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ABSTRACT

A PARAMETER ERROR IDENTIFICATION METHOD FOR POWER
PLANT DYNAMIC MODELS

Açılan, Etki

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Murat Göl

June 2022, 52 pages

Incorrect parameters in a power plant dynamic model affect the analysis results and

control decisions in a power system, which may have serious consequences. The on-

line calibration techniques in the literature utilize sensitivity analysis to determine the

identifiable parameters before the calibration, and treat majority of sensitive param-

eters as potentially erroneous. Hence, the candidate parameter subset for calibration

mostly consists of distractors, i.e. highly sensitive but already correct parameters.

The inclusion of distractors in the parameter calibration may decrease the accuracy of

calibration, and increase the computation time. This thesis proposes a method to iden-

tify erroneous parameters through the mismatch between collected PMU measure-

ments and power plant model response. The proposed method relies on the classifica-

tion of Recurrence Plots of the mismatch using 2-D Convolutional Neural Networks,

and identifies the erroneous parameters via the orthogonal decomposition. Hence, a

smaller subset of candidate parameters is obtained by eliminating the distractors.

Keywords: Power Plant Parameter Calibration, Convolutional Neural Networks, Dy-
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namic Parameter Estimation, Collinearity, Identifiability, Time Series Classification
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ÖZ

GÜÇ SANTRALLERİNİN DİNAMİK MODELLERİNDE HATALI
PARAMETRE BELİRLEME METODU

Açılan, Etki

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Murat Göl

Haziran 2022 , 52 sayfa

Bir enerji santrali dinamik modelindeki yanlış parametreler, bir güç sistemindeki ana-

liz sonuçlarını ve kontrol kararlarını etkiler ve bu da ciddi sonuçlara yol açabilir. Li-

teratürdeki çevrimiçi kalibrasyon teknikleri, kalibrasyondan önce tanımlanabilir pa-

rametreleri belirlemek için duyarlılık analizini kullanır ve hassas parametrelerin ço-

ğunu potansiyel olarak hatalı olarak ele alır. Bu nedenle, kalibrasyon için aday para-

metre alt kümesi çoğunlukla çeldiricilerden, yani oldukça hassas ancak zaten doğru

parametrelerden oluşur. Parametre kalibrasyonuna çeldiricilerin dahil edilmesi, kalib-

rasyonun doğruluğunu azaltabilir ve hesaplama süresini artırabilir. Bu tez, toplanan

PMU ölçümleri ve enerji santrali model reaksiyonu arasındaki uyumsuzluk yoluyla

hatalı parametreleri belirlemek için bir yöntem önermektedir. Önerilen yöntem, 2-D

Evrişimli Sinir Ağları kullanılarak uyumsuzluğun Tekrarlama Grafiklerinin sınıflan-

dırılmasına dayanır ve ortogonal ayrıştırma yoluyla hatalı parametreleri tanımlar. Bu

sayede, çeldiriciler ortadan kaldırılarak daha küçük bir aday parametre alt kümesi

elde edilir.
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Anahtar Kelimeler: Güç Santrallerinde Parametre Kalibrasyonu, Evrişimli sinir ağ-

ları, Dinamik Parametre Kestirimi, Doğrudaşlık, Belirlenebilirlik, Zaman Serileri Sı-

nıflandırma
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CHAPTER 1

INTRODUCTION

Calibration of power plant dynamic models is crucial for correct operation and plan-

ning of power systems as power systems become more uncertain everyday, due to

high penetration of renewable sources and change of behaviour in the demand side

[1]. Hence, power plant dynamic models play a more significant role than before for

accurate control decision making. During their lifetime, parameters of power plant

dynamic models may change due to natural processes and human error. Incorrect dy-

namic models may create a difference between the actual and simulated power plant

response, and hence may cause wrong control decisions, which may lead to serious

consequences such as blackouts [2]. In order to prevent such events, power plant

dynamic models must be calibrated regularly. Traditionally, power plant dynamic

models are calibrated by offline staged tests. However, these tests are considered

economically infeasible and unreliable due to being labor intensive, and because of

the negative effects of the shutdown of the power plant during the calibration [3]. In

recent years, phasor measurement unit (PMU) based online calibration methods are

developed as an alternative to traditional offline staged tests [4].

In the literature, there are several approaches for online calibration of power plants

based on discrepancy between the actual response and simulated responses of the

power plant [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. PMU at the interconnection of

the power plant and the grid records the voltage phasors and the power plant output

power flow during a disturbance. Then, those recorded voltage phasors are played

back at the interconnection, to decouple the power plant from the rest of the network.

This process is called event playback. By utilizing the event playback function, the

dynamic model of the power plant is simulated to determine whether the model needs
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calibration. The mismatch between the dynamic model response and the actual PMU

measurements indicates the existence of erroneous parameters.

Regardless of the parameter calibration technique, most methods apply an identifi-

ability analysis in order to select the identifiable parameters and reduce the size of

the calibration problem. Identifiability analysis determines how well the parameters

can be estimated from the available PMU measurements. In the literature, sensitiv-

ity analyses are used to determine the identifiable parameters in a practical manner.

Sensitivity analysis quantifies the relative effect of the parameters on the output. The

dynamic power plant model parameters that have a high influence on the electrical

power outputs are found as sensitive, hence they are labeled as identifiable param-

eters. In [4, 7, 9], the trajectory sensitivity analysis is employed and norms of the

sensitivity values are used to assess the identifiability. In [12, 13, 14], an analysis of

variance (ANOVA) based sensitivity analysis is employed, and the highest ANOVA

index is used to determine identifiability before the parameter calibration process.

Also, there are other methods for identifiability analysis such as elementary effects

method used in [11] which uses the change in the electrical power outputs, and the

empirical Gramian based approach is utilized in [10]. These methods are proven to

be successful at determining the sensitive parameters, nevertheless, they have simi-

lar drawbacks. Firstly, most of the existing methods do not consider the parameter

collinearity problem. The collinear parameters cause bias in the calibration process,

hence, they must be detected beforehand. Secondly, although possible erroneous pa-

rameters are included, the candidate parameter set contains lots of ’distractors’ —

highly sensitive but already correct parameters[4]. This may bias already correct

dynamic model parameters considering the parameter dependence and stochastic cal-

ibration processes. Therefore, it is wise to exclude the distractors from the calibration

process. [15] and [16] are two pioneer studies which address to decrease the candidate

parameter subset further, with more detailed sensitivity analysis metrics by utilizing

signal properties of the power plant response. In [15], a systematic approach to ad-

vance the traditional sensitivity analysis techniques is presented. In [16], a screening

process which utilizes the Hilbert spectrum of previously determined sensitive pa-

rameters and model output errors is introduced.

This thesis proposes a method to identify erroneous power plant parameters from

2



disturbance events by utilizing state-of-the-art CNN classifiers and the orthogonal

decomposition technique. The proposed method utilizes the mismatch between sim-

ulated dynamic power plant model output power flows and collected PMU measure-

ments from the field during a disturbance. The 1-D time series mismatch data are

transformed into 2-D texture images using Recurrence Plots to benefit from promis-

ing performance of feature detection of CNN in 2-D signals over 1-D signals [17].

Erroneous parameters are identified from the mismatch via time series image classi-

fication using CNN, step by step. Orthogonal decomposition is used to extend the

method to multiple parameter error detection. The CNN model is trained with syn-

thetic measurements which are generated by using PSS/E. A trajectory sensitivity

analysis is used to determine the most sensitive parameters to decrease the size of the

training set. Also, a collinearity analysis method that utilizes trajectory sensitivities

is proposed and it is used to group collinear parameters for labeling, which helps to

eliminate multiple solutions.

1.1 The Contribution of the Thesis

In the power plant dynamic model calibration problem, the existing methods in the

literature include all sensitive parameters to the parameter calibration process. How-

ever, the candidate set of parameters to calibrate 1) may not be identifiable due to

relation with other parameters in the candidate parameter set, 2) may include already

correct parameters and these already correct parameters may effect the accuracy and

computation time of the calibration process. This thesis proposes two novel methods

to overcome these problems. The contributions of the thesis are as follows;

1 - A collinearity analysis method, which detects collinear parameters and prevents

multiple solution problem in the power plant dynamic model calibration pro-

cess, is proposed. The effects of the collinear parameters and the necessity of

the proposed method are presented. The fact that sensitivity does not necessar-

ily indicate identifiability is shown with several experiments.

