28878

MEAN VALUE ALGORITHMS AND
HEURISTICS FOR QUEUEING NETWORKS

A Master's Thesis
Presented by
Rifat Aykut ARAPOGLU

to
the Graduate School of Natural and Applied Sciences
of Middle East Technical University
in Partial Fulfillment for the Degree of

MASTER OF SCIENCE
INDUSTRIAL ENGINEERING
MIDDLE EAST TECHNICAL UNIVERSITY

ANKARA
SEPTEMBER, 1993

Approval of the Graduate School of Natural and Applied Sciences.

Qi) Q._)

Prof, Dr. Ismail TOSUN
Director

I certify that this thesis satisfies all the requirements as a thesis for the

degree of Master of Science.

Assoc. Prof. Dr. Caglar GUVEN
Chairman of the Department

We certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of

Science in Industrial Engineering.

Assoc. Prof Dr. Caglar GUVEN
Supervisor

Examining Committee in Charge :

Prof. Dr. Nesim ERKIP } /%/CL%’JF
Assoc. Prof. Dr. Caglar GUVEN Ca\\,v\.

Assist. Prof. Dr. Yasemin SERIN %

To my parents

ABSTRACT

MEAN VALUE ALGORITHMS AND
HEURISTICS FOR QUEUEING NETWORKS

ARAPOGLU, Rifat Aykut
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Dr. Caglar GUVEN
September, 1993, 118 pages.

In this study, Mean Value Analysis approach of product-form
queueing networks is analyzed together with its heuristic extensions. Two
exact computational algorithms, Mean Value Analysis (MVA) and MVA
by Chain (MVAC), which are based on this approach are coded and
implemented using the FORTRAN programming language on an IBM
3090 / 180 S mainframe. Each algorithm is implemented using two
different strategies; regular implementations and those which exploit
sparsity but require more CPU time due to a sequential search. The last
implementation of MVAC avoids the need for any search in the case of
networks with only three service centers. The algorithms and their
implementations are compared in respect of CPU time and storage

requirement.

Key Words: Product Form Queueing Networks, Exact Computational
Algorithms, Mean Value Analysis.

Science Code: 605.02.02

iii

0z

KUYRUK AGLARI ICIN ORTALAMA DEGER ALGORITMALARI
VE BULGUSAL YONTEMLERI

, ARAPOGLU, Rifat Aykut
Yiiksek Lisans Tezi, Endiistri Miihendisligi Anabilim Dah
Tez Yéneticisi: Dog. Dr. Caglar GUVEN
Eyliil, 1993, 118 sayfa.

Bu g¢aligmada, ¢arpim formundaki kuyruk aglarinda Ortalama
Deger Analizi yaklagimi bulgusal yéntemleri ile birlikte incelenmigtir. Bu
yaklagimi temel alan tam sonug¢ veren iglemsel algoritmalardan
Ortalama Deger (MVA) ve Zincirsel Ortalama Deger (MVAC)
algoritmalar1 IBM 3090 / 180 S ana sisteminde FORTRAN programlama
dili kullamlarak yazilmig ve uygulanmigtir. Her algoritma iki farklh
strateji kullamlarak programlanmigtir. Ilk uygulama programlan diiz
programlar olup ikinciler bilgisayar hafizasim1 daha etkin kullanan bir
cesit seyrek (sparse) matris teknigi icermektedir. Ancak bu teknik,
merkezi iglem siiresinin artmasina yol agan bir arama yordam
kullanmaktadir. Zincirsel Ortalama Deger Algoritmasinin son
uygulamasi ise sadece ii¢ hizmet merkezi olan kuyruk aglarinda higbir
aramaya ihtiya¢ gostermemektedir. Algoritmalar ve uygulamalar,
merkezi iglem zamam ve hafiza ihtiyaa agisindan karsilagtinlmigtir.

Anahtar Kelimeler: Carpim Formundaki Kuymkﬁglan, Tam Sonuglu
Islemsel Algoritmalar, Ortalama Deger Analizi.

Bilim Dali Sayisal Kodu: 605.02.02

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Assoc.
Prof. Dr. Caglar Giiven, for his careful supervision and guidance
throughout this study.

I owe special thanks to my parents, Giilseren Arapoglu and
Uslu Arapoglu for their understanding and continuous support during this
period. I am also thankful to my brother Rifat and my sister Ayga for
their encouragements.

I am grateful to my friends I. Hakk: Yavuz and Adalet Oner for
their kind help and patience in typing the heavy notation. I also thank to
my friend Aydin Kaynarca for his immediate helps.

TABLE OF CONTENTS

Page
ABSTRAGQ Toeecrerrerereneneersssenesssesssassssssessassssssssesssssssssssssssssessesesssssasesssssasssens 1
OZe oot ssss s s st sssesssmsss s as e S SSASSS SRR SRS RR SR RS E SRR iv
ACKNOWLEDGEMENTS.......ccccoctcemrnnmesenssnssesssssssessssssrssssssenssssssasssssansssssaes \'
LIST OF TABLES........coeeeveerreeissssssessissssssesssssssssssssssssesssssessassssensasssssesesses viii
LIST OF FIGURES.........ccuceuiereetereiniernsnessssssessssssssssssssssssssessassessssssssasssssessssansess ix
CHAPTER I: INTRODUCTION.......ccccecerrrrereerrsrnnsesesesssrecsessssssasasessosssssassessanes 1
CHAPTER II: LITERATURE SURVEYciviiiiiinrrenenesenctineessnesessssessnens 4
2.1, DEfINItIONS. ..o i rercerncensessninaersesstesesessaassssssssssesesssssensassssssssssssssassssensasans 5
2.2. JaCKkSON NELWOTKS.......cccovrrrererirreeissieserensasssssssssssaesssssssssssssesasassenssssassssnsssases 6
2.3. Gordon- Newell NetWOrKs..........cccverveeecernresneenseresesensesrsassesssessssansesssssssssnens 9
2.4. BCMP NetWOTKS.....coceeverecrcrnineeneenienneieenessesesesssssssasasesssssssnsssssessassenessons 11
2.5. Analysis of Product Form Networks.......cucvcvveeveiniereescesrncsereensereessssessaasnes 17
2.6. Mean Value Analysis AlGorithm...........ccucveieeeecrenecnnesersesessneesnressassessens 21
2.6.1. Single Chain MVAcoooveinrcennrnnesesrsssesssssssssssesssssessssssssesassssens 21
2.6.2. Multiple Chain MVAovveriereceernsesesesssessessssesssssasssssenssssessresss 31
2.7. Mean Value Analysis by Chain Algorithm...........cccveveneencerennesnnsneeens 45
2.8. Approximate MVA Algorithms for Product Form Networks............... 53
CHAPTER III: IMPLEMENTATIONAL ISSUES.......cc.ccovmernnrereeereessennes 67
3.1. Implementation Issues of the MVA Algorithm..........cccceevervverccrverneennes 67
3.2. Implementation Issues of the MVAC Algorithm........cocoveeereececennnnene. 71

CHAPTER IV: EXPERIMENTAL RESULTS

AND CONCLUSIONS.......coorrcrrrerrnresanseresenessssssssnssssesesssss 77
4.1. Experiments on MVA Based Exact Algorithms.......cccccocvinevinvuennncnes 77
4.1.1, Description of the eXperimentscocecevrrninnscinienesnsesessesssesannnee 77
4.1.2. Comparison of Algorithms and Implementationsc.ccccoounnnee 80
4.2. Experiments on the Linearizer Algorithmccccocvvivnvinccnnininnnenes 81
4.3. CONCIUSIONScoveerecrecarnrerneresasseraosesnssnssssssasssssssssssssscssesasassssessrssssesssssasas 83
REFERENCGES.........ourcereeenreernresnseseresasessenesesssssssssssssssassassassssassssssssssnss 84
APPENDICES
APPENDIX A. FORTRAN CODE FOR MVA-1ccccvrvrvrrencreecnoenessenns 92
APPENDIX B. FORTRAN CODE FOR MVA-2cciirrevercesennenrsssenane 94
APPENDIX C. FORTRAN CODE FOR MVA-3cconevermrecrrennessssens 97
APPENDIX D. FORTRAN CODE FOR MVAC-1cccoeevevervccresnccnesnens 101
APPENDIX E. FORTRAN CODE FOR MVAC-2ccccevvrvrrcencrnnsunnee 104
APPENDIX F. FORTRAN CODE FOR MVAC-3ccccervrvvrrersucransseens 110
APPENDIX G. FORTRAN CODE FOR LINEARIZER

ALGORITHMocovrrrerrernrerensrensssssesessssessassessrssssesssssasseos 115

LIST OF TABLES

Page
Table 2.1. Service Rates at Center i with k Customers............ 28
Table 2.2. Visit Ratio and Service Times...........ccceeeevevininnnniinnnae 39
Table 2.3. Mean Service Rates.......cccccvvienrivivensnsensecsnssanssncesnnns 39
Table 2.4. Mean Queue Lengths at Reduced Network n............ 40
Table 2.5. Steady State Probabilities, pg(,n).......ccceeveevereerinnnens 40
Table 2.6. Mean Performance Measures at n= (1,1).....cccccccceennne 42
Table 2.7. Mean Performance Measures at n=(2,1)....c.cccccceeenee 43
Table 2.8. Mean Performance Measures at n=(3,1).......c..ccu..... 43
Table 2.9. Steady State Probabilities, p3G,m)......cccccevvvmernccennens 43
Table 2.10. Space and Time Requirements of Approximate
and Exact MVA Algorithmscccocervrrccnnncciseesennes 63
Table 4.1. CPU Times of MVAC-1 Implementation 78
Table 4.2. CPU Times of MVAC-2 Implementation 78
Table 4.3. CPU Times of MVAC-3 Implementation 79
Table 4.4. CPU Times of MVA-1 Implementation 79
Table 4.5. CPU Times of MVA-2 Implementation 79
Table 4.6. CPU Times of MVA-3 Implementation 79
Table 4.7. Network Generation Parameters c..ccceiiiennn. 82
Table 4.8. Statistics on L-Tolerance Errors (%)ccccecevveerunne 82

viii

LIST OF FIGURES

Page

Figure 2.1. Classification of Queueing Networks with

respect to the routing process.........ccevevveninnsiisnncnns 6
Figure 2.2. Representation of Coxian Service Time

DIStrIDULION ..voeeereiecevrenresesessrsnnesessssssnnessssessesarssnens 12
Figure 2.3. Network Diagram Showing

the Order of Evaluation........ccccoivevvnvnnciininnnccncnnnnnas 39
Figure 3.1. Sequence of Evaluation on an

Example NetworkK.........ccccveveriinmnciincisenrsesseonssssisiens 70
Figure 3.2. Partition of Matrices According to

Generation Procedure..........ccccuevninarnrenesesseeraesensenns 74

ix

CHAPTER 1
INTRODUCTION

Increase in world population and pervasive use of new
technologies give rise to the problem of sharing limited resources among
users as efficiently and effectively as possible. Resources may be CPU
time for a time sharing computer or communication lines connecting
different parts of the world or traffic roads used by vehicles. During the
last 30 years, as the efficient use of the resources gained priority, the
determination of long-run performance measures associated with
expensive systems (such as throughputs, mean queue lengths, mean
waiting times and utilizations) became an important issue in the
performance evaluation of these systems. Queueing networks are widely
used in modelling such systems.

There exist two approaches widely used to analyse queueing
networks. The first one is Monte Carlo simulation which is suitable for
complex systems that can not be analysed through analytical methods.
However, the construction of a simulation model often requires a large
effort and the output of the model needs to be carefully analysed to avoid
possible misleading results, making this approach costly. The second
approach is the analytical approach which is based on the mathematical
solution of a set of equations known as 'balance equations’ written for the
states of the network. The solution of balance equations is not easy and
special algorithms have been developed for the exact analysis of only a
class of queueing networks called "product-form' networks.

Product-form queueing networks were first observed by R.R.P.
Jackson(1954) on tandem queues and were later extended in the work of
J.R.Jackson (1957,1963) to a more general network allowing dependent
arrival and service rates. Gordon and Newell (1967) studied closed

queueing networks independently. All of these network models assume a
single type of customer, first come-first served service centers and
exponential service times. Baskett et al. (1975) introduced BCMP type
product-form queueing networks relaxing some of the above assumptions.
They allowed multiple types of customers and more general service time
distributions at some centers while keeping exponential time assumption
at others.

Besides the above developments, several exact computational
algorithms have also been devised to compute mean performance
measures of product-form networks in an efficient manner. The first
algorithm was the convolution algorithm due to Buzen (1973) which
obtains the mean performance measures in terms of the normalization
constants for networks containing a single type of customers. Later Reiser
and Kobayashi (1975) extended this algorithm to cover BCMP type
networks. Reiser and Lavenberg (1980) proposed a new approach called
Mean Value Analysis (MVA) which does not compute normalization
constant and therefore avoids problems associated with the computation
of the normalization constant. Conway and Georganas (1986) introduced a
new algorithm called Recursion by Chain Algorithm (RECAL) which
computes the normalization constant using a different recursion over the
chains of the network. In 1989, Conway et al. (1989) combined the relative
advantages of the MVA and RECAL into a single computational
algorithm called the Mean Value Analysis by Chain (MVAC) algorithm.
Besides these, there are other exact computational algorithms.

Exact algorithms for product form queueing networks can be
classified into two main groups: algorithms which compute normalization
constant and those which do not. Ormeci (1993) considered the two
normalization constant based algorithms namely, the convolution and the
RECAL algorithms. This study deals with the MVA approach which does
not compute normalization constant at any time. The purpose of this
study, is to examine and evaluate the MVA approach in depth and provide
a comprehensive survey of related work including heuristics which derive
from it. In this study, we focus on two MVA based exact algorithms
namely the MVA and the MVAC algorithms. Different implementations

of both algorithms are presented. Each implementation is devised to
overcome the difficulties faced with the previous implementation.
However, queueing networks that can be exactly analysed form a very
small part of product-form networks because of its computational and/or
storage requirements. Larger networks without special properties, can
only be analysed using approximate algorithms. The Linearizer algorithm
is one of the best performing heuristic known in this area but it still needs
some further investigation such as its behavior under large number of
customer types and determination of the error bounds.

In Chapter II, we present a review of related literature up to the
introduction of the BCMP type networks. Mean Value Analysis (MVA)
and Mean Value Analysis by Chain (MVAC) algorithms are given together
with their theoretical basis. Chapter II ends with a review of approximate
MVA algorithm for product-form networks. Chapter III, includes the
implementational issues of both algorithms describing the possible
strategies of implementation. Finally, the results of the experiments and
a comparison of the algorithms are provided in Chapter IV.

CHAPTER 1II
LITERATURE SURVEY

Queueing network models have been used since the 1960's in
diverse areas such as communications networks, computer time-sharing
and multiprogramming systems, maintenance and repair facilities,
production, air traffic control, assembly and inspection operations. They
are important in the performance evaluation of the above systems as they
provide the necessary analytic models. The purpose of this dissertation as
noted in the Introduction, is to examine and evaluate in depth the Mean
Value Analysis (MVA) approach which is one of a class of exact
approaches to the steady state analysis of queueing networks. This
treatment will also include heuristics based on the MVA algorithm. The
survey given in this chapter therefore do not attempt to provide a
complete account of all exact approaches but mention others only as far as
they stand in relation to the MVA class of algorithms.

Network models were first reported in the 50's and early 60's
but they were necessarily of restricted applicability: they depended
invariably on the assumption of independent and exponential service time
distributions and constant routing probabilities within the network. The
last two decades have seen the algebraic solution of what have come to be
known as BCMP type queueing networks through efficient computational
algorithms. These represent a more general class and therefore the study
of more realistic queues is made feasible.

In this chapter, historical developments starting with the work
of Jackson (1957) are presented up to the introduction of BCMP type
networks for which exact computational algorithms are devised. We then,
investigate in detail the MVA approach together with its heuristic
extensions.

2.1. Definitions

Buzen (1973) who was probably the first to introduce a
practical algorithm for obtaining the limiting distribution of a queueing
network defines such a network as follows :

"A Queueing network (QN) is a collection of service facilities
organised in such a way that customers must proceed from one facility to
another in order to satisfy their service requirements”. A more precise
definition is given by Kaylan (1990), who defines a QN as a set relation
<K,A> whereK is a collection of nodes and A is the set of arcs
connecting these nodes. Each node represents a service system composed
of a service mechanism and its associated waiting line. Customer flow
takes place on the connecting arcs without any delay.

Queueing networks can be classified into two main groups as
open and closed networks as shown in Figure 2.1. An open network allows
outside customers to arrive and enter the network as well as departures
from the network. Open networks can also be divided into subgroups as
feedforward, feedback and overflow networks. In feedforward networks,
customers are allowed to visit a node at most once thus, the flow is acyclic
or unidirectional. A special case of feedforward networks in which all
service centers are connected in series, i.e., in which the output of a center
constitutes the input of the next center, is called a tandem network. A
feedback network is one in which customers are allowed to visit a node
more than once. In overflow networks each node has a single server with
zero waiting line capacity. All arrivals occur first to server 1. Those
customers that can not receive service at node 1 are lost to that server and
they overflow arriving at the next server. The same rule is applied to all

remaining nodes.

([QUEUEING NETWORKS)
(N[B
OPEN CLOSED

FEEDFORWARD
TANDEM
CYCLIC
FEEDBACK
OVERFLOW
_ J _ _J/
\ _
Figure 2.1. Classification of Queueing Networks with respect to the
Routing Process

In a closed network no external customer arrivals or departures
are permitted; thus the total number of customers in a closed network is
constant. A cyclic network is basically a tandem network in which the
outflow of the last service center is directed to the first center forming a

closed network.

Another classification for QN's is possible with respect to the
waiting line capacities or buffer size (restricted or unrestricted) and the
total number of customers in the network (constant or variable). Hence
we can have QN's which are

Open-unrestricted ,
Closed-unrestricted ,

Open-restricted , or
Closed-restricted.
2.2. Jackson Networks
After R.R.P. Jackson studied a tandem queue in 1954, J.R.

Jackson (1957) first described an open queueing network in a systematic
way. The type of network which is known as a Jackson Network consists of

M service centers each having sj parallel servers and a waiting room of
unlimited capacity. Customers are indistinguishable and arrive at a
service center either from outside or from another service center in the
network. Arrival times of customers from outside to service center i are
Poisson random variables with mean rates Aqj. Service time distributions
are independent of arrivals and customers are served on a First Come
First Served (FCFS) basis. All service times are exponentially distributed
with mean rate jj. After each service completion at service center i,

customers immediately join queue j with probability p;; or leave the
N

network with probability p;,, hence pjo =1 - Z p;j- These probabilities are
=1

known as routing probabilities and are assumed to depend, independently
of the state of the network, only on the center that the customer is leaving.

The equilibrium flow rate of customers through node i in the
Jackson network described above can be found by solving the following
system of linear equations :

M
e = Aoy + Z €k Pki i=1,.,M 2.1)
k=1

where e; denotes the equilibrium flow rate of customers at node i from
any other node, inside or outside of the network. e;'s are often known as
the throughput rate.

A closer look at the Jackson network reveals that it looks like
consisting of M individual M / M / s queueing systems except that the
arrival process to a service center is not Markovian. This is due to the
presence of feedback arrivals at the centers.It is shown in Burke (1956)
that the output process of an M / M / s queue in equilibrium is Poisson
with the same rate as the input process. However in the case of networks
of queues service completion times at a center and the feedback arrival
times to that center become dependent which implies that the arrival
process is not Poisson. Still, we see later in this chapter that the centers

behave as if the input process were Poisson. This is the most remarkable
property of a Jackson network.

The state ofan M/M/s system is a random process P,P =
{n(t) , t20} where n(t) denotes the number of customers waiting for or
receiving service at time t. Because of the memoryless property of the
arrival and service processes, the state of the system can be represented
as a Markov process and then, the state of the queueing network can be
expressed in terms of the states of the individual M / M / s queueing
systems as follows: Assuming that there are M service centers, let N =
{N¢ = (ni(t),na(t),....nm(t)) , t20} be a random process where nj(t) is the
number of customers waiting for or receiving service at node i at time t.
Let n = (n1,ng,...,nM) be any state and pi(n)=P {Ny=n]} be the state
probability at time t for any state n eN.

Jackson obtained the joint steady-state probability
distribution p(n) of state n in the form of a product of functions which
depend on the traffic intensity at center i. The intensity p; is defined as
pi = e; / lj, with pj/sj < 1 where s; is the number of servers at center i.

p(ni,ng, .y = piny) pa(ng) ... pmnyy (2.2)
where
pi(0) p / K! k=0,1,.. 8;

J

pik) = 2.3)

pi(0) pli‘ / (si! sik'si) k=sjiq,.

and p;(0) must be obtained from the normalizing equation :
Y pilk)=1 (2.4)
k=0

The proof of the above result was given by Jackson (1957) who
showed by direct substitution that the product form solution satisfied the
balance equations written for each service center of the network.

Jackson's result says that the individual M / M / s queues
behave independently i.e., the number of customers at each center is
independent of the queue lengths at the other centers, and that they act as
if their arrival processes were Poisson with mean rate e;.

Jackson later (1963) extended this model by allowing :

1. the mean arrival rate of outside customers to be dependent
on the number of customers already present in the network.

2. the mean service rate of a server at a service center to be
dependent on the number of customers present in that service center.

These extensions include "triggered arrivals" whereby
customers are injected automatically into the network when the total
population of the network falls below a prespecified limit, and service
deletions or jumps, where a service is deleted when the queue-length at a
service center exceeds a prespecified maximum.

