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ABSTRACT

NEW TMVP-BASED MULTIPLICATION ALGORITHMS FOR POLYNOMIAL
QUOTIENT RINGS AND APPLICATION TO POST-QUANTUM

CRYPTOGRAPHY

Keskinkurt Paksoy, İrem

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Murat Cenk

July 2022, 90 pages

One of the quantum-safe cryptography research areas is lattice-based cryptography.
Most lattice-based schemes need efficient algorithms for multiplication in polyno-
mial quotient rings. The fastest algorithm known for multiplication is the Number
Theoretic Transform (NTT), which requires certain restrictions on the parameters of
the ring, such as prime modulus. Direct NTT application is not an option for some
schemes that do not comply with these restrictions, e.g., the two finalists of the PQC
standardization competition, Saber and NTRU, which use a power-of-two modulus.
Toom-Cook and Karatsuba are the most commonly used non-NTT multiplication al-
gorithms. Even though a method of using NTT in NTT-unfriendly rings with larger
parameters that prevent any modular reduction on the original result is proposed, de-
veloping non-NTT multiplication algorithms can also improve the efficiency of mul-
tiplication in such rings.

In this thesis, we focused on developing Toeplitz Matrix-Vector Product (TMVP)
based multiplication algorithms for PQC schemes. First, we propose new three- and
four-way TMVP split formulas with five and seven multiplications. We choose Saber
and NTRU schemes for our case study. We develop TMVP-based multiplication al-
gorithms using the new four-way formula for the rings on which Saber and NTRU are
defined. We also propose an improved version of the algorithm for Saber and present
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a padding method for NTRU to utilize TMVP split formulas.

Moreover, we implement the proposed algorithms on ARM Cortex-M4, which NIST
recommends as an evaluation platform for PQC candidates on microprocessors. We
improve performance and stack memory consumption compared to all Toom imple-
mentations. We also observe that our TMVP-based algorithms are faster than NTT
for three of the parameter sets of NTRU, and they reduce the stack usage for all. We
integrate our codes into state-of-the-art implementations of Saber and NTRU in the
literature to see the effect of our algorithm on the total performance of the schemes.
For Saber, our algorithm achieves improvements up to 18.6% in performance and up
to 44.2% in memory consumption compared to the Toom method. For all parameter
sets of NTRU, we reduce stack usage between 5.9%− 20.9% compared to Toom and
5.1%− 19.3% compared to NTT. Moreover, we observe performance improvements
between 4.4%−17.5% compared to Toom for all parameter sets. Except for one of the
parameter sets of NTRU, our algorithms outperform the NTT method. Furthermore,
we propose new formulas for non-square TMVP calculations and a new approach for
deriving new TMVP split formulas using the non-square formulas. The arithmetic
complexity calculations and theoretical efficiency comparisons are also presented in
this thesis.

Keywords: Toeplitz matrix-vector product, lattice-based cryptography, post-quantum
cryptography, Saber, NTRU, key encapsulation mechanism, polynomial multiplica-
tion, ARM Cortex-M4
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ÖZ

POLİNOM HALKALARI İÇİN YENİ TMVP-TABANLI ÇARPIM
ALGORİTMALARI VE QUANTUM-SONRASI KRİPTOGRAFİYE

UYGULAMALARI

Keskinkurt Paksoy, İrem

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Murat Cenk

Temmuz 2022, 90 sayfa

Kuantum bilgisayarlara karşı güvenli kriptografi araştırma alanlarından biri kafes ta-
banlı kriptografidir. Kafes tabanlı sistemlerin birçoğu, polinom bölüm halkalarında
çarpma için verimli algoritmalara ihtiyaç duyar. Çarpma için bilinen en hızlı algo-
ritma, halkanın parametrelerinde modülün asal olması gibi belirli kısıtlamalar gerek-
tiren Sayı Kuramsal Dönüşümdür (NTT). Bu kısıtlamalara uymayan bazı şemalar için
doğrudan NTT uygulaması bir seçenek değildir; örneğin, ikinin kuvveti bir modül
kullanan PQC standardizasyon yarışmasının iki finalisti Saber ve NTRU gibi. Toom-
Cook ve Karatsuba, NTT direkt uygulanamadığında en yaygın kullanılan çarpma al-
goritmalarıdır. NTT’ye uygun olmayan halkalarda, modüler indirgeme gerektirmeyen
daha büyük parametreler ile NTT kullanımına olanak veren bir yöntem önerilmiş olsa
da, NTT olmayan verimli çarpma algoritmaları geliştirmek de bu halkalardaki çarpma
işlemini iyileştirebilir.

Bu tezde, kuantum-sonrası kriptografik (PQC) sistemler için Toeplitz Matris-Vektör
Çarpımı (TMVP) tabanlı çarpma algoritmaları geliştirmeye odaklandık. İlk olarak,
beş ve yedi çarpma gerektiren yeni üçlü ve dörtlü TMVP formüllerini önerdik. Uygu-
lama için Saber ve NTRU şemalarını seçtik. Saber ve NTRU’nun tanımlandığı halka-
lar için yeni dörtlü formülü kullanarak TMVP tabanlı çarpma algoritmaları geliştir-
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dik. Ayrıca, Saber için geliştirilen algoritmanın iyileştirilmiş bir versiyonunu sunduk
ve NTRU şemasındaki çarpma işlemlerinde TMVP formüllerini kullanabilmek için
bir doldurma yöntemi önerdik.

Ayrıca, önerilen algoritmaları, PQC adaylarının mikroişlemciler üzerinde değerlendi-
rilmesi için NIST tarafından önerilen platform olan ARM Cortex-M4 üzerinde ger-
çekledik. Performans ve hafıza kullanımını, literatürdeki tüm Toom gerçeklemelerine
kıyasla iyileştirdik. Ayrıca, TMVP tabanlı algoritmaların, NTRU’nun üç parametre
seti için NTT’den daha hızlı olduğunu ve tümü için hafıza kullanımını azalttığını göz-
lemledik. Algoritmalarımızın şemalar üzerindeki etkisini görmek için, kodlarımızı li-
teratürdeki en gelişmiş Saber ve NTRU gerçeklemelerine entegre ettik. Saber için
önerilen algoritmamız, Toom yöntemine kıyasla performansta %18,6’ya ve bellek tü-
ketiminde %44.2’ye varan iyileştirmeler sağlamıştır. NTRU’nun tüm parametreleri
için, hafıza kullanımını Toom’a kıyasla %5,9-%20,9 ve NTT’ye kıyasla %5,1-%19,3
arasında azalttık. Ayrıca, tüm parametreler için Toom metoduna kıyasla %4.4-%17.5
arasında performans artışı gözlemledik. NTRU’nun bir tanesi dışındaki parametreleri
için, algoritmalarımız NTT yönteminden daha iyi performans göstermiştir. Ayrıca,
kare olmayan TMVP hesaplamaları için yeni formüller sunduk ve bunları kullana-
rak yeni TMVP formülleri türetmek için bir yaklaşım önerdik. Önerilen formüllerin
aritmetik karmaşıklık hesaplamaları ve teorik verimlilik karşılaştırmaları da bu tezde
sunulmaktadır.

Anahtar Kelimeler: Toeplitz matris-vektör çarpımı, kafes tabanlı kriptografi, kuan-
tum sonrası kriptografi, Saber, NTRU, anahtar kapsülleme mekanizması, polinom
çarpımı, ARM Cortex-M4
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CHAPTER 1

INTRODUCTION

Modern cryptography relies on hard-to-solve mathematical problems and deals with

designing/developing algorithms based on these problems to provide security of pri-

vate data. The main idea is to conceal data using an encryption key and ensure that

only an authorized entity can reveal it using a decryption key. If encryption and de-

cryption keys are generated from the same key material, then it is called symmetric

(secret-key) cryptography; otherwise, it is called asymmetric (public-key) cryptogra-

phy. Today, widely used public-key cryptosystems are based on two hard problems:

the Integer Factorization Problem and the Discrete Logarithm Problem. It is infeasi-

ble to solve these problems in a reasonable amount of time using classical computers.

In 1994, Peter Shor proposed a polynomial-time algorithm that can solve these prob-

lems on a quantum computer [40]. Quantum computers are not yet a part of daily

life, but it is predicted that they will be in ten to fifteen years. Before that day comes,

designing cryptographic algorithms that are secure against both classical and quan-

tum computers is essential. Research on this subject has been pursued for years in

five main classes: lattice-based cryptography, code-based cryptography, multivariate

polynomial-based cryptography, hash-based cryptography, and isogeny-based cryp-

tography. It is believed that the cryptographic systems belonging to these classes are

resistant to both classical and quantum computers.

In 2017 National Institute of Standards and Technology (NIST) started the ’Post-

Quantum Cryptography (PQC) Standardization’ competition. Among the 69 submit-

ted proposals, 5 of them had withdrawn within a year. Twenty-seven of the remaining

64 were lattice-based constructions (public-key encryptions (PKE), key encapsula-
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tion mechanisms (KEM), digital signatures (DS)). For the second round of the stan-

dardization process, 26 candidates were announced [2] in January 2019, of which 12

are lattice-based constructions. In July 2020, the third round officially began with 4

PKE/KEM (Classic McEliece [10], Crystals-Kyber [7], NTRU [18], Saber [24]) and

3 DS (Crystals-Dilithium [21], Falcon [26], Rainbow [20]) finalists together with 5

PKE/KEM (BIKE [6], FrodoKEM [14], HQC [37], NTRU Prime [11], SIKE [8]), and

3 DS (GeMMS [16], Picnic [17], SPHINCS+ [12]) alternate candidates. 7 of these

15 schemes in Round 3 were lattice-based. As these numbers indicate, lattice-based

cryptography has been one of the most powerful candidates for the post-quantum

cryptography standardization process. In the second round status report [1], NIST

stated that they would consider at most one of the lattice-based PKE/KEM final-

ists for standardization since they are all using structured lattices. The third round

was expected to be concluded by the end of 2021. NIST updated the date to March

2022. In April 2022, NIST still was not ready to announce the decision. It was re-

ported that the reason for the delay was legal and procedural details and not related

to the technical evaluation. Resolving the issues caused by these legal and proce-

dural details took longer than they expected. Finally, in July 2022, the third round is

closed with the announcement [3] of one PKE/KEM (Crystals-KYBER) and three DS

(Crystals-Dilithium, FALCON, SPHINCS+) schemes being selected for standardiza-

tion. Among the remaining algorithms, four PKE/KEMs (BIKE, Classic McEliece,

HQC, SIKE) advanced to the fourth round for further consideration. For the rest

of the algorithms, NIST stated that they will not be subjected to further evaluation

and will not be considered for standardization. Nevertheless, some changes may oc-

cur later due to the intellectual property issues that Kyber and Saber have been facing,

which seem to be the main reason for the delay. Although NIST eliminated the NTRU

PKE/KEM, they also stated that they could consider standardizing it if an agreement

could not be reached on the intellectual property by the end of 2022 (footnote on

page 18 of [3]). Regardless of the outcome of the competition, it seems that further

research on lattice-based cryptosystems will continue, at least for a while.

In this thesis, we mainly focus on TMVP-based multiplication algorithms for PQC

and the application of some lattice-based cryptosystems. In Chapter 2, notations used

in this thesis and some background information on the subject are given. The new

2



three- and four-way formulas for TMVPs with a square Toeplitz matrix with five

and seven multiplications are presented in Chapter 3. A detailed explanation of the

derivation technique used for the formulas can also be found in Chapter 3. Moreover,

this chapter includes the simplified versions of the formulas for TMVPs representing

multiplication modulo xn + 1. Chapter 4 contains a new, non-square approach for

TMVP calculations. The derivation of unbalanced TMVP formulas (2 × 3, 3 × 2,

2 × 4, 4 × 2, 3 × 4, and 4 × 3) are presented in this chapter. The new six-, eight-,

and twelve-way formulas derived via composing the unbalanced formulas are also

explained in this chapter.

A TMVP-based multiplication algorithm using the four-way formula and an improved

version of it for Saber can be found in Chapter 5. Similarly, in Chapter 6, TMVP-

based algorithms for all parameter sets of NTRU are presented with a padding tech-

nique. Chapter 7 contains the results of the implementations of the proposed algo-

rithms on ARM Cortex-M4. The benchmark results of the applications of the pro-

posed algorithms to Saber and NTRU are also placed in Chapter 7. Finally, Chapter

8 concludes the thesis.

3
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CHAPTER 2

PRELIMINARY TO THE SUBJECT

This chapter introduces some definitions and properties to build a background. First,

we describe the Toeplitz matrix and explain how to express a multiplication in the ring

Zq[x]/⟨xn ± 1⟩ as a Toeplitz matrix-vector product (TMVP). Then we introduce the

two- and three-way formulas for TMVP calculations in the literature. Secondly, we

explain two of the finalists of the NIST PQC competition, namely Saber and NTRU.

Finally, we briefly introduce the ARM Cortex-M4 microprocessor, which we use as

the implementation platform in this thesis.

2.1 Notation

Throughout the thesis, we use the notation M(n) to state the arithmetic complexity

of an algorithm for dimension n. The ring of polynomials modulo xn+1 with integer

coefficients in [0, q) is denoted byRq+ = Zq[x]/⟨xn+1⟩, and the ring of polynomials

modulo xn−1 with integer coefficients in [0, q) is denoted byRq− = Zq[x]/⟨xn−1⟩.
The multiplication of an m × n matrix by a vector of length n is referred to as an

m × n-dimensional matrix-vector multiplication if m ̸= n; otherwise, we refer it

to as an n-dimensional matrix-vector multiplication. Single-word and double-word

additions are denoted by AS and AD, respectively. When AD = AS , we omit both

from arithmetic complexity calculations and use M ′(n) instead of M(n). The symbol

“◦” is used to denote the component-wise multiplication of two vectors of the same

length.

5



2.2 Toeplitz Matrix Vector Product

There are many cryptographic applications that utilize TMVP in the literature. The

use of TMVP in cryptographic computations first appeared in [25] for multiplying

elements of binary extension fields. Many proposals were then suggested [4,25,27,28,

39,41]. Recently, in [4] and [41], the use of TMVP for integer modular multiplication

is proposed to speed up the residue multiplication modulo the Mersenne prime 2521−1
and the prime 2255−19, respectively. TMVP can also be used to calculate the product

of two polynomials modulo a polynomial as explained in [43].

Definition 2.1. Let m and n be two positive integers. A Toeplitz matrix T is an m×n

matrix whose entry in i-th row and j-th column is defined as Ti,j = Ti−1,j−1 for

i = 2, . . . ,m and j = 2, . . . n.

T =



a0 a′1 a′2 . . . . . . . . . a′m-1 . . . . . . a′n-1

a1 a0 a′1 a′2
... . . . . . . a′n-2

a2 a1 a0 a′1
. . . ... . . . ...

... a2 a1
. . . . . . . . . ... a′m-1

... . . . . . . . . . . . . a′1 a′2
. . . ...

... . . . . . . a1 a0 a′1
. . . . . . a′n-m-1

am-1 . . . . . . . . . a2 a1 a0 . . . . . . a′n-m


. (2.1)

The matrix T in (2.1) shows the special form of an m×n Toeplitz matrix. From time

to time, for convenience, we may represent a Toeplitz matrix as an array of its ele-

ments in the first row and the first column. For example, the matrix in (2.1) might be

represented as the array T = (a′n-1, . . . , a
′
1, a0, a1, . . . , am-1). Clearly, specifying only

m+n− 1 of its elements would suffice to identify T . Therefore, adding two Toeplitz

matrices requires only m + n − 1 additions, while adding regular matrices requires

m.n. Moreover, every submatrix of a Toeplitz matrix is also a Toeplitz matrix. These

properties become very useful when it comes to calculating a TMVP efficiently. In-

stead of using the naive matrix-vector multiplication, the divide and conquer method

works very well for TMVP for large dimensions. Suppose we want to compute the

product of the Toeplitz matrix T in (2.1) for m = n by a vector B where the trans-

pose of B is BT = (b0, b1, . . . , bn). We may apply different splitting methods [28] to
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compute the following TMVP:

T ·B =



a0 a′1 . . . a′n-2 a′n-1

a1 a0 . . . a′n-3 a′n-2
...

... . . . ...
...

an-2 an-3 . . . a0 a′1

an-1 an-2 . . . a1 a0





b0

b1
...

bn-2

bn-1


. (2.2)

For example, a two-way TMVP formula allows us to compute an n dimensional

TMVP via three n/2 dimensional TMVPs. For this, we denote the TMVP in (2.2) by

T ·B =

T1 T0

T2 T1

B0

B1


where the partitions T0, T1, T2 are n

2
× n

2
Toeplitz matrices and B0, B1 are vectors of

length n
2
. The n-dimensional Toeplitz matrix-vector product T.B can be calculated

as follows: T1 T0

T2 T1

B0

B1

 =

P0 + P1

P0 − P2

 , (2.3)

where
P0 = T1(B0 +B1),

P1 = (T0 − T1)B1,

P2 = (T1 − T2)B0.

We refer to the formula in (2.3) as TMVP-2. Every TMVP split formula comprises

three consecutive steps, which are given in Algorithm 1.

