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ABSTRACT

LOCAL STRUCTURES OF THE AL – RE MARGINAL METALLIC
GLASSES AND LIQUIDS: A MOLECULAR DYNAMICS STUDY

Sarıtürk, Doğuhan

M.S., Department of Metallurgical and Materials Engineering

Supervisor: Prof. Dr. Y. Eren Kalay

July 2022, 89 pages

Al-based metallic glasses (MGs) have outstanding structural and functional proper-

ties and are of great interest in the literature and industry. The formation of metallic

glasses opens up extraordinary possibilities, and the structure and structure-property

relationship at the atomic level must be thoroughly studied to tailor such properties.

Al-Rare Earth (RE)-based alloys form an important class of marginal glass-forming

alloys in which the presence of Al nanocrystals accompanies primary crystallization.

Our previous studies on Al-based rare earth (Al–RE) metal alloys (RE: Sm, Tb) have

shown that the phase selection hierarchy upon devitrification depends on the middle

range order present in the devitrification state. In this study, the atomic structures of

binary Al-Sm metal alloys were investigated using molecular dynamics (MD) simula-

tions with Embedded Atom Method (EAM) potential to reveal the structural evolution

in molten, supercooled, and quenched states considering short and medium range or-

ders.

Keywords: Metallic glasses, aluminum alloys, molecular dynamics, short-range or-

der, medium-range order
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ÖZ

AL-NTE MARJİNAL METALİK CAMLARIN VE SIVILARIN LOKAL
YAPILARI: MOLEKÜLER DİNAMİK ÇALIŞMASI

Sarıtürk, Doğuhan

Yüksek Lisans, Metalurji ve Malzeme Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Y. Eren Kalay

Temmuz 2022 , 89 sayfa

Al bazlı metalik camlar (MG’ler) olağanüstü yapısal ve işlevsel özelliklere sahip-

tir ve hem literatürde hem de endüstride büyük ilgi görmektedir. Metalik camların

oluşumu olağanüstü olanaklara yol açar ve bu tür özellikleri uyarlamak için atomik

düzeyde yapı ve yapı-özellik ilişkisi iyice incelenmelidir. Al-Nadir Toprak (RE) bazlı

alaşımlar, Al nanokristallerin varlığının birincil kristalleşmeye eşlik ettiği marjinal

cam oluşturan alaşımların önemli bir sınıfını oluşturur. Al bazlı nadir toprak (Al –

RE) metal alaşımları (RE: Sm, Tb) üzerine daha önceki çalışmalarımız, devitrifikas-

yon üzerine faz seçim hiyerarşisinin, devitrifikasyon durumda mevcut olan orta erim

düzenine bağlı olduğunu göstermiştir. Bu çalışmada, ikili Al-Sm metal alaşımlarının

atomik yapıları, kısa ve orta erim düzenleri dikkate alınarak erimiş, aşırı soğutulmuş

ve su verilmiş hallerdeki yapısal evrimi ortaya çıkarmak için Gömülü Atom Yöntemi

(EAM) potansiyeli ile moleküler dinamik (MD) simülasyonları kullanılarak araştırıl-

mıştır.

Anahtar Kelimeler: Metalik camlar, alüminyum alaşımları, moleküler dinamik, kısa

erim düzeni, orta erim düzeni
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CHAPTER 1

INTRODUCTION

Materials are conventionally categorized into three primary groups: metals, ceramics,

and polymers. This category scheme is mainly based on the materials’ atomic struc-

ture and bonding characteristics. Metallic materials are primarily composed of one

or more metallic elements, sometimes accompanied by small amounts of nonmetallic

elements. An alloy is a mixture of elements with at least one metal. Most metallic ma-

terials and their alloys have their atomic structures arranged in an orderly way over

large atomic distances with periodicity and rotational and translational symmetry.

Hence, long-range order (LRO) usually exists within metallic materials. The three-

dimensional ordered structures observed in the atomistic scale in metallic materials

form crystalline structures, and how the atoms situate themselves within crystalline

materials results in the formation of crystal structures. There are three main types

of crystal structures commonly seen in metallic materials: the face-centered cubic

(fcc), the body-centered cubic (bcc), and the hexagonal close-packed (hcp). Metals

and their alloys predominantly have metallic bonding in which the electrons within

the materials do not bound to any specific atom and are free to wander around within

the material. The unbound electrons of metallic materials, called valance electrons,

form so-called a sea of electrons and are responsible for the non-directional bonding

characteristics of the metals.

The atomic structures of some materials lack the long-range ordered structures found

in crystalline materials. Those materials are called non-crystalline or amorphous.

Although the long-range order in amorphous materials is absent, various short- to

medium-range ordered structures might be present in the structures. Figure 1.1a

shows a hypothetical atomic structure of a ternary alloy that possesses an ordered fcc
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crystal structure, whereas Figure 1.1b is a disordered amorphous counterpart of the

same alloy. Some polymeric materials, minerals, and inorganic glasses (e.g., SiO2)

exhibit non-crystalline atomic structures. Historically glasses are known to have ran-

dom local structures. Thus, the term glassy has been used interchangeably with dis-

ordered and amorphous. In addition to the naturally occurring amorphous materials,

amorphization can be achieved by several production methods. Continuously cooling

from the liquid state, vapor deposition, and mechanical milling are just three options

to utilize in obtaining disordered structures.

(a) (b)

Figure 1.1: A representative atomic structure of a hypothetical binary system in (a)

an ordered fcc state, and (b) a disordered amorphous state.

1.1 Metallic Glasses

1.1.1 History of Metallic Glasses

The connection between the metals and amorphous structures was realized when

Duwez et al. synthesized the first-ever metallic alloy appearing to be amorphous in

September 1959 [1]. They used a modified splat quenching method called the gun

technique and were able to obtain cooling rates as high as 106 K s−1. Gun technique

was used to rapidly cool down an alloy with composition Au75Si25 from ∼1300 °C to

room temperature, and the resulting ∼10 µm thick flake was characterized by using a

Debye-Scherrer camera. The X-ray diffraction pattern they published, see Figure 1.2,
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was absent from any crystalline peaks. However, the amorphous sample they ob-

tained was quite unstable at room temperature and decomposed into non-equilibrium

crystalline phases within 24 hours. No matter what, the pretty short paper by Duwez

et al. pioneered the studies on metallic glasses (MG).

Figure 1.2: X-ray diffraction pattern of the first metallic glass,∼10 µm Au75Si25 flake,

with respect to sin θ/λ. Acquired via a Debye-Scherrer camera under CuK radiation.

Adapted from [1].

The instability and inability to carry out characterization studies on non-crystalline

Au75Si25 alloy led Duwez et al. to synthesize binary Te – X (X = Ga, In, Ge) [2] al-

loys. The amorphous structure of the new alloys was stable up to 100 °C. The same

group found a binary alloy showing greater stability three years later. Pd – Si alloys

containing 15.5 to 23 at.% Si [3] were stable at room temperature and did not exhibit

any sign of crystallinity even after one month at 250 °C. A couple of years later, the

Turnbull group found several ternary Pd – Si – X (X = Ag, Cu, Au) [4] alloys forming

glasses at temperatures as low as 102 °C/s with thicknesses more than 0.5 mm after

an extensive survey of different compositions. The same group achieved thicknesses

on the order of 1 mm after investigating various Pd – P – X (X = Ni, Co, Fe) [5] al-

loys. In 1967, Ruhl et al. showed that metallic glasses did not necessitate metalloid

elements when they reported splat-quenched Nb – Ni, and Ta – Ni [6] alloys having

amorphous structures.
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A breakthrough was achieved in the late ’60s when Chen and Turnbull were able to

observe the glass-transition temperature of splat-quenched Au – Si and Au – Ge – Si al-

loys through thermal and rheological studies [7]. Observation of the glass-transition

temperature indicated the presence of amorphous structures in these samples; thus,

evidence of metallic glasses was provided. In the ’70s, Chen et al. [8, 9] and Lieber-

mann et al. [10] invented the centrifugal spinning method and successfully formed

several glassy alloy ribbons. The invention of the centrifugal spinning method, also

known as melt spinning, ultimately led to the extensive survey of compositions that

form amorphous structures.

Kendall et al. from Jet Propulsion Laboratory (JPL) were able to obtain spherical

Au – Pb – Sb [11] alloys with diameters up to 1.5 mm in 1982. The Inoue group further

increased the critical thicknesses of the MGs up to 5 mm for the Al – La – Ni [12]

system and around 9 mm for the Al – La – Cu [13] system. Melt-spun Mg – Ni – Y

[14] and injection cast Mg – Cu – Y [15] alloys were found to have a fully amorphous

structure by the Inoue group in 1991, with critical diameters up to 4 mm for the as-cast

Mg65Cu25Y10. They also observed that Mg – Cu – Y alloy retained its fully amorphous

structure even after etching at room temperature for Mg80Cu10Y10.

Furthermore, the Inoue group discovered the Zr – Al – X (X = Co, Ni, Cu) [16] system

with significant glass-forming ability in 1991 with a broad supercooled liquid region

between the glass transition temperature (Tg) and the onset temperature of crystalliza-

tion (Tx) as high as 127 K. The first commercial metallic glass was invented in 1992

as a part of a NASA-funded project to invent new aerospace materials. Peker et al.

studied the pentary Zr – Ti – Cu – Ni – Be system and developed an alloy with critical

thickness up to 10 cm. Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [17] alloy called Vitreloy 1 (Vit 1)

exhibits critical cooling rates of the order of 10 K s−1 or less.
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1.1.2 Glass Forming Ability

Almost all MG-forming alloys are attributed to varying glass-forming ability (GFA).

The MGs that are more stable at room temperature and can be obtained with relatively

slow cooling rates with larger sizes have better glass-forming abilities. The empirical

rules for MG formation were first realized by Inoue et al. [18, 19], which were;

• multicomponent system incorporating more than three elements,

• atomic size mismatch above 12% between constituent elements, and

• negative heat of mixing between the components.

Cohen and Turnbull [20] were one of the first researchers to propose a semi-quantitative

criterion for glass-forming tendency. Their proposal states that all liquids, including

metallic and ionic, exhibit a greater glass-forming tendency with decreased reduced

melting temperature, τm = kTm/hv, where Tm is the equilibrium crystallization/melt-

ing temperature, and hv is the heat of vaporization. Their statement points out that

the alloy compositions close to a low melting eutectic point in the phase diagram are

more susceptible to glass formation. The statement acted as a guide for searching for

compositions that can be quenched into a glass. Turnbull also proposed a quantitative

parameter called reduced glass temperature Trg = Tg/Tm [21]. According to Turn-

bull, liquids with a reduced glass temperature ∼ 1/2 can be quenched to glassy form

only at high cooling rates. However, a liquid with a reduced glass temperature as high

as ∼ 2/3 can be undercooled to obtain a glassy structure.

When a liquid is cooled below its melting point, the free energy difference between

the liquid and the crystal acts as a driving force for crystal nucleation. In contrast,

the formation of the liquid-crystal interface produces a positive interfacial energy

that opposes nucleation. Tracking both the crystal nucleation driving force and the

interfacial energy formed between the liquid-crystal interface can also be used to

predict glass formation via the crystal nucleation rate, Iv [22].
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The crystal nucleation rate per unit volume is defined as follows:

Iv =
Av
η (T )

exp

(
−∆G∗

kbT

)
(1.1)

where η (T ) is the temperature-dependent viscosity, kB is the Boltzmann constant and

Av is a constant. ∆G∗ is the activation energy for the formation of a nucleus and is

defined as ∆G∗ = 16πσ3/3 (∆Gl−s)
2, where σ is the interfacial energy between the

nuclei and the liquid. The driving force for the crystallization is defined as, ∆Gl−s =

Gl − Gs, where Gl and Gs are the Gibb’s free energies of the liquid and the nuclei,

respectively. The kinetic slowdown of a melt is often described by its viscosity. As

seen in Equation (1.1), the viscosity is also an important parameter in predicting glass

formation. The viscosity of melts generally obeys the following Arrhenius type of

equation [23] with respect to temperature:

η = η0 exp

(
E

RT

)
(1.2)

where E is the activation energy for the flow, R is the gas constant, and η0 is a pre-

exponential constant that corresponds to the viscosity at infinite temperature. How-

ever, the temperature dependence of the melts of MGs was found to be satisfactorily

described by the modified Vogel–Fulcher–Tammann (VFT) relation of Angell [24]:

η = η0 exp

[
DT0

(T − T0)

]
(1.3)

where T0 is known as the VFT temperature, and D is the parameter that defines how

well the equation obeys the Arrhenius law. The glass transition temperature is defined

as the temperature at which the liquid has a viscosity of 1012 Pa s [25]. Equations (1.2)

and (1.3) can be fitted together to predict the glass transition temperature of a melt.
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1.1.3 Metallic Glass Classifications

The first MG alloys were obtained as µm thick ribbons. In 1984, the Turnbull group

formed the first centimeter-scale bulk MG by cooling the Pd40Ni40P20 alloy of the

same group in molten B2O3 fluxes [26] to suppress superficial crystallinity reported

in earlier studies [27]. The term bulk metallic glass (BMG) defines MG alloys with

thicknesses over 1 cm and critical cooling rates lower than around 102–103 K s−1.

