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ABSTRACT

ASSESSMENT OF ARTIFICIAL NEURAL NETWORK TO IMPROVE HIDDEN
MARKOV MODEL FOR FINANCIAL DATA

Aydoğan-Kılıç, Dilek

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ayşe Sevtap Selçuk-Kestel

July 2022, 89 pages

The aim of this thesis is to eliminate the possible weaknesses of HMMs, which is a successful
statistical model that is frequently used in time series modeling. Depending on the selection
of the initial parameters of the HMMs, RNN is used as a solution to the failure to reach the
global maximum, and it is aimed to benefit from the classification power of this method. The
hybrid model, which is developed with this motivation, is built in a way that is suitable for
use in non-categorical data, contrary to the version generally used in the literature.

In this thesis, the hybrid model, which is effective in the development of speech recognition
in the literature, is reconstructed and applied to financial data. Additionally, a multivariate
comparison is conducted in order to identify the effect of the other variables in the model.
Therefore, apart from univariate models, bivariate and trivariate models are also constructed.
Moreover, classical HMM and RNN are applied and compared with the Hybrid model results.
The applications use daily closing prices for the S&P 500 and Nasdaq and daily EUR/USD
exchange rates from 2000 to 2021. In comparison to the single HMM and RNN methods, the
accuracy in forecasting is significantly increased.

Keywords: Hidden Markov Model, Neural Network, stock prices, forecasting, EUR/USD
exchange rates.
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ÖZ

FİNANSAL VERİLERDE SAKLI MARKOV MODELİNİ GELİŞTİRMEK İÇİN YAPAY
SİNİR AĞININ DEĞERLENDİRİLMESİ

Aydoğan-Kılıç, Dilek

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ayşe Sevtap Selçuk-Kestel

Temmuz 2022, 89 sayfa

Bu tezin amacı zaman serisi modellemelerinde sıklıkla kullanılan başarılı bir istatistiksel mo-
del olan Gizli Markov Modeller’in (GMM) olası zayıf yönlerini gidermektir. GMM’lerin baş-
langıç parametrelerinin seçimine bağlı olarak global maksimuma ulaşamama durumuna çö-
züm olarak Tekrarlayan Sinir Ağı (TSA) kullanılmaktadır ve bu yöntemin sınıflandırma gü-
cünden faydalanılması amaçlanmıştır. Bu motivasyonla geliştirilen Hibrit model literatürde
genelde kullanılan halinin tersine kategorik olmayan verilerde kullanılmaya uygun şekilde
inşa edilmiştir.

Bu çalışmada literatürde konuşma tanımanın geliştirilmesinde etkili olan hibrit model yeniden
kurgulanarak finans verilerine uygulanmaktadır. Ek olarak, modeldeki farklı değişkenlerin
etkisini belirlemek için çok değişkenli bir karşılaştırma yapılır. Bu nedenle, tek değişkenli
modellerin yanında iki değişkenli ve üç değişkenli modeller de geliştirilmiştir. Uygulamada
2000’den 2021’e kadar S&P 500 ve Nasdaq için günlük kapanış fiyatları ve günlük EUR/USD
döviz kurları kullanılmaktadır. Önerilen hibrit model tek başına GMM ve TSA yöntemlerine
kıyasla tahminlemelerin doğruluk oranında önemli ölçüde bir artış sağlamıştır.

Anahtar Kelimeler: Saklı Markov Modeller, Yapay Sinir Ağları, hisse senedi fiyatları, tahmin-
leme, EUR/USD döviz kuru.

ix



x



ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Prof. Dr. A. Sevtap Selçuk-Kestel for introducing
me to the subject Hidden Markov Model during my master thesis. Morever, her patient guid-
ance, enthusiastic encouragement and valuable advices during the development and prepara-
tion of my PhD thesis are very valuable. Her willingness to give her time and to share their
experiences have brightened my path.