Algorithm 1 Steps of using a TMVP split formula
1: Evaluation (E)

1.a: Matrix Evaluation (Emtrx)

1.b: Vector Evaluation (Evctr)

2: Multiplication (M)

3: Recombination (R)

The diagram of the steps of Algorithm 1 for a Toeplitz matrix A and a vector B is

given in Figure 2.1.
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Figure 2.1: Steps of TMVP formula

We explain the operations that corresponds to each step of Algorithm 1 for TMVP-2

formula given in (2.3) in details.

1. Evaluation (E)

This step evaluates the half-size matrices and vectors for n/2-dimensional (n/k-

dimensional for TMVP-k formula) TMVPs.

(a) Matrix evaluation of TMVP-2 formula: Emtrx(T ) = (T1, T0−T1, T1−T2),

(b) Vector evaluation of TMVP-2 formula: Evctr(B) = (B0 +B1, B1, B0).

2. Multiplication (M)

This step multiplies componentwise the vectors Emtrx(T ) (a vector of matrices)

and Evctr(B) (a vector of vectors) from Evaluation step, and obtain a vector

P = (P0, P1, P2) of vectors. Here each Pi is of length n/2 (n/k for TMVP-k

formula).

P =(P0, P1, P2)

=(T1, T0 − T1, T1 − T2) ◦ (B0 +B1, B1, B0)

=(T1(B0 +B1), (T0 − T1)B1, (T1 − T2)B0)

3. Recombination (R)

This step recombines the output vectors P0, P1, and P2 of Multiplication step

to obtain the result R = (R0, R1) of (2.3) as follows:

R =(R0, R1)

=(P0 + P1, P0 − P2).
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The number of additions to compute T0 − T1 is n− 1, which are all single-word ad-

ditions. It is sufficient to perform only n/2 single-word additions to evaluate T1 − T2

because it shares n/2 − 1 elements with T0 − T1 which we do not need to recom-

pute. So, Emtrx step requires 3n/2 − 1 single-word additions. On the other hand,

we need n/2 single-word additions to calculate B0 + B1 for Evctr step. Therefore,

the evaluation step E is completed with 2n− 1 single-word additions. Since the out-

put of Emtrx and Evctr are vectors of length three, the multiplication step M requires

three half-size TMVPs. Finally, n/2 double-word additions for each P0 + P1, and

P0 − P2 computations in recombination step R. Therefore, the evaluation, multipli-

cation, and recombination steps of TMVP-2 require 2n − 1 single-word additions, 3

half-size TMVPs, and n double-word additions, respectively. Hence, the arithmetic

complexity of the TMVP-2 formula is

M(n) = 3M(n/2) + (2n− 1)AS + (n)AD.

Since we perform arithmetic modulo 216 for the implementations, there is no need to

take care of carry propagation for double-word additions. Therefore, we assume that

AS = AD for our applications we present in this thesis. So, the arithmetic complexity

of TMVP-2 can also be expressed as follows:

M ′(n) = 3M(n/2) + 3n− 1

.

Similarly, a three-way TMVP formula [41] allows us to compute an n-dimensional

TMVP via six n/3-dimensional TMVPs. For this, the n-dimensional Toeplitz matrix-

vector multiplication in (2.2) can be expressed as follows:

T ·B =


T2 T1 T0

T3 T2 T1

T4 T3 T2



B0

B1

B2


where the partitions T0, T1, T2, T3, T4 are n

3
× n

3
Toeplitz matrices and B0, B1, B2 are

vectors of length n
3
. This TMVP can be calculated via the following formula:

T2 T1 T0

T3 T2 T1

T4 T3 T2



B0

B1

B2

 =


P0 + P3 + P4

P1 − P3 + P5

P2 − P4 − P5

 , (2.4)
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where
P0 = (T0 + T1 + T2)B2,

P1 = (T1 + T2 + T3)B1,

P2 = (T2 + T3 + T4)B0,

P3 = T1(B1 −B2),

P4 = T2(B0 −B2),

P5 = T3(B0 −B1).

In the following sections, we present another three-way formula requiring five mul-

tiplications. To avoid confusion, we refer to the formula in (2.4) as the TMVP-

36, where we use the index 6 to represent the number of multiplications required

by the formula. For arithmetic complexity calculation of this formula, we express

the n/3 × n/3 Toeplitz matrices T0, T1, T2, T3, T4 as the following arrays of length

2n/3− 1 as mentioned in Section 2.2.

T0 = X0||an/3−1||X1,

T1 = X1||a2n/3−1||X2,

T2 = X2||a3n/3−1||X3,

T3 = X3||a4n/3−1||X4,

T4 = X4||a5n/3−1||X5

where || denotes concatenation and

X0 = (a0, . . . , an/3−2),

X1 = (an/3, . . . , a2n/3−2),

X2 = (a2n/3, . . . , a3n/3−2),

X3 = (a3n/3, . . . , a4n/3−2),

X4 = (a4n/3, . . . , a5n/3−2),

X5 = (a5n/3, . . . , a6n/3−2).

are arrays of length n/3− 1. Therefore, we have

T0 + T1 + T2 = X0 +X1 +X2||an/3−1 + a2n/3−1 + a3n/3−1||X1 +X2 +X3

T1 + T2 + T3 = X1 +X2 +X3||a2n/3−1 + a3n/3−1 + a4n/3−1||X2 +X3 +X4

T2 + T3 + T4 = X2 +X3 +X4||a3n/3−1 + a4n/3−1 + a5n/3−1||X3 +X4 +X5.
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For these evaluations we use Algorithm 2. Each line of Algorithm 2 represents an

operation and contains the number of additions that are required by this operation.

Algorithm 2 Matrix Evaluations
1: S1 = X1 +X2 ▷ n/3-1

2: S2 = X0 + S1 ▷ n/3-1

3: S3 = S1 +X3 ▷ n/3-1

4: S4 = X3 +X4 ▷ n/3-1

5: S5 = X2 + S4 ▷ n/3-1

6: S6 = S4 +X5 ▷ n/3-1

7: S7 = a2n/3−1 + a3n/3−1 ▷ 1

8: S8 = an/3−1 + S7 ▷ 1

9: S9 = S7 + a4n/3−1 ▷ 1

10: S10 = a3n/3−1 + a4n/3−1 ▷ 1

11: S11 = S10 + a5n/3−1 ▷ 1

We conclude the matrix evaluation step by concatenating the length n/3 − 1 vectors

Si as follows:

T0 + T1 + T2 = S2||S8||S3

T1 + T2 + T3 = S3||S9||S5

T2 + T3 + T4 = S5||S11||S6.

The number of single-word additions needed to compute Si (i = 1, . . . , 11) via Algo-

rithm 2 is 2n−1. Since concatenation has no operational cost, Emtrx step of TMVP-36

completed with 2n−1 single word additions. Evaluating the vectors B1−B2, B0−B2,

and B0 − B1 in Evctr step each require n/3 single-word additions. Therefore, the

evaluation step E of TMVP-36 formula requires 3n − 1 single-word additions. For

recombination step, each P1 + P4 + P5, P2 − P4 + P6, and P3 − P5 − P6 vector

computations need 2n/3 double-word additions. Hence, the arithmetic complexity of

the TMVP-36 formula is

M(n) = 6M(n/3) + (3n− 1)AS + (2n)AD.

When AS = AD the arithmetic complexity is represented as follows:

M ′(n) = 6M(n/3) + 5n− 1.
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The choice of the formula for efficiently calculating a TMVP differs depending on

various details such as the size of the Toeplitz matrix and the implementation plat-

form. In this thesis, we use Winograd’s technique in [43] to derive a three-way TMVP

formula from the Toom-3 algorithm and a four-way TMVP formula from the Toom-4

algorithm. The three- and four-way formulas we propose require five and seven mul-

tiplications, respectively. We explain the derivation technique in detail and present

the formulas in Section 3.

2.2.1 Polynomial Multiplication Modulo xn ± 1 via TMVP

Let c′(x) =
∑2n−2

i=0 c′ix
i ∈ Z[x] denote the product of the polynomials a(x) =∑n−1

i=0 aix
i and b(x) =

∑n−1
i=0 bix

i in Z[x] where c′i =
∑

j+k=i ajbk. The product

c(x) =
∑n−1

i=0 cix
i of the polynomials a(x) and b(x) in Z[x]/⟨xn ± 1⟩ can be calcu-

lated by reducing c′(x) modulo xn ± 1. Clearly, ci = c′i ∓ c′i+n for i = 0, . . . , n − 2

and cn−1 = c′n−1. The coefficients of the polynomial c(x) can be calculated via the

following TMVP:



c0

c1

c2
...

cn-2

cn-1


=



a0 ∓an-1 . . . ∓a2 ∓a1
a1 a0 . . . ∓a3 ∓a2
a2 a1 . . . ∓a4 ∓a3
...

... . . . ...
...

an-2 an-3 . . . a0 ∓an-1

an-1 an-2 . . . a1 a0





b0

b1

b2
...

bn-2

bn-1


. (2.5)

The Toeplitz matrix in (2.5) has a more special form than (2.1). It contains only n

distinct entries, which are the coefficients of one of the multiplicand polynomials.

Having n components instead of 2n − 1 means we can simplify the formulas we

use. Therefore, we can calculate these types of TMVPs even more efficiently. More

specifically, if we use a k-split method (TMVP-k formula), we would have k different

components instead of 2k − 1. Thus, it allows us to reduce the number of additions

in the matrix evaluation step.
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2.3 Saber

Saber [22, 24] is a lattice-based KEM and one of the finalists of the NIST PQC stan-

dardization competition. Its security relies on the conjectural hardness of the Mod-

ule Learning with Rounding (MLWR) problem [9, 35]. Saber defines a public-key

encryption scheme (Saber.PKE) which is indistinguishable under chosen plaintext

attack (IND-CPA). Saber.PKE consists key generation (Saber.PKE.Keygen), encryp-

tion (Saber.PKE.Enc), decryption (Saber.PKE.Dec) algorithms as described in Algo-

rithm 3, Algorithm 4, and Algorithm 5, respectively. It uses a version of the Fujisaki-

Okamoto (FO) transformation to have a key encapsulation mechanism (Saber.KEM)

which is indistinguishable under chosen ciphertext attack (IND-CCA). Saber.KEM

consists of key generation (Saber.KEM.KeyGen), encapsulation (Saber.KEM.Encaps),

decapsulation (Saber.KEM.Decaps) algorithms. The details of all algorithms can be

found in [24].

Algorithm 3 Saber.PKE.KeyGen()

1: seedA ← U({0, 1}256)
2: A = Gen(seedA) ∈ Rℓ×ℓ

q+

3: s = β(Rℓ×1
q+ )

4: b = ((ATs+ h) mod q)≫ (ϵq − ϵp) ∈ Rℓ×1
p+

5: return (pk = (seedA, b), sk = (s))

Algorithm 4 Saber.PKE.Enc(pk = (seedA, b),m ∈ R2)

1: seedA ← U({0, 1}256)
2: s′ = β(Rℓ×1

q+ )

3: b′ = ((As′ + h) mod q)≫ (ϵq − ϵp) ∈ Rℓ×1
p+

4: v′ = bT (s′ mod p) ∈ Rp+

5: cm = (v′ + h1 − 2ϵp−1m mod p)≫ (ϵp − ϵT ) ∈ RT+

6: return c = (cm, b
′)
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Algorithm 5 Saber.PKE.Dec(sk = s, c = (cm, b
′))

1: v = b′T (s mod p) ∈ Rp+

2: m′ = ((v − 2ϵp−ϵT cm + h2) mod p)≫ (ϵp − 1) ∈ R2+

3: return m′

In the algorithms above, bold uppercase letters (e.g., A) are used to denote matrices,

and bold lowercase letters (e.g. b) are used to denote vectors, all of which have entries

fromRq+ andRp+ . Sampling from the uniform and binomial distributions on a set S

is denoted by U(S), and β(S), respectively. Shifting each coefficient of a polynomial

poly right by t bits is denoted by poly ≫ t.

The scheme specifies three different values for the dimension ℓ of the module that

determines the security level of the scheme. The values ℓ = 2 (LightSaber), ℓ = 3

(Saber), ℓ = 4 (FireSaber) provide level 1, level 3, level 5 security, respectively.

Saber operates on the finite polynomial rings Rq+ = R213
+ = Z213+ [x]/⟨x256 + 1⟩

and Rp+ = R210+ = Z210+ [x]/⟨x256 + 1⟩. Like most of the lattice-based cryptosys-

tems defined on polynomial rings, multiplication in these rings directly affects the

efficiency of the scheme.

2.4 NTRU

NTRU is one of the lattice-based finalists of the NIST PQC competition. NTRU KEM

is a merger of NTRUEncrypt and NTRU-HRSS-KEM submissions of the first round,

and it is based on the classical NTRU system proposed by Hoffstein, Pipher, and

Silverman [29,30]. Unlike the original NTRU, this system utilizes a perfectly correct

deterministic public key encryption (DPKE) instead of a partially correct probabilistic

one. The KEM is obtained by applying a variant of FO transformation to this DPKE.

The key generation, encryption, and decryption algorithms of NTRU CCA-DPKE are

given in Algorithm 6, Algorithm 7, and Algorithm 8.
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Algorithm 6 NTRU DPKE KeyGen(seed)

1: (f,g)← Sample(seed)

2: fq ← (1/f) mod (q,Φn)

3: h← (3 · g · fq) mod (q,Φ1Φn)

4: hq ← (1/h) mod (q,Φn)

5: fp ← (1/f) mod (3,Φn)

6: return ((f, fp, fq), h)

Algorithm 7 NTRU DPKE Encrypt(h,(r,m))
1: m′ ← Lift(m)

2: c← (r·h+m′) mod (q,Φ1Φn)

3: return c

Algorithm 8 NTRU DPKE Decrypt((f, fp,hq),c)
1: if c ̸≡ 0( mod (q,Φ1)) return (0, 0, 1)

2: a← (c·f) mod (q,Φ1Φn)

3: m← (a·fp) mod (3,Φn)

4: m′ ← Lift(m)

5: r← ((c-m)′·hq) mod (q,Φn)

6: if r.m ∈ Lr × Lm return (r, m, 0)

7: else return (0, 0, 1)

Here n is an odd prime number and Φi is the the i-th cyclotomic polynomial. There-

fore, we have Φ1 = x − 1, Φn = xn−1 + xn−2 + · · · + x + 1, and Φ1Φn = xn − 1.

By mod (q,Φ) we refer to the reduction both modulo q and the polynomial Φ. All

bold lowercase letters in the algorithms above denote polynomials. In Table 2.1, the

recommended values of n and q parameters, and the security category of the schemes

that corresponds to these parameters are given.

Table 2.1: Recommended Parameters and Security Levels for NTRU
ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

n 509 677 821 701
q 2048 2048 4096 8192

Sec. Levels 1 3 3 5
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All ring multiplications in the scheme are done using Rq− = Zq[x]/⟨Φ1Φn⟩ =

Zq[x]/⟨xn − 1⟩ multiplications via performing a relevant reduction to the result. So,

multiplication in Rq− is the main operation that affects the efficiency of all multi-

plication operations in the scheme. Improvements in ring multiplication had very

little impact on the key generation until the inversion using Bernstein-Yang’s con-

stant time greatest common divisor algorithm [13] was proposed in [36]. With this

work, the dominance of inversion on the performance of key generation decreased

dramatically, and the key generation algorithm of NTRU KEM is improved 97%.

The rings Rq+ and Rq− that Saber and NTRU are defined on are not suitable for

directly using the Number Theoretic Transform (NTT), which is the most efficient

polynomial multiplication algorithm known. NTT requires some restrictions on pa-

rameters. For example, for a Radix-2 NTT we need n to be a power of two and q to

be a prime that satisfies q ≡ 1 mod 2n. Since neither complies with these condi-

tions, regardless of the platform, in most of the implementations of Saber and NTRU,

a combination of Toom-Cook, Karatsuba, and schoolbook methods were used for ef-

ficient polynomial multiplication together with a polynomial reduction. Details of

existing implementations that use Toom-Cook and Karatsuba algorithms on different

platforms can be found in [31, 34, 38]. The work proposed in [19] shows that NTT

can be used for the schemes defined on ‘NTT-unfriendly’ rings. The method in this

work uses a big enough ‘NTT-friendly’ polynomial ring and performs operations on

this ring to avoid any modular reductions which may cause errors in the final result.

Once it computed the result in the ‘NTT-friendly’ ring, it performs modular reduction

to this result to obtain the actual result in the target ‘NTT-unfriendly’ ring. In this

thesis, we present the first-time use of TMVP-based algorithms for multiplication in

polynomial quotient rings for post-quantum cryptographic schemes.

2.5 Implementation Platform: ARM Cortex-M4

We chose the ARM Cortex-M4 microcontroller as the implementation platform. The

Cortex-M4 implements the ARMv7E-M instruction set, and NIST recommends it as

a reference implementation platform for the evaluation of PQC candidates on micro-

controllers. It has sixteen 32-bit general-purpose registers, and aside from Program
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Counter (PC) and Stack Pointer (SP) registers, they are all available for development.