2.3. Gordon - Newell Networks

Gordon and Newell without being aware of the results of
Jackson, studied a closed Markovian network with N identical customers
(fixed) circulating over M interconnected service centers. This corresponds
to Jackson's model with A,=0 and p;,=0 for all i. They solved the
equilibrium equations for the joint probability distribution of customers
by using a separation of variables technique and obtained a simpler
notation for the equilibrium joint distribution of customers. The state

space, S (N,M)
M
S(N,M) = {(ny,ny,....n0) : 2.n; =N, n20 i=1,...M. }

i=1 (2.5)
is finite but clearly very large even for small values of N and M. The
number of distinct states of a closed network with M service centers and N
customers is given by C(N+M-1,M-1),where C(a,b) denotes the number of
distinct combinations of a with b. The equilibrium flow rate of customers

in a Gordon-Newell network can be found easily by dropping Aci's from

equation (2.1) i.e,,

M
ej = 2 ek Dk i=12,... M. (2.6)
k=1

The unique steady-state distribution of customers in the
network was obtained by Gordon and Newell (1967) as :

M
1
p(ng,ng,...nM) = gayy 11 &®i) (2.7)
i=1
where
n;
Ci
a;(n;) =
0
I pi minG,s)

1

G(N) is the normalization constant and defined as:

M
GMN)= Y IT 2itni) (2.8)
neS(N,M) i=1

Note that the computation of G(N) is not straightforward and
requires a summation of product terms over the entire state space
S(N,M). Although there has been attempts to derive simpler closed form
expressions for the normalization constants (e.g.,Koenigsberg, 1958), this
difficulty still goes on and led to the development of special algorithms
devised to compute the normalization constants efficiently. On the other
hand, open networks are easier to solve when compared to a corresponding
closed network but they require more information than a closed network;
i.e., outside arrival rates, A, , are either known or estimated.

10

2.4. BCMP Networks

Baskett et al. (1975) introduced a more general class of QN
(called BCMP networks after the initials of the authors) allowing
considerable relaxations on the assumptions of the original Jackson
network. The relaxations come in three categories :

i.Different queueing disciplines are allowed at different service
centers in the same network.
ii.More general (Coxian) service time distributions are

recognised for the non-FCFS service centers.
iii.The single chain framework of the Jackson networks was

extended to multi-chain networks allowing different types of customers.

These extensions now are discussed in detail. The following

disciplines can be handled :

Type 1: All customers are served in order of their arrival to the
service center and there is no restriction on the number of customers. This
service discipline is referred to as FCFS.

Type 2 : Processor Sharing (PS) : All customers receive service
simultaneously at a rate of 1/nth of the service rate when there are n
customers at the service center.

Type 3 : Infinite Server (IS) or Server per Customer : Servers at
a service center are identical and work in parallel. The number of servers
at this type of service center is at least the maximum number of
customers allowed at this center at any time. Thus, customers begin to
receive full service as soon as they arrive at this type of service center and

no queueing delay occurs.
Type 4 : Last Come First Served Preemptive-Resume (LCFS-

PR) : The last arrival is served first. Upon last arrival, the customer
receiving service (if there is any) is interrupted and the remaining part of
service is resumed after the departure of the last customer (which also
may be interrupted by another arrival during its service interval).

11

Coxian Service Time Distributions

Service times at service centers are represented by the response
time (i.e. total time a job spends in the network) of a feedforward network
consisting of only exponential subservers (stages) with different service
rates as shown in Figure 2.2. Only one job is allowed in the network at a
time.

v

Figure 2.2. Representation of Coxian Service Time Distribution

Let T denote the average response time. Its expected value is :

u 1 u
Efl= Y (A Y)=y, (Ai/uj) (2.9)
1=1 =l i=1

where Aj =ajaj..aiy

u is the number of stages (subservers)

aj is the probability that a job proceeds to subserver i+1 given

that it receives service at subserver i.

bi=1-aj i=1,..,u.

The Laplace transform of the p.d.f. of T, f*(s) is given as :

u

1
fs)= Y, Arbll JT (pi/pi+s))) (2.10)
1=1 i=1

which is a rational function of s and can be written as a ratio of two
polynomials P(s) / Q(s). Thus, any distribution whose Laplace transform
has a rational functional form can be represented by a Coxian
distribution. Furthermore, any distribution function (without the rational
Laplace transform) can be approximately represented by a Coxian
distribution (Gelenbe and Mitrani, 1980).

12

BCMP Network Model

A BCMP network is represented by a graph with M nodes
(representing service centers). There are R classes of customers and each
customer belongs to a single class at a time but it is permitted for a
customer to shift to another class after a service completion at a service
center with some fixed probability namely, Pir,sj » the probability that a
customer of class r at center i moves to center j as a class s customer after
a service completion at center i. This class switching feature of BCMP
networks allows different routing parameters and/or service time
requirements to a class r customer at different visits to the same service
center, thus brings flexibility in modelling real life situations as queueing

network models. A class r customer at node i leaves the network with
M R

probability p;.,=1- Y Y b js i=1,.,M. r=1,.,R. The pair (i,r) can be
j=1 s=1

considered as a customer state. Then, the set of customer states can be
split into m (m>1) non-communicating subsets of customer states, since it
may be impossible for a customer at state (i,r) to visit other customer
states and vice versa even though it is permitted to change classes. In this
way, it is possible to form m separate subchains denoted as E,,..,.E_,. (For
example, if no class switching is permitted then there will be at least R
subchains (m2R)).

In a BCMP network some subchains may be closed having a
fixed number of customers in the network (no external arrival or
departure) whereas others are open allowing external arrivals and
departures. The external arrival process may be generated in two ways:

(i) The external arrival process is Poisson depending on the total
number of customers in the network N with mean rate A(N). The
probability of a new arrival to node i as a class r customer is p,; with

M R
Z Z po,ir=1'

i=l r=1

13

(ii) There are m independent Poisson processes one for each

subchain. The mean arrival rate of the kth process depends on the number
of customers at subchain k, Ni, and denoted by Ay (Ny). The probability of
a new arrival from the kth process to node i as a class r customer is p, ;,

with Y po;=1 k=1,.m.
G,reEk

When Coxian service time distributions are used, the process N
is not Markovian. However, the Markov property can be restored by
redefining the network state by specifying also the stage at which the
service is. In this way, the network states form a Markov chain because all

the servers are now exponential. These states are represented by a vector
X = (X1, Xg,...,X)) whose component x; is also a vector denoting the state at

center i. Baskett et al. (1975) described these states for each service
center (discipline) as follows:

If service center i is of type 1 (FCFS), then x; = (x;1,Xj2,..,%in,)
where n; is the number of customers at center i and x;;is the class of

customers who is in jth position in the queue.

If service center i is of type 2 or 3 (PS or IS), then x; = (V;1,Vj2,
- ViR) With Vi = (my, mgr,.., my,) where uj; is the number of stages for

a class r customer at center i and m;, is the number of class r customers at

center i in the 1th stage of service.

If service center i is of type 4 (LCFS-PR), then x; = ((r;,my),
(r2,m2),...,(rni,mni)) where a pair is written for each customer at center i

denoting the class of the customer, by and the current stage of service,m;.

The solution of the global balance equations written for the
equilibrium state probabilities is a tedius work. Instead, they wrote the
independent balance equations (or local balance equations) which equate
the flow of customer between two adjacent states of the network. The
solution of the independent balance equations are given as the BCMP
theorem.

14

The customer flow balance equations can be written for each
ergodic subchain E; , k=1,...m. as follows:

&r = Pojr + O, ©js Pigjr =1 G,r)eE, (2.11)
G,s)XEgk

If Poir i8 zero for all (i,r)eEy then the subchain E, is closed. In this case
e;r values are determined to within a multiplicative constant and can be

interpreted as relative arrival rate of class r customers to center i. If not
all Po,ir 's are zero for all (i,r)eE,, then the subchain E, is open and it is

assumed that the flow balance equations have a unique solution and e;,
values can be interpreted as absolute arrival rate of class r customers to
center i.

BCMP Theorem

The solution for a network which can be open, cclosed or mixed
in which each service center can be one of the FCFS, PS, IS, or LCFS-PR

disciplines is given by :

P(S = (XyXgxp)) =G dN) fi(xp) fo(xo). Sy (xp) (2.12)

where
G is the normalization constant, d(N) is a function of the number of
customers in the system and each f; is a function that depends on the

service discipline of center i.

If center 1is FCFS then

n;
£(x)=(Uw)] Cix;
Ly

J
If center i is PS then
R uj m
fi(xi)=ni! H H {(eir Airl/uirl) irl (ymirl!)}
r=1 1=1

15

If centeri is IS then,

R ur
f(x)=] IT (Ceir Ain/ i)™ (Vmygl))
r=11=1
If center is LCFS-PR then
4
fi(x)= H { €ir; Airjmj (1/mirjmj)}
j=1

1
where A, ;= H 8;r , Ay is the probability of going to stage j+1 after the
=1

service completion at stage j for a class r customer at center i and m;,; is

the number of class r customers at center i in stagel.

If the first case of external arrival process is adopted, in which
the arrival rate depends on the total number of customers in the network,

N,
N-1

d (N)= J] Mi) (2.13)
i=0

If the arrivals to the system are according to the second case, in which the
arrival rate depends on the number of customers in subchain k, Ny , then

m Nyl
d(N)= T J] M) (2.14)
k=1 i=0

d (N)= 1 if the network is closed.

The theorem is proved by substituting the solution into the
independent balance equations.

16

2.5. Analysis of Product Form Networks

When usual Markovian assumptions are made, exact analysis
of closed queueing networks is impractical and too costly due to the large
size of the state space. Sauer and Chandy (1981) give an example of such
a network solution by solving balance equations. This problem was
partially overcome by Jackson (1963) who showed that for a certain class
of queueing networks the joint queue length distribution appears in the
form of a product of terms each corresponding to a service center in an
open queueing network with exponential service time distributions. This
special class of queueing networks is known as 'product form networks'.
Gordon and Newell (1967) showed that closed queueing networks with
load-dependent exponential service times, assume a product form
solution, assuming as Jackson FCFS queueing discipline at every center
of the network. Since then, a number of researchers (Ferdinand,1971;
Posner and Bernholtz, 1968; Chandy, 1972) have attempted to relax
these assumptions. Chandy (1972) showed that networks with PS and
LCFSPR queueing discipline have product form solutions and satisfy
local balance equations. Local balance equations state that the rate of
transition out of state n due to a customer departure from center i is
equal to the rate of transitions into state n due to a customer arrival into
center i. Baskett et al.(1975) unified the above studies and extended
them to multiple classes of customers for a queueing network consisting
of FCFS, LCFSPR, PS, IS type service centers provided that service time
distributions have a rational Laplace transform at non-FCFS centers.
Muntz (1972) investigated the so called M --> M property which reads as
Poisson arrivals imply Poisson departures. He showed that a network of
queues with this property has a product form solution. Chandy et
al.(1977) introduced a new property called ' station balance ' as an
explanation of the product form solutions at non exponential centers.
They showed that if a state probability density function satisfies station
balance, then it satisfies both local balance and global balance and that a
queueing discipline which satisfies station balance must begin to serve
new customers immediately. They also note that FCFS and fixed priority
disciplines do not satisfy the station balance since they fail to satisfy the
immediate service criterion. The findings of Chandy et al.(1977) has

17

made a significant contribution to the characterization of product form
networks. In general, product form property of a service center depends on
both the queueing discipline and the service time distribution employed
at that center. However there exist some special cases which are
identified in the literature:

i) If the queueing discipline at a center satisfies station
balance then a product form solution is obtained independently of the
service time distribution depending only on the mean service times. This
independence is known as the ' insensitivity property ' of product form
networks. It should be noted that this case is an extension of BCMP
queueing networks with PS, IS, LCFSPR type (all of which satisfy station
balance) service centers and allow arbitrary service time distributions.
Due to this important property, exact algorithms devised for closed
product form queueing networks assume service centers whose queueing
discipline satisfy station balance (e.g. PS, IS, LCFSPR) and only the
mean service times are needed for such centers. Noetzel (1979) described
a generalized queueing discipline called Last Batch Processor Sharing
(LBPS) covering all disciplines which yield station balance and therefore,
product form solution for any service time distribution. In this discipline,
the set of customers receiving service at once is called a batch. All
customers in a batch are served according to the PS discipline and there
is a maximum batch size. If a customer arrives when the batch is at its
maximum size, the batch is pre-empted and the arriving customer is
given full service. The batches are served according to the LCFSPR
discipline. It can be noted that this discipline reduces to PS if maximum
batch size is relatively large or infinite and to LCFSPR if maximum

batch size is one.

i1) If the service times of customers at a service center are
exponentially distributed with the same mean for all chains then again a
product form solution is obtained for all work conserving queueing
disciplines even if station balance is not satisfied. Therefore, station
balance is sufficient but not necessary for product form solutions.
Exponential service times for FCFS centers of BCMP queueing networks
is included in this category as well as other disciplines which do not

18

satisfy station balance (e.g. random selection service discipline (Spirn,
1979)). There are other implications of these cases: For example, any
center satisfying product form with non-exponentiel service times
(including exponential distributions with different mean values for
different chains) implies that steady state product form probabilities
must satisfy station balance.

Algorithms for Product Form Networks

To obtain a product form solution for closed queueing networks,
it is necessary to calculate the normalization constant. This .
normalization requires the computation of the sum of the product terms
over the state space. The Convolution Algorithm of Buzen (1973) was the
first to compute the normalization constant efficiently. For practical
purposes, however, the joint distribution contains far too much detail.
Much simpler quantities such as mean queue sizes, mean waiting times,
utilizations and throughputs are needed as performance measures.
Within the framework of the convolution algorithm, it has also been
shown that such quantities can be derived from the normalization
constants in an efficient manner. However, such a procedure suffers from
computational problems; the normalization constant may have a value
outside of the floating point range of many computers even though the
network parameters and performance measures have values well within
the floating point range. This problem can usually, but not always, be
eliminated by an appropriate choice of the relative throughput rates
(Lavenberg, 1983). The convolution approach also suffers from numerical
instability near the lower limit of the floating point range. Reiser and
Kobayashi (1975) extended this algorithm to allow multiple chain
queueing networks.

Reiser and Lavenberg (1980) proposed an alternative way of
solving a product form queueing network called Mean Value Analysis
(MVA). The recursion in MVA is in terms of mean performance measures
and there is no need to compute a normalization constant. The MVA
recursion relates mean performance measures of a network of population

19

N to those of a network with population N-1. In this respect, MVA
considers the network population customer by customer.

The Local Balance Algorithm for Normalizing Constant
(LBANC) is another exact algorithm developed by Chandy and Sauer
(1980). This algorithm resembles both the Convolution and the MVA
algorithms in that it has the same type of recursion as MVA with
unnormalized performance measures. Meanwhile, normalization
constants are computed in parallel and normalization of performance
measures takes place at the end of the algorithm. In LBANC, it is
possible to reduce the storage requirement by saving the normalization
constants corresponding to intermediate population levels. This feature of
LBANC constitutes its advantage over MVA but it still has problems
associated with the normalization constant.

The Recursion by Chain Algorithm (RECAL) (Conway and
Georganas, 1986) is the first of the three algorithms (others are MVAC
and DAC) developed essentially for multiple chain product form queueing
networks. The recursion in RECAL can be considered as a chain by chain
approach ; it starts with no chain in the network and adds one chain at a
time until all chains are introduced. The recursion in RECAL aims to
compute the normalization constants of these intermediate networks
(which are named as related networks).

The Mean Value Analysis by Chain algorithm (MVAC) (Conway
et al.,1989) is similar to RECAL in terms of the chain by chain
decomposition, but its recursion involves mean performance measures
like that of MVA,

The Distribution Analysis by Chain algorithm (DAC) (Silva and
Lavenberg,1989) is devised especially for the computation of the joint
queue length distribution as the name implies. Its recursion is in terms of
the joint queue length probabilities associated with the related networks
and the mean performance measures can be obtained by a supplementary
algorithm.

20

Besides the above general algorithms, there exist some special
algorithms developed for solving large queueing networks with many
routing chains and centers if the network has sparseness property. A
queueing network where most of the routing chains visit only a small
subset of the service centers, is said to have ' sparseness ' property. These
algorithms include the Tree Convolution algorithm of Lam and Lien
(1983), the Tree MVA algorithm of Tucci and Sauer (1985) and Hoyme et
al. (1986), the Tree RECAL algorithm of Greenberg and McKenna (1989).
These special algorithms are especially useful in solving communication
network models; in such network models each origin-d=stination pair is
often represented by a separate chain. This generates & large number of
chains but they have usually the sparseness property.

2.6. Mean Value Analysis Algorithm

The Mean Value Analysis (MVA) algorithm introduced by
Reiser and Lavenberg (1980) works directly with the desired statistics. It
is mainly based on the Arrival Theorem (Sevcik & Mitrani, 1981 and
Lavenberg&Reiser,1980) and Little's formula (Little,1961).

2.6.1. Single Chain MVA

Consider initially a closed single chain queueing network with
product-form solution. Let Q(N) denote such a network with N customers
and M service centers. The Arrival Theorem for single chain networks can
be stated verbally as : In a product form queueing network an arriving
customer at center i in Q(N) observes the network Q(N-1) in equilibrium.
The importance of this theorem comes from the fact that it allows to
establish a relation between networks Q(N) and Q(N-1) which gives rise to
the MVA algorithm. The form of the Arrival Theorem suggests that this
relation has a recursive nature which is to be solved iteratively by
applying the two results successively at each population level from one to
N.

21

In this section the MVA analysis is described and developed. To
start, we define the following parameters for Q(N) in steady-state :

68; = E [vi] : Expected value of vj, the number of visits a customer
makes to service center i between successive visits to i*, an arbitrarily

chosen queue
1; = E [s4] : Expected value of sj, the service demand brought into

queue i at a given arrival epoch (measured in number of instructions to be

executed, for example). ‘
pi(k) : The service rate when there are k customers present at

queue i (measured in number of instructions executed per second, for
example). This is also referred to as the ' capacity function ' and it will be
set equal to one for all k if the service rate is fixed.

Assume the routing matrix P to be irreducible. From standard
Markov chain analysis 6;'s satisfy the equation

0= 6P where 6= (81, ...,0M) and Pis a (M by M) routing

matrix.

Note that 6 satisfying the above equation can be chosen in infinitely many

different ways since P is stochastic (row sums equal 1). We can choose one
0 setting 6;* = 1 where i* is an arbitrarily selected queue (this queue is

also named as the marked center). We know from Basket et al. (1975)

that additional assumptions must be made to have a product-form
solution : service times sj are assumed i.i.d. random variables from a

Coxian distribution if the queueing discipline is PS, IS, LCFS-PR and
exponential for FCFS queues. To proceed further let us introduce the
following notation :

ki : Number of customers at queue i at a given instant in time

(including the one being served)
k = (kj, ... ,kp) : State vector of Q(N)
n; = E [k;] : Mean queue length at center i
wj : Mean waiting time per visit of a customer at queue i

(including service time)

22

A=A : Throughput rate of marked queue i*

Aj =6; A :Throughput rate of queue i

pi = 6i i : Mean service demand brought into queue i by a
customer between successive visits to the marked center i*

Wj = 0; wi : Mean waiting time in queue i between successive
visits to the marked centeri*

g(N) : Normalization constant of the network Q(N)

g[i](N-ki) : Normalization constant of the network Q(N) with
center i removed :

pi(k,N) =P { kj = kIN }: Steady state marginal probability of k
customers at center i of Q(N)
Here the subscript i is used to denote any queue in the set of nodes (1,..,M}

Before proceeding further it is convenient to show the following
relations written for the network Q(N) :

-~
pi (kN) = m) Bk 109 N (2.15)
)
1
AN) = Ajx(N) = gé%"N—) 2.16)
. pi MN)
pl(k,N) = “»i(k) pl(k'].,N"l) k= 1, vee ,N- (2. 17)

The key result here is (2.17) and the relations (2.15), (2.16) are
used to derive this result. In the following we provide the derivations of
the relations (2.15)-(2.17).

i) In a product form network, the probability of state k is given by :

P { k=(k1,...,kM) }= Ttl(kl) 1[2(k2) “M(kM)/ g(N)
k
Pi

— A and @ =1, i=1,.. M.
IO B '

where : m;j(k) =

23

pik,N) = Y Pik=(ky,..k; kK1, km))
kY kj=N-k
j#i
mi(k) ‘
Y k=N-k
J#1

oy EBIN-K)
) gm)

ii) From the definition of the expected value of throughput :
N

() = Y pikN /g
k=1

using equation (2.15),
- g G0 BN
= 5 & L5 g(N) Hi

_ H g Pik'1
g(N) =1 BiD)..pik-1)

glil(N-k)

64 N .
= 2N kzl mi(k-1) gll(N-k)

o: g(N-1)
i g(N

iii) Using equations (2.15) and (2.16),

. Nk e gl

24

_ P gilN-k) pi eli(N-1-(k-1)) g(N-1)
w® HED Ty = po MED TRy g

- gp&;; pi(k-1,N-1) A(N)

This last equation was first shown in Reiser and
Lavenberg(1980) which forms a recurrence relation between the marginal
probability distribution of queue i in Q(N) and marginal probability
distribution of the same queue in Q(N-1) (i.e. same system as Q(N) with

one customer less).If Q(N) consists of only single server fixed rate (SSFR)
queues having pj=1 then the mean waiting time of an arriving customer at

queue i,w; can be written as :
’wi(N) =1; + 7 { mean queue size at arrival epochs} (2.18)

The quantity within brackets can be replaced by nj(N-1) by
Arrival Theorem. Thus, equation (2.18) becomes now :

wilN) = 11 + 1y nj(N-1) = 13 (14n;(N-1)) (2.19)

Let us look at the queueing network Q(N) {rom the marked
center i*. The average number of customers in the network is N (fixed) and

the mean time a customer spends in the network between successive
M

visits to i* (i.e. mean cycle time) is 2 8;wi(N) . Thus, Little's equation
i=1

when applied to the entire network viewed from i* gives :

AN) = —M—E—— (2.20)

Y, 6;wi(N)
i=1

25

Little's equation applied to each service center separately yields :
n;(N) = L4(N) wi(N) i=1,...M (2.21)

Infinite server (IS) type service centers can be considered as a
special case of (2.19) since nj(N-1) always equals zero at such centers.

Then, substituting the quantities Wi(N) = 6;wj(N), pj = 6;1; into equations
(2.15)-(2.17) we obtain the following set of equations which forms the
heart of MVA recursion :

Wi(N) = p; (1 + & n;(N-1)) (2.22)
AN) = —M—IL— (2.23)
Y WiN)
i=1
n;(N) = A(N) Wj(N) (2.24)

" 0 ifiis a IS type service center
where 9; = 1ifiis a FCFS type service center

The equations (2.22)-(2.24) provide the basis for an iterative
evaluation of the performance measures. The iteration starts for each
queue, with the initial conditions nj(0) = 0 and proceeds until the desired
population level N is reached by adding a single customer into the
network at a time. Note that all three performance measures (mean
queue sizes,mean waiting times, throughputs) are calculated in parallel.
The utilization can be computed easily at the end of the iteration using

w(N) = H(N) 1 (2.25)

Note that all the above equations deal with mean performance values and
there is no use of normalization constants or marginal distributions,

When load-dependent service centers are allowed, the mean
waiting time is no longer determined by what is encountered by an
arriving customer since later arrivals may change the service rate. It is
therefore necessary to calculate marginal probabilities at these centers in

26

addition to mean values. Using Little's formula, we may write for the
expected waiting time of a customer at a load-dependent service centeri:

- A (N)

using (2.17) the mean value equations now become :

pi (1+8; nj(N-1)) ifcenteriis IS or SSFR

WiN) = N jpiG-1,N-1 (2.26)
it Pi z w%(.l)——) if center i is load-dependent
i

=1
N
MN) =

Y, WiN)
i=1

o oan P o
plO’N) = K(N) lli(i) pIQ l,N 1) J—l,...,N.