2 - A parameter error identification method for power plant dynamic models is pro-

posed. The proposed method identifies the erroneous parameters in the power

3



plant dynamic model by using the mismatch between the model simulation and

the collected PMU measurements at the point of interconnection with the grid.

1.2 The Outline of the Thesis

The thesis is organized as follows; in Chapter 2, the necessary theoretical background

on power plant modeling and simulation, power plant model calibration, sensitivity &

collinearity analyses, recurrence plots and orthogonal projection & decomposition are

given. In Chapter 3, the proposed collinearity analysis method is explained in detail.

The method is tested on WSCC 9-bus test system by using the Ensemble Kalman

Filter as the parameter estimator. The test results containing all possible cases of

collinearity are presented. This chapter proves the necessity of using a collinearity

analysis before the calibration process. Chapter 4 presents a novel parameter error

identification method for power plant dynamic models. The proposed method identi-

fies the erroneous parameters of a power plant dynamic model by utilizing the PMU

measurements at the point of interconnection between the power plant and the grid.

The proposed parameter error identification method is also tested on WSCC 9-bus

test system with two test cases. In Chapter 5, the thesis is concluded and the future

work is given.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Power Plant Modeling and Simulation

Power plants are dynamic systems that are represented by a set of differential al-

gebraic equations. These mathematical equations represent the steady and dynamic

states of physical phenomena, and are utilized with the purpose of planning and con-

trol. They contain a synchronous generator model (GEN), and usually contain an

exciter model (EXC), a governor model (GOV) and a power system stabilizer model

(PSS). These subsystems are mathematically coupled with each other, and model a

power plant altogether. The dynamic models of power plants are usually provided by

the vendor, and they are mostly customer specific. However, with the purpose of data

sharing, generic models are developed and utilized widely by parameterizing vendor

models. Most commercial power system analysis software provide built-in generic

models. The complexity and detail of these models vary, and some models may spe-

cialize in specific phenomena such as disturbances, on the other hand, some models

are very primitive. In addition to conventional power plants with synchronous gener-

ators, the importance of wind turbine generator dynamic models is increased as wind

energy becomes a popular renewable energy resource. However, this thesis concerns

conventional power plants, and its relation with the dynamic models of wind turbine

generators is left as a future work.

Dynamic simulation of power plant models refers to advancing its states from a time

instant t to t+∆t. The time advancement is done by integrating differential equations

with respect to time, by using numerical integration methods such as Euler Method.

The power plant dynamic model can be reduced to two equations in (2.1) [4].
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dx(t)/dt = fc(x(t), u(t), p)

y(t) = hc(x(t), u(t), p)
(2.1)

where x is the state vector, f(.) is the transition function, u is the input vector, p is

the power plant parameters, y is the power plant response Pe and Qe, and h(.) is the

output function. Note that c in fc and hc denotes continuity.

The states at t+∆t, xt+∆t, and the power plant response at t+∆t, yt+∆t, depend on

the states at t, xt, the inputs at t, ut, and the power plant parameters, p. Hence, the

states and the power plant response at t + ∆t, xt+∆t and yt+∆t, can be found from

integrating the differential equations with respect to time and solving the algebraic

equations in (2.1).

2.2 Power Plant Model Calibration

Power plant model calibration is done by a decentralization approach called ’event

playback’, which is summarized in Fig. 2.1. During a transient event, voltage phasors

(V ∠θ) and power flows (Pe, Qe) are recorded by a PMU located at the interconnec-

tion point between the power plant and the rest of the grid. The recorded voltage

magnitude and voltage angles are played back at the interconnection point, which

models the rest of the grid as an infinite bus. This approach enables simulating any

event occurred in the grid back at the power plant, and decouples the power plant dy-

namics from the network equations. If there is a discrepancy between the simulated

power plant output response and measured power flows, the power plant dynamic

model is calibrated. The power plant model calibration is done based on the idea of

minimizing the mismatch. The dynamic model parameters are calibrated to match the

simulated response with measured power flows.

Before the calibration, most methods utilize a sensitivity analysis to with the purpose

of determining the identifiable parameters in the dynamic model beforehand. Identi-

fiable parameters are the parameters that are estimable with the existing disturbance

data. This is a screening process, where the parameters that are not related to the

disturbance are eliminated. This way, the candidate parameter subset to calibrate is

6
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Figure 2.1: Power plant model calibration by using ’event playback’.

decreased.

2.3 Parameter Calibration with Ensemble Kalman Filter

In this thesis, the Ensemble Kalman Filter is employed as the dynamic state and pa-

rameter estimator because of its ease of implementation. Nevertheless, the proposed

method is applicable to any kind of dynamic state and parameter estimation method

since it is independent from the estimator and applied before the estimation process.

The Ensemble Kalman Filter (EnKF) is a Monte Carlo approach for Kalman Filtering

that uses a set of state vector samples (ensembles) to sample the covariance matrix.

The differential equations constitute the dynamics of the power plant and they are

used for constructing the transition function f(.). The algebraic equations constitute

the observation function h(.). Thus, the system model can be represented by the

following equations.
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xk = f(xk−1, uk−1) + wk−1, wk−1 ∼ N(0, Qk−1)

ỹk = h(xk, uk) + vk, vk ∼ N(0, Rk)
(2.2)

where xk is the vector of system states and uk is the input vector at time k, wk and vk

are the zero-mean Gaussian process and measurement noises with covariances of Qk

and Rk respectively.

Priori Step:

x̂
−(j)
k = f(x̂

(j)
k−1, uk−1) + w

(j)
k−1

x̂−
k =

1

N

N∑
j=1

x̂
−(j)
k

ŷ
−(j)
k = h(x̂

−(j)
k , uk)

ŷ−k =
1

N

N∑
j=1

ŷ
−(j)
k

(2.3)

Posterior Step:

P xy =
1

N

N∑
j=1

(x̂
−(j)
k − x̂−

k )(ŷ
−(j)
k − ŷ−k )

T

P yy =
1

N

N∑
j=1

(ŷ
−(j)
k − ŷ−k )(ŷ

−(j)
k − ŷ−k )

T

Kk = P xy(P yy +Rk)
−1

x̂
+(j)
k = x̂

−(j)
k +Kk(ỹ

(j)
k − ŷ−k )

(2.4)

In order to estimate the parameter, the state vector x is augmented with the candidate

parameters α.

xaug = [x α]T (2.5)

By augmenting the state vector, the candidate parameters are treated as states. The

state vector x is substituted with the augmented state vector xaug where (2.2-2.4)

are still valid. The advantage of employing Ensemble Kalman Filter in power plant
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model calibration application is the fact that it does not need to calculate the Jacobian

matrix. Hence, the analytical model is not needed to be available to the user. The

details of the EnKF application on the power plant model calibration problem can be

seen in[4].

2.4 Trajectory Sensitivity Analysis

Trajectory sensitivity analysis is a well-known method to obtain local sensitivities

of a parameter by calculating the absolute change in the output responses when the

parameter is perturbed. The trajectory sensitivities at each time instant are calculated

by finite difference approach in (2.6).

ski =
|y(k)|αi+∆αi

− y(k)|αi
|

|∆αi/αi|
(2.6)

where y(.) active and reactive power flow responses of the power plant, αi is the

power plant model parameter, ∆αi is the perturbation on the parameter, i = 1, 2, .., p

where p is the total number of parameters, and ski is the local sensitivity of parameter

αi at kth time instant.

Trajectory sensitivity analysis is used to practically determine the identifiable parame-

ters, excluding the collinearity problem. A nonzero sensitivity indicates the existence

of influence on the output. Hence, a parameter with nonzero sensitivity is able to

change the output. Similarly, a parameter may be identified from the change in the

output response, given that the parameter has nonzero sensitivity. In order to deter-

mine those parameters, a sensitivity analysis is a necessary tool before the parameter

calibration process. Note that, the parameter sensitivities usually increase with the

severity of the transient event.

2.5 Recurrence Plots

Recurrence Plots (RP) is a technique which efficiently visualizes recurrences of a

trajectory −→x i ∈ Rd in phase space as a square matrix. Recurrence occurs when a
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trajectory visits approximately the same state, i.e. −→x i ≈ −→x j , at time instants i and

j. These recurrence are stored in R, recurrence matrix, whose formal expression is

given below.

