∥eNT ∥∥2

+
∥∥eNS ∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
u − 2enu + en−1

u

∥∥2

F

+
2∆tν

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(∇eu)

∥∥2
+

4∆tDa−1

2θ + 1

N−1∑
n=1

∥∥F ε,ν
n+θ(eu)

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
T − 2enT + en−1

T

∥∥2

F
+

2∆tγ

2θ + 1

N−1∑
n=1

∥∥F ε,γ
n+θ(∇eT )

∥∥2

+
1

2θ + 1

N−1∑
n=1

∥∥en+1
S − 2enS + en−1

S

∥∥2

F
+

2∆tDS

2θ + 1

N−1∑
n=1

∥∥∥F ε,Dc
n+θ (∇eS)

∥∥∥2

≤ C((∆t)4 + h4 +
∥∥e0

u

∥∥2
+
∥∥e1

u

∥∥2
+
∥∥e0

T

∥∥2
+
∥∥e1

T

∥∥2
+
∥∥e0

S

∥∥2
+
∥∥e1

S

∥∥2
)).

Proof. The result follows immediately from the regularity assumptions (5.3.16). �
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5.4 Numerical Experiments

In this section, we perform two numerical tests to show the efficiency of the proposed

method and validate the theoretical findings. The first example is the verification of

the numerical convergence rates for an analytic test problem with a known solution.

The second example is of more practical interest; it is a buoyancy-driven cavity flow

example in a tall rectangular cavity.

The simulations are performed with the finite element software package FreeFem++

[42]. In all computations, the Taylor-Hood finite element for velocity and pressure,

and piecewise quadratics for temperature and concentration are used on triangular

grids. The Darcy flow regime (Da = ∞) is assumed for all tests. In order to see

the effect of stabilization parameters, the results are also compared with the usual

BDF2LE method, which is obtained through picking ε = ε1 = ε2 = 0 and θ = 1

(unstabilized case) in (5.2.1)-(5.2.4), which gives

(θ + 1
2
)un+1 − 2θun + (θ − 1

2
)un−1

∆t
− θν∆un+1 − (ν − θν)∆un

+((θ + 1)un − θun−1) · ∇(θun+1 + (1− θun)) + θ∇pn+1 + (1− θ)∇pn

=
(
βT ((θ + 1)T n − θT n−1) + βS((θ + 1)Sn − θSn−1))

)
g + fn+θ (5.4.1)

∇ · un+1 = 0 (5.4.2)

(θ + 1
2
)T n+1 − 2θT n + (θ − 1

2
)T n−1

∆t
− θγ∆T n+1 − (γ − θγ)∆T n

+((θ + 1)un − θun−1) · ∇(θT n+1 + (1− θT n)) = ϕn+θ (5.4.3)

(θ + 1
2
)Sn+1 − 2θSn + (θ − 1

2
)Sn−1

∆t
− θDc∆S

n+1 − (Dc − θDc)∆S
n

+((θ + 1)un − θun−1) · ∇(θSn+1 + (1− θSn)) = ψn+θ. (5.4.4)

Here, the forcing functions fn+θ, ϕn+θ and ψn+θ are included in (5.4.1)-(5.4.4). We

also note that the similar results are also obtained with the CNLE with the choices of

parameters ε = ε1 = ε2 = 0 and θ = 1/2.
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5.4.1 Numerical convergence study

In this subsection, we show that the theoretical orders of the errors are also obtained

through a numerical simulation. To do so, we pick the known-solution

u =

 cos(y)

sin(x)

 et, p = (x− y)(1 + t),

T = sin(x+ y)e1−t, S = cos(x+ y)e1−t. (5.4.5)

with the parameters Pr = Dc = γ = βT = βS = 1 and the right-hand side functions

f , ϕ and ψ are chosen such that (5.4.5) satisfies (5.0.1).

We will present computational results with ε = ε1 = ε2 = 0, θ = 1 and ε = ε1 =

ε2 = 1 (with stabilization) in a unit square. The final time and the time step size are

chosen as T = 10−1 and ∆t = T/16. To test the spatial convergence, we fix the time

step size and calculate the errors for varying h and consider the velocity errors in the

discrete norm L2(0, T ;H1(Ω))

‖u− uh‖2,1 =

{
∆t

N∑
n=1

‖u(tn)− unh‖2

}1/2

.