N
piON)= 1- Y piG.N) (2.27)
j=1

ni(N) = A(N) W;(N)

Here, the iteration starts with the initial conditions p;(0,0) = 1 and
n;(0)=0 i=1,...,M.

27

We illustrate the recursion using a small example :

Example 2.1.
Consider a closed product form queueing network with three

service centers (M=3) and three customers (N=3). Assume that the first
center is of type IS, the second one is a SSFR and the third one is a load
dependent center. The service rate at center i when there are k customers,
Hi(k) is as given in Table 2.1.

Table 2.1. Service rates at center i with k customers

k) k=1 2 3
i=1 1 2 3
2 1 1 1

3 1 3 5

The probability transition matrix is given as :

1/5 1/5 3/5
P={ 0 3/52/5
3/5 1/5 1/5

Choosing arbitrarily the first center as a marked i.e. i*=1 and solving
0=0P by setting 81=1; we get: '

0=(1,7/6,4/3)
Assume that customers have the following service requirements at

centeri:
1=(2,3,6)

Calculations proceed through the following steps :
Initialization :

n;(0)=0 i=1,2,3.

p3(0,0)=1

Main Loop :
Population Level : N =1

28

wi(1)=2 ny(1) = 4/27
wo(1)=3 A1) = 2/27 na(1) = 7/27
w3(1)=6 n3(1) =16/27

p3(1,1) =16/27
p3(0,1) =1-p3(1,1) = 11/27

Population Level : N =2

w1(2)=2 n1(2) = 324/1039
wo(2) = 34/9 A(2) = 162/1039 n9(2) = 714/1039
w3(2) = 130/27 n3(2) = 1040/1039

p3(1,2) = 528/1039
p3(2,2) = 256/1039
p3(0,2) = 1- p3(1,2) - p3(2,2) = 255/1039

Population Level : N =3

w1(3) =2 n1(3) = 0.4360
wo(3) =5.0616 A(3) = 0.2180 ng(3) = 1.2873
w3(3) = 4.3923 n3(3) = 1.2767

p3(1,3) = 0.4280
p3(2,3) = 0.2954
p3(3,3) = 0.0859
p3(0,3) = 1 - p3(1,2) - p3(2,2) - p3(3,3) = 0.1907

The equation (2.27) is proposed by Reiser and Lavenberg (1980)
in the original MVA algorithm but it fails numerically as p;j(0,N) tends to
zero (Chandy&Sauer(1980)). In such cases, the progress of the algorithm

can be described as follows: During the first iterations the algorithm
works correctly numerically but after some point the values of p;(0,N)

decreases and eventually becomes negative due to the insufficiency in the
number of significant digits kept by the computer. Subsequent iterations
are bound to generate large numerical errors. This numerical instability

29

was first reported in Chandy and Sauer(1980). However, the difference in

(2.27) can be avoided if the [i] complement system QU!(N) is also

evaluated. Reiser (1981) proposed a modified approach using the
following relation :

A(N)

:(0,N) = pi(O,N-1) = 2.28

pi(0,N) = py() A ()

which can be obtained from equations (2.15), (2.16) and (2.17) as :

_ gIN-D gN-1) gl
= gD eN) GkN-1)

AN)
= p;(O,N-1) m

where A(N) is the throughput of the network Q(N) with center i removed.

The relation (2.28) is numerically stable but potentially
expensive: Determining AN is nearly as expensive as determining A(N),
so for a given number of service centers it is nearly twice as expensive to
solve a network with one load-dependent center as it is to solve a network
with only SSFR and IS centers. If a network has two load-dependent
centers, i and j, then it will be necessary to obtain A, Ao, Ao
so the solution will be nearly four times as expensive as if the network
had only SSFR and IS centers. In general, if there are n load-dependent

n

centers, the number of additional networks to be considered is Z (?)>-1or
i=0

equivalently 2"-1, This exponential increase in complexity may be
prohibitive if there are more then a few load-dependent centers.

30

2.6.2. Multiple Chain MVA

The single chain MVA algorithm can be extended to the
multiple chain case. The multiple chain MVA equations are

straightforward extensions of their single chain versions. Assume that
there are R closed chains each having a fixed number of customers, Ny

r=1,..,R so that N = (N1,...,NR) is the population vector. The following
additional notation is adopted for the multiple chain case :

i*(r) : an arbitrarily selected center among the centers visited
by chain r customers (marked center of chain r)
Tir : mean service demand per visit of a chain r customer at

center i
Bir : mean number of visits a chain r customer makes to center i

between successive arrivals at the marked center i*(r) (visit ratio)

Pir = Tir Bir : Mean service demand brought into queue i by a
chain r customer between successive visits to marked center i*(r)

Ar(N) = A j*(r)r(N) : throughput rate at the marked center i*(r)
given that the network population vector N.

Air(N) = 6i Ap(N) : throughput rate of chain r customers through
center i

Py : routing matrix of chain r customers '

njr (N) : mean number of chain r customers at center i

R
ni(N) = ' njx(N) : mean queue size at center i
r=1

wir(N) : mean waiting time per visit of a chein r customer at
center i (including service time)

W;ir(N) = 6;y w;(N) : mean waiting time of a chain r customer in
queue i between successive visits to marked center i*(r)
Pi(k,N) = Pr { kj=k | N'} where kj+ko+...+kp=N and kj = (k;1,....k;R)
Pi(k,N) =Pr { Ikjl=k | N} where Ikjl =k;j+kjo+ .. +kiR
k; : R-dimensional state vector of center i
n : M-dimensional state vector of the network

31

The same capacity function pj(k) applies depending on the

number of customers at center i, independently of chain membership with

8;,'s are computed from the equation 0, = 6, P, where
6,=(011,02r,..,0Myr). Since 6jx(;); = 1 by definition, and Py is assumed to be an
irreducible stochastic matrix, the solution to the above equation is unique.

The equilibrium probability of being in state (kj,k3,....k)) has
a product-form solution given by Basket et al. (1975) assuming that the
BCMP conditions in section 2.4. are satisfied :

Pr {n=(k1,k2,...,kM) IN}= “l(kl) Kz(kz)...ﬂM(kM)/ gN) (2.29)

where
1 kil ki1 ko

(k:) = 51k kiR
" pi(D)...piky) kinl-KiR! Pi1 P32 P

o1
iR

ki = |kll = ki1+ki2+ +kiR
and g(N) is the normalization constant.

The multiple chain counterparts of equations (2.15)-(2.17) are :

w

i &N = m) 5{—;,(%& 0<k<N 2.30)
1)

11) ;"lr(N) = eir gg((NN)r (231)

R
i) pkN) = u_l%l?) zlcir Air(N) pi(k-1,N-1,) k=1,.., NI (2.32)
r=

which are derived as follows :

32

i) Using equation (2.29),

pikN)= Y Prin=(ky,..ki1kkis1,...kv) | N}
Y kj=N-k
j#i

ni(k)

5 2 H m(ky)
3

s

' g!i](N-k)
Ay)

ii) From the definition of throughput,

I»lx(k) nkkr 1

Tir

MrN) = Z P N) ~—

) %E mﬁk)gﬁkhﬁk)ﬂﬂkar;L
ko1, e™N) kg
pitk) ky . . .
where — k18 the portion of mean service rate consumed by chain r

customers and the summation is over all feasible population vectors and
1, denotes the R-dimensional unit vector in direction r. After necessary

simplifications :
k-1
Sir g Pir (k-1)!
) K=l pi(1)...pik-1) k1l.Gep- DL,

kgl SHIONK)

_ 91r 2 mi(k-1,) glil(N-k)
NS,

g(N' lr)
= O Te®

33

iii) The proof (Kant,1992) is in two parts.
R

1
In part one we show : pi(k,N) =) rgltir Mr(N)pj(k-17,N-15)
1(N-
pi(,N) = (k) gg)k)
1 kl k1 ka kR 5{___1] k)

= .k kilkR! PiiPi2 - PiR

_ 1 k1 kg kg glIQN-k)
- pi(1).. l»‘«l(k) ZC(k 1p) Pii Pi2 - PiR gN)

R -
1 k-1 kr Pir giN-k)
=Yy k-1,) pil . pkrl okR
2 (- pilkD) Cedopif -Pir ~PiR Ly 8@

R [I(N-1,, -(Ck- :
_ gI(N-1, -(k-1,)) g(N-1;)
= @ i w1
1 R
’J-l(k) z Pir pl(k lr’N lr) A'T(N)
1 R
=) 211:1,. 0ir Af(N) pi(k-1,,N-1,)
1 R
2 Tir Mr(N) pi(k-1,,N-1)
pik)
k! - R
where C(k) = kgl kR and we used the identity Ck)= Y C(k-1,)
L.kR! Rt
Part two :
By definition pj(k-1LN-1;) =) pi(kN-1p)

ki | =k-1

Note that for all j=1,...,R kjj >0, kir <Np-1, and for all j#r kijj <N;j
by substituting k;-1; for kj on the right hand side, we get

34

pi(k-1,N-1,) = 2 pi(kj-1y,N-1y)

Tir Mr(N)
pik)

Tir Mir@N) 1

——pik-1,N-1,) = Tip AN pi(k;-1,.,N-1,)
wi (k) pi(k-1,N-1, (k) ki,.>0;kil= ku' Air(N) pj(kj-1p,N-1p

then summing over all chains r=1,.,R and changing the order of
summation on the RHS,

first multiplying both sides by

R . 2.(N) 1 R
Y M;; ~ pik-1N-1) = o X trkir NP1 N-1p)
=1 pi(k) kir>0 Ikjl=k Hi(k) r=1
from part one :
= Y pilkN)
kiy>0 Ikjl=k

now we can remove the condition ki, > 0 since the conditions are not over
N-1, any more.

= pi(k,N)

The Arrival Theorem holds also for multiple chain product-form
networks and can be restated as (Zahorjan et al.,1988) :

"In a product-form network, the average number of customers a
chain r customer finds already at center i when it arrives there given
network population N, is identical to the equilibrium me=an queue length
at center i when one chain r customer is removed from the network.”

At this stage, equations for the SSFR and IS type service

centers of the single chain MVA (2.22)-(2.24) can be rewritten for the
multiple chain case :

35

Nr

MN) = 1 - (234)
2 Bir wir N)
i=1

njr(N) = 6jy AN) wjy(N) (2.35)

respectively, where §; is one if center i is SSFR and zero if center i is IS

type.

For load dependent service centers, the mean waiting time
equation for single chain (2.26) becomes :

INI : .. i-1,.N-1,)
S S S o Ny (2.36)
j=1 HiQ)
Proof (Kant, 1992) :
From equation (2.30) we get, 1
. _ 1 k! k1 ko kR gHIN-K)
Pi(k,N) = pi(1)..pik) k1l.kR! Pii Pi2 ~PiR gN)
1 ki kel kp _k giiNK)

= Dot D AP PR gk P N

o mely X BN (el gN-1p)
= Pir TiK-1r p;(k) ky g(N-1,) g(N)
k

= Pir Pi(k‘lr’N'lr)m Ar(N)

Nr
By definition, njy(\N) = }° j Pr{kiy=j | N}
=1
NT

=Y YipilgN)
=1 kjkjr =j

36

Z

r [
2 Pir Pi(ki‘lr’N'lr) (ki 2"I'(N)
1 kjkir = wiClkil)

1l

j

Note that in the last equation, the two summations cover all population
vectors at center i where k;>0. Therefore, by grouping together terms of

each value of | k;| we get,

INI :
=pir M) Y ¥ —— pil 1N
=ikl 0 HKD

= pir A(N) 2 3) Z Pi(kj-1y,N-1)
j=1 MV 1K 157k 50

INI

tir Air(N) .2 —’5 PiG-1,N-1p)

the proof is completed by applying Little's formula to the last equation.

H

Similarly, equation (2.28) becomes :

N)
pi(O,N) = pj(0O,N-1;) X—:II;(](—I\I) (2.37)

where j is any service center other than i and any r such that N;>0 may be

used.
The proof is similar to that of equation (2.28). From equation (2.30) we get

(O,N) _ g[l](N'o) _ B(N'lr) J{l](N) g[]](N'lr)
P - g™ T g gy e(N-1p)

using equations (2.31) and (2.30) appropriately,

B;xAr(N) :
_ SirMr CON-L) i
ejrkrm(N) Pi(ON-1;) j=#i

37

Ajz(N)
E,Jrlev—) pi(O,N-1,)

If we examine the MVA equations (2.33)-(2.36), it can be seen
that to calculate the mean performance measures of a network with

population vector N, we have to know the mean queue lengths of the
networks with population N-1; r=1,...,R. These networks can be called

reduced networks. This relation implies that all the reduced networks are
to be solved recursively from the empty state 0 up to full network state N.

The easiest way to organize such a recursive solution procedure
is to use nested loops; one loop for each chain. The procedure is illustrated
by the following example :

Example 2.2 :
Consider a queueing network with two chains (R=2) and a total

of four customers (IN |=4) in it. Assume the single chain queueing

network of example 2.1 constitutes the first chain with all three
customers (N1=3) and a second chain with a single customer (N9=1) is

added to the network. Assume also that the probability matrix of the
second chain is :

If we choose the second center as the marked center (1*(2)=2) this time for
chain 2, we obtain the following visit ratios :

015 = 6/7 Bgg = 1 039 = 4/7

Let the service time requirements for chain 2 be :

Tig=3 Tog = 2 132 =4

38

Table 2.2. Visit Ratios and Service Times

r=1 r=2
i=1 1 6/7
3 4/3 4/7
i=1 2 3
. 2 3 2
T
r 3 6 4

Table 2.3. Mean Service Rates

nE | k=1 2 3 4
=1 1 2 3 4
2 1 1 1 1
3 1 3 5 6

The mean service rates when there are k customers in center i are given in

Table 2.3. below :

In the following, we scan all reduced networks n, n=(n,,n,,..,ng)

with 0<n<N in an order generated by the nested loops. Figure 2.3.
illustrates the order of evaluation of all reduced networxs when the first
chain's index is in the inner loop (or runs faster).

Figure 2.3. Network diagram showing the order of evaluation

39

n=(0,0)

initially we set nj(0) =0 i=1,2,3. r=12.

and pg(0,(0,0)) =1 for the load dependent center no.3

The mean performance measures of the reduced networks (1,0),
(2,0), (3,0) and (0,1) are computed in the same way as single chain
networks. Here, we present a summary of related results in Tables 2.4.

and 2.5.

Table 2.4. Mean queue lengths at reduced network n

n;{(n) r=1 r=2

i=1 0.1481 0.0000

n=(1,0) 2 0.2593 0.0000
3 0.5926 0.0000

i=1 0.3118 0.0000

n=(2,0) 2 0.6872 0.0000
3 1.0010 0.0000

i=1 0.4360 0.0000

n=(3,0) 2 1.2873 0.0000
3 1.2767 0.0000

i=1 0.0000 0.3750

n=(0,1) 2 0.0000 0.2917
3 0.0000 0.3333

Table 2.5. Steady-state marginal probabilities, p3(,n)
pBG;n)
1

j=0 2 3
n = (1,0) 0.4074 0.5956 - -
n = (2,0) 0.2454 0.5082 0.2464 -
n = (3,0) 0.1907 0.4280 0.2954 0.0859
n=(0,1) 0.6667 0.3333 - -

n=(1,1)
We can use the MVA equations (2.33) to compute wj(n) values

for all load independent centers and the equation (2.36) for load
dependent centers as follows :

i

w11(1,1) = 117 (1+81 n1(0,1)) = 2 (1+0%(3/8)) = 2.0
w91(1,1) = 121 (1+32 n2(0,1)) = 3 (1+1*%(7/24)) = 31/8

40

= 6*(1*(2/3) + (2/3)%(1/3)) = 16/3

From (2.34)
A1(L,D) -1
BsY = 011w11(1,1)+621w21(1,1) + 631w31(1,1)
= 1 = 144/1
= T#2 + (1/6)*(31/8) + (@3)*(16/3) =~ 144/1963
Using equation (2.35)

n11(1,1) = A11(1,1) w11(1,1) = 611 A1(1,1) w11(1,1)
= 1*%(144/1963)*2 = 288/1963

n21(1,1) = A91(1,1) wa1(1,1) = 621 21(1,1) wo1(1,1)
= (7/6)*(144/1963)*(31/8) = 651/1963

n31(1,1) = A31(1,1) wz1(1,1) = 631 A1(1,1) w31(1,1)
= (4/3)*(144/1963)*(16/3) = 1024/1963

now, we repeat the same procedure for chain 2
w12(1,1) = 112 (1+81 n1(1,0)) = 3*(1+0*(4/27)) = 3.0
w22(1,1) = 192 (1+82 na(1,0)) = 2%(1+1*(7/27)) = 68/27
1 2
w32(1,1) =132 [13D p3(0,(1,0)) + 132 p3(1,(1,0))]
= 4*(1%(11/27) + (2/3)*(16/27)) = 260/81

ng
012w12(1,1) + 699w99(1,1) + 639wg2(1,1)

Ao(1,1) =

1
= (6/77°3 + 1%(68/27) + (4/7)*(260/81) = 967/3926

n12(1,1) = A12(1,1) wi2(1,1) = 612 22(1,1) wyo(1,1)
= (6/7)*(567/3926)*3 = 729/1963

41

n22(1,1) = A92(1,1) woa(1,1) = 699 A9(1,1) woa(1,1)
= 1*(567/3926)*(68/27) = 714/1963

n32(1,1) = A32(1,1) w3a(1,1) = 639 A2(1,1) w3a(1,1)
= (4/7)*(5667/1926)*(260/81) = 520/1963

In addition, we need to calculate the marginal probability of j customers
at a load dependent center i, namely, p3(,(1,1)) j=1,2. by using equation

(2.32):

p3(1,(1,1) = ﬁ(l)(es 121(1,1)31p3(0,(0,1))+63212(1,1)t32p3(0,(1,0)))

= (/1)* (4/3)*(144/1963)*6*(2/3) + (4/7)*(567/3926)*4*(11/27)]
= 1032/1963

p3(2,(1,1))=rl§1@‘)(9317£1(1,1)131p3(1,(0,1))+9327~2(1,1)1132p3(1,(1,0)))

=(1/3)*[(4/3)*(144/1963)*6*(1/3) + (4/7)*(567/3926)*4*(16/27)]
= 256/1963

p3(0,(1,1)) = 1-p3(1,(1,1)) - p3(2,(1,1)) = 675/1963
Same procedure as n=(1,1) is applied to networks (2,1) and (3,1)
and the mean performance measures associated with these networks are

given in Tables 2.6. - 2.9.

Table 2.6. Mean performance measures at n=(1,1)

n=(1,1) r=1 r=2
i=1[2.0000 3.0000
wir{n) 2 3.8750 2.5185
3 5.3333 3.2099
Ap(n) 0.0734 0.1444
i=1]| 0.1467 0.3714
nixn) 2 0.3316 0.3637
3 0.5217 0.2649

42

Table 2.7. Mean performance measures at n=(2,1)

n=(2,1) r=1 r=2
i=1 2.0000 3.0000
wi{n) 2 5.0860 3.3758
3 4.6355 2.9291
Ar(n) 0.1417 0.1312
i=1 0.2834 0.3375
n;(n) 2 0.8408 0.4429
3 0.8758 0.2196

Table 2.8. Mean performance measures at n=(3,1)

n=(3,1) r=1 r=2
i=1 2.0000 3.0000
wip(n) 2 6.8508 4.5754
3 4.3856 2.8430
A(m) 0.1894 0.1140
i=1 0.3788 0.2932
n;y(n) 2 1.5138 0.5216
3 1.10756 0.1852

Table 2.9. Steady-state marginal probabilities, p3(j,n)
p3(.n)
2

j=0 1 3 4
n=(,1)] 0.3439_ 0.5257 _0.1304 ___ - -
n=(21)] 0.2428 _ 0.4634 _ 0.2495__ 0.0444 -
n=(3,1)| 0.2054_0.4175__0.2712_ 0.0910 _ 0.0149

The MVA algorithm for multiple chain networks can now be
stated formally :

MVA Algorithm
Initialization :

n;{0) =0 foralli=1,..,M. and r=1,...,R.
pi(0,0) =1 for all load dependent centers i

43

Main Loop :

For all networks n=0 to N do
For all chains r=1 to R do
For all centersi=1 to M do

wir =1jr if centeriis of type IS

R
Wir =Tir (1+ Y njk(n-1;)) if center i is load independent
k=1
Inl .
Wir=Tir Y, EJG pi(-1,n-1;) if center i is load dependent
=17
- §
)= g
Z Bir Wir
i=1

For all centers i=1 to M do
njp(n) = Bjr Ar(n) wiy

For load dependent centersi do
For each customer j=1to Inl do

& Bir Ar(n) Tir

pi(],n)': rgl p-l(j) pi(]-l,n-lr).
Inl
Pi0m)=1- Y piGn)
j=1

End Main Loop

44

2.7. Mean Value Analysis by Chain Algorithm

MVAC is a recursive algorithm like all of the exact algorithms
for product form queueing networks. The most important feature of MVAC
is the fact that it combines the relative advantages of MVA and RECAL
into a single computational algorithm: The recursion of MVAC is similar
in structure to the recursion that is used in RECAL; so are the storage and
computational complexities. The complexity of MVAC grows polynomially
as the number of chains increases as in RECAL. The recursion used in
MVAC involves only mean performance measures of some related
networks and as in MVA, does not require the computation of the
normalization constant and consequently avoids numerical instabilities.

MVAC was first reported in Conway et al. (1989) which is a
combination of two earlier works by Silva and Lavenberg (1986) and
Conway (1986), which were carried out independently.