I would also like to thank to my committee members, Prof. Dr. Ceylan Talu Yozgatlıgil and
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CHAPTER 1

INTRODUCTION

Machine learning (ML) is used in a wide variety of fields, including pattern recognition [8],
human language technologies [15], computer vision [34], traffic prediction [9], image recog-
nition [20] and medical diagnosis [35]. Through ML algorithms, researchers have a chance to
develop ambitious techniques in finance that have been developing for nearly three decades
[24], [61]. A novel application of Recurrent Neural Network (RNN) and Hidden Markov
Model (HMM) methods is presented in this thesis that enables them to be applied to financial
data in a more amenable way.

Several known and unknown factors affect the indicators in finance, making them complex
and nonlinear. As an advanced statistical approach, HMMs are used in machine learning ap-
plications due to their fast and powerful learning algorithm [4]. However, this model may
still have weaknesses due to the initial settings of the parameters. Our main goal in this study
is to remove the possible weaknesses of the HMM algorithm by using the Artificial Neural
Networks (ANN) classification power and thereby benefit from the algorithm’s learning prop-
erties. More specifically, RNN, which is a type of ANN, is used in this thesis to benefit from
the contribution of the information on the previous time steps. Although another approach in
this study can be to use powerful methods such as Long-Short Term Memory (LSTM) and
Convolution Neural Networks (CNN) in the hybrid model, RNN is used for its simplicity at
the first stage, since the proposed nested structure has to be coded in detail without using
package functions.

The idea of using this hybrid model comes from its promising results in the area of speech
recognition in the literature. We reconstruct the hybrid model to be applicable to financial
data.

Although finance is one of the most crucial and, therefore, one of the areas in need of accurate
modeling, the number of studies benefit from ML applications is not significant. The model-
ing of stock prices is challenging due to time dependence, volatility, and other factors. HMM
is a frequently preferred in dealing with these difficulties and therefore, beneficial in stock
price prediction [26]. Although it successfully analyzes and predicts time depending phe-
nomena, it still has some weaknesses. The correct determination of the initial variables is an
important factor for the model to work well, and otherwise it can be stuck at local maximums
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in the maximum likelihood search. One of the most important motivations of this thesis is to
determine a model that provides flexibility in the selection of initial parameters and provide a
significant benefit in this area.

In the literature, ANN is employed to transform the data by feeding the HMM model for the
maximization of likelihood of the EM algorithm. ANN acts like a black-box in this structure.
In the field of speech recognition, the aim is to increase the likelihood directly, and the cost
function is chosen as a negative likelihood. Our motivation here is to modify this method for
non-categorical (interval) data contrary the one in speech recognition. Financial observations
whose developments in time is continuous is focused in this study, as the market with hidden
factors has enormous influence on the price behaviour. The implementation and modification
of such approach in non-categorical financial indicators are missing in the literature.

In addition, the influence of different variables and the number involved in the price be-
haviour can be well captured by HMM and the proposed hybrid approach. Multivariate time
series models have become widely used in many real-world fields like weather data analy-
sis [62], [55], health care [33], finance [13], [16], and others [63], [58], [21]. However, there
are not a significant number of studies experimenting with multivariate HMMs.

1.1 Aim of the Study

In this study, the possible weak point of the HMM algorithm, which is resembling the selec-
tion of the initial parameter is improved by augmenting it with the classification power of the
ANN and to benefit from its learning algorithm as well. As a basis for motivation, it is known
that the ANN-HMM hybrid model improves the accuracy of speech recognition in the litera-
ture. To apply such hybrid model to finance data requires reconstruction and modification.

Since ANN has sufficient classification power due to the nature of the data, the hybrid model
is used in speech recognition literature commonly. In the hybrid model used in the literature,
the cost function of ANN is chosen as likelihood required in HMM. On the other hand, in this
thesis Neural Network is used to optimize the whole model, not just HMM part, by comparing
the HMM predictions to the actual values. Therefore, it is not just focusing on optimizing the
parameters of the HMM. Namely, it uses the Mean Square Error (MSE) metric as a cost
function to converge as close as possible to the original data. However, forecasting results,
which are intended to approximate actual values, are calculated with HMM parameters as
explained in the following sections of the thesis. Therefore, the HMM parameters are also
indirectly optimized by RNN while converging to the real values.