Ri,j(ε) = Θ(ε− ∥−→x i −−→x j∥) (2.7)

where i, j = 1, ...., N , N is the total time instants, ε is a threshold distance, Θ(.) is

the Heaviside function where Θ(x) = 0 if x < 0 , and Θ(x) = 1 otherwise, and

∥.∥ is a norm. The RP visualizes the time instants when system states approximately

recur. The recurrences are indicated in R by Ri,j = 1, and plotted in RP with black

dots at coordinate i and j. In the absence of recurrence Ri,j = 0 and corresponding

coordinates have white dot. More details on the theoretical background of RP can

be found in [18]. Note that, threshold distance, ε, is taken as zero in the proposed

method.

2.6 Orthogonal Projection & Decomposition

A vector u in Rn can be written as sum of two orthogonal vectors, u = w + w⊥,

where w is orthogonal projection of u onto another vector v in Rn (projvu), and w⊥

is its complement. The complement of the orthogonal projection of u onto v, which

corresponds to the perpendicular component of u with respect to v, is shown below.

w⊥ = u− projvu = u− u · v
∥v∥2

· v (2.8)

The orthogonal decomposition is used to enable the proposed method to identify mul-

tiple parameter errors by eliminating the individual effect of the erroneous parame-

ters from the mismatch between the collected measurements and the power plant

response.
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CHAPTER 3

THE PROPOSED COLLINEARITY ANALYSIS METHOD

3.1 Introduction

This thesis proposes an identifiability analysis that combines the well-known trajec-

tory sensitivity analysis with collinearity analysis. The utilization of the sensitivities

of the parameters in time enables us to assess their collinearity relations[19]. Thanks

to this, the parameter selection process is enhanced by separating the candidate pa-

rameters into groups considering their collinearities as well as their sensitivities in-

stead of only taking the sensitivities into account. Hence, the potential bias created

by the linear dependency is avoided. Note that, the proposed method is an estima-

tor independent method such that it can be used before any estimator without any

alteration.

(a) Normalized P responses (b) Normalized Q responses

Figure 3.1: Normalized change in responses

(a) P , and (b) Q.

Selection of a set of candidate parameters plays a very important role in parameter
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estimation. An appropriate set of candidate parameters are selected according to their

sensitivity. Note that, the identifiability and the sensitivity are related in the dynamical

systems [20]. Hence, by analysing the sensitivities, the identifiability of the parame-

ters can be inspected. High sensitivity indicates the high level of information about

the parameter and is required for a good quality estimation. Hence, the parameters

with the low sensitivity values are screened out to eliminate the insensitive parameters

which are not identifiable.

The sensitivities of the parameters along the trajectory can give extra information

such as the linear dependency with other parameters. Fig.3.1 shows the normalized

change in the output responses of the power plant for equal percentage of perturbation

on each of the three parameters and the actual output responses, which later will be

used in sensitivity calculations. In other words, it shows the effects of perturbation on

the output response for each parameter. It can be deduced that the collinear parame-

ters have the same effect on the normalized output response for the same proportion

of perturbation which will reflect on their trajectory sensitivities. In the employed

power plant model, the collinear parameters correspond to KA and KE , and the in-

dependent parameter corresponds to H . It is obvious that those collinear parameters

cannot be identified from their output responses without further information, on the

other hand, since the independent parameter has a very different output response, it is

identifiable. In order to utilize this information, the sensitivity matrix is constructed

out of the sensitivities in time. The rank of the sensitivity matrix indicates the iden-

tifiability of the parameters. The full rank sensitivity matrix means that all of the

parameters are identifiable where the singular sensitivity matrix means that there is

at least one parameter which is not identifiable[21]. Moreover, the sensitivity ma-

trix is used to extract the information of linear dependency between the parameters.

In[22], the authors proposed to rank the columns of sensitivity matrix corresponding

to the parameters using an orthogonal-projection based method. However, it does

not give the collinearity information explicitly. In[19], a collinearity index is pro-

posed that includes the multiple calculation of eigenvalues which is computationally

expensive. This method utilizes cosine similarity to obtain the collinearity level of

the parameters. Parameters with cosine similarity close to 1 are determined as the

highly collinear parameters. These parameters have the same effect on the output.
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Thus, they are no longer identifiable together and not jointly estimated. The method

successfully detects the collinear parameters among the selected subset of sensitive

parameters before the estimation. Hence, the estimation bias which occurs due to the

collinearity is avoided.

The proposed method relies on the trajectory sensitivity analysis as it provides the

sensitivity of the parameters along the trajectory. Since the sensitivity is interchange-

able with identifiability in dynamic systems, the trajectory sensitivity analysis pro-

vides sufficient information to select the best appropriate subset of candidate param-

eters. The sensitivity analysis is divided into two steps, namely the detection of sen-

sitive parameters and the collinearity analysis.

3.2 The Power Plant Model

The dynamic response of the power plants can be formulated with a set of nonlinear

differential and algebraic equations. These equations drive the states of the system

in time. Although the proposed method is applicable to widely used simulation soft-

wares, such as GE PSLF and PSS/E, in this study, the two-axis model is used to

model the power plant with a synchronous generator, a IEEE DC1A type exciter and,

TGOV1 type turbine-governor from [23] for sake of simplicity, which is also em-

ployed in [24] and [25]. The the power plant model is given below, and the related

variable names are given in Table 3.1.

Synchronous Generator:

T ′
do

E ′
q

dt
= −E ′

q − (Xd −X ′
d)Id + Efd (3.1)

T ′
qo

E ′
d

dt
= −E ′

d − (Xq −X ′
q)Iq (3.2)

dδ

dt
= ω − ωs (3.3)
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2H

ωs

ω

dt
= TM − Pe −D(ω − ωs) (3.4)

IEEE DC1A Exciter:

TE
Efd

dt
= −(KE + SE(Efd))Efd + VR (3.5)

TF
Rf

dt
= −Rf +

KF

TF

Efd (3.6)

TA
VR

dt
= −VR +KA(Rf −

KF

TF

Efd + Vref − Vt) (3.7)

IEEE TGOV1 Turbine-Governor:

TCH
TM

dt
= −TM + PSV (3.8)

TSV
PSV

dt
= −PSV + PC − 1

RD

(
ω

ωs

− 1) (3.9)

Network Equations:

Vd = V sin(δ − θ), Vq = V cos(δ − θ), (3.10)

Id =
E ′

q − Vq

X ′
d

, Iq =
Vd − E ′

d

X ′
q

(3.11)

Pe = VdId + VqIq, Qe = −VdIq + VqId, (3.12)

A decentralized approach (event playback) is obtained by replaying the measured V

and θ, as the real and reactive electrical power output can be calculated using only the

differential algebraic equations of the power plant.
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Table 3.1: Variable names for the power plant dynamic model.

Variable symbol Variable name

E ′
q, E

′
d q-axis and d-axis transient voltages

δ Rotor angle

ω, ωs Rotor speed and synchronous speed

Efd Exciter output voltage

Rf Rate feedback

VR Regulator output voltage

TM Scaled mechanical torque to the shaft

PSV Steam valve position

PC Control input

Xd, Xq d and q axis synchronous reactances

X ′
d, X

′
q d and q axis transient reactances

T ′
do, T

′
qo d and q axis transient open circuit time constants

TE Exciter time constant

TF Regulator stabilizing circuit time

TA Regulator amplifier time constant

TCH , TSV Turbine-Governor time constants

H Generator inertia

D Damping constant

KA Regulator gain

KE Exciter constant related to self-excited field

KF Regulator stabilizing circuit gain

SE Exciter saturation function

RD Speed regulation quantity

Vref Regulator reference voltage setting

V, θ Terminal bus voltage magnitude and voltage angle

Id, Iq Stator d-axis and q-axis currents

Pe, Qe Real and reactive electrical outputs.
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3.3 Detection of Sensitive Parameters

In order to construct the sensitivity matrix, the approximate local sensitivities of the

parameters at each time instant is calculated by finite difference approach in (3.13).

ski =
|y(k)|αi+∆αi

− y(k)|αi
|

|∆αi/αi|
(3.13)

where y() is the real or reactive power output function of the power plant, αi is the

candidate parameter, ∆αi is the small perturbation to the parameter and i = 1, 2, .., p

where p is the number of parameters. The ith column of the sensitivity matrix S in

(3.14) is filled with sensitivity value of the parameter αi at each time step k. Note

that, both the real and reactive power sensitivity matrices are constructed in this step.