Pd – Ni – P alloys of the Turnbull group were the first MGs on a centimeter-scale;

hence, they are considered the first BMGs. The MGs proposed up to the late ’80s were

all consist of rather expensive elements like Pd, Pt, and Au [3, 28, 1]. The number of

discovered MG compositions exponentially increased after the Inoue group came up

with multicomponent MG systems mainly consisting of affordable, common metallic

elements. Inoue group then classified the MGs that both they synthesized and reported

in the literature into two categories: ferrous and nonferrous. They further divided the

alloy compounds into five groups based on the types of the constituent elements [19].

The MGs are also frequently classified according to their base components, e.g., Zr-

[29], Cu- [30], Fe- [31], Co- [32], and Al-based alloys are just a few examples.

As stated earlier, the BMGs require cooling rates∼102–103 K s−1. On the other hand,

the marginal metallic glass formers are a group of materials that require cooling rates

of ∼105–106 K s−1 to vitrify fully. Among the marginal glass formers, Al-based al-

loys are particularly striking. First Al-rich MGs were Al – (Fe or Co) – B [33] and

Al – Fe – (Si or Ge) [34]. They were highly brittle, though, and received little attention

until a more ductile alloy surfaced [35]. Al – Ni – Si and Al – Ni – Ge systems with Al

contents above 80 at.% were the first alloys to exhibit good ductility [36]. An Al-

based amorphous alloy with a tensile fracture strength value that exceeds 1000 MPa

was produced in an Al – Y – Ni system in 1988. Al-rich Al87Y8Ni5 alloy was found to

exhibit tensile strengths that reached 1140 MPa, which was about two times higher

than the conventional Al-based crystalline alloys at that time [37]. He et al. reported

Al-rich alloys with high GFA in 1992. Al – Ni – Fe – Gd system was found to require

critical cooling rates comparable with some of the best glass formers in those days

[38].
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Figure 1.3: Composition ranges for the formation of an amorphous phase in melt-

spun Al–RE (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Yb) binary alloys.

The symbols of Amo. and X represent amorphous and unidentified crystalline phases,

respectively. Adopted from [39].

Remarkable mechanical properties of Al alloys with rare earths (RE) and transition

metals (TM) have attracted attention [40, 41, 42]. Figure 1.3 shows the compositional

dependence of the Al–RE (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Yb)

binary alloys for the formation of amorphous structure [39]. Among all 12 Al – RE

systems Inoue has studied, the Al – Sm system has the widest glass-forming range

of 8–16 at.%. The glass transition temperature generally appears as an endothermic

peak in differential scanning calorimetry (DSC) traces. However, for some of the

marginal glass-forming systems such as, Al – Y – Fe and Al – Sm, the endothermic

glass transition temperature response coincides with the exothermic response from
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the primary crystallization upon heating [43, 44]. Hence, conventional calorimetry

analysis via DSC can not be used to identify glass formation for these alloys. Wu et

al. have been able to observe the glass transition temperature of Al92Sm8 alloys by

utilizing modulated-temperature differential scanning calorimetry (MTDSC) [45].

An important and interesting observation in several marginal glass-forming alloys is

the formation of a very high nucleation density of nanocrystals. Upon devitrification,

nanocrystal densities can be obtained on the order of 1021 to 1023 m−3 [44] [46].

Additionally, contrary to most of the bulk metallic glasses and several empirical MG

formation rules, marginal glass formers can form glasses far from the eutectic point

[47].

1.2 Simulation Methods to Model Metallic Glasses

1.2.1 Reverse Monte Carlo Modeling

Reverse Monte Carlo (RMC) is a computational method for generating three-dimensional

models of mainly disordered materials, such as liquids and glasses, consistent with

one or more experimental data[48, 49, 50]. In that sense, RMC differs from other

computational simulation methods because experimental data directly drive it. How-

ever, some additional empirical constraints can be incorporated in order to achieve

a sounder model since a single experimental study will only give limited data to de-

scribe the whole structure.

An RMC simulation initiates with an input of the initial configuration of atoms. The

configuration may be randomly generated, or the output of another simulation can be

used as the starting configuration. Then, the parameter corresponding to the exper-

imental data is calculated to be compared with it. The atomic coordinates of each

atom are randomly displaced to increase the agreement with the experimental data.

The agreement between the obtained model and the experimental data is monitored

through the chi-squared test. The chi-squared test is defined as follows:

χ2 =
∑
j

(
yexpj − ycalcj

)
/σ2

j (1.4)

where the summation is over all data points and σj is the weighting factor also known
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as the confidence interval. yexpj and ycalcj are the experimental and calculated parame-

ters, respectively.

An RMC run aims to minimize the value of χ2 by means of successive changes

in the configuration. The RMC depends on the Monte Carlo algorithm in which

each subsequent change in configuration is tested to assess whether the change im-

proves the agreement with the experimental data. If the assessment succeeds through

the chi-squared test, the proposed change is accepted, and the algorithm advances

to the change. To avoid getting stuck in a local minimum in the search for the

global minimum, the RMC uses a probability algorithm to determine whether the

proposed changes that decrease the agreement with experimental data are accepted

or not. The probability algorithm used in the RMC simulations accepts the proposed

change that decreases the agreement with the experimental data with the probability

exp (−∆χ2/2) where ∆χ2 is the amount of increase observed in χ2 with the current

proposed change with respect to the preceding one. This helps the model to converge

towards the global minimum to obtain a more reliable structure.

The most frequently employed experimental data in RMC simulations are the total

scattering data, including the total structure factor and total pair distribution func-

tion. The limitations in describing the structures for total scattering data lead to the

integration of further experimental constraints into the RMC. Those additional con-

straints include experimental data like partial structure factors, partial pair distribution

functions, extended X-ray absorption fine structure (EXAFS), X-ray absorption near

edge structure (XANES), fluctuation electron microscopy (FEM), and geometrical

like cutoffs, bond angles, coordination numbers, and neighbor specifications. How-

ever, RMC studies are often regarded as biased since there might be several atomistic

structures that can successfully fit the experimental data. Some of the examples of

readily available RMC software are as follows: RMC++ [51], RMCprofile [52], and

fullrmc [53].
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1.2.2 Molecular Dynamics

Steps to follow to experiment in a laboratory environment are roughly like the fol-

lowing: first, the sample to be studied should be prepared, then the sample should be

paired to an instrument to measure one or many properties during the course of the

experiment. Subsequently, the experiment should be conducted along with data col-

lection via the measurement instrument. Finally, the obtained data are analyzed with

the help of some statistical methods, and a conclusion is reached. The molecular dy-

namics (MD) method utilizes exactly the same process steps to simulate the physical

movements of atoms or molecules under various conditions. Although studies with

MD have gained momentum and applied extensively in the recent past as a result of

developments in computational power, this method was actually put forward in the

’50s [54, 55].

In essence, MD is a computational simulation method that tracks and stores the time

evolution of a set of particles/atoms, and Newton’s equation of motion governs the

evolution of the system. The MD yields the positions and the velocities of each

atom, called a trajectory, with respect to time. Those trajectories are then analyzed

to extract the static and dynamic properties of the system being simulated based on

classical statistical mechanics. In MD, the trajectories are obtained via solving the

following famous Newton’s equation of motion for each of the interacting particles:

Fi = miai = mi
dvi
dt

= mi
d2ri
dt2

=
dp

dt
(1.5)

where mi is the particle’s mass, ai is the acceleration vector, vi is the velocity vector,

ri is the particle’s position vector containing each coordinate, (xi, yi, zi), and p is

the particle’s momentum. The force acting on each atom caused by all N − 1 other

ones can be expressed as the negative gradient of a potential, U , with respect to the

positions of the atoms.
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Fi = −∇iU (r1, r2, . . . , rN)

= −∇iU
(
rN
)

= −
(
∂U
(
rN
)

∂xi
x̂+

∂U
(
rN
)

∂yi
ŷ +

∂U
(
rN
)

∂zi
ẑ

) (1.6)

Equation (1.6) shows that the gradient is taken on each coordinate; this makes the so-

lution of Newton’s equation of motion correspond to a set of 6N ordinary differential

equations (3N for positions and 3N for momenta) for a system of N atoms/particles.

The origin of the potential needed to solve Equation (1.6) is purely quantum me-

chanical. However, simplified descriptions have been proposed due to the immense

computational power required to quantum mechanically calculate the whole potential

surface. The Lennard-Jones (L-J) potential [56, 57, 58], shown in Equation (1.7), is

one of the simplest pair-potential to describe interatomic interactions. It represents

the interactions between closed-shell atoms fairly well, simply by a sum of two-body

interactions.

ULJ (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(1.7)

where ε is the absolute value of the minimum of the potential, which corresponds

to the strength of the interaction. σ is the distance at which the potential is zero,

also described as the radius of the repulsive core. The vector r is the distance vector

between a pair of particles, i.e., r = |rj − ri| for particles i and j. Figure 1.4 shows

a comparison of an experimentally obtained interatomic potential with a Lennard-

Jones fit. It is seen that the short-range interaction term 1/r12 can not provide a

fully accurate description. Even though the Lennard-Jones potential does not cover

any multi-body interactions beyond the two-body, it yields good results, especially

between the rare-gas atoms. Developing interatomic potentials for more complex

systems is rather complicated. Metals, for example, can not be satisfactorily described

using pair potentials. With delocalized valence electrons occurring like an electron

cloud, metals exhibit additional forces that simple pair potentials just can not depict.

A simple addition to the pair potentials has been shown to adequately approximate the

many-body aspects of metals. The embedded atom method (EAM) potentials [60, 61]
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Figure 1.4: A comparison of an experimental Ar – Ar interatomic potential with a

Lennard-Jones 12-6 potential. Solid line is the experimental Ar – Ar potential ob-

tained via a molecular beam scattering experiment while dashed line is the best

Lennard-Jones fit to that potential. Adapted from [59].

contain a term for embedding energy, Fi, as a functional of the local electron density,

ρi. The embedding energy term is nothing more than the energy required to embed

atom cores into an electron cloud with a density of ρi. The EAM potentials generally

have a form as in Equation (1.8).

UEAM (rij) =
N∑
i=1

N∑
j>i

φij (rij) +
∑
i

Fi (ρi) (1.8)

where φij (rij) is a two-body potential that depends only on the interatomic distance

between the pair of particles, and Fi (ρi) is a functional of the local electron density,

ρi. Equation (1.9) shows that the local electron density is a pair function as a sum of

electron density contributions of neighboring particles.

ρi =
∑
j 6=i

ρj (rij) (1.9)

Apart from the aforementioned Lennard-Jones and EAM potentials, there are many

more interatomic potentials out there in the literature. Mie [62], Born-Mayer-Huggins

[63, 64], and Buckingham [65] are some of the pair-potentials, whereas Stillinger-
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Weber [66] and Tersoff [67] are 3-body. Also, ReaxFF [68] and REBO [69] potentials

are used to correctly model bond breaking/forming for simulating reactions.

Solving 6N differential equations of Newton’s equation of motion for N -atom sys-

tems via Equation (1.6) is the most computationally expensive part of an MD run.

There are several commonly used algorithms to tackle this problem efficiently; a cou-

ple of them will be introduced in the following part. The first one, called the Verlet

algorithm, was proposed in 1967 by Loup Verlet [70] and follows the Kinematic

equations [71]. The algorithm can be derived by writing the Taylor expansions of

both forward and backward positions in time up to the third-order terms as follows:

r (t+ ∆t) = r (t) + v (t) ∆t+
1

2
a (t) ∆t2 + . . .

r (t−∆t) = r (t)− v (t) ∆t+
1

2
a (t) ∆t2 + . . .