Furthermore, while the left right HMM is commonly utilized in the literature that uses ANN-
HMM, the HMM section in this thesis is built as an ergodic HMM, since it would be more
appropriate to provide the ability for transition to previous states in financial data. The left
right HMM is a type of HMM that is popularly used in speech analysis and models speech as
a time sequence of distinct events that start at an initial state and end at a final state. It has a
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left-to-right transition to the next state as well as a self-transition [32]. However, an ergodic
HMM is a type of HMM that all the states are fully connected.

This study introduces a novel approach that can be more effective in especially non-categorical
observations like financial data. In addition, an examination of variable selection in HMM and
the hybrid model are performed. The purpose is to capture temporal and multivariate depen-
dencies in the multivariate time series data by using HMM. Instead of modeling the financial
time series solely, the advantage of using the dependencies between variables is considered.
Hence, the model is designed for univariate, bivariate and trivariate RNN-HMMs to show its
accuracy in univariate and multivariate components.

Additionally, an application of proposed approach to the real life problems is aimed to show
the increase in the accuracy. S&P 500, Nasdaq daily closing prices and EUR/USD exchange
rates are used in order to examine the performance of the model.

The EM-algorithm is used to estimate parameters at each step, and the gradients are generated
using the cost function of the forecast values. The aim is to merge both models by increasing
the classification capability of the EM method while keeping the RNN’s learning from real
observations, rather than by modifying the structure of the RNN portion.

1.2 Literature Review

In this part, the studies done in the area of univariate HMM are introduced briefly but the
ones about the multivariate HMMs and the hybrid models including HMM and ANNs are
discussed in more detail.

HMMs are general-purpose models and it is possible to use these models in a very wide range
of applications. Some of the studies that use HMMs in speech recognition are [3], [60], [51]
and [44]. It has also applications in genetics [37] , DNA sequence analysis [14], molecular
biology [36] and economics [27]. Furthermore, there are special applications such as credit
card fraud detection [7], customer relationship dynamics [45], signature verification [64]
and real-time traffic sensing [25]. Moreover, various types of time series such as continuous-
valued, circular, multivariate, as well as binary data, bounded and unbounded counts and
categorical observations are modeled by HMMs [39].

A systematic review of HMM and its applications for 1982-2019 time period by [43]. Ac-
cording to this study HMMs are widely used in the area of speech recognition, human activity
recognition and bioinformatics since they constitute 25%, 25% and 19% of all HMM studies,
respectively.

Time series applications of HMMs in the literature can be summarized as follows. A Poisson
hidden Markov model is applied by [40] mathematically to formulate the statistical interde-
pendency among deterioration processes of pavement surfaces. It uses the panel data of road
sections in different time intervals. HMM is used for modelling long-term persistence in
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multi-site rainfall time series since it has an explicit mechanism to produce long-term wet and
dry periods [59]. Univariate HMM is applied to forecast some of the airlines stock by [28].
Moreover, it also compares the forecasting results with an ANN application and it concludes
that they have similar performance according to the MAPE results.

Most of the studies using HMM in time series analyzes and even in other analyzes are ap-
plied with univariate case. However, cylindrical time series are modeled by bivariate HMMs
(BHMM). It is aimed in [38] to model cylindrical time series of intensities and angles which
arise often in environmental research. It segments the data according to some specific envi-
ronmental conditions. To deal with the complicated nature of identification of sea regimes
by environmental multivariate time series because of the missing values in the data, skewness
of some variables, and the temporal autocorrelation of the measurements HMM is also im-
plemented [12]. Bivariate Mixed HMM with stochasticity with two hidden states remission
and exacerbation and two observation sources patient reported outcomes and forced expira-
tory volume is used in [11]. Moreover, a Bivariate HMM is applied to model claim depen-
dence with the assumption that claim numbers and aggregate claims are serially and mutually
dependent through an underlying hidden state. It constructs three different BHMMs: Pois-
son–Normal HMM, Poisson–Gamma HMM, and Negative Binomial–Gamma HMM [47].