It also has thirty-two 32-bit floating point registers, which can be used to keep fre-

quently used values to decrease the use of load and store instructions. We use the

STM32F4DISCOVERY development board, which is used in many implementations

of PQC candidates [5,15,31,32,34]. The ARM Cortex-M4 is designed especially for

digital signal processing (DSP), and it supports many useful single instruction mul-

tiple data (SIMD) instructions that can perform parallel arithmetic operations on two

16-bit halfword parts of two 32-bit registers in one cycle. These instructions allow us

to efficiently implement the schoolbook matrix-vector multiplication for small dimen-

sions. In Table 2.2, descriptions of some instructions we use in our implementation

are given.

Table 2.2: Example instructions

General data processing

ADD Rd, Rn, Rm Rd = Rn + Rm

USUB16 Rd, Rn, Rm Rdb = (Rnb − Rmb)mod 216 Rdt = (Rnt − Rmt)mod 216

Multiply-Accumulate

SMUADX Rd, Rn, Rm Rd = RnbRmt + RntRmb

SMLADX Rd, Rn, Rm, Rt Rd = RnbRmt + RntRmb + Rt

Packing-Unpacking

PKHBT Rd, Rn, Rm LSL # k Rdb = Rnb Rdt = (Rm ≪ k)t

PKHTB Rd, Rn, Rm ASR # k Rdb = (Rm≫ k)b Rdt = Rnt

The indices b and t denote the bottom (bits 0− 15) and top (bits 16− 31) halfwords of the relevant register, respectively. The

symbols ≪ and ≫ denote the left and right shifts, respectively.

2.6 The Block Recombination Method

The block recombination method was proposed in [27] for parallel multiplication in

binary finite fields that are expressed as a TMVP. The two-way split formula for an n

dimensional TMVP defined on a binary field is as follows:

U.V =

U1 U0

U2 U1

V0

V1

 =

W0 +W1

W1 +W2

 =

Y0

Y1

 , (2.6)
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where

W0 = U1(V0 + V1),

W1 = (U0 + U1)V1,

W2 = (U1 + U2)V0.

Here Ui are n/2×n/2 dimensional Toeplitz matrices, while Vj and Wi are vectors of

length n/2 with binary components. In [27], they decompose the multiplier proposed

by Fan-Hasan [25] into four steps defined as follows:

1. Component Matrix Formation (CMF): Corresponds to the recursive matrix

evaluation of U in (2.6). The first step of recursion is equivalent to Emtrx from

Section 2.2, and outputs the vector (U1, U0 + U1, U1 + U2) of binary matrices.

So, we say CMF(U) = (CMF(U1),CMF(U0 + U1),CMF(U1 + U2)) is the

component matrix formation of U .

2. Component Vector Formation (CVF): Corresponds to the recursive vector

evaluation of V in (2.6). The first step of recursion is equivalent to Evctr from

Section 2.2, and outputs the (V0 + V1, V1, V0) of binary vectors. So, we say

CVF(V ) = (CVF(V0 + V1),CVF(V1),CVF(V0)) is the component vector for-

mation of V .

3. Component Multiplication (CM): This step is similar to the step M from Sec-

tion 2.2. CM multiplies the binary vectors of CMF(U) and CVF(V ) component-

wise, and outputs a binary vector of same length as CMF(U) and CVF(V ).

4. Reconstruction (R): This step is similar to R from Section 2.2. Corresponds

to the recombination of the product Y = U.V from the output of the previous

step. Let Ŵ = CMF(U) ◦ CVF(V ) = [Ŵ0, Ŵ1, Ŵ2]. Therefore, we have

W = R(Ŵ ) = (R(Ŵ0) +R(Ŵ1), R(Ŵ0) +R(Ŵ2)).

In [27], the sum of two or more TMVPs can be calculated more efficiently using this

decomposition. Applying a layer of schoolbook method to (2.6) before decomposing

the blocks as shown in (2.7) reduces the complexity.

U.V =

U1 U0

U2 U1

V0

V1

 =

U1V0 + U0V1

U2V0 + U1V1

 (2.7)
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To compute U1V0 and U0V1 using block decomposition, we perform Steps 1-4 above

for both. Then we calculate U1V0 + U0V1 to obtain the first half of the result of (2.7).

Therefore, 2 CMFs, 2 CVFs, 2 CMs, 2 Rs, and n/2 additions (double-word) are

required for this computation. The block recombination method proposes to perform

additions before the recombination step. More precisely, after calculating CMF, CVF,

and CM steps of U1V0 and U0V1, the component addition step (CA) is performed

before recombination. As the name indicates, CA is adding the resulting vectors

component by component. Therefore, U1V0 + U0V1 is calculated with 2 CMFs, 2

CVFs, 2 CMs, 1 CA, 1 R. A similar calculation is valid for U2V0 + U1V1, except

for one CMF and 2 CVFs. Since we already have CMF(U1), CVF(V0) and CVF(V1),

there is no need to repeat these calculations. So, the result of (2.7) is calculated with 3

CMFs, 2 CVFs, 4 CMs, 2 CAs, and 2 Rs via the block recombination method, instead

of 3 CMFs, 2 CVFs, 4 CMs, 4 Rs, and 2 CAs. Hence, the block recombination method

improves the arithmetic complexity by reducing the number of reconstruction steps

from four to two.

We use a modified version of the block recombination method to develop a TMVP-

based multiplication algorithm that is unique to Saber. In our version, we work on

Zq instead of binary fields, and we use various TMVP formulas consecutively until

reaching a precomputed dimension, while the block recombination method uses the

same TMVP formula recursively until the dimension is one.
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CHAPTER 3

NEW THREE- AND FOUR-WAY TMVP FORMULAS

TMVP split formulas can be derived from any given polynomial multiplication al-

gorithm using Winograd’s technique given in [43]. We derive the new three- and

four-way TMVP formulas from Toom-3 and Toom-4 algorithms [42] using a simi-

lar technique in [43]. The new algorithms are denoted by TMVP-3 and TMVP-4,

and they require five and seven smaller TMVPs, respectively. As we mentioned pre-

viously, we may use the notation TMVP-35 instead of TMVP-3 to emphasize the

number of multiplications required by the formula, if needed. This section explains

the derivation of our new three- and four-way TMVP formulas elaborately. More-

over, the simplified versions of the formulas for TMVPs that represent multiplication

modulo xn + 1 are given. The arithmetic complexity calculations of the algorithms

and their comparisons are also presented in this section.

3.1 Three-way TMVP formula with five multiplications

Let c(x) = c0+c1x+c2x
2+c3x

3+c4x
4 be the product of two three-term polynomials

a(x) = a0+a1x+a2x
2 and b(x) = b0+b1x+b2x

2. The coefficients ci of the product

polynomial c(x) can be calculated using different methods including the schoolbook

and three-way Toom-Cook (Toom-3) algorithms.

• Schoolbook: Using the schoolbook polynomial multiplication, the coefficients
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of the polynomial c(x) are computed as follows:

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a0b2 + a1b1 + a2b0, (3.1)

c3 = a1b2 + a2b1,

c4 = a2b2.

• Toom-3: The Toom-3 algorithm evaluates 3-term multiplicand polynomials at

5 chosen points. Then, it obtains the evaluation of the product polynomial at

these same five points by multiplying the results point-wise. Finally, the prod-

uct polynomial is interpolated from these evaluations using an interpolation

algorithm.

We choose S = {0, 1,−1,−2,∞} as the set of evaluation points and evaluate

the polynomials a(x) and b(x) at these points, where evaluation at ∞ equals

the leading coefficient of the corresponding polynomial. For each s ∈ S the

equality c(s) = a(s)b(s) holds. Then we have the following:

c(0) = a0b0,

c(1) = (a0 + a1 + a2)(b0 + b1 + b2),

c(−1) = (a0 − a1 + a2)(b0 − b1 + b2), (3.2)

c(−2) = (a0 − 2a1 + 4a2)(b0 − 2b1 + 4b2),

c(∞) = a2b2.

We interpolate the coefficients ci of c(x) from c(s) values (s ∈ S) using Algo-

rithm 9.

22



Algorithm 9 Interpolation of Toom3

1: S1 = c(0) ▷ c0 = S1

2: S2 = c(∞) ▷ c4 = S2

3: S3 =
c(−2)−c(1)

3

4: S4 =
c(1)−c(−1)

2

5: S5 = c(−1)− c(0)

6: S6 =
S5−S3

2
+ 2S2 ▷ c3 = S6

7: S7 = S5 + S4 − S2 ▷ c2 = S7

8: S8 = S4 − S6 ▷ c1 = S8

Therefore, the coefficient ci of c(x) can be written in terms of c(s) for s ∈ S as

follows:

c0 = c(0),

c1 =
1

6
(3c(0) + 2c(1)− 6c(−1) + c(−2)− 12c(∞)) ,

c2 =
1

2
(−2c(0) + c(1) + c(−1)− 2c(∞)) , (3.3)

c3 =
1

6
(−3c(0) + c(1) + 3c(−1)− c(−2) + 12c(∞), )

c4 = c(∞).

Now we use the two different calculations (3.1) and (3.3) of coefficients, to derive the

TMVP-3 formula. For this, first, we multiply each equation in (3.1) corresponds to ci

by a symbolic variable z4−i for i = 0, . . . , 4 and then we take the sum of all equations

as seen in (3.4).

z4c0 + z3c1 + z2c2 + z1c3 + z0c4 = z4a0b0

+ z3(a0b1 + a1b0)

+ z2(a0b2 + a1b1 + a2b0) (3.4)

+ z1(a1b2 + a2b1)

+ z0(a2b2).
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Then, we rearrange the right hand side of (3.4) in the form k2b2 + k1b1 + k0b0, where

the coefficients ki of bi are as follows:
k2

k1

k0

 =


z2 z1 z0

z3 z2 z1

z4 z3 z2




a0

a1

a2

 . (3.5)

Similarly, we also multiply each equation in (3.3) corresponds to ci by a symbolic

variable z4−i for i = 0, . . . , 4 and we take the sum of all equations as given in (3.6)

z4c0 + z3c1 + z2c2 + z1c3 + z0c4

=
1

6

[
z46c(0)

+z3 (3c(0) + 2c(1)− 6c(−1) + c(−2)− 12c(∞))

+z2 (−6c(0) + 3c(1) + 3c(−1)− 6c(∞)) (3.6)

+z1 (−3c(0) + c(1) + 3c(−1)− c(−2) + 12c(∞))

+z0 (6c(∞))
]
.

Rearranging the terms in (3.6) in the form k2b2+k1b1+k0b0 according to (3.2), gives

the coefficients ki of bi as seen in (3.7).
k2

k1

k0

 =


P1 + P2 + 4P3 + P4

P1 − P2 − 2P3

P0 + P1 + P2 + P3

 , (3.7)

where

P0 =
1

2
(2z4 + z3 − 2z2 − z1) a0,

P1 =
1

6
(2z3 + 3z2 + z1) (a0 + a1 + a2),

P2 =
1

2
(−2z3 + z2 + z1) (a0 − a1 + a2), (3.8)

P3 =
1

6
(z3 − z1) (a0 − 2a1 + 4a2),

P4 = (−2z3 − z2 + 2z1 + z0) a2.

Thus, using the equality of the left-hand sides of (3.5) and (3.7), we have the following
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formula, which we refer to as the TMVP-3 formula with five multiplications:


z2 z1 z0

z3 z2 z1

z4 z3 z2




a0

a1

a2

 =


P1 + P2 + 4P3 + P4

P1 − P2 − 2P3

P0 + P1 + P2 + P3

 , (3.9)

where Pi are as given in (3.8). Therefore, with this formulation, we define a TMVP

calculation method with 5 smaller TMVPs whose sizes are 1/3 of the original.

• TMVP-3 formula for multiplication modulo xn + 1:

Now, we simplify the TMVP-3 formula for TMVPs representing polynomial multi-

plication modulo xn+1. Here, we assume that n is a multiple of three. As mentioned

in Section 2.2.1, the coefficients of the product c(x) = c0 + c1x + c2x
2 of the poly-

nomials a(x) = a0 + a1x + a2x
2 and b(x) = b0 + b1x + b2x

2 modulo xn + 1 can be

calculated via the following TMVP:


c0

c1

c2

 =


a0 −a2 −a1
a1 a0 −a2
a2 a1 a0




b0

b1

b2

 . (3.10)

The Toeplitz matrices in (3.9) and (3.10) are identified by five and three distinct ele-

ments, respectively. So, the matrix evaluations of TMVP-3 formula in (3.9) become

simpler for (3.10). Updating the Pi computations for i = 0, . . . , 4 in TMVP-3 formula

accordingly, we have the following formula, which we refer to as TMVP-3 formula

for xn + 1 and denote as TMVP*-3:


c0

c1

c2

 =


P1 + P2 + 4P3 + P4

P1 − P2 − 2P3

P0 + P1 + P2 + P3

 =


a0 −a2 −a1
a1 a0 −a2
a2 a1 a0




b0

b1

b2

 ,
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where

P0 =
1

2
(a2 + a1 − 2a0) b0,

P1 =
1

6
(−a2 + 2a1 + 3a0) (b0 + b1 + b2),

P2 =
1

2
(−a2 − 2a1 + a0) (b0 − b1 + b2),

P3 =
1

6
(a2 + a1) (b0 − 2b1 + 4b2),

P4 = (−2a2 − 3a1 − a0) b2.

3.1.1 Arithmetic Complexity Calculations

In this section, we calculate the arithmetic complexity of the Toom-3, TMVP-3, and

TMVP*-3 algorithms step by step. We should note that in the following arithmetic

complexity calculations, we omit the multiplication/division-by-scalar operations.

• Arithmetic Complexity of Toom-3: We count the additions and multiplica-

tions required by each step of the Toom-3 method separately. We sum up the

costs from each step to obtain the total arithmetic complexity of the multiplica-

tion of two n-term polynomials via Toom-3.

1. Evaluation: The evaluation of the polynomial a(x) at the points in the set

S = {0, 1,−1,−2,∞} is given as follows:

a(0) = a0,

a(1) = a0 + a1 + a2,

a(−1) = a0 − a1 + a2,

a(−2) = a0 − 2a1 + 4a2,

a(∞) = a2.

So, it requires 5 additions of n/3-term polynomials with single word co-

efficients. The same is valid for the evaluation of the polynomial b(x).

Hence, this step requires 10n/3 single-word additions (AS).
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2. Pointwise multiplication: In this step we multiply n/3-term polynomials

a(s) and b(s), and obtain the evaluation of the (2n/3 − 1)-term polyno-

mial c(s) with double-word coefficients, for each s ∈ S. So, this step

requires five multiplications of n/3-term polynomials which we denote as

5M(n/3).

3. Interpolation: We use Algorithm 9 to calculate the coefficients of c(x).

So, interpolation requires 8 additions of (2n/3−1)-term polynomials with

double-word coefficients (AD).

4. Recomposition: Since the coefficients ci of c(x) are (2n/3 − 1)-term

polynomials for i = 0, . . . , 4, there are four overlaps of length n/3 − 1

which occur in this step. So, we require 4(n/3−1) double-word additions

(AD) for this step.

Hence, the total arithmetic complexity of n-term polynomial multiplication via

Toom-3 can be stated as

M(n) = 5M(n/3) + (20n/3− 12)AD + (10n/3)AS

or

M ′(n) = 5M(n/3) + 10n− 12.

• Arithmetic complexity of TMVP-3: First, we compute the number of ad-

ditions and multiplications needed to perform each step of TMVP-3 formula.

Then, the sum of them is calculated as the total arithmetic complexity.

1. Evaluation: The complexity of the evaluation step is computed in two

parts using Algorithm 10 and Algorithm 11.
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Algorithm 10 Matrix Evaluations

of TMVP-3
1: S1 = z3 − z1

2: S2 = z1 + z2

3: S3 = z4 − z2

4: S4 = S3 + S1/2

5: S5 = S1/3 + S2/2

6: S6 = S2/2− z3

7: S7 = −2S1 − z2

8: S8 = S7 + z0

9: S9 = S1/6

Algorithm 11 Vector Evaluations

of TMVP-3
1: S1 = a0 + a2

2: S2 = S1 + a1

3: S3 = S1 − a1

4: S4 = a0 − 2a1

5: S5 = S4 + 4a2

– Matrix Evaluation: Since zi are n/3 × n/3-dimensional Toeplitz

matrices, steps 1 − 8 of Algorithm 10 require 2n/3 − 1 single-word

additions each. Hence, matrix evaluation is completed with (16n/3−
8)AS operations.

– Vector Evaluation: The vectors ai are of length n/3. So, n/3 single-

word additions are performed in every step of Algorithm 11. There-

fore, (5n/3)AS is the total number of operations for vector evalua-

tions.

2. Multiplication: In this step, five n/3-dimensional TMVPs are required to

calculate Pi for i = 0, . . . , 4. So, we have 5M(n/3) for the multiplication

step.

3. Recombination: Since this step requires seven vector additions and Pi

are vectors of length n/3 with double-word coefficients, the total cost of

recombination is (7n/3)AD.

Thus, adding all these costs gives the total arithmetic complexity of TMVP-3

formula as

M(n) = 5M(n/3) + (7n− 8)AS + (7n/3)AD.

When AS = AD = A we can express the arithmetic complexity as follows:

M ′(n) = 5M(n/3) + 28n/3− 8.