We first derive the MVAC recursion for multiple chain product
form networks having only SSFR and IS service centers and later extend
the algorithm to cover centers with queue length dependent service rates.
The notation used in the remainder is the same notation used so far,
where additionally L, is the mean number of chain r customers at center

L

First we consider networks with only SSFR (where pj(n)=1 for
all n) and IS (where p;(n)=n for all n) service centers. In order to establish
the recursion, the network is converted to a single customer per chain
network by replacing each chain r with Ny, > 1 by N, identical single
customer chains. This conversion has no physical effect on the network and
the mean performance measures remain unchanged. Therefore, from now
on we assume that Ny=1, r=1,...,.R. where R is now the total number of
chains and total number of customers as well. This network will be called
the ' original network '. Now, we consider a ' related network ' which is
obtained by keeping the first r chains of the original network and replacing
the remaining chains by some number of single customer self-looping
(SCSL) chains. A ' self-looping chain ' loops continuously through a single

45

service center and has a relative utilization equal to one. Let v{ denote the
number of SCSL chains at center i and let v = (v3,...,v)) be the vector

denoting the distribution of R-r SCSL chains of the related network over
service centers. Let Gy (v) be the normalization constant of this related

network. Let

M
Ir={v:Y vi =Rr ,v;>0,i=1,.,M.} (2.38)

i=1

i.e., I is the set of all v's associated with the above related network. Note
that GR(0) is the normalization constant of the original network where 0

is the vector of zeros.

In RECAL, Conway and Georganas(1986) derive the following

recursive equation which expresses the normalization constant of a
related network, G(v) as a weighted sum of Gy.1(v+1;), the normalization

constant of a related network obtained by replacing the rth chain by a
SCSL chain at center i.

M
Grw) =Y, (14v;8) pir Gr.1(wv+1;) vel, r=1,.,R. (2.39)
i=1

where 1; is a vector of zeros except a one in the ith position, and

. 0 if centeriis IS
~ |1if centeriis SSFR

The above recursion was used by Conway et al. (1989) as a starting point
to derive the MVAC recursion involving only mean performance measures.
Let Lili (v) denote the mean number of chain 1 customers at center i for the

related network that has normalization constant Gp(v).
Silva and Muntz(1988) have shown that for product form

networks the mean number of chain 1 customers at center i is related to
the partial derivative of the normalization constant of the network with

46

respect to the relative utilization pj]. Applying this result to the related
network with normalization constant Gn(v) gives :

aGr(V) _ Gr(v)
il pil

L) (2.40)

Differentiating the recursive equation in (2.39) with respect to Pjr and

using (2.40) we get :
Gr.1(v+15)
T (1) = PR b Lo
Lj -) = (1+v38;) pjr G.) (2.41)

Note that Gy.1(v+1;) is not a function of pjr since it does not contain the
- rth chain of the original network. We can continue differentiating (2.39)
with respect to pj], 1=1,...,r-1. This can be done by first rewriting the
recursion in (2.39) until the terms pj] and G).1(.) appear in the expression
explicitly and then, differentiating as above since Gj.1(.) is not a function
of pj1. Equating this partial derivative to the RHS of (2.40) we get a

version of equation (2.41) for chain 1, 1=1,...,r-1. :

M Gr.1w+13)
Lj)= 21 (1+vi8) pir -—%5)—‘ L5 w41 242)
1=

substituting equation (2.41) into (2.42) yields :

M
Lj @)= i—zl LY v) Lrj’l1 @+1) 1=l.rl (243)

summing (2.43) over 1=1,...,r-1.

r-1 r r-l1 M r 1
) Ly) = Y, 2 Ly 0Ly +1y)
1=1 1=1 i=1

47

M r-1
r T r r-1]
Ly 0)-Ly) = 2 L. Y L 1 w+1)
i=1 1=1
M r r-1
= 21 Lir(v)Lj (w+1;)
1=

L;) = 2 Lo (v)Lr' W+1) + L @) (2.44)

where:
L}' (») is the mean number of customers at center j on the first r chains of

the related network (i.e. not counting SCSL chain customers) with
normalization constant G(v).

Now, we can make use of the standard MVA equation for the
mean waiting time to our related network with normahzatmn constant

Gv).

wil;- V) =1,r(1+ Lril W) +v;) (2.45)

where:

Wili (v) denotes the mean waiting time (including service) of the chain 1

customer at center i for the network with normalization constant Gp(»)
-1

L"

and L'.,” () + vj is the mean number of customers at center i when the

chain r customer is removed from the network.

Applying Little's formula to the left side of equation (2.45) we
obtain :

L") = Ay @) Tir (1+ L7 Law)+vy)
= X£ W) 6 (14 Lri1 W) +vi)
= L) pir (1417 @)+v;) (2.46)

for SSFR service centers and

48

Lo) = AL() pir (2.47)

for IS service centers.

where lf (v») is the throughput rate at the marked center of chain 1 of the
related network with normalization constant G(v).

We can rearrange the centers by numbering the SSFR service
centers from 1 to M; and IS service centers from M;+1 to M. We assume

there exists at least one SSFR service center since otherwise the network

M
has a trivial solution. 2 Lil; (v) = 1 since chain r has a single customer
i=1

and if we substitute equations (2.46) and (2.47) into the LHS of the above
equation appropriately, it becomes :

1

r
MW= —g) (2.48)
pr+ Y, Pir Lri W)vi)
i=1
where:

M

Pr = Z Pir
i=1

Equations (2.44), (2.46), (2.47), (2.48) constitute a set of recursive
equations that may be used to obtain the mean performance measures for
chain R in the original network which consists of only SSFR and IS service
centers. The algorithm is summarized below:

Initialization :
0 .
Li) =0 i=1,.,M. velpgULU | Uly

Main Recursion :
For r=1,....R
Forall vel, U I;41U_Ulg

Compute Ay () using (2.48)
Compute Lil; (») using (2.46) and (2.47) i=1,...,M.
Compute L () using (2.44) i=1,...,.M.

49

As can be noted from the algorithm at the end of the main
recursion, Ag (0) and Li% (0) values which corresponds to only chain R are

computed. In order to compute the performance measures of other chains,
the chains of the original network are rearranged so that a different chain
occupies the chain in the Rrth position (i.e., last chain) and main recursion
part of the algorithm is repeated for each chain (i.e., for each different
arrangement).

The performance measures obtained in this way, correspond to
the single customer chains of the original network. If there are actually Ny

customers in each chain r before conversion, each performance measure
obtained above has to be multiplied by Ny to get the actual values of the
performance measures. The other performance measures such as Wirs Mr
can be found at the end of the algorithm since Ay = 8;r Ay and wjp= Ljy/ Ajy.
This completes the description of basic MVAC.

Now we can consider queue length dependent service rates at
one or more centers of the network. The service rates are of the form p;(n;)
as a function of the total number of customers present at center i. This
extension causes computation and storage difficulties for queue-length
distributions as can be expected. Let P;. (n,») be the probability that there

are n customers in service center i in the related network with
normalization constant Gy(v) when only the first r chains are considered.

In order to find a relation between networks with normalization constants
Gy(v) and G,.1(v+1;) we remove chain r from the network and replace it
by a SCSL chain at center i with mean service time ;5. Let A(»,i) denote

the throughput of this SCSL chain at center i. The queueing discipline can
be assumed to be processor sharing (PS). This assumption does not affect
the mean performance measures since the other BCMP queueing
disciplines (LCFSPR, FCFS) have identical marginal state distributions.

Now, we can write the mean service rate at center i for the SCSL chain as
pj(n+vi+1) / (n+vj+1) where n is the number of customers in the first r-1

chains. Note that (n+vj+1) gives the total number of customers at center i.

50

From the definition of expectation, the overall :nean service rate
at center i of SCSL chain can be written as :

r-1 (n+vi+1)
Y Pilmwsly BV
=0 n+vi+l

This overall mean service rate also equals A, (v,i) 15, for queue-length
dependent FCFS, LCFSPR or PS type queues and 1 for IS type queues
since j(n+vi+1)=(n+vj+1) and Pr (n,»+1;) is a proper probability

distribution. Therefore, equating these two expressions for overall mean
service rates we get:

f

_ (n+v;+1)
J5 Z P"; (n,w+1)" L= ifi is PS LOFSPR or FOFS
. T n=0 i
A =y |
Litiis1s (2.49)
\Tr

Additionally, the following relations are established by Conway
et al. (1989) using probabilistic arguments.
M

LE W) = 8 A1/ 21 or vl (250
J=
AL (V) = Aw,i*(r) Liyxiy,) (2.51)

PF (nw) =LY) P} (0-Lw+1)) + 2 LI) P law+1) (252)
J;tlj—l

where;
0<n<r, Pr;1 (nw+1) =0 if n>r-1(orn<0), and PjO(O,v) =1

Equations (2.49)-(2.52) form a set of recursive equations which

requires the computation of ;\r), L r(v) and Pr(n,v) at each recursion. If

we carefully look at the above equation, we can see that the computation

51

of 7»;'), Lil; (») and Pf (n,») for n=0,...,r only requires the queue-length
distributions associated with the networks having normalization constant
Gy.1(0+1;) i=1,..., M. Therefore, in MVAC recursion, it is now sufficient to
compute v's over only the set I, instead of the set Iy U Ir;1 U...U IR. Note

that this simplification was not possible with SSFR and IS service
centers having fixed service rates even for a reduced set like Ir U I3 U

Ir; 9. For example, suppose that when r=1 the mean performance measure
of the related network is computed for v € I1 U I U I3 using equations

(2.44), (2.46), (2.47), (2.48). In the next iteration, r becomes 2 and the
mean performance measures of this network are to be computed for v € I

U I3 U I4. However, when ¥ £ 14 equation (2.48) necessitates that the
values for L% (v) should already be computed in the previous iteration

when r=1 but they were not. Choosing the set I3 U Ig U I3 U 14 initially
does not help because the same problem arises when v €15 in the second

iteration.

A summary of the basic step of MVAC algorithm is given below
for queue-length dependent servers.

Initialization:
Forall v el
P)(nw)=0 i=1.,.M. n>0
P)op)=1 i=1..M.
Main recursion:
For r=1,...,.R.

Forall vel;
Compute Ar(v,i) using (2.49) i=1,...M.
Compute Li‘; (») using (2.50) i=1,...,M.
Compute lf, (v) using (2.51).
Fori=1,.... M.
For n=0,...,r.
Compute P} (n,v) using (2.52).

52

2.8. Approximate MVA Algorithms for Product Form Networks

In this section we consider MVA based heuristics for queueing
networks for which either exact analytical results are not available or if
they are available the computation of the performance measures is
prohibitively expensive. Thus, one is interested in faster solution
algorithms for product-form queueing networks with a large number of
closed chains such as models of computer communication networks where
each closed chain represents a window flow control on virtual channels
(e.g., Reiser,1979). Hundreds of such virtual channels between source-
destination node pairs may be active at a time. Exact solution algorithms
such as the convolution and MVA algorithms are obviously not applicable
since their computation time and memory space requirements grow very
fast (exponentially) with the number of chains and/or with the number of
customers in the chains. In practice, exact algorithms can not be used
efficiently for most networks with more than six or seven chains unless the
network has additional special route sparsity structure (Lam and
Lien,1983). Therefore it is important to develop reasonably accurate and
cost effective methods for the approximate analysis of closed queueing
networks which handle primarily those queueing networks with multiple
chains. The common strategy of MVA based heuristics is to eliminate the
need for recursive evaluation of all networks with population vector n, n <
N and thus, saving from the memory space as well as computation time.

One of the first approximations is given by Reiser and
Lavenberg (1980) who introduce the correction terms € J (N) as follows :

Lir N-15) = Li;(N) - 3, (N) (2.53)

where L;;(N) is the mean queue length of chain r customers at center i of a
network with population vector N. They estimate the values for ¢ 1Jr (N)

assuming :

@ el MN)=0 for jer (2.54)

53

i.e. removing one customer from a chain affects only that chain and the
performance measures of other chains are unaffected.

(ii) In order to estimate the correction terms at the affected
chain (j=r), the affected chain is solved separately as a single chain

problem with Ny customers and with adjusted parameters pj = pir Ti
r

where pjr is the traffic intensity (or load) of chain r customers through
center i and the adjustment assumes that the traffic intensities are
directly proportional to the mean number of customers. The correction
term becomes :

ef (N) = LiNp) - Li(Ny-1) (2.55)
where I is the mean queue length at center i in the single chain problem.
Then the MVA equations are converted into a set of non-linear equations :

e =f(Lip:i=1,, M. r=1,.,R.) (2.56)
R
Wir=pir (1+Li- 3 €f) (2.57)
=1
Ny
Y (2.58)
Z Wir
i=1
M
Li= ¥ AWy (2.59)
i=1

The above equations can be solved by cyclic iteration through (2.56) to
(2.59). Reiser and Lavenberg(1980) have shown that this heuristic
algorithm is asymptotically exact (i.e. the approximation error tends to
zero as the chain populations go to infinity) and hence, it is expected to
work better the larger the problem.

54

Bard(1979) used an approximation which breaks the recursive
nature of the exact MVA equations :

L;r(N-1j0) = Liy(N) for all i,r,k (2.60)

Using this approximation in the mean waiting time cquation of MVA
gives a set of non-linear equations in which all variables are now at the
same population level. But then, we lose the intuitive interpretation of
MVA equations therefore we can not be confident that the existence,
uniqueness, convergence properties of the exact MVA are preserved.
Chow(1983) reduced these equations to R non-linear equations in
throughputs. He then showed that these equations have a unique solution
in the feasible region where all utilizations are between zero and one.
However, the above approximation is not very accurate for small
populations.

A widely used and more accurate approximation is proposed by
Schweitzer(1979) which improves Bard's approximation by using a
separate equation for the chain from which one customer is removed :

LiyN) if ek

pepny .4 2.61
Lir(N-T) ___1\;1111 LixN) if r=k (2.61)

This approximation, while keeping the assumption of "the removal of a

single customer from chain k does not affect the performance metrics of
other chains" introduces the chain k population level Nk into

approximation equations. Hence, this approximation becomes sensitive to
Nk and it is expected to behave better for chains with small populations

with respect to Bard's approximétion. Note that this approximation
approaches Bard's approximation as chain k population Nk tends to

infinity.

55

There exist two approaches of solving this approximation :

i. In the first approach, Schweitzer's approximation is combined
with the MVA equations to obtain the following simultaneous non-linear
equations in the unknowns w;j(N) and L;x(N) :

. (N) :

wir(N) = 15y (1 + Liy(N) - _I_quT(__) (2.62)

Lip(N) = Ny ey (2.63)
2, 8irwir(N)
i=1

R
where Li(N) = Z L;r(N) and equation (2.62) is obtained by substituting
r=1

Schweitzer's approximation (2.61) into the MVA equation for mean
waiting times. Equation (2.63) is the combination of the two other MVA
equations eliminating the throughput. Equations (2.62) and (2.63) are
then reduced to R non-linear equations in R unknowns in throughputs
(Lavenberg,1983:179) and can be solved using an existing well tested
program. Lavenberg (1983) also expressed approximate values of mean
queue sizes and mean waiting times directly in terms of the chain r
throughputs r=1,...,R. Silva et al. (1984) have proved that these non-linear
equations have at least one solution in the feasible region but they have
not been able to show the uniqueness of solution. Eager and Sevcik (1984)
analyzed Schweitzer's approximation and showed that the equations
defining the approximation have a unique solution when there is only a
single chain, and the algorithm converges monotonically when the
specified initialization is adopted. It is also proved that the solution is
pessimistic relative to the exact queueing network solution.

ii. In the second approach, equations (2.62) and (2.63) are

numerically solved by the method of successive approximations:
Estimates for wj;'s are computed from (2.62) given the initial estimates of

L;i;'s and they are substituted in equation (2.63) to obtain new estimates
for Li,'s. These new estimates are used to calculate new estimates for

56

wir's and this iterative procedure continues until two consecutive
estimates of L;;'s are sufficiently close to each other. Note that equation
(2.63) guarantees that at each iteration the sum of L;;'s over i is equal to
N,. When the convergence issue is examined, there is no guarantee for
convergence in using this successive substitutions method in multiple
chain networks. However, a number of experiments made in literature
reveals that the algorithm converges practically. Zahorjan et al. (1988)
also have given examples of both single and multiple chain networks in
which convergence occurs only slowly. The single chein network they
considered has two centers connected in cyclic form. The service demands
1; are chosen arbitrarily close to one another (e.g. T2 = 131 + €, €50, small).
For small number of customers, the approximate and exact solutions to
networks are almost the same. In theory, the bottleneck queue length is
unbounded while the queue length at the non-bottleneck center
approaches its finite asymptotic limit of p/(1-p) where p=19/(T1+€).
However, for very large network populations, the approximation algorithm
have difficulty in determining such a large difference between the queue
lengths whereas the two centers are almost identical.

Bard (1980) has applied the approximation method to hundreds
of networks of different sizes and populations and reported that the
results are generally within 5 percent of the exact solution without any
failure to convergence. Furthermore, this approximation can be applied
directly to chains with non-integral populations: Such cases arises in
network models where chain populations are average values derived from
a higher level model.

Chandy and Neuse (1982) have applied this method to both
randomly generated networks and stress networks. Stress networks are
obtained by choosing networks which they expect to violate Schweitzer's
approximation: They considered a network in which one chain consists of a
single customer competing significantly with the customers of other chains
at a center. The removal of that customer, will affect significantly the
mean queue lengths of other chains at that center, contrary to the
assumption of Schweitzer's approximation. Then, they varied the
parameters of these networks one parameter at a time and shifted the

57

parameters in the direction of increasing error. However, they state that
the Schweitzer's algorithm performs better on most networks tested. In
the following, we present the Schweitzer's algorithm for multiple chain
networks :

Initialization :
Estimate mean queue lengths at population N by equally distributing
each chain's population over centers.

Ll M)=N/M i=1.M r=1.R.
Set I=1

Step 1:
Compute approximate queue lengths at population N-1, k=1,..,.R by using

Schweitzer's approximation:
L;y{(N) if r=k

:«(N-1) = § Nk-1
Lll'(N k) _I\l%k—le(N) if r=k

Step 2:
Compute new estimates of L;(N) by making a single exact MVA iteration,

ie.,

R
wir(N) = 1iy (1 + §; z Liy(N-1k))
r=1
e. N
L, (N) = N, erwlr(N)
Y 8irwir(N)
i=1

Step 3 : (Termination Test)

error = Max { | LL0N) - LL1ON) 1 /Ny)
over alli,r
Iferror>¢e setI=1+1 gotoStep1l

else Stop.

58

where the superscript I denotes iteration I statistics and € is set equal to
1/(4000 + 16 IN1)

Note that Schweitzer's approximation assumes that the mean
fractions of a chain's customers in each center do not change if there is one
less customer in the network. In reality, these fractions do change. Chandy
and Neuse (1982) took into consideration these changes in fractions and
developed an improved approximation algorithm known as Linearizer.

Linearizer Algorithm

Let F;#(N) denote the fraction of chain r customers at center i

when the network population vector is N. i.e.,
Fir@) = Liz() / Ny (2.64)

and let D; k(N) be the change in F;; when a single chain k customer is

removed from the network with population vector N.

Dirk(N) = Fjp(N-1x) - Fi(N) (2.65)
then, Lj(N-1k) can be written as follows :

Lijr(N-1x) = (N-1k)y (Fix(N) + Dirk(N)) (2.66)
where (N-1k)y is the rth component of the vector N-1k

Note that equation (2.66) reduces to (2.61) when Djyk 's are

assumed to be zero. Thus, we can iteratively calculate the estimates of
L;y(N) as in Schweitzer's heuristic provided that Dj (N} values are given.

This procedure is known as the Core algorithm. It requires the estimates
of Djrk(N) and L;»(N) values as inputs to compute the estimates of mean

performance measures at population level N (i.e., Li(N), wir(N), A(N)). In
the following the Core algorithm is given:

59

Inputs :
Estimates of L;p(N) and Dj k(IN)

Step 1:
Compute approximate mean queue lengths at population N-1k by using

equation (2.66).

Step 2 :
Compute new estimates of L;jy(N) exactly as in Step 2 of Schweitzer's

algorithm.

Step 3 :
Same as Step 3 of Schweitzer's algorithm.

Chandy and Neuse (1982) refer to the Core algorithm with
inputs D; k(N) = 0 as the Schweitzer-Core algorithm. Note that the Core
algorithm reduces to Schweitzer's algorithm in such a situation. Thus, the
Core algorithm is more general than Schweitzer's algorithm and

Linearizer calls the Core algorithm as a subroutine each time with
different input parameters L;j(N) and Dj; x(IN).

Now, we can estimate the values for Dj,k(N) 's from its
definition (2.65). The Core algorithm is invoked R+1 times; once to the
network N to calculate the estimates of L;y(N) and once to each N-1j
k=1,..,R independently to calculate the estimates of L;j(N-1k). But, each
application of the Core algorithm requires the estimates of Djyk's. As
Linearizer is an iterative algorithm we can use the most recent estimates
available for D; k's. At this point, another problem arises: Applying the
Core algorithm at population levels N and N-1k implies that we already
know the Djyk values at levels N and N-1k whereas, the equation (2.65)
provides only the estimates for Dj;k(N). Thus we have to make an
additional assumption: Linearizer assumes that Djrkx(N) = Djrk(N-1;)
j=1,...,R. independently of the population level. This assumption means
that the change in the Fj; caused by the removal of a chain k customer is a
constant and independent of the population level N. This is to say, Firis a

linear function of chain populations, hence the name Linearizer.

60

Schweitzer's heuristic assumes the Fi,;'s are constant.
Linearizer assumes that the change in Fi,'s is constant. Thus, if we
consider Schweitzer's heuristic as first order, we can say that Linearizer is
of second order. Similarly, a third order algorithm can be designed by
assuming that the change in Dj;k's is constant (e.g. Sijrkj(IN)= Djrk(N-1;) -
Dj;k(N)). However, each higher order algorithm requires an additional
subscript in the notation increasing the space and time complexities of the
algorithm by a factor of R.

