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ABSTRACT

ANALYSIS OF DATASET, OBJECT TAG, AND OBJECT ATTRIBUTE
COMPONENTS IN NOVEL OBJECT CAPTIONING

Şahin, Enes Muvahhid

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

July 2022, 119 pages

Image captioning is a popular yet challenging task which lies at the intersection of

Computer Vision and Natural Language Processing. A specific branch of image cap-

tioning called Novel Object Captioning draw attention in recent years. Different from

general image captioning, Novel Object Captioning focuses on describing images

with novel objects which are not seen during training. Recently, numerous image

captioning approaches are proposed in order to increase quality of the generated cap-

tions for both general image captioning and Novel Object Captioning. These methods

benefit from large object detection datasets for Novel Object Captioning. They also

utilize specific set of object tags (class names) in the image. Even though these ap-

proaches are very successful in many aspects, they require GPU-weeks of training on

several large datasets. Furthermore, captions generated by these methods may lack

visual grounding and overlook details in the image. Thus, in this thesis, we analyze

the dataset, object tag, and object attribute components for Novel Object Caption-

ing. We perform Visual Vocabulary Pretraining (VIVO) [1] on small-scale [2] and

large-scale [3] datasets and compare the captioning performances of a state-of-the-art

method [4] in order to analyze the effect of dataset size. To analyze the effect of tag
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quality on Novel Object Captioning performance, we compare the performance of

captioning methods [4] trained with two different set of object tags: a large set of tags

but lacking novel objects, a small set of tags with novel objects. Finally, to obtain

richer captions and alleviate overlooked details in the image, we propose a novel ap-

proach in which object attributes in the image are exploited. Experimental results are

demonstrated on both Novel Object Captioning and general image captioning tasks.

The results show that novel object tags play a vital role for Novel Object Captioning

and proposed method generates richer and more detailed captions compared to the

baseline.

Keywords: image captioning, novel object captioning, vision and language pretrain-

ing, object tags, object attributes
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ÖZ

ÖZGÜN NESNE ALTYAZILAMA’DA VERİ KÜMESİ, NESNE ETİKETİ VE
NESNE SIFATI BİLEŞENLERİNİN ANALİZİ

Şahin, Enes Muvahhid

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Temmuz 2022 , 119 sayfa

İmge altyazılama Bilgisayarlı Görü ve Doğal Dil İşleme alanlarının kesişiminde yer

alan hem popüler hem de zorlayıcı bir iştir. İmge altyazılamanın özel bir alt kolu

olan Özgün Nesne Altyazılama son yıllarda ilgi görmektedir. Özgün Nesne Altyazı-

lama eğitim sırasında görülmemiş özgün nesneler içeren imgeler için altyazı üretmeye

odaklanmaktadır. Son yıllarda hem genel imge altyazılama hem de Özgün Nesne Alt-

yazılama için üretilen altyazıların kalitesini arttırmak amacıyla çok sayıda yaklaşım

önerilmiştir. Bu yaklaşımlar Özgün Nesne Altyazılama için büyük çaplı nesne tespiti

veri kümelerinden faydalanmaktadır. Ayrıca, bu yöntemler imgedeki nesne etiketle-

rini (sınıf isimleri) kullanmaktadırlar. Bu yaklaşımlar birçok açıdan oldukça başarılı

olsa da birkaç büyük veri kümesinde, haftalarca Grafik İşleme Birimi (GPU) üzerinde

eğitilmektedir. Üstelik bu yöntemler tarafından üretilen altyazılar görsel temellen-

dirme açısından zayıf kalabilmekte ve imgedeki detayları gözden kaçırabilmektedir.

Bu nedenle, bu tezde, Özgün Nesne Altyazılama için veri kümesi, nesne etiketi ve

nesne sıfatı bileşenlerinin analizi gerçekleştirilmiştir. Veri kümesi boyutunun imge

altyazılama performansı üzerindeki etkisinin analizi için küçük çaplı [2] ve büyük
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çaplı [3] veri kümelerinde Görsel Kelime Hazinesi Ön Eğitimleri (Visual Vocabulary

Pretraining) [1] yapılarak en gelişmiş imge altyazılama yönteminin [4] imge altyazı-

lama performansı karşılaştırılmıştır. Nesne etiketinin kalitesinin Özgün Nesne Altya-

zılama performansına etkisinin analizi için iki farklı nesne etiketi kümesi kullanılarak

eğitilmiş yöntemler karşılaştırılmıştır: özgün nesne içermeyen büyük nesne etiketi

kümesi, özgün nesne içeren küçük nesne etiketi kümesi. Son olarak, daha zengin alt-

yazılama elde etmek ve imgedeki gözden kaçan detayları azaltmak amacıyla nesne

sıfatlarından faydalanan özgün bir yaklaşım önerilmiştir. Deneysel sonuçlar hem Öz-

gün Nesne Altyazılama hem de genel imge altyazılama görevlerinde gösterilmiştir.

Deneysel sonuçlar özgün nesne etiketlerinin Özgün Nesne Altyazılama’da kritik bir

rol oynadığını ve önerilen yaklaşımın baz alınan yaklaşıma göre daha zengin ve de-

taylı altyazılar ürettiğini ortaya koymuştur.

Anahtar Kelimeler: imge altyazılama, özgün nesne altyazılama, görü ve dil ön eğitimi,

nesne etiketleri, nesne sıfatları
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CHAPTER 1

INTRODUCTION

Vision is one of the most powerful senses of human beings. It allows perceiving

and discovering the world around us. On the other hand, it is also crucial to express

what we perceive to the other people. Language is a way of communicating with

others and a tool to describe what we perceive and see. Recently, there have been

significant improvements in Computer Vision (CV) and Natural Language Processing

(NLP) which allow machines to gain similar capabilities as humans such as perceiving

images and videos, understanding and generating sentences and paragraphs.

Thanks to recent breakthrough in CV, machines can classify [5], [6], detect [7], [8],

segment [9], [10] objects in images. Recent progress in NLP also allows machines

to translate sentences from one language to the other [11], [12], perform sentiment

classification [13], answer questions [13], [14].

Another research area of interest, called Vision and Language (VL), has drawn atten-

tion in recent years [15]. VL lies at the intersection of CV and NLP. It borrows ideas

from both of these domains. Hence, advancements in these two domains directly con-

tribute to the VL methods. There are many sub-tasks in VL such as image caption-

ing, dense image captioning, image paragraph generation, video captioning, visual

question answering, image-text retrieval, visual reasoning, vision and language navi-

gation [15], [16]. In this thesis, among these sub-tasks, we will concentrate on image

captioning.

Image captioning models aim to generate a sentence which describes the given image.

Image captioning can be utilized in many areas such as guiding and helping visually-

impaired people [17], caption generation for news articles [18], generating biomedical
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reports from medical images (X-RAY, CT) [19], or making robots navigate in an

environment via vision and language [20].

An image captioning model takes an image as the input and produces a description

for the input image as the output. An example image-caption pair is given in Figure

1.1. A good caption should be grammatically correct, natural sounding, rich, and

A couple of people standing in the snow flying a kite

Figure 1.1: An example image and its corresponding caption [4].

grounded on the image [21], [22], [23]. The properties of a good caption guide and

construct the areas of interest for image captioning research.

Recently, several research on image captioning focus on generating captions for im-

ages which contain objects that are not present in the image captioning training

dataset, [24], [1], [25], [26]. The task of describing images with unseen objects during

training is called Novel Object Captioning.

Another group of approaches exploit datasets with large amount of image-caption
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pairs ([27], [28], [29], [2]) in order to generate rich and high-quality captions, [30],

[16], [4].

Yet another branch of research targets visually-grounded image captioning. There

are studies demonstrating that image captioning models are inclined towards copying

phrases from training dataset without paying attention to the input image, [31], [32].

Furthermore, these models might hallucinate non-existing objects in the image or

overlook important details [31], [22]. An example of such a caption generated by a

state-of-the-art model, VinVL [4], is given in Figure 1.2 where the generated caption

hallucinates a chair, overlook important details such as the fence of the garden and

the car in the background. Some methods try to overcome these issues and generate

detailed and visually-grounded captions, [31], [32].

A garden with a chair and a plant on the ground.

Figure 1.2: An example image and a poor caption generated by VinVL [4].
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Datasets and object detection components play crucial roles in the success of image

captioning models [21]. State-of-the-art methods [1], [4], require large pretraining

datasets and specific set of object tags (classes) for Novel Object Captioning.

In this study, we question the necessity of large datasets and specific object tags for

Novel Object Captioning. We analyze the effect of pretraining datasets and object

tags in Novel Object Captioning for state-of-the-art methods [1], [4].

As the main contribution in this study, we propose a novel approach for enriching

image captioning results with object attributes. The proposed approach aims to gen-

erate richer and more detailed captions and improve the poor captions like the one in

Figure 1.2.

Experimental results are demonstrated on both Novel Object Captioning and general

image captioning tasks.

1.1 The Outline of the Thesis

The thesis contains 6 chapters. In Chapter 1, brief descriptions of the image caption-

ing and Novel Object Captioning are provided. Problems with the existing methods

are stated and our contributions are summarized. In Chapter 2, background infor-

mation for the concepts utilized and mentioned throughout the thesis is provided. In

Chapter 3, literature review for the image captioning is given. Applications areas and

taxonomy of image captioning models are discussed. Datasets and evaluation metrics

for image captioning are explained. In Chapter 4, the architectural and training details

of the baseline method employed in this study are explained in detail. The proposed

novel approach is also explained in this chapter. In Chapter 5, experimental results

are provided. Analysis of dataset, object tag, and object attribute components in novel

object captioning is performed. The baseline method and the proposed method are

compared theoretically and practically. Finally, in Chapter 6, we summarize the work

conducted in this thesis, make some conclusions and discuss possible future works as

an extension to this study. Extra visual examples for the comparison of the baseline

and the proposed method are provided in Appendix A as an addition to the ones in

Chapter 5.
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CHAPTER 2

BACKGROUND INFORMATION

In this chapter, background information for the core topics which are utilized and

mentioned throughout the thesis is provided.

2.1 Image Classification and Object Detection

Image Classification and Object Detection are two hot topics of the CV. Models de-

veloped for these topics are also utilized by the baseline and the proposed image

captioning methods in the thesis.

Image Classification is the task of assigning class labels to images. Usually, there

is one dominant object in the image and the model is asked to predict the class of

that dominant object. This is called Single-Label Image Classification. There is also

an extension of Single-Label Image Classification called Multi-Label Image Classi-

fication. In Multi-Label Image Classification, more than one class is assigned to a

given image. The model is asked to predict classes of all objects in the image. Ob-

ject Detection takes Multi-Label Image Classification task a step further and aims to

predict bounding boxes for the objects in the image, along with the classes of those

objects. In this thesis, Multi-Label Image Classification and Object Detection models

are utilized. Models used for these tasks are discussed in Section 2.1.1 and Section

2.1.2.
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2.1.1 Multi-Label Classification

In the scope of this thesis, a multi-label classification method is used in order to

extract object tags (class names of the objects in the image) which are utilized for

image-text alignment as in [16]. ML-Decoder [33] is a state-of-the-art multi-label

classification method. It is proposed to perform scalable multi-label classification

even when number of classes (N ) are large.

In ML-Decoder, input image I is first passed through a Convolutional Neural Network

(CNN) [34] and image embeddings (feature map) M are obtained as in (2.1).

M = f(I) (2.1)

where function f models the CNN, M represents the image embeddings of size wh×
D where D is the embedding dimension and w, h are the width and height of the

output feature map of the CNN, respectively.

Image embeddings M and group queries (word embeddings for query classes) E ∈
RK×D for a set of fixed number of query classes are fed into a transformer (see Sec-

tion 2.2 for the details about transformers) for cross-attention operation where K

is the number of query classes and D is the embedding dimension. Outputs of the

transformer for query classes are fed into a feed-forward layer. These operations are

demonstrated in (2.2).
V = g1(E,M)

Y = g2(V )
(2.2)

where function g1 models the transformer and cross-attention operation, V ∈ RK×D

represents the output of the transformer for K query classes, and g2 function mod-

els the feed-forward network which produces final embeddings to be decoded, Y ∈
RK×D.

Finally, outputs for K classes are decoded to original N classes via group decod-

ing. In group-decoding a set of trainable linear layers are employed. Each query

embedding Yi ∈ R1×D in Y is decoded into N
K

class outputs and these outputs are

concatenated to obtain outputs for N classes according to (2.3).

Zi = YiWi i = 1, 2, ..., K

Z = Concat(Zi)
(2.3)
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where Wi ∈ RD×N
K are the parameters of trainable linear layers specific for each

group, Zi ∈ R1×N
K are the N

K
class outputs for each group, and Z ∈ R1×N is the final

multi-label classification output for N classes.

Architectural diagram of ML-Decoder is provided in Figure 2.1.

IMAGE
I

CNN Backbone

ℎ

𝑤

FlattenImage Embeddings

Query Word Embeddings

Transformer
(Cross-Attention)

Feed Forward 
Network

Group Decoding

𝑁

𝑍
Multi-Label Classification Outputs

Figure 2.1: Architecture of ML-Decoder (Adopted from [33]).

The baseline and proposed models in this thesis utilize object tags (class names) in

an image for captioning. Since it is a state-of-the-art method and allows multi-label

classification on a large dataset [3] with excessive number of classes (∼ 600), ML-

Decoder model (with TResNet-M [34] backbone) trained on Open Images [3] is used

in order to extract object tags.
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2.1.2 Object Detection

Object detection methods are utilized by many recent image captioning methods for

regional feature extraction [35], [24], [36], [16], [1], [4]. Furthermore, some group

of methods make use of object tags (class names) in the image for captioning [16],

[1], [4]. These methods utilize classification outputs of the object detection model as

object tags.

Generally, Faster R-CNN [7] based object detectors are employed in image captioning

methods. Faster R-CNN is a two-stage object detector. In the first stage, region

proposals are obtained with a CNN-based Region Proposal Network (RPN). RPN

outputs a large set of bounding boxes (region proposals) which might contain objects.

In the second stage, learned classification and regression heads refine the bounding

boxes for proposals and filter out proposals with no objects. The architecture is shown

in Figure 2.2.

Figure 2.2: Architecture of Faster R-CNN (Retrieved from [7]).

In the first stage, the input image is passed through a CNN backbone and a feature

map is obtained. The feature map is fed into intermediate classification and regression

heads in RPN. RPN produces candidate bounding boxes (region proposals) which

might contain objects. Feature vectors corresponding to these proposals are extracted

from the feature map using RoIPooling [37]. RoIPooling is an operation which ex-
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tracts fixed-sized feature vector for each region proposal from the output feature map

of the backbone CNN. It extracts the feature vectors by applying pooling on the pro-

jections of the bounding boxes on the feature map. Feature vectors for the region

proposals are fed into the second stage.

In the second stage, feature vectors are passed through a set of fully-connected layers

and fed into final classification and regression heads to eliminate proposals corre-

sponding to background regions, refine and classify the bounding boxes.

In [35], regional features for detected objects are utilized during caption generation.

They trained Faster R-CNN with ResNet-101 [5] backbone on Visual Genome dataset

[38]. Visual Genome dataset contains ground truth attributes for objects in the image.

In [35], they added extra attribute prediction head in order to help model learn richer

features. However, attribute predictions are not utilized during caption generation.

Faster R-CNN trained by [35] used in many captioning models as the standard ap-

proach [39], [40], [36].

Recently, VinVL [4] trained a larger Faster R-CNN model with ResNeXt-152 C4 [41]

backbone on several datasets ([27], [3], [42], [38]) and achieved superior accuracy

compared to its counterpart [16] which uses Faster R-CNN in [35].

2.2 Transformers

The invention of transformers [12] caused a paradigm shift in NLP and transformers

have become the go-to method in recent approaches for various NLP tasks such as

machine translation, sentiment classification, question answering ([13], [43], [14]).

The ability to model relationships and interactions in long sequences and suitabil-

ity for parallel processing are the main advantages of transformers [44]. Following

the success of [12], transformer-based methods are utilized in many different areas

including CV ([6], [45], [8]), VL ([30], [16] [1], [4], [46]).

The vanilla transformer proposed in [12] is composed of two blocks: Encoder and

Decoder. Architectural details of these blocks and overall architecture of a trans-

former is given in Figure 2.3.
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Figure 2.3: Architectural details of vanilla transformer and multi-head attention

(Adopted from [12]).
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Transformers are sequence-to-sequence (seq2seq) models. They accept a sequence

of vectors as input and generate transformed output sequence. Unlike RNNs, trans-

formers do not wait for new input at each time instant. Instead, they accept all inputs

belonging to a sequence at once.