(1.10)

and adding the above two equations concludes this simple yet effective algorithm, as

seen in Equation (1.11).

r (t+ ∆t) = 2r (t)− r (t−∆t) + a (t) ∆t2 +O(∆t4) (1.11)

Given a set of positions at the current time, t, and at the previous time, t − ∆t,

Equation (1.11) can be solved explicitly to obtain the positions at time t + ∆t with

an associated error as low as O(∆t4). One of the drawbacks of the above algorithm

is the lack of velocity term, which is required to compute several physical properties

of a system, most notably kinetic energy with 1/2mv2. Verlet algorithm solves this

deficiency by subtracting the latter equation from the former in Equation (1.10) to

approximate the velocity as follows:

r (t+ ∆t)− r (t−∆t) = 2v (t) ∆t+O(∆t2) (1.12)

and solving for v (t):

v (t) =
r (t+ ∆t)− r (t−∆t)

2∆t
+O(∆t2) (1.13)

It should also be noted that in order to estimate the velocity term at the current

timestep t with Equation (1.13), the positions at the following timestep t + ∆t are
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necessary. The velocity term of the next time step t+ ∆t can be estimated at the cost

of accuracy, with a poor error of O(∆t) as follows:

v (t+ +∆t) =
r (t+ ∆t)− r (t)

∆t
+O(∆t) (1.14)

Although the Verlet algorithm is simple and effective in calculating the positions of

particles with only one force calculation at each timestep, the requirement for the po-

sitions at a preceding timestep at the initialization makes this algorithm prone to error

accumulation [72]. An improved algorithm that handles positions and velocities at

time t + ∆t simultaneously, called the Velocity-Verlet algorithm, was introduced in

1982 [73, 74] and is currently one of the most widely used algorithms in the MD com-

munity to solve Newton’s equation of motion. Several alternative algorithms that deal

with the shortcomings of the previously mentioned algorithm also exist. Leap-frog

[75], Beeman [76], and Predictor–corrector [77] are some of the examples, and the

reader is referred to the corresponding references to acquire additional information

on each one of them.

Statistical averaging should be done after a satisfactory equilibrium is attained to

extract useful information from an MD run. See Figure 1.5 for an example MD run.

Several thermodynamic properties can be observed during an MD run to keep track of

the convergence to equilibrium. Figure 1.5 shows an example Lennard-Jones MD run

with equilibration and production parts. In MD, this can be achieved by performing

time averaging. For a hypothetical property A, the time averaging is as follows:

〈A〉 = lim
t→∞

1

t

∫ t0+t

t0

A (τ) dτ (1.15)

where t0 denotes the time at which the equilibrium is reached, and A (τ) is the instan-

taneous value of the property A at time τ . The MD simulations are performed over

a finite time interval, thus the limit in Equation (1.15) can not approach infinity. To

yield a satisfactory average, the averaging should be done over a long time span, and

a summation replaces the limit notation in Equation (1.15). The actual averaging thus

can be done using the following equation:
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Figure 1.5: An example molecular dynamics run employing the Lennard-Jones 12-6

potential with reduced density of ρ/σ3 = 1.2 and reduced temperature of T/εk−1
B =

1.0. The highlighted first 200 timesteps show roughly the initial equilibration part.

〈A〉 ≈ 1

tf

∫ t0+tf

t0

A(t)dt =
1

tf/∆t

tf/∆t∑
i=1

Ai (1.16)

where tf is the time at which the MD simulations conclude and Ai denotes the data

point of the hypothetical property A at a given time. One should be aware of the

systematic and statistical errors Equation (1.16) subject to and take great care to es-

timate the associated errors by performing block averages or using correlation func-

tions. There are quite a number of open- or closed-source software that can be used

for molecular dynamics calculations: CHARMM [78], DL_POLY [79], GROMACS

[80], HOOMD [81], and LAMMPS [82, 83], just to name a few.
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1.2.3 ab initio Methods

Classical MD studies require predefined interatomic potentials, or force fields, based

on empirical data and/or rigorous electronic structure calculations. With elaborate

interatomic potentials, the MD gives pretty realistic results. However, the develop-

ment of satisfactory interatomic potentials is substantially time-consuming and te-

dious. Often referred to as ab initio molecular dynamics (AIMD) or quantum molecu-

lar dynamics (QMD), first-principle methods based on quantum mechanics eliminate

the requirement of predetermined interatomic potentials yet comes with their own

caveats. At its most basic definition, the AIMD method is used to compute forces

acting on particles on-the-fly as the system evolves via Newton’s equation of motion.

Utilization of the AIMD is particularly favorable in the case of complex materials for

which the requirements for the interatomic potential development are almost impos-

sible to meet.

The rudimentary property to obtain during an AIMD simulation is the energy of each

particle to determine the forces acting on each atom. Since an atom’s nucleus is

considerably heavier than the electrons bound to it, Born-Oppenheimer (BO) approx-

imation states that the mathematical solutions regarding the nuclei and the electrons

can be treated separately. The BO approximation is especially beneficial in MD sim-

ulations for which the ground state energy of the electrons of a given set of particles

can be calculated for fixed positions of the atomic nuclei. In 1926 Erwin Schrödinger

introduced an equation that looks relatively simple but has the potential to explain the

entire universe. Named after the man himself, the Schrödinger equation sets the basis

for quantum mechanics, as Newton’s law is for classical mechanics, and it is defined

as follows:

Ĥ |Ψ〉 = E |Ψ〉 (1.17)

where Ĥ is the Hamiltonian operator, E is the energy, and Ψ is the eigenstates of the

Hamiltonian, also known as the wavefunctions. The description in Equation (1.17)

mainly depends on the system being described. A more suitable description of the

Schrödinger equation for the case of multiple nuclei interacting with multiple elec-

trons is given in Equation (1.18).
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[
− ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U (ri, rj)

]
Ψ = EΨ (1.18)

where ~ is the reduced Planck constant, and m is the mass of a single electron. In

Equation (1.18), the first term in brackets denotes the kinetic energy of N electrons,

the second term is the attractive potential energies of N electrons due to the nuclei,

and the last term is the repulsive potential energies ofN electrons between each other.

The E on the right-hand side of the Equation (1.18) is the ground-state energy of the

particle associated with the electronic wavefunction Ψ, where Ψ is a function of all of

the spatial coordinates of each of the N electrons, i.e., Ψ = Ψ (r1, r2, . . . , rN). The

many-body problem in the determination of the wavefunction Ψ can be simplified

using Hartree products where the many-particle wavefunctions approximated to be

equal to the product of the wavefunctions of the individual particles. An alternative

way to map the many-body problem of the Schrödinger equation onto a single-body

problem is to use the electron density, which is defined as follows:

n (r) = 2
∑
i

Ψ∗i (r) Ψi (r) (1.19)

where the asterisk above the first wavefunction indicates a complex conjugate, and

the summation is over all the single-electron wavefunctions where the coefficient 2 is

due to the Pauli exclusion principle. The n (r) is the density of electrons at position

r, and the wavefunction Ψ is a unique functional of n (r), i.e., the electron density

n (r) can be used to calculate the corresponding wavefunction Ψ.

The first theorem of Hohenberg and Kohn states that the ground state energy of the

Schrödinger’s equation is a unique functional of the electron density, which can be

interpreted as E [n (r)]. The second theorem of Hohenberg and Kohn defines the

electron density corresponding to the exact solution of the Schrödinger’s equation

as the one that minimizes the total energy of the proposed functional. These two

groundbreaking theorems reduced the many-body problem of N electrons with 3N

spatial coordinates to just three spatial coordinates and laid the foundation of the

now-famous Density Functional Theory (DFT).
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The functional described by Hohenberg and Kohn can be written in terms of the

single-electron wavefunctions, Ψi (r), as seen in Equation (1.20).

E [{Ψi}] = −~2

m

∑
i

∫
Ψ∗i∇2Ψid

3r

+

∫
V (r)n (r) d3r

+
e2

2

∫∫
n (r)n

(
r

′)
|r − r′| d3rd3r

′

+ Eion

+ EXC [{Ψi}]

(1.20)

where the first four terms denote the electron kinetic energies, the Coulomb interac-

tions between the electrons and the nuclei, among pairs of electrons, and between

pairs of nuclei, respectively. The last term, EXC [{Ψi}], is known as the exchange-

correlation functional, and it includes all other interactions that are not specified in

the first four terms. The energy functional proposed by Hohenberg and Kohn is ex-

ceptionally powerful, yet it does not provide a way to compute a system’s ground state

electron density. Kohn and Sham suggested a solution to this drawback by decompos-

ing a system of N interacting electrons into that of N non-interacting one-electrons

that generates the same electron density as a system of interacting electrons. The

resulting equations, known as the Kohn-Sham equations, have the following form:

[
− ~2

2m
∇2 + V (r) + VH (r) + VXC (r)

]
Ψi (r) = εiΨi (r) (1.21)

where VH is known as Hartree potential, and VXC is defined as exchange-correlation

potential, which is the derivative of the exchange-correlation energy, EXC . There

are several approximate formulations for the yet-unknown exchange-correlation func-

tional. Local density approximation (LDA) and generalized gradient approximation

(GGA) are just two of them, and their explanation is beyond the scope of the present

study.
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The solution of the Kohn-Sham equations is self-consistent with an initial guess of

electron density, n (r). The procedure to solve the Kohn-Sham equations is as fol-

lows: The one-electron wavefunctions of the Kohn-Sham equations should first be

found using a trial electron density. Then, using Equation (1.19), the electron density

defined by the one-electron wavefunctions must be calculated. Afterward, the initial

trial electron density should be compared with the one found via Equation (1.19). If

the two electron densities match, the ground state electron density is found, and it

can be used to compute the system’s total energy. If they differ, the electron density

used to calculate the one-electron wavefunctions should be modified, and the whole

process starts all over again. The connection between the ab initio electronic structure

calculations defined earlier and MD is pioneered by Car and Parrinello. Their effi-

cient algorithm unifies the evolution of nuclei with the electronic ground state search.

Due to the fact that the AIMD requires the ground state energy to be calculated at ev-

ery and each MD timestep, only small systems involving only ∼ 1000 atoms can be

simulated with reasonable computation times. Anything more would require rather

long computation times. Also, force calculations via DFT are considerably more ex-

pensive than that of classical MD. The time-scale achievable by AIMD thus is in the

order of ∼ps, and in such a short time span, the development of any significant order

cannot be expected. Some of the proprietary and open-source software to conduct

ab initio electronic structure calculations are as follows: ABINIT [84, 85], CASTEP

[86], CP2k [87], SIESTA [88], Quantum Espresso [89, 90], and VASP [91, 92, 93].
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CHAPTER 2

STRUCTURAL ANALYSIS OF METALLIC GLASSES

2.1 Pair Distribution Function

The Pair Distribution Function, g(r), characterizes the spatial distribution of particles

around any given one. It is one of the metallic glasses’ most crucial static parameters

that depend on the entire system. It represents the probability of finding an atom at a

given distance away. For spatially homogeneous systems, it is defined as:

g(r) =
V

N2

〈
N∑
i=1

N∑
i 6=j

δ (r − rij(t))

〉
(2.1)

where V and N are the volume of the system and the number of atoms in the system,

respectively. rij(t) is the time-dependent interatomic distance between the particles i

and j. The dirac delta function, δ, in Equation (2.1) is used for counting the number

of atoms located at a distance, r, away from the central atom. Its value is zero, except

the term r − rij(t) is zero. As seen in Figure 2.1, g(r) can be obtained in a two-

dimensional analogue by counting the number of atoms residing in a shell with a

predetermined thickness of dr at a distance r away.

In some cases, it is useful to calculate the pair distribution function (PDF) for cer-

tain types of particles. These distribution functions, called partial pair distribution

(PPDF) functions, serve to study the spatial arrangement of particles of certain types.

The element-specific pair distribution function in Equation (2.2) is mainly used to an-

alyze how particular types of atoms are distributed within the structure with respect

to each other. There are M(M + 1)/2 partial pair distribution functions that exist in

a multicomponent atomic system consisting of M distinguishable components.
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Figure 2.1: A representative two dimensional structure showing the binning proce-

dure to calculate pair distribution function. r is the distance between the dark colored

center particle and the shaded shell with a thickness dr. The number of particles

coincides with the shaded shell corresponds to the respectively g(r) at distance r.