28



• Arithmetic complexity of TMVP*-3: The matrix evaluation step is the only

difference between the computations of TMVP-3 and TMVP*-3 formulas. So,

calculating the cost of the matrix evaluation step of TMVP*-3 would suffice to

obtain the total arithmetic complexity of TMVP*-3. The matrix evaluations of

TMVP*-3 can be done by seven Toeplitz matrix additions of dimension n/3×
n/3 with single-word coefficients, i.e., (14n/3 − 7)AS operations are needed.

Therefore, the arithmetic complexity of TMVP*-3 formula can be expressed as

one of the following:

M(n) = 5M(n/3) + (19n/3− 7)AS + (7n/3)AD.

M ′(n) = 5M(n/3) + 26n/3− 7.

3.2 Four-way TMVP formula with seven multiplications

Let c(x) = c0+c1x+c2x
2+c3x

3+c4x
4+c5x

5+c6x
6 be the product of the polynomials

a(x) = a0 + a1x+ a2x
2 + a3x

3 and b(x) = b0 + b1x+ b2x
2 + b3x

3. The coefficients

ci of the product c(x) can be calculated using different methods. In this section, we

remind the schoolbook and Toom-4 algorithms.

• Schoolbook: The coefficients ci are computed via the schoolbook method as

follows:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

c3 = a0b3 + a1b2 + a2b1 + a3b0 (3.11)

c4 = a1b3 + a2b2 + a3b1

c5 = a2b3 + a3b2

c6 = a3b3

• Toom-4: To compute the coefficients ci via Toom-4; first, we need to evaluate

the multiplicand polynomials at seven different points. We choose the set S =
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{0, 1,−1, 2,−2, 3,∞} for evaluation, where evaluation at∞ equals the leading

coefficient of the polynomial. Component-wise multiplication of evaluations of

multiplicands gives us the evaluation of the product c(x) at the points s ∈ S.

Then, we interpolate the polynomial c(x) from these values.

c(0) = a0b0

c(1) = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

c(−1) = (a0 − a1 + a2 − a3)(b0 − b1 + b2 − b3)

c(2) = (a0 + 2a1 + 4a2 + 8a3)(b0 + 2b1 + 4b2 + 8b3) (3.12)

c(−2) = (a0 − 2a1 + 4a2 − 8a3)(b0 − 2b1 + 4b2 − 8b3)

c(3) = (a0 + 3a1 + 9a2 + 27a3)(b0 + 3b1 + 9b2 + 27b3)

c(∞) = a3b3

In order to compute the coefficients ci of c(x) using the c(s) values for s ∈ S,

we use the interpolation given in Algorithm 12.

Algorithm 12 Interpolation of Toom-4

1: S1 = c(0) ▷ c0 = S1

2: S2 = c(∞) ▷ c6 = S2

3: S3 =
c(1)+c(−1)

2
− S1 − S2

4: S4 =
c(2)+c(−2)−2S1−128S2

8

5: S5 =
S4−S3

3
▷ c4 = S5

6: S6 = S3 − S5 ▷ c2 = S6

7: S7 =
c(1)−c(−1)

2

8: S8 =
c(2)−c(−2)

4
−S7

3

9: S9 =
c(3)−S1−9S6−81S5−729S2

3

10: S10 =
S9−S7

8
− S8

11: S11 = S10/5 ▷ c5 = S11

12: S12 = S8 − S9 ▷ c3 = S12

13: S13 = S7 − S12 − S11 ▷ c1 = S13

So, we can rewrite the coefficients ci in terms of evaluations c(s) for s ∈ S as

follows:
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c0 = c(0)

c1 =
−20c(0) + 60c(1)− 30c(−1)− 15c(2) + 3c(−2) + 2c(3)− 720c(∞)

60

c2 =
−30c(0) + 16c(1) + 16c(−1)− c(2)− c(−2) + 96c(∞)

24

c3 =
10c(0)− 14c(1)− c(−1) + 7c(2)− c(−2)− c(3) + 360c(∞)

24
(3.13)

c4 =
6c(0)− 4c(1)− 4c(−1) + c(2) + c(−2)− 120c(∞)

24

c5 =
−10c(0) + 10c(1) + 5c(−1)− 5c(2)− c(−2) + c(3)− 360c(∞)

120

c6 = c(∞)

We multiply each equation in (3.11) and (3.13) to ci correspondingly by a symbolic

variable z6−i for i = 0, . . . , 6 and we take the sum of all equations, separately. From

(3.11), we get the following:

z6c0 + z5c1 + z4c2 + z3c3 + z2c4 + z1c5 + z0c6 =z6a0b0

+z5(a0b1 + a1b0)

+z4(a0b2 + a1b1 + a2b0)

+z3(a0b3 + a1b2 + a2b1 + a3b0) (3.14)

+z2(a1b3 + a2b2 + a3b1)

+z1(a2b3 + a3b2)

+z0a3b3

We rearrange the terms of (3.14) in the form k3b3 + k2b2 + k1b1 + k0b0 that we can

express ki as follows:


k3

k2

k1

k0

 =


z3 z2 z1 z0

z4 z3 z2 z1

z5 z4 z3 z2

z6 z5 z4 z3




a0

a1

a2

a3

 (3.15)

Doing the same to (3.13) gives us (3.16).

31



z6c0 + z5c1 + z4c2 + z3c3 + z2c4 + z1c5 + z0c6

=
1

120

[
z6120c(0)

+z5 (−40c(0) + 120c(1)− 60c(−1)− 30c(2) + 6c(−2) + 4c(3)− 1440c(∞))

+z4 (−150c(0) + 80c(1) + 80c(−1)− 5c(2)− 5c(−2) + 480c(∞))

+z3 (50c(0)− 70c(1)− 5c(−1) + 35c(2)− 5c(−2)− 5c(3) + 1800c(∞)) (3.16)

+z2 (30c(0)− 20c(1)− 20c(−1) + 5c(2) + 5c(−2)− 600c(∞))

+z1 (−10c(0) + 10c(1) + 5c(−1)− 5c(2)− c(−2) + c(3)− 360c(∞))

+z0 (120c(∞)) .
]

Using the equations in (3.12) we can write (3.16) in the form k3b3+k2b2+k1b1+k0b0

where


k3

k2

k1

k0

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 , (3.17)

where

P0 =
1

12
(12z6 − 4z5 − 15z4 + 5z3 + 3z2 − z1) a0,

P1 =
1

12
(12z5 + 8z4 − 7z3 − 2z2 + z1) (a0 + a1 + a2 + a3),

P2 =
1

24
(−12z5 + 16z4 − z3 − 4z2 + z1) (a0 − a1 + a2 − a3),

P3 =
1

24
(−6z5 − z4 + 7z3 + z2 − z1) (a0 + 2a1 + 4a2 + 8a3), (3.18)

P4 =
1

120
(6z5 − 5z4 − 5z3 + 5z2 − z1) (a0 − 2a1 + 4a2 − 8a3),

P5 =
1

120
(4z5 − 5z3 + z1) (a0 + 3a1 + 9a2 + 27a3),

P6 = (−12z5 + 4z4 + 15z3 − 5z2 − 3z1 + z0) a3.

Since the left-hand sides of (3.15) and (3.17) are equal, so the right-hand sides must

also be. Therefore, we obtain the TMVP-4 formula as follows:
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z3 z2 z1 z0

z4 z3 z2 z1

z5 z4 z3 z2

z6 z5 z4 z3




a0

a1

a2

a3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 , (3.19)

where Pi are as given in (3.18). Hence, with this formulation we define TMVP with

7 smaller TMVPs whose size are 1/4 of the original.

• TMVP-4 formula for multiplication modulo xn + 1:

Now, we apply the TMVP-4 formula to a TMVP representing polynomial multiplica-

tion modulo xn+1. Let a(x) = a0+a1x+a2x
2+a3x

3 and b(x) = b0+b1x+b2x
2+b3x

3

be two n-term polynomials, which are divided into n/4-term polynomials ai and bi.

Here, we assume that n is a divisible by four. Suppose c(x) is the product of a(x) and

b(x) modulo xn + 1, i.e. a(x)b(x) mod xn + 1 = c(x) = c0 + c1x + c2x
2 + c3x

3.

As we know from Section 2.2.1, the coefficients of c(x) can be calculated via the

following TMVP:
c0

c1

c2

c3

 =


a0 −a3 −a2 −a1
a1 a0 −a3 −a2
a2 a1 a0 −a3
a3 a2 a1 a0




b0

b1

b2

b3

 (3.20)

At least seven and four components are needed to identify the Toeplitz matrices in

(3.19) and (3.20), respectively. So, the matrix evaluations of TMVP-4 formula in

(3.9) become simpler for (3.20). Updating the Pi computations for i = 0, . . . , 6 in

TMVP-4 formula accordingly, we have the following formula, which we refer to as

TMVP-4 formula for xn + 1 and denote as TMVP*-4:


c0

c1

c2

c3

 =


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 =


a0 −a3 −a2 −a1
a1 a0 −a3 −a2
a2 a1 a0 −a3
a3 a2 a1 a0




b0

b1

b2

b3

 ,

where
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P0 =
1

12
(5a0 − 15a1 − 3a2 + 9a3) b0,

P1 =
1

12
(−7a0 + 8a1 + 11a2 + 2a3) (b0 + b1 + b2 + b3),

P2 =
1

24
(−a0 + 16a1 − 13a2 + 4a3) (b0 − b1 + b2 − b3),

P3 =
1

24
(7a0 − a1 − 5a2 − a3) (b0 + 2b1 + 4b2 + 8b3),

P4 =
1

120
(−5a0 − 5a1 + 7a2 − 5a3) (b0 − 2b1 + 4b2 − 8b3),

P5 =
1

120
(−5a0 + 3a2) (b0 + 3b1 + 9b2 + 27b3),

P6 = (15a0 + 3a1 − 9a2 + 5a3) b3.

3.2.1 Arithmetic Complexity Calculations

The arithmetic complexity calculations of the Toom-4, TMVP-4, and TMVP*-4 al-

gorithms are explained in this section. Similar to the three-way case, we omit the

multiplication/division-by-scalar operations.

• Arithmetic Complexity of Toom-4: To calculate the arithmetic complexity of

the multiplication of two n-term polynomials via Toom-4, we count the addi-

tions and multiplications required by each step of the Toom-4 algorithm.

1. Evaluation: The evaluation of the polynomial a(x) at the points S =

{0, 1,−1, 2,−2, 3,∞} is given as follows:

a(0) = a0

a(1) = a0 + a1 + a2 + a3

a(−1) = a0 − a1 + a2 − a3

a(2) = a0 + 2a1 + 4a2 + 8a3

a(−2) = a0 − 2a1 + 4a2 − 8a3

a(3) = a0 + 3a1 + 9a2 + 27a3

a(∞) = a3

11 additions of n/4-term polynomials with single-word coefficients are

required for the evaluations above. The same is also valid for the evalua-
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tions of b(x). Hence, the evaluation step of Toom-4 requires (11n/2)AS

operations.

2. Pointwise multiplication: In this step we multiply n/4-term polynomials

a(s) and b(s), and obtain the evaluations of the (n/2 − 1)-term polyno-

mials c(s) with double-word coefficients, for each s ∈ S. So, this step

requires seven multiplications of n/4-term polynomials, i.e., 7M(n/4).

3. Interpolation: We use Algorithm 12 to calculate the coefficients of c(x).

So, interpolation requires 20 additions of n/2− 1-term polynomials with

double-word coefficients, i.e., (10n− 20)AD.

4. Recomposition: Since the coefficients ci of c(x) are (n/2−1)-term poly-

nomials for i = 0, . . . , 6, there are six overlaps of length n/4− 1 occur in

this step. So, this step requires 6(n/4− 1)AD.

Hence, the total arithmetic complexity of n-term polynomial multiplication via

Toom-4 can be expressed as follows :

M(n) = 7M(n/4) + (11n/2)AS + (23n/2− 26)AD.

If AS = AD then we have

M ′(n) = 7M(n/4) + 17n− 26.

• Arithmetic complexity of TMVP-4: First, we compute the number of ad-

ditions and multiplications needed to perform each step of TMVP-4 formula.

Then, the sum of them gives the total arithmetic complexity.

1. Evaluation: The complexity of the evaluation step is computed in two

parts using Algorithm 13 and Algorithm 14.

– Matrix Evaluation: Since zi are n/4 × n/4-dimensional Toeplitz

matrices and each step of Algorithm 13 require n/2− 1 single-word

additions, matrix evaluation requires (21n/2− 21)AS operations.

– Vector Evaluation: The vectors ai are of length n/4. So, n/4 single-

word additions are performed in each step of Algorithm 14. There-

fore, (11n/4)AS is the total number of operations for vector evalua-

tions.
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Algorithm 13 Matrix Evaluations

of TMVP-4
1: S1 = 4z5 − 5z3

2: S2 = S1 + z1

3: S3 = z4 − z2

4: S4 = S2 − 5S3

5: S5 = S4 + 2z5

6: S6 = S3 + 4z4

7: S7 = 12z6 − 3S6

8: S8 = S7 − S2

9: S9 = z1 + 6z5

10: S10 = z2 − z0

11: S11 = 4S3 − S10

12: S12 = S11 − 3S2

13: S13 = 4z5 − z3

14: S14 = S2 + 2S13

15: S15 = 4z4 − z2

16: S16 = S14 + 2S15

17: S17 = z5 − z3

18: S18 = S2 + 2S17

19: S19 = −S18 − S3

20: S20 = S2 − 4S13

21: S21 = S20 + 4S15

Algorithm 14 Vector Evaluations

of TMVP-4
1: S1 = a0 + a2

2: S2 = a1 + a3

3: S3 = S1 + S2

4: S4 = S1 − S2

5: S5 = S1 + 3a2

6: S6 = 2(S2 + 3a3)

7: S7 = S5 + S6

8: S8 = S5 − S6

9: S9 = S5 + 5a2

10: S10 = 3(S1 + S6)

11: S11 = S9 + S10

2. Multiplication: In this step, seven n/4-dimensional TMVPs are required

to calculate Pi for i = 0, . . . , 6. So, we have 7M(n/4) for the multiplica-

tion step.

3. Recombination: Recombination step requires thirteen vector additions

as seen in Algorithm 15. Since Pi are vectors of length n/4 with double-

word coefficients, the total cost of recombination is (13n/4)AD.
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Algorithm 15 Recombination of Pi for TMVP-4
1: S1 = P1 + P2

2: S2 = P1 − P2

3: S3 = P3 + P4

4: S4 = P3 − P4

5: S5 = S1 + S3

6: S6 = P0 + P5

7: S7 = S5 + S6

8: S8 = S2 − 2S4

9: S9 = S8 + 3P5

10: S10 = S1 + 4S3

11: S11 = S10 + 9P5

12: S12 = S2 + 8S4

13: S13 = S12 + 27P5

Thus, adding all these costs gives the total arithmetic complexity of TMVP-4

formula as

M(n) = 7M(n/4) + (53n/4)AS + (13n/4)AD

or

M ′(n) = 7M(n/4) + 33n/2− 21.

• Arithmetic complexity of TMVP*-4: The matrix evaluation step is the only

difference between the computations of TMVP-4 and TMVP*-4. So, calcu-

lating the cost of the matrix evaluation step of TMVP*-4 would suffice to

obtain the total arithmetic complexity of TMVP*-4. The matrix evaluations

of TMVP*-4 can be done by nineteen Toeplitz matrix additions of dimension

n/4× n/4 with single-word coefficients. Therefore, the arithmetic complexity

of TMVP*-4 formula is

M(n) = 7M(n/4) + (49n/4)AS + (13n/4)AD.

If AS = AD, then the cost of the TMVP*-4 formula is represented as follows:

M ′(n) = 7M(n/4) + 31n/2− 19.
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CHAPTER 4

NEW APPROACH FOR TMVP: NON-SQUARE FORMULAS

In this section, we introduce some TMVP formulas with a non-square Toeplitz matrix,

which we call non-square TMVPs in short. To derive a non-square formula with a

Toeplitz matrix of dimension n ×m or m × n, in other words an (n ×m)- or (m ×
n)-way TMVP, we use a multiplication algorithm for n- and m-term polynomials.

Then, we derive new TMVPs with square Toeplitz matrices by composing non-square

TMVP formulas.

4.1 (2 × 3)- and (3 × 2)-way TMVPs

To derive these formulas, we use the schoolbook method and another multiplication

algorithm for two polynomials of degrees one and two. Let c(x) = c0 + c1x+ c2x
2 +

c3x
3 be the product of the polynomials a(x) = a0 + a1x+ a2x

2 and b(x) = b0 + b1x.

First, we use the schoolbook method, which we know that the coefficients ci are

computed as follows:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a1b1 + a2b0

c3 = a2b1

(4.1)
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Then, we choose S = {0, 1,−1,∞} as the set of evaluation points to calculate the

product polynomial. The evaluations are given in (4.2).

c(0) = a0b0

c(1) = (a0 + a1 + a2)(b0 + b1)

c(−1) = (a0 − a1 + a2)(b0 − b1)

c(∞) = a2b1.

(4.2)

To interpolate the coefficients ci, we use Algorithm 16.