After the estimation of Djyk values the Core algorithm is
applied again R+1 times as in the first iteration of Linearizer. Chandy
and Neuse (1982) reported that more than three Linearizer iterations
produce negligible improvement in accuracy and they used this fixed three
iteration rule as the stopping condition of the Linearizer algorithm. The
Linearizer algorithm is given below : '

Initialization :
Estimate mean queue lengths at population N and N-1) by equally
distributing each chain's population over centers:

Set
Liy(N)=N /M i=1,.,M r=1,.,R.
Lijy(N-1) = (N-1x)r /M
DirkN) =0
L=1
Step1:

Apply the Core algorithm at population N. Use the most recent estimates
of L;(N) and Djx(N). The only output is an improved estimate of L;(N).

Termination Test :
If L =3 then Stop, otherwise continue with Step 2.

61

Step 2:

Apply the Core algorithm at each of the R populations Lip(N-1;) j=1,..,R.
independently. Use the most recent estimates of Lj(IN-1;) and Dj k(N-1;)
as inputs. Use the Linearizer assumption Djyk(N-1j)=Dj k(N).

Step 3:
Compute new estimates of Djx(N) from (2.65) for all i,r and k.

Set L=L+1 and go to Step 1.

Note that the Linearizer assumption Djyk/N-1j) = Dipk(N)
allows us to use a single three-dimensional array to store the values of
Djrk 's throughout the Linearizer algorithm. A FORTRAN code for the

Linearizer algorithm is given in Appendix G.

In the Linearizer algorithm, the computational complexity of a
single Core iteration is O(MR2). Chandy and Neuse (1982) reported
according to the results of their experiments that excluding the cost of
computing the D values, Linearizer costs approximately 1.54 * (R+1)
times as much as the Schweitzer-Core algorithm. The D values can be
computed in O(MR?2) operations in step 3 of Linearizer. Therefore, the
computational complexity of the Linearizer becomes O(MR3).

Silva and Muntz (1990) showed that w1th some algebraic
manipulations, the computational cost of Linearizer can be reduced to
O(MR2), This implementation of Linearizer algorithm is known as the
Improved Linearizer and the results of these two algorithms are exactly

the same.

Zahorjan et al. (1988) proposed another approximate MVA
algorithm, the Aggregate Queue Length (AQL) algorithm. The idea behind
this algorithm involves computing the changes in total queue length
caused by the removal of a single customer from the network instead of
dealing with the effect on each individual chain. AQL algorithm uses a
modified version of Linearizer equations: Equations (2.65) and (2.66)

become

62

LN-1,) L;
Yix®™) == 3 2 IEIN) (2.67)

and LiN-1) = (N-1)(L‘N

+ Y;k(N)) (2.68)

respectively.
Similarly, the Linearizer assumption takes the following form :

Yik(N - 1;) = Yi(N) i=1,..,R. (2.69)

Notice that AQL algorithm aims to compute L;(N-1}) values
which are exactly needed by the single step MVA iteration of the Core
algorithm. This aggregation is quite similar to the implementation of
Silva and Muntz (1990) and allows a reduction in ‘both time and space
requirements by a factor of R with respect to the original Linearizer
algorithm. The iterative structure of the AQL algorithm is exactly the
same as that of Linearizer except that they used a relative change criteria
on the queue lengths as a stopping rule to prevent possible premature
terminations. They performed a number of experiments on randomly
generated networks to compare the AQL algorithm to the Linearizer and
the Schweitzer-Core algorithm with respect to accuracy and execution
time. The space and time complexities of the approximate MVA
algorithms as well as the exact MVA algorithm are given in Table 2.10.

Table 2.10. Space and Time Requirements of
Approximate and Exact MVA Algorithms

Algorithms Space Time
Requirement Requirement
Schweitzer-Core O(MR) OMR)
Linearizer O(MR?2) O(MR3)
Improved Lin. O(MR?) O(MR2)
AQL O(MR) O(MR?)
Exact MVA R R
OM IT (N,+1)) |[OMR IT (N +1))
r=1 r=1

63

[}
)

This table reveals the large difference between approximate
and exact algorithms in terms of storage and time requirements very
clearly. '

All the approximations discussed up to now,i involve iterative
computations before the approximate solutions are obt{ained. Hsieh and
Lam (1989) proposed three non-iterative approximation'algorithms. They
reported that these algorithms are suitable for networks with many
chains and sufficiently accurate for the analysis‘ and design of
communication networks. The method is based on the distribution of a
chain' s population over centers proportional to the loads of the centers.
The accuracy of the method is tested against the exact solutions obtained
by the Tree Convolution Algorithm.

Extensions to Load-Dependent Centers :

MVA based approximations for closed product-form networks
with load-dependent centers were first introduced by NZEuse and Chandy
(1981). SCAT (Self Correcting Approximation Technfque) is an early
version of Linearizer allowing load-dependent centers. However, the
numerical examples have shown that large errors can occur in estimating
the performance measures at load-dependent centers using this method.

The main reason of this inaccuracy is the inadequate estimation of the
marginal queue size probabilities at population levels N-1.

SCAT assigns probabilities to only two neighboring values of
the mean queue length at center i, Lj(N-1x) and the probabilities are

estimated as follows :

Step 1:

Compute (floor);k and (ceiling);k , the two integers surrovnding Li(N-1x) :
(floor);k = Ly(N-1}) (2.70)
(ceiling)jk = (floor)k + 1 _ (2.71)

64

Step 2 :
Compute the marginal probabilities as follows :

pi((floor)ik , N-1k) = (ceiling)ik - Li(N-1)) (2.72)
pi((ceiling)ijk , N-1)) = 1 - pj((floor);k , N-1}) (2.73)
pi(j,N-1x) =0 for all other. (2.74)

For example, if Lj(N-1x) = 2.8 then,
(floor)k =2 and (ceiling)jk =3
pi(2,N-1x)=3-2.8=0.2
pi(3,N-1x)=1-0.2=0.8
pi(j,N-1x)=0 j=0,14,..,INI-1L

This probability assignment procedure is very rough and
unrealistic; it is the main reason for the large approximation errors at
load-dependent centers.

Akyildiz and Bolch (1988) improved this probability

assignment procedure by considering a wider range of numbers centered at
the mean queue length Lij(N-1}). The probabilities are distributed over

this range according to a weight function which provides a normal
distribution of the probability values.

Another approach (Krzesinski and Greyling, 1984) to
approximate the marginal probability distribution is to assume that the
removal of a single customer from a chain does not chaage the marginal
probability distribution significantly i.e.,

piG N-1p) = piG ,N) j=0,1,..,INI-1. (2.75)

Substituting this on the RHS of (2.32) we get

R
PiG.N) = E}G Z T Air(N) piG-1,N)

r=1

- u_ilcﬁui(mpi(j-lm j=1,.,INI. (2.76)

65

where
R
UiN) = Y, 74 4N
r=1

Given an estimate of U;(N), p;(j,N) values can be written in terms of
p;(0,N) by using the equation (2.76) recursively. Then, p;(0O,N) can be
calculated by summing all p;(5,N) s to 1.

66

CHAPTER 1II
IMPLEMENTATIONAL ISSUES

In this chapter, different implementations of the MVA and the
MVAC algorithms are presented. Each implementation aims to overcome
the difficulties faced during the previous implementation by using
different strategies.

3.1. Implementation Issues of the MVA Algorithm

The original MVA algorithm (Reiser and lLavenberg,1980)
represents the mean queue length at center i as nj(n) which can be stored
in an R+1 dimensional array; with one dimension for the centers i and R
dimensions for the population vector n when only SSFR and IS centers
are allowed. The storage requirement for the marginal probability of j
customers at center i when the population vector is n, p;(j,n), is an R+2
dimensional array; one additional dimension for the number of customers

j at centeri.

The MVA algorithm is implemented and coded in FORTRAN
which allows at most seven dimensions. This limitation restricts the
implementation to networks with six types of customers when only SSFR
and IS centers are allowed. This number is five for networks which allow
also load dependent centers. We will call this regular implementation of
the MVA algorithm MVA-1 and its code is given in Appendix A.

A partial solution to this problem may be to divide for example
an 8-dimensional array into a number of 7-dimensional arrays with
respect to one of the dimensions. This division or partition requires
additional condition statements in the code at each time that array is
referenced. For this reason, the choice of the dimension for partition

becomes important and the dimension with the lowest size is a good
choice for partition. This method can be applied more than once to handle
higher dimensional arrays: for example, twice for a 9-dimensional array
and three times for a 10-dimensional array and so on. However, it may
effect significantly the time complexity of the algorithm due to the large
number of comparisons involved in the IF statements. An
implementation of this method will be called MVA-2 and its FORTRAN
code is given in Appendix B.

The limitations discussed above can be relaxed if another
programming language permitting several dimensions is used. In this
case, networks with more than six types of customers can be handled.
However, since the total memory used in array storage is constant in a
computer environment there will necessarily be a reduction in the sizes of
dimensions. In MVA terms, this means that a network with seven types
of customers for example, can be analyzed at the expénse of giving up
some of the customers. Additionally, this array has no sparsity property
since most of the dimensions are used to denote the state of the
corresponding network. :

Another way to overcome this limitation on the array
dimensions is to change the order of evaluation of networks n (0<n<N) :
The MVA algorithm for closed multichain networks consists of generation
and evaluation of all networks n in some suitable order. The simplest way
to obtain all n' s is to use R nested loops one for each chain with loop
index ranging from zero to the maximum chain population. This procedure
is suggested by (Reiser and Lavenberg, 1980). In using this nested loop
structure, it is necessary to store all queue lengths. If we consider the
total population of a network n as its level, the MVA equation for the
mean waiting time (2.33) requires only the mean queue lengths of
networks with one level less (not all of the previous queue lengths). In
order to make use of this feature of the MVA recursion, we can rearrange
the order of evaluation of lower level networks such that the evaluation
occurs level by level from level 1 up to level IN|. That is, first all the
networks of level 1 are generated, then all networks of level 2 and then
level 3 up to level IN|. In this way, the evaluation of a level k network

68

requires only the mean queue lengths of networks at level k-1. Thus, the
mean queue lengths of networks at previous levels (i.e. k-2, k-3,..,1) are
not required and the memory space allocated for these values can be
reused during the evaluation of higher level networks. The procedure
which generates all lower level networks to N is provided by Lavenberg
(1983) :

For n=1to INI
For nj; = max (0, n-(Ng+..+NR)) to min(n,N;)
For ng = max (0, n-(n1+Ng+..+NR)) to min (n-ny,Nj)

For n, = max (0, n-(ny+..4n;_ 1+Np, 3+..+NR)) to
min (n-nl-..-nr_l ’ Nr)
For ng 1 = max (0, n-(nj+..+ng 9+NR)) to
min (n-nl-..-nR.g > NR-l)
ng=n-(nj+.+ng.1)

Figure 3.1. illustrates the sequences of evaluation on an
example network N, N=(2,1,1). The numbers on the left indicate the
sequence used by Reiser and Lavenberg (1980) and the numbers on the
right show the sequence proposed by Lavenberg (1983).

69

Figure. 3.1. Sequence of evaluation on an example network

Notice that the sequence proposed by Lavenberg (1983)
generates the networks within the same level in the lexicographically
increasing order. Although a saving in storage is possible, this does not
solve the problem of dimensionality mentioned in the beginning of this
section as long as the data structure is kept the same. A way to overcome
this problem, is to generate and store all possible lower level networks in
a two dimensional array VV. This array has IIl(Nr+1) rows and R

Ir=
columns. A particular lower level network is referenced by its position (i.e.
row number) in that array. In this way, only one dimension can be used to
reference a network. Note that this procedure is equivalent to numbering
all lower level networks in the order of evaluation. Evaluating the MVA
equations in this fashion requires less storage and permits to implement
an arbitrary number of chains. However, this data structure gives rise to
another problem: Most of the networks at a level k dé not require the
queue lengths of all the networks at level k-1. We can observe this from
Figure 3.1. in which all networks at levels 2 and 3 are of this type. It is

70

also hard to find a functional relation between the position of a level k
network and the positions of the related level k-1 networks (i.e., whose
queue lengths are required). We could handle this problem only in a costly
and inefficient way: Given a network at level k (or its position) all of its
related networks at level k-1 can be generated easily (by removing a
customer from a non-empty chain at a time) and the positions of these
related level k-1 networks are found by a sequential search over the part
of the array VV occupied by the level k-1 networks. If we consider the
mean number of comparisons to find the position of one related level k-1
network to be roughly :

(total number of level k-1 networks/2) * R

and the total number of comparisons required for the evaluation of a
single level k network becomes approximately :

(number of related level k-1 networks) * (total number of level k-1
networks) * (R/ 2)

Noting that the first term is at most R then,

< (total number of level k-1 networks) * (R2 /2)

The large number of comparison required for this
implementation makes it undesirable for the analysis of networks with a

large number of chains. This implementation is coded in FORTRAN and
given in Appendix C under the title MVA-3.

3.2. Implementation Issues of the MVAC Algorithm
The major source of difficulty in the implementation of the
MVAC algorithm lies in the representation of the vector 1». This vector can

be named as the customer distribution vector of the complement chain or
shortly ' the distribution vector '.

71

A first implementation makes use of multi dimensional arrays
to store the variables of the algorithm. The variable with the largest
number of arguments (also requiring the largest memory space) is Lili(v)

which can be stored in a M+3 dimensional array where M is the number of
centers. Since FORTRAN allows at most 7-dimensions for a variable, this
implementation is limited by the number of centers and allows at most
four centers. It should be remembered that the MVAC algorithm
transforms the network into a single customer per chain network
equating the number of chains to the total number of customers in the
network. So, the memory space required for the variable Lili(v) aloneis M

* RM+2. This large storage requirement usually restricts the networks to
be analyzed to small values of R with M < 4. We will call this
implementation of the MVAC algorithm as MVAC-1 and its FORTRAN
code is given in Appendix D.

A second implementation of the MVAC algorithm is devised in
this study, to allow more than four centers with acceptable levels of
storage requirements. In this implementation all distribution vectors
forming the sets Iq, Ig, .., IR are generated and stored in a two-

(M+(R—r)-1) (M+R 1)

dimensional array. This array has 2 rows and M

r=1 .
columns. Call this matrix V. Each row in this matrix .corresponds to a
single distribution vector v. This data structure makes possible to
represent a specified distribution vector v by referring to only its position
(i.e. row number) in the matrix V rather than specifying each component
of v in a separate dimension. Here, we present the generation procedure of
all v's:

Step 1. (Initialization)
Assign the v's in Ig and IR.1 to the first R+1 positions of matrix V such

that an identity matrix is formed between the positions 2 and R+1.

Step 2.

For each r=R downto 3
For each v eI,

72

Generate new v's in I;..g (i.e., ¥+1;'s) where i ranges from
k to M and k is the position (column) of the rightmost non-

zero component of v.
Append newly generated v»'s to the matrix V.

This procedure generates all ¥'s in the set I from the previous
v's in I, 1. Moreover, every vector v in I, 1 is generated from a unique v €
I, and note that within each set Iy r=1,.,R. v's are located in a

lexicographically decreasing order in the matrix V.

During the implementation of this data structure to MVAC
algorithm (allowing only SSFR and IS centers) equation (7) requires
Lr'il(v+lj) values to compute L{(v), where v € I;.. This means that we
need to know the position of the vector v+1; given the position of ¥ in the

matrix V. However, it is quite difficult to find a relation between the
positions of vectors v and v+1; for all j=1,..,M. and this difficulty

increases if M is large. Therefore, it is necessary to find these positions of
v+1; through a search over the set Ir.; making the implementation
inefficient and costly. The total number of comparisons required for only
the first iteration of MVAC algorithm (i.e. when r=1) is about

R
M2/2 * 2 M+L(?-:ll()-1) (Mhzﬁ-k (3.1)
k=1

and this computational cost may become very high even if the network has
moderate sizes in R and in M. This constitutes the main drawback of this
implementation. The FORTRAN code of this implementation is given in
Appendix E under the title MVAC-2.

In yet another implementation, we attempted to eliminate the
need for a search which makes the implementation impractical. To do
this, an auxiliary two-dimensional array is generated which contains the
positions of the vectors v+1; given the position of vector v in V and j. We
call this matrix as the INDEX matrix. Appearently, it has the same sizes
as the matrix V. However, we will not need the part of INDEX

73

corresponding to v's in I since all v+1;j's will fall in Iy and L(i)(v) = 0 for

all v and i. If we can obtain this index matrix before the MVAC iterations
without any search, this will provide for an efficient implementation of
the MVAC algorithm in terms of computational cost relative to the
previous implementation. Now at this point the problem reduces to
obtaining the index matrix as efficiently as possible.

We partition the matrix V into two regions :

Region I covers the entries of V from which new v's are
generated by the generation procedure explained previously. The shaded
area in Figure 3.2. shows the region I. Region II consists of entries of V
which are not covered by region I (unshaded region).

CENTERS CENTERS

12 3 12 3
1IN0 SN0 N0 IN2 N3 N4
2 LT~ 0 2K 5~6
3 \\o\ 35‘\“ h\aﬁ
4 41 7o T
5 0 511 92
6] 1 K1 \o‘ 6'&&%
71 1 0 7| 13 15
8] 0 [0 8| 14 N
9l 0 1 & o| 15 18
10 0 0o K2 10] 16 19
113 0 0
12 2 1 o0
13 2 0 1
4 1 2 0
150 1 1 1
16/ 1 0 2
17l o 3 o0
18 0 2 1
190 0 1 2
200 0 0 3

\% INDEX

Figure 3.2. Partition of matrices according to the generation procedure
If we examine the index matrix closely, we can observe a

pattern which covers region I : The entries in region I of the index matrix
are all consecutive numbers from 2 up to (M;&H)- This is something that

74

can be expected because actually these numbers show the order of
generation and appendix of new v's during the generation procedure. This
allows us to fill the region I of the index matrix during the generation
procedure of new v's.

The entries in region II of the index matrix show some possibly
combinatorial behaviour that we could not identify for arbitrary values of
M. Therefore, we restrict the networks in question to only three centers
(M=3) to simplify the problem.

Let k be the column number from which the generation has
started (i.e., the rightmost non-zero entry on the current row in matrix V).
k can take values of 1, 2 and 3 with the above assumption.

We can modify Step 2 of the generation procedure as follows:

Step 2.
For each r=R downto 3
For each vely
Generate new ¥'s in I 9 (i.e., v+1;'s) where i ranges from
k to M and k is the position (column) of the rightmost
non-zero component of ».
If k=1 then
Append newly generated »'s to the matrix V.
Keep the position of the appended vector in index
matrix.
Ifk = 2 then
Assign INDEX(,,1) = (Position of the last appended
vector to V) - (number of times new v's are generated
with k=2 in I.1).
Append newly generated v's to the matrix V.
Keep the position of the appended vector in index
matrix.

Ifk = 3 then
Append newly generated v (i.e. v+13) to the matrix V.

75

Keep the position of the appended vector in index
matrix.

Assign INDEX(.,1) = (Position of the last appended
vector to V) - (number of times new v's are generated
with k=21in I;.1) - 2.

Assign INDEX(.,2) = Position of the last appended
vectorto V) - 1.

The above procedure is based on a pattern observation between
matrices V and INDEX while no proof of it could be found. However, all
the runs made with this implementation produced the same output
obtained using the previous implementations. This implementation is
also coded in FORTRAN and the code is given in Appendix F. This
implementation will be referred to as MVAC-3 in the next chapter.

76

CHAPTER IV
EXPERIMENTAL RESULTS AND CONCLUSIONS

This chapter reports on the experiments and their results
performed on the MVA and the MVAC algorithms and on a widely used
heuristic called the Linearizer.

4.1. Experiments on MVA Based Exact Algorithms

In the following the first implementation of the MVAC
algorithm will be referred to as MVAC-1, the second implementation as
MVAC-2, and the third implementation as MVAC-3. The same
nomenclature is used for MVA implementations as stated in Chapter III.
The experiments in this section are performed on the same networks so
that a comparison between algorithms is made possible.

4.1.1. Description of Experiments

All the experiments on the MVAC and the MVA algorithms
involve product form networks with only SSFR service centers. Other
center types are not considered in the experiments since the presence of
such centers would necessarily require additional variables such as
probability values and therefore extra memory. This would probably bring
about storage problems since these algorithms, especially MVAC,
requires a large amount of computer memory.

All implementations of the algorithms are tested on the same
networks and the same mean performance measures are obtained.
Furthermore, some of the works on approximations (e.g., Neuse and
Chandy,1981; Chandy and Neuse,1982; Akyildiz and Bolch,1988) report
also the exact solutions of example networks. The results obtained from

our implementations coincide with the reported solutions which makes us
confident on the correctness of the implementations.

A total of 134 experimental runs are made. Algorithms are
coded using the FORTRAN programming language in IBM 3090/180S
mainfraim. Each implementation is run with the same network
parameters. The number of chains (R) ranges from two to eight for the
MVAC algorithm and to six for the MVA algorithm and the number of
customers per chain (N) ranges from 1 to 9 for the MVAC algorithm and
11 for the MVA algorithm.

During the experimental runs, total CPU times are observed
and tabulated in the following :

Table 4.1. CPU Times of MVAC-1 Implementation in secs.

M=3 | N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

R=2 10.033 0.033 0.042 0.064 0.111 0.207 0.375 0.655 *
R=3 10.034 0.044 0.087 0.208 0.491 * - - -
R=4 |0.037 0.073 0.2256 * - - = - -
R=5 10.045 0.144 0.568 * - - S - -
R=6 |0.063 0.291 * - - - - - -
R=7 |0.094 0.573 * - - - - - -
R=8 10.150 * - - - - - - -

Table 4.2. CPU Times of MVAC-2 Implementation in secs.

=3] N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

R=2 |0.032 0.036 0.062 0.177 0.556 1.586 4.011 9.149 19.86
R=3 [0.034 0.065 0.327 1.644 6.358 19.88 53.0 - -

R=4 10.042 0.188 1.650 9.49 38.78
R=5 |0.063 0.598 6.38 38.79 - - - - -
R=6 |0.116 1.7 199 - - - - - -
R=7 }0.233 4.3 53.2 - - - - - -
R=8 10.470 9.8 125.6 - - - - - -

78

Table 4.3. CPU Times of MVAC-3 implementation in secs.

M=3 | N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9
R=2 |0.032 0.032 0.033 0.034 0.039 0.047 0.059 0.077 0.103
R=3 [0.032 0.033 0.037 0.047 0.067 0.103 0.159 0.243 *
R=4 10.032 0.035 0.048 0.079 0.141 0.246 * - -
R=5 |0.034 0.041 0.068 0.141 0.285 * . - -
R=6 |0.035 0.050 0.106 0.249 * - - - -
R=7 |0.038 0.064 0.167 * - - - - -
R=8]0.043 0.086 0.256 - - - - - -

Table 4.4. CPU Times of MVA -1 Implementation (in secs.)