Adopted from [94].

gij(r) =
N

4πr2ρNiNj

〈
Ni∑
i=1

Nj∑
j=1

δ (r − rij(t))

〉
(2.2)

The relationship between the partial pair distribution functions and the total pair dis-

tribution function is relatively straightforward. The total pair distribution function

comprises all possible partial pair distribution functions. In fact, the basic double

summation in Equation (2.3), over the components α and β for a hypothetical binary

alloy, gives the total pair distribution function of the alloy.

g(r) =
∑
α

∑
β

gαβ(r) (2.3)

22



The pair distribution function is a histogram of all particle-particle distances in a

material. Hence, below a certain distance, the value of the pair distribution function

is zero. The value below which the g(r) becomes zero is the closest distance a pair

of particles can approach each other. The probability of finding a particle becomes

independent of each other as the separation between the particles increases so that

limr→∞ g(r) = 1 and the plots of g(r) asymptotes to g(r) = 1. It is mathematically

shown in Equation (2.4) for a two-particle system.

g(r →∞) =
1

ρ2

〈
N∑
i=1

δ
(
r

′ − ri(t)
)〉〈 N∑

j 6=i

δ
(
r

′′ − rj(t)
)〉

=
N(N − 1)

ρ2

1

V 2
= 1− 1

N

' 1

(2.4)

where ρ is the density of the system and vectors r
′ and r

′′ correspond to the posi-

tions of two different particles. The position of the peaks gives information about

the average distances and angles between the atoms, whereas the full width at half

maximums of the peaks indicates the level of disorder. For crystalline solid materials,

g(r) consists of well-defined peaks at neighbor distances along with the broadening

of the peaks that may arise due to thermal fluctuations of atoms or any disorder that

might be present in the system, as seen in Figure 2.2a. One can differentiate the

crystal structure the material consists of just by examining the g(r). For example,

an fcc structure will have definite peaks located at a(
√

1,
√

2,
√

3,
√

5, . . .) where a is

the lattice parameter of the model structure. For liquid and amorphous materials, the

g(r) is rather featureless, see Figure 2.2b. Contrary to crystalline solids, amorphous

and liquid materials exhibit broader peaks containing invaluable information about

short-range order (SRO) and medium-range order (MRO). This is due to the some-

what disordered structures that those materials consist of. The first main peak of g(r)

features information about the SRO the system may have, whereas any subsequent

features up to 1–2 nm are due to MRO.
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Figure 2.2: Representative pair distribution functions for a Lennard-Jones 12-6 (a) fcc

solid with reduced density of ρ/σ3 = 1.2 and reduced temperature of T/εk−1
B = 1.0,

and (b) for a liquid with reduced density of ρ/σ3 = 0.8 and reduced temperature of

T/εk−1
B = 1.0.

2.2 Structure Factor

The structure factor, S(Q), is a static property of a system that is directly proportional

to the measured intensity in X-ray or Neutron diffraction experiments in terms of the

magnitude of the wavevector,Q. It can experimentally be obtained via total scattering

experiments, mainly using high-intensity short-wavelength synchrotron radiation. It

is primarily utilized in the research of disordered materials and is defined as follows

S(Q) =
1

N

〈
|
N∑
i=1

eiQri(t)|2
〉

(2.5)

The structure factor is the reciprocal-space equivalent of the pair distribution function.

An interesting relationship exists between the structure factor and the pair distribution

function: The Fourier transform of the pair distribution function yields the structure

factor. This relationship between the structure factor and the pair distribution function

allows the researchers to use the easily-obtainable structure factors to acquire struc-

tural information about a sample on an atomistic basis through the inverse Fourier

transform.
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The conversion between the structure factor and the pair distribution function can be

done using Equation (2.6).

S(Q) = 1 + 4πn

∫
r2 [g(r)− 1]

sinQr

Qr
dr (2.6)

Similar to the discussion on partial pair distribution functions in Section 2.1, explicitly

identifying the structure factor around a particular chemical species is often desirable.

The conversion scheme given in Equation (2.7) is known as the Faber-Ziman partials

[95] and can be used to convert the partial pair distribution functions to the partial

structure factors.

Sij(Q) = 1 + 4πn

∫
r2 [gij(r)− 1]

sinQr

Qr
dr (2.7)

An example structure factor can be seen in Figure 2.3 for Al90Sm10 alloy, where high-

energy transmission synchrotron X-ray diffraction (HEXRD) studies were conducted

at the Advanced Photon Source (APS) at Argonne National Laboratory [96].

0 2 4 6 8 10 12

Q (Å
−1

)

0

1

2

3

S
(Q

)

Figure 2.3: An example of total structure factor S(Q) of as quenched Al90Sm10 at

room temperature. Adopted from [96].
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Each partial structure factor obtained with Equation (2.7) is exactly identical to S(Q)

that would be acquired if the entire sample was made up of only that partial. Those

partials form the basis for Faber-Ziman formalism, where the total structure factor is

basically the weighted sum of all possible partials, see Equation (2.8).

S(Q) =
∑
i

∑
j

cicjfifj

(
∑

i cifi)
2Sij(Q)

= ωiiSii(Q) + ωijSij(Q) + ωjjSjj(Q)

(2.8)

where the subscripts i and j refer to components of a binary system, respectively.

The weight factors ωij are determined by the compositions of the two components,

c1 and c2, and the Q-dependent atomic scattering factors f1(Q) and f2(Q) through

Equation (2.9).

ωii =
c2
i f

2
i (Q)

[cifi(Q) + cjfj(Q)]2

ωij =
2cicjfi(Q)fj(Q)

[cifi(Q) + cjfj(Q)]2

ωjj =
c2
jf

2
j (Q)

[cifi(Q) + cjfj(Q)]2

(2.9)

Figure 2.4 shows the rather interesting feature of marginal glass former alloys, pre-

peak at lower Q space. Figure 2.4a displays the diffraction pattern of a well-known

BMG system, Cu – Zr, that lacks the pre-peak.

(a) (b)

Figure 2.4: HEXRD diffraction pattern of (a) the as-quenched Cu50Zr50 ribbon [97],

and (b) the Al90Sm10 ribbon [98].
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2.3 Coordination Number

On the atomistic scale, the coordination number is defined as the number of nearest

neighbors a single atom has. The coordination number is mostly constant and well-

defined for crystalline materials and depends only on the type of crystal a material

consists of. Closed-packed structures like fcc and hcp materials have a coordination

number of 12, whereas bcc materials have 8. Having a relatively low atomic packing

factor, a simple cubic structure has a coordination value of only 6.

Contrary to crystal structures, the determination of coordination number is rather triv-

ial for amorphous materials that lack the long-range order. There are several com-

monly used methods governing the determination of coordination number values for

non-crystalline materials. The most straightforward one is to use the area under the

first main peak of the PDF curve. The result of Equation (2.10) is considered the av-

erage number of the nearest neighbor of the system, hence the coordination number,

by setting the r1 and r2 to minimums before and after the first main peak of a PDF

curve, respectively.
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Figure 2.5: A representative pair distribution function of a glassy sample obtained

with an MD simulation. The shaded area under the first main peak corresponds to the

average number of nearest neighbors of the sample.
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Ncoor = ρ

∫ r2

r1

g(r)4πr2dr (2.10)

Figure 2.5 shows a representative g(r) curve where the area under the first main peak

is shaded to indicate the integral of the first main peak.

Other methods to determine the coordination number of a system include the distance

cutoff [99] and Voronoi Tesselation methods. To utilize distance cutoff method, a tol-

erance distance must be defined. A rule of thumb to define the tolerance distance is

to use the distance at which the first main peak of the pair distribution function min-

imizes. After defining the tolerance distance, the atoms that lie within that distance

are regarded as the nearest neighbors of an atom. Hence, the coordination number

of an atom can easily be obtained by calculating the distances between each and ev-

ery atom within the system. Figure 2.6 shows a two dimensional representation of

distance cutoff method. Voronoi Tesselation method will be covered in the following

section.

Figure 2.6: The distance cutoff method for determining nearest neighbors. dmin,i

is the site-specific cutoff distance, δ is the neighbor-finding distance tolerance. All

atoms lie within rcut,i = (1 + δ)dmin,i considered as neighbors of the central atom i.

Adopted from [99].
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2.4 Voronoi Tessellation Analysis

Due to the fact that the MGs lack the long-range order of crystalline structures, their

structural analysis is challenging to achieve using the conventional structural identi-

fication methods. Voronoi tessellation [100] concept is a fairly simple but convenient

method to discover possible structural features that MGs may still exhibit to some

degree.

The planar ordinary Voronoi tessellation divides the Euclidean plane into a set of

regions, given a set of at least two non-coincident points. To achieve that, every point

in the Euclidean plane is assigned to its nearest member in the point set. Regions

that are assigned to only a single member form the Voronoi cells. Those regions are

collectively exhaustive to the whole Euclidean plane. The points of the Euclidean

plane that are assigned to two members contour the boundaries of those regions and

are called Voronoi edges. The points at which more than two Voronoi edges meet or,

in other words, the points assigned to three members are called Voronoi vertex, see

Figure 2.7. An alternative definition for the construction of Voronoi cells also exists

in terms of half planes. In this definition, the regions bounded by the Voronoi edges

are obtained by constructing bisecting planes between all neighboring members. The

points at which bisecting planes intersect are the Voronoi vertex.

The planar ordinary Voronoi tessellation in two dimensions can easily be extended to

three dimensions. In the three-dimensional case, the boundaries between the Voronoi

regions are called Voronoi facets, and the boundaries of those facets are also called

Voronoi edges. The intersection points of Voronoi facets are also known as Voronoi

vertices. Constructing Voronoi cells centered on each member will give a polyhedron

around each member. After determining every Voronoi cell within the Euclidean

space, the topological characteristics of each polyhedron are used to differentiate be-

tween them. One of the most frequently used methods to distinguish different types

of Voronoi cells is to use the number of faces each cell has. In this strategy, each cell

with f number of faces is given an index listing the number of faces n3, n4, n5, . . . , nj

having 3, 4, 5, . . . , j edges, where
∑j

k=i nk = f [101].
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Figure 2.7: A representative two dimensional analogue of the planar ordinary Voronoi

tessellation where filled dots denote the cell centers, and the solid lines are the Voronoi

edges.

The points in mind are considered identical in size in ordinary Voronoi tessellation.

However, this is not the case for most applications, including determining local struc-

ture characteristics of metallic glasses constituting more than one component. Using

ordinary Voronoi tessellation, the boundary of several Voronoi polyhedrons may lie

inside the points. This will lead to miscalculations of both polyhedral indexes as well

as several auxiliary properties that can be deduced from Voronoi tessellation analysis,

including the polyhedral volume and the number of faces each polyhedron has, see

Figure 2.8. The radical plane technique proposed by Fischer and Koch [102] solves

this problem of misjudgment by positioning the dividing planes between the members

to the locus of points where the tangent lengths of the two members are equal. Park

and Shibutani [103] have shown that using the ordinary Voronoi tessellation technique

may result in more than 60% difference in some properties of binary and ternary MGs

compared to radical Voronoi tessellation. Thus, the utilization of radical Voronoi tes-

sellation dramatically improves the effectiveness of the Voronoi technique, especially

for alloys with more than one component.
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(a) (b)

Figure 2.8: Two dimensional representation of (a) planar ordinary Voronoi tessella-

tion and (b) the radical plane Voronoi tessellation. The number of faces, the Voronoi

cell index and the positions of Voronoi edges are falsely calculated in the planar ordi-

nary Voronoi tessellation [103].

The Voronoi polyhedrons are mainly classified according to their Voronoi indices.

Although there are many approaches in the literature for categorizing Voronoi in-

dices, the scheme in Table 2.1 will be used throughout this study. The scheme con-

sists of only those frequently observed within MGs: perfect-icosahedron, distorted-

icosahedron, crystal-like and mixed cells.

Since each Voronoi facet must have one and only one neighboring member related to

the member being considered, the number of Voronoi facets an atom has will be equal

to that atom’s coordination number (CN). This is a quite simple and parameter-less

way to determine the CN of an atom under the condition that the Voronoi structure is

determined. Therefore, the summation
∑

i ni gives a specific atom’s CN.
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Table 2.1: The classification of Voronoi index, where x = 1, 2, 3, 4, 5, 6 [104].

Type Name Voronoi Indices

Perfect-Icosahedron 〈0, 0, 12, 0〉

Distorted-Icosahedron

〈0, 1, 10, x〉
〈0, 0, 10, x〉
〈0, 2, 8, x〉

Crystal-like
〈0, 4, 4, x〉
〈0, 5, 2, x〉

Mixed 〈0, 3, 6, x〉

Figure 2.9 shows schematics of solute-centered perfect-Icosahedron and several distorted-

icosahedron cells for a binary system. Figure 2.9a is the perfect-icosahedron, whereas

the rest of Figure 2.9 are the distorted-icosahedra. Those Voronoi cells are the most

abundant in MG alloys.