Given the input matrix X ∈ RN×Di where N is the sequence length, Di is the di-

mension of the input vectors, transformers first apply token embedding to these input

vectors and add positional encoding as in (2.4) to obtain Xin ∈ RN×De .

Xin = XWE + P (2.4)

where WE ∈ RDi×De is the embedding matrix, P ∈ RN×De is the positional encoding

matrix. Since transformers operate on all elements of a sequence in parallel and at

once, there is not a representation of order of elements in a sequence. To mitigate this

problem, positional encoding is added to each input vector depending on position of

the input in the sequence. Positional encoding can be fixed or learned. In [12], they

experimented with both and observed that fixed positional encoding sampled from

sinusoidal functions achieve similar results as the learned ones. Hence, they stick

with the fixed positional embedding.

After Xin is obtained, 3 different matrices are calculated according to (2.5).

Q = XinW
Q

K = XinW
K

V = XinW
V

(2.5)

where Q ∈ RN×Dk is the query matrix, K ∈ RN×Dk is the key matrix, and V ∈
RN×Dv is the value matrix whereas WQ ∈ RDe×Dk , WK ∈ RDe×Dk , and W V ∈
RDe×Dv are learned projection matrices to obtain Q,K, V matrices respectively.

Q,K, V matrices contain query (qi ∈ RDk), key (ki ∈ RDk), and value (vi ∈ RDv )

vectors in their rows for each element in the input sequence (for i = 0, 1, ..., N − 1).

These matrices are used to calculate scaled dot-product attention according to (2.6).

Attention(Q,K, V ) = softmax
(
QKT

√
Dk

)
V (2.6)

Scaled dot-product attention calculates the relationship (attention) between query and

key vectors for different inputs, and performs weighted sum of the value vectors to
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obtain transformed representation for each query input. This process is followed by

an addition and normalization (Add & Norm) layer. Then, outputs of this layer are

fed into a linear (feed-forward) layer and a final Add & Norm layer. These layers are

stacked L times as in Figure 2.3. Output of final Add & Norm block in each layer is

fed to the Multi-Head Attention block of the next layer.

Usually, in order to allow model to attend vectors from different representation sub-

spaces, multi-headed approach is used. In this approach, all operations are performed

A times in parallel, with different learned matrices (WQ,WK ,W V ) where A is the

number of heads, as shown in Figure 2.3. Outputs from different heads are merged

according to (2.7).

MultiHeadAttention(Q,K, V ) = Concat(head1, head2, ..., headA)WO

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.7)

where WQ
i ∈ RDmodel×Dk , WK

i ∈ RDmodel×Dk , W V
i ∈ RDmodel×Dv , and WO

i ∈
RADv×Dmodel . Here, Q,K, V ∈ RN×Dmodel come from the outputs of the previous

transformer blocks.

The process is called self-attention when query, key, and value vectors belong to the

same sequence. It is called cross-attention when key and value vectors are from one

domain and query vectors are from another domain.

Decoder block operates in a sequential manner. Outputs at one time instant is given

as input at the next time instant. In the decoder block masked-self-attention is per-

formed. In masked-self-attention, query vectors are only allowed to attend key-value

pairs from previous time instants. Attending to future time instants are prevented by

setting softmax inputs for those time instants to −∞ in (2.6). This is referred as at-

tention masking. It is necessary to apply attention masking during training in order

to preserve auto-regressive property since the model will not have tokens from future

time instants during inference.

Decoder block employs cross-attention as well. Key and value vectors obtained from

the outputs of the encoder block, and query vectors obtained from the previous de-

coder outputs are used to apply cross-attention using (2.6).
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2.2.1 BERT: Bidirectional Encoder Representations from Transformers

After the success of vanilla transformer [12], many variants of it were proposed ([47],

[43], [14]) and trained for different tasks. Bidirectional Encoder Representations

from Transformers (BERT) [13] was one of them. It became quite popular in a short

amount of time because it allowed utilization of a single bidirectional architecture on

different tasks by exploiting large datasets via unsupervised pretraining [13]. BERT

is also the base model for the methods analyzed ([1], [4]) and used in this thesis.

BERT is a transformer architecture which has only the encoder block. BERT has two

models with the following parameters:

• BERTbase : L = 12 A = 12 H = 768

• BERTlarge : L = 24 A = 16 H = 1024

where L is the number of consecutive transformer blocks, A is the number of attention

heads, and H is the hidden embedding dimension of the transformer (dimensions for

embedding, query, key, and value are same in this case).

BERTbase is used in [16], [1], [4], and proposed method in this thesis.

BERT has special tokenizer which converts sentences to sequence of tokens (words

or subwords). These tokens are the inputs of the architecture. They are first passed

through embedding layer, then positional encoding is added. Different from vanilla

transformer [12], they used learned positional encoding instead of a fixed one. Fur-

thermore, BERT also adds segment embedding vector after positional encoding. Seg-

ment embeddings represent different parts of input data. These parts could be differ-

ent sentences in a paragraph, a question and its corresponding answer, or a caption

for an image and corresponding regional features as in [1], [4].

BERT has 3 special tokens:

• [CLS]: Classification Token

• [SEP ]: Separator Token

• [MASK]: Mask Token
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Each BERT input starts with [CLS] token. Inputs belonging to different segments are

separated with [SEP ] token. Example tokenization of two sentences (two segments)

is given in 2.4.

Figure 2.4: BERT tokenization and embeddings (Retrieved from [13]).

BERT utilizes a pretraining objective called Masked Language Modelling (MLM).

In MLM, network is given a corpus (sequence of words). Random words in the

sequence are replaced with the special [MASK] token. After passing inputs through

Multi-Head Self-Attention, output corresponding to [MASK] token is given to a

classifier head. Network tries to guess what the masked token was. The network

is forced to deduce the masked word from its surrounding words with the help of

attention mechanism [13]. Usually, models are pretrained on large corpora with MLM

objective and finetuned on downstream tasks.

Methods utilizing BERT for sentence generation (seq2seq objective) performs auto-

regressive decoding [30], [16], [1], [4]. They give [MASK] token as input for the

word to be predicted along with previously predicted words and classify transformer

output corresponding to the [MASK] token in order to predict the current word.

Predicted word is fed to the model in the next time instant and the next input position

is masked. The network predicts the masked word at the output.

2.3 Assignment Problem

Assignment problem is a fundamental problem which appears in many areas where

elements belonging to two sets should be matched with each other so that overall
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matching cost is minimum. For example, consider there are 3 workers and 3 jobs

which will be assigned to the workers. Assuming cost of an assignment is the time

it takes for a worker to finish the given job, an assignment algorithm seeks to find

the optimum assignment between workers and jobs so that 3 jobs are completed in

minimum amount of time. There are different algorithms which solve assignment

problem such as [48], [49], [50]. Among these, Hungarian Algorithm [48] is one of

the most widely used assignment algorithm. Given an N × N cost matrix C where

rows would be assigned to columns, Hungarian Algorithm finds the optimal assign-

ment in polynomial time. Following example demonstrates the steps of Hungarian

Algorithm for a 3× 3 cost matrix C:

C =


100 125 150

150 135 175

120 140 200


Step 1: Subtract the smallest entry of each row from elements of the corresponding

row: Smallest entries for first, second, and third row are 100, 135, and 120, respec-

tively.

C1 =


0 25 50

15 0 40

0 20 80


Step 2: Subtract the smallest entry of each column from elements of the correspond-

ing column: Smallest entries for first, second, and third columns are 0, 0, and 40,

respectively.

C2 =


0 25 10

15 0 0

0 20 40


Step 3: Cover all the zeros with minimum number of lines (vertical or horizontal):

For C2, to cover all zeros, minimum of 2 lines is necessary (a line through first column

and a line through second row).

Step 4: If minimum number of lines to cover all zeros is equal to number of rows

or columns (N ), go to Step 7, else go to Step 5: Since 2 is smaller than N = 3, we

proceed with Step 5.

Step 5: Find the smallest element which is not crossed by a line drawn in Step 3.
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Subtract this element from all elements of uncovered rows. Add this element to all

elements of covered columns. Smallest element is 10 in this case. Only the second

row is covered. Only the first column is covered. Subtract 10 from first and third rows

to obtain C3. Add 10 to the first column to obtain C4.

C3 =


−10 15 0

15 0 0

−10 10 30

 C4 =


0 15 0

25 0 0

0 10 30


Step 6: Return to Step 3. Now Step 3 will result in minimum of 3 lines to cover all

zeros in C4. Hence, we proceed to Step 7.

Step 7: Optimal assignment is obtained by selecting 0 entries so that each column

and row has only one 0 entry selected: Selected entries are shown with *.

C4 =


0 15 0∗

25 0∗ 0

0∗ 10 30

 C =


100 125 150∗

150 135∗ 175

120∗ 140 200


Hence, worker-1 is assigned to job-3, worker-2 is assigned to job-2, and worker-3 is

assigned to job-1. Cost of this optimum assignment is 150 + 135 + 120 = 405.

For non-square cost matrices dummy zero rows or columns are added to make the

matrix square. Afterwards, the same procedure described above is applied but during

Step 7, entries belonging to dummy rows or columns are not selected for assignment.

The intuition behind Hungarian Algorithm is that the optimum assignment does not

change if a number is subtracted from or added to all elements in a row or in a col-

umn. Hence, the optimum assignment can be found by reducing the cost matrix with

addition/subtraction operations on rows/columns such that 0 entries representing the

one-to-one assignment are obtained.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, literature review for image captioning is provided. Recent applications

of image captioning are discussed. A taxonomy of the image captioning models and

their details are provided. Datasets utilized by these models are explained. Evaluation

metrics for the image captioning task are also provided.

3.1 Applications of Image Captioning

Image captioning is a challenging and broad topic. Different methods tackle image

captioning from different angles. Even though all methods aim at generating visually-

grounded, rich, natural sounding, grammatically correct, and fluent captions, they

might specialize in various domains.

Some of the recent methods [30], [16], [4] focus on exploiting datasets with large

amount of image-caption pairs [27], [28], [29], [2]. These methods generally fol-

low a two-stage training pipeline where in the first stage, model is trained on large

image-text paired datasets with general Vision and Language (VL) objectives. This

step is called Vision and Language Pretraining (VLP). In the second stage, models

are finetuned on task-specific datasets for different tasks (image captioning, visual

question answering). Since the models are trained on numerous large datasets, these

approaches require significant computational resources for training.

Another group of methods focus on generating captions for images which contain

objects which are not present in the image captioning training dataset, [24], [25], [1],

[26]. This task is often referred as Novel Object Captioning (NOC). Generally, NOC
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methods make use of external object detection algorithms ([7], [51]) to introduce

novel objects in the generated caption.

Another branch of research targets grounded image captioning. There are studies

showing current image captioning models do not fully refer to the input image while

generating captions, instead they are prone to biases in the training dataset and lan-

guage model [31], [32]. Recent methods try to overcome this issue by introducing

additional information to the captioning model or explicitly modelling visual ground-

ing for the predicted words [31], [32].

VizWiz [17], [52] is a dataset and a challenge which aims to guide visually impaired

people with image captioning and visual question answering. Hence, captions in this

dataset is more specific and detailed compared to general datasets. Models developed

for this challenge usually include an Optical Character Recognition (OCR) compo-

nent as well [53].

Several methods focus on generating stylized captions [54], [55], [56], [57]. These

methods try to generate positive, negative, emotional, humorous, romantic, or factual

captions for the same image.

Some methods are proposed for captioning images in news articles [18], [58]. These

methods usually exploit the article itself in order to generate more detailed and infor-

mative captions.

Another area of interest is image paragraph captioning. Image paragraph captioning

models describe the details in the image by generating a paragraph, possibly with

more than one sentence [59], [60], [61].

3.2 Taxonomy of Image Captioning Methods

Since image captioning lies at the intersection of Computer Vision (CV) and Natural

Language Processing (NLP), it borrows ideas from both of these domains. Conse-

quently, in general, image captioning models contain two blocks: a Visual Encoder

block and a Language Model block [21]. Visual Encoder block processes the input

image and generates encoded representation of it, called context vector. Language
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Model block generates caption describing the image based on the context vector. Vi-

sual Encoder block is referred as encoder and Language Model block is referred as

decoder. The process of caption generation is illustrated in Figure 3.1. The feed-

back path from Language Model to Visual Encoder is optional and it exists in models

which utilize attention mechanism, as will be discussed in Section 3.2.1.

VISUAL
ENCODER

LANGUAGE
MODEL

Encoded
Representation

A parked motorcycle next to
a green tent.

Generated
Caption

Figure 3.1: General image captioning block diagram.

Image captioning models differ in methods they utilize in one or both of these two

blocks. Similar to [21], image captioning models can be categorized considering

the approaches they use in these two blocks. Overall taxonomy of image captioning

models are given in Figure 3.2.

IMAGE
CAPTIONING

VISUAL ENCODER 

1. Non-Attentive
2. Additive Attention
3. Self-Attention (Transformer)

LANGUAGE MODEL 

1. LSTM-based
2. CNN-based
3. Transformer-based

Figure 3.2: General image captioning taxonomy [21].

A literature review of image captioning models are provided in the following sections

according to the taxonomy shown in 3.2.
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3.2.1 Visual Encoder

Visual encoding is very important in image captioning because encoded representa-

tion (context vector) is what the language model sees while generating words. It is

challenging to obtain a good visual encoding since a good encoding should distill the

information in the image while preserving fine-grained details [21].

As large scale datasets such as ImageNet [62], COCO [27] are collected and compu-

tational power of computers increased, Convolutional Nerual Networks (CNNs) [63]

were reborn and became the go-to method for image understanding and representa-

tion tasks [64], [65], [5], [7], [9]. Hence, CNNs are also at the heart of the Visual

Encoder block for most of the captioning methods.

As presented in Figure 3.2, approaches for Visual Encoder can be examined un-

der 3 groups: Non-Attentive approaches, Additive Attention based approaches, Self-

Attention (Transformer) based approaches.

Earliest and pioneering deep learning based image captioning methods directly uti-

lized output of a CNN as the visual encoding [66], [67]. In such a scenario, CNN

acts as a global feature extractor and generates a context vector for the input im-

age. Language Model is conditioned on this context vector while generating words

for the caption. Whole output feature map of the CNN is directly used while gen-

erating context vector without any attention, hence the name Non-Attentive. This

process is illustrated in Figure 3.3 - a. Among Non-Attentive approaches, Show and

Tell [66] was one of the first and prominent methods which utilized deep learning

for image caption generation. They use Inception [65] network for the Visual En-

coder and feed the context vector to LSTM-based (Long Short-Term Memory) [68]

Language Model. After the success of Show and Tell, other methods [69], [70], [71]

also used Non-Attentive Visual Encoders with improved CNN architectures [72], [5].

Non-Attentive approach is simple and it encodes the input image as a whole, globally.

On the other hand, since the context vector is calculated for once at the beginning,

all words in the language model are conditioned on the same vector during decoding.

Hence, this approach may overlook fine-grained details in the image while generating

words [21].
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Additive Attention based approaches aim to overcome aforementioned disadvantages

of Non-Attentive based approaches due to context vector being fixed and global. Ad-

ditive Attention based approaches obtain weights for a set of feature vectors in which

weights depend on the state of the language model. Afterwards, using these weights,

weighted averaging of the feature vectors are performed in order to obtain context

vector for the next step of decoding. The idea of Additive Attention originates from a

machine translation method [73] where a new context vector is obtained by applying

Additive Attention over hidden states of encoder Recurrent Neural Network (RNN)

at each time instant of the decoding stage.

Given an image captioning model with CNN-based Visual Encoder and RNN-based

Language Model blocks, let V = v1, v2, ..., vL be the set of feature vectors for the

input image. Then, the context vector ct for the time instant t can be calculated as in

(3.1).

eti = fatt(vi, ht−1)

αti =
exp (eti)∑L
k=1 exp (etk)

ct =
∑
vi∈V

αtivi

(3.1)

where fatt is the attention function which calculates the effect (eti) of the feature

vector vi to the state vector of the RNN at the previous time instant, ht−1. αti is

the attention weight for the feature vector vi at time instant t which is calculated by

applying softmax to eti for i = 1, 2, ..., L.