The results of different ε, ε1 and ε2 values for the spatial errors and error rates are given

in Table 5.1 and Table 5.2. One can see that the orders of convergence of ‖u−uh‖2,1,

‖T − Th‖2,1 are quadratic, which is an optimal order for both BDF2LE and for the

proposed method. We note that because of the parameter choices of this numerical

test, the errors for ‖S − Sh‖2,1 are similar. We also fix the mesh size to h = 1/128 to

see the temporal errors and the convergence rates by using different time steps with

an end time of T = 1. The results are given in Table 5.3 and Table 5.4. As expected,

we observe a second-order convergence in time. However, the velocity error rates

becomes better for the stabilized case as ∆t decreases. In addition, the rates for the

temperature errors are far better than the unstabilized case when they are compared

with the proposed method. In summary, the observations of convergence orders of

(5.2.8)-(5.2.10) are in accordance with the discussion in Corollary 5.3.1.

116



Table 5.1: Spatial errors and rates of convergence for ε = ε1 = ε2 = 0.

h ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate

1/4 1.606e-3 – 3.99e-3 –

1/8 4.357e-4 1.88 1.00e-3 1.99

1/16 1.124e-4 1.95 2.527e-4 1.98

1/32 2.848e-5 1.98 6.318e-5 2.00

1/64 7.171e-6 1.98 1.592e-5 1.98

Table 5.2: Spatial errors and rates of convergence for ε = ε1 = ε2 = 1.

h ‖u− uh‖2,1 Rate ‖T − Th‖2,1 Rate

1/4 1.621e-3 – 4.003e-3 –

1/8 4.403e-4 1.88 1.01e-3 1.98

1/16 1.136e-4 1.95 2.531e-4 2.00

1/32 2.879e-5 1.98 6.365e-5 1.99

1/64 7.244e-6 1.98 1.740e-5 1.88

Table 5.3: Temporal errors and rates of convergence for ε = ε1 = ε2 = 0.

∆t ‖u− uh‖2,1 Rate ‖T − Th‖2,1 = ‖S − Sh‖2,1 Rate

1 3.093e-2 – 6.572e-2 –

1/2 6.662e-3 2.21 3.415e-2 1.01

1/4 1.568e-3 2.08 1.220e-2 1.49

1/8 3.842e-4 2.02 3.617e-3 1.75

1/16 1.007e-4 1.93 9.841e-4 1.88
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Table 5.4: Temporal errors and rates of convergence for ε = ε1 = ε2 = 1.

∆t ‖u− uh‖2,1 Rate ‖T − Th‖2,1 = ‖S − Sh‖2,1 Rate

1 6.203e-3 – 7.005e-1 –

1/2 2.880e-3 1.10 1.991e-1 1.81

1/4 1.293e-3 1.15 5.233e-2 1.92

1/8 3.921e-4 1.72 1.151e-2 2.18

1/16 1.058e-4 1.90 2.610e-3 2.14

5.4.2 Buoyancy Driven Cavity Test

As another numerical test, we apply the proposed method to so-called buoyancy-

driven cavity flow in a tall rectangular enclosure. It is a well-known benchmark prob-

lem for testing fluid flows driven solely by a density difference due to a temperature

gradient. This problem forms a prototype of many applications such as thermal insu-

lation, cooling of electronic devices, nuclear reactors etc. Buoyancy-driven flows are

complex flows due to coupling between the transport properties of flow and thermal

fields.

The purpose of this example is to capture correct flow patterns on coarse mesh and

to get the correct solution where the unstabilized case fails. In this test, the effects

of several dimensionless problem parameters on the solution are considered. We also

calculate the Nusselt numbers and Sherwood numbers for this cavity test and compare

our results with those reported previously. The computational domain we use is a rect-

angular cavity of height 2 and width 1 with different temperature and concentration

values at vertical walls, which are regarded as hot and cold walls, see Figure 5.1 ( [4]).