(a) 〈0, 0, 12, 0〉 (b) 〈0, 1, 10, 2〉 (c) 〈0, 0, 10, 2〉 (d) 〈0, 2, 8, 2〉

Figure 2.9: Several schematic Voronoi cells. Perfect-Icosahedron (a) 〈0, 0, 12, 0〉, and

distorted-Icosahedron (b) 〈0, 1, 10, 2〉, (c) 〈0, 0, 10, 2〉, (d) 〈0, 2, 8, 2〉. Adopted from

[105].
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2.5 Honeycutt-Andersen Analysis

One of the most widely used multi-body correlation analysis methods is the Honeycutt-

Andersen (H-A) method [106]. It characterizes the local chemistry of a system

through the nominal composition and nearest neighbors of each atom. This method is

especially beneficial for amorphous materials and liquids since the short-ranged local

structures of those materials affect the overall properties the most.

In the H-A method, a parameter containing four integers, ijkl, is employed to define

the chemical SRO of an atomic pair. The first index of the H-A parameter designates

whether the pair is bonded or not. It will be 1 if the pair is bonded and 2 otherwise.

The second and third indices indicate the number of nearest neighbors commonly

shared by the pair and the bonds among those shared neighbors. The first three indices

of the H-A parameter do not contain any information about the geometrical features

of a pair. An additional index along with those three, l, was employed to distinguish

non-identical pairs when their nearest neighbor and bond counts are the same.
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namics calculations with the bath temperature set at the desired 
value. 

For both types of simulation, the system’s potential energy was 
monitored as a function of time in an attempt to find abrupt 
changes associated with a phase transition. In addition, for the 
constant-energy simulations, plots of potential energy as a function 
of kinetic temperature were made by using the data from these 
simulations. Such plots helped to demonstrate whether or not there 
was a clear separation in energy among the various states observed. 
In both cases the data plotted were averages over 1 to 105. 

A brief digression is in order concerning some important dis- 
tinctions between simulations performed at  constant energy and 
at  constant temperature. The constant-energy simulations of a 
13-atom cluster performed by Jellinek et al. were performed in 
an ensemble having constant energy, zero center of mass mo- 
mentum, and zero angular momentum about the center of mass. 
In any constant-energy MD simulation, these three quantities will 
be conserved, although the latter two will not necessarily be zero, 
depending on the initial conditions. In constant-temperature 
simulations that employ stochastic collisions, this is not the case. 
The center of mass velocity and total angular momentum are in 
general not zero but fluctuate about zero as a result of the sto- 
chastic collisions. 

For this reason, even single-phase energy vs. temperature curves 
obtained in constant-energy and constant-temperature MD sim- 
ulations should not be expected to agree. To compare energy vs. 
temperature data obtained from constant-temperature simulations 
to similar data obtained from constant-energy simulations (with 
zero center of mass momentum and angular momentum), one can 
add 3kT to the energy in a constant energy simulation, where T 
in the case is 2/(3N - 6) times the time-averaged kinetic energy. 
The quantity 3kT represents a contribution to the kinetic energy 
of ‘/,kT for each of three translational and three rotational degrees 
of freedom (with vibrational-rotational coupling assumed to be 
weak). This procedure has been followed in calculations appearing 
later in this paper that are based on a simple model for phase 
transitions in different ensembles. 

In the constant-energy simulations we performed to study 
coexistence, the clusters in general had overall translational and 
rotational motion. The contribution to the kinetic energy from 
this motion was subtracted from the total energy to give the energy 
values reported in this paper. 

At various times during many of the MD runs, the atomic 
coordinates were saved and later used as the starting point for 
a potential energy minimization calculation. Observation and 
structural analysis of these configurations gave information about 
the inherent structures of the various states attained by the clusters. 
Such information was useful for interpreting data from the heating 
and cooling runs as well as the runs that were performed to study 
coexistence among different phases. In addition, energy mini- 
mization runs were performed on larger clusters in an effort to 
find the most stable zero temperature structure as a function of 
cluster size. Clusters with both icosahedral and crystalline 
structure were constructed and energy minimized. The full, 
untruncated Lennard-Jones potential was used. These calculations 
were performed on a VAX 11  /750 and MicroVAX 11. 

Structural Analysis Technique 
To analyze the structural changes accompanying melting and 

freezing, we have used a generalization of a technique first used 
by Blaisten-Farojas’* for decomposing the first two peaks of the 
pair correlation function. In this technique, pairs of atoms are 
classified by (i) whether or not they are near-neighbors, (ii) the 
number of near-neighbors they have in common, and (iii) the 
near-neighbor relationships among the shared neighbors. Two 
atoms are said to be near-neighbors if they are within a specified 
cutoff distance of each other. We typically used a cutoff distance 
of 1 . 4 ~  in  our analyses, which is roughly the distance to the first 
minimum in the pair correlation function of a solidlike cluster. 

A graphical shorthand provides a convenient way of representing 
the possible types of pairs of atoms (Figure 2). Although this 
nomenclature is reminiscent of that used in graph theory, here 
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Figure 2. Diagrammatic nomenclature for structural analysis technique. 
Nearest-neighbors are connected by lines (“bonds”). 
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Figure 3. Common diagrams in dense atomic systems 

the diagrams represent physical structures rather than integrals. 
In a particular diagram, white circles represent atoms in the pair 
of interest (“root pair”), while black circles represent near- 
neighbors that these atoms have in common. Atoms that are 
near-neighbors of each other, as determined by the specified cutoff 
distance, are connected by lines (“bonds”). Note that two white 
circles appear in every diagram of this type, and that, by definition, 
each white circle is bonded to each black circle. Hence, for the 
sake of neatness and brevity, we can eliminate the white circles 
from the diagram, with their presence to be understood. This is 
not sufficient, however, to distinguish between cases where two 
diagrams are identical except for the bonding between the atoms 
in the root pair. To distinguish between these two cases, we label 
a diagram as type I if the atoms making up the root pair are 
directly connected by a bond or type I1 if they are not. 

For referring to diagrams in the text, we introduce a more 
compact nomenclature as follows. We can characterize each of 
the diagrams by a sequence of four integers. The first integer, 
either 1 or 2, indicates the diagram “type”, that is, whether or 
not the atoms comprising the root pair are near-neighbors. The 
second integer represents the number of near-neighbors shared 
by the root pair. The third integer represents the number of bonds 
among the shared neighbors. These three numbers are not suf- 
ficient to characterize a diagram uniquely, so a fourth integer, 
whose value is arbitrary as long as i t  is used consistently, is added 
to provide a unique correspondence between numbers and dia- 
grams. Some diagrams that are prevalent in the systems we have 
studied are depicted in Figure 3. 

Each of the various phases of a dense bulk Lennard-Jones 
system has its own signature in the diagrams that characterize 

Figure 2.10: Common Honeycutt-Andersen diagrams. Adopted from [106].
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Table 2.2: The classification of Honeycutt-Andersen index, where x = 1, 2, 3, 4, 5, 6.

Along with the crystalline phases (bcc, fcc, and hcp) perfect- and distorted-

icosahedron types are explicitly defined.

Type Name H-A Indices

Perfect-Icosahedron 1551

Distorted-Icosahedron
1431

1541

Body-Centered Cubic (bcc)
1441

1661

Face-Centered Cubic (fcc) 1421

Hexagonal Close-Packed (hcp) 1422

In Figure 2.10, diagrams are distinguished as type I if the atoms in the pair of in-

terest are directly connected and type II otherwise [106]. Possible types of pairs of

atoms for the H-A index are given in Figure 2.10. Several H-A indexes were given

in Table 2.2, where 1551 represents perfect-ICO, while 1431 and 1541 represent dis-

torted icosahedra. The fcc and hcp structures have the H-A indices of 1421 and 1422,

respectively, and indices 1661 and 1441 represent bcc structures.

2.6 Warren-Cowley Parameter

The local chemical inhomogeneities can be analyzed through Warren-Cowley (W-

C) [107, 108] parameter. It quantifies the short-range deviations from the chemical

composition of the system and gives insights into the degree of chemical SRO. It is

defined as:

αAB = 1− ZAB

xBZA
(2.11)
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where ZAB is the number of neighboring type B atoms around type A atom, ZA is

the total coordination number of type A atom, and xB is the nominal composition of

type B. When measured around type B atoms, the Warren-Cowley parameter ranges

between xB−1
xB

(xA−1
xA

, when measured around type A atoms) and 1. A value of 0

suggests a random distribution, whereas a positive and negative value corresponds to

a tendency for like and dislike pairs in the coordination shell, respectively.

Figure 2.11: Spatial distribution and sizes of pure aluminum clusters of Al90Tb10 at

300 K, 600 K, 900 K, and 1200 K. Adopted from [109].

The tendency for clustering or local order can be decided based on the Warren-Cowley

parameter value. Using the Warren-Cowley parameter analysis, Ovun et al. [109]

have shown that the degree of Al – Al ordering and the number of pure Al clusters

with a Warren-Cowley parameter value of 1 have increased drastically below the glass

transition temperature of Al – Tb metallic glasses, indicating the formation of pure Al

regions within the alloy, see Figure 2.11.
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2.7 Bond Angle Distribution

Bond Angle Distribution (BAD) can analyze the spatial arrangements of bonded

atoms within a system. First, each of the bonds between the neighboring triplets

must be defined for every atom in the system o determine the distribution. Then,

using the length of those bonds, the bond angle formed between the selected center

atom and its two neighbors can be calculated using Equation (2.12).

θijk = cos−1

(
r2
ij + r2

ik − r2
jk

2rijrik

)
(2.12)

where rij and rik are the lengths of bonds between the center atom, i, and the two

neighboring atoms, j and k, respectively. rjk is the distance between the atoms j and

k. After obtaining the bond angles between every single triplet within the system,

the probability distribution of bonds with respect to angles can be obtained using

Equation (2.13).

Figure 2.12: Total bond angle distribution functions for amorphous Ca70Mg30, amor-

phous Mg70Zn30, and Intermetallic Mg51Zn20. Adopted from [110].
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g (θ) =
1∑N

i=1Ni (Ni − 1)

N∑
i=1

Ni∑
j=1

Ni∑
k=j+1

δ (θ − θijk) (2.13)

where Ni is the number of nearest neighbors atom i has and θijk defined earlier in

Equation (2.12). Depending on the material’s structure, bond angle distribution plots

of crystalline materials will have one or many prominent peaks located at character-

istic bond angles. A representative total bong angle distribution function is given in

Figure 2.12 for Ca70Mg30, Mg70Zn30, and Mg51Zn20 systems.

2.8 Bond Order Parameter

Differentiating the atoms belonging to the liquid and the possible solid structures is

of major interest in both crystallization and amorphization studies. Local structure

determination methods, e.g., Bond Angle Distribution, fall short in identifying atoms

belonging to liquid-like and solid-like structures. To overcome this difficulty, Stein-

hardt et al. [111, 112] proposed an efficient algorithm based on spherical harmonics.

This algorithm first calculates the complex vector qlm(i) averaged on the number of

nearest neighbors of particle i, Nb(i), via Equation (2.14).

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm (rij) (2.14)

where l is a free integer parameter, Ylm (rij) are the spherical harmonics that depend

on the vector rij between particles i and j. Then, the structural correlation between

the particles i and j can be measured using the set of complex vectors q6m and Equa-

tion (2.15).

Sij =
6∑

m=−6

q6m(i)q∗6m(j) (2.15)
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The resulting parameter Sij is then used to define two particles i and j as connected

or not. Typically, an Sij value greater than 0.5 indicates that two particles are con-

nected. The number of connections a particle has is then used to identify the particle

as liquid-like or solid-like. A useful rule of thumb in this analysis is that particles

having a number of connections above 6 or 8 are considered solid-like, and par-

ticles having fewer connections are considered liquid-like. Bond order parameters

(BOP), or Steinhardt order parameters, can be used to further characterize the solid-

like particles by grouping them depending on their crystal structures. Depending on

the constant l in Equation (2.16), particles can be identified as belonging to a specific

structure.

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2 (2.16)

(a) (b)

Figure 2.13: Comparison between the (a) q6 and q4 planes and (b) q6 and q4 for a

Lennard- Jones system in liquid and three different crystalline phases. Adopted from

[113].
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Lechner et al. have shown that averaging complex bond order parameters over the

particle itself and its first neighbor shell substantially enhances the accuracy of dis-

tinguishing different types of crystal structures. They proposed averaging the local

bond order parameters via Equation (2.17)

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2 (2.17)

where;

qlm(i) =
1

Ñb(i)

Ñb(i)∑
k=1

qlm (k) (2.18)

The modification Lechner et al. proposed on bond order parameters greatly improves

the accuracy of the method to differentiate different crystal structures. Their mod-

ification takes the second nearest neighbors into account for the calculations. They

demonstrated the effectiveness of the modification by simulating two systems of par-

ticles, one with utilizing a Gaussian core potential and the other one with Lennard-

Jones. Figure 2.13a shows the unmodified bond order parameter analysis results

whereas, Figure 2.13b shows the averaged/modified bond order parameter analysis.

