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ABSTRACT

KERNEL PROBABILISTIC DISTANCE CLUSTERING ALGORITHMS

ÖZKAN, DİLAY
M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Cem İyigün

July 2022, 100 pages

Clustering is an unsupervised learning method that groups data considering the sim-

ilarities between objects (data points). Probabilistic Distance Clustering (PDC) is a

soft clustering approach based on some principles. Instead of directly assigning an

object to a cluster, it assigns them to clusters with a membership probability. PDC

is a simple yet effective clustering algorithm that performs well on spherical-shaped

and linearly separable data sets.

Traditional clustering algorithms fail when the data set is non-spherical or non-linearly

separable, as in the case of PDC. The kernel method overcomes this problem by

implicitly mapping the data into a higher dimensional space via a nonlinear trans-

formation, where the data may be linearly separable. This study focuses on devel-

oping kernel-based clustering algorithms using the principles of PDC to overcome

the problem of clustering non-spherical or non-linearly separable data sets and pro-

poses three kernel-based PDC algorithms. In addition, different than the classical

approach, Mahalanobis distance is also considered in kernel clustering, and a new

kernel-based Mahalanobis distance is developed to be used in soft kernel clustering

techniques. An experimental study is conducted for real and synthetic data sets to
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measure the performance of the proposed kernel-based PDC algorithms.

Keywords: clustering, probabilistic clustering, kernel functions, kernel method
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ÖZ

ÇEKİRDEK OLASILIKSAL MESAFE KÜMELEME ALGORİTMALARI

ÖZKAN, DİLAY
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Cem İyigün

Temmuz 2022 , 100 sayfa

Kümeleme, nesneler (veri noktaları) arasındaki benzerlikleri dikkate alarak verileri

gruplayan gözetimsiz bir öğrenme yöntemidir. Olasılıksal Mesafe Kümelemesi (PDC),

bazı ilkelere dayanan yumuşak bir kümeleme yaklaşımıdır. Bir nesneyi doğrudan bir

kümeye atamak yerine, bunları üyelik olasılığı ile kümelere atar. PDC, küresel şe-

killi ve doğrusal olarak ayrılabilir veri kümelerinde iyi performans gösteren basit ama

etkili bir kümeleme algoritmasıdır.

Geleneksel kümeleme algoritmaları, PDC durumunda olduğu gibi, veri setleri küre-

sel olmadığında veya doğrusal olarak ayrılamadığında başarısız olur. Çekirdek yön-

temi, verilerin doğrusal olarak ayrılabilir olabileceği, doğrusal olmayan bir dönüşüm

yoluyla verileri dolaylı olarak daha yüksek boyutlu bir uzaya eşleyerek bu soru-

nun üstesinden gelir. Bu çalışma, küresel olmayan veya doğrusal olarak ayrılamayan

veri setlerinin kümelenmesi sorununun üstesinden gelmek için PDC ilkelerini kul-

lanan çekirdek tabanlı kümeleme algoritmaları geliştirmeye odaklanır ve üç çekirdek

tabanlı PDC algoritması önerir. Ayrıca, çekirdek kümelemede klasik yaklaşımdan

farklı olarak Mahalanobis mesafesi de dikkate alınmış ve yumuşak çekirdek küme-
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leme tekniklerinde kullanılmak üzere yeni bir çekirdek tabanlı Mahalanobis mesafesi

geliştirilmiştir. Önerilen çekirdek tabanlı PDC algoritmalarının performansını ölç-

mek için gerçek ve sentetik veri setleri için deneysel bir çalışma yapılmıştır.

Anahtar Kelimeler: kümeleme, olasılıksal kümeleme, çekirdek fonksiyonları, çekir-

dek yöntemi
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CHAPTER 1

INTRODUCTION

Machine learning is a process of extracting the hidden patterns from the data [1]. It is

one of the steps of knowledge discovery process, where the aim is to discover useful

knowledge from the data. Machine learning contains several approaches, and they

can be divided mainly and classically into two categories based on the information

provided by the data: supervised learning and unsupervised learning.

Supervised learning aims at finding a pattern using the data with information (label),

and then developing a model to predict the outcome of unlabeled data. The goal of

unsupervised learning, on the other hand, is to extract information from the data with

no labels. The most common method of unsupervised learning is clustering. It is

a process of exploring groups in the data based on the similarity between the data

points (objects). The objective of clustering is grouping the similar objects in the

same cluster while separating the dissimilar objects from each other.

Clustering methods can be divided into two categories as hierarchical and partitional

clustering. Hierarchical clustering is a non-parametric approach that aims at con-

structing a hierarchical structure of clusters based on a distance measure. Partitional

clustering represents each cluster with a cluster prototype (i.e. center, median, etc.).

It constructs clusters by considering optimization of an objective function and the

proximity between objects (data points) and prototypes. Partitional clustering is split

into two based on the assignment types. Hard (crisp) assignment methods assign

each object to exactly one cluster; therefore, it comes up with disjoint clusters. Soft

assignment methods, on the other hand, assigns objects to clusters with a probability

(membership degree) instead of directly assigning them to only one cluster.
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Partitional clusters create hypersurfaces among clusters. According to those hyper-

surfaces, clusters in a data set are determined. Although there is no prior information,

the shape or the distribution of the clusters in a data set is important for a success

of a clustering task. In some cases, points in a data set cannot be linearly separable,

i.e. a hypersurface cannot separate the data. For those data sets, nonlinear separating

hypersurfaces between clusters should be constructed. Classical partitional clustering

approaches do not perform well in such data sets.

Kernel clustering methods aim to group non-linearly separable data sets, and they

create nonlinear hypersurfaces for clustering. Kernel methods implicitly map the data

from the original space (input space) into a higher dimensional space (feature space),

where the data is assumed to be linearly separable in that space, and then group the

data set using linear partitioning method. Kernel methods allow us to cluster the data

in the feature space without obtaining the mapped data points explicitly. To do so, the

mapping functions that map the data set into a higher dimensional space should satisfy

some properties. Thus, calculations in the feature space can be done using the data

set in the original space using a similarity function called kernel function. Kernel

functions provide the inner product of mapped data points in the feature space by

taking the data points in the original space as input. This property of kernel functions

reduces the computational complexity.

This thesis focuses on a soft clustering approach, Probabilistic Distance Clustering

(PDC) [2], and it works on the kernelization of this clustering approach. Rather than

using the squared distance function, PDC works with distance itself. Therefore, it

is insensitive in noise environment. PDC works well on spherical-shaped data sets.

However, it does not give good results on data sets with different shapes, such as non-

spherical or non-linearly separable data sets. In addition, it assumes that the cluster

sizes are fixed and equal.

1.1 Contribution to the Literature

To overcome the drawbacks of PDC, we adapt kernel methods to PDC. Kernel-

based PDC approach has not been studied in the literature. Using the principles
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of PDC algorithm, kernel version of the algorithm is studied. We propose three

kernel-based PDC algorithms. The first algorithm, named as KPD later, is a novel

approach when comparing with kernel-based clustering algorithms in the literature.

The second algorithm, called KPD-F, is another kernel approach where it handles

the center representation and its calculations in the original space, different than the

first approach. These two algorithms use Euclidean distance as a distance metric. In

the third algorithm, we focus on using the Mahalanobis distance and propose two

kernelized Mahalanobis distance functions. Then these distance functions are imple-

mented into the kernel clustering, and we develop a new kernel-based PDC with

Mahalanobis distance, named as KPD-M. Different than the literature, this new ap-

proach implements Mahalanobis distance for kernel method without regularizing the

objective function of the clustering problem. With an extensive computational exper-

iments, the success of the proposed kernel methods is demonstrated by comparing

with the state-of-the-art soft kernel clustering methods.

The thesis is organized as follows. Chapter 2 provides a background on clustering,

literature of soft clustering approaches, and kernels. Literature review on kernel clus-

tering methods is given in Chapter 3. In Chapter 4, we introduce the principles of

kernel-based PDC approach and propose KPD and KPD-F algorithms. Kernelized

Mahalanobis distance and the novel kernel Mahalanobis PDC algorithm, KPD-M, is

provided in Chapter 5. Chapter 6 contains the experimental results of three algorithms

on both real and synthetic data sets, and compares them with those of kernel-based

soft clustering approaches. Finally, Chapter 7 concludes this study and refers to the

future research directions.
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CHAPTER 2

A BRIEF BACKGROUND ON CLUSTERING AND KERNELS

Clustering is an unsupervised learning method where patterns do not have any label

that shows the group they belong to. The aim of clustering is to group the patterns

(or objects) such that each group contains similar data points. In addition, groups

are created such that each group should be dissimilar to each other. Therefore, the

decision of how to measure the similarity gains importance.

Distance between the objects is one of the commonly used similarity measures in

clustering. The smaller the distance between two objects, the greater the similarity

of them. Similarity is defined based on the type of object attributes. Features can be

divided into two groups as continuous attributes and categorical attributes. Similar-

ity measure for each type varies. For the objects having the former type attributes,

common distance functions can be listed as Manhattan distance, Euclidean distance,

and Mahalanobis distance. Jaccard index and Hamming distance are commonly used

similarity measures for the objects with categorical attributes.

Besides determining a similarity measure, deciding on the objective of clustering is

important. One of the aims of clustering is to construct clusters such that they are

separated from each other. That is, clusters should be as much as dissimilar to each

other. This approach is called separation. In addition, similar objects should be

grouped in the same cluster, i.e. compactness should be maximized.

There exists various clustering algorithms in the literature. [3] grouped those algo-

rithms into two as hierarchical clustering and partitional clustering.
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2.1 Hierarchical Clustering

Hierarchical clustering is a nested clustering approach where each cluster is a sub-

set of a larger cluster. This method only takes the data as input and returns with a

dendrogram, a structure that shows the nested clusters of data points and the cluster

similarities. One can obtain the clusters for each level of cluster numbers by examin-

ing a dendrogram.

According to its structure, hierarchical clustering is divided into two. Agglomerative

hierarchical clustering has the idea of merging the clusters iteratively until obtaining

a single cluster. That is, each data point is considered to be a cluster at the beginning.

In each iteration, clusters are merged according to a predefined criterion. When all

clusters are combined, the overall data set becomes the only cluster and the algorithm

stops. Agglomerative clustering has a bottom-up approach since it starts with clusters

with single data points (or N clusters), and obtains one cluster at the end. The second

type of hierarchical clustering is the divisive hierarchical clustering. This approach

splits the clusters in each iteration. It starts with a single cluster, i.e. the whole data

set is the only cluster at the beginning. Then clusters are divided according to some

condition until each data point becomes a cluster by themselves. Therefore, divisive

clustering is a top-down approach.

In both of the algorithms above, dividing or merging operations take place based

on cluster similarities. Single linkage and complete linkage are the commonly used

methods to measure the cluster similarity. In single linkage, the distance between

two clusters is determined by the distance between two points that gives the smallest

pairwise distance obtained from those clusters. On the other hand, complete linkage

defines the distance between two clusters as the greatest pairwise distance between

two points, one from each cluster.

One of the advantages of hierarchical clustering is that it does not require any param-

eters. However, it is a computationally costly algorithm since it starts with one cluster

and iterates until obtaining N cluster, or vice versa. In addition, when assignment of

an object to a cluster is done in an iteration, the cluster that an object belongs to does

not change in next iterations since the algorithm does not take into account the possi-
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ble assignments to other clusters afterwards. [4] provides the recent developments in

hierarchical clustering methods.

2.2 Partitional Clustering

As opposed to hierarchical clustering, partitional clustering defines a center for each

cluster and assigns data points to clusters without constructing a hierarchical struc-

ture. It is based on optimizing a criterion function. Partitional clustering is an iterative

method which stops when the predefined convergence criterion is satisfied.

Clusters are described by centers in partitional clustering. Some of the mainly used

center representations are mean and median. When a cluster center is defined as

taking the average of the objects in that cluster, then the center representation of it

becomes the mean of objects. On the other hand, a cluster center can be obtained by

calculating the median of the objects in that cluster.

Partitional clustering is also called center-based clustering since the idea is based

on cluster centers. In addition to center representation, criterion function to be opti-

mized should be determined. Minimizing the sum of the squared distances between

objects and their cluster centers is the most common objective function in partitional

clustering.

Partitional methods differ in the assignment type of objects to clusters, and they are

divided into two as hard partitioning and soft partitioning.

• Hard (Crisp) Partitioning: Each object belongs to only one cluster. Thus,

none of the clusters intersects with any other clusters.

• Soft Partitioning: Objects are assigned to clusters with a probability. This

method allows objects to be assigned to more than one cluster based on their

membership values (or probabilities).

Partitional clustering algorithms do not require much memory and their time com-

plexity is low. However, the number of clusters is a parameter that should be specified

beforehand. In addition, partitional clustering algorithms start with random cluster
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centers so their performance highly depends on the initialization. To overcome this

problem, algorithms should be run multiple times.

K-means clustering algorithm introduced in [5] is the most popular hard partitioning

clustering approach. The algorithm starts with randomly selected K cluster centers.

In each iteration, objects are assigned to a cluster whose center has the shortest dis-

tance from them. Then centers are updated, and assignment procedure continues until

there is no change in any of the cluster centers. The distance used in K-means algo-

rithm is Euclidean distance (L2 norm). Its objective is to minimize the sum of squared

error, which is equal to minimizing the total squared distance between objects and the

clusters that they are assigned to. Cluster center representation that meets the opti-

mality criterion of this objective function is the mean of cluster members. K-means

is a simple yet an effective clustering algorithm. However, some of the drawbacks

can be listed as its sensitivity to outliers, dependency on initialization, and taking the

number of clusters to be constructed as input.

Similar to K-means clustering, K-median algorithm has a similar logic as in K-

means algorithm. However, it differs in center representation and objective function

it uses. According to K-median clustering, centers are represented as the median of

the cluster members. In addition, the algorithm minimizes the sum of the distance

between objects and their cluster centers, where the distance metric is Manhattan

distance (L1 norm). Using the distance itself instead of the squared distance makes

K-median clustering less sensitive to outliers.

K-medoids clustering is also one of the widely used hard partitioning method. One of

the major difference of K-medoids approach is that its cluster center representation.

Instead of calculating the centers as mean or median of cluster members, data points

become cluster centers. That is, it selects K data points as cluster centers. In addition,

sum of the Manhattan distance (L1 norm) between the objects and cluster centers is its

objective to be minimized. Partitioning Around Medoids (PAM ) algorithm proposed

in [6] is the most common K-medoids clustering method in the literature. Minimizing

not the squared distance but the distance itself yields the algorithm to be more robust

to outliers.

Soft partitional clustering algorithms assigns objects to clusters with a probability.
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Therefore, they are called soft clustering methods. From soft clustering methods,

Probabilistic Distance Clustering (PDC) and other probabilistic clustering approaches

such as Fuzzy c-Means (FCM ), Gustafson Kessel Algorithm (GK), and Gath-Geva

clustering algorithm (GG) will be mentioned in this section.

2.2.1 Probabilistic D-Clustering

Presented by Ben-Israel and Iyigun in 2008 [2], probabilistic d-clustering (PDC) is

a soft partitioning clustering algorithm based on the assumption that the probabilities

are inversely proportional to the distance between objects and cluster centers. Here,

probability refers to the membership probability of an object to a cluster.

Consider we have N data points and M features, and xi ∈ RM represents object

i ∈ 1, ...N . Let the number of clusters be T and cj be the center of cluster j ∈ 1, ..., T .

Then PDC has two principles as follows:

Principle 1. For each object xi,

pij dj(xi) = D(xi) , (2.2.1)

where dj(xi) is the distance between object i and cluster j, which is ∥xi − cj∥, pij is

the probability of assigning object i to cluster j, and D(xi) is a constant depending

only on data point xi. This principle states that given cluster centers, the closer an

object is to a cluster center, the higher probability of being assigned to that cluster.

Principle 2. For each xi, probabilities add up to 1. That is,

T∑
j=1

pij = 1 ∀i

Based on Principle 1 and 2, the membership probabilities of data point xi are found

as

pij =

1

dj(xi)

T∑
t=1

1

dt(xi)

· (2.2.2)
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The optimization problem of PDC is defined as

min
N∑
i=1

T∑
j=1

dj(xi) p
2
ij

s.t.
T∑

j=1

pij = 1 ∀i

pij ≥ 0 ∀i, j

Given the centers, the above problem becomes a convex optimization problem, and

optimal probabilities can be found using Lagrangian method. Optimality condition

of pij’s matches (2.2.1) in Principle 1.

Given the probabilities, the optimality condition for cluster center cj is obtained as

cj =

N∑
i=1

vj(xi) xi

N∑
i=1

vj(xi)

, (2.2.3)

where

vj(xi) =
p2ij

dj(xi)
·

Given the number of clusters as T , PDC algorithm starts with randomly selected

T cluster centers. In each iteration, it updates the cluster centers as in (2.2.3) and

probabilities as in (2.2.2) until a termination criterion is satisfied.

PDC is a robust algorithm since it uses the distance itself, not the squared distances.

Therefore, the algorithm is not sensitive to outliers. In addition, it is fast and easy to

apply. Some drawbacks of PDC are that it may not work well on the non-spherical

shaped clusters and data sets where the cluster size are not equal.

PDC algorithm takes the cluster sizes as given. Therefore, it works well when the

cluster sizes are equal. To overcome the problem of clustering non-equal clusters,

Iyıgun and Ben-Israel [7] come up with a modified PDC algorithm, called PDQ

algorithm, that takes the cluster sizes into account. Let qj be the cluster size of cluster

10



j. Principle 1 in (2.2.1) is arranged such that for each object xi

pij dj(xi)

qk
= D(xi) .

The idea is that cluster membership probability is proportional to cluster size and

inversely proportional to the distance between cluster center and object. The proposed

algorithm also copes with unknown cluster sizes by estimating them.

Iyigun and Ben-Israel [8] also study semi-supervised probabilistic distance cluster-

ing. The proposed approach combines the clustering and classification approaches. It

gives weights to both clustering and classification problem. Besides semi-supervised

PDC, Caner [9] develops two-mode probabilistic distance clustering and two novel

algorithms for soft two-mode clustering problem.

2.2.2 Other Soft Partitioning Methods

Fuzzy c-Means (FCM ), Gustafson-Kessel (GK), and Gath-Geva (GG) clustering al-

gorithms are the well known probabilistic clustering approaches that will be explained

in this section.

2.2.2.1 Fuzzy c-Means Algorithm

Based on the fuzzy clustering methods proposed by Bezdek in 1973 [10], Fuzzy c-

Means clustering algorithm (FCM ) was introduced by Bezdek et al. in 1984 [11].