Inspired from [73], Show, Attend, and Tell [74] was the first image captioning method

which utilized Additive Attention based Visual Encoder instead of global and Non-

Attentive one. They apply Additive Attention over grid features of the CNN output

as in Figure 3.3-b. After the success of Show, Attend, and Tell, other methods also

utilized variants of Additive Attention over grid features in their Visual Encoder block

([75], [76], [77]).

In [35], another pioneering method, BUTD (Bottom-Up Top-Down), for image cap-

tioning was proposed. In BUTD, two types of attention is utilized which they call

bottom-up attention and top-down attention. Top-down attention is the aforemen-

tioned attention mechanism which is based on the relationship between feature vec-
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Figure 3.3: Different visual encoding approaches (a: Non-Attentive, b: Additive At-

tention over Grid Features, c: Additive Attention over Regional Features, d: Self-

Attention Followed by Additive Attention, Dashed red line indicates feedback from

Language Model block which is used for attention calculations).

tors and state of the language model, as in (3.1). Bottom-up attention is used to decide

which regions of the image contain valuable (salient) information. For this purpose,

an object detection method, Faster R-CNN [7], is utilized to generate region propos-

als and regional feature vectors for objects in the image. Then, the set of feature

vectors, V = {v1, v2, ..., vL}, are used in Additive Attention instead of grid features

as in (3.1). This process is visualized in Figure 3.3-c. Faster R-CNN detector used

in this approach is trained on Visual Genome [38] dataset with an extra attribute pre-

diction head and loss in order to enhance learned feature representations [35]. After

the success of BUTD, it became standard approach to apply Additive Attention over

regional feature vectors. Many other approaches utilized regional features coming

from an object detector in their Visual Encoder block with Additive Attention [39],

[40], [36].

The invention of transformers [12] caused a paradigm shift in NLP and transformers

have become the go-to method in recent approaches [13], [43], [14]. Transformers

introduce and make use of self-attention and cross-attention concepts [12]. Details
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of these concepts and transformers are provided in Section 2.2. Following the suc-

cess of transformers, self-attention based methods are utilized in many different areas

including Computer Vision ([6], [8]), Vision and Language ([1], [4], [46]).

Since self-attention is a good way of representing inter-connections in a set of vec-

tors and performing message passing between them [78], image captioning methods

also started utilizing self-attention mechanism. One of the first methods with Self-

Attention (Transformer) based Visual Encoder block was proposed in [31]. They em-

ployed self-attention block in order to transform regional features to a space where

interactions (relationships) between objects are also modelled. Other methods also

enhanced regional feature vectors with self-attention block [79], [80]. In [81] and

[82] they used modified-self-attention mechanisms such that geometric relationships

between objects are also taken into consideration for attention weights. In [83], they

extended self-attention mechanism with learned memory vectors which model a pri-

ori information between regional features. In general, these methods exploit rela-

tionships between regional feature vectors via self-attention. Then, enhanced feature

vectors are fed into an additive attention block to obtain final context vector. This

process is illustrated in Figure 3.3-d.

Recently transformers are also used as a feature extractor similar to CNNs [6], [45].

These approaches divide the image into patches and perform self-attention on these

patches. These architectures are called Vision Transformers [6]. Inspired from these

approaches, some image captioning methods employed Vision Transformers in their

Visual Encoder blocks [84], [85].

Another branch of work utilizing self-attention focuses on unified architecture for Vi-

sual Encoder and Language Model blocks. This kind of approach was first introduced

in [30], called Unified-VLP (Unified Vision and Language Pretraining). In Unified-

VLP, they use a single transformer network for both encoding and decoding steps.

It is also unified in the sense that, a single architecture is pretrained on large image-

text paired datasets and then finetuned on task-specific datasets for downstream tasks

such as image captioning or visual question answering. The architecture of BERT

(Bidirectional Encoder Representations from Transformers) [13] is directly used for

captioning. In this approach, regional image features are extracted as in [35]. Re-
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gional image feature vectors and word embeddings are fed into transformer together.

During pretraining, network is trained with Masked Language Modelling (MLM) ob-

jective similar to BERT as explained in Section 2.2.1. During fintuning for the image

captioning task, the network is trained with sequence-to-sequence (seq2seq) objec-

tive. OSCAR [16] further improved Unified-VLP with the integration of object tags

which helps alignment between image features and language features. VinVL [4] was

proposed as an improvement over OSCAR [16]. In VinVL, the captioning architec-

ture is the same as OSCAR but the object detection model is improved by training

a larger Faster R-CNN [7] model on a collection of datasets ([27], [3], [42], [38])

instead of just one ([38]). This helps extracting richer regional features and results in

better captioning performance [21].

VIVO [1] is another Unified-VLP based method which was proposed for Novel Ob-

ject Captioning. In VIVO, pretraining is performed on an object detection dataset [3]

and finetuning is performed on image captioning dataset [27].

VinVL achieves state-of-the-art results on many VL tasks [4]. Approaches in VIVO

and VinVL are taken as baseline in this thesis. Analyses and improvement strategies

are employed on this baseline. Thus, these methods are discussed in more detail in

Chapter 4.

3.2.2 Language Model

Language Model is a crucial component of image captioning methods since it gen-

erates final output of the overall system. A good Language Model should be able to

generate fluent and grammatically correct captions which are also grounded on the

context vector generated by Visual Encoder.

In NLP, the language model is defined as a model which predicts probability of oc-

currence of a sequence of words in a sentence [21]. In image captioning, Language

Model models the probability of occurrence of the caption given the context vector.

This probability is defined in (3.2).

P (yN , yN−1, ..., y1 |X) =
N∏
i=1

P (yi | y1, y2, ..., yi−1,X) (3.2)
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where X is the context vector, yi is the word in the caption at the i-th time instant,

and N is the length of the caption.

Usually, during caption generation (decoding) step, Language Model is given a spe-

cial token (vector) called start token as the first word. Afterwards, model predicts

most probable next word. In an auto-regressive manner, new words are predicted

by conditioning on previously predicted words. This process usually stops when the

Language Model predicts another special token called end-of-sequence or when the

maximum sequence length is reached [21].

As presented in Figure 3.2, there are 3 main approaches in Language Model block

of the image captioning models: LSTM-based methods, CNN-based methods, Self-

Attention (Transformer) based methods.

Caption generation is basically a sequence generation task. RNNs are frequently used

in sequence generation tasks in NLP domain since they are well-suited for sequential

and time-series data [11], [73]. Hence, it is also natural to use RNNs, specifically

LSTMs [68], for caption generation task. Earliest and pioneering approaches in image

captioning utilized LSTM-based approaches in their Language Model block.

In [66], [74], [67], context vector output of the Visual Encoder is fed into LSTM.

For the first time step, special start token (<START>) is given as input and decoding

starts. Afterwards, LSTM generates words in an auto-regressive manner as in (3.2).

This process is illustrated in Figure 3.4.

There are other approaches with more complex Language Model blocks which also

utilize LSTMs. For example, in [69], [35], [24], they used 2-layer LSTM where first

layer generates a hidden state vector which is utilized in attention block and fed as

input to the second layer. Second layer acts as the language model similar to the ones

in [66], [74], [67]. Since they have high representation power, 2-layer LSTMs are

heavily utilized in Language Model block until Transformers [12] supersede them

[21].

In order to overcome complex structure and sequential nature of RNNs, [86] used

a CNN-based approach in the Language Model block inspired from [87]. Context

vector and word embeddings are fed into a CNN. The CNN operates on all inputs in
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TMVISUAL ENCODER

<START>

A cat
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TM

dog <EOS>

y1 y2 yN-1 yN

y1 yN-2 yN-1

LANGUAGE MODEL

A cat playing with a ball next to a dog.

Input Image

Figure 3.4: LSTM-based language model.

parallel with convolutional kernels and generates output words. In order to preserve

sequential nature of the language and prevent predicting words based on the future

time instants, they utilized masking mechanism during training similar to [12]. Even

though parallel training was an improvement compared to LSTMs, this approach did

not gain too much popularity due to inferior performance and rise of transformer-

based approaches [21].

In [12], transformer architecture is proposed for machine translation task and later

it became more and more popular in the NLP domain [13], [43], [14]. Transformers

allow parallel processing of the input data and modelling dependencies between them,

even for long sequences due to self-attention [12]. Thanks to these benefits, image

captioning models also started utilizing transformers in their Language Model block.

Image captioning models with Transformer-based Language Model blocks became

popular in recent years. Some methods such as [81], [82], [85] directly replaced

RNNs with transformer decoder blocks. These models take the context vector from

Visual Encoder block, apply cross-attention between encoder output and decoder

states, and apply self-attention between word embeddings in an auto-regressive man-

ner to perform caption generation.

As discussed in Section 3.2.1, there are also methods such as Unified-VLP [30], OS-
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CAR [16], VIVO [1], VinVL [4] which utilize unified transformer architecture for

Visual Encoder and Language Model blocks.

3.3 Datasets

Datasets play a crucial role for image captioning models since image captioning is

a data-driven task [21]. As computational capabilities of machines increase, models

get bigger, larger datasets are collected and utilized.

Summary of the common datasets used by image captioning models are summarized

in Table 3.1.

One of the first systematically collected dataset for image captioning was Pascal Sen-

tences [88] dataset. For this dataset, 1000 images are randomly sampled from Pascal

VOC2008 [92] dataset and they are human-annotated with 5 captions per image. Cur-

rently, this dataset is not used since it is relatively simple and larger datasets exist.

Flickr8k [89] and Flickr30k [2] datasets are composed of images obtained from Flickr

[93]. These datasets contain around 8,000 and 30,000 images respectively, and they

have 5 ground-truth captions per image. These two datasets are still used by recent

image captioning methods.

COCO [27] is the most widely used dataset in the image captioning literature since

it is a large and diverse dataset [21]. It contains around 80,000 images for train-

ing, 40,000 images for validation, and 40,000 images for testing. Each image in the

training and validation sets have 5 ground-truth human-annotated captions. These

annotations are publicly available. A small portion (5,000 images) of the test set con-

tains 40 ground-truth captions per image and the rest contains 5 ground-truth captions

per image. Ground-truth annotations for the test set are not publicly available, they

are used in the online challenge [94]. Hence, in [67] they have come up with different

splits of training and validation sets such that 5,000 images are used for validation,

5,000 images are used for testing and the rest (113,288) are used for training. These

splits are called Karpathy splits and accepted as standard by the image captioning

literature [21].
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SBU [29] is a dataset with around 1 million images from Flickr with each having 1

description. This dataset is mostly used during the pretraining stage of Vision and

Language Pretraining (VLP) based methods.

Conceptual Captions [28] is a dataset which is also being used during the pretraining

stage of VLP based methods. It contains more than 3 million images obtained from

web. Alt-text of these images are filtered and cleaned in order to obtain an image-text

paired dataset. Recently, a larger version of this dataset with 12 million images is

published [90]. YFCC100M [95] is also a similar dataset containing web images and

auto-generated descriptions.

A specific branch of image captioning is called Novel Object Captioning. Novel

Object Captioning models aim to generate captions for images which contain novel

objects which are not seen in the captioning (image-text paired) dataset. nocaps chal-

lenge [91], [96] is specifically designed for Novel Object Captioning. In this chal-

lenge, two datasets are allowed to be used: Open Images [3] and COCO [27]. Open

Images is a large object detection dataset with 600 different classes. In nocaps, it

is expected from models to learn novel objects from Open Images object detection

dataset and transfer that knowledge to image captioning via training on COCO dataset

which contains only 80 objects. A subset (4,500 images) of Open Images validation

set and a subset (10,600 images) of Open Images test set are labelled for captioning

with 10 captions per image. These two sets are used as validation and test sets of

the nocaps challenge. It is not allowed to use image-text paired dataset other than

COCO. Validation and test sets of the nocaps dataset are divided into three subsets

for evaluation purposes: in-domain, near-domain, and out-of-domain. Images in in-

domain subset contain objects from COCO classes and do not contain novel objects

from Open Images dataset. Images in near-domain subset contain objects from both

COCO classes and novel classes from Open Images dataset. Images in out-of-domain

subset only contain novel objects from Open Images dataset. Training and evaluation

setups and subsets are illustrated in Figure 3.5.

Example images and corresponding ground truth captions from most popular image

captioning datasets are given in Figure 3.6

There are also other datasets for specific branches of image captioning. For example,

29



Figure 3.5: nocaps task setup [91].

Two dogs are running through the
snow with ball in their mouths .

Flickr30k

A cat near a yellow bird in a cage.

COCO

A boat is in the water and a small airplane is on the dock.

PASCAL SENTENCES

From the boat a bird in view

SBU

Small stand of trees, just visible in the distance in the previous photo

Conceptual Captions

A group of turtles walking on the ground.

nocaps

Figure 3.6: Examples from popular image captioning datasets.

VizWiz [97] is a dataset and challenge which aims to help visually impaired people.

Hence, captions in this dataset is more specific and detailed compared to general
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datasets. In [59], a new dataset is proposed for image paragraph captioning where a

model is expected to describe details in the image by generating a paragraph, possibly

with more than one sentence. FlickrStyle10K [55] is a dataset which contains stylized

captions such as humorous or romantic.

Visual Genome [38] is a dataset which is indirectly utilized by most of the image

captioning methods. Visual Genome is a Scene Graph Generation dataset where not

only objects in the scene, but also their attributes and relationships with each other

are also labelled. Hence, an image in this dataset contains objects, their bounding

boxes, attributes, and relationships with other objects. An example image from Visual

Genome and its scene graph is given in Figure 3.7.

man woman

fire hydrant shorts

backpackjumping over

yellow

behind

in

standing

next to

black

Scene Graph 
Generation

Scene Graph

Figure 3.7: An example image from Visual Genome dataset and its scene graph.

Pink elements represent objects, green elements represent attributes, blue elements

represent relationships in the scene graph.

Since it is a large and informative dataset, Visual Genome is utilized by [35] in order

to train an object detection model for regional feature extraction. VinVL [4] further

improved this approach by training a larger model on a collection of datasets (COCO

[27], Open Images [3], Objects365 [42], Visual Genome [38]). These models train

the object detector on Visual Genome dataset with an extra attribute prediction head

but they do not use attribute predictions during training or inference of the captioning

models. Aim in this approach is helping model extract richer regional features [35].
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3.4 Evaluation Metrics

As in all scientific works, evaluation metrics are just as important as the proposed

method itself. Evaluation metrics are critical to assess the quality of a proposed

method and compare it with the existing approaches. In image captioning models,

model output and ground truth targets are sentences. Hence, it is natural to use met-

rics which aim to compare similarity between a candidate sentence and a set of ref-

erence sentences. For image captioning, a good caption should also be grounded to

input image along with being natural sounding and grammatically correct [21].

Standard evaluation metrics for image captioning compare similarity of a proposed

caption to set of ground truth reference sentences [21]. [98] further classifies these

metrics into 2: The ones that are borrowed from NLP (translation, summarization),

the ones that are developed exclusively for image captioning. BLEU [99], METEOR

[100], ROUGE [101] belong to the first category whereas CIDEr [102] and SPICE

[103] are specifically proposed for image captioning task.

Most of these metrics (except SPICE) utilize a concept called n-grams [98]. An n-

gram is a sequence of n words which are consecutive in a sentence. For example,

the set of bigrams in a sentence contains each possible consecutive two words in the

sentence.

3.4.1 BLEU: Bilingual Evaluation Understudy

BLEU (Bilingual Evaluation Understudy) [99] is a metric proposed for machine trans-

lation task. Its aim is measuring similarity of a candidate translation to a set of ref-

erence translations. It calculates n-gram precision between candidate sentence and

reference sentences. It can be formulated as in (3.3) for different n values as n-grams.

BLEUn(x, Y ) = BP ×

∑
wn∈xmin

(
cx(wn), max

i=1,...,k
cYi

(wn)

)
∑

wn∈x cx(wn)
(3.3)

where x is the candidate sentence, Y = {Y1, Y2, ..., Yk} is the set of reference sen-

tences, wn is n-gram, ca(wn) is the number of occurrences of n-gram wn in sentence

a. BP is called Brevity Penalty and it is used to penalize short sentences. It is defined
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as in (3.4).

BP =

1 if c > r

e(1−
r
c
) if c ≤ r

(3.4)

where c is the length of the candidate sentence and r is the length of the reference

sentence whose length is closest to the that of candidate sentence.

Generally cumulative BLEU-4 score is reported as the overall BLEU score and it is

the geometric mean of BLEUn scores for n = 1, ..., 4

BLEU-4 =

(
4∏

j=1

BLEUn

) 1
4

(3.5)

3.4.2 ROUGE: Recall-Oriented Understudy for Gisting Evaluation

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [101] is a metric in-

troduced to measure the quality of a summary. It measures similarity between a pre-

dicted summary and a set of ground truth summaries by considering n-gram recall. It

can be formulated as in (3.6) for different n values as n-grams.