The pronounced distinction between various crystal structures and liquid structure is

evident.
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CHAPTER 3

LOCAL STRUCTURE OF THE Al-Sm MARGINAL METALLIC GLASSES

AND LIQUIDS

3.1 Introduction

After the discovery of the first amorphous metallic glass (MG) (Au75Si25) by Duwez

et al. in 1960 [1], there has been an increasing interest in this new family of ma-

terials mainly due to their remarkable properties such as high mechanical strength

and hardness, significant elastic limits, better thermal stabilities, improved soft mag-

netic properties, high corrosion and wear resistance [114, 115, 116, 117, 118, 19,

119, 120, 121, 22, 122]. This interest resulted in a wide range of engineering appli-

cations, from magnets with high energy products and implants to sporting goods and

electronic devices [22]. The attractive properties and the wide range of application

areas of MGs stem from the fact that the MGs have unusual non-crystalline random

atomic configurations even at room temperature. Glasses are obtained by quenching

their high-temperature melts. Since metallic materials are known to crystallize upon

cooling down below their melting temperature quickly, (Tm) or liquidus temperature

(Tl), to retain the amorphous structure of the liquid metal at room temperature, very

high cooling rates are required to suppress the crystallization behavior. High cooling

rates up to 105 − 106 K s−1 were used by Duwez et al. to obtain the first MG [1].

However, by stabilizing the metallic liquid in the temperature range between the Tl

and the glass-forming (Tg) temperatures by altering the composition and carefully

selecting the constituting elements, MGs can be obtained at room temperature using

relatively slow cooling rates [123].
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Al-based MGs are lightweight and exhibit high specific strength. Because these prop-

erties are essential for structural applications, their research has been much of interest

recently. The first examples of Al-based MGs were noticed in Al – (Fe, Co, Ni) – B

systems in the early ’80s [33]. However, it was not until the late ’80s that the first

relatively ductile Al-based MGs surfaced [35, 124]. Al-Rare Earth (RE) alloys show

both good ductility with very high strength values comparable to those of steel, the

research on various Al-based RE-containing MGs was presented to the literature

[125, 126, 127, 128, 98, 96, 109, 129]. Even though Inoue’s criteria for MG for-

mation [18, 19] requires at least three elements, several binary Al – RE systems were

observed to have glass-forming abilities (GFA). Also, for most of the glass-forming

alloys, the go-to composition range for best GFA is near-eutectic; however, Al-based

systems can form glasses in off-eutectic compositions. Therefore, the structures of

Al-based MGs are of significant interest for further investigations, and several Al-

based systems studied by Inoue et al. in which Al – Sm have the widest composition

range (from 8 to 16 at. % Sm) for the glass formation [39]. The technical data for ele-

ments Al and Sm can be seen in Table 3.1. The properties of MGs mentioned strongly

depend on the system’s structure and evolution during the formation process. Thus,

the resulting properties of MGs are susceptible to the production route that can alter

the local structures [130, 131]. X-Ray and neutron diffraction are widely used to in-

vestigate the structures of MGs. The resulting structure factors of Al-based MGs have

a unique feature observed at lower reciprocal space called pre-peak that should corre-

spond to specific medium-range correlations in real space. The origin of the pre-peak

is attributed to the well-separated solutes forming a sublattice and to the topological

ordering of RE atoms [132].

Al – RE marginal glass-forming systems have been studied in Kalay’s research group

for quite some time. Much emphasis has been given to Al – Tb, and Al – Sm systems,

and the following summarizes the significant achievements. The Bright-field (BF-

TEM) images and selected area electron diffraction (SAED) patterns confirm the fully

amorphous nature of the matrix of melt-spun as-quenched Al90Tb10 ribbons, as shown

in Figure 3.1.
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Figure 3.1: BF-TEM image of melt-spun as-quenched Al90Tb10 alloy. Inset shows

the SAED pattern of the matrix. Adopted from [125].

Further, isochronal differential scanning calorimetry (DSC) experiments have shown

that the first devitrification event is the nanocrystallization of the fcc-Al phase [125].

As explained in Section 1.1.3, the expected abundance of a glass transition signal is

also evident in the DSC curve, see Figure 3.2. Additionally, the inspection of the

devitrification products has been made through TEM studies coupled with XRD. The

samples were prepared by interrupting the 220 °C isothermal DSC experiments at the

points shown in Figure 3.2 (b) and (c) [125].

Figure 3.2: (a) Isochronal DSC curve at 40 °C/min heating rate. Isothermal DSC

curves indicate (b) the fcc-Al crystallization and (c) the overall first and second

exothermic events. The interception points for TEM and XRD are marked as A,

B, C, D, E, and F. Adopted from [125].
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Figure 3.3: HRTEM image of melt-spun Al90Tb10 sample obtained by interrupting

the annealing experiment at 220 °C just after the initial crystallization event. Inset

shows the corresponding FFT pattern. Adopted from [125].

High-Resolution Transmission Electron Microscopy (HRTEM) analysis revealed the

formation of an anomalously high number of fcc-Al nanocrystals in the order of 1021

per cubic meter, see Figure 3.3. A possible structural inhomogeneity in the system is

believed to cause highly populated nanocrystals to form [125]. The evolution of the

local atomic configuration of Al91Tb9 was investigated using Voronoi tessellation and

Warren-Cowley parameters by using an interatomic potential developed, as shown in

Figure 3.4, using the Inverse Monte Carlo method [109].

Figure 3.4: The interatomic pair potential developed using the Inverse Monte Carlo

algorithm for the Al91Tb9 system. Adopted from [109].
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Figure 3.5: The fraction of aluminum atoms belonging to pure aluminum clusters

(solid black curve) and the average number of atoms each cluster has (red curve).

Adopted from [109].

The system was studied from liquid to glassy state, and the population of Al-centered

icosahedral-like clusters increased during cooling. It is believed that they are the ones

that inhibit crystallization during vitrification. Warren-Cowley studies have shown

the presence of highly pure isolated Al regions beyond the first shell, see Figure 3.5.

Kalay’s group also found that the network of RE-centered clusters and pure Al atoms

in the system has medium-range order (MRO), resulting in the pre-peak in X-ray

studies. This study shows that the molten liquid is not as homogeneous as expected

and has Al-rich and Al-depleted regions [130]. The role of amorphous precursors

in phase selection was investigated using Al90Tb10 alloys produced by melt-spinning

and magnetron sputtering. The study detected that thin-films and melt-spun ribbons

having the same composition have entirely different devitrification paths, even having

the same total structure factors as seen in Figure 3.6 [130]. In-situ XRD experiments

have shown that while fcc-Al is the initial crystallization product for both samples, the

second crystallization products, and their morphologies and densities are entirely dif-

ferent. The ribbon crystallizes into a metastable hexagonal phase before transforming

into a similar cubic phase seen on a thin-film sample, see Figure 3.7 [130].
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Figure 3.6: (a) X-ray structure factors (S(Q)) of melt-spun ribbon and magnetron

sputtered thin-film samples of Al90Tb10 at room temperature. Corresponding SAED

patterns were given as insets (b) and (c) for ribbon and thin-film samples, respectively.

Adopted from [130].

Figure 3.7: In-situ X-ray diffraction results represented as 2D area plots for (a) melt-

spun ribbon, and (b) magnetron-sputtered thin-film Al90Tb10. Adopted from [130].
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Figure 3.8: (a) Total X-ray structure factor experimental and RMC fit for ribbon, (b)

EXAFS data and RMC fit for ribbon, (c) total X-ray structure factor experimental and

RMC fit for thin-film, and (d) EXAFS data and RMC fit for thin film. Adopted from

[131].

The pre-peak observed in the in-situ XRD patterns of the ribbon sample was also ab-

sent for the thin film. The metastable hexagonal structure of the ribbon is believed to

have originated from the Al-depleted regions of the molten structure. Next, HEXRD

and XAFS-constrained Reverse Monte Carlo studies were conducted on Al – Tb rib-

bon and thin films to resolve the different devitrifications paths experienced on sam-

ples having the same compositions yet other precursors. The fitting results for RMC

are shown in Figure 3.8. The results have shown in Figure 3.9 that the ribbon sam-

ple forms larger Al-centered fcc-like and ICO-like clusters, and a higher number is

connected as network clusters. They concluded as the differences in the amounts of

fcc-like and ICO-like clusters are the main reasons for different devitrification paths

& nanocrystal morphologies.
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Figure 3.9: The most populated Voronoi cells of ribbon and thin-film Al90Tb10 are

categorized under the structures they resemble for (e) Al centered and (f) Tb centered

atoms. Adopted from [131].
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Isosurfaces shown in Figure 2.25 are created based on Al atomic concentrations. 

There are almost pure Al regions of 20-30 nm in length. The core of the isosurfaces 

is purer compared to the outer regions. From the EDS results tabulated in section 

2.4.1, it is known that the composition of the as-spun sample is almost Al90Y5Tb5, 

and the elements are distributed homogeneously throughout the sample. However, 

during the first reaction, Al atoms accumulate together, forming the fcc-Al 

nanocrystals, and the rare-earth elements are diffused away from the nanocrystals. 

In Figure 2.24, the 1D concentration profile between two Al nanocrystal regions is 

shown. The region between the nanocrystals shows approximately 80% Al atom 

distribution, whereas there exists almost 20% Y and Tb atoms in total.   

 
 

 

Figure 2.24 1D concentration profile of the selected ROI in 95% Al isosurface of 
Al90Y5Tb5 system 
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Figure 3.10: One-dimensional concentration profile of the selected region-of-interest

(ROI) in 95 % Al isosurface of Al90Y5Tb5 system. Adopted from [133].
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The effects of short-range chemical order in ternary marginal glass-forming systems

on the crystallization pathway have been investigated, as well. The DSC studies

showed that Al90Sm5Tb5 alloy lacks the exothermic reaction that exclusively belongs

to fcc-Al formation. Contrary to the Al90Y5Tb5 system, fcc-Al nanocrystals form si-

multaneously with one or more intermetallic phases. Further atom probe tomography

(APT) studies revealed that the nanocrystals were almost pure Al while the regions in

between have Al concentrations as low as 80 %, as shown in Figure 3.10. This study

has shown that RE element addition alters the kinetics and the devitrification behavior

of Al-RE systems [133].

One of the most promising ways of studying MGs’ local structures is through com-

puter simulations. Especially molecular dynamics (MD) method allows researchers to

investigate the structural evolution of a system thoroughly. In this study, MD simula-

tions are employed to analyze the local structure of an Al – RE system. The structural

evolution during rapid cooling is inspected using pair distribution function (PDF),

structure factor, bond angle distribution, Voronoi, and Honeycutt-Andersen analyses.
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Table 3.1: Atomic and physical properties of elements Al and Sm.

Aluminum (Al) Samarium (Sm)

Atomic Number 13 62

Atomic Weight [136] 26.982 150.36

Electron Configuration [Ne] 3s23p1 [Xe] 6s24f6

Electronegativity 1.61 1.17

Valence 3 3

3.2 Methods and Models

MD simulations are performed using Large-scale Atomic/Molecular Massively Paral-

lel Simulator (LAMMPS) [82, 134, 83] code by employing a semi-empirical potential

in the Finnis-Sinclair form for the force and energy calculations. [135] In the devel-

opment of this potential lattice, parameters and formation energies of Al-rich crys-

talline compounds with Sm contents around 10% and the structure of liquid Al90Sm10

have been included. The resulting potential is shown to satisfactorily reproduce both

a glassy structure upon rapid cooling and a liquid structure at high temperatures in

agreement with ab-initio MD simulations [135].