S =


s11 . s1i . s1p

s21 . s2i . s2p
...

...
...

...
...

sk1 . ski . skp

 (3.14)

The columns of the sensitivity matrix S corresponds to the parameters of the model.

The ℓ1 norms of the columns give insight about the identifiability of the parameters.

The parameters corresponding to the zero or very small norms in both of the sensi-

tivity matrices are unidentifiable parameters. They are eliminated from the candidate

parameters list, and the columns of S corresponding to those parameters are removed

from the matrices. The rest are the sensitive ones.

3.4 The Proposed Collinearity Analysis

Although some highly sensitive parameters are estimable one by one, the simulta-

neous estimation quality becomes poorer as the collinearity between the parameters

increases. Even more, the estimation results may be biased when one of the two in-

correct and collinear parameters is estimated separately. The columns with strong

linear dependency cause singularity in the sensitivity matrix S, which is an indicator
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of collinearity between the parameters. Hence, the collinear parameters should be

identified. Otherwise, their simultaneous estimation may be biased.

The collinearity analysis is done using the cosine similarity principle. The cosine

similarity principle quantifies the linear dependency between two vectors between 0

and 1. It reveals the cosine of the angle between the vectors, and reveals if those vec-

tors are roughly in the same direction[26]. Note that, each column of the sensitivity

matrix S corresponds to the parameter sensitivities along the trajectory. Therefore,

those columns will be used to assess the collinearities. The cosine similarity formu-

lation is given in (3.15).

cosθij =
vi.vj

||vi||||vj||
(3.15)

where vi and vj are the columns of S corresponding to ith and jth parameters, and θij

is the angle between vi and vj .

The sensitivity vectors of the parameters which have cosine similarity close to 1

show very strong linear dependency. By this means, the collinear parameters are

determined.

3.5 Numerical Results

In this section, a study case will be presented using the WSCC 9-Bus System shown

in Fig. 3.2 [27]. The power plant of interest is modeled with the power plant model

presented in Chapter 3.2. A study case is created by applying a symmetrical 3-phase

fault at the terminals of the power plant. The response of the power plant is recorded,

and Gaussian noise is added to obtain synthetic PMU measurements. Note that, dif-

ferent cases with different transient types can also be created.

First, the trajectory sensitivity analysis in (3.13) is carried out for all of the parameters

and the sensitivity matrix S given in (3.14) is constructed. The Table 3.2 shows

the sensitive parameters and their sensitivity values which are the ℓ1 norms of the

columns.
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Table 3.2: Parameter Sensitivities for the Bus Fault.

Parameter P sensitivity Q sensitivity

Xd 2.1420 2.9558

X ′
d 0.4421 0.4880

Xq 0.4897 0.2728

X ′
q 0.1217 0.0880

T ′
do 0.2796 0.2920

T ′
qo 0.0456 0.0225

H 1.3801 0.4563

D 0.0011 0.0004

KE 2.0631 3.1967

TE 0.0924 0.0664

SE 0.1315 0.2039

KA 2.2552 3.4343

KF 0.6099 0.4319

TF 0.3182 0.1844

TA 0.0633 0.0453

TSV 0.0005 0.0002

TCH 0.0009 0.0004

RD 0.0076 0.0023
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Figure 3.2: WSCC 9-Bus System

The parameters Xd, H , KE , and, KA are found to be the most sensitive parameters

to the applied transient. Therefore, those parameters are utilized in the demonstration

experiments in the rest of the chapter, although the parameters with nonzero ℓ1 norm

are identifiable as well. Hence, only the columns corresponding to these four param-

eters are left in the sensitivity matrix S. Then, the cosine similarities of the columns

corresponding to those parameters are obtained by (3.15). Fig. 3.3 and 3.4 show the

cosine similarities of the parameters based on their columns in the sensitivity matri-

ces. It is found that the linear dependency of Xd, KE and, KA are significantly high.

On the other hand, H is clearly independent from the other parameters. Therefore, in

an optimally selected subset of parameters for estimation, only one parameter among

Xd, KE and, KA should exist along with H . Note that instead of making this decision

based on the highest ℓ1 norm value in the sensitivity matrix, it is more suitable to use

engineering judgement since all of the parameters are already highly sensitive. Note

that, inclusion of a parameter with collinear relations may be problematic in any case

as the estimation may be biased because of error in the other collinear parameters.

19



Note that, these numerical results are specific to the 3-phase fault at the terminals of

the power plant. Sensitivity of the parameters may change based on the severity and

the type of the transient event, as the output response of the power plant may not be

the same for the same amount of perturbation on a parameter. Whilst some param-

eters may not participate in a certain disturbance, they may dominate the output on

another. This fact is reflected on (3.13) such that the amount of the change in the

output may result a change in the sensitivity in time. That being said, collinearity

relations of parameters may not remain the same for different event types by means

of the change in the sensitivities. Moreover, different dynamics of the grid such as

switching time may have an effect on the collinearity considering more complex mod-

els involving saturation effects. It is also noteworthy to emphasis that the collinearity

between parameters may be the result of mathematical expressions. Such structural

collinearities make the collinear parameters structurally unidentifiable and cannot be

eliminated. Regardless of the type, any disturbance can be simulated by utilizing the

playback signals at the point of interconnection, and the rest of the analysis steps

can be applied without loss of generality. The proposed method does not depend on

disturbance types, while the results may.

Xd H KE KA

Xd

H

KE

KA

1.0 0.72 0.992 0.994

0.72 1.0 0.65 0.668

0.992 0.65 1.0 0.999

0.994 0.668 0.999 1.0

Figure 3.3: Collinearity based on Psens

for the Bus Fault

The effect of the collinearity in the estimation is shown via five different experiments

which are presented below.
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Xd H KE KA

Xd

H

KE

KA

1.0 0.102 0.997 0.998

0.102 1.0 0.133 0.124

0.997 0.133 1.0 0.999

0.998 0.124 0.999 1.0

Figure 3.4: Collinearity based on Qsens

for the Bus Fault

3.5.1 Experiment 1

In this experiment H , KE and, KA are included in the augmented state vector in (2.5)

separately, i.e. the parameters are included to the state vector one by one, and three

different estimations are conducted. Fig. 3.5 shows their trajectories in time. All

three parameters are converged to their true values provided that all parameters that

are not estimated are correct, which was expected since all three are highly sensitive

and, there does not exist any collinearity relation.

Table 3.3: Experiment 1 Results.

Parameter Initial After calibration True

H 10 6.399 6.4

KA 25 19.993 20

KE 0.6 1.000 1

3.5.2 Experiment 2

In this experiment Xd, KE and KA, which are determined as highly sensitive param-

eters but have collinearity among them, and H are simultaneously estimated. Fig. 3.6
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(a) H (b) KA

(c) KE

Figure 3.5: Experiment 1: Estimation of parameter (a) H , (b) KA, and (c) KE sepa-

rately.

shows that the effect of the collinearity on the estimation. Although all parameters

are highly sensitive, the estimation result is biased because of the collinearity between

three parameters. The cosine similarity between Xd, KE and KA are very close to 1

for both P and Q trajectory sensitivities, therefore, these parameters were not able to

be identified correctly. However, H is estimated successfully since it does not have

high collinearity.

3.5.3 Experiment 3

In this experiment H and KE , which are determined as highly sensitive parameters

and do not have collinearity among them, are simultaneously estimated. Fig. 3.7

shows that H and KE can be simultaneously estimated successfully.
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Table 3.4: Experiment 2 Results.

Parameter Initial After calibration True

Xd 0.7632 0.9754 0.8958

H 10 6.427 6.40

KE 1.2 1.155 1

KA 25 24.57 20

(a) Xd (b) H

(c) KE (d) KA

Figure 3.6: Experiment 2: Estimation of parameter (a) Xd, (b) H , (c) KE , and (d) KA

simultaneously.

Table 3.5: Experiment 3 Results.