ROUGEn(x, Y ) =

∑
Yi∈Y

∑
wn∈Yi

cx(wn)∑
Yi∈Y

∑
wn∈Yi

cYi
(wn)

(3.6)

where x is the candidate sentence, Y = {Y1, Y2, ..., Yk} is the set of reference sen-

tences, wn is n-gram, ca(wn) is the number of occurrences of n-gram wn in sentence

a.

In [101], different variants of ROUGE metric utilizing Longest Common Subse-

quence (LCS) [104], weighted LCS, skip-bigrams are proposed.

As opposed to BLEU [99] which focuses on n-gram precision, ROUGE focuses on

n-gram recall. Hence, it favors long sentences [102].

3.4.3 METEOR: Metric for Evaluation of Translation with Explicit ORdering

METEOR (Metric for Evaluation of Translation with Explicit ORdering) [100] is also

a metric proposed for machine translation task. It takes both precision and recall into
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account as opposed to BLEU [99] or ROUGE [101] which focuses on just precision

or recall, respectively.

It can be formulated as in (3.7).

METEOR = Fmean × (1− penalty) (3.7)

where Fmean is the harmonic mean of unigram precision and recall with more focus

on recall as defined in (3.8).

Fmean =
10PR

R + 9P
(3.8)

where
P =

m

wt

R =
m

wr

(3.9)

with m being number of unigrams in the candidate sentence which also appear in the

reference sentence, wt being number of unigrams in the candidate sentence, wr being

number of unigrams in the reference sentence.

penalty is a term to penalize large number of chunks. A chunk is defined as a set of

unigrams adjacent in both candidate and reference sentence. For a perfect translation

where candidate sentence is the same as the reference sentence, number of chunks is

1. penalty term is calculated according to (3.10).

penalty = 0.5×
( c
m

)3 (3.10)

where c is the number of chunks and m is the number of matched unigrams (unigrams

that exist in both candidate and reference).

METEOR also allows matching synonyms and words with identical stem. Hence, as

opposed to BLEU [99] and ROUGE [101], METEOR captures semantic similarities

between candidate and reference sentences to some extent [98].

3.4.4 CIDEr: Consensus-based Image Description Evaluation

CIDEr (Consensus-based Image Description Evaluation) [102] is specifically pro-

posed for image captioning task. Its aim is measuring consensus between a proposed
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caption and a set of human-annotated ground truth captions for an image. To measure

such consensus, an n-gram based approach is proposed. In this approach, n-grams

which are less informative are down-weighted. To decide informativeness (weight)

of n-grams in the candidate sentence and ground truth sentences, Term Frequency-

Inverse Document Frequency (tf-idf) based approach is used. tf-idf weight for an

n-gram is computed as in (3.11).

gk(sij) =
hk(sij)∑
ωl∈Ω hl(sij)

log

 |Is|∑
Ip∈I min

(
1,
∑

q hk(spq)
)
 (3.11)

where hk(sij) is count of n-gram ωk in reference sentence sij , Ω is the vocabulary of

all n-grams, Is is the set of all images in the dataset, |Is| is number of images in the

dataset. The first term in (3.11) is term frequency and it measures how frequent n-

gram ωk occurs in the sentence sij . If it is frequent, it may be informative for current

sentence, hence, larger weight. The second term is inverse document frequency and

it measures discriminativeness of ωk. Number of images in the dataset is divided by

number of images whose reference sentences contain ωk. A higher idf means ωk is

rare and discriminative, hence, larger weight. CIDEr score for n-grams of length n is

defined using cosine similarity of tf-idf weighting vectors as in (3.12).

CIDErn(x, Y ) =
1

|Y |
∑
Yi∈Y

gn(x) · gn(Yi)

∥gn(x)∥∥gn(Yi)∥
(3.12)

where x is the candidate sentence, Y = {Y1, Y2, ..., Yk} is the set of reference sen-

tences, gn(a) is vector formed by tf − idf weights for all n-grams in a sentence a

according to equation (3.11). Overall CIDEr score is the mean of CIDErn scores for

n-grams of length from 1 to 4 ((3.13)).

CIDEr =
1

4

4∑
n=1

CIDErn(x, Y ) (3.13)

Even though this metric is proposed for image captioning, it does not utilize image

and solely based on sentences and the language itself. Hence, tf-idf weighting may

over-weight/under-weight unnecessary/important n-grams for image description and

it may be a suboptimal metric for image captioning evaluation [98].
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3.4.5 SPICE: Semantic Propositional Image Caption Evaluation

SPICE (Semantic Propositional Image Caption Evaluation) [103] is a recently pro-

posed metric for evaluation of image captioning methods. It is claimed that n-gram

overlap based methods do not take semantic information into account and captur-

ing human judgements requires considering semantic relationships between candidate

sentence and reference sentences. Hence, a scene graph based image captioning eval-

uation metric is proposed. A scene graph is a graph structure which models objects,

attributes of the objects, and relationships between objects in an image [105].

As the first step of evaluation process, a scene graph is constructed via semantic

parsing from set of reference ground truth sentences. Semantic parsing of a caption c

can be formulated as in (3.14).

G(c) = ⟨O(c), E(c), K(c)⟩ (3.14)

where O(c) is the objects in caption c, E(c) defines relationships between two objects

in O(c), K(c) defines attributes of objects in O(c).

For a set of reference captions, one common scene graph is constructed. An example

for such a construction is given in Figure 3.8.

Once scene graphs for reference sentences and candidate caption are constructed, a

function T is used to extract the set of tuples from the scene graphs.

T (G(c)) ≜ O(c) ∪ E(c) ∪K(c) (3.15)

A tuple is either (object), (object, attribute), or (object, relationship, object). Fol-

lowing tuple extraction, precision (P ), recall (R), and SPICE metric are defined as in

(3.16) for a candidate caption x and a set of reference captions Y .

P (x, Y ) =
|T (G(x))⊗ T (G(Y ))|

|T (G(x))|

R(x, Y ) =
|T (G(x))⊗ T (G(Y ))|

|T (G(Y ))|

SPICE(x, Y ) = F1(x, Y ) =
2 · P (x, Y ) ·R(x, Y )

P (x, Y ) +R(x, Y )

(3.16)

where ⊗ is binary matching operator which returns matched tuples between two sets

of tuples in two scene graphs. While performing matching, similar to [100], syn-
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Figure 3.8: Set of reference captions for the given image (left) and corresponding

scene graph (right). Pink nodes represent objects, green nodes represent attributes,

cyan nodes represent relationships (Retrieved from [103]).

onyms, words with same lemmatized forms, or words belonging to same WordNet ID

(synset ID) [106] are considered to be matched.

While semantic relationship between candidate caption and reference captions are ex-

ploited, grammatical correctness and fluency of the captions are not measured [103],

[21]. Another point is that the performance of this metric is negatively affected if

parsing function G(c) produces incorrect scene graphs.
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CHAPTER 4

PROPOSED METHODOLOGY

In this chapter, methodology followed for the work conducted within the scope of this

thesis is discussed. The baseline method VinVL [4] and the proposed novel approach

for enriching image captioning results with object attributes are explained. Different

training strategies and caption generation process are discussed.

Notations are explained wherever they are used. Additionally, frequently used nota-

tions are described in Table 4.1 for convenience.

Table 4.1: Table of notations.

Symbol Description

I : Input image

Z : Feature map for input image I

N : Number of objects in input image I

M : Number of masked tag and/or caption tokens

L : Number of object attributes in input image I

Q : Number of masked attribute tokens

T : Length of the ground-truth caption

α : Optimum assignment for object tags

β : Optimum assignment for object attributes

C = {c0, c1, . . . , cN−1} : Set of object tags

B = {b0, b1, . . . , bN−1} : Set of bounding boxes

F = {f0, f1, . . . , fN−1} : Set of regional feature vectors

A = {a0, a1, . . . , aL−1} : Set of object attributes

S = {s0, s1, . . . , sT−1} : Set of tokens in ground-truth caption

Y : Set of auto-regressively obtained input tokens during decoding

H = {h0, h1, . . . , hT+N−1} : Set of all maskable tokens for VLP (Union of S and C)

D = {d0, d1, . . . , dM−1} : Set of masked tag and/or caption tokens at the transformer input

E = {e0, e1, . . . , eQ−1} : Set of masked object attributes at the transformer input

X : Set of transformer outputs corresponding to the input set X . X can be one of (C,B, F, S,H,D, Y, A,E) above.
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4.1 Baseline Method

Transformer-based [12] architectures gained popularity in NLP and CV domains in

the recent years. As discussed in Section 3.2, transformer architecture came into use

in image captioning methods as well. Recently, Unified-VLP [30] approach achieved

remarkable results by using a unified transformer architecture for Visual Encoder and

Language Model blocks. OSCAR [16] further improved Unified-VLP by integrating

object tags (class names) in the image to the same transformer architecture. VIVO [1]

used the same architecture as OSCAR, and targeted Novel Object Captioning with a

novel pretraining methodology on an object detection dataset [3]. Finally, VinVL [4]

surpassed the results of OSCAR on general image captioning and the results of VIVO

on Novel Object Captioning with the same architecture and training strategy as them

by just improving regional feature extraction model. Hence, VinVL is taken as the

baseline method. Its architectural details, training strategies, and caption generation

process are explained in the next subsections.

4.1.1 Architecture

As stated in Section 3.2.1, many methods utilize regional features during caption

generation. VinVL [4] also extracts regional features and tags for the objects in the

input image. VinVL utilize Faster R-CNN [7] with ResNeXt-152 C4 [41] backbone

trained on a collection of datasets (COCO [27], Open Images [3], Objects365 [42],

Visual Genome [38]) for regional feature and object tag extraction.

Given an image with size w × h where w is the width, h is the height of the image, a

feature map Z ∈ RHZ×WZ×DZ is extracted by the backbone CNN where HZ ,WZ , DZ

are the height, width, and number of channels for the feature map. Feature map Z is

fed into classification and regression heads for the bounding box prediction.

The object detection network predicts two output sets for tags (class names) and

bounding boxes of the objects: C = {c0, c1, . . . , cN−1} and B = {b0, b1, . . . , bN−1}
where bi = {(xtl

i , y
tl
i ), (x

br
i , y

br
i )} represents the top-left and bottom-right coordinates

of the predicted bounding box and ci represents the tag, for the i-th object in the im-

age, and N is the number of detected objects in the image. Regional feature vector fi

40



A cat and a dog playing with a ball.
Ground Truth Caption

Regional Features
2054-d

𝒇𝟎
𝒇𝟏
𝒇𝟐

• DOG

• BALL

• CAT

Object Tags

𝒄𝟎

𝒄𝟏

𝒄𝟐

Faster R-CNN

Feature Map 𝒁

𝐻𝑍

𝑊𝑍

𝒉

𝒘

Input Image

Bounding Boxes

𝒃𝟎
𝒃𝟏 𝒃𝟐

RoI Pooling & 
Concatenation

Regression 
Head

Classification 
Head

Figure 4.1: Feature and object tag extraction for VinVL [4].

for the i-th object is calculated as in (4.1).

zi = RoIPooling(Z, bi)

fi = Concat
(
zi,

xtl
i

w
,
ytli
h
,
xbr
i

w
,
ybri
h
,
xbr
i − xtl

i

w
,
ybri − ytli

h

) (4.1)

where RoIPooling [37] operation generates fixed-sized intermediate feature vector

zi ∈ RDz from projection of bi on feature map Z (as shown in the middle in Figure

4.1) by applying max pooling. Concat operation combines intermediate feature vector

with positional information of the bounding box (coordinates, width, and height) by

applying concatenation in order to obtain final regional feature vector fi ∈ RDz+4.

Dz is the size of intermediate feature vectors, zi. It is equal to 2048 in VinVL. Hence,

the dimension of regional feature vectors (fi) is 2054.

The process of extracting regional features and object tags is illustrated in Figure 4.1.

After extraction, object tags C = {c0, c1, . . . , cN−1} and regional feature vectors F =

{f0, f1, . . . , fN−1} for the detected objects in the image are fed into the transformer

block in the next step.

Transformer block acts as a unified architecture for visual encoding and language

modelling. It takes inputs from both visual and textual modalities and performs self-

attention. For the transformer block, uncased version of the BERTbase model [13]
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is used. Hence, the model does not differentiate between lower-case and upper-case

letters. Tokenizer, positional embedding, and segment embedding of the BERT are

directly utilized. Moreover, pretrained weights of the BERTbase trained on large En-

glish corpora with Masked Language Modelling (MLM) objective are used, and the

model is further trained for captioning. Details of transformers and BERT are pro-

vided in Section 2.2 and Section 2.2.1, respectively.

Let S = {s0, s1, . . . , sT−1} be the ground truth caption of length T for an image and

si be the i-th (tokenized) word in S. Transformer block takes ground truth caption

S, outputs of the object detector F (regional features), and object tags C as input and

applies self-attention according to (4.2).

S,C, F = Transformer(S,C, F ) (4.2)

where sets S, C, F are transformed representations of sets S, C, and F , respectively.

Transformer block projects all inputs (si ∈ S, ci ∈ C, fi ∈ F ) to a common embed-

ding dimension DE . Transformer block exploits the relationships between caption,

tag, and feature inputs by applying self-attention and outputs the transformed repre-

sentations of the inputs. This operation is illustrated in in Figure 4.2 for the example

provided in Figure 4.1.

MULTI-LAYER TRANSFORMER
(BERT)

A    cat and    a    dog    playing    with    a    ball DOG BALL CAT

Ground Truth Caption Object Tags Regional Features

𝑺 𝑪 𝑭

𝑺 𝑪 𝑭

Figure 4.2: Transformer (Self-Attention) block for VinVL [4] for the example pro-

vided in Figure 4.1.
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4.1.2 Training Strategies

The feature and object tag extraction method and self-attention method explained

in Section 4.1.1 are used with following training strategies with different objective

functions and inputs:

• Vision and Language Pretraining (VLP) [16], [4]

• Visual Vocabulary Pretraining for Novel Object Captioning (VIVO) [1], [4]

• Finetuning for Image Captioning [16], [4]

Details for these strategies are explained in the subsequent sections.

4.1.2.1 Vision and Language Pretraining (VLP)

Vision and Language Pretraining (VLP) refers to training a model on image-text

paired datasets [30]. Pretrained models are further finetuned for downstream tasks

(image captioning, visual question answering) on task-specific datasets. Usually, pre-

training is performed on several large image-text paired datasets. Aim in VLP is

modelling and establishing the relationship between visual and textual modalities.

Datasets used in VLP might belong to different tasks. In VinVL, they use datasets

belonging to 3 different tasks. For each of these tasks, the transformer block takes 3

input sets, S,C, andF . These tasks and corresponding inputs are provided in Table

4.2.

Combination of all image-text paired datasets provided in Table 4.2 are used during

VLP. S,C, andF inputs are fed into the transformer along with special [CLS] and

[SEP ] tokens in BERT. Input sequence starts with [CLS] token followed by sets

S,C, andF where each input set is separated with [SEP ] token, as illustrated in Fig-

ure 4.3.

VinVL is trained with two objectives during VLP: Masked Token Loss (LMTL) and

3-way Contrastive Loss (LCL3). Total loss is the sum of these two losses as in (4.3).

Ltotal = LMTL + LCL3 (4.3)
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Table 4.2: Different tasks, corresponding datasets and inputs to the transformer block

for VLP.

Inputs to Transformer

Task Datasets S C F

Image

Captioning

COCO [27], CC [28],

SBU [29], Flickr30k

[2]

Ground Truth

Caption

Machine-Generated

Object Tags

Regional Features

Visual Question

Answering

GQA [107], VQA

[108], VG [38]

Question Answer Regional Features

Image

Tagging

OI [3] Machine-Generated

Caption

Ground Truth

Object Tags

Regional Features

A    cat and    a    dog    playing    with    a    ball

Ground Truth Caption

𝑺

DOG BALL CAT

Object Tags

𝑪
Regional Features

𝑭

[CLS] [SEP] [SEP]

Figure 4.3: Input sequence to transformer for VinVL [4] for the example provided in

Figure 4.1.