Moreover, there are several studies that combines HMMs with other methods in order to ben-
efit from the advantages of this model such as Fuzzy-HMMs [30], AR-HMMs [54], ARMA-
HMMs [41], GARCH-HMMs [65], SVM-HMM [23] and ANN-HMMs. Due to the focus on
RNN-HMM, we skip details of literature for those.

ANN and HMM is combined in [53] to use in speech recognition system. It prefers Learning
Vector Quantization (LVQ)-ANNs for the neural network part. It applies this hybrid model
in two approaches: recognizing the entire command by HMM by using the recognized words
by ANN and recognition of whole-word by HMM basing on the phonemes determined by the
ANN. Hence, even if ANN misses some part or identifies wrong, HMM part can recover it.

Vector quantization techniques with recurrent neural networks are used in [4]. After using
neural network it applies HMM part by feeding it with output of the previous part. In this
study, the ANN and the HMM are trained separately. This method is determined to be a
promising method. However, local optimization of the learning problem (separate training) is
indicated as a possible weakness.

Multilayered and recurrent ANNs with HMMs [5] are integrated and applied for continuous
speech recognition. The outputs of ANN constitute the observation vectors of HMM. It is
one of the studies that aim to combine the classification power of ANNs with the time-series
modeling capability of HMMs. Gradient of the optimization criterion of HMM with respect
to the transformed observations is sent to ANN for reweighting. Actual observations for
time are fed into ANN part and the output vector of this part used as the input of HMM
part. Optimization criterion is the likelihood that is generated by an HMM. The optimized
parameters here are the parameters of the HMM part. Namely, it estimates the parameters of
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ANN and HMM with a joint global optimization. According to the application results 86%
accuracy is obtained when the hybrid system is used, as opposed to 53% accuracy when an
ANN is used.

A fusion model that combines ANN, HMM and Genetic Algorithms (GA) is proposed by [29]
whose hybrid model is applied on two stock prices which is primarily taken as a guide in
this thesis. It uses left-right HMM and ANN to optimize the maximum likelihood of the
HMM part. In this model the aim is adding noise to the real data by applying ANN part and
providing a better performance chance to HMMs by feeding it with transformed input data.
Actual observations of four variables for time are fed into ANN part and the obtained output
vector is given as input to HMM with 4-state. Actually, the reason why the model is selected
as 4 states is to ensure that it is the same as attributes in the observation vectors and this is
a limitation of this study. HMM and the Hybrid model results are compared with respect to
MAPE results and it is shown that the forecast accuracy is raised up significantly.

Another study [57] that presents the use of a hybrid ANN-HMM for automatic speech recog-
nition. ANN is trained to estimate the posterior probabilities of HMM. Training part of this
application includes 20 exemplars and testing part includes 38 exemplars. 9-state HMM and
one big ANN with 20 nodes in the hidden layer, 10 nodes at the output layer and 220 nodes
in the input layer are combined and 13000 back-propagation training iterations are used. The
Hybrid model provides a significant decrease in the percentage of misrecognized exemplars.

ANN and HMM are also combined by [56] for speech recognition. However, the methodology
is totally different from the one in this thesis since it applies HMM part firstly to optimize the
actual data. The output of HMM is given to feedforward ANN for further classification.

As the literature review reported in this section shows, HMM does not have as much work
in time series and especially in multivariate time series modeling as it does in some specific
areas. In addition to contributing to this field, this thesis also provides improvement in HMM
by using the classification power of RNN. There is not a significant number of studies of the
Hybrid model in the literature. Many of those present either optimizations of these methods
separately or their joint optimizations only for categorical data.