Parameter Initial After calibration True

H 10 6.397 6.4

KE 0.6 1.00 1
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(a) H (b) KE

Figure 3.7: Experiment 3: Estimation of parameter (a) H , and (b) KE simultaneously.

3.5.4 Experiment 4

In this experiment H and KE , which are determined as highly sensitive parameters

and do not have collinearity among them, are simultaneously estimated while KA is

intentionally biased before the estimation. Fig. 3.8 shows that while the independent

parameter H can be estimated successfully, the estimation result of KE is incorrect.

Table 3.6: Experiment 4 Results.

Parameter Initial After calibration True

H 10 6.405 6.4

KE 0.6 1.268 1

3.5.5 Experiment 5

In this experiment, another study case is created by applying symmetrical 3-phase

fault at the middle of the transmission line between buses 4 and 6, and synthetic PMU

measurements are obtained. A sensitivity analysis is carried out and the most sensitive

parameters are found as Xd, H , KE , and KA. The results of the sensitivity analysis

are shown in Table 3.7. Then, the proposed collinearity analysis method is applied.

The cosine similarities are shown in Fig. 3.9 and Fig. 3.10. For this disturbance,

the collinearity of Xd between KE , and KA with respect to real power is decreased.
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(a) H (b) KE

Figure 3.8: Experiment 4: Estimation of parameter (a) H , and (b) KE simultaneously

when KA is incorrect.

However, the collinearity between KE and KA remained the same as expected since

they are structurally collinear in this power plant model. Fig. 3.11 shows that the

parameters H and Xd are estimated successfully as they have high sensitivity and

have cosine similarity far away from 1. However, the estimation results of KE and

KA are again biased because of their collinearity.

Table 3.7: Parameter Sensitivities for the Branch Fault.

Parameter P sensitivity Q sensitivity

Xd 0.4993 1.9382

H 0.2311 0.2050

KE 0.5305 2.7633

KA 0.5759 2.916

The trajectory sensitivity analysis successfully identified the parameters with high

sensitivity, while the proposed method revealed the collinearity among those sensi-

tive parameters. Despite the successful estimation of the parameters H , KA and, KE

separately provided that the other parameters are correctly known, simultaneous esti-

mation of the parameters may not give the same result due to collinearity between the

parameters KA and KE even if the other parameters were correct. In the considered

model, the collinearity arises from (3.5) and (3.7) in which those parameters are in
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Xd H KE KA

Xd

H

KE

KA

1.0 0.241 0.899 0.905

0.241 1.0 0.169 0.144

0.899 0.169 1.0 0.999

0.905 0.144 0.999 1.0

Figure 3.9: Collinearity based on Psens

for the Branch Fault

Xd H KE KA

Xd

H

KE

KA

1.0 0.017 0.996 0.996

0.017 1.0 0.067 0.062

0.996 0.067 1.0 0.999

0.996 0.062 0.999 1.0

Figure 3.10: Collinearity based on Qsens

for the Branch Fault

Table 3.8: Experiment 5 Results.

Parameter Initial After calibration True

Xd 0.7632 0.8953 0.8958

H 10 6.4099 6.4

KE 1.2 1.1111 1

KA 25 22.0831 20
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(a) Xd (b) H

(c) KE (d) KA

Figure 3.11: Experiment 5: Estimation of parameters (a) Xd, (b) H , (c) KE , and (d)

KA simultaneously.

the form of multiplication. During the estimation, the parameters are assigned to the

values whose ratio is close to the ratio of the true values of the parameters. Hence,

the bias may not be apparent to the event playback of other transient cases with the

resultant parameters from this biased estimation. If there is suspicion about the val-

ues of collinear parameters, and the collinearity cannot be removed by any method,

the authors recommend offline staged tests instead of online parameter calibration as

corruption in one of two collinear parameters may cause bias on the other.

The numerical results show that in the presence of high collinearity in the subset of

highly sensitive parameters, the estimation is of poor quality. The linear dependency

of the parameters make them unidentifiable. Moreover, Experiment 5 shows that

some parameters, such as Xd, have event specific collinearity between other param-

eters and they can be estimated by utilizing different type of disturbances, and some

parameters such as KE and KA are unidentifiable by structure. Therefore, it is shown
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that the collinearity analysis is a necessity after the sensitivity analysis.

3.6 Summary of the Chapter

The parameter selection process is very crucial in dynamic parameter estimation. It

directly affects the performance of the estimator. Hence, selecting the best subset of

the parameters is an important task. Selection of the parameters is done according

to the sensitivity analysis as sensitivity is related with identifiability. Although the

detection of highly sensitive parameters is very important, it is not sufficient to check

the sensitivity solely as high sensitivity does not always mean strong identifiability

because of the parameter relations in the model. In dynamic systems, observability is

a time-dependent problem where the sensitivity of the states and parameters change

within time. Apart from the identifiability of the parameters, the relation between

the parameters can be extracted from the trajectory sensitivities, since the effect of

the collinear parameters on the output will be similar. Hence, collinearity can be

assessed from the sensitivity values over time. This chapter proposes to use cosine

similarity method to identify the collinear parameters after the trajectory sensitivity

analysis by utilizing this fact. This chapter shows that the traditional sensitivity anal-

yses provide missing information on the identifiability of the power plant parameters

in the presence of collinear parameters. Although some parameters are highly sen-

sitive, their estimates may be biased. The proposed method determines the collinear

parameters in the candidate parameter set, and warns the operator about the potential

bias in the estimates of those parameters.

Numerical results proved the necessity of the collinearity analysis in the dynamic pa-

rameter estimation problem. In the presence of sensitive and linearly independent pa-

rameters in the augmented state vector, the parameter estimation could be performed

with a good accuracy. On the other hand, the presence of sensitive but collinear

parameters in the augmented state vector caused bias in the estimates of those param-

eters. Hence, without the collinearity analysis, the estimation result may be biased

for the linearly dependent parameters in the model. In addition to these, with the help

of the proposed collinearity analysis, it is shown that the collinearity of some param-

eters may change with respect to the severity/type of the disturbances. The proposed
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method provides a very effective decision support for the optimum utilization of the

disturbance measurements. It pre-processes the disturbance data with the power plant

model and help the operator to avoid biases arising from collinearity of the parame-

ters. It provides a critical advice to the operator about identifiability of the parameters

from the available and scarce data.

Note that, while the quality of simultaneous estimation is poor in the presence of

collinear parameters, the separate estimation may also be poor in some cases. For ex-

ample, when one of two collinear parameters are corrupted and deviated from its true

value, the estimation of the other parameter also becomes corrupted. It is shown that

the identification of the collinear parameters are very problematic, and in some cases

impossible. Hence, authors recommend offline staged tests or using additional dis-

turbance data if there is not enough information about the present values of collinear

parameters.
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CHAPTER 4

THE PROPOSED PARAMETER ERROR IDENTIFICATION METHOD

4.1 Introduction

This thesis proposes a method to identify multiple inaccurate power plant parameters

based on the mismatch between the power plant model response and collected PMU

measurements by using time series image classification with CNN and orthogonal

decomposition. The proposed method is applied to a selected disturbance event, and

its aim is to identify erroneous parameters by using the selected event data and the

simulated dynamic model response.

Traditional methods usually only utilize ℓ1 norm of local sensitivities of power plant

parameters to determine the subset of candidate parameters for calibration. Natu-

rally, all parameters which have an influence on the power plant output response are

determined as sensitive parameters. Hence, most of them are included in the calibra-

tion process, and they are treated as potentially erroneous. As being sensitive does

not necessarily mean being erroneous, the set of sensitive parameters may include

already calibrated parameters, which may cause performance loss.

Power plants are modeled with nonlinear differential algebraic equations. These mod-

els are very complex, and represent the dynamic behaviour of power plants. A change

in a parameter of the model may not change the magnitude of the output merely, it

may also change other properties of its transient response such as delay time, set-

tling time and peak time. Error on each sensitive parameter contributes to the output

response mismatch by changing those specific characteristics of the output response.