Algorithm 16 Interpolation

1: S1 = c(0) ▷ c0 = S1

2: S2 = c(∞) ▷ c3 = S2

3: S3 =
c(1)−c(−1)

2
− S2 ▷ c1 = S3

4: S4 =
c(1)+c(−1)

2
− S1 ▷ c2 = S4

Therefore, the coefficients are as follows:

c0 = c(0)

c1 =
1

2
(c(1)− c(−1))− c(∞)

c2 =
1

2
(c(1) + c(−1))− c(0)

c3 = c(∞)

(4.3)

We multiply each equation corresponding to ci by a symbolic variable z3−i for i =

0, 1, 2, 3 and we take the sum of all equations. Then, we get (4.4) and (4.5) from (4.1)

and (4.3), respectively.

z3c0 + z2c1 + z1c2 + z0c3 =z3a0b0

+z2(a0b1 + a1b0)

+z1(a1b1 + a2b0)

+z0(a2b1),

(4.4)
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z3c0 + z2c1 + z1c2 + z0c3 =z3c(0)

+z2

(
c(1)− c(−1)

2
− c(∞)

)
+z1

(
c(1) + c(−1)

2
− c(0)

)
+z0c(∞),

(4.5)

Since the left-hand sides of the (4.4) and (4.5) are equal, so the right-hand sides

must be. We use this fact to derive two non-square TMVP formulas in the following

sections.

4.1.1 TMVP-(2 × 3) formula with four multiplications

The coefficient k1 of b1 equals to z2a0 + z1a1 + z0a2 from Equation (4.4) and equals

to 1/2(z1+z2)(a0+a1+a2)−1/2(z1−z2)(a0−a1+a2)+(z0−z2)a2 from Equation

(4.5). Similarly, the coefficient k0 of b0 equals to z3a0 + z2a1 + z1a2 from Equation

(4.4) and equals to (z3−z1)a0+1/2(z1+z2)(a0+a1+a2)+1/2(z1−z2)(a0−a1+a2)

from Equation (4.5). Therefore, the (2× 3)-way TMVP formula which we denote as

TMVP-(2× 3) is as follows:

 k1

k0

 =

 z2 z1 z0

z3 z2 z1




a0

a1

a2

 =

 P0−P1

2
+ P2

P0+P1

2
+ P3

 , (4.6)

where

P0 = (z1 + z2)(a0 + a1 + a2),

P1 = (z1 − z2)(a0 − a1 + a2),

P2 = (z0 − z2)a2,

P3 = (z3 − z1)a0.

Arithmetic complexity of the TMVP-(2× 3) formula is

M(n, s) = 4M(n/2, s/3) + (2n+ 7s/3− 4)AS + 2nAD

or

M ′(n, s) = 4M(n/2, s/3) + 4n+ 7s/3− 4.
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4.1.2 TMVP-(3 × 2) formula with four multiplications

Similar to the derivation of the TMVP-(2 × 3) formula, we use the coefficients

k2, k1, k0 of a2, a1, a0, respectively, to obtain (3 × 2)-way TMVP formula. We de-

note this formula by TMVP-(3× 2), and the formula is as follows:
k2

k1

k0

 =


z1 z0

z2 z1

z3 z2


 b0

b1

 =


P0+P1

2
+ P2

P0−P1

2

P0+P1

2
+ P3

 , (4.7)

where

P0 = (z1 + z2)(b0 + b1),

P1 = (z1 − z2)(b0 − b1),

P2 = (z0 − z2)b1,

P3 = (z3 − z1)b0.

Arithmetic complexity of the TMVP-(3× 2) formula is

M(n, s) = 4M(n/3, s/2) + (4n/3 + 3s− 4)AS + 4n/3AD

or

M ′(n, s) = 4M(n/3, s/2) + 8n/3 + 3s− 4.

4.2 (2 × 4)- and (4 × 2)-way TMVPs

To derive these formulas we utilize the algorithms for multiplying the polynomials

a(x) = a0 + a1x + a2x
2 + a3x

3 and b(x) = b0 + b1x. Let a(x)b(x) = c(x) =

c0 + c1x + c2x
2 + c3x

3 + c4x
4 be the product polynomial. The schoolbook method

gives the following:

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a1b1 + a2b0,

c3 = a2b1 + a3b0,

c4 = a3b1.

(4.8)
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For the other algorithm, we choose S = {0, 1,−1, 2,∞} as the set of evaluation

points to calculate the coefficients of the product polynomial c(x). The evaluations

are given in (4.9).

c(0) = a0b0

c(1) = (a0 + a1 + a2 + a3)(b0 + b1)

c(−1) = (a0 − a1 + a2 − a3)(b0 − b1)

c(2) = (a0 + 2a1 + 4a2 + 8a3)(b0 + 2b1)

c(∞) = a3b1.

(4.9)

To interpolate the coefficients ci, we use Algorithm 17.

Algorithm 17 Interpolation

1: S1 = c(0) ▷ c0 = S1

2: S2 = c(∞) ▷ c4 = S2

3: S3 =
c(1)+c(−1)

2
− S2 − S1 ▷ c2 = S3

4: S4 =
c(1)−c(−1)

2

5: S5 =
c(2)−c(0)

2
− 2S3 − 8S2

6: S6 =
S5−S4

3
▷ c3 = S6

7: S7 = S4 − S6 ▷ c1 = S7

Therefore, the coefficients are as follows:

c0 = c(0)

c1 = −
1

6
(3c(0) + 2c(−1) + c(2)) + c(1) + 2c(∞)

c2 =
1

2
(c(1) + c(−1))− c(0)− c(∞)

c3 =
1

6
(3c(0)− 3c(1)− c(−1) + c(2))− 2c(∞)

c4 = c(∞)

(4.10)

We multiply each equation corresponds to ci by a symbolic variable z4−i for i =

0, 1, 2, 3, 4 and we take the sum of all equations. Then, we get (4.11) and (4.12) from
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(4.8) and (4.10), respectively.

z4c0 + z3c1 + z2c2 + z1c3 + z0c4 =z4a0b0

+z3(a0b1 + a1b0)

+z2(a1b1 + a2b0)

+z1(a2b1 + a3b0)

+z0a3b1.

(4.11)

z4c0 + z3c1 + z2c2 + z1c3 + z0c4 =z4c(0)

+z3

(
−1

6
(3c(0) + 2c(−1) + c(2)) + c(1) + 2c(∞)

)
+z2

(
1

2
(c(1) + c(−1))− c(0)− c(∞)

)
+z1

(
1

6
(3c(0)− 3c(1)− c(−1) + c(2))− 2c(∞)

)
+z0c(∞).

(4.12)

Since the left-hand sides of the (4.11) and (4.12) are equal, so the right-hand sides

must be. We use this fact to derive two non-square TMVP formulas in the following

sections.

4.2.1 TMVP-(2 × 4) formula with five multiplications

Similar to the TMVP-(2× 3), we rearrange the terms of both the right-hand sides of

(4.11) and (4.12) in the form k1b1 + k0b0. This gives us the (2 × 4)-way formula,

which we denote by TMVP-(2× 4), as follows:

 k1

k0

 =

 z3 z2 z1 z0

z4 z3 z2 z1




a0

a1

a2

a3

 =

 3P1+P2−2P3

6
+ P4

3(P0+P1)−(P2+P3)
6

 ,

where
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P0 = (2z4 − z3 − 2z2 + z1)(a0),

P1 = (2z3 + z2 − z1)(a0 + a1 + a2 + a3),

P2 = (2z3 − 3z2 + z1)(a0 − a1 + a2 − a3),

P3 = (z3 − z1)(a0 + 2a1 + 4a2 + 8a3),

P4 = (2z3 − z2 − 2z1 + z0)(a3).

4.2.2 TMVP-(4 × 2) formula with five multiplications

Similarly, we rearrange the terms of both the right-hand sides of (4.11) and (4.12) in

the form k3a3 + k2a2 + k1a1 + k0a0. This gives us the (4 × 2)-way formula, which

we denote by TMVP-(4× 2), as follows:
k3

k2

k1

k0

 =


z1 z0

z2 z1

z3 z2

z4 z3


 b0

b1

 =


3P1+P2−8P3

6
+ P4

3P1−P2−4P3

6

3P1+P2−2P3

6

3(P0+P1)−(P2+P3)
6

 ,

where

P0 = (2z4 − z3 − 2z2 + z1)(b0),

P1 = (2z3 + z2 − z1)(b0 + b1),

P2 = (2z3 − 3z2 + z1)(b0 − b1),

P3 = (z3 − z1)(b0 + 2b1),

P4 = (2z3 − z2 − 2z1 + z0)(b1).

4.3 (3 × 4)- and (4 × 3)-way TMVPs

To derive these formulas we utilize the algorithms for multiplying the polynomials

a(x) = a0 + a1x+ a2x
2 + a3x

3 and b(x) = b0 + b1x+ b2x
2. Let a(x)b(x) = c(x) =

c0 + c1x + c2x
2 + c3x

3 + c4x
4 + c5x

5 be the product polynomial. The schoolbook
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method gives the following:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

c3 = a1b2 + a2b1 + a3b0

c4 = a2b2 + a3b1

c5 = a3b2

(4.13)

For the other algorithm we choose S = {0, 1,−1, 2,−2,∞} as the set of evaluation

points. The evaluations of c(x) at these points are given in (4.14).

c(0) = a0b0

c(1) = (a0 + a1 + a2 + a3)(b0 + b1 + b2)

c(−1) = (a0 − a1 + a2 − a3)(b0 − b1 + b2)

c(2) = (a0 + 2a1 + 4a2 + 8a3)(b0 + 2b1 + 4b2)

c(−2) = (a0 + 2a1 + 4a2 + 8a3)(b0 − 2b1 + 4b2)

c(∞) = a3b2.

(4.14)

So, the coefficients are as follows:

c0 =c(0),

c1 =
2(c(1)− c(−1))

3
− c(2)− c(−2)

12
+ 4c(∞),

c2 =
−5c(0)

4
+

2(c(1) + c(−1))
3

− c(2) + c(−2)
24

,

c3 =
−c(1) + c(−1)

6
+

c(2)− c(−2)
12

− 5c(∞),

c4 =
c(0)

4
− c(1) + c(−1)

6
+

c(2) + c(−2)
24

,

c5 =c(∞).

(4.15)

We multiply each equation corresponding to ci by a symbolic variable z5−i for i =

0, . . . , 5 and we take the sum of all equations. Then, we get (4.16) and (4.17) from

(4.13) and (4.15), respectively.
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z5c0 + z4c1 + z3c2 + z2c3 + z1c4 + z0c5 =z5a0b0

+z4(a0b1 + a1b0)

+z3(a0b2 + a1b1 + a2b0)

+z2(a1b2 + a2b1 + a3b0)

+z1(a2b2 + a3b1)

+z0a3b2.

(4.16)

z5c0 + z4c1 + z3c2 + z2c3 + z1c4 + z0c5 =z5c(0)

+z4

(
2(c(1)− c(−1))

3
− c(2)− c(−2)

12
+ 4c(∞)

)
+z3

(
−5c(0)

4
+

2(c(1) + c(−1))
3

− c(2) + c(−2)
24

)
+z2

(
−c(1) + c(−1)

6
+

c(2)− c(−2)
12

− 5c(∞)

)
+z1

(
c(0)

4
− c(1) + c(−1)

6
+

c(2) + c(−2)
24

)
+z0c(∞).

(4.17)

4.3.1 TMVP(3 × 4) formula with six multiplications

Similar to the other formulas, we rearrange the terms of both the right-hand sides

of (4.16) and (4.17) in the form k2b2 + k1b1 + k0b0. This gives us the (3 × 4)-way

formula, which we denote by TMVP-(3× 4), as follows:


k2

k1

k0

 =


z3 z2 z1 z0

z4 z3 z2 z1

z5 z4 z3 z2




a0

a1

a2

a3

 =


P1+P2+P3+P4

6
+ P5

P1−P2

6
+ P3−P4

12

P1+P2

6
+ 6P0+P3+P4

24

 ,

where

P0 = (4z5 − 5z3 + z1)(a0),

P1 = (4z4 + 4z3 − z2 − z1)(a0 + a1 + a2 + a3),

P2 = (−4z4 + 4z3 + z2 − z1)(a0 − a1 + a2 − a3),
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P3 = (−2z4 − z3 + 2z2 + z1)(a0 + 2a1 + 4a2 + 8a3),

P4 = (2z4 − z3 − 2z2 + z1)(a0 − 2a1 + 4a2 − 8a3),

P5 = (4z4 − 5z2 + z0)(a3).

4.3.2 TMVP-(4 × 3) formula with six multiplications

We rearrange the terms of both the right-hand sides of (4.16) and (4.17) in the form

k3a3 + k2a2 + k1a1 + k0a0. This gives us the (4× 3)-way formula, which we denote

by TMVP-(4× 3), as follows:
k3

k2

k1

k0

 =


z2 z1 z0

z3 z2 z1

z4 z3 z2

z5 z4 z3




b0

b1

b2

 =


P1−P2

6
+ P3−P4

3
+ P5

P1+P2+P3+P4

6

P1−P2

6
+ P3−P4

12

P1+P2

6
+ 6P0+P3+P4

24

 ,

where

P0 = (4z5 − 5z3 + z1)(b0),

P1 = (4z4 + 4z3 − z2 − z1)(b0 + b1 + b2),

P2 = (−4z4 + 4z3 + z2 − z1)(b0 − b1 + b2),

P3 = (−2z4 − z3 + 2z2 + z1)(b0 + 2b1 + 4b2),

P4 = (2z4 − z3 − 2z2 + z1)(b0 − 2b1 + 4b2),

P5 = (4z4 − 5z2 + z0)(b2).

4.4 Composing non-square formulas

By composing non-square formulas, we can derive other square or non-square for-

mulas. The different TMVP split values are given in Table 4.1 by composing the

non-square TMVP formulas proposed in this section. The third column of the sixth

row of Table 4.1 shows that composing the TMVP-(3 × 2) and TMVP-(3 × 4) for-

mulas would result in a TMVP-(8 × 9) formula. Similarly, as we can see in the last

column of the sixth row of the table, composing TMVP-(3 × 4) and TMVP-(4 × 3)

gives a twelve-way TMVP formula (TMVP-12).
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Table 4.1: Dimension of the Composed Split Formulas
TMVP (2 × 3) (3 × 2) (2 × 4) (4 × 2) (3 × 4) (4 × 3)

(2 × 3) (4× 9) 6 (4× 12) (8× 6) (6× 12) (8× 9)

(3 × 2) 6 (9× 4) (6× 8) (12× 4) (9× 8) (12× 6)

(2 × 4) (4× 12) (6× 8) (4× 16) 8 (6× 16) (8× 12)

(4 × 2) (8× 6) (12× 4) 8 (16× 4) (12× 8) (16× 6)

(3 × 4) (6× 12) (9× 8) (6× 16) (12× 8) (9× 16) 12
(4 × 3) (8× 9) (12× 6) (8× 12) (16× 6) 12 (16× 9)

In this section, we use the TMVP in (4.18) as an example to explain how we compose

the TMVP-(2× 3) and TMVP-(3× 2) formulas to obtain six-way TMVP formulas.

A.B =



a5 a4 a3 a2 a1 a0

a6 a5 a4 a3 a2 a1

a7 a6 a5 a4 a3 a2

a8 a7 a6 a5 a4 a3

a9 a8 a7 a6 a5 a4

a10 a9 a8 a7 a6 a5





b0

b1

b2

b3

b4

b5


. (4.18)

4.4.1 Six-way TMVP formula with sixteen multiplications

We can derive two six-way TMVP formulas with sixteen multiplications by compos-

ing the TMVP-(2× 3) and TMVP-(3× 2) formulas in different order.

1. Applying TMVP-(3× 2) and TMVP-(2× 3) formulas consecutively gives the

following six-way TMVP formula which we denote by TMVP-6-1:

A.B =



P0−P1+P4−P5

4
+ P2+P6+P8−P9

2
+ P10

P0+P1+P4+P5

4
+ −P3−P7+P8+P9

2
− P11

P0−P1−P4+P5

4
+ P2−P6

2

P0+P1−P4−P5

4
+ −P3+P7

2

P0−P1+P4−P5

4
+ P2+P6−P12+P13

2
− P14

P0+P1+P4+P5

4
+ −P3−P7−P12−P13

2
+ P15


, (4.19)
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where

P0 = (a4 + a5 + a6 + a7)(b0 + b1 + b2 + b3 + b4 + b5),

P1 = (a4 − a5 + a6 − a7)(b0 − b1 + b2 + b3 − b4 + b5),

P2 = (a3 − a7)(b2 + b5),

P3 = (a4 − a8)(b0 + b3),

P4 = (a4 + a5 − a6 − a7)(b0 + b1 + b2 − b3 − b4 − b5),

P5 = (a4 − a5 − a6 + a7)(b0 − b1 + b2 − b3 + b4 − b5),

P6 = (a3 − 2a5 + a7)(b2 − b5),

P7 = (a4 − 2a6 + a8)(b0 − b3),

P8 = (a1 + a2 − a6 − a7)(b3 + b4 + b5),

P9 = (a1 − a2 − a6 + a7)(b3 − b4 + b5),

P10 = (a0 − a2 − a5 + a7)(b5),

P11 = (a1 − a3 − a6 + a8)(b3),

P12 = (a4 + a5 − a8 − a9)(b0 + b1 + b2),

P13 = (a4 − a5 − a8 + a9)(b0 − b1 + b2),

P14 = (a3 − a5 − a7 + a9)(b2),

P15 = (a4 − a6 − a8 + a10)(b0).