M=3

N=1 N=3 N=5 N=7 N=9 N=11

R=2
R=3
R=4
R=5
R=6

0.030 0.031 0.031 0.032° 0.033 0.033
0.031 0.033 0.036 0.043 0.054 0.072
0.032 0.038 0.068 0.151 0.329 0.655
0.033 0.067 0.300 0.622 1.196 2.154
0.033 0.172 1.987 11.41 i *

r

- 0.91 0.94 0.95 0.98 0.98

Table 4.5. CPU Times of MVA-2 Implementation

M=3 N=1 N=2 N=3
R=7 0.040 0.7173
R=8 0.055 6.14 *

Table 4.6. CPU Times of MVA-3 Implementation

M=3 N=1 N=2 N=3
R=7 0.038 0.1525 1.023
R=8 0.044 0.4532 4.702

79

4.1.2 Comparison of Algorithms and Implementations

As seen from the above Tables 4.1. - 4.6. not all of the cases
could be run successfully. The *'s in the tables indicate that the network
in question is beyond the memory capacity of the computer. All these
cases, require more than 4 MB. of memory space which is the largest
memory size that the FORTRAN compiler can address.

MVAC implementations suffer from this a great deal because
the actual number of chains that the MVAC algorithm considers is not R
but N*R. This effect is seen clearly in tables 4.1.-4.3. Therefore, the
available memory space is the most important requirement for the
MVAC algorithm. We observe a gradual enlargement in the problem sizes
that can be solved as we go from implementation 1 to 3.

The results of the experimental runs justify that the
computational cost of the MVA algorithm increases exponentially with
the number of chains in the network when the number of centers (M) and
the chain populations (N) are held constant. The last row of Table 4.4.
shows the correlation coefficient, r, between the CPU times required by
the MVA algorithm and the number of chains when N is kept constant.
The CPU times observed are the total times and include I/O times. We
can have r values nearer to 1 when the I/O times are disregarded. In
addition, this exponential increase becomes clearer as N gets larger.
Unfortunately, the MVA algorithm can not be implemented for R>6
efficiently and restricts the observation range over R for fixed N values.
On the other hand, the computational cost of the MVAC algorithm grows
only as a power of R when M and N are held constant implying a
polynomial time complexity. But there still exist storage problems in
reaching the region in which MVAC becomes advantageous to MVA.
However, this can be handled with a professional coding which makes use
of the recursive nature of algorithms and a more suitable programming
language allowing several dimensions or recursive procedures.

MVAC-1 is the implementation which requires the most
memory space. This can be expected since it uses a separate dimension

80

for each entry of the vector . It can be applied only to networks with
small N values. However, the CPU times are much shorter than MVAC-2
and comparable with MVAC-3 implementation since the access to
individual ¥' s is directly performed.

MVAC-2 can be applied across a larger region than MVAC-1
but it requires excessive CPU times to evaluate the networks that can not

be evaluated by MVAC-1. The main reason for the large CPU times is the
search of v+1;'s j=1,..,M. during the MVAC iterations.

MVAC-3 which is introduced in chapter 3, has the smallest
CPU times among MVAC implementations and it is the only
implementation that can compete with MVA implementations. However,
this last implementation can be applied to networks consisting of only
three service centers. It is possible to extend this implementation to cover
more than three service centers.

4.2. Experiments on the Linearizer Algorithm

The Linearizer Algorithm is one of the approximation methods
which performs well on most networks tested in the literature. This
section deals with the original Linearizer algorithm evaluating its
accuracy based on a set of randomly generated test networks. The purpose
of the experiments is to analyze the accuracy of the Linearizer algorithm.

The experiments consist of applying the Linearizer algorithm to
randomly generated test networks and comparing the results with the
exact values obtained by the MVA algorithm. All the centers are assumed
to be of load-independent type. The network generation parameters are as
given in Table 4.7. where U denotes the uniform distribution.

81

Table 4.7. Network Generation Parameters

Population Size (N,): U(1,10) for each chain
Loading (p;,): U(0.1,50.0)
No. of Centers (M) : Ue,7)

Since the Linearizer algorithm works with reduced networks,
we analyzed the networks into five groups according to the number of
chains from one to five. 100 random networks are generated from each
group. Each randomly generated network is solved first exactly by using
the MVA algorithm and then approximately the Linearizer algorithm.

The queue length tolerance error (L-tolerance) is considered as
the main measure of comparison. L-tolerance is defined as follows

(Chandy et al.,1975) :

- ex pp
L-tolerance =Max { | L5 - L% I /N; }

over alli,r
L-tolerance measures how well the heuristic determines the

fraction of each chain' s population at each center. Some statistics on the
L-tolerance errors are given in Table 4.8.

Table 4.8. Statistics on L-Tolerance Values (X 100)

R=1 R=2 R=3 R=4 R=5*
Ave. L-tolerance 0.1 1.7 3.1 3.6 3.7
St. Dev. 0.12 2.9 3.5 3.2 3.0
Max L-tolerance 0.50 35.15 40.23 36.51 48.68

* In six of the experiments in this group exact solutions could not be
obtained due to the memory/time requirements.

As seen from Table 4.8. average values of L-tolerance errors are
quite low although the maximum values are considerably high. In fact the
Linearizer may give even larger errors in the case of stress networks. We
can conclude from the results of the runs that a large portion of networks

82

tested are approximated quite well and a very small part causes large
errors. This remark is valid for each group of network tested.

Although there still exists studies to give upper bounds for the
error made by the Linearizer there isn't any result reported in literature.
Similarly, no study was made to identify a stress network from its
parameters without solving it. Another point is that the Linearizer
algorithm can not be tested for networks with many chains and therefore
its performance in these cases is unknown. These issues need to be
further investigated in the future.

4.3. Conclusions

In general, from the users' point of view the answer to the
question which algorithm is the algorithm of choice given the parameters
of a network gains importance. When a choice has to be made between the
MVA and the MVAC algorithms the following points may help in making
this choice: For networks having less than or equal to six chains, the MVA
algorithm is very practical and provide efficient solutions when chain
populations are not large. However, this is not possible when there are
more than six chains and in these cases the MVAC algorithm becomes
relatively efficient. Another point is that when the chain populations are
large the MVAC algorithm becomes more efficient.

In this study, a comprehensive survey of MVA based exact
algorithms for product-form queueing networks is presented together with
the heuristic extensions. The difficulties of finding exact solutions are
discussed by means of different implementations. The Linearizer
algorithm derived from MVA seems to perform well on most networks and
can be used effectively to analyse such networks only after the
investigation of the issues mentioned in section 4.2.

Usually, the essential problem in the implementation of exact
algorithms turns out to be the high storage requirements. This problem
prevented us from experimenting on networks which exploit the relative
advantages of the MVA and MVAC algorithms. However, the storage

83

problem can be reduced by making use of the recursive nature of exact
algorithms and a more suitable programming language allowing several
dimensions or recursive procedures.

83-1

REFERENCES

Akyildiz, LF., and Bolch, G.,1988. "Mean Value Analysis Approximation

for multiple server queueing networks", Performance Evaluation,
Vol.8, pp. 77-91.

Bard, Y., 1979. "Some extensions to multiclass queueing network

analysis”, Performance of Computer Systems, M. Arato, A.
Butrimenko and E. Gelenbe (Eds.), North-Holland, pp.51-61.

Bard, Y., 1980. "A model of shared DASD and multipathing",

Communications of Association for Computing Machinary, Vol.23,

No.10, pp.564-572.

Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios, F.G., 1975.
"Open, closed, and mixed networks of queues with different classes of

customers", rnal of the Association for Computing Machi
Vol.22, No.2, pp. 248-260. |

Bruell, S.C., Balbo, G., and Afshari, P.V., 1984. "Mean value analysis of
mixed, multiple class BCMP networks with load dependent service

stations", Performance Evaluation, Vol.4, No.4, pp. 241-260.

Burke, P.J., 1956. "The output of a queuing system", Qperations
Research, Vol.4, pp. 699-704.

Buzen, J.P., 1973. "Computational algorithms for closed queueing
networks with exponential servers”, Communications of Association
for Computing Machinary, Vol.16, No.9, pp. 527-531.

Chandy, K.M., 1972. "The analysis and solutions for general queueing
networks", Proc. Sixth Annual Princeton Conference on Information
Sciences and Svstems, Princeton U., Princeton, N.J., U.S.A,,pp.224-

228.

Chandy, K.M., Herzog, U., and Woo, L.S., 1975. "Approximate analysis of
general queueing networks", IBM Journal of r
Development, Vol.19, No.1, pp.43-49.

Chandy, K.M., Howard, J.H., and Towsley, D.F., 1977. "Product form
and local balance in queueing networks", Journal of the Association

for Computing Machinary, Vol.24, No.2, pp. 250-263.

Chandy, K.M., and Sauer, C.H., 1980. "Computational algorithms for
product form queueing networks", Communications of Association

for Computing Machinary, Vol.23, No.10, pp.573-583.

Chandy, K. M., and Neuse, D., 1982, "Linearizer: A heuristic algorithm
for queueing network models of computer systems”,

Communications of Association for Computing Machinary, Vol.25,

No.2, pp. 126-133.

Chow, W-M.,, 1983. "Approximatidns for large scale closed queueing
networks", Performance Evaluation, Vol.3, pp.1-12.

Conway, A.E., 1986. "A polynomial complexity MVA algorithm for
multiple chain closed queueing networks”, IEEE Int. Symp, Inform.
Theorv Dig. Papers. Ann Arbor, M.I., U.S.A.

Conway, A.E., and Georganas, N.D., 1986. "Decomposition and
Aggregation by class in closed queueing networks", IEEE_

Transactions on Software Engineering, Vol.12, No.10, pp. 1025-1040.

Conway, A.E., and Georganas, N.D., 1986. "RECAL-A New Efficient
Algorithm for the Exact Analysis of Multiple-Chain Closed Queuing

85

Networks", Journ he Association mputing Machinary,
Vol.33, No.4, pp. 768-791.

Conway, A.E., Silva, Edmundo de Souza e , Lavenberg, S.S., 1989.
"Mean Value Analysis by Chain of Product Form Queueing

Networks", JEEE Transactions on Computers, Vol.38, No.3, pp. 432-
442,

Eager, D.L., and Sevcik, K.C., 1984. "An analysis of an approximation

algorithm for queueing networks", Performance Evaluation, Vol.4,
pp. 275-284.

Ferdinand, A. E., 1971. "An analysis of machine interference model",
IBM Sys. J., Vol.10, pp.129-142.

Gelenbe, E. and Mitrani, 1., 1980. Analysis and Synthesis of Computer
Systems, Academic Press, New York.

Gordon, W.J., and Newell, G.F., 1967. "Closed queueing networks with
exponential servers”, Qperations Research, Vol.15, No.2, pp.254-265.

Greenberg, A.G., and McKenna J., 1989. "Solution of Product-Form
Closed Queueing Networks Via the RECAL and Tree-RECAL
Methods on a Shared Memory Multiprocessor”, ACM Sigmetrics,
pp. 1178-1186.

Hoyme, K.P., Bruell, S.C., Afshari, P.V. and Kain, R.Y., 1986. "A Tree
Structured Mean Value Analysis Algorithm", ACM Transactions

on Computer Systems, Vol.4, pp. 178-185.

Hsieh, C.T., and Lam, S.S., 1989. "Pam-A noniterative approximate
solution method for closed multichain queueing networks",

Performance Evaluation, Vol.9, pp.119-133.

Jackson, R.R.P., 1954. "Queueing Systems with Phase Type Service”,
Operations Research Quarterly, Vol.5, pp. 109-120.

86

Jackson, J.R., 1957. "Networks of waiting lines", Operations Research,
Vol.5, No.4, pp.518-521.

Jackson, J.R., 1963. "Jobshop-like queueing systems", Management,
Science, Vol.10, No.1, pp.131-142.

Kant, K., 1992. Introduction to Computer System Performance
Evaluation, Mc Graw-Hill Inc., U.S.A.

Kaylan, A.R., 1990. "Queueing Networks: A Survey of Analytical

Results", Queueing Theory and Applications, S. Ozekici(Ed.),
Hemisphere Publishing Cooperation, U.S.A., pp. 80-98.

Koenigsberg,E., 1958. "Cyclic queues”, Operational Reaserch Quarterly,

Vol,9, pp.22-35.

Krzesinski, A., and Greyling, J., 1984. "Improved Linearizer methods
for queueing networks with queue dependent centres”, Journal of

Association for Computing Machinary, pp. 41-51.

Lam, S.S., and Lien, Y.L., 1983. "A Tree Convolution Algorithm for the

Solution of Queueing Networks"”, Communications of iation
for Computing Machinary, Vol.26, No.10, pp. 203-215.

Lavenberg, S.S., and Reiser, M., 1980. " Stationary State Probabilities at
Arrival Instants for Closed Queueing Networks with Multiple Type of

Customers", Journal of Applied Probability, Vol. 17, pp 1048-1061.
Lavenberg, S.S., 1983. r Perf 1lin k,

Academic Press, New York.

Little, J.D.C., 1961. "A proof of the queueing formula L=AW",
Operations Research, pp.383-387.

87

Muntz, R.R., 1972. "Poisson departure processes and queueing
networks”, IBM Res. Rep. RC-4145, Yorktown Heights, N.Y.

Neuse, D., and Chandy, K.M., 1981. "SCAT: A heuristic algorithm for
queueing network models of computing systems”, ACM
SIGMETRICS Conference Proceedings, Vol.10, No.3, pp.59-79.

Noetzel, A.S., 1979. "A Generalized Queueing Discipline for Product-

Form Network Solutions”, 1 of ACM, Vol.26, No.4, pp. 779-
793.

Ormeci, E.L.,1993. "Normalization Constant Based Exact Algorithms for
Queueing Networks", M.S. Thesis in Industrial Engineering, Middle

East Technical University, Ankara.

Posner, M., and Bernholtz, B., 1968. "Closed Finite Queueing Networks
with Time Lags and with Several Classes of Units", Operations
Research, Vol. 16, pp. 977-985.

Reiser, M., 1979. "A queueing network analysis of computer
communication networks with window flow control", IEEE

Transactions on Communications, Vol.27, No.8, pp. 1199-1209.

Reiser, M., 1981. "Mean value analysis and convolution method for
queue-dependent servers in closed queueing networks", Performance

Evaluation, Vol.1, No.1, pp.7-18.

Reiser, M., and Kobayashi, H., 1975. "Queueing networks with multiple
closed chains: Theory and computational algorithms", IBM Journal of

Research and Development , Vol.19, No.3, pp.283-293.

Reiser, M., and Lavenberg, S.S., 1980. "Mean-value analysis of closed

multichain queueing networks", Journal of the Association for
Computing Machinary, Vol.27, No.2, pp. 313-322.

88

Sauer, C.H., and Chandy, K.M., 1981. Computer Systems Performance
Modeling, Prentice-Hall, New Jersey.

Schweitzer, P., 1979. "Approximate analysis of multiclass closed
networks of queues”, Proceedings International Conference on_
Stochastic Control and Optimization, Amsterdam.

Sevcik, C.H., and Mitrani, I., 1981. "The Distribution of Queueing
Network States at Input and Output Instants”, Journal of ACM,
Vol.28, pp. 172-184.

Silva, Edmundo de Souza e, Lavenberg, S.S., Muntz, R.R., 1984. "A
Perspective on Iterative Methods for the Approximate Analysis of

Closed Queueing Networks", Mathematical Computer Performance
and Reliability, Hordijk, A. (Ed.) pp. 225-244. North-Holland.

Silva, Edmundo de Souza e, and Lavenberg, S.S., 1986. "A MVA by
Chain algorithm for product form queueing networks", TBM Res. .
Ren. RC 11641, Yorktown Heights, N.Y., U.S.A.

Silva, Edmundo de Souza e, and Muntz, R.R., 1988. "Simple relationship
among moments of queue lengths in product form queueing networks”,

IEEE Transactions on Computers, Vol.37, No.9, pp.1125-1129.

Silva, Edmundo de Souza e, and Lavenberg, S.S., 1989. "Calculating
Joint Queue-Length Distributions in Product-Form Queueing

Networks", Journal of the Association for Computing Machinary,

Vol.36, No.1, pp. 194-207.

Silva, Edmundo de Souza e, and Muntz, R.R., 1990. "A note on the
computational cost of the Linearizer algorithm for queueing

networks", IEEE Transactions on Computers, Vol.39, No.6, pp.840-
842,

89

Spirn, J.R., 1979. "Queueing networks with random selection for

service", JEEE Transactions on Software Engineering, Vol.5, No.3,
pp.287-289.

Tucci, S., and MacNair, E.A., 1982. "Implementation of mean-value
analysis for open, closed and mixed queueing networks”, Computer _
Performance, Vol.3, No.4, pp. 223-239.

Tucci S., and Sauer, C.H., 1985. "The Tree MVA Algorithm", Performance
Evaluation, Vol.5, pp. 187-196.

Zahorjan, J., Eager, D.L., and Sweillam, H.M., 1988. "Accuracy, speed,
and convergence of approximate Mean Value Analysis", Performance

Evaluation, Vol.8, pp. 255-270.

90

APPENDICES

APPENDIX A

FORTRAN CODE FOR MVA-1

PROGRAM GENERAL_EXACT MVA_ALGORITHM
C FILENAME : CHSAFOR (MVA-1)
PARAMETER (MAXCEN = 10 , MPOP = 15)
INTEGER 1(6),1(6), CENTER,CHAIN,Q(MAXCEN),N(6)
REAL RO(MAXCEN,6),LAMBDA(6), W(MAXCEN,6),LL(MAXCEN,6),
$ L(0:MPOP,0:MPOP,0:MPOP,0:MPOP,0:MPOP,0:MPOP,MAXCEN),T1,T2
C CALL CPUTIME(TI)
CALL DATA (K,M,N,Q,RO,MAXCEN)
DATA1/6*0/
C e 3 3k ok ok MAIN LOOP e 3k o ok ok ok ok
DO 60 16 = O,N(6)
1(6) = 16
DO 70 15 = 0,N(5)
I5)=15
DO 80 14=0,N4)
14) =14
DO 90 I3=0N(@3)
13)=13
DO 100 12 = O,N(2)
I2)=12
DO 200 11 = O,N(1)
(1) =11
IF (11+12+13+14+15+16 .EQ. 0) GOTO 200
DO 300 CHAIN=1K
IF (I(CHAIN)EQ.0) THEN
LAMBDA(CHAIN) = 0.

ELSE .
CALL XX (I,CHAIN,II) ! FIND REDUCED NETWORK
SUMW = 0.

DO 400 CENTER=1,M
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L(II(1),11(2),11(3),11(4),1I(5),1(6), CENTER))
SUMW = SUMW + W(CENTER,CHAIN)

400 CONTINUE

LAMBDA(CHAIN) = [(CHAIN) / SUMW
ENDIF
300 CONTINUE

DO 500 CENTER = 1,M
SUM = 0.
DO 600 CHAIN = 1X
LL(CENTER,CHAIN) = LAMBDA(CHAIN)*W(CENTER,CHAIN)
SUM = SUM + LAMBDA(CHAIN)*W(CENTER,CHAIN)
600 CONTINUE
L{I(1),1(2),1(3),1(4),1(5),1(6),CENTER) = SUM

500 CONTINUE

200 CONTINUE
100 CONTINUE
90 CONTINUE
80 CONTINUE
70 CONTINUE
60 CONTINUE
C ***x% END OF MAIN LOOP *#%*ix

DO 150 CENTER = 1M

WRITE (*,2) (LL(CENTER,CHAIN), CHAIN = 1,K) !QUEUE LENGTHS

150 CONTINUE

WRITE (*,2) (LAMBDA(CHAIN) , CHAIN = 1,K) ! CHAIN THROUGHPUTS

2 FORMAT (3X,6F12.6)
C CALL CPUTIME(T2)
C WRITE(*,*) 'CPU TIME =',(T2-T1)/1000000.
STOP
END

SUBROUTINE DATA (K,M,N,Q,S, MAXCEN)
INTEGER N(6),Q(MAXCEN),K,M,MAXCEN

REAL S(MAXCEN,6)

OPEN (1,FILE=/NET2 DATA A')

READ (1, K I NO OF CHAINS
READ (1,9 M ! NO OF CENTERS

READ (1,*) (Q@),1=1M) ! CENTER TYPES
READ (1,*) (N(),1=1K) ! CHAIN POPULATIONS
DO 10 I=1LM
READ (1,%) (S(,J), J=1,K) ! MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN
END

SUBROUTINE XX(AR,B)
INTEGER A(6),B(6),R
DO 10) =16

IF J .EQ. R) THEN
BR)=AR)-1
ELSE
B@) = AQ)
ENDIF

10 CONTINUE
RETURN
END

93

APPENDIX B

FORTRAN CODE FOR MVA-2

C PROGRAM EXACT MVA_ALGORITHM
C FILENAME : MVAB FOR (MVA-2)
PARAMETER (MAXCEN = 5)
INTEGER 1(8),1I(8),CENTER,CHAIN,Q(MAXCEN),N(8),V(0: 10000,8)
$, START(0:100),LEND(0:100),C,Z, TOTN
REAL RO(MAXCEN,8),LAMBDA(8), WMMAXCEN,8),LL(MAXCEN,8),
$ L(10000,MAXCEN),T1,T2
C
CALL CPUTIME(T1)
CALL DATA (K,M,N,Q,RO,MAXCEN)
TOTN =0
DO 5 J=1,K
TOTN = TOTN + N(J)
5 CONTINUE
START(0)=0
LEND(0) =0
DO 7J=1K
V(0,7)=0
7 CONTINUE
COUNT =0
C ok o ok ok sk ok MAIN LOOP 4%k ke
DO 10 C = 1,TOTN
START(C) = COUNT+1
DO 20 I1 = MAX(0,C-(N(2)+N(3)+N(4)+N(5)+N(6)+N(7)+N(8))),
$ MIN(C,N(1))
() =11
DO 30 I2 = MAX(0,C-(1+NG)+N@)+NG)+NGHNT)NE))),
$ MIN(C-11,N(2))
IQ)=12
DO 40 I3 = MAX(0,C-(II+I2+N(@)+N(5)+N(6)+N(7)+N@))) ,
$ MIN(C-11-12,N(3))
I3)=13
DO 50 14 = MAX(0,C-(1+12+13+N(5)}+N(6)+N(7)+N(@8))) ,
$ MIN(C-11-12-13,N(4))
14)=14
DO 60 15 = MAX(0,C-(I1+12+13+14+N(6)+N(7)+N(8))) ,
$ MIN(C-11-12-13-14,N(5))
1(5)=1I5
DO 70 16 = MAX(0,C-(11+12+13+14-+15+N(7)+N(8))) ,
$ MIN(C-11-12-13-14-15N(6))
16) =16
DO 80 I7 = MAX(0,C-(I1+12+13+14+15+16+N(8))) ,
$ MIN(C-11-12-13-14-15-16,N(7))
=17