The algorithm allows data points to be assigned more than one clusters. It is based on

taking into account the similarity between data points and clusters via a membership

function.

The objective function that FCM minimizes is

JFCM =
N∑
i=1

T∑
j=1

um
ij ∥xi − cj∥2 , (2.2.4)

where uij represents the membership value of object i being assigned to cluster j, ∥.∥
is the Euclidean distance, and m is the weighting exponent of membership function,
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where m ≥ 1. In addition, the membership function uij should satisfy the following

constraints:

T∑
j=1

uij = 1 ∀i (2.2.5)

0 ≤ uij ≤ 1 ∀i, j (2.2.6)

Constraint (2.2.5) assures that the membership probability of object i belonging to

clusters should add up to 1. Since membership values are the probabilities, constraint

(2.2.6) ensures that the probability values are between 0 and 1.

When (2.2.4) is minimized subject to constraints (2.2.5) and (2.2.6), the optimal val-

ues for fuzzy memberships are found as

uij =

(
T∑
t=1

(
dij
dit

)2/(m−1)
)−1

∀i, j (2.2.7)

where dit refers to the Euclidean distance between object i and cluster t. Optimal

cluster centers become

cj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

∀j . (2.2.8)

The algorithm starts with predefined number of clusters and N×T fuzzy membership

matrix where ith row jth column element of the matrix refers to uij . In each iteration,

it first updates the cluster centers according to (2.2.8), and then new fuzzy partitions

are calculated using (2.2.7) until the termination criterion is satisfied.

One of the disadvantages of the algorithm is that it is computationally expensive.

In fact, it is sensitive to noise and suffers from the initialization since it is highly

dependent on the initial fuzzy partition matrix.

2.2.2.2 Gustafson-Kessel Algorithm

Gustafson-Kessel algorithm (GK), proposed by Gustafson and Kessel in 1979 [12]

is an adapted version of FCM , where Mahalanobis distance is used as a metric. The
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main advantage of using Mahalanobis distance over Euclidean distance is that the

former creates ellipsoidal shaped clusters whereas the latter forms spherical shapes

of clusters. Then optimization problem GK proposes is

min JGK =
N∑
i=1

T∑
j=1

um
ij ∥xi − cj∥2M (2.2.9)

s.t.
T∑

j=1

uij = 1 ∀i

0 ≤ uij ≤ 1 ∀i, j

Here uij is membership value and m is the weighting exponent term as in FCM . The

distance term ∥.∥2M in (2.2.9) refers to the squared Mahalanobis distance defined as

∥xi − cj∥2M = (xi − cj)T Aj (xi − cj) ,

where Aj is a positive definite matrix. It is calculated using fuzzy covariance matrix

Cj as follows:

Aj = (ρ |Cj|)1/NC−1
j ,

where ρ > 0 is a scaling parameter. Fuzzy covariance matrix for cluster j is equal to

Cj =

N∑
i=1

um
ij (xi − cj)(xi − cj)T

N∑
i=1

um
ij

· (2.2.10)

Minimizing (2.2.9) with respect to cj yields

cj =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

· (2.2.11)

Given cluster centers, optimal membership value uij that minimizes (2.2.9) is ob-

tained as

uij =

(
T∑
t=1

(
(xi − cj)T Aj (xi − cj)
(xi − ct)T At (xi − ct)

)1/(m−1)
)−1

·
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2.2.2.3 Gath-Geva Clustering Algorithm

Gath-Geva clustering algorithm (GG) is an adaptation of FCM proposed by Gath

and Geva in 1989 [13]. It both uses the ideas in FCM and fuzzy maximum likelihood

estimation. GG defines the optimization problem as

min JGG =
N∑
i=1

T∑
j=1

um
ij dij , (2.2.12)

s.t.
T∑

j=1

uij = 1 ∀i

0 ≤ uij ≤ 1 ∀i, j

where dij is the distance between xi and cj , which is an exponential distance that

takes fuzzy covariance matrix into account. The distance formula is given as

dij =

√
|Cj|

1
N

N∑
i=1

uij

exp

(
1

2
(xi − cj)T C−1

j (xi − cj)
)

where Cj is the fuzzy covariance matrix for cluster j as in (2.2.10). Taking the deriva-

tive of the Lagrangian of (2.2.12) with respect to uij and making it equal to zero yields

uij =

(
T∑
t=1

(
dij
dit

)1/(m−1)
)−1

,

which gives the optimal fuzzy membership values. The optimal cluster centers are

found as in (2.2.11).

2.3 Kernels

A metric on a set X is a function d : X × X → R that satisfies

i. d(x, y) > 0 and d(x, y) = 0 only if x = y.

ii. d(x, y) = d(y, x).

iii d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X .
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A metric space is a vector space with a metric. A metric space is called complete if

every Cauchy sequence converges to a point in that space.

Inner product space is a vector space with inner product operator. Inner product

between vectors x and y, shown by ⟨x, y⟩ is calculated as

⟨x, y⟩ =
m∑
i=1

xi yi ,

for vector space Rm. Inner product is considered as one of the similarity measures in

machine learning.

Hilbert space, denoted by H , is a complete inner product space [14]. Norm of a

vector f in the Hilbert space is defined as

∥f∥2 =
√

⟨f, f⟩ .

The Euclidean distance between vectors f and g in Hilbert space can be calculated as

∥f − g∥ =
√

⟨f, f⟩ − 2 ⟨f, g⟩+ ⟨g, g⟩ .

A matrix which consists of inner products of a set of vectors is called Gram matrix.

Let the vector set {x1, x2, . . . , xn}, xi ∈ Rm for all i = 1, ..., n be represented by the

matrix

X =
[
x1 x2 . . . xn

]
.

Then the Gram matrix will be

G =


xT
1 x1 xT

1 x2 . . . xT
1 xn

xT
2 x1 xT

2 x2 . . . xT
2 xn

...
... . . . ...

xT
nx1 xT

nx2 . . . xT
nxn

 ,

which is equal to XTX.

Let the space of the vectors xi’s be called as original space, and ϕ be a mapping

function, where

ϕ : x → ϕ(x), ϕ(x) ∈ H . (2.3.1)
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When matrix X is mapped from the original space into H via ϕ function, the matrix

of the mapped data points will be

Xϕ =
[
ϕ(x1) ϕ(x2) . . . ϕ(xn)

]
.

Then Gram matrix of Xϕ becomes

Gϕ =


ϕ(x1)

Tϕ(x1) ϕ(x1)
Tϕ(x2) . . . ϕ(x1)

Tϕ(xn)

ϕ(x2)
Tϕ(x1) ϕ(x2)

Tϕ(x2) . . . ϕ(x2)
Tϕ(xn)

...
... . . . ...

ϕ(xn)
Tϕ(x1) ϕ(xn)

Tϕ(x2) . . . ϕ(xn)
Tϕ(xn)

 .

Gϕ gives the pairwise inner product of {x1, x2, . . . , xn} in the Hilbert space, while G

provides the inner products in the original space.

2.3.1 Kernel Function

Let k be a function that measures the pairwise similarity of the data points such that

k : X × X → R ,

where it is a symmetric and non-negative function. Then k is called kernel function

[15].

Let kernel function k : X × X → R be defined as

k(x, y) = ϕ(x)Tϕ(y) . (2.3.2)

That is, domain of k is the data points in the original space and it returns with the

inner product of them in the Hilbert space. Then the elements of Gram matrix in the

Hilbert space can be represented by function k, and Gϕ becomes

Gϕ =


k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

... . . . ...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

 .

If Gϕ is a symmetric positive semi-definite matrix, then function k is said to be a

symmetric positive semi-definite function. However, not every function k can be rep-

resented as in (2.3.2) since there exists some conditions that function k should satisfy.
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2.3.2 Mercer Kernels

Mercer condition states that there exists a mapping function as in (2.3.1) such that

the inner products in H can be written in terms of k(x, y) only if k is a symmetric

positive semi-definite function. In other words, a symmetric positive semi-definite

function k(x, y) can be represented as

k(x, y) = ϕ(x)Tϕ(y) .

A function with domain X ×X and image R is called Mercer kernel if it satisfies the

Mercer condition.

Mercer kernels allow us to calculate the inner products in the Hilbert space using

data points in the original space. For example, let x, y be in R2 and ϕ be a mapping

function from R2 to R3, where

ϕ :

x1

x2

→


x2
1

x2
2√

2x1 x2

 . (2.3.3)

Then ϕ(x) =
[
x2
1 x2

2

√
2x1 x2

]T
and ϕ(y) =

[
y21 y22

√
2 y1 y2

]T
. The inner

product of ϕ(x) and ϕ(y) (mapped data points) is

⟨ϕ(x), ϕ(y)⟩ = ϕ(x)Tϕ(y) =
[
x2
1 x2

2

√
2x1 x2

]
y21

y22√
2 y1 y2


= x2

1 y
2
1 + x2

2 y
2
2 + 2x1 y1 x2 y2

= (x1 y1 + x2 y2)
2 .

(2.3.4)

Note that x1 y1 + x2 y2 is the inner product of x and y, ⟨x, y⟩. Then (2.3.4) is equal

to ⟨x, y⟩2, or (xT y)2, so if k(x, y) is defined as (xT y)2 it will give the inner product

of ϕ(x) and ϕ(y), i.e. ⟨ϕ(x), ϕ(y)⟩ = k(x, y). That is, using a function that takes

an inner product in the original space as input, one can obtain an inner product of

mapped data points via ϕ function. This is called kernel trick in the literature. It

allows us to obtain the inner products without explicitly mapping the data into a new

space. Note that the idea of mapping the points via ϕ function is to project the data

set into a higher dimensional space and to separate the data linearly in the mapped
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space. On the other side, since mapping into a higher dimensional space increases

the computational complexity it would be costly to calculate the inner products in the

mapped space. However, the inner products in the mapped space can be obtained by

using the inner products in the original space with the use of kernel trick. Therefore,

it reduces the computational complexity.

Using kernel trick, the squared Euclidean distance between ϕ(x) and ϕ(y) is calcu-

lated as

∥ϕ(x)− ϕ(y)∥2 = ⟨ϕ(x)− ϕ(y), ϕ(x)− ϕ(y)⟩

= ⟨ϕ(x), ϕ(x)⟩ − 2 ⟨ϕ(x), ϕ(y)⟩+ ⟨ϕ(y), ϕ(y)⟩

= k(x, x)− 2 k(x, y) + k(y, y) .

Here note that the Euclidean distance in the mapped space is calculated with function

k without explicitly knowing ϕ function.

Some examples of commonly used kernels are listed below.

a. Polynomial kernel

Polynomial kernel is represented by

k(x, y) = (a+ xTy)b , (2.3.5)

where a ≥ 0, b ∈ N. Polynomial kernel is a Mercer kernel function. When a

is 0, (2.3.5) is called homogeneous polynomial kernel. If a takes a value that is

greater than 0, (2.3.5) becomes inhomogeneous polynomial kernel.

b. Gaussian Kernel

Gaussian kernel is defined as

k(x, y) = exp

−
∥x − y∥2

2σ2

 ,

where σ > 0, which is one of the most commonly used kernel function. Gaus-

sian kernel is a Mercer kernel function. It is an example of radial basis function

(RBF) kernels. RBF kernels are functions of the distance between data points

in the original space, i.e. they are of the form

k(x, y) = f(d(x, y)),
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where d is a distance metric in the original space and f is a function on R. The

inner product of a point with itself is equal to 1 when Gaussian kernel is used,

i.e. k(x, x) = 1. When the Gaussian kernel is used, data points are mapped into

an infinite dimensional space.

c. Sigmoid (Hyperbolic Tangent) Kernel

The general formula for sigmoid kernel is

k(x, y) = tanh(α xTy + ν) ,

where α > 0 and ν ≤ 0. Sigmoid kernel is not a positive semi-definite function

[16]. Therefore, it is not a Mercer kernel. However, it is widely used in practice

and gives good results. The distance between two data points sometimes can

be less than 0 when sigmoid kernel is used depending on the data points and

parameter values. For instance, let x =

1
0

, y =

5
5

, α = 1, and ν = −1.

Then the distance between ϕ(x) and ϕ(y) becomes

∥ϕ(x)− ϕ(y)∥ =
√

k(x, x)− 2 k(x, y) + k(y, y)

=
√

tanh(xTx)− 2 tanh(xTy) + tanh(yTy)

≈
√
0− 1.9987 + 1 ,

which does not satisfy the metric condition which states that the distance should

be a non-negative real number.

Data points can be mapped into a higher dimensional space using kernel functions.

When the data set is nonlinearly separable, it is difficult to separate the data using

linear methods. The aim of kernel methods is to separate the data set in a higher

dimensional space where the data becomes linearly separable. Thus, in the new di-

mension, the data can be separated linearly. This motivates that there may exist a

higher dimensional space for a data set where it can be separated linearly. For in-

stance, consider the data set in Figure 2.1. There are 20 data points where half of

them is labeled 0 and the other half has label 1. When the data set needs to be di-

vided into two based on their labels, it cannot be done linearly since the data set is

non-linearly separable.
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Figure 2.1: Example for a data not linearly separable

We can map the data set using a ϕ function from two-dimension to three-dimension

as in (2.3.3). That is,

ϕ :
[
x1 x2

]T
→
[
z1 z2 z3

]T
=
[
x2
1 x2

2

√
2x1 x2

]T

Mapped data points in the new space is shown in Figure 2.2. Note that now the data

can be linearly separable in this mapped space.
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Figure 2.2: Mapped Data

Input space, or original space, implies the space that the data set is defined at the

beginning. Kernel space, mapped space, and feature space refer to the higher dimen-

sional space that data is mapped into, and will be used interchangeably in this study.
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CHAPTER 3

LITERATURE REVIEW ON KERNEL CLUSTERING METHODS

Kernel functions in machine learning is started to be used in [17] in 1964. Cortes and

Vapnik proposed support vector machines (SVM ) in 1995, a classification algorithm

where the data is mapped into a higher dimensional space using a nonlinear mapping

function [18]. In this higher dimensional space, the data was able to be linearly

separable. SVM performs better than other classification algorithms. This success

broadened the usage of kernel methods in other algorithms.

Kernel k-means is an adaptation of kernel methods to k-means algorithm [19, 20].

The basic idea of kernel k-means algorithm is to apply k-means clustering in the

mapped space. The algorithm aims at minimizing the sum of squared error in the

kernel space. Given the data set X, mapping function ϕ, and number of clusters T ,

data set is mapped into kernel space via ϕ function and clusters are constructed by

randomly assigning data points. Cluster center cϕj is calculated by taking the average

of data points belonging to that cluster as follows

cϕj =
1

|Aj|
∑
i∈Aj

ϕ(xi) ∀j (3.0.1)

where Aj is the set of data instances that is assigned to cluster j. Then based on

the squared Euclidean distance between data points and cluster centers in the kernel

space, each data point is assigned to the closest cluster. Considering the assignment

procedure, cluster centers are recalculated as in (3.0.1). The process continues until

there is no change in the cluster centers. The major challenge in this method is to

measure the distance between cluster centers and data points. Since kernel methods

assume that ϕ function is not known explicitly, data points in the kernel space and

cluster centers in (3.0.1) cannot be known. Therefore, the distance cannot be calcu-
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lated. However, kernel trick overcomes this problem. The distance between ϕ(xi) and

cϕj is obtained as

∥ϕ(xi)− cϕj ∥2 = ϕ(xi)
T ϕ(xi)− 2ϕ(xi)

T cϕj + (cϕj )
T cϕj . (3.0.2)

Substituting (3.0.1) into (3.0.2) gives

∥ϕ(xi)− cϕj ∥2 = ϕ(xi)
T ϕ(xi)− 2ϕ(xi)

T
1

|Aj|
∑
k∈Aj

ϕ(xk)

+

 1

|Aj|
∑
k∈Aj

ϕ(xk)
T

  1

|Aj|
∑
k∈Aj

ϕ(xk)

 .

(3.0.3)

Using kernel trick and rearranging (3.0.3), the distance is found as

∥ϕ(xi)− cϕj ∥2 = k(xi, xi)− 2
1

|Aj|
∑
k∈Aj

k(xi, xk) +
1

|Aj|2
∑
k∈Aj

∑
h∈Aj

k(xk, xh) ,

where k(xi, xk) = ϕ(xi)
T ϕ(xk). That is, without explicitly knowing the cluster cen-

ters in the kernel space, the distance between data points and cluster centers can still

be calculated.

FCM algorithms based on kernel methods can be divided into two categories based

on the space that the cluster centers are defined, i.e. whether they are created in the

input space or in the kernel space initially. When the cluster centers are constructed in

the kernel space, they can only be known implicitly since we cannot obtain any data

point in the kernel space explicitly. Therefore, when the distance between a cluster

center and a data point is calculated, it will be enough to map the data point into kernel

space since centers are already been defined on the kernel space. In this study, fuzzy

kernel algorithms that use this cluster definition will be called KFCM-K algorithms.

On the other hand, cluster centers can be created in the input space initially. In this

case, both the data points and the cluster centers belong to the input space. Then the

distance function will be kernelized since the proximity between two objects in the

kernel space will be measured by mapping them from the input space to kernel space.

We refer to the algorithms that use this approach as KFCM-F in general.
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3.1 Literature of KFCM-F based Algorithms

KFCM-F algorithm is the adaptation of FCM algorithm in the kernel space where

cluster centers are constructed in the original space. Then centers are mapped into the

kernel space via kernel function. The objective to be minimized is given as

N∑
i=1

T∑
j=1

um
ij∥ϕ(xi)− ϕ(cj)∥2 ,

which can be rewritten as
N∑
i=1

T∑
j=1

um
ij (k(xi, xi)− 2 k(xi, cj) + k(cj, cj)) (3.1.1)

using kernel trick. This objective minimizes the sum of squared error in the kernel

space. Note that cj is the cluster center in the original space whereas ϕ(cj) refers

to the mapped cluster center. The objective is just the kernelization of the metric

used in FCM. This method updates the cluster centers in the original space, not the

image of them in the kernel space. Therefore, in order to find the cluster centers that

minimize (3.1.1), kernel function to be used should be known beforehand since cj in

the objective function depends on function k.

KFCM-F algorithm works as follows. Cluster centers are initially created in the in-

put space. Then they are mapped into kernel space. According to distance between

mapped cluster centers and mapped data points, fuzzy partition matrix is updated and

cluster centers in the input space are recalculated. The algorithm goes on until termi-

nation criterion is satisfied. Using this method, final cluster centers in the input space

are obtained. Shortly, KFCM-F algorithm defines and updates the cluster centers in

the input space. Using the image of those centers in the kernel space, it updates the

fuzzy matrix.