An Al90Sm10 system consisting of 32,000 atoms is used in MD simulations. The ini-

tial structure is arranged on a face-centered cubic (fcc) lattice with 20 × 20 × 20 unit

cells. All simulations are conducted under the constant number of atoms, pressure,

and temperature (NPT) ensemble where the temperature and pressure are controlled

via Nosé–Hoover thermostat and barostat, respectively [137, 138]. The Velocity-

Verlet is used as the time integrator for the equations of motion. The mean pressure

was nominally maintained at 0 GPa. A constant timestep of 1.0 fs is used through-

out the study. The liquid sample is initially held at 2300 K for 200 ps to melt and

subsequently equilibrate the liquid structure before rapid cooling. This temperature

is significantly above the liquid-glass transition temperature of the alloy determined

during the potential development [135]. Then, the liquid is continuously cooled down

to 300 K with a constant cooling rate of 1010 K s−1, during which representative struc-

tures were obtained at each 200 K intervals. To eliminate the effect of atomic thermal
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motions, the structural and chemical orders in the samples are averaged over 200 ps,

which is sufficient to obtain the convergent results for the structural and physical

properties studied in this paper.

At every 200 K interval, PDFs and structure factors were obtained. The structure fac-

tors, S(Q), of all samples are obtained by implementing the Faber-Ziman formalism

[95] seen below as Equation (3.1):

S(Q) = ωAl−AlSAl−Al(Q) + ωAl−SmSAl−Sm(Q) + ωSm−SmSSm−Sm(Q) (3.1)

The weight factors (ωAl−Al, ωAl−Sm, and ωSm−Sm) are determined by the composi-

tion of the two species (cAl and cSm) and the Q-dependent atomic scattering factors

(fAl(Q) and fSm(Q)) via Equation (3.2) [139].

ωAlAl =
c2

Alf
2
Al(Q)

[cAlfAl(Q) + cSmfSm(Q)]2

ωAlSm =
2cAlcSmfAl(Q)fSm(Q)

[cAlfAl(Q) + cSmfSm(Q)]2

ωSmSm =
c2

Smf
2
Sm(Q)

[cAlfAl(Q) + cSmfSm(Q)]2

(3.2)

The partial structure factors, Sij(Q), in Equation (3.1) are obtained by taking the

Fourier transform of the corresponding partial-PDFs, gij(r), as seen in Equation (3.3).

Sij(Q) = 1 + 4πρ

∫ ∞
0

[gij(r)− 1]
sin(Qr)

r
rdr (3.3)

where ρ is the number density of the relevant atom species in the sample. Local

structural arrangements in the system are analyzed using the Voronoi tessellation tech-

nique. Voro++ [140] with periodic boundary conditions is utilized to construct radical

Voronoi polyhedrons around each atom, where the size of each atom is also taken into

consideration, as suggested by Park and Shibutani [103]. Honeycutt-Andersen (H-A)

[106] analysis is used to analyze the local structures further. The nearest neighbor

lists of each atom for H-A analysis are obtained via Voro++.
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3.3 Results and Discussions

3.3.1 Glass Transition Temperature

In order to determine the glass-transition temperature Tg of the Al90Sm10 alloy, the

created liquid alloy cooled down to 300 K with a cooling rate of 1010 K s−1. The

change in the energy during quenching is shown in Figure 3.11. In this figure, the

shape of the curve is typical for systems that undergo a glass transition. At low

temperatures, the value E − 3kbT is largely temperature-independent since atomic

motions at these temperatures resemble simple harmonic vibration for which the en-

ergy term can be written as E = E0 + 3kbT where E0 is the energy at 0 K. At high

temperatures, on the other hand, E − 3kbT strongly depends on temperature. The

glass transition temperature divides these two regions. By using this method, Tg was

obtained as 693 K from Figure 3.11.

Figure 3.11: Change in energy during cooling the Al90Sm10 liquid model from 2300 K

to 300 K where the cooling rate is 1010 K s−1. Only the data between 1200 K to 300 K

is shown here for clarity.
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3.3.2 Mean Squared Displacement Analysis
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Figure 3.12: Mean square displacement (MSD) for Al90Sm10 system (a) from 2100 K

to 300 K at 200 K intervals. (b) The inset shows a zoom for MSDs at temperatures

700 K to 300 K at 200 K intervals.

The total mean squared displacements (MSD) of Al90Sm10 with the cooling rate as

a function of time for a cooling rate of 1010 K s−1 are also calculated for 300 ps and

represented in Figure 3.12. The inset in Figure 3.12 shows the enlarged part for

temperatures 700 K, 500 K, and 300 K. The linear relation between the mean squared

displacements and time in Figure 3.12 implies that the structures obtained at that

temperatures are successfully equilibrated and suitable for further structural analyses.
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3.3.3 Pair Distribution Function

The PDF is one of the essential techniques for analyzing the structures of amorphous

solids and liquids. The PDF is defined as

g(r) =
1

N · ρ〈
N∑
i

N∑
j 6=i

δ [r − rij]〉 (3.4)

whereN is the total number of atoms in the system, ρ is the number density, and rij is

the vector between atoms i and j [141]. Figure 3.13 (a-d) shows the total and partial-

PDFs for Al – Al, Al – Sm, and Sm – Sm as a function of temperature between 2100 K

and 300 K, respectively. Each curve has been vertically shifted to increase clarity. An

PDF with a sharp first peak followed by broad peaks decreasingly fluctuating around

the bulk density is a well-known way to distinguish liquid structures.
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Figure 3.13: (a)-(d) The evolution of the total and partial-PDFs of Al – Al, Al – Sm and

Sm – Sm from 2100 K to 300 K at 200 K intervals, respectively. Tm and Tg annotations

show the temperatures at which melting and glass transition temperatures are located,

respectively.
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The top-most curve of Figure 3.13 (a), which corresponds to 2100 K, confirms that

the system is in a liquid state at 2100 K. Peak sharpening in PDFs is attributed to

structural ordering. The first PDF peak in Figure 3.13 (a) becomes more prominent

as the temperature drops along with a decrease in minimum immediately after. This

observation indicates an increase in SRO. Similar findings can also be observed in

Figure 3.13 (b-d). PDF peaks beyond the first one correspond to configurations fur-

ther than nearest neighbors and constitute MRO. The presence of second peak split-

ting as temperature decreases below Tg is a characteristic feature of metallic glasses

[142, 143]. Figure 3.13 (a) shows that second peak splitting is evident below Tg.

That observation demonstrates an enhancement in MRO and has been subsequently

reported in various MG alloy systems. The origin of the second peak splitting on

the total PDF is mainly attributed to the high solute-solute correlations and linked

to the increase in icosahedral order [144] since increased icosahedral order increases

geometric frustration [145]. The second and most intense peak of the Sm-Sm partial-

PDF in Figure 3.13 (d) coincides with the shoulder seen in the second peak of the

total PDF in Figure 3.13 (a). Our observation shows that the second peak splitting

seen in total PDF is due to enhanced Sm – Sm interactions.
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Figure 3.14: The total structure factor of the Al90Sm10 model and experimental mea-

surements at room temperature. The experimental data are taken from Ref. [96].
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3.3.4 Structure Factor

Figure 3.14 shows the total structure factor of the glass Al90Sm10 model at 300 K cal-

culated with Equation (3.1). via Faber-Ziman formalism by using the partial-PDFs.

The experimental total structure factor at 300 K is taken from Ref. [96]. The simu-

lated total structure factor agrees well with the experimental one; even the character-

istic pre-peak at Q ≈ 1.3 Å
−1

and side-peak at Q ≈ 3.3 Å
−1

are correctly simulated.

This observation also implies that the glassy model created in this study is compara-

ble to the one produced experimentally. Further structural analysis of the developed

model is representative of the experimental samples. Due to several magnitudes of

difference between the cooling rates of experiments (∼105–106 K s−1) [96] and this

study (1010 K s−1), the main amorphous peak Q ≈ 2.6 Å
−1

is significantly higher

than the experimentally obtained one. The pre-peak seen at Q ≈ 1.3 Å
−1

in Fig-

ure 3.14 is commonly attributed to the MRO present in the structure [146, 147], and

reported in various other alloy systems [148, 149, 150]. The evolution of the total

structure factor with respect to temperature from 2100 K to 300 K can be seen in Fig-

ure 3.15. During the development of the semi-empirical potential used in this study

[135], the liquid-glass transition temperature of the alloy was found as 914 K, and

the glass transition temperature was determined as 693 K. Those values were used

in any subsequent analysis in this study. Inspecting Figure 3.15, it is seen that the

splitting of the second peak was observed below the glass transition temperature (Tg),

as expected. However, the pre-peak at the low-Q region at Q ≈ 1.3 Å
−1

seems to

persist even above the melting point (Tm) in liquid. That observation implies that the

corresponding MRO is also present in the liquid. The liquid’s persistent MRO sup-

ports the hypothesis that the mechanism that hinders the crystallization of Al-based

metallic glasses is due to the MRO, which is inherited from the liquid structure. It is

evident that the liquid is not as homogeneously structured as is commonly thought.

3.3.5 Voronoi Tessellation Analysis

Voronoi tessellation is used to classify polyhedral order and analyze the short-range

order (SRO) with respect to temperature. Voronoi tessellation analysis is one of the

most widely used techniques to study the local structures in metallic glass research.
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Figure 3.15: The evolution of the total and partial structure factors from 2100 K to

300 K at 200 K intervals for the Al90Sm10 model quenched with a cooling rate of

1010 K s−1. Tm and Tg annotations show the temperatures at which melting and glass

transition temperatures are located, respectively.

In direct or ordinary Voronoi tessellation analysis, a Voronoi cell is attributed to

each atom to divide 3-dimensional space by constructing bisecting planes between

all neighboring atoms. For the Radical Voronoi Tessellation method used in this

study, planes are placed between atoms in proportion to their atomic size [103]. Each

Voronoi cell is labeled and classified with an index in the form of 〈n3, n4, n5, n6〉,
where ni is the number of i-edged faces each Voronoi cell has [100]. Since only one

atom can be located on each face by definition, the summation
∑

i ni gives a specific

atom’s coordination number (CN). Within this classification, 〈0, 0, 12, 0〉 corresponds

to perfect-icosahedral structure, whereas Voronoi cells with indices 〈0, 1, 10, x〉, 〈0, 2, 8, x〉
defined as distorted icosahedra, cells dominated by 4- and 6-edged faces, e.g., 〈0, 4, 4, x〉,
〈0, 5, 2, x〉, are considered to have crystal-like structures, and cells with 3 quadrangle

faces and at least 6 pentagon faces (e.g., 〈0, 3, 6, x〉) known as mixed cells, where

x = 1, 2, 3, 4, 5, 6 [104].
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3.3.5.1 Voronoi Index Analysis
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Figure 3.16: The fraction of the eight most populous Al-centered Voronoi indices as

a function of temperature for the Al90Sm10 model quenched with a cooling rate of

1010 K s−1. Tm and Tg annotations show the temperatures at which melting and glass

transition temperatures are located, respectively.

The local symmetry in the Al90Sm10 alloy is further analyzed using Voronoi tessella-

tion analysis with respect to the center atom of each cell. The temperature dependence

of the eight most common Al-centered Voronoi indices is shown in Figure 3.16. It

is seen that the fraction of Voronoi indices for the perfect icosahedron 〈0, 0, 12, 0〉
and ICO-like 〈0, 1, 10, 2〉 cells shows a significant increase at the undercooled region

between Tm and Tg. These cells make up the majority of the structure at room tem-

perature. Bokas et al. [151], and Zhang et al. [105] have reported a similar trend in

the fraction of ICO-like cells in the undercooled region for the Al – Sm alloys. Their

results, however, have not mentioned the fact that those cells were predominantly

Al-centered. The fraction of distorted icosahedra cells with indices 〈0, 2, 8, 4〉 and
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〈0, 2, 8, 2〉 show an exponential increase as the temperature decreases to Tg and their

growth slows down. They show the most significant rise ahead of Tg. The mixed type

cells with indices 〈0, 3, 6, 4〉 and 〈0, 3, 6, 5〉 show a stable linear increase in their frac-

tions until Tg, albeit relatively slow compared to icosahedra and distorted icosahedra

cells. They stay relatively stable afterward. The remaining Voronoi cells, 〈0, 4, 4, 5〉
and 〈0, 4, 4, 6〉, are grouped into crystal-like structures, and their fractions remain sta-

ble below 2% throughout the cooling process. Earlier, Mishra et al. [152] also saw

a significantly low fraction of crystal-like cells at 0 GPa. Our previous HEXRD and

EXAFS constrained RMC [131] and Monte Carlo (MC) [109] studies have showed

that ICO-like Voronoi cells also dominate the similar Al – Tb configuration at room

temperature.
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Figure 3.17: The fraction of the six most populous Sm-centered Voronoi indices as

a function of temperature for the Al90Sm10 model quenched with a cooling rate of

1010 K s−1. Tm and Tg annotations show the temperatures at which melting and glass

transition temperatures are located, respectively.