The TMVP-6 formula calls sixteen TMVPs of dimension n/6 and requires di-

visions by 4.

M(n, n) =4M(n/3, n/2) + (13n/4− 4)AS + (4n/3)AD

=4 [4M(n/6, n/6) + (11n/6− 4)AS + (2n/3)AD]

+ (13n/4− 4)AS + (4n/3)AD

=16M(n/6, n/6) + (35n/3− 20)AS + 4nAD

If AS = AD, then we have

M(n) = 16M(n/6) + 47n/3− 20.

2. Applying TMVP-(2× 3) and TMVP(3× 2) formulas consecutively gives the
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following six-way TMVP formula which we denote by TMVP-6-2:

A.B =



P0+P1−P4−P5

4
+ P2−P6+P8+P9

2
+ P10

P0−P1−P4+P5

4
+ P8−P9

2

P0+P1−P4−P5

4
+ −P3+P7+P9+P9

2
− P11

P0+P1+P4+P5

4
+ P2+P6−P12−P13

2
− P14

P0−P1+P4−P5

4
+ −P12+P13

2

P0+P1+P4+P5

4
+ −P3−P7−P12−P13

2
+ P15


, (4.20)

where

P0 = (a3 + a4 + a5 + a6)(b0 + b1 + b2 + b3 + b4 + b5),

P1 = (a3 − a4 + a5 − a6)(b0 − b1 + b2 − b3 + b4 − b5),

P2 = (a2 − a6)(b1 + b3 + b5),

P3 = (a3 − a7)(b0 + b2 + b4),

P4 = (a3 + a4 − a5 − a6)(b0 + b1 − b2 − b3 + b4 + b5),

P5 = (a3 − a4 − a5 + a6)(b0 − b1 − b2 + b3 + b4 − b5),

P6 = (a2 − 2a4 + a6)(b1 − b3 + b5),

P7 = (a3 − 2a5 + a7)(b0 − b2 + b4),

P8 = (a1 + a2 − a5 − a6)(b4 + b5),

P9 = (a1 − a2 − a5 + a6)(b4 − b5),

P10 = (a0 − a2 − a4 + a6)(b5),

P11 = (a1 − a3 − a5 + a7)(b4),

P12 = (a3 + a4 − a8 − a9)(b0 + b1),

P13 = (a3 − a4 − a8 + a9)(b0 − b1),

P14 = (a2 − a4 − a7 + a9)(b1),

P15 = (a3 − a5 − a8 + a10)(b0).

This formula calls 16 TMVPs of dimension n/6 and requires division by 4.

M(n, n) =4M(n/2, n/3) + (13n/4− 4)AS + (2n)AD

=4 [4M(n/6, n/6) + (5n/3− 4)AS + (2n/3)AD]

+ (13n/4− 4)AS + (2n)AD

=16M(n/6, n/6) + (11n− 20)AS + (14n/3)AD
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If AS = AD, then we have

M ′(n) = 16M(n/6) + 47n/3− 20.

So, no matter in which order we use the TMVP-(2× 3) and TMVP-(3× 2) formulas,

we obtain a six-way formula with sixteen n/6-dimensional TMVPs. Similarly, an

eight-way formula composed from TMVP-(2× 4) and TMVP-(4× 2) would require

twenty-five n/8-dimensional TMVPs, and a twelve-way formula composed from

TMVP-(3×4) and TMVP-(4×3) would require thirty-six n/12-dimensional TMVPs.

The number of multiplications a formula requires gives a rough idea of its efficiency.

While they require more multiplications, the number of multiplication/division-by-

scalar operations required by six-, eight-, and twelve-way formulas introduced in this

chapter are less than the formulas derived by composing the TMVP-2, TMVP-35,

TMVP-4 formulas.
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CHAPTER 5

APPLICATION TO SABER

As explained in Section 2.2.1, polynomial multiplication modulo xn ± 1 can be ex-

pressed as a TMVP. Therefore, developing efficient algorithms for Toeplitz matrix-

vector multiplication leads to efficient multiplication algorithms for polynomial quo-

tient rings with the modulus polynomial xn± 1. We utilize the new TMVP-4 formula

proposed in Section 3 to develop an efficient residue polynomial multiplication algo-

rithm.

5.1 TMVP-based Multiplication in Z2m[x]/⟨x256 + 1⟩

Let a(x) =
∑255

i=0 aix
i and b(x) =

∑255
i=0 bix

i be two polynomials in the ring R2m =

Z2m [x]/⟨x256 + 1⟩. The coefficients of the product polynomial c(x) =
∑255

i=0 cix
i ∈

R2m can be calculated via the TMVP given in (5.1).



c0

c1
...

c254

c255


=



a0 −a255 . . . −a2 −a1
a1 a0 . . . −a3 −a2
...

... . . . ...
...

a254 a253 . . . a0 −a255
a255 a254 . . . a1 a0





b0

b1
...

bn−2

bn−1


. (5.1)

To calculate (5.1) efficiently, we utilize TMVP-4 formula proposed in Chapter 3,

together with the formulas in the literature that we stated in Chapter 2. We calculate

(5.1) via TMVP-4 as follows:
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C0

C1

C2

C3

 =


A0 −A3 −A2 −A1

A1 A0 −A3 −A2

A2 A1 A0 −A3

A3 A2 A1 A0




B0

B1

B2

B3



=


P1 − P2 + 8P3 − 8P4 + 27P5 + P6

P1 + P2 + 4P3 + 4P4 + 9P5

P1 − P2 + 2P3 − 2P4 + 3P5

P0 + P1 + P2 + P3 + P4 + P5

 ,

(5.2)

where

P0 =
(5A0 − 15A1 − 3A2 + 9A3)B0

12
,

P1 =
(−7A0 + 8A1 + 11A2 + 2A3) (B0 +B1 +B2 +B3)

12
,

P2 =
(−A0 + 16A1 − 13A2 + 4A3) (B0 −B1 +B2 −B3)

24
,

P3 =
(7A0 − A1 − 5A2 − A3) (B0 + 2B1 + 4B2 + 8B3)

24
,

P4 =
(−5A0 − 5A1 + 7A2 − 5A3) (B0 − 2B1 + 4B2 − 8B3)

120
,

P5 =
(−5A0 + 3A2) (B0 + 3B1 + 9B2 + 27B3)

120
,

P6 = (15A0 + 3A1 − 9A2 + 5A3)B3,

where the partitions Ai are Toeplitz matrices of dimension 64, and Bi, Ci are vectors

of length 64 for i = 0, . . . , 3. The number of additions required to compute Pi de-

creases by 4n = 1024 compared to (3.19), because of the special form of the Toeplitz

matrix in (5.2).

Utilizing TMVP formulas allows us to split our computation into many similar com-

putations of smaller sizes. We can use these splitting methods consecutively to reduce

the dimension to a level that the schoolbook matrix-vector multiplication is more ef-

ficient than using the formulas. TMVP formulas are more efficient than schoolbook

matrix-vector multiplication for large n values, but for small dimensions like n = 2,

the schoolbook method is more efficient than TMVP formulas. The level of switching

the multiplication method to the schoolbook, i.e., the threshold, might differ depend-

ing on the dimension n, the modulus q, the formula being used, and the implementa-
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tion platform. The threshold must be chosen carefully depending on those factors to

develop efficient algorithms.

In our case, we want to establish a TMVP-based multiplication algorithm utilizing

the TMVP-4 formula for Saber and implement it on the ARM Cortex-M4 microcon-

troller. To make use of the benefits of SIMD instructions, we place the components

of the matrices (or equivalently, the coefficients of the polynomials) into registers

pairwise. It means that we operate on modulo 216. In other words, we develop an

algorithm for multiplication inR216 , and then we apply a modular reduction to obtain

a result inR2m for m < 16, which can be done easily by deleting the most significant

16 −m bits or equivalently taking the least significant m bits. One caveat of work-

ing in Z216 is the division by powers of two. Since 2 has no inverse in Z216 , shifting

right by r bits is the only way of performing a division by 2r after reduction modulo

216. This may cause a loss in the most significant bits of the final result. A formula

that requires a division by 2r can work correctly if m + r ≤ 16 for the modulus 2m.

To be more precise, for the modulus q = 213 = 2m of Saber, we have r ≤ 3; that

is, any method that requires a division by 2r with r ≤ 3 works correctly. So, we

can afford to lose at most three bits. We already start our multiplication algorithm

with a layer of TMVP-4 formula, which requires divisions by 23 and obtain seven

TMVPs of dimension 64. For these 64-dimensional TMVP computations, we can not

use a formula that contains a division by a power of two because we lose the max-

imum number of bits we can by applying the TMVP-4 formula. It leaves us only

two options: the two-way TMVP formula TMVP-2 given in (2.3) or the schoolbook

matrix-vector multiplication since none of them require a division by a power of two.

At this point, we must determine the dimension for which the schoolbook matrix-

vector multiplication is faster than the TMVP2 formula. For this, we implement the

schoolbook matrix-vector multiplication and the TMVP2 formula for small dimen-

sions and compare their cycle counts. Since n = 256 and we use only four- and

two-way split methods, we restrict our search to powers of two. In Section 7.1, we

explain how we determine 16 as the threshold value for ARM Cortex-M4 and give

the results of the application to Saber. Thus, we develop a multiplication algorithm

for Saber, which uses a layer of TMVP-4 followed by two layers of TMVP-2, and

completes the multiplication step with 63 schoolbook matrix-vector multiplications
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of dimension 16. After applying the recombination steps according to the path we

use, we obtain the result of (5.1).

256
TMVP-4−−−−→ 64

TMVP-2−−−−→ 32
TMVP-2−−−−→ 16

5.2 Improved multiplication for Saber

For large dimensions using TMVP formulas is more efficient than the schoolbook

method, whereas the schoolbook is superior to TMVP formulas for small dimensions.

Since Saber is a scheme based on the MLWR problem, it requires matrix-vector mul-

tiplications (e.g., ATs in line 4 of Algorithm 3) and inner products of two vectors

(e.g., bTs′ in line 4 of Algorithm 4) with polynomial components. The components

of the matrices and the vectors are fromRq orRp. For example, for ℓ = 2, the matrix-

vector multiplication in (5.3) is used in both encryption and decryption algorithms,

where aij and sj are polynomials in Z213 [x]/⟨x256 + 1⟩.

a00 a01

a10 a11

s0

s1

 =

a00s0 + a01s1

a10s0 + a11s1

 . (5.3)

From Section 2.2.1, we know that each multiplication aijsj in Z213 [x]/⟨x256 + 1⟩ can

be represented as a TMVP AijSj where Aij is the Toeplitz matrix formed with the co-

efficients of the polynomial aij , and Sj is the vector representation of the coefficients

of the polynomial sj . So, the right hand side of (5.3) is equivalent to the following:

A00S0 + A01S1

A10S0 + A11S1

 , (5.4)

where AijSj is a 256-dimensional TMVPs of the form (5.2). In the generic TMVP-

based algorithm for multiplication in Z213 [x]/⟨x256 + 1⟩ we propose in Section 5.1,

we perform the evaluation, multiplication, and recombination steps for each AijSj

calculation and we obtain the final result with 256 additions. In our improved algo-

rithm, we use a non-recursive version of the block recombination method to reduce

the number of operations, expecting to increase efficiency.
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Let us explain our modified version of the block recombination method on the TMVPs

in (5.4). We use the notation Opi1i2...it
to denote the consecutive calculations of the

operation Op corresponding to TMVP-i1, TMVP-i2, . . . , TMVP-it formulas, respec-

tively. For example, CVF422 denotes the component vector formation step corre-

sponds to the vector evaluations (Evctr) of a layer formula (5.2) followed by two layers

of formula (2.3) and is defined as follows:

CVF422(V ) = (CVF22(V0),

CVF22(V0 + V1 + V2 + V3),

CVF22(V0 − V1 + V2 − V3),

CVF22(V0 + 2V1 + 4V2 + 8V3),

CVF22(V0 − 2V1 + 4V2 + 8V3),

CVF22(V0 + 3V1 − 9V2 + 27V3),

CVF22(V3)),

CVF22(W ) = (CVF2(W0) + CVF2(W1),

CVF2(W1),

CVF2(W0))

CVF2(B) = (B0 +B1, B1, B0),

where

V =


V0

V1

V2

V3

 ,W =

 W0

W1

 , B =

 B0

B1



In the above definition, CVF2 denotes the vector evaluation corresponds to a layer of

formula (2.3) and CVF22 denotes two consecutive CVF2 evaluations. After applying

CVF422 to a vector of length 256, we end up with 63 vectors of length 16. Component

matrix formation CMF422 and reconstruction R224 are defined similarly by using the

formulas (2.3) and (5.2). The output of CMF422(A) for a 256-dimensional Toeplitz

matrix A is 63 Toeplitz matrices of dimension 16 × 16. The component multiplica-

tion step in our optimized algorithm is componentwise multiplication of two vectors

of length 63 which have 16-dimensional Toeplitz matrices and vectors of length 16
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as their components, respectively. We refer to this operation as CM422 which require

63 TMVPs of dimension 16 which are calculated via schoolbook matrix-vector mul-

tiplication. With our generic algorithm proposed in Section 5.1, computation of (5.4)

requires 4 CMF422, 4 CVF422, 4 CM422, 4 R224, and 256 additions. With our opti-

mized algorithm that utilizes an altered version of the block recombination method,

the computation of (5.4) requires 4 CMF422, 2 CVF422, 4 CM16, 126 additions, and 2

R224. Therefore, our optimization reduces the number of operations. We also observe

this improvement in our implementation, the results of which we share in the next

chapter.

Figure 5.1: Diagram of the Generic TMVP-based Algorithm
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Figure 5.2: Diagram of the Improved TMVP-based Algorithm
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CHAPTER 6

APPLICATION TO NTRU

In this chapter, we propose algorithms utilizing the TMVP-4 formula for all parameter

sets of NTRU. Unlike Saber, NTRU uses xn − 1 as the modulus polynomial where

n takes one of the prime values from {509, 677, 701, 821}. The TMVPs representing

the polynomial multiplication modulo xn − 1 are also n-dimensional. Using a split

formula is not possible when the dimension of TMVP is prime. In the following

section, we explain how we pad the prime dimensional TMVPs to enable using the

formulas.

6.1 Padding prime-dimensional TMVPs

NTRU uses multiplication in the ring Zq[x]/⟨xn − 1⟩ for key generation, encryption

and decryption algorithms. As we mention in Section 2.2.1, we can represent the

multiplication c(x) = a(x)b(x) in Zq[x]/⟨xn − 1⟩ as the following TMVP:



c0

c1
...

cn−2

cn−1


=



a0 an−1 . . . a2 a1

a1 a0 . . . a3 a2
...

...
. . .

...
...

an−2 an−3 . . . a0 an−1

an−1 an−2 . . . a1 a0





b0

b1
...

bn−2

bn−1


(6.1)

where a(x) =
∑n−1

i=0 aix
i, b(x) =

∑n−1
i=0 bix

i, and c(x) =
∑n−1

i=0 cix
i. The n × n

Toeplitz matrix in (6.1) also has the cyclic property. A Toeplitz matrix with this

property can be specified by only n of its components instead of 2n−1, which allows

to use simplified versions of TMVP formulas. For all parameter sets of NTRU, the
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modulus q is a power of two and the dimension n is a prime. The prime-dimension

prevents us using the split formulas directly. It would not be convenient to use the

schoolbook method for efficient matrix-vector multiplication for these dimensions.

So, we pad these prime-dimensional TMVPs to facilitate the TMVP formulas. Our

padding strategy for the Toeplitz matrix in (6.1) is adding as many zeros as needed to

the first row and the first column until we attain the targeted dimension and complete

the rest of the entries in such a way that preserves the Toeplitz matrix structure. On

the other hand, we append just as many zero entries at the end of the vector. For

example, if we decide to obtain an m-dimensional TMVP from (6.1) by padding, we

would have the following TMVP:



c0

c1

c2

.

.

.

cm−n

.

.

.

cn−2

cn−1

cn

.

.

.

cm−2

cm−1



=



a0 an−1 . . . a2 a1 0 . . . 0

a1 a0 . . . a3 a2 a1 . . . 0

a2 a1 . . . a4 a3 a2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

am−n am−n−1 . . . am−n+2 am−n+1 am−n . . . a1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

an−2 an−3 . . . a0 an−1 an−2 . . . a2n−m−1

an−1 an−2 . . . a1 a0 an−1 . . . a2n−m

0 an−1 . . . a2 a1 a0 . . . an−2

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

0 0 an−1 am−n am−n−1 am−n−2 . . . an−1

0 0 . . . am−n+1 am−n am−n−1 . . . a0





b0

b1

b2

.

.

.

bm−n

.

.

.

bn−2

bn−1

0

.

.

.