Zhang and Chen [21] propose KFCM-F algoritm and kernel possibilistic c-means

algorithm (KPCM). They use Gaussian kernel function in their algorithms and give

the update rules based on this function. They compare the robustness of kernel-based

algorithms with FCM and PCM using a data set with outliers. They reported that

kernel-based methods yield better results.

Wu et al. [22] develop KFCM-F algorithm where the cluster centers are updated im-

25



plicitly. They still define cluster centers in the input space. However, center equation

in the kernel space is embedded into the distance calculated in the kernel space. That

is, cluster centers in the kernel space are defined as

ϕ(cj) =

N∑
i=1

um
ij ϕ(xi)

N∑
i=1

um
ij

·

The distance between a cluster center and an object is obtained by substituting the

center equation into the distance function as

∥ϕ(xi)− ϕ(cj)∥2 = k(xi, xi)− 2
N∑
k=1

k(xi, xk)u
m
kj

N∑
t=1

um
tj

+
N∑
k=1

N∑
l=1

um
kj u

m
lj k(xk, xl)(
N∑
t=1

um
tj

)2 ·

They experimented the proposed algorithm on ring and spherical data set using sec-

ond order polynomial kernels, and observed that KFCM-F works well on those data

sets.

Zhang and Chen [23] develop a kernel-based FCM and apply their algorithm on MRI

data set. They also propose a KFCM-F method with a spatial penalty constraint on

fuzzy membership values. This penalty is added to the objective function, and it

acts like a regularization term, which aims at dealing with noises in images. Their

proposed method is developed for Gaussian kernel. Experiment results show that

their algorithms work well on the image data compared to the FCM and FCM with

spatial constraints.

Shen et al. [24] propose attribute weighted KFCM-F algorithm. The idea behind this

method is that some of the attributes in higher dimension may be irrelevant. There-

fore, to reduce the effect of these features on the clustering, they come up with a

weighted kernel-based fuzzy clustering algorithm. They also extend their algorithm

to be effective on clustering incomplete data. The computational studies support the

success of weighted KFCM-F algorithm over FCM and hard clustering methods.

Ding and Fu [25] apply genetic algorithm to KFCM-F algorithm. They determine

the initial cluster centers in the input space using genetic algorithm. These centers

become the input of the KFCM-F algorithm. With this way, they aim at improving

the clustering performance by providing a good initial centers.
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3.2 Literature of KFCM-K based Algorithms

Kernel fuzzy clustering algorithms based on kernel space (KFCM-K) construct the

cluster centers in the mapped space. Therefore, there is no explicit representation of

the centers in the input space. In fact, the centers in the kernel space are also not

known. Basically, these algorithms use the following objective function

N∑
i=1

T∑
j=1

um
ij∥ϕ(xi)− cϕj ∥2 ,

where cϕj refers to the cluster center which is defined in the kernel space. Note that

only the data points are mapped since clusters already belong to kernel space. The

distance term in the objective cannot be rewritten using kernel trick since kernel trick

can only be used for the case where the data points in the original space are known

explicitly, and we do not know the inverse image of cluster centers in the input space.

Optimal fuzzy membership values are obtained as

uij =

 T∑
t=1

(
∥ϕ(xi)− cϕj ∥2

∥ϕ(xi)− cϕt ∥2

)1/(m−1)
−1

∀i, j (3.2.1)

Given the cluster centers, optimal cluster centers are found as

cϕj =

N∑
i=1

um
ij ϕ(xi)

N∑
i=1

um
ij

·

Note that the center equation above cannot be obtained since ϕ(xi) are not known.

Therefore, KFCM-K methods embed the center equation into the distance terms in

(3.2.1), where the distance becomes

∥ϕ(xi)− cϕt ∥2 = k(xi, xi)− 2
N∑
k=1

um
kj k(xi, xk) +

N∑
k=1

N∑
l=1

um
kj u

m
lj k(xk, xl) · (3.2.2)

With this way, fuzzy partition values are calculated without obtaining the cluster cen-

ters explicitly.

KFCM-K algorithm starts with random fuzzy partition matrix. Then membership

values are updated using (3.2.1) and distances calculated in (3.2.2). Center updates
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are made implicitly since the distance term does not contain the centers explicitly.

Algorithm continues until fuzzy partition values does not change.

Li et al. [26] obtain KFCM-K algorithm by modifying FCM algorithm. They ap-

plied both KFCM-K and FCM on a nonlinearly separable two clustered data set and

reported that KFCM-K outperforms FCM.

Zhou and Gan [27] develop KFMC-K algorithm and came up with approximated

cluster centers in the input space. The idea is that approximate cluster centers in

the input space can be obtained such that the difference between centers in the kernel

space and the image of input space centers are minimized. This minimization requires

prior knowledge of the kernel function to be used. The authors propose approximate

cluster centers for both polynomial and Gaussian kernels.

Zhang and Chen [28] propose KFCM-K algorithm where cluster centers in the kernel

space are represented by a combination of all data points. That is, each data point has

a coefficient for each cluster center. The algorithm determines the center coefficients

and fuzzy membership values iteratively. They also decide on the number of clusters

in data sets by examining the behavior of the block-diagonal structure on the kernel

matrix.

3.3 Literature of Other Kernel-based FCM Algorithms

Graves and Pedrycz [29] compare kernel-based fuzzy clustering methods with FCM

and GK algorithms. From the kernel-based clustering algorithms they use KFCM-K

algorithms with both polynomial and Gaussian kernel and KFCM-F algorithm with

Gaussian kernel only. They measure the performance on traditional clustering algo-

rithms and kernel fuzzy algorithms on UCI machine learning data sets and synthetic

data sets. They conclude that the results of the kernel-based algorithms are similar to

that of FCM and GK. However, kernel function outperforms the traditional algorithms

on non-spherical shaped data sets.

Filippone et al. [30] provide a literature survey on kernel and spectral clustering

methods. They present the kernel version of the already-proposed clustering algo-
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rithms. They also focus on the kernel-based fuzzy clustering algorithms. Kernel

k-means, kernel fuzzy clustering methods, support vector clustering, kernel self orga-

nizing maps are some of the kernel methods that are mentioned in this survey.

One of the challenges of kernel based clustering is the decision of the kernel function

to be used. Sometimes the data sets can come from different distributions so that each

of them can be represented better with different kernel functions or kernel parameters.

To overcome the problem of difficulty in choosing the appropriate kernel functions,

multiple kernel algorithms have been proposed.

Baili and Frigui [31] propose multiple kernel KFCM-F algorithm. Their multiple

kernels contain Gaussian kernels with different parameters. Each kernel function has

a weight, and convex combination of the Gaussian kernels construct multiple kernel

function. They experimented the proposed algorithms on data sets containing clus-

ters with different densities and observed that multiple kernel KFCM-F outperforms

KFCM-F. Dagher [32] develops multiple kernel KFCM-F algorithm with Gaussian

kernels, and aims at optimizing the Gaussian kernel parameters. The method uses

an approach that is similar to expectation maximization. Huang et al. [33] come

up with a multiple kernel KFCM-K clustering algorithm where kernel functions are

not limited to Gaussian kernel only. They also determine the weight of each kernel

function.

Zeng et al. [34] provide KFCM-K with Mahalanobis distance. The major difficulty of

using Mahalanobis distance in the kernel space is to obtain the inverse of the covari-

ance matrix of features in the kernel space. They subtract logarithmic determinant of

the covariance matrix to their objective function as a regularization term. With this

way, they obtain the approximate covariance matrix of features in the kernel space.
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CHAPTER 4

KERNEL PROBABILISTIC DISTANCE CLUSTERING

4.1 Introduction

This chapter firstly introduces PDC in kernel space and its principles. Following

that, two kernel-based PDC algorithms will be provided, namely KPD and KPD-F.

Consider we have an N × M data set X, where N and M represent number of data

points and features, respectively. We show data point xi as M -dimensional vector,

where i = 1, ..., N . There are T clusters, and cluster centers (prototypes) are shown

by cj , where j = 1, ..., T . Then pij is the probability of data point xi belonging to

cluster cj . Please note that cluster center j in the kernel space will be represented by

cj from now on.

4.2 Probabilistic Distance Clustering in Kernel Space

Given the data set X and the number of clusters T , xi ∈ RM is mapped into a higher

dimensional space, kernel space, via ϕ function. ϕ(xi) represents the image of xi in

the kernel space. Centers in the kernel space are shown by cj . Figure 4.1 provides

the mapping from input space to kernel space.

Following the ideas in [2], probabilistic distance clustering starts with two principles.

First one states that for given cluster centers, the product of the probability of a data

point ϕ(xi) being a member of cluster cj , pij , and the distance between ϕ(xi) and cj ,

∥
(
ϕ(xi) − cj

)
∥ or simply dj

(
ϕ(xi)

)
, is a constant which only depends on ϕ(xi). We

accept that these principles hold in kernel space, and we obtain the following:

31



Figure 4.1: Kernel Pd-clustering in Input and Kernel Space

Principle 1. For each data point in the kernel space, ϕ(xi), i = 1, ..., N ,

dj
(
ϕ(xi)

)
pij = Si , (4.2.1)

where Si is the constant for ϕ(xi).

Principle 2. Probabilities add up to 1 for each ϕ(xi), i = 1, ..., N . That is,

T∑
j=1

pij = 1 ∀i . (4.2.2)

4.2.1 Probabilities

For simplicity, assume there are two clusters, i.e. T = 2. Using the principles men-

tioned above, we can find the membership probabilities of each cluster for each data

point as

pi1 =
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

) , pi2 =
d1
(
ϕ(xi)

)
d2
(
ϕ(xi)

)
+ d1

(
ϕ(xi)

) ∀i · (4.2.3)

Proof. We can write

pi2 =
pi1 d1

(
ϕ(xi)

)
d2
(
ϕ(xi)

) (4.2.4)

using (4.2.1). In fact, pi1 + pi2 = 1. Substituting (4.2.4) gives

pi1 =
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

) · (4.2.5)
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In general, when there are T clusters, the probability of ith data point being a member

of cluster j becomes

pij =

∏
q ̸=j

dq
(
ϕ(xi)

)
T∑
t=1

∏
q ̸=t

dq
(
ϕ(xi)

) ·

4.2.2 The Joint Distance Function

The probabilities in (4.2.1) can be written as

pij =
Si

dj
(
ϕ(xi)

) · (4.2.6)

Substituting (4.2.6) into (4.2.2), we get

Si =
d1
(
ϕ(xi)

)
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

) · (4.2.7)

Si in (4.2.7) is the joint distance function of xi, and it is a measure of distance between

ϕ(xi) and all cluster centers. In the case of T clusters, the above equation becomes

Si =

T∏
q=1

dq
(
ϕ(xi)

)
T∑
t=1

∏
q ̸=t

dq
(
ϕ(xi)

) ·

4.2.3 An Extremal Principle

Given the cluster centers c1 and c2, the probabilities in (4.2.3) are the optimal solution

of the minimization problem below.

min
N∑
i=1

d1
(
ϕ(xi)

)
p2i1 + d2

(
ϕ(xi)

)
p2i2 (4.2.8)

s.t. pi1 + pi2 = 1 ∀i

pi1, pi2 ≥ 0 ∀i
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Proof. The Lagrangian of the problem is

L(P,Λ) =
N∑
i=1

d1
(
ϕ(xi)

)
p2i1 + d2

(
ϕ(xi)

)
p2i2 −

N∑
i=1

λi (pi1 + pi2 − 1) . (4.2.9)

Taking the partial derivative of (4.2.9) with respect to pij yields

∂L

∂pij
= 2 dj

(
ϕ(xi)

)
pij − λi pij . (4.2.10)

Making (4.2.10) equal to 0 gives

pij =
λi

2 dj
(
ϕ(xi)

) · (4.2.11)

We know that pi1 + pi2 = 1 and substituting (4.2.11) for the probabilities yields

λi

2 d1
(
ϕ(xi)

)+ λi

2 d2
(
ϕ(xi)

) = 1 .

Then λi is found as

λi = 2
d1
(
ϕ(xi)

)
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

) · (4.2.12)

Using (4.2.12), (4.2.11) for pi1 becomes

pi1 =

2
d1
(
ϕ(xi)

)
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

)
2 d1
(
ϕ(xi)

) =
d2
(
ϕ(xi)

)
d1
(
ϕ(xi)

)
+ d2

(
ϕ(xi)

) ,
which gives the same equation as in (4.2.5).

When there are T clusters, the general version of the above minimization problem

becomes

min
N∑
i=1

T∑
j=1

dj
(
ϕ(xi)

)
p2ij (4.2.13)

s.t.
T∑

j=1

pij = 1 ∀i

pij ≥ 0 ∀i, j
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4.2.4 Centers

When Euclidean distance is used, distance function in (4.2.8) becomes

dj
(
ϕ(xi)

)
= ∥ϕ (xi)− cj∥ , j = 1, 2 .

For Euclidean distance, the objective function in (4.2.8) can be written as

f(c1, c2) =
N∑
i=1

∥ϕ (xi)− c1∥ p2i1 + ∥ϕ (xi)− c2∥ p2i2 . (4.2.14)

Given the probabilities and assuming that the centers do not coincide with data points,

c1 and c2 will be

cj =
N∑
i=1


p2ij

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

 ϕ(xi) , j = 1, 2 . (4.2.15)

Proof. The derivative of ∥ϕ (xi)− cj∥ with respect to cj is equal to

∇cj∥ϕ (xi)− cj∥ = −
ϕ(xi)− cj

∥ϕ (xi)− cj∥
, j = 1, 2

when ϕ (xi) ̸= cj ∀i ∈ {1, ..., N}. Then given the probabilities, the derivative of

(4.2.14) with respect to cj will be

∇ckj
f(c1, c2) = −

N∑
i=1

ϕ(xi)− cj
∥ϕ (xi)− cj∥

p2ij j = 1, 2 . (4.2.16)

Making (4.2.16) equal to 0 gives

cj =
N∑
i=1

 vj
(
ϕ(xi)

)
N∑
t=1

vj
(
ϕ(xt)

)
 ϕ(xi) , j = 1, 2 , (4.2.17)

where

vj
(
ϕ(xi)

)
=

p2ij

∥ϕ(xi)− cj∥
j = 1, 2 .
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Please note that when there are T clusters, (4.2.15) is still valid and can be applied

for j = 1, ..., T .

We have two groups of decision variables, pij’s and cj’s. When centers are known,

we solve the problem in (4.2.13). We find the centers using (4.2.17).

4.3 Kernel Probabilistic Distance Clustering Algorithms

The probabilistic distance clustering model in kernel space has been introduced in

Section 4.2. The generalized version of the model will be provided in this section.

In Kernel Probabilistic Distance Clustering there are two spaces, which are input

space and kernel space (or mapped space). Input space is the original space of the

data points. On the other hand, kernel space represents the space where data points

are mapped into via ϕ function. The dimension of the input space is the number of

features data points have. However, kernel space’s dimension is determined by the ϕ

function to be used. Since we will not know the ϕ function, we will not be able to

detect the dimension of the kernel space.

4.3.1 Kernel Pd-clustering in Kernel Space

In Kernel Pd-clustering in kernel space (KPD Algorithm) centers are defined in the

kernel space (or mapped space). In fact, center update rules are made in the kernel

space. The data points are in the input space, and they are mapped into the kernel

space via ϕ function.

Since the update rules in the algorithm are valid for all kernel functions, prior knowl-

edge of the kernel function to be used is not required. In addition, cluster prototypes

do not have an explicit representation in both kernel and input spaces.

As a distance metric Euclidean distance is considered. In general, Euclidean distance

between xi and cj , d(xi, cj), is

d(xi, cj) =

√√√√ M∑
m=1

(xim − cjm)2 = ∥xi − cj∥.
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If mapping of xi into kernel space is considered, then d(ϕ (xi) , cj) = ∥ϕ (xi)− cj∥.

The optimization problem of clustering in Section 4.2 becomes

min
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)− cj∥ (4.3.1)

s.t.
T∑

j=1

pij = 1 ∀i

pij ≥ 0 ∀i, j

∥ϕ (xi)− cj∥ is simply denoted by dij . The nonlinear objective function is convex in

terms of pij and dij . This is because when pij’s are given and dij’s become unknown,

the objective becomes convex. Similarly, given dij’s, the objective function in (4.3.1)

will be a function of dij’s which is a convex function. Considering the fact that

constraints are all linear, i.e. they are also convex, the problem becomes a convex

optimization problem.

When cj’s are given, the Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)− cj∥ −
N∑
i=1

λi

(
T∑

j=1

pij − 1

)
. (4.3.2)

When we take the derivative with respect to pij and make it equal to zero, we obtain

2 pij ∥ϕ (xi)− cj∥ − λi = 0

=⇒ pij =
λi

2 ∥ϕ (xi)− cj∥
· (4.3.3)

When we substitute (4.3.3) into (4.3.2), we get

T∑
j=1

pij = 1 =⇒
T∑

j=1

λi

2∥ϕ (xi)− cj∥
= 1 .

Then

λi =
1

T∑
j=1

1

2 ∥ϕ (xi)− cj∥

· (4.3.4)
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If (4.3.4) is substituted into (4.3.3), we find out pij as

pij =

1

∥ϕ (xi)− cj∥
T∑
t=1

1

∥ϕ (xi)− ct∥

·

Fixing pij and taking the derivative of (4.3.2) with respect to cj gives

cj =

N∑
i=1

p2ij ϕ(xi)

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

· (4.3.5)

The distance between ϕ(xi) and cj can be calculated as

∥ϕ (xi)− cj∥ =
√

ϕ (xi)
T ϕ (xi)− 2ϕ (xi)

T cj + cTj cj (4.3.6)

Substituting (4.3.5) and using the kernel trick, (4.3.6) can be written as

∥ϕ (xi)− cj∥ =√√√√√√√√√√√√
k(xi, xi)− 2

N∑
k=1

p2kj k(xi, xk)

∥ϕ(xk)− cj∥

N∑
k=1

p2kj

∥ϕ(xk)− cj∥

+

N∑
k=1

N∑
l=1

p2kj p
2
lj k(xk, xl)

∥ϕ(xk)− cj∥ ∥ϕ(xl)− cj∥ N∑
k=1

p2kj

∥ϕ(xk)− cj∥

2 ,

(4.3.7)

where k is the kernel function. However, the cluster centers cannot be calculated

using (4.3.5) since ϕ(xi)’s are not known explicitly. Therefore, there is no explicit

representation of cluster centers. In fact, since we cannot calculate the cluster centers,

the distance given in (4.3.7) cannot be obtained.