The proposed method utilizes those changes in the output response in order to identify

the erroneous parameters.
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For a selected disturbance event, first, identifiable parameters are detected by using

trajectory sensitivity analysis, and collinear parameters are determined by using the

results of the sensitivity analysis. Then, the sensitive parameters are grouped based on

the collinearity analysis results. The groups are called Class in this thesis. A training

dataset that contains the mismatches is synthetically generated by biasing the avail-

able values of the sensitive parameters of the model, i.e. by applying perturbation,

one by one. The mismatches are obtained by subtracting the biased output response

of the power plant from its bias-free response. In the dataset, each mismatch is labeled

with respect to the Class of its corresponding biased parameter. The training set is

converted into 2-D images from 1-D time series signals with the help of RP. The CNN

model is trained with the 2-D time series images and corresponding labels. Finally, a

recursive algorithm which identifies the erroneous parameters is applied by utilizing

the CNN model and orthogonal projection. The flowchart in Fig. 4.1 summarizes the

general process.

Select disturbance event
Apply identifiability
analysis and define

classes

Prepare training data
using commercial

software

Start

Train and test the CNN
model

Identify erroneous
parameters

Figure 4.1: Flowchart of the proposed methodology.

The training data could be easily generated by using commercial software, such as

PSS/E. Note that, the training data is synthetically generated with the available dy-

namic model. Hence the proposed method does not use real disturbance data to train

the CNN.

The proposed method has several advantages over a classical multi-label classifier,

i.e. the classifier that is trained with the mismatch data of multiple biased parameter

combinations. First, the proposed method does not need training data with every bias

combination. The training data contain mismatches caused by only a single biased

parameter at each time, which decreases the training data generation and model train-

ing times significantly. Moreover, a biased parameter may not always be identified

32



from the mismatch directly due to having relatively smaller effect on the mismatch.

That is to say, in a case where two parameters are biased, bias on a highly sensitive

parameter may dominate the mismatch such that the bias on a parameter with low

sensitivity may not contribute to the mismatch as much. In that case, the individ-

ual mismatch created by the bias on the highly sensitive parameter and the mismatch

created by combination of the two parameters would be similar. Nevertheless, they

would be labeled differently. Consequently, it may degrade the performance of the

classifier. That being said, a training set with the mismatch data including multiple

biased parameter combinations could be an alternative if a more advanced classifier is

implemented. However, the proposed method is already able to identify the erroneous

parameters step-by-step which requires the CNN to identify one erroneous parameter

at a time, thanks to the elimination of the effect of the identified erroneous parameters

on the mismatch.

4.2 Identifiable Parameter Detection & Grouping

As the first step, an identifiability analysis is performed by using the well-known tra-

jectory sensitivity analysis in order to determine the possible erroneous parameters.

Note that, only the significantly sensitive parameters have influence on the output.

Therefore, only the parameters that are both sensitive and erroneous are responsi-

ble for the mismatch. Consequently, the subset of sensitive parameters contains the

erroneous parameters if there is any. On the other hand, this does not mean that non-

sensitive parameters may not have errors. As the nonsensitive parameters do not have

any influence on the output for considered disturbance, it is not possible to detect the

existence of error on them. Hence, they are removed from the erroneous parame-

ter detection problem. However, it is possible to use another disturbance data where

nonsensitive parameters for a certain disturbance are highly sensitive. For a selected

disturbance, trajectory sensitivity analysis in (3.13) is applied, and sensitivity matrix

S in (3.14) is constructed. Parameters with zero sensitivity are eliminated.

Collinear parameters cause a great threat to accuracy of both calibration and erro-

neous parameter identification processes. Since the collinear parameters have similar

influence on the output response of the power plant, they can not be identified from
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their output response. Thus, although the collinear parameters might have high sen-

sitivity, we can not identify which one of the collinear parameters has error if one of

them is corrupted without additional data. Therefore, before the classification these

collinear parameters are detected via cosine similarity method using S. Nevertheless,

though the fact that which of the collinear parameters has the error can not be deter-

mined, it is possible to localize the parameter with error by grouping the collinear

parameters. In this way, accuracy of classifiers increase, and potential bias is elimi-

nated. Each group of collinear parameters are labeled as a Class for the classification.

4.3 Training Data Creation

In order to train the CNN model, an adequate sized and properly arranged training

data is necessary. In this step, commercial software which have dynamic analysis

simulation tools such as PSS/E and GE PSLF could be taken advantage of. With

the help of Application Programming Interface (API) of these commercial software,

necessary data could be created in Python environment easily.

The proposed method utilizes the mismatch between the power plant model response

and the actual measurements from the field, which is caused by the parameter errors

on the model. The mismatch is a time series data, and stores the properties of effect of

parameter errors on the output. For example, while H (machine inertia) may shift the

output response both horizontally and vertically, Xd (d-axis synchronous reactance)

mostly effects the output response magnitude at the fault instant, during a disturbance.

The mismatch provides various information on such properties of the power plant

dynamic model when a parameter is biased. A training data is needed to characterize

the parameter effect on the output response, similarly on the mismatch, to help the

classification process. The idea is to teach the effect of parameter errors on the output

response to the CNN model so that the erroneous parameters could be identified from

the mismatch between the actual and simulated responses. In order to teach the model

complete effect of a parameter on the output response, a detailed and balanced data

generation process is necessary. The synthetic training data generation is summarized

below.
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Create base cases using the available parameters, and
create bias schemes.

Apply  bias levels to  considered parameters for  base
cases, and obtain  biased responses.

Perform dynamic simulations of the selected disturbance,
and obtain  base power plant responses.

Obtain the mismatches between biased and base power
plant responses using (6), and label them.

Concatenate 1-D time series power plant response
mismatches horizontally, obtain RP, and resize.

Figure 4.2: Flowchart of training data generation method.

First, available dynamic models of the network are reproduced with different schedul-

ing and settings for the power plant. Each of these cases is called a base case. The

disturbance is applied to each base case to obtain synthetically generated PMU data,

which correspond to the base power plant responses to the selected disturbance. That

is to say, the output response of the power plant during the selected disturbance event

for each base case with different operation conditions are obtained, i.e. Pe,base and

Qe,base, with the present dynamic parameters. Then, the sensitive parameters in the

initial base cases are biased according to a bias scheme, and the biased output power

plant responses, i.e. Pe,biased and Qe,biased, are obtained. Note that, the biased re-

sponses are obtained by biasing one parameter at a time.

The mismatches are calculated by subtracting the biased output responses from their

corresponding base output responses, which is shown below. The training data set

generation process is also summarized in Fig. 4.2.

Pe,mismatch = Pe,base − Pe,biased

Qe,mismatch = Qe,base −Qe,biased

(4.1)
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The power plant operating conditions and bias percentages must be selected accord-

ingly to reveal their effects so that the CNN model is trained properly. For c base

cases, n sensitive parameters, and b bias levels, the training set would contain c×n×b

mismatch pairs in (4.1). For a single mismatch, a bias is applied to a sensitive param-

eter in the given base case, and the biased response in that case is obtained. Then, it

is subtracted from its bias-free version (base case).

The time series row vectors Pe,mismatch and Qe,mismatch are concatenated horizontally

to obtain a single time series data. Although this choice has advantages such as need

of only a single classifier for each disturbance instead of two classifiers, and includ-

ing the parameter error information of Pe,mismatch and Qe,mismatch at once, different

architectures could be used.

Each mismatch vector is labeled with the class that contains the biased parameter

corresponding to the mismatch, by using one-hot encoding technique. At this point,

a single sample data which has three classes in total, and has biased parameters in

Class 1 is shown as [Pmismatch Qmismatch] [1 , 0 , 0 ].

Although classification through 1-D time series signals is possible, 2-D classification

may have higher performance in detecting the distinctive features compared to 1-D

classification [17]. Therefore, 1-D time series mismatch vector is converted into 2-D

images with the help of RP.

Dynamic events may last several seconds, and considering the resolution of PMUs,

the time series data may be very large depending on the disturbance. The output of

the RP transform is an N × N square matrix where N is the total data point, i.e.

length of the time series data. The RP images could be downsized (ex. 64 × 64 or

128 × 128 pixels) depending on the disturbance duration, with any imaging library

such as PIL in Python. Fig. 4.3 shows an example downsized RP, where N is 612

and the final RP is 128× 128. Note that, the gray points are result of the downsizing

process. It is also worth to mention that, the reason for downsizing is to decrease the

input size for memory considerations, it is not related to RP itself. Also, one must

be aware of the trade off between accuracy and memory, i.e. accuracy decreases as

the size decreases. At this stage, c × n × b labeled and downsized recurrence plots

corresponding to the mismatches are generated.