Figure 3.17 shows the fraction of the six most populous Voronoi indices around Sm
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atoms as a function of temperature. The most populous Sm-centered cells have coor-

dination numbers in the range of 17-19. Almost all Sm-centered cells have higher co-

ordination numbers than Al-centered cells. Also, similarly to Al-centered cells shown

in Figure 3.16, distorted icosahedra cells of Sm-atoms show a substantial increase in

the fraction in the vicinity of the undercooled region. Among the most frequent six

cells, distorted icosahedral 〈0, 1, 10, 7〉 cells are dominant in the glassy state with a

fraction close to 16%. An interesting observation of Figure 3.17 is the lack of crystal-

like or mixed cells. Any considerable amount of crystal-like or mixed cells were, in

fact, absent in all simulations. Tanaka [153] suggested that local icosahedral order in

metallic glass formers and their liquids prevents the formation of crystalline order and

aids the formation of amorphous structure. Our observations can also be attributed to

the critical role icosahedral order plays in inhibiting vitrification.

3.3.5.2 Voronoi Connectivity Analysis

Voronoi tessellation analysis only gives topological information about a single atom’s

nearest neighbor, hence in the SRO scale. However, MRO occurs on longer distances

than achievable solely by Voronoi tessellation analysis. The connections of those

Voronoi cells can be analyzed to extend the SRO on nearest neighbors to MRO that

incorporates neighbors beyond the first neighbor shells [154, 155]. The connectivities

of the most populous Al-centered Voronoi cells with each other are analyzed. Only

linked cells were considered in this analysis and were defined as linked when cells

were first neighbors. In Figures 3.18 and 3.20, the cells that share a common ver-

tex, face, and edge labeled as Vertex-Shared, Face-Shared, and Edge-Shared, respec-

tively. Interpenetrating connectivity mode is defined as the cells that have their cen-

ter atoms bonded to each other. Depending on their connection types, these schemes

give in-depth insight into the networks formed within metallic glasses on the MRO

scale. Figures 3.18 and 3.19 show the evolution of the connection modes for the

Al-centered perfect-ICO 〈0, 0, 12, 0〉 cells with respect to temperature. In the liq-

uid state above 1100 K most of the cells have interpenetrating connections. As the

temperature decreases towards the room temperature, the fractions of both vertex-

and face-shared cells increase in lieu of interpenetrating and edge-shared cells. As

the fraction of loosely packed edge-shared Al-centered 〈0, 0, 12, 0〉 cells reduces, the
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Figure 3.18: The fraction of connectivities of Al-centered 〈0, 0, 12, 0〉 polyhedrons

as a function of temperature for the Al90Sm10 model quenched with a cooling rate of

1010 K s−1. Tm and Tg annotations show the temperatures at which melting and glass

transition temperatures are located, respectively.

fraction of stable face-shared Al-centered 〈0, 0, 12, 0〉 increases. This shift from edge-

shared connection to face-shared one was previously reported by Ding et al. for

Mg – Cu – Y [156] and Cu – Zr [157] systems. Our observation implies that perfect-

ICO 〈0, 0, 12, 0〉 polyhedrons tend to distance themselves to create a network on the

MRO scale.
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(a) 2100K (b) 1900K

(c) 1700K (d) 1500K

(e) 1300K (f) 1100K

(g) 900K (h) 700K

(i) 500K (j) 300K

Figure 3.19: The evolution of Al-centered 〈0, 0, 12, 0〉 cells with temperature. Only

Al-centered 〈0, 0, 12, 0〉 cells and the Voronoi polyhedrons around each were plotted

for clarity.
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Figure 3.20: The fraction of connectivities of Al-centered 〈0, 1, 10, 2〉 polyhedrons

as a function of temperature for the Al90Sm10 model quenched with a cooling rate of

1010 K s−1. Tm and Tg annotations show the temperatures at which melting and glass

transition temperatures are located, respectively.

The evolution of the connection modes for the Al-centered distorted-ICO 〈0, 1, 10, 2〉
cells with respect to temperature is shown in Figures 3.20 and 3.21. In contrast to

perfect-ICO 〈0, 0, 12, 0〉 cells, vertex-shared distorted-ICO 〈0, 1, 10, 2〉 cells remain

relatively stable and dominate the structure throughout the cooling process. Cells

connected via their faces show a steady increase from around 20 % to 30 %. Similar

to the connection scheme of perfect-ICO 〈0, 0, 12, 0〉 cells, the fraction of interpene-

trating distorted-ICO 〈0, 1, 10, 2〉 cells declines with the increase in face-shared cells.
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(a) 2100K (b) 1900K

(c) 1700K (d) 1500K

(e) 1300K (f) 1100K

(g) 900K (h) 700K

(i) 500K (j) 300K

Figure 3.21: The evolution of Al-centered 〈0, 0, 12, 0〉 cells with temperature. Only

Al-centered 〈0, 0, 12, 0〉 cells and the Voronoi polyhedrons around each were plotted

for clarity.
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3.3.6 Honeycutt-Andersen Analysis

Figure 3.22: The fraction of H-A pair indices as a function of temperature for the

Al90Sm10 model quenched with a cooling rate of 1010 K s−1. Tm and Tg annotations

show the temperatures at which melting and glass transition temperatures are located,

respectively.

The Honeycutt-Andersen (H-A) method [106] is a widely used pair analysis technique

to characterize short-range order through atomic pairs’ local environment, especially

for amorphous and liquid structures. In this method, four integers, ijkl, are used for

defining the local environments of atomic pairs within the model. The first integer

of the H-A index indicates whether the atomic pair in question are bonded or not; it

will be one if the pair is bonded and 2 otherwise. Each atom is considered to be only

bonded to its Voronoi neighbors in this study. The second and third indices denote

the number of shared nearest neighbors and the number of shared bonds of the pair,

respectively. The last index is used to distinguish non-identical pairs when the first

three indices are the same. In this context, the H-A index of 1551 represents perfect-
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ICO, while 1431 and 1541 represent distorted icosahedra. The fcc and hcp structures

have the H-A indices of 1421 and 1422, respectively. Lastly, indices 1661 and 1441

represent bcc structures.

Figure 3.22 illustrates the fraction of the most abundant H-A pair indices, 1551, 1541,

1431, 1422, 1661, and 1311, as a function of temperature. In this figure, Tm and Tg

are annotated as vertical dashed lines. The fraction of 1551 type perfect-icosahedron

exponentially increases in the liquid state as the temperature decreases and shows a

significant increase prior to the undercooled region, between the melting and glass

transition temperature., before dominating the model. Distorted icosahedral 1541

and 1431 are the second and third most dominant indices at room temperature. This

observation indicates that icosahedral SRO is dominant both in the undercooled liquid

and in the glassy model. Having a dominance even in the liquid state supports the

hypothesis that icosahedral SRO seen at the room temperature is inherited from the

liquid state. Our Honeycutt-Andersen index analysis results are consistent with the

Voronoi tessellation analysis discussed before.

3.3.7 Bond Angle Distribution Analysis

Bond angle distribution analysis is used to analyze the spatial arrangements of bonded

atoms within the Al90Sm10 system from 2100 K to 300 K at 200 K intervals. The

atoms are regarded as bonded if they share a common Voronoi face. The prob-

ability of Al – Al – Al, Al – Al – Sm, Sm – Al – Sm, Al – Sm – Al, Sm – Sm – Al, and

Sm – Sm – Sm triplets forming an angle θ was measured an represented in Figure 3.23.

The noisy results in Sm – Sm – Sm triplet is due to low concentration of Sm atoms in

32 000 atom Al90Sm10 model. Almost all triplets has peaks at∼60° and∼120° which

are very close to the ideal icosahedral bond angles 63.5° and 116.5°. As the tempera-

ture decreases, the sharpness of peaks at ∼60° and ∼120° increases, which indicates

the formation of a more stable icosahedral order within the structure.
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Figure 3.23: Bond angle distribution analysis of Al90Sm10 model quenched with a

cooling rate of 1010 K s−1. Data of each triplet shown from 2100 K to 300 K at 200 K

intervals between 30° to 180°.
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CHAPTER 4

CONCLUSION AND FUTURE RECOMMENDATIONS

4.1 Conclusions

Having extraordinary structural and functional properties, Al-based MGs are of ma-

jor interest both in the research community and industry. Combining metals with

glasses leads to outstanding possibilities, and for tailoring such properties, atomic-

level structure and structure-property relationship should be thoroughly inspected.

Al – RE alloys have the unusual glass-forming ability, extremely high nucleation den-

sity upon crystallization, and improved structural and mechanical properties, unlike

others. However, the origin of their structures that result in such properties is still

not well understood. This study investigates the unknown structure of Al – RE al-

loys, particularly Al90Sm10. After obtaining a reliable and comparable model to the

experimental observations, several structural analysis techniques are implemented.

The pair distribution function analysis between 2100 K to 300 K shows the second

peak splitting below Tg. The Sm – Sm partial pair distribution function coincided

with the second peak’s shoulder, which resulted in the splitting. The observation vali-

dated as splitting enhanced with increased Sm – Sm interactions at the corresponding

interatomic distance. The pre-peak observed at the low-Q regions in the total struc-

ture factors of Al – RE systems is mainly attributed to MRO present in the system.

Our study found that the pre-peak of the Al90Sm10 system persists even at tempera-

tures above the alloy’s melting temperature. This observation supports the hypothesis

of the persistent MRO in the melts of Al – RE alloys which hinder the crystallization.

Voronoi tessellation analysis was used to identify local symmetry in the Al90Sm10

alloy. Upon cooling, the fractions of the perfect icosahedron and distorted icosa-
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hedron cells showed a considerable increase in the undercooled region between the

melting and the glass transition temperature. The connected clusters of Voronoi cells

are in the scale of MRO. Thus, to further extend the knowledge of the local structure

of the Al90Sm10 system on the MRO scale, the connectivities of the most populous

Voronoi cells were analyzed. It is seen that as the temperature decreases, the cells

with an interpenetrating connection scheme distance themselves to create a network

on the MRO scale. The Honeycutt-Andersen (H-A) pair analysis technique was used

to characterize short-range order through each atom’s local environment. 1551, 1541,

and 1431 type H-A pairs were found to dominate the short-range local structure of

liquid and glassy Al90Sm10. The observation supports the statement of dominant

icosahedral SRO in the liquid state that inherits the SRO in the glassy state. The

spatial arrangement of the atoms can not be analyzed using Voronoi tessellation or

Honeycutt-Andersen analysis. The bond angle distribution was used to characterize

the atoms in triplets. It is shown that the spatial arrangements of the atoms also sup-

port the icosahedral SRO hypothesis at every temperature between 2100 K to 300 K.

4.2 Future Recommendations

In addition to the degree of spatial and structural SRO, the chemical SRO is crucial to

understanding structural inhomogeneity and the glass-forming ability. The Warren-

Cowley parameter analysis should be done to investigate the local chemical SRO

and possibly MRO by extending the Warren-Cowley parameter farther than only the

nearest neighbors. Warren-Cowley parameter study conducted by Ovun et al. [109]

have used inverse monte Carlo generated interatomic potentials that are inadequate to

describe multi-body interactions. A better model should be developed to validate or

improve the reported results.

Bond-order parameters can be used for nucleation studies to track down the initial

nucleus through the devitrification of metallic glasses. The anomalous nucleation

densities of Al – RE systems can be further analyzed computationally by identifying

each nucleus and analyzing the corresponding nucleus sizes with respect to under-

cooling. The study will give tremendous insights into otherwise obscure events that

occur during the devitrification.
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As stated in Section 1.1.2, the kinetic slowdown of a melt is crucial in inhibiting

crystallization for metallic glasses. The viscosity of melts is often used to describe

the kinetic slowdown and the crystal nucleation rate. Experimental viscosity mea-

surements are difficult for many reasons. It is possible to eliminate this difficulty

with reliable simulation results. The trajectories obtained through the ab-initio MD

and classical MD simulations can be used to calculate the melt viscosity by utilizing

Green-Kubo (GK) formula or Einstein formulation.

There are few studies on ternary Al – RE – RE systems in the literature; however,

Kalay’s group has some very interesting experimental results. Apart from the pre-

cursors used to obtain metallic glasses, it is reported that the concentrations of the

constituting rare-earth elements also alter the devitrification behaviors. The explana-

tion of this exciting observation is still lacking. In-depth simulation studies should be

focused on the ternary Al – RE – RE systems to reveal the mysteries in the local struc-

tures of those materials. So far, the literature has no interatomic potential that suc-

cessfully describes these systems. Reliable potentials should be created through the

necessary experimental and first-principles studies, and the created potentials should

be used in local structure studies.
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