On the other side, the centers can be described in terms of the data points that belong

to the corresponding clusters. That is, the centers will be the convex combination of

ϕ(xi)’s. Then (4.3.5) can be rewritten as

cj =
N∑
i=1

βij ϕ(xi), (4.3.8)
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where

βij =

p2ij

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

· (4.3.9)

For a given cluster index j, when we sum (4.3.9) for each data point, we obtain

N∑
i=1

βij =
N∑
i=1

p2ij

∥ϕ(xi)− cj∥
N∑

h=1

p2hj

∥ϕ(xh)− cj∥

=

N∑
i=1

p2ij

∥ϕ(xi)− cj∥
N∑

h=1

p2hj

∥ϕ(xh)− cj∥

= 1 . (4.3.10)

When (4.3.8) is substituted into cj’s in the objective function, then the problem be-

comes

min
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)−
N∑
i=1

βij ϕ(xi)∥ (4.3.11)

s.t.
T∑

j=1

pij = 1 ∀i

N∑
i=1

βij = 1 ∀j

pij ≥ 0 ∀i, j

βij ≥ 0 ∀i, j

The distance ∥ϕ (xi)−
N∑
i=1

βijϕ(xi)∥ in the objective function is equal to√√√√ϕ (xi)
T ϕ (xi)− 2

N∑
k=1

βkj ϕ (xi)
T ϕ (xk) +

N∑
k=1

N∑
l=1

βkj βlj ϕ (xk)
T ϕ (xl) .

(4.3.12)

We replace ϕ (xi)
T ϕ (xk)’s with k(xi, xk)’s, and 4.3.12 becomes√√√√k(xi, xi)− 2

N∑
k=1

βkj k(xi, xk) +
N∑
k=1

N∑
l=1

βkj βlj k(xk, xl) . (4.3.13)
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The objective in (4.3.11) can be represented in terms of matrices and vectors. We

can define βj as the column vector containing all βij’s for a given cluster j, which is

βj =
[
β1j β2j . . . βNj

]T
. Let K be the kernel matrix (or Gram matrix in Hilbert

space as in Section 2.3), Ki be the ith column of the matrix, and Kii be the ith row and

ith column element. Then the distance in (4.3.13) will be written as√
Kii − 2βT

j Ki + β
T
j Kβj .

So, the optimization problem in (4.3.11) becomes

min
N∑
i=1

T∑
j=1

p2ij

√
Kii − 2βT

j Ki + β
T
j Kβj

s.t.
T∑

j=1

pij = 1 ∀i

1T
N βj = 1 ∀j

pij ≥ 0 ∀i, j

βij ≥ 0 ∀i, j

where 1N is a column vector of length N , whose elements are all 1. The Lagrangian

of the problem becomes

L(P,β,Λ,Γ) =
N∑
i=1

T∑
j=1

p2ij

√
Kii − 2βT

j Ki + β
T
j Kβj

−
N∑
i=1

λi

(
T∑

j=1

pij − 1

)
−

T∑
j=1

γj
(
1T
N βj − 1

)
.

(4.3.14)

Given βij’s, taking the derivative of (4.3.14) with respect to pij and making it equal

to zero gives

pij =

1√
Kii − 2βT

j Ki + β
T
j Kβj

T∑
t=1

1√
Kii − 2βT

t Ki + β
T
t Kβt

· (4.3.15)
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Taking the derivative of (4.3.14) with respect to βj yields

∂L

∂βj

=
1

2

N∑
i=1

p2ij
−Ki + Kβj√

Kii − 2βT
j Ki + β

T
j Kβj

− γj 1N . (4.3.16)

Making (4.3.16) equal to 0 gives

Kβj

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

=
N∑
i=1

p2ijKi√
Kii − 2βT

j Ki + β
T
j Kβj

+ γj 1N .

(4.3.17)

If kernel matrix K is invertible, then (4.3.17) can be multiplied by K−1 from the left,

and βj is obtained as

βj =

N∑
i=1

p2ij K−1 Ki√
Kii − 2βT

j Ki + β
T
j Kβj

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

+
γj K−1 1N

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

·

(4.3.18)

Taking the derivative of (4.3.14) with respect to γj and making it equal to 0 gives

∂L

∂γj
= 1T

N βj − 1 = 0 . (4.3.19)

By substituting (4.3.18) into (4.3.19), we obtain

N∑
i=1

p2ij 1T
N K−1 Ki√

Kii − 2βT
j Ki + β

T
j Kβj

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

+
γj 1T

N K−1 1T
N

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

= 1 .

(4.3.20)

Note that K−1 Ki is equal to Ii, ∀i = 1, ..., N , where Ii is a column vector of length N

whose ith element is 1 and the remaining elements are all 0. Therefore, 1T
N K−1 Ki =

1, ∀i = 1, ..., N , and the first term in (4.3.20) equals to 1, then the equation becomes

γj 1T
N K−1 1N

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

= 0 . (4.3.21)

41



The denominator of (4.3.21) is greater than 0. The term 1T
N K−1 1N in the nominator

is the sum of all elements in matrix K−1, which is not equal to 0. Therefore, γj

becomes 0. Substituting γj = 0 into (4.3.18) gives

βj =

N∑
i=1

p2ij K−1 Ki√
Kii − 2βT

j Ki + β
T
j Kβj

N∑
i=1

p2ij√
Kii − 2βT

j Ki + β
T
j Kβj

· (4.3.22)

βj vectors are updated as in (4.3.22). Using (4.3.15) we update pij’s. In that formula

since cj’s are substituted with βj’s and ϕ(xi)’s, there is still no need to know cj’s

explicitly.

4.3.1.1 KPD Algorithm

KPD Algorithm (Kernel Probabilistic Distance Clustering in Kernel Space) can be

developed by determining an update rule for βj’s and pij’s. Since the centers are not

known explicitly, they are updated implicitly in the algorithm. βj in (4.3.22) can be

calculated using previous values of βj’s. Thus, (4.3.22) can be written as

β
(r)
j =

N∑
i=1

(
p
(r−1)
ij

)2
K−1 Ki√

Kii − 2
(
β

(r−1)
j

)T
Ki +

(
β

(r−1)
j

)T
Kβ(r−1)

j

N∑
i=1

(
p
(r−1)
ij

)2
√

Kii − 2
(
β

(r−1)
j

)T
Ki +

(
β

(r−1)
j

)T
Kβ(r−1)

j

, (4.3.23)

where r is the current iteration.

Using the updated βj’s and substituting them in (4.3.15), pij’s can be updated as

p
(r)
ij =

1√
Kii − 2

(
β

(r)
j

)T
Ki +

(
β

(r)
j

)T
Kβ(r)

j

T∑
t=1

1√
Kii − 2

(
β

(r)
t

)T
Ki +

(
β

(r)
t

)T
Kβ(r)

t

· (4.3.24)
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The pseudocode of KPD Algorithm is given in Algorithm 1 below.

Algorithm 1: KPD Algorithm
Input : data set X, coefficient matrix B, number of clusters T , kernel

function k, stopping criterion ϵ

Output: probability matrix P

1 Initialize B to a random coefficient matrix and Calculate kernel matrix K

2 Calculate p
(0)
ij ’s in P matrix as in (4.3.24).

3 Set r = 0.

4 while
T∑

j=1

|βj
(r) − βj

(r−1)| > ϵ do

5 r = r + 1

6 Update βj
(r) as in (4.3.23)

7 Update p
(r)
ij as in (4.3.24)

8 end

4.3.1.2 Cluster Centers in Input Space

Although KPD Algorithm defines the centers in the kernel space, the centers in

(4.3.5) cannot be calculated explicitly due to the ϕ function so the centers are up-

dated implicitly through the iterations. The centers are required only when the dis-

tance between the data points and the centers are calculated. We embedded the center

equation in the distance function, and using kernel trick we obtained the correspond-

ing distances. Then the algorithm progresses without calculating the centers, only

with updating the probabilities pij’s and center coefficient vectors βj’s (see steps (6)

and (7) in Algorithm 1). In fact, the center updates are made in the kernel space

implicitly because βj’s are the coefficients of the kernel centers.

In the case that the cluster centers in the input space needs to be known, it leads to the

preimage problem. The inverse image of kernel center cj in the input space is called

as preimage, and is denoted by cIj . To get a center in the input space, one should find

the inverse mapping of it, which is ϕ−1(cj). If ϕ is invertible, then ϕ−1(cj) = cIj .

Note that the mapping function is nonlinear. Some kernel functions such as poly-
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nomial kernels with odd exponent term or sigmoid kernel are invertible. However,

for many kernel functions, inverse may not exist since some points on the span of

ϕ(x1), ϕ(x2), ..., ϕ(xN) may not correspond to the image of a single point in the in-

put space. Figure 4.2 provides an example. When the data points in X are mapped

into the kernel space, their image becomes dark gray-colored region, shown by ϕ(X).

However, the point cj , which can be written in terms of mapped data points, is not

an image of any point in X. Therefore, it does not have an exact preimage since we

cannot find a point cIj where ϕ(cIj ) = cj .

Figure 4.2: Exact Preimage Problem

For instance, Gaussian kernel function is not invertible so no exact preimage can be

found. In that case, the approximate preimage of a cluster center can be obtained.

Let c̃j ∈ X, and ψ = αϕ(c̃j) tries to approximate cj so c̃j is called the approximate

preimage. [35] suggests to minimize the distance between cj and the orthogonal

projection of it onto span ϕ(c̃j), αϕ(c̃j), instead of minimizing the squared distance

between cj and ψ, where

∥cj −ψ∥ =
N∑
i=1

N∑
l=1

βij βlj k(xi, xl)− 2
N∑
i=1

βij α k(xi, c̃j) + α2 k(c̃j, c̃j) . (4.3.25)

Figure 4.3 describes the orthogonal projection.
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Figure 4.3: Orthogonal Projection of cj onto span ϕ(c̃j)

The orthogonal projection of cj , shown by cpj , is
⟨ϕ(c̃j), cj⟩

⟨ϕ(c̃j), ϕ(c̃j)⟩
ϕ(c̃j). Then the ob-

jective is

min

∥∥∥∥∥∥cj −
⟨ϕ(c̃j), cj⟩

⟨ϕ(c̃j), ϕ(c̃j)⟩
ϕ(c̃j)

∥∥∥∥∥∥
2

. (4.3.26)

This objective minimizes ∥cp
⊥

j ∥2, where cp
⊥

j = cj − cpj . From Pythagorean theo-

rem, we know that ∥cp
⊥

j ∥2 = ∥cj∥2 − ∥cpj∥2. Since ∥cpj∥2 =
⟨ϕ(c̃j), cj⟩2

⟨ϕ(c̃j), ϕ(c̃j)⟩
, (4.3.26)

becomes

min ∥cj∥2 −
⟨ϕ(c̃j), cj⟩2

⟨ϕ(c̃j), ϕ(c̃j)⟩
· (4.3.27)

Note that minimizing (4.3.27) is also equal to

max
⟨ϕ(c̃j), cj⟩2

⟨ϕ(c̃j), ϕ(c̃j)⟩
· (4.3.28)

If we want to minimize (4.3.25), then the optimal α value is obtained by taking the

derivative with respect to α and making it equal to 0, which gives

2αk(c̃j, c̃j)− 2
N∑
i=1

βij k(c̃j, xi) = 0 .

Then

α =

N∑
i=1

βij k(c̃j, xi)

k(c̃j, c̃j)
=

N∑
i=1

βij ⟨ϕ(c̃j), ϕ(xi)⟩

⟨ϕ(c̃j), ϕ(c̃j)⟩
=

⟨ϕ(c̃j), cj⟩
⟨ϕ(c̃j), ϕ(c̃j)⟩

· (4.3.29)

If α is chosen as in (4.3.29), then minimizing (4.3.25) is equal to maximizing (4.3.28).

We prefer the former objective since it is easier to work with. If we want to minimize
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(4.3.25) for each cluster, we can obtain an objective that is the sum of the squared

distances between c̃j and cj , which is

min
c̃j

V =
T∑

j=1

∥ϕ (c̃j)− cj∥2 (4.3.30)

since minimizing each cluster center is independent of each other.

The function V in (4.3.30) can be written as

T∑
j=1

∥ϕ (c̃j)− cj∥ =
T∑

j=1

√
k(c̃j, c̃j)− 2ϕ(c̃j) cj + cTj cj) . (4.3.31)

Then cj’s can be expressed as in (4.3.5), so we substitute them in (4.3.31). Thus,

the multiplication of two ϕ functions will be obtained, and they can be written as a

function of K using the kernel trick. That is, (4.3.31) becomes

T∑
j=1

k(c̃j, c̃j)− 2

N∑
i=1

p2ij k(xi, c̃j)
∥ϕ(xi)− cj∥

N∑
i=1

p2ij

∥ϕ(xi)− cj∥

+
N∑
l=1

N∑
k=1

p2lj p
2
kj k(xl, xk)

∥ϕ(xl)− cj∥∥ϕ(xk)− cj∥ N∑
i=1

p2ij

∥ϕ(xi)− cj∥

 N∑
i=1

p2ij

∥ϕ(xi)− cj∥





1/2 . (4.3.32)

To find the optimum c̃j , one can take the derivative of (4.3.31) with respect to c̃j

and make it equal to 0. However, to take the derivative, prior information about the

kernel function must be known. Below, Gaussian and polynomial kernel functions

are considered to calculate the centers.

• Gaussian Kernel
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When the kernel function is chosen as Gaussian kernel, (4.3.32) becomes

T∑
j=1

√√√√√√√√√√√
k(c̃j, c̃j)− 2

N∑
i=1

p2ij e
−∥xi−c̃j∥2/σ2

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

+
N∑
l=1

N∑
k=1

p2lj p
2
kj e

−∥xl−xk∥2/σ2

∥ϕ(xl)− cj∥∥ϕ(xk)− cj∥ N∑
i=1

p2ij

∥ϕ(xi)− cj∥

2

(4.3.33)

Since in Gaussian kernel the distance between the object and itself is equal to 1,

k(c̃j, c̃j) = 1 in Equation (4.3.33). Then taking the derivative of (4.3.33) with

respect to c̃j and equalizing it to 0 gives

∂V

∂c̃j
=

1

2

−2

N∑
i=1

p2ij

∥ϕ(xi)− cj∥

N∑
i=1

p2ij e
−∥xi−c̃j∥2/σ2

∥ϕ(xi)− cj∥
2 (xi − c̃j)

σ2

 1

∥ϕ(c̃j)− cj∥

= 0 .

Then

c̃j =

N∑
i=1

p2ij xi

∥ϕ(xi)− cj∥
e−∥xi−c̃j∥2/σ2

N∑
i=1

p2ij

∥ϕ(xi)− cj∥
e−∥xi−c̃j∥2/σ2

(4.3.34)

for Gaussian kernel.

• Polynomial Kernel

If the Polynomial kernel is considered, now (4.3.32) becomes

T∑
j=1

(c̃Tj c̃j + a)b − 2

N∑
i=1

p2ij (c̃
T
j xi + a)b

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

+
N∑
l=1

N∑
k=1

p2lj p
2
kj (xT

l xk + a)b

∥ϕ(xl)− cj∥∥ϕ(xk)− cj∥ N∑
i=1

p2ij

∥ϕ(xi)− cj∥

 N∑
i=1

p2ij

∥ϕ(xi)− cj∥





1/2

,

(4.3.35)
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where a and b are the predefined parameters of the Polynomial kernel.

The derivative of (4.3.35) with respect to c̃j is

∂V

∂c̃j
=

1

2

2 b c̃j(c̃Tj c̃j + a)b−1 − 2

N∑
i=1

p2ij b (c̃
T
j xi + a)b−1 xi

∥ϕ(xi)− cj∥
N∑
i=1

p2ij

∥ϕ(xi)− cj∥


1

∥ϕ(c̃j)− cj∥

= 0 .

Then

c̃j =

N∑
i=1

p2ij (c̃
T
j xi + a)b−1

∥ϕ(xi)− cj∥

 xi

(c̃Tj c̃j + a)b−1
N∑
i=1

p2ij

∥ϕ(xi)− cj∥

(4.3.36)

for Polynomial kernel.

4.3.1.3 Center Update

c̃j values can be calculated using (4.3.34) and (4.3.36) but these equations contain

cj’s in the denominator terms. Therefore, cj’s can be approximated with the image of

c̃j’s from the previous iteration, so using kernel trick we obtain

c̃(r)j =

N∑
i=1

(p
(r−1)
ij )2 xi√

2− 2 k
(

xi, c̃(r−1)
j

) e−∥xi−c̃(r−1)
j ∥2/σ2

N∑
i=1

(p
(r−1)
ij )2√

2− 2 k
(

xi, c̃(r−1)
j

) e−∥xi−c̃(r−1)
j ∥2/σ2

(4.3.37)

for Gaussian kernel. When function k is replaced with Gaussian kernel, (4.3.37)

becomes

c̃(r)j =

N∑
i=1

(p
(r−1)
ij )2 xi√

2− 2 e−∥xi−c̃(r−1)
j ∥2/σ2

e−∥xi−c̃(r−1)
j ∥2/σ2

N∑
i=1

(p
(r−1)
ij )2√

2− 2 e−∥xi−c̃(r−1)
j ∥2/σ2

e−∥xi−c̃(r−1)
j ∥2/σ2

· (4.3.38)
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For polynomial kernel, cj’s are approximated and (4.3.36) is obtained as

c̃(r)j =

N∑
i=1

(p
(r−1)
ij )2 ((c̃(r−1)

j )T xi + a)b−1√
k(xi, xi)− 2k(xi, c̃(r−1)

j ) + k(c̃(r−1)
j , c̃(r−1)

j )
xi

(c̃(r−1)
j )T c̃(r−1)

j + a)b−1
N∑
i=1

(p
(r−1)
ij )2√

k(xi, xi)− 2k(xi, c̃(r−1)
j ) + k(c̃(r−1)

j , c̃(r−1)
j )

(4.3.39)

using kernel trick. Writing polynomial kernel function explicitly in (4.3.39) would

give

c̃(r)j =

N∑
i=1

(p
(r−1)
ij )2 ((c̃(r−1)

j )T xi + a)b−1√
(xT

i xi + a)
b − 2

(
xT
i c̃(r−1)

j + a
)b

+
(

c̃(r−1)T
j c̃(r−1)

j + a
)b xi

N∑
i=1

(p
(r−1)
ij )2 (c̃(r−1)

j )T c̃(r−1)
j + a)b−1√

(xT
i xi + a)

b − 2
(

xT
i c̃(r−1)

j + a
)b

+
(

c̃(r−1)T
j c̃(r−1)

j + a
)b

· · ·

(4.3.40)

The centers in any iteration will be updated as (4.3.38) for Gaussian kernel and

(4.3.40) for polynomial kernel.