1(8) = C-(I11+12+13+14+15+16+17)
COUNT = COUNT + 1
DO 82)=1K
V(COUNT,]) = I(J)
82 CONTINUE

DO 300 CHAIN = 1K
IF (I(CHAIN)EQ.0) THEN
LAMBDA(CHAIN) = 0.
ELSE
DO 90 J=1K
IF (JEQ.CHAIN) THEN
I(CHAIN) = I(CHAIN)-1
ELSE
o =17
ENDIF
90 CONTINUE
DO 100 J=START(C-1),LEND(C-1)
DO 110 L1=1K-1
IF (V@,.L1).NEII(L1)) GO TO 100

110 CONTINUE
Z=]
GO TO 120
100 CONTINUE
120 CONTINUE
SUMW =0.

DO 400 CENTER=1M
W(CENTER,CHAIN) = RO(CENTER,CHAIN)

$ * (1.+Q(CENTER) * L(Z,CENTER))
SUMW = SUMW + W(CENTER,CHAIN)
400 CONTINUE
LAMBDA(CHAIN) = I(CHAIN) / SUMW
ENDIF

300 CONTINUE

DO 500 CENTER =1M
SUM = 0.
DO 600 CHAIN=1K
LL(CENTER,CHAIN) = LAMBDA(CHAIN)*W(CENTER,CHAIN)
SUM = SUM + LAMBDA(CHAIN)*W(CENTER,CHAIN)
600 CONTINUE
L(COUNT,CENTER) = SUM
500 CONTINUE

80 CONTINUE
70 CONTINUE
60 CONTINUE
50 CONTINUE
40 CONTINUE
30 CONTINUE
20 CONTINUE
LEND(C) = COUNT

10 CONTINUE

DO 150 CENTER = 1M
WRITE (*,2) (LL(CENTER,CHAIN), CHAIN = 1 K)! MEAN QUEUE LENGTHS
150 CONTINUE
WRITE (*,2) (LAMBDA(CHAIN) , CHAIN = 1,K) | CHAIN THROUGHPUTS
2 FORMAT (3X,8F 9.6)

95

CALL CPUTIME(T?2)
WRITE (*,*) 'CPU TIME =",(T2-T1)/1000000.
STOP

END

SUBROUTINE DATA (K,M,N,Q,S,MAXCEN)
INTEGER N(8),Q(MAXCEN),K,M,MAXCEN

REAL S(MAXCEN,8)
OPEN (1,FILE=//NET2 DATA A')

READ (1,9 K I NO. OF CHAINS
READ (1, M I NO. OF CENTERS

READ (1,%) (Q(),I=1M) ! CENTER TYPES
READ (1,*) (N@),I=1K) ! CHAIN POPULATIONS
DO 10 I=1M
READ (1,%) (S@,J), J=1,K) ! MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN
END

96

APPENDIX C

FORTRAN CODE FOR MVA-3

PROGRAM EIGHT CHAIN_EXACT MVA_ALGORITHM

anon o

FILENAME : CH8C.FOR (MVA-3)
PARAMETER (MAXCEN=3)
MAXIMUM NUMBER OF CENTERS ALLOWED =3
MAXIMUM NO. OF CUSTOMERS IN FIRST CHAIN, N(1) =3
MAXIMUM NO. OF CUSTOMERS IN OTHER CHAINS =6

INTEGER 1(8),I1(8),CENTER,CHAIN,Q(3),N(8)
REAL RO(MAXCEN,8),LAMBDA(8), W(MAXCEN,8),LL(MAXCEN,8),

$ L10(0: 6,0: 6,0: 6,0:
$ L11(0:6,0:6,0:6,0:
$ L12(0:6,0: 6,0: 6,0:
$ L13(0:6,0:6,0: 6,0:
$ L20(0: 6,0:6,0:6,0:
$ 1.21(0:6,0: 6,0: 6,0:
$ L22(0: 6,0: 6,0: 6,0:
$ L23(0:6,0:6,0:6,0:
$ L30(0: 6,0: 6,0: 6,0:
$ L31(0: 6,0: 6,0: 6,0:
$ L32(0:6,0:6,0: 6,0:
$ L33(0: 6,0: 6,0: 6,0:
REAL T1,T2

CALL CPUTIME(TI)
DATAI1/8%*0/

6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:
6,0: 6,0:

6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:
6,0:

6),
6),
6),
6),
6)’
6),
6),
6),
6),
6),
6),
6)

CALL DATA (KM,N,Q.RO,MAXCEN)
C *xkkx NMAIN LOOP ****%k

DO 40 I8 =0,N(8)
1(8) =18

DO 50 17=0,N(7)
K7 =17

DO 60 16 = O,N(6)
16) =16

DO 70 15 =0N(5)
1(5)=15

DO 80 14 =0,N(4)
I4) =14

DO 90 I3 =0N(3)
13)=13

DO 100 12 =0,N(2)

12)=12

DO 200 I1=0,N(1)

I)=1

IF (11412+13+14+15+16+17+18 .EQ. 0) GOTO 200
DO 300 CHAIN = 1K
IF (I(CHAIN)EQ.0) THEN
LAMBDA(CHAIN) = 0.

ELSE
CALL XX (I,CHAIN,II) ! FIND A REDUCED NETWORK
SUMW = 0.

DO 400 CENTER=1,M
IF (CENTER EQ.1) THEN
IF (11(1).EQ.0) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L10(II(2),1I(3),11(4),11(5),11(6),11(7),11(8)))
ELSE IF (II(1).EQ.1) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L11(I1(2),11(3),I(4),11(5),11(6), II(7), II(8)))
ELSE IF (1I(1).EQ.2) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L12(1(2),1I(3),II(4),11(5),11(6),11(7),II(8)))
ELSE IF (II(1).EQ.3) THEN '
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L13(I1(2),11(3),1I(4),11(5),1K(6),1I(7), II(8)))
ENDIF
ELSE IF (CENTER EQ.2) THEN
IF (TI(1).EQ.0) THEN
W(CENTER CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L20(I1(2),1I(3),11(4),11(5),11(6),1I(7), I(8)))
' ELSEIF (II(1).EQ.1) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L21(11(2),li(3),I(4),11(5),11(6),11(7),11(8)))
ELSE IF (II(1).EQ.2) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L22(I1(2),I(3),II(4),[1(5),11(6),11(7), II(8)))
ELSE TF (II(1).EQ.3) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L23(I1(2),11(3),1I(4),1I(5),11(6),]I(7),II(8)))
ENDIF
ELSE IF (CENTER EQ.3) THEN
IF (11(1).EQ.0) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L30(II(2),11(3),1(4),11(5),11(6),11(7),11(8)))
ELSE IF (1I(1).EQ.1) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L31(11(2),1I(3),I(4),11(5),11(6),I1(7),II(8)))
ELSE IF (1I(1).EQ.2) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L32(11(2),11(3),l1(4),11(5),11(6), 11(7),II(8)))
ELSE IF (II(1).EQ.3) THEN
W(CENTER,CHAIN) = RO(CENTER,CHAIN)
$* (1.+Q(CENTER) * L33(11(2),1I(3),11(4),11(5),11(6),11(7), I(8)))
ENDIF
ENDIF
SUMW = SUMW + W(CENTER,CHAIN)
400 CONTINUE
LAMBDA(CHAIN) = I(CHAIN) / SUMW
ENDIF
300 CONTINUE

DO 500 CENTER = 1M
SUM =0.
DO 600 CHAIN=1X
LL(CENTER,CHAIN) = LAMBDA(CHAIN)*W(CENTER,CHAIN)
SUM = SUM + LAMBDA(CHAIN)*W(CENTER,CHAIN)
600 CONTINUE
IF (CENTER EQ.1) THEN

98

IF (1(1).EQ.0) THEN
L100(2).1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (1(1).EQ.1) THEN
L1132).]3).1(4),J(5),1(6),1(7),I(8)) = SUM
ELSE IF (I(1).EQ.2) THEN
L123(2),1(3).1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (1(1).EQ.3) THEN
L13((2),13).J(4),1(5),1(6),1(7),1(8)) = SUM
ENDIF
ELSE IF (CENTER.EQ.2) THEN
IF (1(1).EQ.0) THEN
L20((2).1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (1(1).EQ.1) THEN
L21(1(2),1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (1(1).EQ.2) THEN
L223(2).1(3),1(4),1(5),1(6),1(7),I(8)) = SUM
ELSE IF (1(1).EQ.3) THEN
L23(1(2),1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ENDIF
ELSE IF (CENTER EQ.3) THEN
IF (1(1).EQ.0) THEN
L30(1(2),1(3).1(4),1(5),1(6),1(7),I(8)) = SUM
ELSE IF (I(1).EQ.1) THEN
L3132).1(3).1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (1(1).EQ.2) THEN
L32(1(2),1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ELSE IF (I(1).EQ.3) THEN
L33(1(2),1(3),1(4),1(5),1(6),1(7),1(8)) = SUM
ENDIF
ENDIF
500 CONTINUE

200 CONTINUE
100 CONTINUE
90 CONTINUE
80 CONTINUE
70 CONTINUE
60 CONTINUE
50 CONTINUE
40 CONTINUE
C **** END OF MAIN LOOP **+*
DO 150 CENTER = 1M
WRITE (*,2) (LL(CENTER,CHAIN), CHAIN = 1,K)! MEAN QUEUE LENGTHS
150 CONTINUE
WRITE (*,2) (LAMBDA(CHAIN) , CHAIN = 1 X) ! CHAIN THROUGHPUTS
2 FORMAT (2X,8F8.5)
CALL CPUTIME(T2)
WRITE (*,*) 'CPU TIME =",(T2-T1)/1000000.
STOP
END

SUBROUTINE XX(A,R,B)
INTEGER A(8),B(8).R
DO 10J =18
IF (J .EQ. R) THEN
BR)=AR)-1
ELSE
B()=AQ)
ENDIF
10 CONTINUE

99

RETURN
END

SUBROUTINE DATA (K,M,N,Q,S,MAXCEN)
INTEGER N(8),Q(MAXCEN),K,M,MAXCEN

REAL S(MAXCEN,8)
OPEN(1,FILE='/NET2 DATA A')

READ(1,%) K I NO OF CHAINS
READ(1,Y) M ! NO OF CENTERS

READ(1,*) (Q(),J=1,M) ! CENTER TYPES
READ(1,*) (N(I),I=1,K) ! CHAIN POPULATIONS
DO 10 =1, M
READ(1,*) (S@J), J=1,K) MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN
END

100

APPENDIX D

FORTRAN CODE FOR MVAC-1

PROGRAM MVAC_ALGORITHM
C REGULAR IMPLEMENTATION (MVAC-1)
C FILENAME : MVAC83.FOR (3 CENTERS)
C
INTEGER VV(3),N(8),QQ(3),B(3,3)
INTEGER CHAIN,CENTER,S,D
REAL 1(0:10,3,0:10,0:10,0:10),LL(3,10,0:10,0:10,0:10),A(3,10),
$ Q(3,5),LAMBDAI(5),LAMBDA(10,0:10,0:10,0:10),
$ AA(3,5),SUMA(10)
CALL DATA (D,CENTER,N,QQ,AA)
DO 15 I=1,CENTER
BADH=1
15 CONTINUE
S=D
n=3
C ** GENERATION OF MEAN SERVICE TIMES FOR THE ORIGINAL NETWORK **
LK =0
DO 13 J=1,D
DO 23 K=1,N(J)-1
LK =LK +1
DO 33 1= 1,CENTER
A(LK) = AA(LY)
33 CONTINUE
23 CONTINUE
13 CONTINUE
DO 43 J=LK+1,LK+D
DO 53 I=1,CENTER
AQY) = AA(TJ-LK)
53 CONTINUE
43 CONTINUE

ISUM =0
DO 2 K=1D

ISUM = ISUM + N(K)

2 CONTINUE

CHAIN=ISUM !
DO 6 K = 1,CHAIN

SUMA(K) = 0.0

DO 7 J=1,CENTER

SUMA(K) = SUMA(K) + A(J,K)

7 CONTINUE
6 CONTINUE
C **BEGINNING OF THE BASIC STEP **
B 7.6, TOiSERGERETI
e ERNTET
gt e T

DO 10 K =KO0,CHAIN
C *%%%%kk BAS[C STEP ***tk#%

DO 20 KI=CHAINK -1
TOTAL = CHAIN - KI
DO 30 VI = 0,CHAIN
VV(1) = V1
DO 30 V2=0,CHAIN
VV(Q2) = V2
DO 30 V3 =0,CHAIN'
VV@3) = V3
IF (V14V2+V3 EQTOTAL) THEN
SUM =0.0
DO 40 J=1J1
SUM = SUM + A(,K)*(L(K-1,J,VL,V2,V3}+VV(J))
40 CONTINUE
LAMBDA(K,V1,V2,V3) = 1. / (SUMA(K) + SUM)
DO 50 J=1,CENTER
LL(J,K,V1,V2,V3) = LAMBDA(K,V1,V2,V3) * A(K)
$ *(1.+QQQ0) * (LK-1,J,VL,V2,V3)+VV(D)))
50 CONTINUE

DO 60 1= 1,CENTER
SUM = 0.0
DO 70 J=1,CENTER
SUM = SUM + LL(J,K,V1,V2,V3) *
$ L(K-1,1, VI+B(,1), V2+B(J,2) , V3+B(J,3))

70 CONTINUE

L(K.I,V1,V2,V3) = SUM + LL(LK,V1,V2,V3)
60 CONTINUE

ENDIF

30 CONTINUE
20 CONTINUE
10 CONTINUE

DO 9 J=1,CENTER
QU.D) = LL(J,CHAIN,0,0,0) * N(D)
9 CONTINUE
LAMBDA1(D) = LAMBDA(CHAIN,0,0,0) * N(D)

C *vkvkkk END OF BASIC STEP *kkkk*

DO 120 L1=1,§-1
CALL ICHANGE (A,CENTER,CHAIN,CHAIN-L1)
DO 206 K = 1,CHAIN
SUMA(K) = 0.0
DO 207 J=1,CENTER
SUMA(K) = SUMA(K) + A(,K)
207 CONTINUE
206 CONTINUE

KO0 =CHAIN-LI1

DO 205 K =KO, CHAIN
DO 210 KI=CHAINK -1
TOTAL = CHAIN - KI
DO 250 VI =0,CHAIN

VV(1) = Vi
DO 250 V2 = 0,CHAIN

102

V@) = V2
DO 250 V3 = 0,CHAIN
VV@3) = V3
IF (V1+V2+V3 EQ. TOTAL) THEN
SUM = 0.0
DO 260 J=1,]1
SUM = SUM + A(J,K)*(L(K-1,J,V1,V2,V3) + VV(D))
260 CONTINUE
LAMBDA(K,V1,V2,V3) = 1. / (SUMA(K) + SUM)
DO 270 J=1,CENTER
LL(J.K,V1,V2,V3) = LAMBDA(K,V1,V2,V3) * A(J.K)
$ * (1. + QQUY*(L(K-1,J,V1,V2,V3)+VV(J)))
270 CONTINUE
DO 280 I=1,CENTER
SUM = 0.0
DO 200 J=1,CENTER
SUM = SUM + LL(K,V1,V2,V3) * L(K-1,LV1+B(J,1),
$ V2+B(J,2) , V3+B(,3))
200 CONTINUE
L(K.],V1,V2,V3) = SUM + LL(LK,V1,V2,V3)
280 CONTINUE
ENDIF
250 CONTINUE
210 CONTINUE
205 CONTINUE

LAMBDA1(D-L1) = LAMBDA(CHAIN,0,0,0) * N(D-L1)
DO 208 J = 1,CENTER
Q@,D-L1) = LL(J,CHAIN,0,0,0) * N(D-L1)
208 CONTINUE

120 CONTINUE
DO 117 I=1,CENTER
WRITE(*,3) (Q()), J=1D) | MEAN QUEUE LENGTHS
117 CONTINUE
WRITE(*,3) (LAMBDAI({J), J= 1D) ! CHAIN THROUGHPUTS
3 FORMAT (2X,7F10.6)

STOP
END

SUBROUTINE ICHANGE (B,CENTRE,CHAIN,L)
INTEGER CENTRE,CHAIN,L
REAL B(CENTRE,CHAIN), TEMP
DO 10 I=1,CENTRE
TEMP = B(,L)
B(L,L) = B(,CHAIN)
B(1,CHAIN) = TEMP
10 CONTINUE
RETURN
END

SUBROUTINE DATA (K,M,N,QQ,A)
INTEGER N(6),QQ(3),K.M

REAL A(3,6)

OPEN (1,FILE='NET2.DAT)

READ (1, K ! NO. OF CHAINS

READ (1,9 M I NO. OF CENTERS

READ (1,*) (QQ() , I=1,M) ! CENTER TYPES =0:1S , =1:SSFR
READ (1,%) (N(I) . -1,X) ! CHAIN POPULATIONS

103

DO 10 I=1,M
READ (1,*) (A(L)), J=1,K) ! MEAN SERVICE DEMANDS =
10 CONTINUE I VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN
END

104

APPENDIX E

FORTRAN CODE FOR MVAC-2

PROGRAM MVAC_ALGORITHM
MVAC-2
FILENAME : MVACS83.FOR (3 CENTER)
e 3 2 ol afe 3k 3k s 30 2 3 3 sk 3k o 2 ok 3 e ok e 3k 3 s Sk ok 2 e 3k e 3k 3 9k ok e 3 ok ok e e o 3k 3 e 3k ok ok ae s a e 3k 3 e e e ok ok 3k 3 o o ol e sk e ke
SUMA(I) 1=1,CHAIN
START() I=1,CHAIN
VV(@) I1=1,CENTER
DV@) I=1,CENTER
(M) 1=1,CENTER
AQL) I=1,CENTER J=1,CHAIN
V@J)) I=1,COUNT J=1,CENTER
LAMBDA(,]) I=1,CHAIN J=1,COUNT
L(LJK) I=0,CHAIN J=1,CENTER K=1,COUNT
LL(JK) I=1,CENTER J=1,CHAIN K=1,COUNT

WHERE COUNT = COMBINATION (CHAIN+CENTER-1,CENTER)

ke 2k 3k ok ok ok ok e sk ok ok ake e ot 3k sk o ok ok sk ok ke ok ok ok ke ok 2k ok ok ok o ak ok 3k ok ok ke ok ok o ok ok ok ok o o 3 3k 9 o o ak ok ok ok e ok ak ok ok sk ok ok ok ok ok ok

olololololoNoNoloNoloNeNolololoNoXe!