Masked Token Loss (LMTL) is first proposed in OSCAR [16]. The idea is similar

to MLM in BERT [13]. Words belonging to sets S and C are randomly replaced

with the special [MASK] token and the sequence is fed into the transformer. The

objective is predicting the masked word by classifying the corresponding output of

the transformer for the [MASK] token. The goal of LMTL is forcing the network

deduce the masked word from its surrounding words and regional features. This

helps constructing the alignment between textual and visual modalities [16].

Let H = S ∪ C be the union of sets S and C. A word cat is masked with 15%

probability where hi ∈ H is the token corresponding to the word cat. Following

procedure is applied if token hi is to be masked:

• Replace the hi with [MASK] token 80% of the time.
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• Replace the hi with a random word in the vocabulary 10% of the time.

• Keep hi as it is 10% of the time.

In all three cases, hi is treated as a masked token and the network should classify

transformer output corresponding to hi as cat. This idea is inspired from BERT and it

helps generalization and learning contextual representation for each input token [13].

Cross-Entropy loss is used in LMTL. Let D be the set of masked words in H with

size |D| = M . LMTL is calculated according to (4.4) for a single training example

(image-text pair).

LMTL = − 1

M

∑
hi∈D

V∑
j

yji log p(h
j

i ) (4.4)

where V is the size of the vocabulary (number of output classes, equals to 30522 in

all experiments in this thesis, following BERT [13]), p(h
j

i ) is the predicted output

probability for output class j for the masked token hi, and yji is the binary ground

truth label for class j for the masked word hi. VLP with LMTL is illustrated in Figure

4.4.

3-way Contrastive Loss (LCL3) also aims to align textual and visual modalities. In

LCL3 objective, a single word in S or C is randomly replaced (polluted) with another

word with probability 0.5 and the sequence is fed into the transformer. The objective

for the network is predicting whether the input sequence is polluted, if it is, which

set (S or C) is polluted. It is a 3-way classification task with 3 classes: unpolluted,

S-polluted, and C-polluted. The classification is performed at the transformer output

corresponding to [CLS] input token since it is viewed as an encoded representation

for the whole input (S,C, F ).

Cross-Entropy loss is used in LCL3. LCL3 is calculated according to (4.5) for a single

training example (image-text pair).

LCL3 = −
2∑

j=0

yjcls log p(h
j

cls) (4.5)

where p(h
j

cls) is the predicted output probability for output class j for the [CLS] token

hcls, and yjcls is the binary ground truth label for class j for the input sequence. There
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Figure 4.4: Illustration of training with Masked Token Loss (LMTL) for VinVL [4]

for the example provided in Figure 4.1.

are 3 possible output classes: unpolluted (y0cls = 1), S-polluted (y1cls = 1), and C-

polluted (y2cls = 1). VLP with LCL3 is illustrated in Figure 4.5 for an S-polluted input

sequence.

As seen in Figure 4.4 and Figure 4.5, full (square) attention mask is used for VLP

with LMTL and LCL3. So, all tokens are allowed to attend all other tokens. Since aim

is modelling the relationship between visual and textual modalities, masked tokens

can attend to tokens for the future words in the sequence as well.

The model pretrained with VLP is finetuned on an image-caption paired dataset for

image captioning as will be described in Section 4.1.2.3.
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Figure 4.5: Illustration of training with 3-way Contrastive Loss (LCL3) for VinVL

[4] for the example provided in Figure 4.1. Input sequence is S-polluted with the

replacement word SKY.

4.1.2.2 Visual Vocabulary Pretraining (VIVO)

Visual Vocabulary Pretraining (VIVO) [1] is a method proposed for Novel Object

Captioning and nocaps challenge [91]. The same model architecture described in

Section 4.1.1 is used. In VIVO, Novel Object Captioning problem is broken into two

stages. In the first stage, the model is pretrained on a large object detection dataset,

Open Images [3]. In the second stage, the pretrained network is finetuned for image

captioning. The idea behind this methodology is that object detection datasets are

abundant compared to image-caption paired datasets. An image captioning model

should be able to learn objects from an object detection dataset and mention these

objects in generated captions. Hence, in the pretraining stage, the model is forced to

learn a visual vocabulary for the novel objects which models a joint embedding space.
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The model maps tags for similar objects and their visual features to vectors which are

closer to each other in this embedding space. In the second stage, the model is ex-

pected to learn caption generation while also exploiting knowledge from pretraining

in order to generate captions for images with novel objects. Decoupling visual vo-

cabulary learning and caption generation learning allows utilizing large amount of

image-tag paired data and generalization to novel objects which are unseen in the

ground truth captions of the image captioning datasets.

In VIVO pretraining, the model is fed with two sets of inputs C and F , where C is

the set of object tags and F is the set of regional features for the objects in the image.

Object tags are extracted with an object detection model. In VIVO, an object detection

model trained on Open Images dataset is used. A multi-label classification network

[33] trained on Open Images dataset can also be used as a tag extractor, as we did

in this thesis. The regional features are extracted as described in Section 4.1.2.1. An

example image from the object detection dataset and corresponding regional features

and tags are shown in Figure 4.6.
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Figure 4.6: Feature and object tag extraction for VIVO.
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Similar to BERT [13] and Unified-VLP [30], masking is performed for object tags.

The idea is similar to Masked Token Loss (LMTL) described in Section 4.1.2.1. The

training objective is predicting masked tags at the transformer output by attending to

other object tags and regional features.

Let D = {d0, d1, . . . , dM−1} be the set of tokens for masked object tags in C ⊇ D
and D = {d0, d1, . . . , dM−1} be the transformer outputs corresponding to elements in

D where M is the number of masked tags. A token ci ∈ C is masked with 15% prob-

ability where ci is the token corresponding to the masked tag, for example binoculars.

Following procedure is applied if token ci is to be masked:

• Replace the ci with [MASK] token 80% of the time.

• Replace the ci with a random word in the vocabulary 10% of the time.

• Keep ci as it is 10% of the time.

In all three cases, ci is treated as a masked token and the network should classify

transformer output corresponding to ci as binoculars.

An illustration of VIVO pretraining is given in Figure 4.7.

As seen in Figure 4.7, there may be multiple masked tags for an image. The model

should predict masked tags at the output of transformer. Different from captions,

object tags do not have a notion of order. In fact, object tags for an image could be

given to the network in any order. This nature of object tags create ambiguity during

prediction of masked words. The model can predict both person and binoculars at

either of transformer outputs, d0 and d1, without enforcing original order of input

tags. To resolve this ambiguity, network outputs should be assigned to masked tags,

and each output should be responsible (contribute to the loss) from its assigned tag.

A one-to-one assignment, α, between network inputs and outputs is necessary such

that each output di ∈ D should be responsible from a unique input tag dj ∈ D. This

assignment should be the most optimum one in terms of the overall training loss.

To obtain the optimal assignment α, Hungarian Assignment Algorithm [48] is used.

Details of the Hungarian Assignment Algorithm is provided in Section 2.3.
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Figure 4.7: Illustration of VIVO pretraining.

Let tj be the vocabulary (token) id for the masked input dj . The square cost matrix

J ∈ RM×M for this assignment is constructed such that

Jij = 1− p(d
tj
i ) (4.6)

where p(d
tj
i ) is the probability of transformer output di being the word with vocabu-

lary id tj . α assigns an input index i to an output index j as in (4.7).

α(i) = j i, j ∈ [0,M − 1] (4.7)

Hungarian Assignment Algorithm finds α such that cost function in (4.8) is mini-

mized globally for all masked words.

Jα =
M−1∑
i=0

1− p(d
α(i)

i ) (4.8)
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After the assignment is obtained, LMTL objective is applied similar to VLP. In LMTL,

Cross-Entropy loss is calculated using the assigned pairs according to (4.9).

LMTL = − 1

M

∑
di∈D

V∑
j

yji log p(d
j

i ) (4.9)

where V is the size of the vocabulary (number of output classes), p(d
j

i ) is the predicted

output probability for output class j for the masked token di. y
j
i is the binary ground

truth label for class j for the masked word di and it is related to assignment α as in

(4.10).

yji =

1, if α(i) = j

0, otherwise
(4.10)

As illustrated in 4.7, full attention mask is used during VIVO pretraining, similar to

VLP. All object tags and regional features can attend to each other since the objective

is learning the visual vocabulary.

The model pretrained with VIVO is finetuned on COCO [27] captioning dataset for

image captioning as will be described in Section 4.1.2.3.

4.1.2.3 Finetuning for Image Captioning

After the model is trained with VLP (Section 4.1.2.1) or VIVO (Section 4.1.2.2), it is

finetuned on an image-caption paired dataset, COCO [27], for caption generation.

Similar to VLP and VIVO, two stage pipeline is used in finetuning.

In the first stage, object tags and regional features for the images in the captioning

dataset are extracted. First stage is illustrated in Figure 4.8.

During VLP for VinVL, object tags and regional features are extracted using the same

Faster R-CNN [7] network. On the other hand, for VIVO pretraining, VinVL utilize

external tag prediction network trained on Open Images [3] dataset for detection of

novel objects. Same methodology is followed during finetuning as well. Hence,

Faster R-CNN and Object Detector models in Figure 4.8 are the same for general im-

age captioning whereas for Novel Object Captioning, external object detection model

is utilized.
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Figure 4.8: Illustration of object tag and regional feature extraction for image cap-

tioning finetuning.

In the second stage, regional features, F , object tags, C, and ground truth caption,

S, are fed into the transformer network for image captioning finetuning. Similar to

BERT [13], VLP, and VIVO, finetuning is performed with LMTL objective. Different

from VLP and VIVO, masking is performed on captions only. Object tags are not

masked.

Let D = {d0, d1, . . . , dM−1} be the set of tokens for masked words in S ⊇ D and

D = {d0, d1, . . . , dM−1} be the transformer outputs corresponding to elements in D
where M is the number of masked words in S. A token si ∈ S is masked with 15%

probability where si is the token corresponding to the masked word in the ground

truth caption, for example playing. Following procedure is applied if token si is to be

masked:

• Replace the si with [MASK] token 80% of the time.

• Replace the si with a random word in the vocabulary 10% of the time.

• Keep si as it is 10% of the time.

In all three cases, si is treated as a masked token and the network should classify

transformer output corresponding to si as playing.
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The network is trained with LMTL objective. Cross-Entropy loss is used in LMTL.

LMTL is calculated according to (4.11).

LMTL = − 1

M

∑
di∈D

V∑
j

yji log p(d
j

i ) (4.11)

where V is the size of the vocabulary (number of output classes), p(d
j

i ) is the predicted

output probability for output class j for the masked token di. y
j
i is the binary ground

truth label for class j for the masked word di.

Finetuning for image captioning is illustrated in Figure 4.9 for the example in Figure

4.8.
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Figure 4.9: Illustration of finetuning for image captioning for the example in Figure

4.8.

Different from VLP and VIVO, unidirectional attention mask is employed for tokens

belonging to the ground truth caption, S, as shown in Figure 4.9. Hence, a token

si ∈ S can attend to tokens sj ∈ S for j < i in the ground truth caption, S, all object
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tags, C, and all regional features, F . Furthermore, tokens belonging to object tags

and regional features cannot attend to tokens of the ground truth caption. Otherwise,

this would violate unidirectional attention for tokens in S due to transitive property

of attention.

Unidirectional attention mask is necessary for sequence generation tasks. Because

the model should adapt to the sequential nature of the language. Decoding (infer-

ence) is performed in an auto-regressive manner as described in Section 2.2.1 and

Section 4.1.3. During caption generation, tokens for the future time instants are not

available. Hence, the model can only attend to previous time instants, object tags, and

regional features. It is forced to predict next word based on previous words, object

tags, and regional features. A full attention mask would be cheating during training

and it would create discrepancy between training and inference. Thus, unidirectional

attention mask is employed during finetuning for image captioning as well.

So, the network acts as a language model. It models the probability of a caption given

previous words, object tags, and regional features as in (4.12).

P (yN−1, yN−2, ..., y0 | C,F ) =
N−1∏
i=0

P (yi | y0, y1, ..., yi−1,C,F ) (4.12)

where C is the set of object tags, F is the set of regional features, yi is the word in

the caption at the i-th time instant, and N is the length of the caption, S.

4.1.3 Caption Generation (Decoding)

After the model is finetuned on image captioning dataset, it can be used for caption-

ing inference. The process of generating captions for an input image is referred as

decoding.

Object tags and regional features are extracted as in Figure 4.8.

The structure of inputs to the transformer is similar to the one in finetuning (Section

4.1.2.3. There are 3 sets of inputs: Auto-regressive input tokens - Y , object tags -

C, regional features - F . Object tags and regional features are the same as the ones

in finetuning. Different from finetuning, there are no ground truth captions. Hence,
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initially the set for input tokens contain T [MASK] tokens where T is the maximum

number of words for the generated caption.

The auto-regressive decoding procedure is provided in Algorithm 1. Forward propa-

gation is applied using the given inputs. The transformer output dt at time instant t

(corresponding to the t-th masked input token) is fed into the classifier and the net-

work predicts the word yt. In the next time instant t + 1, the t-th masked word is

replaced with previously predicted word yt. After forward pass, the network makes

prediction for yt+1. This process is followed in an auto-regressive manner until max-

imum caption length is achieved or the network predicts a special end-of-sentence

token, [EOS], at the output.

Algorithm 1 Auto-regressive decoding process.

Y = {[CLS], [MASK], [MASK], . . . , [MASK], [SEP ]}, |Y | = T + 2

Y = {} ▷ Set of Words for the Generated Caption

t = 0

while |Y | ≠ T and yt ̸= [EOS] do ▷ [EOS]: End of Sentence Token

yt ← Model(Y,C, F )

Y ← Y ∪ {yt}
yt ← yt

t← t+ 1

end while

An example decoding snapshot for the example in Figure 4.8 at time instant t = 5 is

given in Figure 4.10.

Similar to finetuning stage, unidirectional attention mask is utilized since the model

has no information about the future words in the caption. It is expected for the model

to predict current masked word by attending to previously predicted words, object

tags, and regional features.

There are different decoding techniques utilized during caption generation. The most

straight forward one is picking the word with highest probability at the model output.

This is referred as greedy decoding. Another widely-used approach is called beam

search [35]. In beam search, at each time instant, top-n most probable sentences
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Figure 4.10: Illustration of auto-regressive decoding (caption generation).

are selected and the model is fed with each of these sentences separately in the next

time instant where n is called beam width. Probability of a sentence is calculated by

multiplying individual classification probabilities of words in the sentence. Since the

beam search considers probability of a sentence as a whole, it generally produces bet-

ter captions compared to the greedy decoding which only focuses on the independent

word probabilities. We use beam width of 5 in our experiments.

4.2 Proposed Method

Even though recent image captioning methods usually produce high-quality captions,

they may overlook details in the image. There are studies which claim that current im-

age captioning models do not fully refer to the input image while generating captions.

Instead, they are prone to biases in the training dataset and language model [31], [32].

In [31], it is shown that methods disregard attributes of objects in the image. Further-

more, during testing, they copy frequent phrases in the training dataset instead of fully

referring to the input image. Hence, they might ignore details in the image which de-
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creases the descriptive capability of the caption. An example poor caption generated

by the baseline method is given in Figure 4.11 where the model hallucinates a chair

and fails to mention about the car in the background. Furthermore, the caption lacks

properties of the objects in the scene.

A garden with a chair and a plant on the ground.

Figure 4.11: An example image and a poor caption generated by VinVL [4].

Recent methods try to overcome this issue by introducing additional information (ob-

ject attributes, relationships) to the captioning model or explicitly modelling visual

grounding for the predicted words [31], [32]. In conjunction with these methods, we

propose to exploit object attributes in order to produce richer and more descriptive

captions. Different from existing approaches, we apply this methodology to a state-

of-the-art self-attention-based baseline, VinVL [4] which is described in Section 4.1.

The architecture for the proposed approach is the same as VinVL, which is described
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in Section 4.1.1. We employ BERTbase transformer model similar to VinVL.

The training objectives are also similar to that of VinVL, which are described in Sec-

tion 4.1.2. Due to computational limitations, we demonstrate our results following

Novel Object Captioning setup since training datasets are restricted in nocaps [91]

challenge as opposed to general image captioning in which several large datasets are

utilized. However, proposed approach is also applicable to general image caption-

ing. We provide experimental results on nocaps challenge and COCO [27] test set in

Chapter 5.

Similar to VinVL, we use pretrained weights of the BERTbase trained on large English

corpora with Masked Language Modelling (MLM) objective. We employ two-stage

training pipeline where in the first stage VIVO pretraining (Section 4.1.2.2) is applied

on Open Images [3] dataset and in the second stage image captioning finetuning on

COCO [27] dataset is performed. We exploit object attributes in both stages.