A new version of KPD Algorithm where the input space centers can be derived is

called KPD-C Algorithm, and Algorithm 2 provides the pseudocode of it.

4.3.2 Kernel Pd-clustering in Feature Space

KPD Algorithm defines the cluster centers in the kernel space. Since the centers in

the kernel space cannot be calculated, they are updated implicitly. In addition, the al-

gorithm proposes a method to find the approximate centers in the input space. On the

other hand, Kernel Pd-clustering in Feature Space Algorithm (KPD-F Algorithm)

defines and updates the centers in the input space.

Let ĉj be the cluster centers in the input space. Then ϕ(ĉj) gives the image of them in

the kernel space. To calculate the distance between each data point and their corre-

sponding clusters in kernel space, both data points and the cluster centers are required

to be mapped into kernel space beforehand as shown in Figure 4.4.
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Algorithm 2: KPD-C Algorithm
Input : data set X, coefficient matrix B, number of clusters T , kernel

function k, stopping criterion ϵ, stopping criterion for centers ϵc

Output: probability matrix P

1 Initialize B to a random coefficient matrix and Calculate kernel matrix K

2 Calculate p
(0)
ij ’s in P matrix as in (4.3.24).

3 Set r = 0.

4 while
T∑

j=1

|βj
(r) − βj

(r−1)| > ϵ do

5 r = r + 1

6 Update βj
(r) as in (4.3.23)

7 Update p
(r)
ij as in (4.3.24)

8 end

9 Set r = 0. Use optimal probability matrix P*.

10 Initialize c̃(0)j as a random center of cluster j for j = 1, ...T .

11 while
T∑

j=1

|c̃(r)j − c̃(r−1)
j | > ϵc do

12 r = r + 1

13 Update c̃(r)j as in (4.3.38) if kernel function is Gaussian, and update as in

(4.3.40) if kernel is chosen as polynomial
14 end
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Figure 4.4: Kernel Pd-clustering in Feature Space in Input and Kernel Space

Then the optimization problem becomes

min
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)− ϕ (ĉj) ∥

s.t.
T∑

j=1

pij = 1 ∀i

pij ≥ 0 ∀i, j

where ĉj represents cluster centers in input space. Let Φc be a T×1 vector containing

the images of input space centers. That is, Φc =
[
ϕ(ĉ1) ϕ(ĉ2) . . . ϕ(ĉT )

]T
. Then

the Lagrangian becomes

L(P,Φc,Λ) =
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)− ϕ (ĉj) ∥ −
N∑
i=1

λi

(
T∑

j=1

pij − 1

)
. (4.3.41)

Taking the derivative with respect to pij we obtain

pij =

1

∥ϕ (xi)− ϕ (ĉt)∥
T∑
t=1

1

∥ϕ(xi)− ϕ (ĉt)∥

· (4.3.42)
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Given pij’s, if we take the derivative of (4.3.41) with respect to ϕ(ĉj), we obtain

ϕ(ĉj) =

N∑
i=1

p2ij ϕ(xi)

∥ϕ(xi)− ϕ(ĉj)∥
N∑
i=1

p2ij

∥ϕ(xi)− ϕ(ĉj)∥

· (4.3.43)

In (4.3.43), ϕ(ĉj) depends on ϕ(xi)’s, which cannot be derived. Therefore, the deriva-

tive of (4.3.41) with respect to ĉj can be calculated only when the kernel function is

known since the distance term can be rewritten using kernel trick, and ĉj becomes the

input of kernel function. We consider two kernel functions which are Gaussian and

polynomial kernels.

• Gaussian Kernel

We observe ∥ϕ(xi)− ϕ(ĉj)∥ can be written as√
k(xi, xi)− 2k(xi, ĉj) + k(ĉj, ĉj) =

√
2− 2k(xi, ĉj). (4.3.44)

for Gaussian kernel. If we substitute the distance term in (4.3.41) with (4.3.44),

then L becomes the function of pij’s and ĉj’s. To take the gradient of L, we need

to know kernel function. In the case of Gaussian kernel, Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij

√
2− 2k(xi, ĉj)−

N∑
i=1

λi

(
T∑

j=1

pij − 1

)
. (4.3.45)

Then for the given pij’s the derivative of (4.3.45) with respect to ĉj is

∂L

∂ĉj
=

1

2

N∑
i=1

p2ij
1√

2− 2k(xi, ĉj)
(−2) e−∥xi−ĉj∥2/σ2

2(xi − ĉj)
σ2

= 0

=⇒
N∑
i=1

p2ij
e−∥xi−ĉj∥2/σ2√
2− 2k(xi, ĉj)

(xi − ĉj) = 0.

Therefore, we obtain ĉj as

ĉj =

N∑
i=1

p2ij
e−∥xi−ĉj∥2/σ2√
2− 2k(xi, ĉj)

 xi

N∑
i=1

p2ij
e−∥xi−ĉj∥2/σ2√
2− 2k(xi, ĉj)

· (4.3.46)

52



• Polynomial Kernel

When the kernel function is chosen as polynomial, ∥ϕ(xi)−ϕ(ĉj)∥ is calculated

as

∥ϕ(xi)− ϕ(ĉj)∥ =
√

(xT
i xi + a)b − 2(ĉTj xi + a)b + (ĉTj ĉj + a)b.

Lagrangian becomes

L(P,C,Λ) =
N∑
i=1

T∑
j=1

p2ij

√
(xT

i xi + a)b − 2(ĉTj xi + a)b + (ĉTj ĉj + a)b

−
N∑
i=1

λi

(
T∑

j=1

pij − 1

)
.

(4.3.47)

For given pij’s, the derivative of (4.3.47) with respect to ĉj becomes

∂L

∂ĉj
=

1

2

N∑
i=1

p2ij

(
−2 b xi (ĉTj xi + a)b−1 + 2 b ĉj (ĉTj ĉj + a)b−1

)
∥ϕ(xi)− ϕ(ĉj)∥

= 0 .

Then
N∑
i=1

p2ij

∥ϕ(xi)− ϕ(ĉj)∥

(
ĉj (ĉTj ĉj + a)b−1 − xi (ĉTj xi + a)b−1

)
= 0 ,

which gives

ĉj =

N∑
i=1

p2ij

∥ϕ(xi)− ϕ(ĉj)∥
(ĉTj xi + a)b−1 xi

(ĉTj ĉj + a)b−1
N∑
i=1

p2ij

∥ϕ(xi)− ϕ(ĉj)∥

· (4.3.48)

4.3.2.1 Center Update

Since the denominator terms in center equations for both Gaussian and polynomial

kernels have ĉj’s, previous center values should be used when they are updated. Thus,

(4.3.46) is rearranged as

ĉ(r)j =

N∑
i=1

(p
(r−1)
ij )2

e−∥xi−ĉ(r−1)
j ∥2/σ2√

2− 2k(xi, ĉ(r−1)
j )

 xi

N∑
i=1

(p
(r−1)
ij )2

e−∥xi−ĉ(r−1)
j ∥2/σ2√

2− 2k(xi, ĉ(r−1)
j )

(4.3.49)
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for Gaussian kernel. If function k is replaced with Gaussian kernel, then (4.3.49)

becomes

ĉ(r)j =

N∑
i=1

(p
(r−1)
ij )2

e−∥xi−ĉ(r−1)
j ∥2/σ2√

2− 2 e−∥xi−ĉ(r−1)
j ∥2/σ2

 xi

N∑
i=1

(p
(r−1)
ij )2

e−∥xi−ĉ(r−1)
j ∥2/σ2√

2− 2 e−∥xi−ĉ(r−1)
j ∥2/σ2

· (4.3.50)

In the case of polynomial kernel, (4.3.48) can be rewritten as

ĉ(r)j =

N∑
i=1

(p
(r−1)
ij )2 ((ĉ(r−1)

j )T xi + a)b−1√
k(xi, xi)− 2k(xi, ĉ(r−1)

j ) + k(ĉ(r−1)
j , ĉ(r−1)

j )
xi

N∑
i=1

(p
(r−1)
ij )2 (ĉ(r−1)

j )T ĉ(r−1)
j + a)b−1√

k(xi, xi)− 2k(xi, ĉ(r−1)
j ) + k(ĉ(r−1)

j , ĉ(r−1)
j )

,

which gives

ĉ(r)j =

N∑
i=1

(p
(r−1)
ij )2 ((ĉ(r−1)

j )T xi + a)b−1√
(xT

i xi + a)
b − 2

(
xT
i ϕ(ĉ

(r−1)
j ) + a

)b
+
(
ϕ(ĉ(r−1)

j )T ϕ(ĉ(r−1)
j ) + a

)b xi

N∑
i=1

(p
(r−1)
ij )2 (ĉ(r−1)

j )T ĉ(r−1)
j + a)b−1√

(xT
i xi + a)

b − 2
(

xT
i ϕ(ĉ

(r−1)
j ) + a

)b
+
(
ϕ(ĉ(r−1)

j )T ϕ(ĉ(r−1)
j ) + a

)b
·

(4.3.51)

4.3.2.2 Probability Update

Upon completing the center updates in the input space, pij’s are updated using ĉ(r)j ’s.

Then (4.3.42) becomes

p
(r)
ij =

1∥∥∥ϕ (xi)− ϕ
(

ĉ(r)t

)∥∥∥
T∑
t=1

1∥∥∥ϕ(xi)− ϕ
(

ĉ(r)t

)∥∥∥
·
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Distance terms in the denominator terms of the probability update is a function of k,

and it refers to

p
(r)
ij =

1√
k(xi, xi)− 2k(xi, ĉ(r)j ) + k(ĉ(r)j , ĉ(r)j )

T∑
t=1

1√
k(xi, xi)− 2k(xi, ĉ(r)j ) + k(ĉ(r)j , ĉ(r)j )

· (4.3.52)

4.3.2.3 KPD-F Algorithm

This algorithm defines and updates the centers in the input space. Since they are

introduced in the input space, they are known explicitly. After the center update,

probabilities are updated accordingly. Pseudocode of KPD-F Algorithm is given in

Algorithm 3.

Algorithm 3: KPD-F Algorithm
Input : data set X, number of clusters T , kernel function k, stopping

criterion ϵ

Output: probability matrix P

1 Initialize ĉ(0)j as a random center of cluster j for j = 1, ..., T and Calculate

k(xi, xl) for i, l ∈ 1, ..., N .

2 Calculate p
(0)
ij ’s in P matrix as in (4.3.52).

3 Set r = 0.

4 while
T∑

j=1

|ĉ(r)j − ĉ(r−1)
j | > ϵ do

5 r = r + 1

6 Update ĉ(r)j as in (4.3.50) if kernel function is Gaussian, and update as in

(4.3.51) if kernel is chosen as polynomial

7 Calculate k(xi, ĉ(r)j ) for i ∈ 1, ..., N, j ∈ 1, ..., T

8 Update p
(r)
ij as in (4.3.52)

9 end
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CHAPTER 5

KERNEL PROBABILISTIC DISTANCE CLUSTERING WITH

MAHALANOBIS DISTANCE

We consider Euclidean norm in the algorithms explained in Section 4.3. In this chap-

ter, following the ideas in [36], we study the statistical distance (i.e., Mahalanobis

distance) in the kernel algorithms, where the correlation between the data features

is considered. First, we introduce two Kernel Mahalanobis distance functions. Later,

Kernel probabilistic distance clustering with Mahalanobis distance will be introduced.

5.1 Kernel Mahalanobis Distance

Consider we have an m × n data set X, where n shows the number of data points

and m is that of features in the input space. Therefore, each data point xi is an m-

dimensional column vector, i = 1, ..., n. Function ϕ represents the mapping from

original space to Hilbert Space H (or kernel space), i.e. ϕ : X → H . In this

mapping, the dimension of the vectors is changed to s. Therefore, ϕ(xi) becomes

s× 1 vector.

Let Φ contains the mapping of each data point xi. Then Φ is an s× n matrix shown

as Φ = [ϕ(x1)...ϕ(xn)]s×n. The mean of ϕ(xi)’s are calculated as

ϕµ =
1

n

n∑
i=1

ϕ(xi) =
1

n
Φ1n , (5.1.1)

where 1n is a column vector of 1’s. If data point ϕ(xi) is centered with ϕµ, it is

denoted by

ϕ̃(xi) = ϕ(xi)− ϕµ . (5.1.2)
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Using (5.1.1), we can write (5.1.2) as

ϕ̃(xi) = ϕ(xi)−
1

n
Φ1n . (5.1.3)

Let Φ̃ represent the matrix of centered data points xi, i = 1, ..., n. Then

Φ̃ =
[
ϕ̃(x1)...ϕ̃(xn)

]
= Φ− ϕµ1T

n . (5.1.4)

We can substitute (5.1.1) in (5.1.4) for ϕµand obtain

Φ̃ = Φ− 1

n
Φ1n1T

n = Φ

[
In×n −

1

n
1n1T

n

]
. (5.1.5)

Then (5.1.5) can be written as

Φ̃ = ΦH , (5.1.6)

where H is an n× n centering matrix shown as

H = In×n −
1

n
1n1T

n .

H matrix has some properties. The transpose and square of H is equal to itself. That

is, H = HT = H2.

The covariance operator in the Hilbert Space, shown as C : H → H , operates on

ϕ(x) ∈ H as

Cϕ(x) =
1

n

n∑
i=1

(
ϕ(xi)− ϕµ

)
⟨ϕ(xi)− ϕµ, ϕ(xi)⟩. (5.1.7)

We know that
(
ϕ(xi)− ϕµ

)
is equal to ϕ̃(xi), so (5.1.7) can be written as

Cϕ(x) =
1

n

n∑
i=1

ϕ̃(xi)ϕ̃(xi)
Tϕ(x) =

1

n
Φ̃Φ̃

T
ϕ(x) .

Using (5.1.6), C becomes

C =
1

n
Φ̃Φ̃

T
=

1

n
ΦHHTΦT =

1

n
ΦHHΦT =

1

n
ΦHΦT .

Remember that Φ̃ is the matrix of centered data points in kernel space. Then using

(5.1.6), centered kernel matrix (i.e., the matrix containing the inner products of all

centered kernels of data points) is

K̃ = Φ̃
T
Φ̃ = HΦTΦH = HKH ,

58



where

K = ΦTΦ . (5.1.8)

For instance, the entry in ith row and lth column in K̃ gives the inner product of

centered kernels of data points xi and xl.

Let k̄x be a column vector whose ith element represents the inner product of x and xi

in the kernel space. That is,

k̄x = [k(x1, x), ..., k(xn, x)]T = ΦTϕ(x) . (5.1.9)

Then the inner product of ϕ̃(x) with other centered kernel data points ϕ̃(xi)’s is

k̃x = Φ̃
T
ϕ̃(x) . (5.1.10)

When (5.1.6) is substituted into (5.1.10), we obtain

k̃x = (ΦH)T ϕ̃(x) = HTΦT ϕ̃(x) = H
(
ΦT ϕ̃(x)

)
. (5.1.11)

Using ϕ(x) in (5.1.2), (5.1.11) becomes

k̃x = H
(
ΦT
(
ϕ(xi)− ϕµ

))
= H

(
ΦTϕ(xi)−ΦTϕµ

)
. (5.1.12)

We know from (5.1.9) that ΦTϕ(xi) in (5.1.12) is equal to k̄x. Moreover, by substi-

tuting (5.1.1) for ϕµ into (5.1.12) we get

k̃x = H
(

k̄x −
1

n
ΦTΦ1n

)
. (5.1.13)

Using (5.1.8) for ΦTΦ, (5.1.13) becomes

k̃x = H
(

k̄x −
1

n
K1n

)
. (5.1.14)

The inner product of kernel of x with itself is shown as k(x, x) or kxx. That is,

kxx = ϕ(x)Tϕ(x) . (5.1.15)

When kxx is for the centered data points, we obtain

k̃xx = ϕ̃(x)T ϕ̃(x) . (5.1.16)
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Using (5.1.3) for ϕ̃(x) in (5.1.16) we get

k̃xx =

(
ϕ(x)− 1

n
Φ1n

)T (
ϕ(x)− 1

n
Φ1n

)
= ϕ(x)Tϕ(x)− 2

n
1T
nΦ

Tϕ(x) +
1

n2
(Φ1n)

T (Φ1n) .

Substituting (5.1.15) for ϕ(x)Tϕ(x), (5.1.9) for ΦTϕ(x), and (5.1.8) for ΦTΦ gives

k̃xx = kxx −
2

n
1T
n k̄x +

1

n2
1T
nK1n .

5.2 Kernel Mahalanobis Distance for Invertible Covariance

The kernelized Mahalanobis distance is

d2IC(x) = d2IC(ϕ(x);
{
ϕµ,C

}
) = (ϕ(x)− ϕµ)

T C−1(ϕ(x)− ϕµ) .

Therefore, the covariance matrix must be invertible to calculate the Mahalanobis dis-

tance. It restricts the dimension of H to a finite dimension, which is s and s < n. Φ̃

has a singular value decomposition, which is

Φ̃ = UΣVT . (5.2.1)

Note that U ∈ Rs×s, V ∈ Rn×n, and Σ ∈ Rs×n, where U and V contain the eigenvec-

tors and the eigenvalues are in the diagonals of Σ matrix. Then the covariance matrix

can be written as

C =
1

n
Φ̃Φ̃

T
. (5.2.2)

Using (5.2.1), the covariance in (5.2.2) can be rewritten as

C =
1

n
UΣVT

(
UΣVT

)T
=

1

n
UΣVTVΣTUT .

By using the orthogonality of U and V matrices, we know that UTU = I and VTV =

I. Then we obtain

C =
1

n
UΣΣTUT

and

1

n
C−1 = U

(
ΣΣT

)−1 UT . (5.2.3)
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If both sides of (5.2.3) are multiplied with Φ̃, and (5.2.1) is substituted for Φ̃ on the

right-hand side of the equation, we obtain

1

n
C−1Φ̃ = U

(
ΣΣT

)−1
ΣVT . (5.2.4)

Note that K̃ = Φ̃
T
Φ̃. Following the SVD, it is equal to

K̃ = VΣTUTUΣVT = VΣTΣVT .

If Φ̃ is invertible, then Σ−1 exists. If Φ̃ is not invertible, we can find the pseudoinverse

of Σ, denoted by Σ†. In this case, we assume that Φ̃ is not invertible, therefore Σ

is singular and pseudoinverse of it should be calculated. Σ† is found by taking the

reciprocal of the diagomal elements, i.e., eigenvalues, and then taking the transpose

of the matrix. Since Σ is singular, ΣTΣ is also non-invertible. Therefore, we find the

pseudo-inverse of K̃, shown as K̃
†
, as

K̃
†
= V

(
ΣTΣ

)† VT .