36



0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 100 200 300 400 500 600
0.015

0.010

0.005

0.000

0.005

0.010

0.015 Pmismatch

Qmismatch

Figure 4.3: Time series power flow data to RP (downsized to 128× 128 pixels).

4.4 CNN Architecture

CNN is one of the most used deep learning algorithms. Its main advantage is to extract

features of the raw data without necessity for human supervision. It has a multi-layer

structure which has an input layer, hidden layers and an output layer. The details

about the implementation and layers of CNN can be found in [28]. In this thesis, a

CNN architecture similar to [17] is adopted. The model has two convolutional layers

with 32 feature maps, and 3 × 3 convolution. The convolutional layers are activated

with relu function. At the end of each convolutional layer, a 2× 2 MaxPooling layer

is used for down-sampling, and a dropout layer with a rate of 0.2 is used to prevent

over-fitting. Then, flattening, which is used to convert feature maps to 1-D vectors, is

applied. Two fully connected layers are used. The first fully connected layer has 128

hidden layers, and it is activated with relu, and followed by a dropout layer with a

rate of 0.5. For the last fully connected layer, sigmoid is used as activation function

which is suitable for multi-label classification problems. As the optimizer and the

loss function, "adam" and "binary cross entropy" are used, respectively.

4.5 Erroneous Parameter Identification

The proposed method identifies the erroneous power plant parameters one at a time,

by a recursive algorithm composed of the trained CNN model and orthogonal decom-

position. Once the model is trained for the selected disturbance event, the mismatch
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between the power plant response and the collected PMU measurements is converted

into RP as shown in Fig. 4.3, and fed into the model to start the identification pro-

cess. The CNN model quantifies the possibility of existence of errors in each Class

independently between 0 and 1, with the help of sigmoid activation function at the

final layer. The Class corresponding to the highest and significant value is flagged as

erroneous.

Once an erroneous parameter is identified, its effect is removed from the mismatch

by using orthogonal decomposition in (2.8). In (2.8), u is the mismatch, v is the

elementary effect of the Class that corresponds to the recently flagged erroneous

parameter, and w⊥ is the residual mismatch. Thanks to the orthogonal projection,

the effect of the identified erroneous parameter or Class is removed from the original

mismatch. The next cycle starts with converting the residual mismatch into its RP, and

continues with feeding its RP to the CNN and performing decomposition with respect

to the identified erroneous parameter, until the termination condition is met. Note that,

though the mismatches are fed into the CNN in their RP form, the decomposition is

applied to time series data. The steps of the proposed error identification method is

presented below.

Step 1: Convert the mismatch into its RP.

Step 2: Feed the RP of the mismatch into the classifier.

Step 3: Flag the parameter (or Class) that the classifier has the highest confidence

of being erroneous. If a parameter (or Class) is flagged twice or confidence is low,

terminate the process, else go to Step 4.

Step 4: Remove the individual effect of the flagged parameter (or Class) by using

orthogonal decomposition in (5).

Step 5: If the residual mismatch is significant go to Step 1, else terminate.

Every flagged Class through the identification process correspond to a Class that

contains erroneous parameters. After the projection, there may be some information

loss in the residual mismatch due to non-zero dependency of the parameters. How-

38



ever, distinctive features of the mismatch will remain, which are the useful parts for

the classifier.

Note that, a Class may contain one or more parameters depending on the collinear-

ity analysis. Since the collinear parameters have similar effects on the power plant

response, the residual mismatch may be projected onto either one of them. Grouping

collinear parameters is very important step, since they are parameters are unidentifi-

able by their nature. However, the proposed method is able to localize the error on

them as well. The algorithm of the proposed method is demonstrated in detail in Fig.

4.4.

4.6 Numerical Results

In this section, two case studies are presented in WSCC-9 Bus System. In this sys-

tem, power plant of interest is chosen as the power plant connected to Bus 2, which

consists of a GENROU model synchronous generator, an IEEET1 model exciter, an

IEESGO model turbine governor, and a PSS2A model power system stabilizer. In

total, the model has over fifty parameters including physical quantities as well as

control parameters. Also, the model is slightly changed by setting the steady state

active power injection and voltage magnitude values as P2 = 2p.u and V2 = 1.03p.u

respectively. In this paper, eight sensitive parameters (H , Xd, X ′
d, X ′′

d , KE , T7, KS2

and KS3) are used to present the results in a clear manner, although the method could

be extended to higher dimensions without loss of generality. The equality X ′′
d = X ′′

q

holds throughout the results, however, only X ′′
d is shown for simplicity.

Test Case 1: A case study is created by applying a three phase symmetrical fault

at the center of the transmission line between buses 4 and 6, then clearing it. The

proposed method is applied to this selected disturbance. For another disturbance, the

method must be applied from the start. In this test case, X ′
d, KE and T7 were given

5% errors.

First, sensitivity analysis is carried out to determine the sensitive parameters for this

disturbance. The sensitivity matrix S in (3.14) is constructed. By examining the

norms of the columns, sensitive parameters are determined. Table 4.1 shows the total
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Figure 4.4: Flowchart of the proposed method.
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sensitivities of the parameters, with respected to the applied disturbance.

Table 4.1: Parameter Sensitivities.

Parameter name Total sensitivity

H – Inertia 0.625

Xd – d-axis synchronous reactance 0.255

X ′
d – d-axis transient reactance 0.154

X ′′
d – d-axis subtransient reactance 0.170

KE – Exciter constant 0.396

T7 – PSS time constant 0.156

KS2 – PSS gain 0.157

KS3 – PSS gain 0.100

Then, the collinearity analysis is applied to the sensitive parameters in order to detect

the collinearities and group the parameters into classes accordingly. The collinearity

analysis results are shown in Fig. 4.5. Grouping of the parameters is done according

to the collinearity analysis. Parameters with collinearity magnitude close to 1 are

labeled as collinear parameters. Since the power plant response which corresponds

to the perturbation on H is linearly independent from other disturbances, it is put

into Class 1. However, Xd and KE , and X ′
d and X ′′

d , and T7, KS2 and KS3 create

almost the same effects on the output response. Thus they are collinear parameters,

and put into the same classes, Class 2, Class 3, and Class 4 respectively. Labeling

in synthetic data creation is done according to these classes.

The training data set is generated with the available parameters, where X ′
d, KE and

T7 were corrupted. While creating the training data, each parameter is applied per-

turbation of eight different bias levels within the interval -4% – 4% for nine P and

V settings. Then, the biased responses are subtracted from their base responses as

shown in (4.1), and labeled with the corresponding Class labels. In order to obtain

a balanced training data set, the mismatches created by error of each Class is gener-

ated equally. In total, 864 (n = 12, c = 9, and b = 8) labeled 1-D [P,Q] mismatches

are obtained, where approximately 20% is used for validation, and the CNN model is

trained with the rest. Note that, every 1-D mismatch vector is converted to its corre-
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H Xd X ′
d X ′′

d T7 KS2 KS3 KE

H

Xd

X ′
d

X ′′
d

T7

KS2

KS3

KE

1.0 0.256 0.472 -0.542 0.089 -0.105 0.028 0.257

0.256 1.0 0.162 -0.336-0.814 0.815 0.799 0.969

0.472 0.162 1.0 -0.973 0.187 -0.195-0.119 0.049

-0.542-0.336-0.973 1.0 -0.065 0.071 0.006 -0.223

0.089 -0.814 0.187 -0.065 1.0 -1.0 -0.977-0.838

-0.105 0.815 -0.195 0.071 -1.0 1.0 0.973 0.839

0.028 0.799 -0.119 0.006 -0.977 0.973 1.0 0.824

0.257 0.969 0.049 -0.223-0.838 0.839 0.824 1.0

Figure 4.5: Collinearity Analysis Results.

sponding 128 × 128 pixels RP image as shown in Fig. 4.3 for training the 2-D CNN

classifier.