INTEGER V(680,3),START(15), VV(3).DV(3),T(3),N(5),QQ(3)
INTEGER STARTP,ENDP,COL, P1,P2, COUNT,FOUND,CHAIN,CENTER,Z,S,D
REAL L(0:15,3, 680),LL(3,15, 680),A(3,15),SUMA(15),
$ Q(3,5),LAMBDAI1(5),LAMBDA(IS, 680),AA(3,5)
LOGICAL SAME
CALL DATA (D,CENTER,N,QQ,AA)
S=D
J1=3
C ** GENERATION OF SERVICE TIMES FOR THE ORIGINAL NETWORK **
LK=0
DO 21J=1D
DO 31K=1,N()-1
LK =LK +1
DO 411=1,CENTER
AQLK) = AA(L))
41 CONTINUE
31 CONTINUE
21 CONTINUE
DO 17 J=LK+1,LK+D
DO 18 I=1,CENTER
A(LY) = AA(LJ-LK)
18 CONTINUE
17 CONTINUE

ISUM=0
DO 2K=1D

ISUM = ISUM + N(K)
2 CONTINUE
CHAIN = ISUM
DO 6 K = 1,CHAIN
SUMA(K) = 0.0
DO 7 J=1,CENTER
SUMA(K) = SUMA(K) + A(J,K)
7 CONTINUE
6 CONTINUE

C kdkokx INITIALIZATION ok ok ok 3k ok o

DO 101 = 1,CENTER
V(LD =0
10 CONTINUE
DO 20 I = 2,CENTER+1
V) =1
20 CONTINUE
STARTP =2
ENDP = CENTER+1
COUNT = CENTER+1

C o ok o ok ok MAIN LOOP % ok ok ok ok ok ok
DO 22 NN = 0,CHAIN-3
DO 30 I = STARTP,ENDP
DO 40 J = CENTER, 1,-1
IF (V(1,J).NE.0) THEN
COL =1
GO TO 45
ENDIF
40 CONTINUE
45 CONTINUE
DO 51 K = COL,CENTER
DO 61 L1 = 1,CENTER
DV(L1) = V(,LI)
61 CONTINUE
DV(K) = VLK) + 1
COUNT = COUNT + 1
DO 71 L1 = 1,CENTER
V(COUNT,L1) =DV(LI)
71 CONTINUE
51 CONTINUE
30 CONTINUE
STARTP = ENDP + 1
ENDP = COUNT

22 CONTINUE
C **¥* REVERSING THE ORDER ****
DO 81 1= 1,COUNT22
DO 97 J = 1,CENTER
Td) =VQA))
V(LJ) = V(COUNT-}+1,J)
V(COUNT-I+1,J) = T(J)
97 CONTINUE
81 CONTINUE
C **** INITIALIZATION OF THE ARRAY 'START ****
START(1) = 1
DO 92 1 = 2,CHAIN
PI=1
DO 93 J = CHAIN-1+2 , CHAIN+CENTER-1

106

Pi=P1*]
93 CONTINUE
P2=1
DO 94 K = 1,CENTER-1
P2=P2*K
94 CONTINUE
START(I) =P1/P2 + START(I-1)
92 CONTINUE
START(CHAIN+1) = COUNT + 1

Ko=1
DO 5 K =K0,CHAIN

C *kxxkkk BASIC STEP *¥%¥kkkoksk¥k

DO 50 Z= START(K),COUNT
IC=IC+1
SUM=0.0
DO 60 J=1,J1
SUM = SUM + A(LK)*(L(K-1,J,Z)+V(Z,]))
60 CONTINUE
LAMBDA(KK.Z) = 1. / (SUMA(K) + SUM)
DO 70 J=1,CENTER
LL(X.Z) = LAMBDA.Z) * A(JK)
$ * (1. +QQQ) * (LK-1,1,Z)+V(Z,3)))
70 CONTINUE

DO 80 I = 1,CENTER
SUM = 0.0
DO 100 J = 1,CENTER
DO 110 JJ = 1,CENTER
VV(T) = V(Z,JT)

110 CONTINUE

V(@) =VVv(J)+1

FOUND =0

DO 90 11 = START(K-1),COUNT

SAME = TRUE.
DO 96 12 = 1,CENTER
SAME = VV(12) EQ.V(I1,12)
IF (NOT.SAME) GOTO 90
96 CONTINUE
FOUND =11

89 CONTINUE
90 CONTINUE

SUM = SUM + LL(J K,Z)*L(K-1,LFOUND)
100 CONTINUE

L(K,L,Z) = SUM + LL(LK,Z)
80 CONTINUE
50 CONTINUE

5 CONTINUE
DO 9 J=1,CENTER
QD) = LL(J,CHAIN,COUNT) * N(D)
9 CONTINUE
LAMBDA1(D) = LAMBDA(CHAIN,COUNT) * N(D)
C *kxksexk END OF BASIC STEP *#tssx

DO 120 L1=1,8-1

107

CALL ICHANGE (A,CENTER,CHAIN,CHAIN-L1)
DO 206 K = 1,CHAIN
SUMA(K) = 0.0
DO 207 J=1,CENTER
SUMA(K) = SUMA(K) + A(JK)
207 CONTINUE
206 CONTINUE

KO = CHAIN - L1
DO 205 K =K0, CHAIN
DO 250 Z=START(K), COUNT
SUM = 0.0
DO 260 J=1J1
SUM = SUM + A(JK)*(L(K-1,J,Z)+V(Z,]))
260 CONTINUE
LAMBDA(K,Z) = 1. / (SUMA(K) + SUM)
DO 270 J=1,CENTER
LL(J.X,Z) = LAMBDA(K,Z) * A(JK)

$ * (1. + QQU*(LK-1,1,Z)+V(Z,])))
270 CONTINUE
DO 280 1=1,CENTER
SUM=0.0

DO 200 J=1,CENTER
DO 210 JJ = 1,CENTER
VV@I) = V(Z,17)
210 CONTINUE
V(@) =VV(J) +1
DO 290 11 = START(K-1), COUNT
SAME = .TRUE.
DO 296 12 = 1,CENTER
SAME = VV(12).EQ.V(i1,12)
IF (NOT.SAME) GOTO 290

296 CONTINUE
FOUND =11

289 CONTINUE

290 CONTINUE

SUM = SUM + LL(J,X,Z) * L(X-1,,FOUND)
200 CONTINUE
L(K,LZ)=SUM+LL(1K,Z)

280 CONTINUE
250 CONTINUE
205 CONTINUE

LAMBDAI(D-L1) = LAMBDA(CHAIN,COUNT) * N(D-L1) ! CHAIN THROUGHPUTS
DO 208 J = 1,CENTER
Q(@,D-L1) = LL(J,CHAIN,COUNT) * N(D-L1)! MEAN QUEUE LENGTHS
208 CONTINUE

120 CONTINUE
DO 117 I=1,CENTER
WRITE(*,3) (Q@,J), J = 1,D) | MEAN QUEUE LENGTHS
117 CONTINUE
WRITE(*,3) (LAMBDAI(J) , J = 1,D) | CHAIN THROUGHPUTS
3 FORMAT (2X,7F10.6)

STOP
END

SUBROUTINE ICHANGE (B,CENTRE,CHAIN,L)

108

INTEGER CENTRE,CHAIN,L
REAL B(CENTRE,CHAIN), TEMP
DO 10 I=1,CENTRE
TEMP = B(LL)
B(L,L) = B(,CHAIN)
B(I,CHAIN) = TEMP
10 CONTINUE
RETURN
END

SUBROUTINE DATA (K,M,N,QQ,A)
INTEGER N(5),QQ(3),K,.M
REAL A(3,6)
OPEN (1,FILE=NET2.DAT)
READ(1,*) K ! NO. OF CHAINS
READ(1,¥) M I NO. OF CENTERS
READ(1,*) (QQQ),I=1,M) ! CENTER TYPES =0 ifIS, =1 if SSFR
READ(1,*) (N(),]=1,K) ! CHAIN POPULATIONS
DO 10 I=1M
READ (1,*) (AQLJ), J=1,K) ! MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN
END

109

APPENDIX F

FORTRAN CODE FOR MVAC-3

PROGRAM MVAC_ALGORITHM
IMPLEMENTATION NO.3 (MVAC-3)
FILENAME : DENEC.FOR (FOR 3 CENTERS)

SUMAQ) I=1,CHAIN
AQ) I=1,CENTER J=1,CHAIN

V@J) I=1,COUNT J=1,CENTER
LAMBDA(,J) I=1,CHAIN J=1,COUNT

L(JK) I=0,CHAIN J=1,CENTER K=1,COUNT
LLOJK) I=1,CENTER J=1,CHAIN K=1,COUNT

WHERE COUNT = COMBINATION (CHAIN+CENTER-1,CENTER)

ololololoNoNolo ool Noloke!

INTEGER V(680,3),START(21),DV(3),T(3),N(5),QQ(3)

ok ok ok ok ok ok ok ok ok ok s ke 3 3k ok 3k ok o ok ok 3k ok ok o sk ok o o ok ok o o ok ok ok ke ok o ok ok ok ok ok ok o ok 3k ae a3k ke ok ok ke ok e e oe sk o ok ok ok ok

ok o ok 3K o ok o ok 3 ok sk ok ok ok o o 3k o ok ok ok 3 ok 2 3 ek ok akc ok ok ok ke ok 3k o o 38 3k o ok sk ok 3k ok ok 3k 3k o ok ok ok ok ok ok ok ok ok ok ok 3k of ok o ok %k

INTEGER STARTP,ENDP,COL,P1,P2,COUNT,CHAIN,CENTER,Z,S,D,COL2

INTEGER ZZ,INDEX(680,3)
REAL L(0:15,3, 680),LL(3,15, 680),A(3,15),SUMA(I5),
+ Q(3,5),LAMBDAI(5),LAMBDA(1S, 680),AA(3,5),T1,T2

Q0

CALL CPUTIME(T1)
CALL DATA (D,CENTER,N,QQ,AA)
S=D
J1=3

C ** GENERATION OF SERVICE TIMES FOR THE ORIGINAL NETWORK **

LK =0
DO 32J=1D
DO 42 K=1,N(J)-1
LK =LK + 1
DO 521=1,3
A(LLK) = AA(LT)
52 CONTINUE
42 CONTINUE
32 CONTINUE
DO 17 J=LK+1,LK+D
DO 181=13
A(LN)=AA(J-LK)
18 CONTINUE
17 CONTINUE

ISUM=0
DO 2 K=1D
ISUM = ISUM + N(K)
2 CONTINUE

CHAIN = ISUM
DO 6 K =1,CHAIN
SUMA(K) = 0.0
DO 7 J=1,CENTER
SUMA(K) = SUMA(K) + A(J,K)
7 CONTINUE
6 CONTINUE

C 3% 3% ok %k ok ok IN'I’I‘IALIZATION ok ok ok af ok ok
DO 101=1,CENTER
V(,h=0
10 CONTINUE
DO 20 I = 2,CENTER+1
VA1) =1
20 CONTINUE
STARTP =2
ENDP = CENTER+1
COUNT = CENTER+1
C **+* INITIALIZATION OF THE INDEX MATRIX *¥**
DO 21 J=1,CENTER
INDEX(1,J) = J+1
21 CONTINUE

C ok ok 3k 3 ok MAIN LOOP skak ook ok sk
DO 22 NN = 0,CHAIN-3
COL2 =0
DO 30 I = STARTP,ENDP
DO 40] = CENTER,1,-1
IF (V(,J).NE.0) THEN
COL=J
GO TO 45
ENDIF
40 CONTINUE
45 CONTINUE
DO 51 K = COL,CENTER
DO 61 L1 = 1, CENTER
DV(L1) = V(LL1)
61 CONTINUE
DV(K) = VLK) + 1
COUNT = COUNT + 1
INDEX(LX) = COUNT
DO 71 LI = 1,CENTER
V(COUNT,L1) = DV(L1)

71 CONTINUE
51 CONTINUE
IF (COL.EQ.2) THEN

COL2=COL2 +1
INDEX(,1) = COUNT - COL2 - 2
ELSE IF (COL.EQ.3) THEN
INDEX(1,1) = COUNT - (COL2+2)
INDEX(1,2) = COUNT - 1
ENDIF

30 CONTINUE
STARTP = ENDP + 1
ENDP = COUNT
22 CONTINUE
C **+x REVERSING THE ORDER ****
DO 811=1,COUNT2
DO 97 J = 1,CENTER

111

T =VQL)
V({,J) = V(COUNT-I+1,J)
V(COUNT-I+1,J) = T(J)
97 CONTINUE
81 CONTINUE
C **** INITIALIZATION OF THE ARRAY 'START *#**
START(1) = 1
DO 92 1= 2,CHAIN
Pl=1
DO 93 J = CHAIN-1+2 , CHAIN+CENTER-1
Pl=P1*]
93 CONTINUE
P2=1
DO 94 K = 1,CENTER-1
P2=P2*K
94 CONTINUE
START(I) = P1/P2 + START(I-1)
92 CONTINUE
START(CHAIN+1) = COUNT + 1
KO=1
DO 5 K =KO0,CHAIN

C o0 3 ok ok ok BASIC STEP ake sk dke ok

DO 50 Z = START(K),COUNT
IC=IC+1
SUM=0.0
DO60 J=1]1
SUM = SUM + A(J,K)*(LK-1,J,2)+V(Z.]))
60 CONTINUE
LAMBDA(K,Z) = 1. / (SUMA(K) + SUM)
DO 70 J=1,CENTER
11L(),K,Z) = LAMBDA(K,Z) * A(J.K)
+ *(L+QQM) * (LK-LLZY+V(Z,))))
70 CONTINUE
DO 80 I = 1,CENTER
SUM=0.0
DO 100 J=1,CENTER
ZZ = COUNT-INDEX(COUNT-Z+1,1)+1
SUM = SUM + LL(J K,Z)*L(K-1,1.Z7Z)
100 CONTINUE
L(K,L,Z) = SUM + LL(L,X,Z)
80 CONTINUE
50 CONTINUE

5 CONTINUE

DO 9 J=1,CENTER
QU,D) = LL{J,CHAIN,COUNT) * N(D)
9 CONTINUE .
LAMBDAI(D) = LAMBDA(CHAIN,COUNT) * N(D)

C kkkkkkk END OF BASIC STEP #%%%%k*

DO 120 L1=1,8-1
CALL ICHANGE (A,CENTER,CHAIN,CHAIN-L1)
DO 206 K = 1,CHAIN

SUMA(K) = 0.0
DO 207 J = 1,CENTER
SUMA(K) = SUMA(K) + A(J,K)

112

207 CONTINUE
206 CONTINUE

KO = CHAIN - L1
DO 205 K =K0, CHAIN
DO 250 Z=START(K), COUNT
SUM =0.0
DO 260 J=1,J1
SUM = SUM + A(JK)*(L(K-1,,Z)+V(Z]))
260 CONTINUE
LAMBDA(K,Z) = 1. / (SUMA(K) + SUM)
DO 270 J= 1,CENTER
LL(J,K,Z) = LAMBDA(K,Z) * A(K)
+ * (1L +QQM*(LK-LJ,Z)+V(ZJ)))
270 CONTINUE
DO 280 1= 1,CENTER
SUM = 0.0
DO 200 J = 1,CENTER
ZZ = COUNT-INDEX(COUNT-Z+1,])+1
SUM = SUM + LL(JX.Z) * L(K-1,1,27)
200 CONTINUE
L(K.,1,Z) = SUM + LL(1LK,Z)
280 CONTINUE
250 CONTINUE
205 CONTINUE

LAMBDA1(D-L1) = LAMBDA(CHAIN,COUNT) * N(D-L1)
DO 208 J = 1,CENTER
QUJ,D-L1) = LL(J,CHAIN,COUNT) * N(D-L1)
208 CONTINUE

120 CONTINUE
DO 117 1= 1,CENTER
WRITE(*,3) (Q(,)), J= 1,D) ! MEAN QUEUE LENGTHS
117 CONTINUE
WRITE(*,3) (LAMBDAI(Y), J=1,D) ! CHAIN THROUGHPUTS
3 FORMAT (2X,6F10.6)
C CALL CPUTIME(T2)
C WRITE(*,*) TIME ELAPSED = ',(T2-T1)/1000000.
STOP

END
SUBROUTINE ICHANGE (B,CENTRE,CHAIN,L)
INTEGER CENTRE,CHAIN,L
REAL B(CENTRE,CHAIN), TEMP
DO 10 1= 1,CENTRE
TEMP = B(LL)
B(L,L) = B(,CHAIN)
B(I,CHAIN) = TEMP
10 CONTINUE
RETURN
END
SUBROUTINE DATA (K,M,N,QQ,A)
INTEGER N(8),QQ(3).K.M
REAL A3,8)
OPEN (1,FILE='NET2.DAT)
READ (1,9 K ! NO. OF CHAINS
READ (1,9 M ! NO. OF CENTERS

READ (1,%) (QQ(),1=1,M) ! CENTER TYPE =0ifIS§, =1 if SSFR

113

READ (1,*) (N({) ,I=1,K) ! CHAIN POPULATIONS

DO 101=1M
READ (1,*) (A(LY), J=1,K) | MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN

END

114

APPENDIX G

FORTRAN CODE FOR THE LINEARIZER ALGORITHM

PROGRAM LINEARIZER_ALGORITHM
C FILENAME:LINSFOR
PARAMETER (MAXM=20 , MAXK=10 , MAXN=25)
REAL D,L,S,LL,L2 FF,LLC,F.LC1,W,Y
DIMENSION
DOMAXM,MAXK, MAXK),LL(MAXM MAXK MAXK),FF(MAXM,MAXK,MAXK),
$ L2(MAXM MAXK), LLC(MAXM,MAXK), F(MAXM,MAXK), LC1(MAXM,MAXK),
$ WMAXM,MAXK), YMMAXM,MAXK), LIMAXM,MAXK), S(MAXM,MAXK)
INTEGER N(MAXK), Q(MAXM)
CALL DATA (K,MN,Q,S; MAXM,MAXK)
CALL LINEAR (QN,M K,D,L,S,LL,L2 FF,LLC,F,LC1,W,Y, MAXM,MAXK)
STOP
END

SUBROUTINE LINEAR (Q,NMX D,L,S,LL,L2,FF,LLC,F,LC1,W,Y, MAXM,MAXK)
REAL L,S,LL,L2,FF,LLC,F,LC1,W,Y
DIMENSION
DMAXM MAXK,MAXK),LL(MAXM,MAXK MAXK), FEMMAXM,MAXK, MAXK)
$ LLC(MAXM,MAXK),F(MAXM,MAXK) LC1(MAXM,MAXK), W(MAXM,MAXK)
$ LMAXM,MAXK),S(MAXM,MAXK),L2(MAXM,MAXK),Y(MAXM,MAXK)
INTEGER N(MAXK),Q(MAXM),POP(20)

C *¥+kesrss STEP 1 (INITIALIZATION) #dkdkisbins
C
DO 10 KK=1K
DO 10 MM =1M
LMM,KK) = N(KK) / REAL(M)
10 CONTINUE
DO 100 MM = 1M
DO 100 KK=1K
DO 100 IJ=1K
LL (MM,KK,JJ) = ALFA (N KKK ,1J) /M
100 CONTINUE
I=1

C kdkkkkkkkdkkkke QTEP 2 o ok o o o o o ak ok ak oo ke

3 CONTINUE
C CORE FOR FULL NETWORK ENTERENCE
CALL CORE (M,K,D,L,.LC1,N,S,Q,W,MAXM MAXK)
C

C 3 ok o o ok 2k ok ok ok ok o %k %k ok S’I'EP 3 ok 3k ok o o o o o o o ke ok 3 ke ok

IF (1.EQ.3) GOTO 600

C kool okoksk ook STEP 4 ok of ol e 3 o ok of ok o o ok ke ok 3k

DO 200 JJ=1K
DO 210 KK = 1K
POP (KK) = N(KK)
210 CONTINUE
POP (J1) = N(IJ) - 1
DO 220 MM = 1M
DO 220 KK = 1L.X
L2 MMKK) =LL MM,KK,1])
220 CONTINUE
C CORE FOR REDUCED NETWORK
CALL CORE (M,X,D,L2,LLC,POP,S,Q,W,MAXM,MAXK)
C
DO 230 MM = 1M
DO 230 KK = 1K
IF (POP (KK).EQ.0) THEN
FF (MM,KK,JJ) = 0.0
ELSE
FF (MM,KK,JJ) = LLC (MMKK) / POP (KK)
ENDIF
LL (MM,KK,JJ) = LLC (MM,KK)
230 CONTINUE

200 CONTINUE

C *dkkbkkrskdkxkkdk CTEP § e 2k ol ok ok o ok ok 3k sk e sk ok ke

DO 300 MM = 1M
DO 300 KK = 1K
F (MM,KK) = LC1 (MM,KK) / N(KK)
300 CONTINUE

DO 400 MM =1M
DO 400 KK =1K
DO 400 J=1K

D MM,KK,JJ) = FF (MM,KK,JJ) - F (MM,KK)

400 CONTINUE
I=I+1

DO 500 MM = 1L.M
DO 500 KK = 1L.K
L (MM,KK) =LC1 (MM,KK)
500 CONTINUE

GOTO 3
600 CONTINUE | LINEARIZER RESULTS
DO 610 MM = 1M
WRITE (*,12) (LC] (MM,KK) , KK = 1K) | MEAN QUEUE LENGTHS
12 FORMAT (3X,5F13.6)
610 CONTINUE
DO 700 MM = 1,1
DO 700 KK = 1K
IF (W(MM,KK).EQ.0.0) THEN
Y(MM,KK) = 0.0
ELSE
Y(MM,KK) = LC1 (MM,KK) / W(MM,KK) | CHAIN THROUGHPUTS
ENDIF

116

700 CONTINUE
WRITE (*,12) (Y(1,KK), KK=1K)
DO 800 MM = 1M
WRITE (*,12) (WMMM,KK), KK=1,K) ! MEAN WAITING TIMES
800 CONTINUE
RETURN
END

SUBROUTINE CORE (MK,D,LE,LAN,S,Q,W,MAXM,MAXK)
INTEGER MK,Q
REAL D(MAXM MAXKMAXK),LL(30,20,20), X(20)
REAL S(MAXM,MAXK),L(30,20),0LDL(30,20),LE(MAXM,MAXK)
REAL LAQMAXM,MAXK),WMAXM,MAXK),F(30,20)
REAL SUMN,CUTOFF,MAX,DIFF
DIMENSION N(MAXK), QMAXM)
I=1
DO 5 MM = 1M
DO 5 KK=1K
L (MM,KK) = LE (MM,KK)
5 CONTINUE
2 CONTINUE
DO 10 MM = I M
DO 10 KK = 1K
IF (N(KK) .NE. 0) THEN
F (MM,KK) = LIMMKK) / N(KK)

ELSE
F (MM,KK) = 0.0
ENDIF
10 CONTINUE
DO 20 MM = 1.M
DO 20 KK = 1K
DO20 JI=1K

LL(MM,KK,JJ) = ALFA(N,K.KK,1J) * (FMM,KK) + DIMM,KK,JJ))
20 CONTINUE

DO 30 MM = 1M
DO 30 II=1K
SUML = 0.0
DO 40 KK = 1K
SUML = SUML + LL(MM,KK,JJ)
40 CONTINUE
W (MM,J]) = S(MM,JJ) * (1.0 + SUML * QMM))
30 CONTINUE

DO 50 KK = 1X
SUMW = 0.0
DO 55 MM = 1M
SUMW = SUMW + W(MM,KK)
55 CONTINUE
X(KK) = N(KK) / SUMW
50 CONTINUE

DO 60 MM = 1.M
DO 60 KK = 1K
OLDL (MM,KK) = L (MM,KK)
LOMM,KK) = X(KK) * W(MM,KK)
60 CONTINUE

MAX =0.0

117

DO 70 MM = 1M
DO 70 KK = 1K
IF (N(KK).EQ.0) GOTO 70
DIFF = ABS(L(MM,KK)-OLDL(MMM,KK)) / N(KK)
IF (DIFF .GT. MAX) MAX = DIFF
70 CONTINUE
SUMN = 0.0
DO 75 KK = 1K
SUMN = SUMN + N(KK)
75 CONTINUE
CUTOEF = 1. / (4000. + 16.* SUMN))
IF (MAX.GT.CUTOFF) GOTO 2

DO 80 MM = 1M
DO80KK=1K
LAMM,KK) = L(MM,KK)
80 CONTINUE
RETURN
END

FUNCTION ALFA (N.X,Z,J)
INTEGER N,K,J,Z
DIMENSION N(K)
IF (ZEQ.J) THEN
ALFA=N()- 1.
ELSE
ALFA = N(Z)
ENDIF
IF (ALFA LT.0.) ALFA=0.
RETURN
END

SUBROUTINE DATA (K,M,N,QQ,A MAXM,MAXK)
INTEGER N(MAXK),QQMAXM),K.M

REAL AMAXM,MAXK)

OPEN (1,FILE='NET2.DAT)

READ (1, K | NUMBER OF CHAINS
READ (1,9 M ! NUMBER OF CENTERS
READ (1,%) (QQ(), I=1,M) ! TYPE OF CENTER
READ (1,%) (N(I), I=1,K) ! CHAIN POPULATIONS

DO 10 I=1M
READ (1,*) (AQ,J),J=1K) ! MEAN SERVICE DEMANDS =
10 CONTINUE ! VISIT RATIO * MEAN SERVICE TIME PER VISIT
RETURN

END

118