The horizontal walls are insulated and assumed to allow no heat and species transfer

through. The boundary conditions are no-slip boundary conditions for the velocity

and Dirichlet boundary conditions for the temperature and concentration at vertical

walls as well. The horizontal walls accept the boundary conditions, ∂T
∂n

= ∂S
∂n

= 0.

At the initial stage, the fluid has no motion. According to the variation of temperature

and concentration at vertical walls, the motion will be started due to the buoyancy
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Figure 5.1: The physical domain with its boundary conditions

forces as density varies. The final time is chosen to be T = 1 and the time interval

is divided into equidistant time steps of length 10−4. The stabilization parameters are

taken as ε = O(ν), ε1 = O(γ), ε2 = O(Dc).

Before we present our results, we remark that the correct patterns are captured for

all different parameter cases for a very coarse mesh consisting of only 8262 velocity

d.o.f, 4131 temperature d.o.f, and concentration d.o.f.

In general, the proposed method and the unstabilized case produce very similar results

for the tests with Ra ≤ 105. However, the unstabilized case gave no result and the

solution diverges for Ra = 106. This might be noted as the greatest superiority of our

method against the unstabilized case.

5.4.2.1 The effect of buoyancy ratio N

In this test, the effect of buoyancy ratio N is considered for N = 0.8 and N = 1.3, by

fixing Pr = 1, Ra = 105 and Le = 2. The results are shown in Figure 5.2. It can be

observed that the variation of density in concentration is larger than the variation in

temperature forN > 1. As it is expected, due to the increase in the buoyancy ratio, the
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concentration stratification increases. Thus, the force pushing the low concentration

fluid up becomes greater, [113].

For N < 1, this time density variations are due to the temperature gradients mostly

and the situation turns out for temperature. These graphics perfectly agree with the

benchmark studies of [113] and [126].

Figure 5.2: Velocity streamlines, Temperature contours and Concentration con-

tours(from left to right) for Pr = 1, Ra = 105, Le = 2 with N = 1.3 (up) and

N = 0.8 (down)

5.4.2.2 The effect of Lewis number Le

The effect of the Lewis number is considered with the choices of Le = 0.2 and Le =

1.0. The values of Pr = 1, Ra = 105 and N = 1 are fixed in all computations. Due

to the definition of Lewis number, Le ≤ 1.0 means the mass diffusivity is greater than

the thermal diffusivity. In this case, the concentration becomes dominant because of

its better capability of spreading higher concentration values. The value of Le = 1.0

means equal diffusivity case. When temperature and concentration behave in the

same way, the forces made by the temperature and concentration cancel each other

in both walls initially. Thus, the fields diffuse exactly in the same way and these
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forces always are balanced equally. The final solution is just the diffusion of the

fields through the domain as is noted in [113]. The mentioned situations above could

be observed directly from Figure 5.3.

Figure 5.3: Velocity streamlines, Temperature contours and Concentration contours

(from left to right) for Pr = 1, Ra = 105, N = 1 with Le = 0.2 (up) and Le = 1.0

(down)

5.4.2.3 The effect of Rayleigh number Ra

For natural convection type problems, increasing the Rayleigh number and keeping

the thermal and mass diffusivity parameters constant will increase the characteristic

velocity of the flow. This can cause the flow to behave turbulently. Since the transition

to turbulent case means richness of the flow scales, dealing with a very challenging

numerical problem is inevitable as the Rayleigh number increases. The test is carried

out for three different Rayleigh numbers, Ra = 104, 105, 106 with the coarse mesh

discretization. The results are presented in Figure 5.4 only for the case Ra = 106.

For other Ra values, the figures are similar and we do not depict them. All the

results are comparable with [41], which uses a POD-ROM scheme and an extra VMS

stabilization for Ra = 106 for finer meshes.
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Figure 5.4: Velocity streamlines, Temperature contours and Concentration contours

(from left to right) for Pr = 1, Le = 2, N = 0.8 with Ra = 104 (up), Ra = 105

(middle) and Ra = 106 (down)

5.4.2.4 Thermal and Mass Distributions in Buoyancy Driven Cavity

In terms of engineering, calculation of thermal and mass distributions along with dif-

ferent boundaries which are kept at different temperatures and concentrations are of

vital importance for convective flows inside enclosures. There are physical parame-

ters called the Nusselt number (Nu) and Sherwood number (Sh) for measuring these

distributions. Local and average Nusselt and Sherwood numbers are given with the

following formulas

Nuloc = ±
{
∂T

∂x

}
wall

,Nuav =

∫
Ω

Nulocdy.