As the first step in both pretraining and finetuning, we extract a set of object attributes

along with object tags and regional features for a given input image. For novel object

tag extraction we use a state-of-the-art multi-label classification model, ML-Decoder

[33], trained on Open Images [3] dataset. Details of this model is discussed in Section

2.1.1. For object tag and regional feature extraction we use the Faster R-CNN model

in VinVL. This model is finetuned on Visual Genome [38] with extra attribute pre-

diction head. Number of output attribute classes is 524 [4]. The model predicts a set

of attributes Mi = {mi0,mi1, . . . ,miGi−1} for each detected object oi in the image

where Gi is the number of predicted attributes for the object oi. An example image

with detected objects and their attributes is given in Figure 4.12.

Given an input image I , we obtain the set of overall object attributes A = {a0, a1,
. . . , aL−1} where L is the number of attributes for the input image I . We only add

maximum of 1 attribute from Mi to the overall set A. For an object oi in I , the

attribute with the highest confidence in Mi which is also not already available in the

overall set A is added to A. Hence, the attributes in A are unique. This process is

described in Algorithm 2.

Object tag extraction, regional feature extraction, and object attribute extraction are
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Figure 4.12: An example object-attribute detection result.

Algorithm 2 Attribute selection process.

M = {M0,M1, . . . ,MN−1} ▷ N: Number of detected objects

Mi = {mi0,mi1, . . . ,miGi−1} ▷ Gi: Number of attributes for the object oi

MC
i = {mC

i0,m
C
i1, . . . ,m

C
iGi−1} ▷ mC

ij: Confidence score for attribute mij

A = {} ▷ Set of Object Attributes

k = 0

for i← 0 to N − 1 do

jmax ← arg maxMC
i

mimax ← mijmax

if mimax /∈ A then

ak ← mimax

A← A ∪ {ak}
k ← k + 1

end if

end for
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illustrated in Figure 4.13.
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Figure 4.13: Feature, tag, and attribute extraction for the proposed method for an

image to be used in pretraining.

After obtaining input sets, C,A, and F for object tags, object attributes, and regional

features, we apply VIVO pretraining. Object attributes are fed into the transformer

following object tags with an additional [SEP ] token. Different from the baseline

(Section 4.1.2.2), masking is performed for object attributes in addition to object tags.

Let D = {d0, d1, . . . , dM−1} be the set of tokens for masked object tags in C ⊇ D
and D = {d0, d1, . . . , dM−1} be the transformer outputs corresponding to elements

in D. Let E = {e0, e1, . . . , eQ−1} be the set of tokens for masked object attributes

in A ⊇ E and E = {e0, e1, . . . , eQ−1} be the transformer outputs corresponding to

elements in E where M , and Q are the number of masked tags and the number of

masked attributes, respectively.

A token ci ∈ C is masked with 15% probability where ci is the token corresponding

to the masked tag, for example binoculars. Following procedure is applied if token ci

is to be masked:
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• Replace the ci with [MASK] token 80% of the time.

• Replace the ci with a random word in the vocabulary 10% of the time.

• Keep ci as it is 10% of the time.

In all three cases, ci is treated as a masked token and the network should classify

transformer output corresponding to ci as binoculars.

Similarly, a token ai ∈ A is masked with 15% probability where ai is the token

corresponding to the masked attribute, for example round. Following procedure is

applied if token ai is to be masked:

• Replace the ai with [MASK] token 80% of the time.

• Replace the ai with a random word in the vocabulary 10% of the time.

• Keep ai as it is 10% of the time.

In all three cases, ai is treated as a masked token and the network should classify

transformer output corresponding to ai as round.

Illustration of VIVO-like pretraining apporach with object attributes is given in Figure

4.14.

Similar to Section 4.1.2.2, a one-to-one assignment is necessary between masked

input tokens (tags or attributes) and network outputs for masked tokens. The reason

for this necessity is that tokens for object tags and attributes do not have a notion of

order. In fact, these tokens could be given to the network in any order. This nature of

object tags and object attributes create ambiguity during prediction of masked words.

For example, considering Figure 4.14, the model can predict both masked attributes

round and black at either of transformer outputs, e0 and e1, without enforcing original

order of input attributes. The same ambiguity exists for masked object tags as well.

To resolve this ambiguity, network outputs should be assigned to masked tokens, and

each output should be responsible (contribute to the loss) from its assigned token.

Since object tags and object attributes belong to different parts of speech, they are

treated separately. Two optimal one-to-one assignments are obtained using Hungarian
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Figure 4.14: Proposed VIVO-like pretraining approach with object attributes.

Assignment Algorithm [48]: α and β. α assigns masked object tags to transformer

outputs for these tags and β assigns masked object attributes to transformer outputs

for these attributes. To obtain α and β, Hungarian Assignment Algorithm is solved

for two square cost matrices Jα ∈ RM×M and Jβ ∈ RQ×Q, respectively for α and β.

These cost matrices are constructed according to (4.13)

Jα
ij = 1− p(d

tj
i )

Jβ
mn = 1− p(etnm)

(4.13)

where p(d
tj
i ) and p(etnm) are the probabilities of transformer outputs di and em being

the words with vocabulary id tj and tn, for masked tag and attribute, respectively. α

and β assigns input indexes to output indexes as in (4.14).

α(i) = j i, j ∈ [0,M − 1]

β(m) = n m, n ∈ [0, Q− 1]
(4.14)

Hungarian Assignment Algorithm finds α and β such that cost functions in (4.15) are
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minimized.

Jα =
M−1∑
i=0

1− p(d
α(i)

i )

Jβ =

Q−1∑
m=0

1− p(eα(m)
m )

(4.15)

After the assignments are obtained, the network is trained with Masked Token Loss

(LMTL). LMTL for object tags and object attributes are calculated separately accord-

ing to (4.16).

Ltag
MTL = − 1

M

∑
di∈D

V∑
j

yji log p(d
j

i )

Lattribute
MTL = − 1

Q

∑
em∈E

V∑
n

ynm log p(enm)

(4.16)

where V is the size of the vocabulary (number of output classes), p(d
j

i ) is the predicted

output probability for output class j for the masked tag token di, and p(enm) is the

predicted output probability for output class n for the masked attribute token em. yji
is the binary ground truth label for class j for the masked word di and ynm is the binary

ground truth label for class n for the masked word em. yji and ynm are calculated using

the assignments α and β as in (4.17).

yji =

1, if α(i) = j

0, otherwise
ynm =

1, if β(m) = n

0, otherwise
(4.17)

Total LMTL used during pretraining is the sum of individual losses for tags and at-

tributes as in (4.18) where λ is used to weight object tag and object attribute losses.

Ltotal
MTL = (1− λ)Ltag

MTL + λLattribute
MTL (4.18)

As illustrated in Figure 4.14, full attention mask is used during pretraining. All ob-

ject tags, object attributes, and regional features can attend to each other since the

objective is learning the visual vocabulary while also exploiting the attributes. It is

expected for the model to establish the relationship between objects, their attributes,

and regional features.
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The pretrained model with LMTL objective for tags and attributes is finetuned for im-

age captioning on COCO [27] dataset, similar to VinVL baseline which is described

in Section 4.1.2.3.

As the first step, object tags, object attributes, and regional features are extracted in

the same way as in pretraining (Figure 4.13) for the images in captioning dataset.

This process is illustrated in Figure 4.15.
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Figure 4.15: Feature, tag, and attribute extraction for the proposed method for an

image in captioning dataset.

In the second step, ground truth caption, S, object tags, C, object attributes, A, and

regional features, F , are fed into the transformer for image captioning finetuning.

LMTL objective is used during finetuning as well. Different from pretraining, object

tags and attributes are not masked. Masking is only performed for tokens in ground

truth caption.

Let D = {d0, d1, . . . , dM−1} be the set of tokens for masked words in S ⊇ D and

D = {d0, d1, . . . , dM−1} be the transformer outputs corresponding to elements in D
where M is the number of masked words in S. A token si ∈ S is masked with 15%

probability where si is the token corresponding to the masked word in the ground
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truth caption, for example playing. Following procedure is applied if token si is to be

masked:

• Replace the si with [MASK] token 80% of the time.

• Replace the si with a random word in the vocabulary 10% of the time.

• Keep si as it is 10% of the time.

In all three cases, si is treated as a masked token and the network should classify

transformer output corresponding to si as playing.

The network is trained with LMTL objective. Cross-Entropy loss is used in LMTL.

LMTL is calculated according to (4.19).

LMTL = − 1

M

∑
di∈D

V∑
j

yji log p(d
j

i ) (4.19)

where V is the size of the vocabulary (number of output classes), p(d
j

i ) is the predicted

output probability for output class j for the masked token di. y
j
i is the binary ground

truth label for class j for the masked word di.

Finetuning with attributes for image captioning is illustrated in Figure 4.16 for the

example in Figure 4.15.

As shown in Figure 4.16, object attributes are integrated as another set of input but

the training strategy is the same as VinVL baseline. Unidirectional attention mask

is employed for tokens belonging to the ground truth caption, S, as shown in Figure

4.16. Hence, a token si ∈ S can attend to tokens sj ∈ S for j < i in the ground truth

caption, S, all object tags, C, all object attributes, A, and all regional features, F .

Furthermore, tokens belonging to object tags, object attributes, and regional features

cannot attend to tokens of the ground truth caption. Otherwise, this would violate

unidirectional attention for tokens in S due to transitive property of attention.

Due to unidirectional attention mask, the model is forced to predict next word based

on previous words, object tags, object attributes, and regional features. Object at-

tributes are exploited as an additional source of information for the input image.
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[SEP]
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Figure 4.16: Illustration of finetuning for image captioning with attributes for the

example in Figure 4.15.

After finetuning on image captioning dataset is performed, model can be used for cap-

tion generation (decoding). For decoding, object tags, object attributes, and regional

features are extracted as in Figure 4.15.

The decoding step is the same as VinVL baseline described in Section 4.1.3 with

additional set of inputs, object attributes.

There are 4 sets of inputs: Auto-regressive input tokens - Y , object tags - C, object

attributes - A, and regional features - F .

The auto-regressive decoding procedure is provided in Algorithm 3. Forward propa-

gation is applied using the given 4 sets of inputs. The transformer output dt at time

instant t (corresponding to the t-th masked input token) is fed into the classifier and

the network predicts the word yt. In the next time instant t+ 1, the t-th masked word

is replaced with previously predicted word yt. After forward pass, the network makes

prediction for yt+1. This process is followed in an auto-regressive manner until max-

imum caption length is achieved or the network predicts a special end-of-sentence

token, [EOS], at the output.

66



Algorithm 3 Auto-regressive decoding process.

Y = {[CLS], [MASK], [MASK], . . . , [MASK], [SEP ]}, |Y | = T + 2

Y = {} ▷ Set of Words for the Generated Caption

t = 0

while |Y | ≠ T and yt ̸= [EOS] do ▷ [EOS]: End of Sentence Token

yt ← Model(Y,C, F )

Y ← Y ∪ {yt}
yt ← yt

t← t+ 1

end while

An example decoding snapshot for the example in Figure 4.15 at time instant t = 7

is given in Figure 4.17 (Note the extra attribute information,black and sitting, in the

generated caption. The model is expected to generate more detailed captions with

attributes).
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[SEP]
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Figure 4.17: Illustration of auto-regressive decoding (caption generation) with at-

tributes.

Similar to the finetuning stage, unidirectional attention mask is utilized since the

model has no information about the future words in the caption. It is expected for

the model to predict current masked word by attending to previously predicted words,

object tags, object attributes, and regional features.
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In the end, aim in proposed approach is exploiting additional object attribute infor-

mation available in the image, during VIVO pretraining, image captioning finetuning,

and caption generation, in order to produce richer and more informative captions.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter experimental results will be discussed. Analysis of dataset and object

tag components in Novel Object Captioning will be provided. Effect of object at-

tribute component in Novel Object Captioning will be examined using the proposed

novel approach which is explained in Section 4.2.

All models are first pretrained on a dataset (Open Images [3] or Flickr30k [2]) with

VIVO [1] pretraining as described in Section 4.1.2.2. Then, the models are finetuned

for image captioning on COCO [27] dataset as described in Section 4.1.2.3. Models

are evaluated on nocaps [91] validation set and COCO test set (Karpathy’s split [67]),

for Novel Object Captioning and general image captioning, respectively. Details of

datasets are provided in Section 3.3.

For Novel Object Captioning, an external object detection model trained on Open

Images dataset is utilized in VinVL [4]. The model and its details are not shared.

Hence, for the tag prediction in VinVL baseline models, we utilize a state-of-the-art

multi-label classification model, ML-Decoder [33], trained on Open Images dataset.

Its details are explained in Section 2.1.1.

It is relatively easy to train models for nocaps challenge since datasets are limited in

number and size compared to VLP-based general image captioning approaches which

utilize several large datasets as explained in Section 4.1.2.1. Hence, nocaps challenge

is aimed for the purpose of demonstrating work conducted in this thesis but the ideas

are applicable to other domains as well, given enough computational resources. Even

though the models are trained for Novel Object Captioning, results on COCO [27]

general image captioning dataset are also provided. Furthermore, proposed novel
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approach is directly applicable to VLP-based general image captioning models as

well.

5.1 Implementation Details

The models are pretrained and finetuned on a PC with NVIDIA GeForce RTX 3090

GPU with 24 GB memory and Intel Core i7-9700K CPU. All models are initialized

with the weights of the BERTbase [13] trained on large English corpora with Masked

Language Modelling (MLM) objective. Batch size is used as 64. Following VIVO

[1] and VinVL [4], learning rate of 5× 10−5 and 1× 10−5 are used during pretraining

and finetuning, respectively. Following VIVO [1] and VinVL [4], we used maximum

sequence lengths as in (5.1) and (5.2) for the input sets mentioned in Section 4.2, for

pretraining and finetuning, respectively. The sets of inputs S, C, A, and F do not

necessarily have to have the same sizes. Some objects or attributes might be missed

by the tag prediction, attribute prediction, or regional feature extraction networks.

Hence, there is not a one-to-one correspondence between different sets of inputs.

|F | = 50

|C| = 35

|A| = 35

(5.1)

|F | = 50

|S| = 40

|C| = 30

|A| = 15

(5.2)

Maximum sentence length during decoding is 20, as in VIVO [1].

5.2 Effect of Pretraining Datasets

In nocaps [91] challenge, two datasets are provided for training: Open Images [3] and

COCO [27]. Open Images is an object detection dataset. Training set of Open Images

dataset is used in order to allow models to learn the concept of novel object classes
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since the dataset contains objects from around 600 novel classes. COCO dataset is

used for captioning training.

Since Open Images dataset is very large ( 1.7 million images) it takes several GPU

weeks to just pretrain the network, let alone finetuning for captioning. We question

the necessity of such large dataset for Novel Object Captioning. For this purpose,

we trained two VinVL models [4]. The baseline model is pretrained on Open Im-

ages dataset with VIVO pretraining and finetuned on COCO dataset for captioning.

This is the standard apporach used in VIVO [1] and VinVL [4]. The second model

is pretrained on a much smaller dataset, Flickr30k [2] ( 30k images), with VIVO

pretraining and finetuned on COCO dataset for captioning.

During the pretraining on Flickr30k with VIVO objective, we still used an external

tag prediction network trained on Open Images in order to allow the network to learn

visual vocabulary for the novel objects. Hence, despite the model is pretrained on a

smaller dataset, it is still exposed to novel classes of Open Images dataset.

Evaluation results of two models on COCO and nocaps datasets are given in Table

5.1 and Table 5.2, respectively. As seen in Table 5.1, two models perform very

Table 5.1: Evaluation results on COCO Karpathy test split [67] for VinVL [4] pre-

trained on Open Images [3] and Flickr30k [2] datasets and finetuned on COCO [27]

dataset.

Model

Pre-Trained on Pretrained on

Dataset Metric Open Images (Baseline) Flickr30k

COCO

BLEU-4 35.27 34.8

METEOR 28.39 28.47

ROUGE-L 57.14 56.71

CIDEr 119.41 118.16

SPICE 21.62 21.73

similar on COCO test set. COCO dataset have less variation in terms of objects in the
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Table 5.2: Evaluation results on nocaps validation set for VinVL [4] pretrained on

Open Images [3] and Flickr30k [2] datasets and finetuned on COCO [27] dataset.