0

0



(6.2)

Here, we assume that the dimension m is a proper composite value for using TMVP

formulas. As seen in (6.2), we append m− n zero entries at the end of the vector and

the first row and column of the Toeplitz matrix in (6.1). Then, we fill the entries so that

elements on a line parallel to the main diagonal are the same. Therefore, we obtain a

TMVP of a targeted dimension with our padding technique. The padding technique

we suggest gives us a proper dimensional TMVP, but it cannot preserve the cyclic

feature of the matrix. Although this situation prevents us from using the simplified

version of TMVP formulas, this does not hinder our algorithms from performing

efficiently. After padding, we calculate the TMVP in (6.2) efficiently via TMVP split

formulas and obtain the resulting vector of length m. Finally, ignoring the last m− n

entries of this vector gives us the result of (6.1), which is a vector of length n. Prior to

all of these steps, we first need to decide the dimension m before padding. We decide

the suitable dimensions depending on several factors, such as n, split formulas we

use, and the size for small schoolbook multiplications. Since we want to utilize the
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TMVP-4 formula, the first condition on the dimension is to be divisible by four. In

the following sections, we elaborately explain our choices for dimensions of padded

TMVPs for every parameter set of NTRU.

6.2 TMVP-based Multiplication for NTRU

In the following sections, we present the algorithms we propose for ntruhps2048509,

ntruhrss701, ntruhps2048677, and ntruhps4096821. First, we pad the TMVP,

and then we apply various TMVP formulas consecutively until we reach the threshold

dimension at which the schoolbook matrix-vector multiplication is more reasonable

than the formulas.

6.2.1 Multiplication Algorithm for ntruhps2048509

For this parameter set of NTRU, we have q = 211 and n = 509 with the modu-

lus polynomial x509 − 1. So, ntruhps2048509 requires multiplication in the ring

Z211 [x]/⟨x509 − 1⟩ which can be calculated via the TMVP in (6.3).

c0

c1
...

c507

c508


=



a0 a508 . . . a2 a1

a1 a0 . . . a3 a2
...

... . . . ...
...

a507 a506 . . . a0 a508

a508 a507 . . . a1 a0





b0

b1
...

b507

b508


(6.3)

We would not consider the schoolbook matrix-vector multiplication algorithm as an

option for this dimension. So, we should pad both the Toeplitz matrix and the vec-

tor in (6.3) to obtain a suitable dimension for using the TMVP-4 formula followed

by other TMVP formulas, which yields small dimensional TMVPs. Since we want

to use the TMVP-4 formula, we start checking the options for dimensions with the

smallest multiple of four that exceeds 509, which is 512. The TMVP-4 formula yields

seven 128-dimensional TMVPs when it is applied to a 512-dimensional TMVP. Since

128 is a power of two and applying another TMVP-4 formula is out of the question,

we are free to apply as many layers of TMVP-2 formulas as needed until we reach a

63



size in which the schoolbook is faster than TMVP formulas. According to our imple-

mentation results on ARM Cortex-M4 (Section 7), we choose the threshold as 16, as

we do for Saber.



c0

c1

c2
...
...

c507

c508

c509

c510

c511



=



a0 a508 a507 . . . a3 a2 a1 0 0 0

a1 a0 a508 . . . a4 a3 a2 a1 0 0

a2 a1 a0 . . . a5 a4 a3 a2 a1 0
...

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...

a507 a506 a505 . . . a1 a0 a508 a507 a506 a505

a508 a507 a506 . . . a2 a1 a0 a508 a507 a506

0 a508 a507 . . . a3 a2 a1 a0 a508 a507

0 0 a508 . . . a4 a3 a2 a1 a0 a508

0 0 0 . . . a5 a4 a3 a2 a1 a0





b0

b1

b2
...
...

bn−2

bn−1

0

0

0



(6.4)

As seen in (6.4), we add three zero entries at the end of the first row and the first col-

umn of the Toeplitz matrix and complete the rest accordingly to preserve the Toeplitz

structure. Similarly, we pad the vector with three zero entries as well. We use the

TMVP-4 formula followed by three layers of the TMVP-2 formula and end up with

7.3.3.3=189 schoolbook matrix-vector multiplications of dimension 16.

512
TMVP-4−−−−→ 128

TMVP-2−−−−→ 64
TMVP-2−−−−→ 32

TMVP-2−−−−→ 16

We use the name TMVPmul-509-512 to refer the algorithm following the path given

above. TMVPmul-509-512 performs 189 schoolbook matrix-vector multiplications

and gives us 189 vectors of length 16. Then, we recombine these vectors according to

the formulas we use, and obtain (c0, c1, . . . , c508, c509, c510, c511) of length 512 as the

result of (6.4). Omitting the last three terms c509, c510, c511 gives us (c0, c1, . . . , c508)

of length 509 which is the result of (6.3) that we were looking for at the beginning.

The results of the Cortex-M4 implementation of the algorithm TMVPmul-509-512

are given in Table 7.2. The results show that TMVPmul-509-512 is the most efficient

algorithm for ntruhps2048509 compared to any other algorithm in the literature. For

the algorithms in the next sections, we skip some detailed explanations we give in this

section to prevent unnecessary repetitions.
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6.2.2 Multiplication Algorithm for ntruhrss701

We have q = 213, n = 701, and f(x) = x701 − 1 for ntruhrss701. Just like in

the previous case, we start checking the dimensions with the smallest multiple of

four that is larger than 701, which is 704. After applying the TMVP-4 formula to

a 704-dimensional TMVP, we have seven 176-dimensional TMVPs. Since 176 is a

multiple of 16, we can apply four layers of the TMVP-2 formula and end up with 567

TMVPs of dimension 11 to be calculated via the schoolbook method. We named this

algorithm TMVPmul-701-704.

704
TMVP-4−−−−→ 176

TMVP-2−−−−→ 88
TMVP-2−−−−→ 44

TMVP-2−−−−→ 22
TMVP-2−−−−→ 11

We implement the algorithm TMVPmul-701-704 and improve the performance of

multiplication in Z213 [x]/⟨x701 − 1⟩. However, it is known that accessing addresses

that are not divisible by four causes a performance hit. Therefore, we see no harm

in checking the higher dimensions to find a path that requires small and even dimen-

sional TMVPs to be calculated via the schoolbook matrix-vector multiplication. So,

we keep searching for the dimensions with small and even dimensional TMVPs at the

end to see whether the it works faster or not.

708
TMVP-4−−−−→ 177

TMVP-36−−−−−→ 59

712
TMVP-4−−−−→ 178

TMVP-2−−−−→ 89

716
TMVP-4−−−−→ 179

As can be seen above, for the values 708, 712, and 716 there do not exist a path

that ends up with a small dimension. Finally, we see that 720 is another possible

dimension for an efficient computation tracing the following path:

720
TMVP-4−−−−→ 180

TMVP-36−−−−−→ 60
TMVP-36−−−−−→ 20

TMVP-2−−−−→ 10

To make the first assessment of this algorithm which we call TMVPmul-701-720, we

implement the 10-dimensional schoolbook Toeplitz matrix-vector product and com-

pare the performance of two algorithms roughly on paper. The cycle counts of 10- and

11-dimensional schoolbook Toeplitz matrix-vector multiplications are 110 and 147.

65



Therefore, the TMVPmul-701-704 algorithm takes 567 ·147 = 83349 cycles and the

TMVPmul-701-720 algorithm takes 756·110 = 83160 cycles for performing school-

book multiplications. Since these values are very close to each other, we implement

the TMVPmul-701-720 algorithm to see whether it is faster than TMVPmul-701-

704 or not. The TMVPmul-701-704 algorithm is slightly faster than the TMVPmul-

701-720 but it consumes a little bit more stack memory. Therefore, both algorithms

can be preferred for efficient implementations. We use the results of TMVPmul-701-

704 for comparisons in Section 7.2. The results show that TMVPmul-701-704 is

faster than any other Cortex-M4 implementations in the literature.

6.2.3 Multiplication Algorithm for ntruhps2048677

For ntruhps2048677 the parameters are given as q = 211, n = 677, and f(x) =

x677 − 1. Following the same strategy, we start checking the dimensions with the

smallest multiple of four exceeding 677 and eliminate those requiring schoolbook

matrix-vector multiplications with dimensions larger than 16.

680
TMVP-4−−−−→ 170

TMVP-2−−−−→ 85

684
TMVP-4−−−−→ 171

TMVP-36−−−−−→ 57
TMVP-36−−−−−→ 19

688
TMVP-4−−−−→ 172

TMVP-2−−−−→ 86
TMVP-2−−−−→ 43

692
TMVP-4−−−−→ 173

696
TMVP-4−−−−→ 174

TMVP-36−−−−−→ 58
TMVP-2−−−−→ 29

700
TMVP-4−−−−→ 175

680 is the first one we try, which yields seven 170-dimensional TMVPs after apply-

ing the TMVP-4 formula. For 170, the only option is TMVP-2 which yields three

85-dimensional TMVPs. 85 is not a multiple of two or three, and it is too large for

the dimension of a TMVP to a compute via schoolbook algorithm. So, we continue

checking with 684, which yields 19-dimensional TMVPs after a layer of TMVP-4

followed by two layers of TMVP-36. We eliminate this path because 19 is not a small

enough dimension for an efficient schoolbook matrix-vector multiplication consid-

ering the implementation platform we use. For the dimensions 688, 692, 696, and

700, a path does not exist that ends up with small enough TMVPs via a combination
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of four-, three-, and two-way formulas. The next dimension is 704, which we have

already examined for ntruhrss701. Appending 27 zero entries at the end of the vec-

tor and the first row and column of the Toeplitz matrix gives us 704-dimensional

padded TMVP. The multiplication algorithm for ntruhps2048677 which we de-

note by TMVPmul-677-704 tracing the same path as TMVPmul-701-704 is imple-

mented on ARM Cortex-M4 and share the results in Table 7.2. Because of the same

motive explained above, we also implement the algorithm that uses 720 for the dimen-

sion of the padded matrix for ntruhps2048677 as well. We pad the TMVP similarly

with 43 zero entries and obtain a 720-dimensional padded TMVP. We denote this al-

gorithm by TMVPmul-677-720 tracing the same path as TMVPmul-701-720. The

results show that our implementation of TMVPmul-677-704 is the fastest compared

to other Cortex-M4 implementations in the literature.

In this work, for TMVPmul-677-720 we prefer to use the three-way TMVP formula

that requires six multiplications (TMVP-36) in (2.4). Here we should note that, since

the modulus of ntruhps2048677 is 211, the maximum value of i is 5, as explained in

Section 2.5. The three-way TMVP formula with five multiplications (TMVP-35) can

also be preferred for the TMVPmul-677-720 algorithm. TMVP-35 has lower arith-

metic complexity, but it requires divisions by two. Applying two layers of TMVP-35

formula (requires divisions by 22) after a layer of TMVP-4 (requires divisions by 23)

requires divisions by 25, i.e., shifting right by 5 bits. Since we make our calculations

over Z216 , this may cause losing the most significant five bits of some coefficients.

Fortunately, ntruhps2048677 can afford these losses because reducing the coeffi-

cients modulo 211 (i.e., masking the result with 0x07ff) removes those lost bits and

provides the correct result.

6.2.4 Multiplication Algorithm for ntruhps4096821

For this parameter set of NTRU, we have q = 212 and n = 821 with the modulus

polynomial x821 − 1. Starting with the nearest multiple of four which is 824, we
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check possible paths. For 824 and 828, we cannot find a path.

824
TMVP-4−−−−→ 206

TMVP-2−−−−→ 103

828
TMVP-4−−−−→ 207

TMVP-36−−−−−→ 69
TMVP-36−−−−−→ 23

For 832 we find the following path:

832
TMVP-4−−−−→ 208

TMVP-2−−−−→ 104
TMVP-2−−−−→ 52

TMVP-2−−−−→ 26
TMVP-2−−−−→ 13

We implement this algorithm that we call TMVPmul-821-832, and we observe that

it is faster than Toom but a little slower than NTT. Similar to the previous cases, we

also check for another path that ends up with a small dimension. We see that 864 is

another suitable dimension for the padded matrix. The multiplication algorithm we

propose for ntruhps4096821 which is referred by TMVPmul-821-864 traces the

following path:

864
TMVP-4−−−−→ 216

TMVP-36−−−−−→ 72
TMVP-36−−−−−→ 24

TMVP-2−−−−→ 12

Before implementing TMVPmul-821-864 completely, we implement 12-dimensional

schoolbook TMVP to compare the algorithms roughly. 12- and 13-dimensional school-

book TMVP calculations take 162 and 221 cycles, respectively. Therefore, TMVPmul-

821-832 takes 567 · 221 = 125307 cycles, whereas TMVPmul-821-864 takes 756 ·
162 = 122472 cycles. We implement TMVPmul-821-864 and observe that it is

slightly faster than TMVPmul-821-832. Unlike the previous cases, the larger di-

mensional padded matrix leads to a more efficient implementation because of the

even-dimensional schoolbook matrix-vector multiplications. The benchmark results

of TMVPmul-821-864 on ARM Cortex-M4 are given in Table 7.2. Note that, for a

similar reason we explained for ntruhps2048677 in the previous section, a layer of

TMVP-35 formula may be preferred instead one of the TMVP-36 in TMVPmul-821-

864.
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CHAPTER 7

IMPLEMENTATION AND BENCHMARKS

In this section, we share the cycle counts of the implementations of the schoolbook

matrix-vector multiplication and the TMVP-2 formula for small dimensions. The

benchmarking results for the application of our algorithms to Saber and NTRU are

also presented in this section.

7.1 Implementation Results for Saber

As explained in Section 5.1, to complete our multiplication algorithm, we need to

determine the maximum value of the dimension for which the schoolbook method

is faster than the TMVP-2 formula. For this, we compare the cycle counts of the

schoolbook method and the TMVP-2 formula for TMVPs of dimension n = 2t for

small t values.

For t = 1, we implement both the schoolbook matrix-vector multiplication and the

TMVP-2 formula, which require 10 and 16 clock cycles, respectively. We implement

the schoolbook matrix-vector multiplication and observe that it requires 23 clock cy-

cles for t = 2. We know that for t = 2, the TMVP-2 formula calls three schoolbook

matrix-vector multiplication of dimension 2, which would take more than 3 · 10 = 30

cycles. We do not implement the TMVP-2 formula for t = 2 and conclude that the

schoolbook method is preferable for this dimension. A similar observation shows

that also for t = 3, the schoolbook is faster. Table 7.1 shows the cycle counts of the

schoolbook matrix-vector multiplication and the TMVP-2 formula for various n = 2t

values.
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Table 7.1: Schoolbook vs. TMVP-2
t n SB(n) TMVP-2(n)
1 2 10 16
2 4 23 > 3× 10 = 30

3 8 67 > 3× 23 = 69

4 16 280 401
5 32 1313 1082

For t = 4, schoolbook method takes 280 cycles which is not less than 3 · 67 = 201.

So, we implement the TMVP-2 method, which requires 401 clock cycles. Finally, for

t = 5, we implement both algorithms and observe that the TMVP-2 formula is faster

than the schoolbook method. So, t = 4 is the maximum value that the schoolbook

matrix-vector multiplication is faster than the TMVP-2 formula for the dimension 2t.

Hence, 16 is the threshold. Now that we determine the threshold, we know how many

layers of the TMVP-2 formula we apply before switching the multiplication method

to the schoolbook.

So, our TMVP-based algorithm for multiplication inR213 = Z213 [x]/⟨x256 + 1⟩ uses

the TMVP-4 formula to split the computations into seven 64-dimensional TMVPs.

Then, to each of these seven TMVPs, we apply the TMVP-2 formula twice succes-

sively and end up with 16-dimensional TMVPs. We perform sixty-three schoolbook

matrix-vector multiplications in total and recombine their results according to the for-

mulas to obtain the final result. We implement this algorithm on the ARM Cortex-M4

to compare the results with [31]. To make a fair comparison, we evaluate the poly-

nomial multiplication algorithm in [31] with the polynomial reduction step since our

algorithm already includes it. As can be seen in Table 7.2, our algorithm for multipli-

cation in R216 is 24.5% faster and requires 16.5% less memory than the one in [31],

which uses Toom-4 and the Karatsuba algorithms.

Table 7.2: Multiplication inR216

Cycles Stack
[31] This work Imp. [31] This work Imp.

37804 28520 24.5% 3800 3172 16.5%

In this work, we only focus on an efficient residue polynomial multiplication algo-

rithm and optimization of this algorithm for Saber, not on a complete implementation
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of Saber. So, we use the publicly available codes from [31], [32], and [38] to com-

pose software packages for our applications to Saber. We make some adjustments

to existing codes to integrate our algorithm into these packages. The source codes

of our application are publicly available at https://github.com/iremkp/

Saber-tmvp4-m4. We compare the results with the ones given in [38] and [33].

As Saber is an MLWR-based scheme, it performs polynomial matrix-vector multi-

plications for the key generation, encapsulation, and decapsulation algorithms. Table

7.3 shows the cycle counts of the polynomial matrix-vector multiplication (e.g., ATs

in line 5 of Algorithm 1 in [23]) that Saber public-key encryption scheme use for the

key generation and encryption algorithms. Here, the matrix A is of dimension ℓ × ℓ

and the vector s is of dimension ℓ× 1. They both have polynomial components from

the ringRq.

Table 7.3: Polynomial Matrix-Vector Multiplication
[33] TMVP [38] Block Rec.