By multiplying both sides with Φ̃ from the left, we get

Φ̃K̃
†
= Φ̃V

(
ΣTΣ

)† VT . (5.2.5)

When we substitute (5.2.1) into Φ̃ on the right-hand side of (5.2.5), we obtain

Φ̃K̃
†
= UΣ

(
ΣTΣ

)† VT . (5.2.6)

Note that (5.2.4) and (5.2.6) are equal to each other. Therefore, we obtain

Φ̃K̃
†
=

1

n
C−1Φ̃ . (5.2.7)

We know that C =
1

n
Φ̃Φ̃

T
from (5.2.2). Therefore, using (5.1.3) C ϕ̃(x) can be

written as

C ϕ̃(x) =
1

n
Φ̃Φ̃

T
(
ϕ(x)− 1

n
Φ1n

)
. (5.2.8)

By substituting the transpose of (5.1.6) into Φ̃
T

in (5.2.8), we get

C ϕ̃(x) =
1

n
Φ̃HΦT

(
ϕ(x)− 1

n
Φ1n

)
=

1

n
Φ̃H

(
ΦTϕ(x)− 1

n
ΦTΦ1n

)
. (5.2.9)
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Note that ΦTϕ(x) is equal to k̄x and ΦTΦ is K. Then (5.2.9) will be

C ϕ̃(x) =
1

n
Φ̃H

(
k̄x −

1

n
K1n

)
,

and using (5.1.14), it leads to

C ϕ̃(x) =
1

n
Φ̃k̃x . (5.2.10)

We know that C is invertible. Using (5.2.10), we obtain

ϕ̃(x) =
1

n
C−1Φ̃k̃x. (5.2.11)

Substitute (5.2.7) into (5.2.11) and get

ϕ̃(x) = Φ̃ K̃
†

k̃x . (5.2.12)

Therefore, kernelized Mahalanobis distance for invertible covariance becomes

d2IC(x) = d2IC(ϕ(x);
{
ϕµ,C

}
) = ϕ̃(x)TC−1ϕ̃(x) = ϕ̃(x)TC−1Φ̃ K̃

†
k̃x. (5.2.13)

Note that when C−1Φ̃ is obtained from (5.2.7) and substituted into (5.2.13), the dis-

tance function becomes

d2IC(x) = d2IC(ϕ(x);
{
ϕµ,C

}
) = n ϕ̃(x)T Φ̃K̃

†
K̃

†
k̃x

= ϕ̃(x)TC−1ϕ̃(x) = n k̃
T

x

(
K̃

†)2
k̃x . (5.2.14)

5.2.1 Mahalanobis Distance between Two Data Points

Please note that (5.2.14) refers to the distance between ϕ(x̃) and the mean of the data

set. However, we can find the distance between two data points which are centralized

in kernel space, say ϕ̃(x) and ϕ̃(y). Mahalanobis distance function can be written as

d2IC(x, y) = d2IC(ϕ(x), ϕ(y);
{
ϕµ,C

}
)

= [ϕ̃(x)− ϕ̃(y)]T C−1 [ϕ̃(x)− ϕ̃(y)] .
(5.2.15)

Following (5.2.12) the difference between ϕ̃(x) and ϕ̃(y) is

ϕ̃(x)− ϕ̃(y) = Φ̃ K̃
†
[k̃x − k̃y] . (5.2.16)
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When (5.2.16) is substituted into (5.2.15), Mahalanobis distance becomes

d2IC(x, y) = [ϕ̃(x)− ϕ̃(y)]T C−1 Φ̃ K̃
†
[k̃x − k̃y] . (5.2.17)

For C−1 Φ̃ in (5.2.17), (5.2.7) is substituted and we get

d2IC(x, y) = n [ϕ̃(x)− ϕ̃(y)]T Φ̃ (K̃
†
)2[k̃x − k̃y] .

Following (5.1.10), ϕ̃(x)T Φ̃ and ϕ̃(y)T Φ̃ are equal to k̃
T

x and k̃
T

y , respectively. There-

fore, we obtain the Mahalanobis distance between the centralized data points x and y

in the kernel space as

d2IC(x, y) = d2IC(ϕ̃(x), ϕ̃(y);
{
ϕµ,C

}
) = n [k̃x − k̃y]

T (K̃
†
)2[k̃x − k̃y] .

5.3 Kernel Mahalanobis Distance for Regularized Covariance

When the dimension of H is higher than n or infinite, the covariance operator is

non-invertible. Therefore, it is regularized so that it will not be singular. Regularized

covariance, denoted by Creg, becomes

Creg = C + σ2
rIH =

1

n
Φ̃Φ̃

T
+ σ2

rIH , (5.3.1)

where IH is an identity matrix with Hilbert space dimension and σr is a predefined

parameter. When (5.3.1) is multiplied with Φ̃ from the right, we obtain

CregΦ̃ =
1

n
Φ̃Φ̃

T
Φ̃+ σ2

rIH Φ̃ . (5.3.2)

Note that Φ̃
T
Φ̃ is equal to K̃. Therefore, (5.3.2) can be written as

CregΦ̃ =
1

n
Φ̃
(

K̃ + nσ2
rIn
)
,

which can be defined as

CregΦ̃ =
1

n
Φ̃K̃reg , (5.3.3)

where K̃reg = K̃+nσ2
rIn. When nσ2

r > 0, then Creg and K̃reg become strictly positive

definite and nonsingular. Multiplying (5.3.3) with Creg from the left and K̃reg from

the right gives

Φ̃K̃
−1

reg =
1

n
C−1

regΦ̃ . (5.3.4)
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When Creg in (5.3.1) is multiplied with ϕ̃(x), we obtain

Creg ϕ̃(x) =
(
1

n
Φ̃Φ̃

T
+ σ2

rIH

)
ϕ̃(x) =

1

n
Φ̃Φ̃

T
ϕ̃(x) + σ2

rIH ϕ̃(x) . (5.3.5)

From Φ̃
T
ϕ̃(x) = k̃, (5.3.5) will be

Creg ϕ̃(x) =
1

n
Φ̃k̃x + σ2

r ϕ̃(x) . (5.3.6)

Since Creg is invertible, multiply (5.3.6) with C−1
reg from the left. Then

ϕ̃(x) =
1

n
C−1

regΦ̃k̃x + σ2
rC−1

regϕ̃(x) . (5.3.7)

Afterwards, multiplying each side of (5.3.7) with ϕ̃(x)T from the left gives

ϕ̃(x)T ϕ̃(x) =
1

n
ϕ̃(x)TC−1

regΦ̃k̃x + σ2
r ϕ̃(x)

TC−1
regϕ̃(x) . (5.3.8)

Substitute (5.3.4) into (5.3.8), we get

ϕ̃(x)T ϕ̃(x) = ϕ̃(x)T Φ̃K̃
−1

regk̃x + σ2
r ϕ̃(x)

TC−1
regϕ̃(x) . (5.3.9)

Then the second term, ϕ̃(x)TC−1
regϕ̃(x), in (5.3.9) will be

ϕ̃(x)TC−1
regϕ̃(x) =

ϕ̃(x)T ϕ̃(x)− ϕ̃(x)T Φ̃K̃
−1

regk̃x

σ2
r

·

which is equal to kernel Mahalanobis distance for regularized covariance, shown by

d2RC(x). From ϕ̃(x)T ϕ̃(x) = k̃xx and ϕ̃(x)T Φ̃ = k̃
T

x ,

d2RC(x) = d2(ϕ(x);
{
ϕµ,Creg

}
) =

1

σ2
r

(
k̃xx − k̃

T

x K−1
regk̃x

)
. (5.3.10)

5.3.1 Mahalanobis Distance between Two Data Points

As in (5.2.14), the expression (5.3.10) provides the distance between ϕ(x) and the

mean of the centralized data points in the kernel space. Following (5.3.10), we can

also find the distance between two centralized data points in the kernel space. Using

the equation in (5.3.7), the difference between two data points will be

ϕ̃(x)− ϕ̃(y) =
1

n
C−1

regΦ̃[k̃x − k̃y] + σ2
rC−1

reg[ϕ̃(x)− ϕ̃(y)] . (5.3.11)
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If we multiply both sides with [ϕ̃(x)− ϕ̃(y)]T , it becomes

[ϕ̃(x)− ϕ̃(y)]T [ϕ̃(x)− ϕ̃(y)] =
1

n
[ϕ̃(x)− ϕ̃(y)]TC−1

regΦ̃[k̃x − k̃y]

+ σ2
r [ϕ̃(x)− ϕ̃(y)]TC−1

reg[ϕ̃(x)− ϕ̃(y)] .
(5.3.12)

When (5.3.4) is substituted for
1

n
C−1

regΦ̃ in (5.3.12), we obtain

[ϕ̃(x)− ϕ̃(y)]T [ϕ̃(x)− ϕ̃(y)] = [ϕ̃(x)− ϕ̃(y)]T Φ̃K̃
−1

reg[k̃x − k̃y]

+ σ2
r [ϕ̃(x)− ϕ̃(y)]TC−1

reg[ϕ̃(x)− ϕ̃(y)] .

Then the Mahalanobis distance between ϕ(x̃) and ϕ(ỹ) is

d2RC(x, y) = d2RC(ϕ(x̃), ϕ(ỹ);
{
ϕµ,C

}
) = [ϕ̃(x)− ϕ̃(y)]TC−1

reg[ϕ̃(x)− ϕ̃(y)]

=
1

σ2
r

(
[ϕ̃(x)− ϕ̃(y)]T [ϕ̃(x)− ϕ̃(y)]− [ϕ̃(x)− ϕ̃(y)]T Φ̃K̃

−1

reg[k̃x − k̃y]
)
. (5.3.13)

Again from ϕ̃(x)T Φ̃ = k̃
T

x and ϕ̃(y)T Φ̃ = k̃
T

y , (5.3.13) will be

d2RC(x, y) =
1

σ2
r

[
(k̃xx − 2k̃xy + k̃yy)− (k̃x − k̃y)

T K̃
−1

reg(k̃x − k̃y)
]
.

Note that k̃xy is the inner product of mapped x and mapped y.

5.4 Kernel Pd-clustering with Mahalanobis Distance

Kernel Pd-clustering with Mahalanobis distance algorithm (KPD-M) uses Mahalanobis

distance as a distance measure. The Mahalanobis distance between two data points is

shown as

∥ϕ (xi)− ϕ(xj)∥M =

√(
ϕ(xi)− ϕ(xj)

)T
C−1

(
ϕ(xi)− ϕ(xj)

)
.

It defines and updates the cluster centers in the kernel space as in KPD Algorithm.

The cluster centers cannot be calculated explicitly; therefore, they will be written as a

linear combination of data points. Using (4.3.8), the optimization problem becomes

min
N∑
i=1

T∑
j=1

p2ij ∥ϕ (xi)−
N∑
i=1

βij ϕ(xi)∥M (5.4.1)
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s.t.
T∑

j=1

pij = 1 ∀i

pij ≥ 0, ∀i, j

where

∥ϕ (xi)−
N∑
i=1

βij ϕ(xi)∥M =√√√√(ϕ (xi)−
N∑
i=1

βij ϕ(xi)
)T

C−1
(
ϕ (xi)−

N∑
i=1

βij ϕ(xi)
)
.

The Mahalanobis distance above will be calculated using kernel Mahalanobis dis-

tance with regularized covariance as in Section 5.3 . Rearranging (5.3.11) gives

ϕ̃(xi)−
N∑
i=1

βijϕ̃(xi) =
1

n
C−1

regΦ̃
(

k̃xi −
N∑
i=1

βijk̃xi

)
+ σ2

rC−1
reg

(
ϕ̃(xi)−

N∑
i=1

βijϕ̃(xi)
)
.

(5.4.2)

Let (ϕ̃(xi)−
N∑
i=1

βijϕ̃(xi)) be Aij . Then multiplying each side in (5.4.2) with AT
ij yields

AT
ijAij = AT

ij

1

n
C−1

regΦ̃
(

k̃xi −
N∑
i=1

βijk̃xi

)
+ σ2

rA
T
ijC

−1
regAij . (5.4.3)

When (5.3.4) is substituted for
1

n
C−1

regΦ̃ in (5.4.3), we obtain

AT
ijAij = AT

ijΦ̃K̃−1
reg

(
k̃xi −

N∑
i=1

βijk̃xi

)
+ σ2

rA
T
ijC

−1
regAij . (5.4.4)

Note that AT
ijC

−1
regAij in (5.4.4) gives the squared Mahalanobis distance between ϕ̃(xi)

and
N∑
i=1

βijϕ̃(xi). Then the distance is found as

AT
ijC

−1
regAij =

1

σ2
r

(
AT

ijAij − AT
ijΦ̃K̃−1

reg

(
k̃xi −

N∑
i=1

βijk̃xi

))
.
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From ϕ̃(xi)
T Φ̃ = k̃

T

xi , A
T
ijΦ̃ becomes

(
k̃xi −

N∑
i=1

βijk̃xi

)T
, and

∥ϕ̃ (xi)−
N∑
k=1

βkt ϕ̃(xk)∥2M

=
1

σ2
r

[(
k̃xixi − 2

N∑
l=1

βlj k̃xixl +
N∑
l=1

N∑
h=1

βljβhj k̃xlxh

)

−
(

k̃xi −
N∑
i=1

βijk̃xi

)T
K̃

−1

reg

(
k̃xi −

N∑
i=1

βijk̃xi

)]
.

(5.4.5)

The distance in (5.4.5) considers the centered data points. Coefficient and probabil-

ity calculations in (5.4.12) and (5.4.13) use the distance between non-centered data

points. (5.4.5) can be directly used in those calculations because centering of data

points will not change the distance value. Since we need the Mahalanobis distance

itself, ∥ϕ (xi)−
N∑
k=1

βkj ϕ(xk)∥M is equal to the square root of (5.4.5).

The Mahalanobis distance ∥ϕ (xi) −
N∑
k=1

βkj ϕ(xk)∥M can be written in terms of ma-

trices and vectors. As in Section 4.3.1, let βj be the column vector containing all

βij’s for a given cluster j. K̃ is the kernel matrix of centered data points. Thus, K̃i

becomes the column of that matrix and K̃ii is the ith row and ith column element.

Representation of the Mahalanobis distance in terms of βj and K̃ becomes√
1

σ2
r

[
K̃ii − 2βT

j K̃i + β
T
j K̃βj −

(
K̃i − K̃βj

)T
K̃

−1

reg

(
K̃i − K̃βj

)]
. (5.4.6)

Using the Mahalanobis distance obtained in (5.4.6), the objective function (5.4.1) can

be written as
N∑
i=1

T∑
j=1

p2ij

√
1

σ2
r

[
K̃ii − 2βT

j K̃i + β
T
j K̃βj −

(
K̃i − K̃βj

)T
K̃

−1

reg

(
K̃i − K̃βj

)]
.

Then the Lagrangian L(P,C,Λ) becomes

N∑
i=1

T∑
j=1

p2ij

√
1

σ2
r

[
K̃ii − 2βT

j K̃i + β
T
j K̃βj −

(
K̃i − K̃βj

)T
K̃

−1

reg

(
K̃i − K̃βj

)]

−
N∑
i=1

λi

( T∑
j=1

pij − 1

)
.

(5.4.7)

67



The derivative of (5.4.7) with respect to βj is found as

∂L

∂βj

=
1

σ2
r

N∑
i=1

1

2
p2ij

−2 K̃i + 2 K̃βj +
(
2 K̃

T
K−1

reg

(
K̃i − K̃βj

))
dM(i, j)

, (5.4.8)

where dM(i, j) is√√√√ 1

σ2
r

[
K̃ii − 2βT

j K̃i + β
T
j K̃βj −

(
K̃i − K̃βj

)T
K̃

−1

reg

(
K̃i − K̃βj

)]
. (5.4.9)

Making (5.4.8) equal to 0 yields

N∑
i=1

p2ij
K̃βj − K̃

T
K−1

reg K̃βj

dM(i, j)
=

N∑
i=1

p2ij
K̃i − K̃

T
K−1

reg K̃i

dM(i, j)
·

By rearranging the above equation, we obtain

(
K̃ − K̃

T
K−1

reg K̃
)
βj

N∑
i=1

p2ij
dM(i, j)

=
N∑
i=1

p2ij

(
I − K̃

T
K−1

reg

)
K̃i

dM(i, j)
· (5.4.10)

Assuming that K̃ matrix is invertible, multiplying both sides of (5.4.10) with K̃
−1

from the left gives

(
I − K−1

reg K̃
)
βj

N∑
i=1

p2ij
dM(i, j)

=
(

K̃
−1

− K−1
reg

) N∑
i=1

p2ij
K̃i

dM(i, j)
· (5.4.11)

Please note that since K̃ matrix is symmetric, K̃
−1

K̃
T

= I. From (5.4.11), βj is

obtained as

βj =
(

I − K−1
reg K̃

)−1(
K̃

−1
− K−1

reg

) N∑
i=1

p2ij
K̃i

dM(i, j)

N∑
i=1

p2ij

dM(i, j)

· (5.4.12)

For given βj’s, pij’s are found as by taking the derivative of (5.4.7) with respect to

pij’s. We obtain

pij =

1

dM(i, j)

T∑
t=1

1

dM(i, t)

· (5.4.13)
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5.4.1 KPD-M Algorithm

KPD-M Algorithm updates the cluster centers implicitly as in KPD Algorithm.

Therefore, it is enough to updateβj’s and pij’s only. The update rule forβj’s becomes

β
(r)
j =

(
I − K−1

reg K̃
)−1(

K̃
−1

− K−1
reg

) N∑
i=1

(p
(r−1)
ij )2 K̃i

dM(i, j)(r−1)

N∑
i=1

(p
(r−1)
ij )2

dM(i, j)(r−1)

· (5.4.14)

After all βj’s are updated, using new βj values pij’s will be updated as

p
(r)
ij =

1

dM(i, j)(r)

T∑
t=1

1

dM(i, t)(r)

· (5.4.15)

The pseudocode of KPD-M Algorithm is given in Algorithm 4.

Algorithm 4: KPD-M Algorithm
Input : data set X, coefficient matrix B, number of clusters T , kernel

function k, stopping criterion ϵ, regularization parameter σr

Output: probability matrix P

1 Initialize P to a random probability matrix and B to a random coefficient

matrix and Calculate K(xi, xl) and k̃xixl for i, l ∈ 1, ..., N , k̃xi for

i ∈ 1, ..., N , and K̃
−1

reg.