Model

Pre-Trained on Pretrained on

Dataset Subset Metric Open Images (Baseline) Flickr30k

nocaps

in-domain

BLEU-4 27.43 27.45

METEOR 28.50 28.59

ROUGE-L 56.08 56.73

CIDEr 85.48 88.92

SPICE 12.84 13.16

near-domain

BLEU-4 21.89 23.65

METEOR 25.94 26.72

ROUGE-L 54.03 54.87

CIDEr 77.22 81.31

SPICE 12.3 12.54

out-of-domain

BLEU-4 11.71 13.38

METEOR 21.62 22.68

ROUGE-L 48.17 49.31

CIDEr 59.53 65.51

SPICE 10.14 10.77

entire

BLEU-4 20.62 22.11

METEOR 25.43 26.17

ROUGE-L 53.13 54.01

CIDEr 74.82 79.2

SPICE 11.96 12.29

image. Hence, the effect of learning visual vocabulary for a large set of novel objects

is not critical on COCO dataset. Furthermore, the models are finetuned on COCO

datasets. This allows models to fit their parameters according to image captioning

task on COCO dataset. So, the effect of VIVO pretraining dataset on general image
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captioning is insignificant. This outcome is in parallel with VIVO [1] where they

claim that the effect of VIVO pretraining is diminishing on COCO dataset.

The model pretrained on Flickr30k with VIVO pretraining objective surpasses the

baseline model on nocaps validation set, as illustrated in Table 5.2. The results sug-

gest that for a better Novel Object Captioning performance a large pretraining dataset

is not mandatory. As will be discussed in Section 5.3, it is more crucial for the net-

work to see novel object tags during pretraining and finetuning.

Regarding the performance gap between two models, during the pretraining stage,

the model trained on Flickr30k converged rapidly after 30 epochs whereas for the

baseline model trained on Open Images it took around 200 epochs. This is due to

the fact that Open Images dataset being significantly larger ( 55 times) than Flickr30k

dataset. The pretraining stage on Open Images took approximately 1 month. We

hypothesize that with more careful training strategies and hyperparameter optimiza-

tions, the model could fit better to such large dataset. However, due to computational

constraints, we could not perform further experiments for this hypothesis.

5.3 Effect of Different Set of Object Tags

For the nocaps challenge, models utilize external object detection networks which

are trained on Open Images dataset which contains around 600 novel classes. For

regional feature and object tag extraction in general image captioning, VinVL utilize

an object detection network, Faster R-CNN [7], as explained in Section 4.1.1. This

network is trained on a collection of datasets ([27], [3], [42], [38]) and it predicts

1594 output classes for objects in the image. For nocaps challenge, it is only used

as regional feature extractor. An object detector trained on Open Images is used as

object tag extractor for the nocaps challenge. 313 classes of Open Images dataset also

exist in 1594 output classes of the Faster R-CNN object detector. This leaves around

200 novel classes which are not covered by the 1594 classes.

In order to analyze the effect of quantity and novelty of object tags on Novel Object

Captioning and general image captioning, we train two models with two different

object tag extractors. The baseline model utilize ML-Decoder [33] trained on Open
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Images with 523 novel object classes as the tag predictor. The second model utilize

Faster R-CNN object detection model with 1594 output classes as the tag predictor.

Both captioning models are pretrained on Open Images dataset with VIVO pretrain-

ing objective and finetuned on COCO dataset for image captioning, following the

restrictions of nocaps challenge. Even though the second model lacks around 200

novel classes compared to the baseline, output vocabulary size is the same for both

models (30522 words). Hence, in theory, both models could generate the same set of

words during caption generation.

Evaluation results of two models on COCO and nocaps datasets are given in Table

5.3 and Table 5.4, respectively. As seen in Table 5.3, two models perform pretty

Table 5.3: Evaluation results on COCO Karpathy test split [67] for VinVL [4] trained

with 523 OI (Open Images) classes as object tags and 1594 VG (Visual Genome)

classes as object tags.

Model

OI Classes (523) VG Classes (1594)

Dataset Metric As Tags (Baseline) As Tags

COCO

BLEU-4 35.27 34.93

METEOR 28.39 28.47

ROUGE-L 57.14 57.13

CIDEr 119.41 119.47

SPICE 21.62 21.85

similar on COCO test set. The reason for this outcome is that COCO dataset does

not contain novel objects. 80 object classes in the COCO dataset also exist in 523

Open Images classes and 1594 Visual Genome classes. Hence, both models cover all

COCO classes. Furthermore, the models are finetuned on COCO dataset. This allows

models to fit their parameters according to image captioning task on COCO dataset.

Hence, the effect of novelty or abundance of object tags on general image captioning

is insignificant. This outcome is in parallel with VIVO [1] where they claim that the

effect of VIVO pretraining is diminishing on COCO dataset.
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Table 5.4: Evaluation results on nocaps validation set for VinVL [4] trained with 523

OI (Open Images) classes as object tags and 1594 VG (Visual Genome) classes as

object tags.

Model

OI Classes (523) VG Classes (1594)

Dataset Subset Metric As Tags (Baseline) As Tags

nocaps

in-domain

BLEU-4 27.43 27.03

METEOR 28.5 27.79

ROUGE-L 56.08 55.93

CIDEr 85.48 85.48

SPICE 12.84 12.81

near-domain

BLEU-4 21.89 22.08

METEOR 25.94 25.55

ROUGE-L 54.03 53.75

CIDEr 77.22 73.67

SPICE 12.30 12.08

out-of-domain

BLEU-4 11.71 10.82

METEOR 21.62 20.83

ROUGE-L 48.17 47.30

CIDEr 59.53 54.18

SPICE 10.14 9.81

entire

BLEU-4 20.62 20.51

METEOR 25.43 24.91

ROUGE-L 53.13 52.76

CIDEr 74.82 71.41

SPICE 11.96 11.77

In Table 5.4, it is shown that baseline model utilizing Open Images classes as ob-

ject tags surpasses the model utilizing Visual Genome classes as object tags on no-

caps validation set. The difference between models is small for in-domain subset.
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This is expected since the images in in-domain subset contains only COCO classes.

The baseline model outperforms the other model when images contain novel objects

(near-domain and out-of-domain subsets). Even though the second model is trained

with much larger set of object tags, it fails to generate captions for novel objects. This

result indicates that seeing a novel object class during training increases the accuracy

of generated caption for an image which contains the novel object. During train-

ing, the model should be exposed to the set of object classes which exist in the test

images. Hence, novelty of object tags is crucial for Novel Object Captioning. Increas-

ing the novelty and number of object classes seen during pretraining and finetuning

might lead even better results. An expanded set of object tags with both novel classes

of Open Images and diverse classes of Visual Genome could yield richer and more

grounded captions for both Novel Object Captioning and general image captioning.

This may be investigated as a future work.

5.4 Effect of Object Attributes

Results of Section 5.3 demonstrate that it is crucial for the network to be exposed to

novel object tags if we would like to generate captions which mention novel objects

in the image. Following this outcome, as explained in Section 4.2, we propose a novel

approach which aims to enrich generated captions with object attributes. We expose

the network to object attributes during pretraining and finetuning in order to generate

captions with attributes.

Two methods are compared in this experiment. The baseline model is pretrained on

Open Images with VIVO objective and finetuned on COCO for captioning. The pro-

posed model is pretrained on Open Images with VIVO-like pretraining and finetuned

on COCO for captioning while also exploiting object attributes in both stages, as ex-

plained in Section 4.2. We used λ = 0.5 in (4.18). Hence, during pretraining, both

tags and attributes have equal effect on overall loss. In this experiment, we inves-

tigate the effect of proposed method in generating richer captions in addition to the

theoretical captioning performance.

Evaluation results of baseline method and proposed method on COCO and nocaps
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datasets are given in Table 5.5 and Table 5.6, respectively. As seen in Table 5.5 and

Table 5.5: Evaluation results on COCO Karpathy test split [67] for VinVL [4] baseline

and proposed method which utilize object attributes.

Model

Baseline Proposed Method

Dataset Metric (without Attributes) (with Attributes)

COCO

BLEU-4 35.27 32.96

METEOR 28.39 27.08

ROUGE-L 57.14 55.09

CIDEr 119.41 110.62

SPICE 21.62 20.70

Table 5.6, the baseline method surpasses the proposed method on both COCO and

nocaps datasets. We think there are a couple of reasons for this result. Firstly, dur-

ing evaluation, predicted captions are compared with a set of reference ground truth

captions. These ground truth captions are human-annotated. Hence, if ground truth

captions do not contain object attributes, the model which mentions object attributes

in its predicted caption might get lower evaluation score. Secondly, integrating at-

tribute information during pretraining and finetuning might have affected the model

negatively such that generated captions might be wrong or grammatically incorrect.

In order to understand the reasoning behind the theoretical results and observe the

effect of proposed method in generated captions, we analyze the visual outputs of

baseline method and proposed method. In visual examples, predicted object attributes

by the proposed method are shown in bold. These attributes are one of the 524 output

classes of the attribute prediction network.

An example image from COCO test set, generated captions by the baseline and pro-

posed methods, and ground truth captions are given in Table 5.7. In Table 5.7, the

prediction of the baseline method is not fully correct since it hallucinates a chair. Fur-

thermore, it does not mention about the car in the background and does not give any

details or attributes about the objects in the image. On the other hand, our proposed
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Table 5.6: Evaluation results on nocaps validation set for VinVL [4] baseline and

proposed method which utilize object attributes.

Model

Baseline Proposed Method

Dataset Subset Metric (without Attributes) (with Attributes)

nocaps

in-domain

BLEU-4 27.43 24.54

METEOR 28.5 26.75

ROUGE-L 56.08 54.02

CIDEr 85.48 79.29

SPICE 12.84 12.44

near-domain

BLEU-4 21.89 20.13

METEOR 25.94 24.94

ROUGE-L 54.03 52.63

CIDEr 77.22 72.1

SPICE 12.3 11.74

out-of-domain

BLEU-4 11.71 11.31

METEOR 21.62 20.86

ROUGE-L 48.17 47.63

CIDEr 59.53 55.07

SPICE 10.14 9.81

entire

BLEU-4 20.62 18.97

METEOR 25.43 24.37

ROUGE-L 53.13 51.82

CIDEr 74.82 69.68

SPICE 11.96 11.48

approach which exploit object attributes successfully describe the scene. It mentions

about the car in the background, it gives details about the objects in the image by

mentioning about their attributes such as small, wooden, and red. This was what we

aimed for in our proposed approach. This example reveals a few important points as
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Table 5.7: An example image and generated caption by the baseline method, gen-

erated caption by the proposed method and ground truth reference sentences for the

image.

Baseline – A garden with a chair and a plant on the ground.

Proposed Method – A small garden with a wooden fence and a red car behind

it.

Ground Truth – A simple, fenced in garden containing several kinds of

plants.

– A plot of dirt with a fence around it with flower pots next

to it.

– A few plants in a garden near a fence.

– A small garden that has vegetables blooming in it.

– A car some dirt a garden grass bushes and trees.

well.

Firstly, ground truth captions describe the image from different perspectives. Some

describe the vegetables in it, some describe the potted plants next to the garden,

and only the last ground truth caption mentions about the car in the background.

Moreover, the last ground truth caption is grammatically ambiguous since it is not
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a proper sentence. We have observed similar issues with ground truth captions of

the other images from COCO dataset. These kind of ground truth captions which

are grammatically problematic and overlooking the details in the image might result

in poor evaluation results for the models. More importantly, such erroneous ground

truth captions in the training set would affect performance of the models and result in

degraded performance.

Secondly, we observe that some of the ground truth captions mention about object

attributes such as simple, small, fenced, dirt. However, some attributes for the objects

are missing. For example, wooden, and red. To develop models which generate richer

captions, it might be better to enrich ground truth captions as a first step.

In Table 5.8, Table 5.9, and Table 5.10 example images from COCO test set, gen-

erated captions by the baseline and proposed methods, ground truth captions, and

evaluation scores for the predictions of models are provided. In these examples it

is shown that the proposed method successfully describes the scenes with additional

attribute information (white, pink, metal, stainless steel, and sitting). However, in

all of these examples, output of the proposed method gets lower scores compared

to the baseline. The reason for this result is that ground-truth captions in these ex-

amples describe the scene from different perspectives and they do not contain object

attributes. Hence, the proposed method is penalized for integrating attributes even

though the predicted sentences describe the scenes perfectly. Regardless of the the-

oretical results, the proposed pretraining and finetuning approach which exploits at-

tributes seems to be helping generating richer captions by mentioning attributes of

objects in the captions. These points support our claim that assessment of

the proposed method based solely on the theoretical evaluation metrics might be mis-

leading. Since ground truth captions are generated by humans, they are open-ended.

Hence, captions with missing details and attributes yield poor evaluation results. So,

it is important to take visual examples and outputs into consideration as well.

An example image from nocaps validation set, generated captions by the baseline

and proposed methods, and ground truth captions are given in Table 5.11. In nocaps

dataset, each image has 10 ground truth captions as opposed to COCO dataset which

has 5 ground turth captions per image. In Table 5.11, we can see that the baseline
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Table 5.8: An example of poor theoretical evaluation due to mediocre ground-truth

captions.

Baseline – A close up of a street sign with a sky background.

Proposed Method – A couple of white street signs sitting on top of a metal

pole.

Ground Truth – A street sign that reads " Greta Garbo Strafze ".

– A street sign that reads Greta Garbo Strafe.

– Two intersecting white street signs at an intersection.

– The street sign is reading Greta Garbo on the side of the

pole.

– A street sign that is pointing in different ways.

Score Baseline: CIDEr: 61.27 SPICE: 16.6

Proposed: CIDEr: 38.04 SPICE: 14.29

method does not give details about the objects in the image. Moreover, it hallucinated

a dishwasher which does not exist in the image. On the other hand, the proposed

method correctly described the scene while also mentioning about the object attributes

such as metal and wooden. It is also clear that ground truth captions in nocaps dataset

is more detailed. However there might still be missing attributes. For example, the

metal attribute for the object sink is not mentioned in any on the ground truth captions

while it is mentioned in the caption generated by the proposed method. This might

result in poor evaluation result for the proposed method. The reason for performance

of the all models being worse on nocaps dataset compared to COCO dataset might be

the difference in detail levels of the ground truth captions. The models are trained on
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Table 5.9: An example of poor theoretical evaluation due to mediocre ground-truth

captions.

Baseline – A bathroom with a toilet, sink, and soap dispenser.

Proposed Method – A white toilet sitting next to a stainless steel sink.

Ground Truth – We are looking at a small airline toilet.

– A compact sized bathroom with toilet and sink inside.

– A toilet and sink in the bathroom of an airplane.

– A bathroom toilet that has the seat down.

– This is a lavatory of an airplane.

Score Baseline: CIDEr: 63.0 SPICE: 35.71

Proposed: CIDEr: 43.64 SPICE: 14.81

COCO dataset which has broad ground truth captions with less details and they are

evaluated on nocaps dataset which has very detailed ground truth captions.

Another example image from nocaps validation set, generated captions by the base-

line and proposed methods, and ground truth captions are given in Table 5.12. In

Table 5.12, we observe that both the baseline method and the proposed method gen-

erate good captions. The baseline method also mentioned about attributes such as

yellow, black, and sitting. During experiments, we observed that the baseline method

can predict simple attributes such as colors and shapes from time to time. The reason

for this might be that such simple and common attributes also exist in the ground

truth captions of the COCO dataset. However, we observe that the baseline model

chose the word black to describe the bird while the bird is blue. Proposed method

successfully described the bird as yellow and blue due to explicit integration of object
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Table 5.10: An example of poor theoretical evaluation due to mediocre ground-truth

captions.

Baseline – A vase filled with flowers sitting on top of a table.

Proposed Method – A vase filled with white and pink flowers on top of a table.

Ground Truth – Creative centerpiece floral arrangement at an outdoor event.

– A wedding centerpiece made of flowers and various other

plants.

– A vase of flowers sitting on an outdoor table.

– A vase filled with flowers on top of a table.

– A floral arrangement inside a clear cylinder shaped vase.

Score Baseline: CIDEr: 207.57 SPICE: 33.3

Proposed: CIDEr: 138.99 SPICE: 33.3

attributes during training and decoding. Furthermore, the proposed method used the

word perched to describe the bird instead of using the word sitting. perched is one of

the 524 output classes of the attribute prediction network.

These results illustrate the effectiveness of attribute component in Novel Object Cap-

tioning and general image captioning in order to generate richer and more visually
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Table 5.11: An example image and generated caption by the baseline method, gen-

erated caption by the proposed method and ground truth reference sentences for the

image.