ℓ = 2 162 k 122 k 159 k 106 k cycles
ℓ = 3 361 k 273 k 317 k 231 k cycles
ℓ = 4 646 k 483 k 528 k 403 k cycles

In Table 7.3, the comparison of cycle counts of matrix-vector multiplication using

different algorithms are given. The third and fifth columns of Table 7.3 represent

the generic TMVP-based algorithm and the optimized algorithm explained in Section

2.2.1 and Section 5.2, respectively. Our generic algorithm improves the polynomial

matrix-vector multiplication approximately 25% for all values of ℓ comparing the

results from [33]. Moreover, our optimized algorithm outperforms the polynomial

matrix-vector multiplication in [38] by 33.3%, 27.1%, 23.6% for ℓ = 2, 3, 4, respec-

tively.

The effect of our algorithms on the overall performance of Saber is also promising.

Table 7.4 shows the cycle counts and the stack usage of different implementations on

ARM Cortex-M4 microcontroller of the key generation, encapsulation, and decapsu-

lation algorithms of LightSaber (ℓ = 2), Saber (ℓ = 3), and FireSaber (ℓ = 4). As can

be seen in Table 7.4, our optimized algorithm is the fastest compared to [38] and [33].

Table 7.5 shows the percentage of the gain in terms of the execution time that our
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Table 7.4: Results of application to Saber

[33] [38] (speed) TMVP Block Rec.

LightSaber

KeyGen:
460 k 466 k 421 k 409 k cycles

9656 14208 7932 12536 bytes

Encaps:
651 k 653 k 591 k 572 k cycles

11392 15928 9668 14248 bytes

Decaps:
679 k 678 k 597 k 574 k cycles

12136 16672 10412 14992 bytes

Saber

KeyGen:
896 k 853 k 810 k 772 k cycles

13256 19824 12608 18144 bytes

Encaps:
1161 k 1103 k 1052 k 996 k cycles

15544 22088 14872 20392 bytes

Decaps:
1204 k 1127 k 1058 k 995 k cycles

16640 23184 15968 21488 bytes

FireSaber

KeyGen:
1449 k 1340 k 1297 k 1224 k cycles

20144 26448 20120 24776 bytes

Encaps:
1787 k 1642 k 1590 k 1499 k cycles

23008 29228 22968 27592 bytes

Decaps:
1853 k 1679 k 1606 k 1508 k cycles

24592 30768 24448 29072 bytes

algorithms achieve. We speed up the key generation between 3.2% and 10.5%, en-

capsulation between 3.2% and 11%, and decapsulation between 4.3% and 13.3% with

our generic TMVP-based algorithm. The improvements in efficiency with our opti-

mized algorithm are between 8.7% and 15.5% for key generation, 8.7% and 16.1%

for encapsulation, 9.7% and 18.7% for decapsulation.

Our TMVP-based multiplication algorithm consumes less memory than [33] and the

speed-optimized version in [38]. The percentage of improvements in memory utiliza-

tion can be seen in Table 7.6. Our optimized algorithm for Saber using the block re-

combination method requires less memory than the speed-optimized version in [38].

Although our optimized algorithm is the fastest, it consumes more stack memory

than [33].
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Table 7.5: Speed ups
[33] [38](speed)

TMVP

LightSaber
KeyGen: -8.4% -9.6%
Encaps: -9.2% -9.5%
Decaps: -12.0% -11.9%

Saber
KeyGen: -9.6% -5.0%
Encaps: -9.4% -4.6%
Decaps: -12.1% -6.1%

FireSaber
KeyGen: -10.5% -3.2%
Encaps: -11.0% -3.2%
Decaps: -13.3% -4.3%

Block Rec.

LightSaber
KeyGen: -11.1% -12.2%
Encaps: -12.1% -12.4%
Decaps: -15.8% -15.6%

Saber
KeyGen: -13.8% -9.5%
Encaps: -14.2% -9.7%
Decaps: -17.4% -11.7%

FireSaber
KeyGen: -15.5% -8.7%
Encaps: -16.1% -8.7%
Decaps: -18.6% -10.2%

7.2 Implementation Results of NTRU

In the previous section, we present the TMVP-based algorithms for multiplication in

Zq[x]/⟨xn − 1⟩ for different values of n and q. We implement these algorithms on

ARM Cortex-M4, a recommended platform by NIST for evaluating post-quantum

cryptographic schemes on microcontrollers. The digital signal processing (DSP)

instructions that the Cortex-M4 microprocessor supports allow us to perform op-

erations on halfwords of different registers simultaneously. These instructions are

called SIMD (single instruction multiple data) and enable us to implement efficient

matrix-vector multiplications for small dimensions. The coefficients of the polyno-

mials are less than 213 for all parameter sets of NTRU. Since we build the TMVPs

with these coefficients, the entries of the Toeplitz matrices and vectors in TMVPs

are also less than 213. Therefore, we place two entries into one register to make

use of these instructions. The source code of our implementation can be found at

https://github.com/iremkp/NTRU-tmvp4-m4.git.
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Table 7.6: Improvements in memory utilization
[33] [38](speed)

TMVP

LightSaber
KeyGen: -17.9% -44.2%
Encaps: -15.1% -39.3%
Decaps: -14.2% -37.5%

Saber
KeyGen: -4.9% -36.4%
Encaps: -4.3% -32.7%
Decaps: -4.0% -31.1%

FireSaber
KeyGen: -0.1% -23.9%
Encaps: -0.2% -21.4%
Decaps: -0.5% -20.5%

Block Rec.

LightSaber
KeyGen: +29.8% -11.8%
Encaps: +25.0% -10.5%
Decaps: +23.5% -10.1%

Saber
KeyGen: +36.9% -8.5%
Encaps: +31.2% -7.7%
Decaps: +29.1% -7.3%

FireSaber
KeyGen: +22.9% -6.3%
Encaps: +19.9% -5.6%
Decaps: +15.4% -5.5%

The adjustments on parameters required by both the NTT and TMVP-based methods

are given in Table 7.7. The first two columns contain the original n and q param-

eters of NTRU, whereas the values in the middle two columns are used to enable

the NTT method for NTRU. The last two columns of Table 7.7 contain the n, q

pairs used by the TMVPmul-509-512, TMVPmul-677-720, TMVPmul-701-720,

and TMVPmul-821-864 algorithms, respectively.

Table 7.7: Parameter values

NTT [19] TMVPmul
n q n q n q

509 2048 1024 1043969 512 2048
677 2048 1536 1389569 720 2048
701 8192 1536 5747201 720 8192
821 4096 1725 3365569 864 4096

Unlike the NTT method, TMVP-based algorithms do not entail a modification on
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modulus q as can be seen in Table 7.7. In fact, the modifications on n required

by TMVP-based multiplication algorithms seem negligible compared to the NTT

method. We think that being able to keep the parameters relatively smaller has a

remarkable effect on the performance of the TMVP-based algorithms. The perfor-

mance results of our multiplication algorithms and the others in the literature are

given in Table 7.8. The results in Table 7.8 are obtained utilizing the benchmarking

software from [19]. The first column contains the results of the TMVP-based algo-

rithms we propose. The second column shows the results of the state-of-the-art NTT

multiplication from [32], whereas the last column shows the Toom results from [19].

The codes are compiled with arm-none-eabi-gcc version 10.3.1. The cycle counts

are the average of the results of 100 executions.

Table 7.8: Comparison of the algorithms for polynomial multiplication

Cycles
TMVPmul NTT [32] Toom [19]

ntruhps2048509 81054 103271 108717
ntruhps2048677 142109 147810 182150
ntruhrss701 142252 148190 179994
ntruhps4096821 192996 182153 239018

Stack
TMVPmul NTT [32] Toom [19]

ntruhps2048509 7028 8332 9696
ntruhps2048677 11300 12376 12980
ntruhrss701 11296 12372 13408
ntruhps4096821 12776 13964 15696

The cycle count for Toom method includes the polynomial reduction.

As the results in Table 7.8 show, TMVP-based algorithms reduce the stack usage,

and except for the TMVPmul-821-864, they all improve the ring multiplication. Our

TMVPmul-509-512 algorithm is 21.5% faster and consumes 15.6% less stack mem-

ory than the NTT method. Similarly, TMVPmul-509-512 is 25.4% faster and con-

sumes 27.5% less stack memory than the Toom-Cook method. We reduce the stack

usage by 8.7% compared to NTT with TMVPmul-701-704 and TMVPmul-677-704

algorithms and improve the ring multiplication by 3.9% and 4.2%, respectively. These

algorithms are also 22% and 26.5% faster and 12.9% and 15.7% more memory effi-

cient than the Toom method. While TMVPmul-821-864 algorithm consumes 8.5%
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less stack memory, it is 5.9% slower than NTT. On the other hand, TMVPmul-821-

864 is 19.2% faster and requires 18.6% less memory than the Toom method.

To observe the effect of the proposed TMVP-based algorithms on the overall per-

formance of NTRU and compare it with the others, we use the benchmarking soft-

ware [32] (commit c37e541). We integrate the assembly codes that we write for

the algorithms TMVPmul-509-512, TMVPmul-677-704, TMVPmul-701-704, and

TMVPmul-821-864 to the implementations of ntruhps2048509, ntruhps2048677,

ntruhrss701, and ntruhps4096821, respectively. We do the same for Toom results

with the assembly codes from [19]. Table 7.9 shows the benchmark results of the

applications of the proposed TMVP-based multiplication algorithms to both NTRU

CPA-DPKE and NTRU CCA-KEM. The comparison of the results of our algorithms

and the others can also be seen in Table 7.9. The negative percentages in the paren-

theses represent the improvements that TMVP algorithms achieve compared to the

corresponding algorithm. For the ones that do not improve the performance (NTT

implementation of encapsulation and encryption algorithms of ntruhps4096821) we

use a positive sign to denote the percentage of increase in the cycle counts of the

TMVP method.

Improving polynomial multiplication impacts the performance of the key generation

algorithm of NTRU CPA-DPKE. Compared the NTT, our algorithm speed up the

key generation of NTRU CPA-DPKE by 12.5%, 9.2%, 9.4%, and 7.6%, and reduce

the stack memory usage by 14.1%, 6.7%, 8.1%, and 9.4% for n = 509, n = 677,

n = 701, and n = 821, respectively. The encryption and decryption algorithms are

also accelerated in most cases. The percentages of the improvements can be found

in Table 7.9. The key generation, encryption, and decryption algorithms of NTRU

CPA-DPKE require five, one, and three ring multiplications, respectively. TMVP-

based algorithms can target all of these multiplications, whereas the NTT method

in [32] targets three in key generation, one in encryption, and one in decryption, re-

spectively. For this reason, the improvements are more prominent for key generation

and decryption than they are for encryption. We also achieve improvements in NTRU

CCA-KEM schemes. Similar to NTRU CPA-DPKE, we improve the performance of

key generation and decapsulation more than we do for encapsulation. Our applica-

tion outperforms the NTT method for NTRU CCA-KEM in all cases except for the
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encryption and encapsulation of ntruhps4096821 and reduces the stack usage in all

cases. Furthermore, we report the size evaluation results of our application and oth-

ers in Table 7.10. We share the improvement percentages of our code in parentheses

compared to the corresponding implementation. We do not include .data and .bss

values to the table since they are all zero. The size evaluation results show that we

reduce the flash footprint between 8.9% and 17%.
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Table 7.9: Results of application to NTRU
This work NTT Toom

ntruhps2048509
(Sec.Level:1)

CCA
KEM

KeyGen:
2517 k 2870 k (−12.3%) 2887 k (−12.8%) cycles
18676 21344 (−12.5%) 21344 (−12.5%) bytes

Encaps:
544 k 566 k (−3.9%) 572 k (−4.9%) cycles
12756 14060 (−9.3%) 15424 (−17.3%) bytes

Decaps:
460 k 539 k (−14.7%) 545 k (−15.6%) cycles
12132 14800 (−18%) 14800 (−18%) bytes

CPA
DPKE

KeyGen:
2474 k 2828 k (−12.5%) 2845 k (−13%) cycles
16244 18912 (−14.1%) 18912 (−14.1%) bytes

Enc:
132 k 154 k (−14.3%) 160 k (−17.5%) cycles
10116 11420 (−11.4%) 12784 (−20.9%) bytes

Dec:
357 k 434 k (−17.7%) 441 k (−19.1%) cycles
11172 13840 (−19.3%) 13840 (−19.3%) bytes

ntruhps2048677
(Sec.Level:3)

CCA
KEM

KeyGen:
4172 k 4592 k (−9.1%) 4692 k (−11.1%) cycles
26772 28460 (−5.9%) 28640 (−5.9%) bytes

Encaps:
807 k 812 k (−1%) 848 k (−4.8%) cycles
18900 19976 (−5.4%) 20580 (−8.2%) bytes

Decaps:
719 k 806 k (−10.8%) 842 k (−14.6%) cycles
18052 19732 (−8.5%) 19732 (−8.5%) bytes

CPA
DPKE

KeyGen:
4119 k 4536 k (−9.2%) 4643 k (−11.3%) cycles
23540 25228 (−6.7%) 25228 (−6.7%) bytes

Enc:
210 k 216 k (−2.8%) 251 k (−16.3%) cycles
15396 16472 (−6.5%) 17076 (−9.8%) bytes

Dec:
580 k 667 k (−13%) 703 k (−17.5%) cycles
16788 18468 (−9.1%) 18468 (−9.1%) bytes

ntruhrss701
(Sec.Level:3)

CCA
KEM

KeyGen:
3803 k 4204 k (−9.5%) 4304 k (−11.6%) cycles
25384 27512 (−7.7%) 27512 (−7.7%) bytes

Encaps:
362 k 368 k (−1.6%) 401 k (−9.7%) cycles
17240 18316 (−5.9%) 19352 (−10.9%) bytes

Decaps:
779 k 862 k (−9.6%) 895 k (−13%) cycles
18448 20560 (−10.3%) 20560 (−10.3%) bytes

CPA
DPKE

KeyGen:
3784 k 4178 k (−9.4%) 4278 k (−11.5%) cycles
23968 26096 (−8.1%) 26096 (−8.1%) bytes

Enc:
261 k 266 k (−1.9%) 299 k (−12.7%) cycles
15544 16620 (−6.5%) 17656 (−12%) bytes

Dec:
626 k 708 k (−11.6%) 741 k (−15.5%) cycles
16968 19080 (−11.1%) 19080 (−11.1%) bytes

ntruhps4096821
(Sec.Level:5)

CCA
KEM

KeyGen:
5632 k 6071 k (−7.2%) 6239 k (−9.7%) cycles
32272 35208 (−8.3%) 35208 (−8.3%) bytes

Encaps:
1020 k 1011 k (+0.1%) 1067 k (−4.4%) cycles
22224 23412 (−5.1%) 25144 (−11.6%) bytes

Decaps:
917 k 1011 k (−9.3%) 1067 k (−14.1%) cycles
21360 24280 (−12%) 24280 (−12%) bytes

CPA
DPKE

KeyGen:
5549 k 6007 k (−7.6%) 6174 k (−10.1%) cycles
28360 31296 (−9.4%) 31296 (−9.4%) bytes

Enc:
280 k 268 k (+4.5%) 324 k (−13.6%) cycles
17984 19172 (−6.2%) 20904 (−14%) bytes

Dec:
747 k 845 k (−11.6%) 900 k (−17%) cycles
19744 22664 (−12.9%) 22664 (−12.9%) bytes
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Table 7.10: Results of size evaluations
Scheme Implementation .text (bytes)

ntruhps2048509
TMVP 161272
NTT 191912 (16%)
Toom 181128 (11%)

ntruhps2048677
TMVP 239120
NTT 281692 (15.1%)
Toom 267820 (10.7%)

ntruhrss701
TMVP 219560
NTT 264688 (17%)
Toom 250024 (12.2%)

ntruhps4096821
TMVP 315748
NTT 370184 (14.7%)
Toom 346504 (8.9%)

.data and .bss values are not included in the table since they are zero for all parameter sets and implementations.
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CHAPTER 8

CONCLUSION

We derive the new TMVP-3 and TMVP-4 formulas from Toom-3 and Toom-4 al-

gorithms using Winograd’s technique [43], which require five and seven smaller

TMVPs, respectively. Moreover, we propose a TMVP-based algorithm for multi-

plication inR2m+ = Z2m [x]/⟨xn + 1⟩ for n = 256, and inR2m− = Z2m [x]/⟨xn − 1⟩
for n = 509, 677, 701, 821 which utilize our TMVP-4 formula. An important note

here is the proposed algorithms provide results in the target rings, thus they do not

require additional polynomial reduction outside of polynomial multiplication, unlike

Karatsuba and Toom-Cook. We implement our algorithms on the ARM Cortex-M4

microcontroller. We improve the efficiency of multiplication inRq+ andRq− , and re-

duce the stack usage compared to all Cortex-M4 implementations that use the Karat-

suba, Toom, and schoolbook methods. In some cases, our algorithms are faster and

consume less memory than the NTT implementations [32]. We integrate the assembly

codes of the proposed multiplication algorithms to existing implementations of Saber,

and NTRU [31, 32]. We achieve improvements in stack memory usage and perfor-

mance of the key generation, encapsulation, and decapsulation algorithms compared

to the results of Karatsuba, Toom implementations given in [33] and [38]. Our ap-

plication to NTRU outperforms the NTT method in [32] for n = 509, 677, 701, and

reduces stack usage for all parameter sets. Furthermore, our NTRU applications have

smaller code sizes than the NTT method for all.
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