2 Calculate p
(0)
ij ’s in P matrix as in (5.4.15).

3 Set r = 0.

4 while
T∑

j=1

|β(r)
j − β(r−1)

j | > ϵ do

5 r = r + 1

6 Update β(r)
j as in (5.4.14)

7 Update p
(r)
ij as in (5.4.15)

8 end
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CHAPTER 6

EXPERIMENTAL STUDY

In this section, experimental study for the proposed algorithms KPD, KPD-F, and

KPD-M are conducted. These algorithms are coded in MATLAB R2021b, and they

are run using a computer with Intel Xeon E2246G, having a 3.6 GHz processor, and

16 GB RAM. For each algorithm, real data sets from UCI machine learning repository

and synthetic data sets are used for the experiments, and performance of them are

measured. The experiment results of the proposed algorithms are compared with the

best known results coming from soft kernel methods for each data set. These results

are taken from the study [29] with the algorithms of KFCM-F and KFCM-K.

Eight real data sets are chosen from UCI machine learning data sets [37], namely

Iris, Wisconsin Diagnostic Breast Cancer, Wine, Wisconsin (Original) Breast Cancer

[38], Ionosphere, Haberman, Sonar, and SPECT data sets. For the synthetic data sets,

different patterns of data are generated, and they are named as Ring, Line, Dense,

Fuzzy X, Parabolic, and Noisy Ring data sets. All data sets are normalized to have

zero mean and one standard deviation.

Polynomial (P) and Gaussian (G) kernel functions are used for the experimentation.

For the kernel functions, several parameter values are explored. Table 6.1 shows the

parameter settings for the kernel functions.

71



Table 6.1: Parameter settings for kernel functions

Kernel Function Parameter Value

Polynomial
a 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 50

b 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Gaussian σ 0.01, 0.02, 0.05, 0.1-10*, 20, 30, 40, 50, 60, 70, 80, 90, 100
* Values are incremented by 0.1 starting from 0.1 until 10.

Here, polynomial kernel has two parameters to be determined, constant a and expo-

nent b. For the constant a, 17 different values ranging between 0 and 50 are tested.

The values for the exponent term b vary between 2 and 12. Therefore, 17× 11 differ-

ent parameter setting is experimented for each algorithm that use polynomial kernel

to determine the kernel parameters.

Gaussian kernel has only one parameter σ. For the experimentation, 112 different σ

values between 0.01 and 100 are tested. For each parameter value, algorithms are run

100 times because of the randomness in the algorithms, and the parameters giving the

best result on the average accuracy are chosen for each algorithm.

For KPD-M algorithms, σr parameter used in the distance function (5.4.9) should also

be determined. Therefore, 10 different σr values, shown in Table 6.2, are tested for

both KPD-M algorithms.

Table 6.2: σr values for KPD-M algorithms

Parameter Values

σr 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20

Among those parametres, the value that gives the best average accuracy level is set as

σr.

KPD and KPD-M algorithms have a stopping criterion of

T∑
j=1

|β(r)
j − β(r−1)

j | < 10−10 .

That is, when the sum of the change of all the cluster coefficients becomes less than
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10−10, the algorithm stops. For KPD-F algorithms, the stopping criterion is deter-

mined as

T∑
j=1

|c(r)j − c(r−1)
j | < 10−10 ,

which means that the algorithm will stop when the sum of the change in the centers

in the input space is less than 10−10. In all of the algorithms, we also add another

stopping criterion that ensures that the total number of iterations does not exceed 100

in order to prevent looping.

We report the results of the algorithms for both polynomial (P) and Gaussian (G)

kernels. Since we propose three algorithms and use two kernel functions for each

algorithm, six algorithm results are provided for each data set. Note that, [29] reports

KFCM-F algorithm results for Gaussian kernel only, while giving KFCM-K results

for both of the kernel functions.

KPD-M algorithm is developed using the Mahalanobis distance with regularized co-

variance only. Mahalanobis distance with invertible covariance in Section 5.2 is not

taken into account since it is not known whether the covariance matrix is invertible.

In the result tables provided for each data set, the first column gives the algorithms

to be tested with their optimal parameters. The second, third, and fourth columns

provide the best, worst, and average accuracy levels, respectively. Best accuracy is

obtained by taking the maximum accuracy level out of 100 trials. The minimum

accuracy of 100 trials is reported as worst accuracy. Average accuracy level is found

by taking the mean of the accuracy of 100 trials. Fifth column provides the average

CPU time of the algorithms. The number of times the best accuracy level is obtained

in these trials, called best hit, is supplied in the last column.

Kernel probabilistic distance clustering algorithms are soft clustering methods. There-

fore, instead of assigning a data point to a single cluster, they calculate the probability

of a data point to belong to a cluster. To make a hard clustering assignment, we assign

a data point to a cluster such that the probability of data point belonging to a cluster
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is the highest. That is, given xi,

xi ∈ Aj if j = argmax
j

{pij} ,

where Aj is the set of data points in cluster j.

Label of a cluster is determined by choosing the majority class of data points in that

cluster. After cluster labels are specified, the original class of data points and their

assigned class coming from clusters they belong are compared. The accuracy is ob-

tained by dividing the summation of data points with correct matching into total num-

ber of data points. That is,

accuracy =

N∑
i=1

δyi,ŷi

N
,

where N is the number of objects, yi is the class of object i, ŷi is the assigned class

of object i (or the class of cluster that object i belongs to), and δyi,ŷi is the Kronecker

delta function such that

δyi,ŷi =

1, if yi = ŷi ,

0, if yi ̸= ŷi .

6.1 Real Data Sets

UCI Machine learning data sets that are used are multivariate data sets, and each data

point belongs to a class. According to those labels, clustering accuracy is calculated

by checking whether data points having the same label are clustered together.

6.1.1 Iris Data Set

Iris data set consists of three classes and four attributes. Data set contains 150 objects,

and there are no missing values. Each class has the equal number of data points.

Table 6.3 shows the clustering algorithm results of the proposed algorithms and kernel

algorithms in the literature for the Iris data with three clusters. The optimal parameter

values for each algorithm are also supplied.
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When the best results are examined, KPD (G) and KPD-M (G) can construct clusters

with 100% accuracy for 11 and 8 times out of 100 trials, respectively. Variance of

the accuracy level of these algorithms are high, and they have low average accuracy.

When the average results are investigated, KPD-F (P) has the highest accuracy. It

finds 96.7% accuracy in 99 trials. On the other hand, KPD-F (G) algorithm has a high

average accuracy with no deviation. When proposed algorithms are compared with

the ones in the literature, it can be seen that KPD-F (P) and KPD-F (G) performs very

well on the average. KPD (G) and KPD-M (G) can obtain perfect clustering.

While KPD (P) has the highest CPU time, KPD-F (G) has the lowest one. However,

considering the fact that the CPU time unit is seconds, CPU time of the algorithms

are close to each other, and there are no significant difference between them.

Table 6.3: Results for Iris data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 10) 84.0% 84.0% 84.0% - -

KFCM-K (G) (σ = 2) 85.3% 85.3% 85.3% - -

KFCM-K (P) (a = 15, b = 8) 88.7% 88.7% 88.7% - -

KPD (P) (a = 2, b = 3) 99.3% 66.0% 87.4% 0.767 11

KPD (G) (σ = 0.78) 100.0% 66.0% 75.0% 0.413 11

KPD-F (P) (a = 10, b = 2) 98.7% 56.0% 97.2% 0.015 99

KPD-F (G) (σ = 7.8) 96.7% 96.7% 96.7% 0.009 100

KPD-M (P) (a = 9, b = 4, σr = 10) 97.3% 54.0% 78.1% 0.555 10

KPD-M (G) (σ = 0.8, σr = 2) 100.0% 63.3% 77.0% 0.483 8

6.1.2 Wisconsin Diagnostic Breast Cancer Data Set

Wisconsin Diagnostic Breast Cancer data consists of 569 data points, each having

30 attributes with no missing values. There are two classes that define the data set.

Therefore, in the experiments the cluster number is set to two.

Table 6.4 indicates that when the results are examined in terms of the average accu-

75



racy, KFCM-F (G) gives the highest accuracy, which is 92.8%. KPD-M (G) provides

an average accuracy of 91.5%, which is the highest accuracy compared to the results

of our proposed algorithms. The best accuracy is obtained by KPD-F (P) algorithm,

and this result is observed 31 times in 100 trials. KPD-M (G), KPD-M (P), and KPD

(P) algorithms also provide high best accuracy results. The CPU time of KPD-F

methods are the lowest while the highest time is observed in KPD (G) algorithm.

Table 6.4: Results for Wisconsin diagnostic breast cancer data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 6.32) 92.8% 92.8% 92.8% - -

KFCM-K (G) (σ = 10) 91.6% 91.6% 91.6% - -

KFCM-K (P) (a = 50, b = 2) 91.2% 91.2% 91.2% - -

KPD (P) (a = 30, b = 2) 91.9% 70.1% 86.0% 12.419 3

KPD (G) (σ = 2) 88.1% 80.6% 84.9% 24.309 3

KPD-F (P) (a = 2, b = 7) 95.3% 77.3% 85.1% 0.257 31

KPD-F (G) (σ = 9.8) 86.3% 84.7% 84.7% 0.109 1

KPD-M (P) (a = 12, b = 2, σr = 10) 93.3% 61.8% 81.8% 18.617 2

KPD-M (G) (σ = 9.1, σr = 5) 94.9% 88.1% 91.5% 15.285 6

6.1.3 Wine Data Set

Wine data has 178 instances, each has 13 attributes. The data set consists of three

different classes, and classes have 59, 71, and 48 objects. There is no missing value.

The experiment is conducted for three clusters. Table 6.5 shows the results.

The average accuracy level of the proposed algorithm ranges between 75.4% to 78.5%.

On the other hand, the kernel algorithms in the literature yields 96-98% accuracy with

no deviation. Therefore, our algorithms does not provide good results when the aver-

age accuracy is considered. When the best accuracy values are examined, KPD (G)

and KPD-M (G) give 98.3 % and 98.9 % accuracy, respectively. They obtain the best

result two times since these algorithms have higher variance. KPD-F (G) algorithm

has the lowest variance, and gives highest average accuracy when only proposed al-
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gorithms are considered. CPU time of the algorithms are so close to each other, and

KPD-F algorithms have the minimum value.

Table 6.5: Results for Wine data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 1.41) 96.1% 96.1% 96.1% - -

KFCM-K (G) (σ = 3.46) 97.8% 97.8% 97.8% - -

KFCM-K (P) (a = 20, b = 2) 97.8% 97.8% 97.8% - -

KPD (P) (a = 3, b = 2) 97.2% 62.3% 77.3% 0.565 5

KPD (G) (σ = 1.4) 98.3% 63.3% 75.6% 0.401 2

KPD-F (P) (a = 2, b = 6) 84.8% 75.3% 77.4% 0.078 4

KPD-F (G) (σ = 9.8) 78.7% 73.0% 78.5% 0.041 93

KPD-M (P) (a = 2, b = 2, σr = 10) 97.2% 62.2% 76.9% 0.644 2

KPD-M (G) (σ = 1.3, σr = 1) 98.9% 61.7% 75.4% 0.619 2

6.1.4 Wisconsin Original Breast Cancer Data Set

This data set contains 699 data points with nine attributes. 16 data points have missing

values, therefore those objects were excluded in the experiments. The data set has two

classes with a size of 444 and 239 (after objects with missing values are eliminated).

Table 6.6 shows the experiment results.

KPD-M (P), KPD-F (P), and KPD-F (G) algorithms yield good results on Wisconsin

original data set, and their results are better than other kernel algorithms reported.

KPD-M (P) algorithm has the highest average accuracy rate when compared with all

of the algorithms. It finds the best result 92 times. The worst result it gives is 96.3%.

KPD-F (P) and KPD-F (G) algorithms find the second highest average accuracy rate.

These algorithms have zero variance, and they have the smallest CPU time. KPD

(G) provides 96.6% accuracy with no deviation, and beats KFCM-K (P) algorithm.

However, it is costly in terms of CPU time. KPD (P) has the highest best accuracy

level, which is observed 62 times in 100 trials. It has a higher average accuracy level

although it has a deviation. KPD-M (G) is the only algorithm that does not find a
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good result. Its clustering accuracy is the lowest compared to all the algorithms.

Table 6.6: Results for Wisconsin (Original) breast cancer data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 1.41) 97.1% 97.1% 97.1% - -

KFCM-K (G) (σ = 6.32) 97.1% 97.1% 97.1% - -

KFCM-K (P) (a = 50, b = 2) 95.2% 95.2% 95.2% - -

KPD (P) (a = 40, b = 7) 97.7% 74.5% 96.4% 12.894 62

KPD (G) (σ = 1.7) 96.6% 96.6% 96.6% 51.184 100

KPD-F (P) (a = 50, b = 2) 97.2% 97.2% 97.2% 0.050 100

KPD-F (G) (σ = 20) 97.2% 97.2% 97.2% 0.023 100

KPD-M (P) (a = 12, b = 2, σr = 10) 97.5% 96.3% 97.4% 27.965 92

KPD-M (G) (σ = 7.7, σr = 1) 62.8% 62.8% 62.8% 26.483 100

6.1.5 Ionosphere Data Set

Ionosphere data consists of 351 objects with no missing value. There are 33 features

and two classes. According to the experiment results in Table 6.7 KPD and KPD-M

(G) algorithms perform better than KPD-M (P) and KPD-F algorithms in terms of

average accuracy. KPD-M (G) provides 74.5% average accuracy level, which is the

highest considering our proposed algorithms, and so close to the accuracy of KFCM-

K (G). In addition, this algorithm has small variance compared to KPD algorithms.

KPD (G) algorithm finds 74.4% accuracy on the average but with a higher variance.

KPD (P) also has a good average accuracy result, which is 74.0%. These two algo-

rithms are better than KFCM-F (G) and KFCM-K (P) algorithms in the literature in

this data set.

The best accuracy level is obtained by KPD (P), and the algorithm finds this level 3

times. On the other hand, KPD (G) has the best accuracy of 74.9%, which is achieved

84 times. KPD-M (P) and KPD-M (G) gives 76.9% and 75.5% accuracy, respectively.
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Table 6.7: Results for Ionosphere data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 7.07) 70.7% 70.7% 70.7% - -

KFCM-K (G) (σ = 6.32) 74.6% 74.6% 74.6% - -

KFCM-K (P) (a = 30, b = 8) 72.7% 72.7% 72.7% - -

KPD (P) (a = 1, b = 12) 77.8% 71.8% 74.0% 0.479 3

KPD (G) (σ = 2) 74.9% 52.7% 74.4% 1.334 84

KPD-F (P) (a = 1, b = 12) 77.5% 62.7% 64.7% 0.200 3

KPD-F (G) (σ = 9) 65.8% 65.8% 65.8% 0.033 100

KPD-M (P) (a = 1, b = 12, σr = 2) 76.9% 62.7% 64.7% 11.987 1

KPD-M (G) (σ = 9, σr = 5) 75.5% 73.2% 74.5% 1.639 7

6.1.6 Haberman Data Set

Haberman’s Survival data has 306 objects with three features with no missing value.

There are two classes which represent whether the patients survived. The experiment

results of this data set is given in Table 6.8.

Except KPD-M (G), all the proposed algorithms yield good accuracy results with

low variance when compared with the algorithms in the literature. KPD (P) has the

highest average accuracy, which is 74.6%. Moreover, it has a low CPU time. The

average accuracy of KPD (G) and KPD-F algorithms are 73.5%, and KPD-M (P) has

73.7% accuracy on the average. KPD-F (P) algorithm has no variation. Based on the

best accuracy levels, KPD (P) leads the way since it has 75.2%. Then comes KPD-F

(G) and KPD-M (P) with 74.2%. Although the KPD-M (P) provides good accuracy,

its average CPU time is the highest, which is 44.378 seconds. On the other hand,

KPD-M (G) results are not promising.
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Table 6.8: Results for Haberman data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 0.71) 73.8% 73.8% 73.8% - -

KFCM-K (G) (σ = 10) 73.5% 73.5% 73.5% - -

KFCM-K (P) (a = 4, b = 4) 73.9% 73.9% 73.9% - -

KPD (P) (a = 3, b = 8) 75.2% 73.2% 74.6% 0.433 4

KPD (G) (σ = 9.8) 73.9% 73.4% 73.5% 1.025 1

KPD-F (P) (a = 0, b = 6) 73.5% 73.5% 73.5% 0.011 100

KPD-F (G) (σ = 0.01) 74.2% 72.9% 73.5% 0.001 18

KPD-M (P) (a = 1, b = 12, σr = 10) 74.2% 73.2% 73.7% 44.378 6

KPD-M (G) (σ = 0.02, σr = 20) 72.5% 57.5% 65.3% 1.503 5

6.1.7 Sonar Data Set

This data set has 208 data points. Each object has 60 features and belongs to one

of two clusters. According to the experiment reuslts reported in Table 6.9, KPD-F

algorithms performs better on the average accuracy and outperforms KFCM-F and

KFCM-K algorithms.

Based on the best accuracy levels obtained in these runs, KPD-M (P), KPD (P), and

KPD (G) give the highest best accuracy of 73.1%, 72.6%, and 70.2%, respectively.

However these algorithms have high variance, and their average accuracy results are

low compared to KPD-F algorithms. Moreover, the best value is observed 3 times

only. KPD-F algorithms, on the other hand, observes the best accuracy levels approx-

imately 90 times, and they provide lower variance. All the algorithms have low CPU

time since they can perform in less than one second on the average.

80



Table 6.9: Results for Sonar data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 4) - - 61.4% - -

KFCM-K (G) (σ = 10) 56.3% 56.3% 56.3% - -

KFCM-K (P) (a = 50, b = 2) - - 59.2% - -

KPD (P) (a = 20, b = 2) 72.6% 52.5% 57.2% 0.368 3

KPD (G) (σ = 2) 70.2% 53.8% 56.4% 0.361 3

KPD-F (P) (a = 40, b = 7) 63.9% 63.5% 63.9% 0.027 94

KPD-F (G) (σ = 3.3) 62.5% 61.1% 62.0% 0.020 96

KPD-M (P) (a = 50, b = 2, σr = 5) 73.1% 54.9% 59.1% 0.572 3

KPD-M (G) (σ = 8.6, σr = 10) 63.5% 51.9% 56.3% 0.459 3

6.1.8 SPECT Data Set

SPECT Heart data set has 80 training and 187 test objects. Both training and test data

is used in this experiment. There are 22 features and two classes. No missing value

is observed. Table 6.10 provides the results of the algorithms on SPECT data.