Baseline – A kitchen with a sink, cabinets, and a dishwasher.

Proposed Method – A kitchen with a metal sink and wooden cabinets.

Ground Truth – Wood cabinetry surrounding a sink with a high curved

faucet and kitchen knives on the left side of the counter.

– The interior of a kitchen showing the sink and surrounding

counter top.

– A kitchen with a cabinet, sink and counter top.

– A clean counter top with a cool cabinet furniture down-

ward.

– A kitchen counter and double sink with a towel laying on

the counter.

– Kitchen sink with granite countertop and wooden drawers.

– A sink with knives, plates, and a towel on top of the counter.

– A grey sink is placed in the middle of a countertop.

– A kitchen sink with many cabinets under the sink.

– Knives, dish soap, a plate, an orange container and a towel

lie on a kitchen top of the sink.

grounded captions.

Even though the proposed method generates richer and more detailed captions com-

pared to the baseline, we have observed that there are some drawbacks of the proposed
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Table 5.12: An example image and generated caption by the baseline method, gen-

erated caption by the proposed method and ground truth reference sentences for the

image.

Baseline – A yellow and black bird sitting on a tree branch.

Proposed Method – A yellow and blue bird perched on a tree branch.

Ground Truth – The yellow and blue bird is peeking on the plant.

– A blue and yellow bird is on branch next to green leaves.

– A blue and yellow bird perched on a twig.

– A blue and yellow bird is sitting in a tree with green leaves.

– A yellow and blue bird on a branch in a tree with a lot of

leaves.

– A blue and yellow bird sitting on a branch with some leaves.

– A blue and gold bird is sitting on a branch surrounded by

leaves.

– A blue and yellow bird is perched on a tree branch.

– A yellow and blue bird sitting in a wooden branch.

– A blue and yellow bird on top of a twig.

method for some images. An example visual result demonstrating such a case for an

image from COCO test set is given in Table 5.13. The example in Table 5.13

shows that proposed method associates bunch and sliced attributes for the orange

object correctly. Description of oranges is more detailed compared to the baseline.

However, we observe that the proposed method fails to mention about the plate and

the bananas in the background. The baseline method mentions about these objects

correctly. However, it fails to predict any attributes for the objects in the image. The
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Table 5.13: An example image and generated caption by the baseline method, gen-

erated caption by the proposed method and ground truth reference sentences for the

image.

Baseline – A close up of oranges and bananas on a plate.

Proposed Method – A bunch of sliced oranges sitting on a table.

Ground Truth – A plate is piled high of orange slices while a bunch of ba-

nanas sits next to it.

– A plate full of sliced oranges next to a bunch of bananas.

– A white plate filled with slice oranges next to a pile of ba-

nanas.

– A close up of orange slices and bananas.

– A close-up picture of cut oranges on a plate, with blurred

bananas in the background.

failure of the proposed model to describe the plate and the bananas may be because

of the proposed model being focused on attributes too much. During pretraining, we

set λ = 0.5 in (4.18). Thus, both the masked object tags and masked object attributes

have the same effect on the total loss. Decreasing λ to down weight the contribution

of the masked attributes on total loss might help model to focus on objects during de-

coding. On the other hand, such an approach may lead to less richer captions in terms

of object attributes. During finetuning and decoding we set the maximum sequence

length for the object attributes as half of the maximum sequence length for the object

tags. Maximum sequence length for the attributes can be reduced further to decrease

the effect of object attributes in generated captions. However, it should be noted that

not integrating object attributes at all results in captions without details as seen in the
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prediction of the baseline model.

An example visual result where proposed method generates a rich caption but fails to

mention all objects in the image is given in Table 5.14. In Table 5.14, it is shown

Table 5.14: An example image and generated caption by the baseline method, gen-

erated caption by the proposed method and ground truth reference sentences for the

image.

Baseline – A bath room with a sink a mirror and a towel dispenser.

Proposed Method – A bathroom with orange tile walls and a white sink.

Ground Truth – The bath room is clean with brown tile, white sink and large

mirror.

– A public bathroom area with orange tile walls.

– A sink sits in a public bathroom with bright orange tile.

– A public restroom with focus on the sink and towel dis-

penser.

– A bathroom has gold tile and a silver box on the wall.

that proposed method describes the objects in the scene with several attributes such as

white, orange, and tile. However, it fails to mention about towel dispenser and mirror

whereas the baseline method mentions about these objects. On the other hand, the

baseline method does not predict any attributes and it fails to mention about the walls

unlike the proposed method.

These results illustrate that it is important to have a balance between object attributes

and object tags during training and inference in order to fully describe an image with
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attribute details.

More visual examples comparing the baseline method and the proposed method are

given in Appendix A.
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CHAPTER 6

SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusion

In this study, we have analyzed the effect of dataset, object tag, and object attribute

components in Novel Object Captioning. We have provided results and analysis for

general image captioning as well. During experiments, we have performed both the-

oretical evaluation and visual analysis of different methods.

Recently, transformer-based networks replaced the RNN-based ones in sequence un-

derstanding and generation tasks [12], [13], [14]. Compared to RNNs, transformers

provide better modelling of relationships and interactions in long sequences, and they

are more suitable for parallel processing [44]. Due to these advantages, transformers

are also utilized by many image captioning methods in recent years [30], [16], [1] [4],

[83]. Hence, in this work, we have taken a state-of-the-art transformer-based image

captioning model, VinVL [4], as baseline.

VinVL requires a large pretraining dataset and a specific set of object tags for Novel

Object Captioning (nocaps [91]). We investigate the effect of dataset and object tag

components and question the necessity of them. Furthermore, image captioning mod-

els generally lack visual grounding and copy phrases from the training dataset [31],

[32]. To alleviate this problem, we have proposed a novel approach which exploits

additional object attribute information to generate richer and visually grounded cap-

tions.

As the first experiment, we have pretrained the VinVL model on a much smaller

dataset, Flickr30k [2], while keeping all other components fixed. As the second ex-
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periment, we have pretrained and finetuned the VinVL model using a much larger

set of object tags (1594 classes) which lacks around 200 novel objects available in

the baseline that contains a total of 523 novel object classes. Experimental results

demonstrate that it is very crucial for the model to be exposed to the novel object tags

during training in order to be successful on Novel Object Captioning dataset. On the

contrary, as long as the model sees novel object tags during training, similar Novel

Object Captioning performance could be obtained with a much smaller pretraining

dataset. Changing the pretraining dataset or object tags do not seem to be affecting

the captioning performance on general image captioning significantly because COCO

[27] dataset is simpler compared to the nocaps dataset and the models are finetuned

directly on the COCO dataset.

These results demonstrated that in order to mention about some novel objects in the

generated caption, it is essential for the network to see those keywords during train-

ing. Hence, in order to enrich generated captions, we have proposed to expose the

network to the object attributes during training and decoding. We have integrated ob-

ject attributes during pretraining with a Masked Token Loss (MTL) training objective

which allows the network to build the relationships (attentions) between object tags,

object attributes, and regional features. Experimental results show that the proposed

method successfully utilizes attributes for the objects in the image which results in

richer and visually grounded captions. Even though we performed model training ac-

cording to the nocaps challenge due to limited computational resources, the proposed

method is directly applicable to the general image captioning tasks which utilize sev-

eral large image-tag paired datasets as well.

6.2 Future Work

Visual analysis on the baseline and proposed methods revealed that the proposed

method generates grammatically and semantically correct captions in general. The

generated captions are also richer in terms of object attributes compared to the base-

line method. However the proposed method falls behind the baseline method when

it comes to theoretical evaluation. To figure out the reasons behind this result we

have analyzed datasets, ground truth captions, and predictions of models. The anal-
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ysis on datasets and ground truth captions shows that different people describe an

image from very different perspectives resulting in ground truth captions with high

variance. Furthermore, some ground truth captions are very broad and do not mention

about important details in the image such as attributes of objects. This results in poor

evaluation performance for the proposed method. Hence, as a future work, we think

that it is crucial to improve the quality of the ground truth captions in order to boost

the performances of captioning models and perform a fair evaluation. Furthermore, a

captioning dataset with detailed ground truth captions for the training set would help

models to produce richer and detailed captions during inference.

In addition, the proposed method for integrating object attributes can also be applied

to the object relationships as well by employing a visual relationship detection net-

work. That might lead to even better and more detailed captions.

Lastly, object tags, object attributes, and regional features are fed to the network di-

rectly without association between them. Explicitly aligning these three sets of inputs

as (tag, attribute, feature) triplets might allow the network to build up the relation-

ships between them during training and predict words which are more grounded on

tags and attributes during decoding.
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APPENDIX A

VISUAL EXAMPLES

In this part, visual examples for the comparison of the baseline method and the pro-

posed method are given as an extension to the Section 5.4. In Section A.1, good

examples where the proposed method successfully describes the scene with attribute-

wise rich sentences are provided. In Section A.2, some problematic examples where

the proposed method generates imperfect captions (hallucinated objects, missing de-

tails) are provided.

A.1 Successful Examples

The proposed method generates very good captions with details and additional at-

tribute information for the examples in this section. It generally describes the scene

better than the baseline method.

107



Baseline – A bowl of food with a spoon in it.

Proposed Method – A white bowl filled with chopped veggies and a wooden

spoon.

Ground Truth – A pan filled with veggies and a block of butter.

– Butter or cheese on top of some vegetables in a pan.

– Spoon in a bowl of chopped vegetables with butter.

– A pan with butter and other ingredients for a dish.

– Pot with variety of chopped vegetables, big chunk of butter

and spoon.

Baseline – An old truck sitting in the middle of a forest.

Proposed Method – An old rusted truck sitting in the middle of yellow flowers.

Ground Truth – A old truck with a busted window in the tall bushes.

– A rusty old truck sitting in an overgrown field.

– A rusted out truck parked next to some yellow flowers.

– Old pick-up with flowers growing in front of it.

– A truck is shown decaying among flowers without a win-

dow.
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Baseline – A couple of zebra standing next to each other on a field.

Proposed Method – A group of zebra standing next to each other on a dry grass

field.

Ground Truth – Zebra grazing on dry grass in a fried up field.

– A mother zebra and her young on a grassy plain.

– A zebra and a young zebra in a field

– A zebra with its offspring grazing in the desert.

– Two Zebras in a brown field grazing and eating.

Baseline – A group of buses that are sitting in the street.

Proposed Method – A group of double decker buses parked in front of a build-

ing.

Ground Truth – A tall building with four double decker buses driving along

a parking lot.

– A large long bus on a city street.

– Two white double decker buses on a street.

– Double-decker buses sit at the curb in front of an old build-

ing.

– Double-Decker buses line up at a bus stop.
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Baseline – A white toilet sitting next to a sink in a bathroom.

Proposed Method – A bathroom with a black and white checkered floor.

Ground Truth – A kitchen sink sitting next to a toilet.

– A black and white, checkerboard bathroom with a red towel

hanging up.

– A red towel hanging in a black and white bathroom.

– The bathroom is tiled black and white floors.

– A bath room with a toilet a sink and a mirror.
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Baseline – A white door is open outside of a building.

Proposed Method – An old white building on the side of a road.

Ground Truth – A shabby garage stands next to a brown-red residential

building.

– An run down garage, next to a building.

– An old white garage is next to a brown building in front of

trees.

– A white garage in disrepair next to a house.

– A garage that is not in a good shape next to a building.

– The large building appears to be a garage.

– A tiny one car garage made of dented sheet metal in the

middle of a driveway.

– A garage contains a dented metallic side wall.

– An old white aluminum windowless garage, in disrepair,

next to a building.

– A one car garage with galvanized steel outside walls.
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Baseline – A statue of a statue of a man’s head.

Proposed Method – A close up of a statue of a shiny metal silver head.

Ground Truth – A bronze sculpture of a bust that is shiny.

– With face distorted, the bust in bronze stares ahead.

– A bronze sculpture with a strange expression stands on a

brick surface.

– The sculpture of a man made with cooper has the mouth

open.

– A bust of a bronzed man is shown with a brick background.

– A statue of a man’s face is outside near a brick way.

– A bronze statue of a man who is making a face and has

heavy eyebrows.

– A bronze statue of a human face that is not good looking.

– A statue of a man has a bald spot.

– A bronze sculpture of a bearded japanese samurai.
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Baseline – A man walking a dog on a leash.

Proposed Method – A man in camouflage with a dog in front of him.

Ground Truth – A man dressed in camouflage next to a dog on a leash.

– A military man holding the leash to a service dog.

– A man in camoflage is holding the leash of his military dog.

– A soldier standing with a leashed dog at his side.

– A soldier standing with a dog on a leash.

– A man in camo holding onto a dog on the road.

– A man in a military camo uniform holding the leash of a

dog.

– A man in fatigues stands with his dog at his side.

– A person, holding a leash, standing next to his dog.

– A man in a uniform is sitting with a German Shepard dog

on pavement.
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Baseline – A man in a baseball uniform standing in the woods.

Proposed Method – A man in camouflage gear walking through a forest.

Ground Truth – A man standing in uniform and sunglasses near some

plants.

– A Russian soldier dressed in camouflage gear and goggles.

– The person is standing in the forest with sunglasses.

– A female person, wearing camouflage gear and sunglasses

is standing, surrounded by brown and green foliage.

– A person in a camouflage outfit and sunglasses stands in

some tall brush with his right hand on his chest.

– A man in camouflage and black sunglasses standing in be-

tween some plants.

– Man in military clothing and sunglasses walking through

an area with bushes.

– A military man in the woods with hat and gloves on.

– A person with military clothing, helmet and sunglasses

looks forward.

– A uniformed soldier standing in the bush.
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A.2 Problematic Examples

Examples in this section contain problematic captions generated by the proposed

method. The baseline method also generates poor captions for some of the exam-

ples. Generated captions might be problematic in the sense that some objects are

hallucinated, some details (objects, attributes) in the image are missed.

Baseline – A wooden table topped with lots of different types of fruit.

Proposed Method – A wooden table topped with lots of ripe bananas.

Ground Truth – Bananas sitting on top of apples, pears, and other fruits.

– A large plate topped with lots of fresh fruit.

– A platter full of bananas, apples, oranges, peaches, pears

and limes.

– There is a large platter of fruit on the table.

– A tray heaped with fruit including bananas apples oranges

and limes.
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Baseline – A bike parked next to a bench near a river.

Proposed Method – A red bicycle parked next to a metal pole.

Ground Truth – A bike leaning on a metal fence next to some flowing water.

– A bicycle parked next to a flooded river.

– A bicycle chained to a rail near a flooded area.

– A bicycle leans against a fence near some flood waters.

– A bicycle parked on a rail next to some flooding water.
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Baseline – A close up of a watch on the side of a street.

Proposed Method – A red and white digital clock mounted to the side of a

road.

Ground Truth – A digital stop watch with a red, silver, and black face.

– A runner’s watch displays thier performance, and times on

this man’s wrist.

– A late watch with some letters on it.

– A sports watch used for many different timing needs.

– The person has a freckled arm and is wearing a fitness

watch.

– A Forerunner305 watch that is on a person’s wrist.

– An arm displays a sports watch with several different func-

tions.

– A persons arm with a garmin brand watch on it.

– A person has a watch on their wrist.

– A watch rests on the arm of a person.
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Baseline – A man is walking through a train station at night.

Proposed Method – A blurry image of a person with a skateboard.

Ground Truth – A person stands in a bowling alley filled with different neon

lights.

– A man in a black and blue shirt bowling.

– A person is standing by a bowling alley.

– A small boy standing in front of bowling lanes, each con-

taining different colored pins.

– A young boy looking down bowling lane at the lights.

– A boy standing at the edge of the bowling lane looking

ahead.

– A person bowls in a neon bowling alley.

– In a spray of neon lights, a young boy prepares to throw the

bowling ball down the lane.

– A person bowling at a bowling alley.

– Someone stands at the end of the bowling alley.
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Baseline – Two men are sitting on top of a green train.

Proposed Method – Three men sitting on top of a military helicopter.

Ground Truth – Two men sitting on top of an army tank.

– Two men are riding on a large tank in the woods.

– Two men sit atop a tank that is painted with camouflage.

– Two older men sitting on a camouflage tank.

– Two men are sitting on a tank that is camo.

– A small tank carrying two people through the woods.

– Two men ride on top of a tank.

– Two men are riding a tank vehicle outside.

– Two men sitting on a military tank in the woods.

– Two men in a military style vehicle with a small cannon it

it.
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