The concatenated original corrupted 1-D mismatch is converted to its corresponding

128 × 128 pixels RP image, as well, and fed into the trained CNN to start the iden-

tification process. Prediction results for the test case is shown in Table 4.2, where

the flagged classes are shown in bold. Initially, the error on Class 2 is detected with

high confidence. Hence, the orthogonal decomposition in (2.8) is used to eliminate

the effect of the error on Class 2 from the mismatch, where u is the mismatch, v is

the elementary effect of Class 2, and w⊥ is the residual mismatch. The algorithm

continues by advancing the process by using the residual mismatch, where the effect

of the flagged erroneous classes are eliminated gradually. Fig. 4.6 shows the grad-

ual elimination of the erroneous classes from the original mismatch. After the third

iteration, the CNN could not flag any parameter with high confidence. Therefore, the

identification process is terminated. Classes with erroneous parameters are identi-

fied successfully, and Class 1 is removed from the potentially erroneous parameters

subset.

Test Case 2: Another case study is created which is similar to the previous test case.
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Table 4.2: Test 1 Results.

Iteration

number

Class 1

H

Class 2

Xd, K
∗
E

Class 3

X ′∗
d , X

′′
d

Class 4

T ∗
7 , KS2, KS3

Residual

norm

Initial 1.07e-07 0.9946 5.00e-05 1.5e-13 2.382

1 3.38e-13 5.29e-15 1.0 1.00e-14 1.093

2 1.78e-04 4.71e-16 1.47e-13 0.9999 0.343

3 1.31e-05 2.58e-02 2.81e-04 5.47e-09 0.176
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Figure 4.6: Test Case - 1 mismatch decomposition.
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This time, H , Xd and KS3 are given errors. The identification process is restarted.

The grouping is done as same as the previous case. The erroneous parameter iden-

tification results are shown in Table 4.3. Similarly, the classes which contain the

erroneous parameters are identified step-by-step, as shown in Fig. 4.7. The residual

of the third iteration is flagged as Class 1 the second time. Hence, the identification

process is terminated at the third iteration, since Class 1 was already removed from

the mismatch. Decomposing it with the same elementary effect would not affect the

residual. At the end of the identification process, Class 3 is found to contain only

non-erroneous parameters. Also, the classes with erroneous parameters are identi-

fied. For further identification of erroneous parameters, another disturbance event

data where the collinear groups differ must be utilized.

Table 4.3: Test 2 Results.

Iteration

number

Class 1

H∗

Class 2

X∗
d , KE

Class 3

X ′
d, X

′′
d

Class 4

T7, KS2, K
∗
S3

Residual

norm

Initial 0.9997 2.76e-03 6.06e-07 1.60e-08 4.468

1 3.00e-07 0.9978 1.41e-08 1.27e-02 1.799

2 0.3041 9.26e-09 6.41e-08 0.9617 0.723

3 0.9998 2.36e-05 1.58e-05 7.22e-06 0.510
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Figure 4.7: Test Case - 2 mismatch decomposition.
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Note that, the proposed identification method is independent from the residual norm.

Instead, the identification is done with respect to the signal waveforms. Therefore,

the aim is not to achieve the minimum residual. However, a very small residual norm

indicates the termination of the identification process as there may not remain any

significant mismatch. This is due to approximate decomposition of the mismatch,

and parameter dependence. In order to achieve minimum bias, the elementary effect

of the flagged parameter or class must be selected carefully. The elementary effects

which are used to train the CNN model could be utilized for this purpose.

The proposed method successfully identified the erroneous parameters (or classes),

step-by-step. The traditional methods which aim to determine the identifiable param-

eters would mark all eight sensitive parameters as potential parameters to calibrate,

and include all of them in the calibration process. Nevertheless, in Test Case 1 the

parameter H in Class 1, and in Test Case 2 the parameters in Class 3 do not contain

errors. Including them in the calibration process may degrade the performance. The

proposed method localized the parameter errors successfully. Thus, the flagged pa-

rameters (or classes) were removed from the candidate subset, which reduced the size

of the problem. By this means, a smaller candidate parameter subset for calibration

is achieved, and actual erroneous parameters (or classes) are identified.

4.7 Summary of the Chapter

Selection of candidate parameters is one of the key parts in power plant model cali-

bration. Traditional methods in the literature utilize sensitivity analysis to determine

identifiable parameters. These methods include the majority of the sensitive param-

eters to calibration process, and treat them as potentially inaccurate, without consid-

ering their possibility of being already calibrated. This thesis proposes a method to

identify erroneous parameters. First, sensitivity and collinearity analyses are applied

in order to determine sensitive parameters and collinearity groups, respectively. Then,

a training dataset is synthetically generated by replicating the disturbance, and a CNN

model is trained to identify the groups which contain erroneous parameters from the

power plant response. By utilizing orthogonal decomposition, a recursive multiple

parameter error identifier is realised.
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The proposed method has a major advantage over classical multi-label classifiers,

such that the proposed method does not need training data with every possible bias

combination. The training data for the proposed method contain mismatches caused

by only a single biased parameter at each time, which decreases the training data

generation and model training times significantly.

The proposed method is tested on WSCC 9-Bus system, and successfully identified

the actual erroneous parameters which reduced the size of the calibration problem

significantly. The proposed method can be extended to multiple disturbance events,

which may change the members of collinearity groups, hence the erroneous parame-

ters within the classes can be further identified.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Calibration of dynamic power plant models is of high importance in planning and

control of power systems. It is a concern of system reliability, and one of the key

elements for dynamic security assessment. Recently, the uncertainty in power sys-

tems increased due to the high penetration of renewable resources and change in the

demand side. Therefore, the dynamic model reliability became an even more impor-

tant concern for system operators. Traditionally, the dynamic power plant models are

calibrated via offline staged tests. However, alternative methods are developed to re-

place them with remote calibration techniques based on PMU measurements, due to

their high cost and high frequency. The remote calibration method are developed with

the motivation of continuous calibration of dynamic models, as the model parameters

are prone to change due to physical effects and human errors. The remote dynamic

model calibration consists of two main stages, the parameter selection and the cal-

ibration parts. This thesis presents a two novel methods to enhance the parameter

selection part, which also improves the calibration quality.

Most methods in the literature uses sensitivity analyses to practically determine the

identifiability of the dynamic model parameters based on a selected disturbance.

They screen out the insensitive parameters, and provide a subset of sensitive param-

eters which are claimed to be identifiable. However, due to structural or numerical

collinearity between the sensitive parameters, some of may not be identifiable with

existing data. Chapter 3 proposes a collinearity analysis method based on the cosine

similarity and the trajectory sensitivity analysis, to detect the collinear parameters.

By using different cases, it is shown that without additional data or information, the

collinear parameters cause a threat to the calibration process.
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The parameters that are sensitive and that do not have any collinear relation are iden-

tifiable. Nevertheless, this does not mean that all identifiable parameters must be in-

cluded in the calibration process. The subset of identifiable parameters may contain

error-free parameters. Inclusion of these parameters in the calibration process may

decrease the accuracy. In Chapter 4, a novel parameter error identification method for

power plant dynamic models is proposed. The method is based on the mismatch be-

tween the dynamic model response to a disturbance, and related PMU measurements.

First, the disturbance is simulated on a commercial software and the effect of each

parameter on the response is obtained as a 1-D time series data which is made of real

and reactive power flows of the power plant model. Then, the simulated mismatch

data are converted to RP, and a 2-D CNN model is trained. In this way, effect of

each parameter is taught to the CNN model. A recursive algorithm is developed that

identifies the erroneous parameters one by one. First, the CNN is fed with 2-D RP

of the actual mismatch between the power plant dynamic model response and PMU

measurements to the CNN, where the CNN flags the most possible erroneous param-

eter. The actual 1-D mismatch data are then projected onto the elementary effect of

the flagged parameter, to remove its individual effect from the mismatch. Once the

individual effect of the possible erroneous parameter is removed, the 2-D RP of the

residual mismatch is fed to the CNN model again until one of the predetermined ter-

mination condition is met. As a result, the erroneous parameters of a power plant

dynamic model is identified with an explainable approach, where the every step can

be observed although it can be implemented in an autonomic manner. The method

is validated on WSCC 9-bus test system with two test cases. The method is also en-

hanced with the proposed collinearity analysis method in Chapter 2, by grouping the

collinear parameters.

This thesis concerns identifying erroneous parameters in a conventional power plant

dynamic model. However, with the increased penetration of wind turbine generators

to power systems, there have been increased research on dynamic models of the wind

turbine generators. The erroneous parameter identification method that is developed

in this thesis is a generic method that could be applicable to the dynamic models of

wind turbine generators.
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