All of the algorithms perform well when the average accuracy level is considered. Av-

erage accuracy level of the proposed algorithms range from 84.1% to 84.6% whereas

that of KFCM-F and KFCM-K algorithms vary between 79.4 % and 84.3%. KPD

(G), KPD-F algorithms, and KPD-M (G) provide good results with no variation, and

KPD-M (P) and KPD-F (G) outperform all other algorithms. KPD-M (P) gives the

highest best accuracy 50 times out of 100 trials. KPD (P) has a variance but on the

average and best accuracy, it performs well. The average CPU time of all algorithms

are low, and that of KPD-F algorithms are the lowest.
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Table 6.10: Results for SPECT data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 0.32) - - 80.4% - -

KFCM-K (G) (σ = 0.22) 84.3% 84.3% 84.3% - -

KFCM-K (P) (a = 50, b = 2) 79.4% 79.4% 79.4% - -

KPD (P) (a = 0, b = 3) 84.6% 79.4% 84.1% 0.922 35

KPD (G) (σ = 0.02) 84.3% 84.3% 84.3% 0.779 100

KPD-F (P) (a = 5, b = 3) 84.1% 84.1% 84.1% 0.062 100

KPD-F (G) (σ = 2) 84.6% 84.6% 84.6% 0.021 100

KPD-M (P) (a = 30, b = 3, σr = 10) 85.8% 80.5% 84.5% 1.066 50

KPD-M (G) (σ = 0.02, σr = 0.1) 84.3% 84.3% 84.3% 1.023 100

6.2 Synthetic Data Sets

Synthetic data sets are created to measure the performance of the proposed algorithms

where the data set cannot be separated linearly. It is difficult to cluster these data sets

using traditional clustering algorithm. The experimentation on these data sets reflects

the performance of kernel-based clustering on extreme clusters.

Figure 6.1 provides six synthetic data sets that are constructed for this section. These

are ring, line, dense, fuzzy X, parabolic, and noisy ring data. Each data set has two

clusters, colored by red and blue dots. For the noisy ring, black objects refer to the

noise that does not belong to any cluster.

6.2.1 Ring Data Set

In this data set, there is an inner and an outer ring that should be clustered. Each ring

consists of 200 data points. Table 6.11 provides the experiment results on ring data

set. Note that for each algorithm, number of clusters is taken as two.

KPD (P) and KPD-M (P) are the two algorithms that can separate the rings and cor-
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(f) Noisy ring data set

Figure 6.1: Synthetic data sets
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rectly clusters all data points with no variation. Based on the CPU time, KPD-M (P)

is less costly. The performance of KPD-F algorithms are not promising since they

cannot correctly cluster the data set in any of the trials. The KPD (G), on the other

hand, can separate the data correctly only 5 times. KFCM-K algorithms in the litera-

ture can also provide the best results always while KFCM-F (G) is not successful at

separating the rings.

Table 6.11: Results for Ring data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 0.22) - - 76.3% - -

KFCM-K (G) (σ = 2.83) 100.0% 100.0% 100.0% - -

KFCM-K (P) (a = 15, b = 8) 100.0% 100.0% 100.0% - -

KPD (P) (a = 0, b = 4) 100.0% 100.0% 100.0% 19.233 100

KPD (G) (σ = 0.4) 100.0% 50.0% 72.7% 0.073 5

KPD-F (P) (a = 0, b = 2) 78.3% 50.0% 62.5% 0.044 1

KPD-F (G) (σ = 0.3) 92.8% 50.0% 63.4% 0.001 4

KPD-M (P) (a = 1, b = 11, σr = 10) 100.0% 100.0% 100.0% 8.804 100

KPD-M (G) (σ = 0.4 σr = 10) 97.0% 52.3% 75.0% 8.230 2

6.2.2 Line Data Set

Line data set has two clusters. The first one is a line, and the second cluster is a

sphere-like shape near the line. Each cluster contains 200 objects. Based on the

experimental results provided in Table 6.12, kernel fuzzy algorithms obtain 100%

accuracy. However, in KFCM-F (G) and KFCM-K (P) algorithms, these results are

obtained when the cluster number is set to four.

Therefore, in our experimentation, we first run the algorithms for two-cluster case,

which is more accurate considering the behavior of the data set. Then, based on

the accuracy results for two clusters, we rerun some of the algorithms by setting the

cluster number as three and four in order to improve the clustering results.

All of the proposed algorithms can cluster the line data set with 100% accuracy. KPD
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(b) KPD-F (G) result

Figure 6.2: Results of KPD-F algorithms on line data set when T = 4

and KPD-M algorithms can obtain perfect clusters when the cluster number is taken

as two. However, the reported results of KPD-F algorithms are when there are four

clusters (T = 4). Figure 6.2 shows the clusters obtained by KPD-F (P) and KPD-F

(G) when T is four. KPD-F (P) divides the line and the sphere into two. KPD-F (G)

groups the sphere as one cluster and the line as three clusters. When CPU times of the

algorithms are compared, KPD-F algorithms are the fastest while KPD and KPD-M

algorithms run slower.

Table 6.12: Results for Line data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 1, T = 4) 100.0% 100.0% 100.0% - -

KFCM-K (G) (σ = 0.71, T = 2) 100.0% 100.0% 100.0% - -

KFCM-K (P) (a = 30, b = 2, T = 4) 100.0% 100.0% 100.0% - -

KPD (P) (a = 3, b = 4, T = 2) 100.0% 100.0% 100.0% 12.454 100

KPD (G) (σ = 0.5, T = 2) 100.0% 100.0% 100.0% 14.322 100

KPD-F (P) (a = 10, b = 9, T = 4) 100.0% 100.0% 100.0% 0.224 100

KPD-F (G) (σ = 1.4, T = 4) 100.0% 100.0% 100.0% 0.055 100

KPD-M (P) (a = 4, b = 5, T = 2, σr = 10) 100.0% 100.0% 100.0% 12.282 100

KPD-M (G) (σ = 0.9, T = 2, , σr = 5) 100.0% 100.0% 100.0% 8.521 100
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6.2.3 Dense Data Set

Dense data set has a cluster that is cumulative on the upper left corner and another

cluster that spreads uniformly in a range. Each group has 100 objects. According

to the results presented in Table 6.13, KFCM-K (G) algorithm can cluster the dense

data with 100% accuracy using two clusters only. KFCM-K (P) and KFCM-F (G)

obtains 99.5% and 98.8% accuracy, respectively, and KFCM-F (G) has a variation. In

addition, these two algorithms obtain these accuracy levels when the cluster number

is set to six.

From the proposed algorithms, KPD and KPD-M algorithms with both polynomial

and Gaussian kernels yield 100% accuracy when they are run for two clusters. The

CPU time of these algorithms are close to each other and less than one second except

KPD (P) algorithm. For KPD-F (P), the best accuracy level is observed when number

of clusters is fixed to three. With this way, KPD-F (P) correctly clusters the dense

data. On the other hand, KPD-F (G) algorithm gives its best result when the cluster

number is set to four. On the average, it provides 96.6% accuracy, and it reaches

100% accuracy only once. KPD-F algorithms are the fastest ones when their CPU

time is considered.

Table 6.13: Results for Dense data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 7.07, T = 6) - - 98.8% - -

KFCM-K (G) (σ = 0.32, T = 2) 100.0% 100.0% 100.0% - -

KFCM-K (P) (a = 2, b = 4, T = 6) 99.5% 99.5% 99.5% - -

KPD (P) (a = 0, b = 3, T = 2) 100.0% 100.0% 100.0% 1.180 100

KPD (G) (σ = 0.2, T = 2) 100.0% 100.0% 100.0% 0.620 100

KPD-F (P) (a = 2, b = 7, T = 3) 100.0% 100.0% 100.0% 0.070 100

KPD-F (G) (σ = 0.8, T = 4) 100.0% 91.0% 96.6% 0.013 1

KPD-M (P) (a = 3, b = 5, T = 2, σr = 10) 100.0% 100.0% 100.0% 0.571 100

KPD-M (G) (σ = 0.3, T = 2, σr = 1) 100.0% 100.0% 100.0% 0.586 100
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6.2.4 Fuzzy X Data Set

Fuzzy X data is one of the most challenging data sets since objects from two clusters

intersect with each other in the middle. Therefore, it would be difficult to separate

the clusters. The experiments are reported for two clusters only since increasing

the number of clusters does not affect the accuracy levels. Table 6.14 provides the

accuracy levels of each algorithm.

Based on the average accuracy levels, KPD-M (P) outperforms all of the algorithms.

However, it has a higher variance. The average accuracy value of KPD-F (P) provides

the second highest accuracy, and KPD-F (P) has a lower variance when compared

with all other algorithms. From the kernel-based fuzzy algorithms, KFCM-K (P)

gives the highest accuracy on the average, which is 75.6%. KFCM-K (G) is the

one with the lowest average accuracy level when compared with all the algorithms.

When the best acuracy is examined, KPD-M (P) provides the highest result 11 times,

which is 96.8%. Then comes KPD-M (G) and KPD algorithms. Figure 6.3 shows

the clusters obtained by KPDM (P) algorithms with best and average accuracy levels,

respectively.
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(b) Best KPD-M (P) result

Figure 6.3: Results of KPD-F algorithms on line data set when T = 4

We can conclude that considering the average results, Mahalanobis distance has a

distinguished effect on explaining the clusters. However, KPD-F (P) is the most con-

sistent algorithm since it performs the best result almost half of the trials.
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Table 6.14: Results for Fuzzy X data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 1.41) - - 69.5% - -

KFCM-K (G) (σ = 1.41) - - 52.0% - -

KFCM-K (P) (a = 0, b = 2) - - 75.6% - -

KPD (P) (a = 8, b = 11) 87.8% 50.3% 61.1% 3.954 4

KPD (G) (σ = 0.2) 86.8% 50.0% 58.4% 7.630 2

KPD-F (P) (a = 0, b = 2) 76.8% 75.0% 75.8% 0.027 48

KPD-F (G) (σ = 0.8) 73.5% 50.5% 66.5% 0.023 8

KPD-M (P) (a = 0, b = 2, σr = 2) 96.8% 56.0% 86.5% 8.515 11

KPD-M (G) (σ = 0.3, σr = 5) 89.0% 50.0% 55.2% 8.511 2

6.2.5 Parabolic Data Set

Parabolic data set consists of two parabolas having some randomness. Each parabola

contain 250 data points. The experiments are conducted for two clusters, and Table

6.15 reports the results.

From all of the algorithms KFCM-K (G) has the highest average accuracy, which is

89.0%. The average accuracy level of the proposed algorithms ranges between 84.3-

87.7%. KPD-F (P) provides an average accuracy level of 87.7% with a less deviation.

Best accuracy level is obtained by KPD (G) algorithm 31 times. KPD-M (G) gives the

second highest best accuracy, but performing it three times only. KPD-F algorithms

have less variation when compared with KPD and KPD-M algorithms. CPU times of

KPD algorithms are the highest and those of KPD-F give the lowest.

Briefly, the average results of the algorithms on the parabolic data are similar to each

other while KPD-F algorithms have a low variance and kernel-based fuzzy algorithms

has no variance.
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Table 6.15: Results for Parabolic data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KFCM-F (G) (σ = 1) 88.2% 88.2% 88.2% - -

KFCM-K (G) (σ = 1) 89.0% 89.0% 89.0% - -

KFCM-K (P) (a = 10, b = 12) 87.8% 87.8% 87.8% - -

KPD (P) (a = 2, b = 3) 88.4% 81.4% 86.0% 26.665 5

KPD (G) (σ = 0.6) 90.4% 71.2% 86.4% 19.238 31

KPD-F (P) (a = 7, b = 7) 87.8% 87.0% 87.7% 0.182 63

KPD-F (G) (σ = 1.2) 87.2% 86.8% 86.9% 0.053 60

KPD-M (P) (a = 1, b = 3, σr = 10) 88.6% 72.0% 84.3% 13.257 2

KPD-M (G) (σ = 0.9, σr = 10) 89.2% 77.8% 85.8% 13.668 3

6.2.6 Noisy Ring Data Set

This data set is created by adding uniform noise to ring data set. Number of noises is

determined as the 10% of the number of objects in the ring data. It is assumed that

noises does not have any cluster. Cluster accuracy is measured whether the objects

in the rings are correctly clustered. Since KPD (P) and KPD-M (P) provide the best

accuracy in the ring data set, noisy ring data set is run for these two algorithms. Table

6.16 refers to the experiment results. Both of the algorithm correctly clusters the rings

and do not affect on the noises at all. In terms of CPU time, KPD-M (P) is faster than

KPD (P) algorithm.

Table 6.16: Results for Noisy Ring data set

Algorithms Best Worst Average
Avg CPU

Time (sec)

Best

Hit

KPD (P) (a = 0, b = 4) 100.0% 100.0% 100.0% 23.660 100

KPD-M (P) (a = 1, b = 11, σr = 10) 100.0% 100.0% 100.0% 10.105 100
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6.3 Comments on the Performance of the Proposed Algorithms

6.3.1 Performance on the Real Data Sets

When the performances of proposed algorithms for real data sets are compared, it

can be seen that KPD-F (G) has the lowest variance in general. It also provides good

results in terms of average accuracy in many real data sets. The performance of KPD-

F (P) depends on the data sets. Although in some data sets KPD-F (G) performs well

when it comes to best accuracy level, its performance is not steady.

KPD algorithms yield good results in terms of best accuracy. Their performances for

the average accuracy depend on data sets. They have high variance when compared

with KPD-F algorithms. Performance of KPD algorithms are promising when their

best accuracy levels are examined; therefore, they require good initialization to reduce

the variance of the results and increase the average accuracy levels.

As in KPD algorithms, KPD-M algorithms suffer from the initialization, so they do

not perform well in terms of average accuracy levels. However, according to their

best accuracy levels, they produce good results. Thus, improving the initialization

will affect the performance of KPDM-algorithms positively.

When the average CPU time of the algorithms are compared, KPD-F algorithms are

the fastest. In all of the data sets, they give results in less than a second. The speed of

KPD and KPD-M algorithms depends on the size of the data sets. When the number

of data points and features are increased, their average CPU time is adversely affected.

6.3.2 Performance on the Synthetic Data Sets

KPD algorithms perform well on synthetic data sets. In most of the cases, KPD (P)

outperforms KPD (G). These algorithms provide good results when the number of

clusters is selected as two. In addition, KPD (P) is experimented for noise data, and

it is observed that KPD (P) is noise-insensitive.

KPD-M algorithms work well on almost all synthetic data sets. KPD-M (P) algorithm

outperforms the other algorithms in data sets with intersecting clusters. In addition,
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KPD-M algorithms yield good results for two clusters. The performance of KPD-M

(P) algorithm on the noisy data shows that it is not sensitive to the noises.

When the performance of KPD-F algorithms are compared, KPD-F (P) is better than

KPD-F (G) in terms of average accuracy. In some data sets, KPD-F algorithms per-

forms well when the number of clusters are increased. KPD-F algorithms have the

lowest average CPU times than KPD and KPD-M algorithms in synthetic data.
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CHAPTER 7

CONCLUSION

Clustering is an unsupervised machine learning technique that aims to group the sim-

ilar objects and to separate dissimilar objects from each other. While doing so, it

considers an objective function and an appropriate similarity measure.

Kernel-based clustering methods are used to group the non-linearly separable data

sets in a higher dimensional space. In this space, it is assumed that the data can be

linearly separable, and traditional clustering approaches can be applied there. How-

ever, it is computationally costly to map the data into a high-dimensional space and

make a calculation in that space. Kernel functions solve this problem by allowing

us to obtain calculation results in higher dimensional space using the non-mapped

(original) data set. That is, there is no need to obtain the mapped data points to clus-

ter them in the higher dimensional space. Clustering in that space can also be made

using the objects in the original space with the help of kernel functions.

In this study, we work on a kernel-based soft clustering approach. Our focus is Prob-

abilistic Distance Clustering (PDC) given in [2], which is a soft clustering approach

that has a basic principle saying that membership probability of an object and its

distance to a cluster are inversely proportional. We adapt kernel method to PDC

approach, and propose three novel kernel-based PDC algorithms to the literature.

The principles of kernel-based PDC has been developed based on PDC principles.

Then using those principles, optimization models for this problem are generated. We

propose three novel algorithms. The first algorithm, KPD, defines and updates the

cluster centers in the kernel space implicitly. Center representation in KPD has a

novel approach. Centers are formed as the convex combination of all objects, and
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they are updated by updating the center coefficients. Moreover, an algorithm to obtain

the approximate centers in the input space is provided. The second algorithm, KPD-F,

constructs the cluster centers in the input space and applies clustering by mapping the

centers into feature space. Both KPD and KPD-F algorithms use Euclidean distance.

We also propose two kernelized Mahalanobis distance functions for feature space.

These functions differ depending on whether the covariance matrix is invertible or

not. Please note that the kernelized Mahalanobis distance functions in the literature

are developed either for squared Mahalanobis distance or by regularizing the objective

function of the clustering problem. The proposed Mahalanobis distance functions, on

the other hand, do not use these approaches in the literature. Given the covariance

matrix is non-invertible, we develop KPD-M algorithm, which is a kernel-based Ma-

halanobis PDC method. This algorithm follows the center definition and update rule

as in KPD algorithm considering the proposed Mahalanobis distance.

Experimental study for measuring the performance of these algorithms has been con-

ducted. We test the algorithms on both real and synthetic data sets, and compare the

results with soft kernel-based clustering algorithms. The performance of the algo-

rithms in the real data sets are promising. When the best accuracy levels are exam-

ined, proposed algorithms generally outperform soft clustering methods. On the other

hand, average accuracy results show that algorithms depend on the initialization for

some data sets. For synthetic data, our algorithms work with 100% accuracy in many

data sets with requiring less number of clusters.

Kernel-based PDC algorithms suffer from initialization since the results are strongly

dependent on the initialization, especially for real data set. As a future research di-

rection, the initialization effect should be reduced. In addition, proposed algorithms

are developed assuming that cluster sizes are given as fixed. However, data sets may

have different cluster sizes, and taking the cluster size as fixed may affect the perfor-

mance of the clustering algorithm adversely. Therefore, as another future research,

enhancing these algorithms for different cluster sizes should be considered.

The proposed algorithms are designed for a single kernel. Instead of using a single

kernel function, multiple kernel functions can be used by defining the kernel function

as a linear combination of multiple kernel functions. As a future work, kernel-based
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PDC with multiple kernels can be studied.
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