Shloc = ±
{
∂S

∂x

}
wall

,Shav =

∫
Ω

Shlocdy.
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Calculation of Nuav and Shav at a buoyancy driven cavity test example has been

widely used in order to verify and validate proposed numerical schemes on produced

codes. The flow parameters are taken as Pr = 1, Le = 2, N = 0.8 for Ra = 104 and

Ra = 105 in this test. Well-known numerical simulations in literature are known to

obtain such results for a 100×200 rectangle, which is regarded as a coarse mesh [126].

Table 5.5 and Table 5.6 gives a comparison of the results of both presented method

and results of [7, 126]. As it is seen, acceptable results for Nu and Sh are obtained

with the proposed scheme.

Table 5.5: Comparison of average Nusselt numbers on the vertical boundary of the

cavity at x = 0 (hot wall) for Pr = 1, Le = 2, N = 0.8 with mesh size used in

computation for varying Rayleigh Numbers

Ra Proposed Method Ref. [7] Ref. [126]

104 3.65(25×40) 3.67(31×41) 3.68(100×200)

105 6.78(25×40) 6.82(31×41) 6.84(100×200)

Table 5.6: Comparison of average Sherwood numbers on the vertical boundary of the

cavity at x = 0 (hot wall) for Pr = 1, Le = 2, N = 0.8 with mesh size used in

computation for varying Rayleigh Numbers

Ra Proposed Method Ref. [7] Ref. [126]

104 4.78(25×40) 4.89(31×41) 4.91(100×200)

105 8.75(25×40) 6.82(31×41) 8.70(100×200)
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CHAPTER 6

CONCLUSION

This thesis presented the finite element analysis of second-order and reliable meth-

ods for the incompressible fluid-flow driven by the NSE and the Darcy-Brinkman

equations with double-diffusive convection.

In the first part (Chapter 3) of the thesis, we introduced and analyzed an efficient,

fully discrete SAV regularization method for approximating solutions to NSE with

BDF2LE time discretization. The proposed stabilization method is effective only for

small scales in fluid flow. We have found that the solutions of the proposed algorithm

preserve both energy and helicity identities. We have obtained smooth and regular

bounded solutions without time step restriction. We also proved optimally conver-

gent of the method with suitable choices of the artificial viscosity and the grad-div

stabilization parameter. Several numerical tests were performed to verify the theo-

retical findings and show that the superiority of the method over the CN-SAV and

unstabilized NSE.

In the second part (Chapter 4) of the thesis, we proposed and analyzed the back-

ward Euler based modular time filter method for the EMAC formulation of NSE. The

approach increases numerical accuracy from first order to second order without re-

quiring any additional computational effort. We provided unconditional stability and

optimally convergent results of the method. A rich blend of numerical experiments

verified the theoretical expectations and demonstrated reliability and efficiency of the

proposed method. The numerical results clearly exposed that the EMAC-FILTERED

scheme produces more accurate results and better quality solutions over the unfiltered

case. Thus, the simplicity of BE discretization is combined with desirable accuracy

and efficiency properties which we aim to arrive. We also showed that the EMAC-
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FILTERED scheme conserves important physical quantities as good, or better than

the BE-EMAC scheme.

In the last part (Chapter 5) of the thesis, we studied a new optimally accurate numeri-

cal regularization based on the idea of curvature stabilization for (a family of) second

order time-stepping methods for the double-diffusive convection system. The pro-

posed algorithm has the advantage of requiring the solution of only one linear system

per time step and thus it is efficient in terms of computational effort. We performed

the unconditional stability and optimal convergence results of the method. Several

numerical tests were presented to prove the efficiency of the proposed method.

There are several research directions that could be inspired from this thesis. One

possible direction is to extend the SAV method and the EMAC-FILTERED method

to different kind of fluid flow problems like natural convection, MHD and Darcy-

Brinkman equations.

Another direction is to study the SAV method, the EMAC-FILTERED and the curva-

ture stabilization idea to optimal control problems.
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