1.3 Contributions of the Thesis

The main contributions can be listed in two parts. First, by presenting a new approach, HMM
models and RNN models are combined for the use in non-categorical and interval data such
as finance data since HMMs have an important place in time series modeling, and RNNs are
successful in classification. Second, inferences on usage of different types and numbers of
variables are made for both the HMM and the proposed model. The further contributions are
listed as follows:

i The hidden states under stock prices are examined by using the global decoding.
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ii The proposed algorithm is presented by combining HMM and RNN models for the
implementation to financial data.

iii Simple HMM and ANN models, and the proposed Hybrid model are applied for uni-
variate, bivariate and trivariate cases. All these applications are compared with each
other and inferences are made for the models and the number of different variables.

The thesis is comprised from five main chapters and two appendices. In Chapter 2, the HMM
is explained for the univariate case in its most basic form, and then for the bivariate model
to expand it to multivariate models. Additionally, the basics of Feedforward and Recurrent
ANNs are explained. Chapter 3 introduces the financial data, S&P 500, Nasdaq and EU-
R/USD, implemented for the illustration of the proposed methodology. Then, the method-
ology of the RNN-HMM hybrid model together with the conventional models of HMM and
ANN is explained in detail. The results of the HMM, RNN and Hybrid model applications
are presented and discussed in Chapter 4. All cases, namely the traditional and newly pro-
posed model, cases with different variable numbers are compared in graphs and tables in this
section. In Chapter 5, the thesis is concluded by summarizing, discussing the results and
proposing future studies.
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CHAPTER 2

PRELIMINARIES

In this chapter, the mathematical background used in this thesis is provided. Firstly, the uni-
variate and bivariate versions of Hidden Markov Models are explained. Then, the Recurrent
Neural Network structure is overviewed briefly.

2.1 Hidden Markov Model

HMMs are the extended types of Markov models. While in Markov models, each state
corresponds to an observable event, in HMMs observations are probabilistic functions of
states [49]. An HMM is an embedded stochastic process with an underlying and unobserv-
able stochastic process. It can be observed by only a stochastic process that produces the
same occurrence sequence. Cheng-Der Fuh [19] states, "A hidden Markov model is defined
as a parametrized Markov chain in a Markovian random environment, with the underlying
environmental Markov chain viewed as missing data." The key idea of HMM is to describe a
probability distribution over an infinite number of possible sequences of observations [18].

Since HMMs are general-purpose models, they can be used for modeling various types of time
series such as continuous-valued, circular, multivariate, as well as binary data, bounded and
unbounded counts and categorical observations [39]. Some of the applications of HMMs are
speech recognition [48], DNA sequence analysis [14], molecular biology [36], stock market
forecasting [28] and economics [27].

The EM algorithm and the Viterbi algorithm are the solutions to the main problems of HMM
[49]. The EM algorithm is the most famous algorithm for getting the parameters that maxi-
mize the likelihood of the model. On the other hand, the best sequences of hidden states are
estimated by the Viterbi algorithm.

The HMM is a tool for representing probability distributions over sequences of observa-
tions [22]. The model gets its name from two properties. The first one is that each observation
at time t is generated by a hidden state Xt. Second, each state Xt is independent of all the
states prior to state Xt−1, namely, the states satisfy the Markov property. This structure is
presented in Figure 2.1 as well as it can be expressed as follows [22]:
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Figure 2.1: Dependence structure for a Hidden Markov Model

Pr(Xt|X(t−1)) = Pr(Xt|Xt−1), t = 2, 3, ... (2.1)

Pr(Ot|O(t−1), X(t)) = Pr(Ot|Xt), t ∈ N, (2.2)

where Ot is the observation and Xt is the state at time t ∈ N ; X(t) and O(t) are history from
time 1 to t; to illustrate X(t) denotes {X0 = i0, X1 = i1, ..., Xt = it} for each ij ∈ E where
E is a discrete state space which is a set of values that each Xt can take [2].

Before the explanation of EM Algorithm that is used to estimate the parameters of the HMM,
some definitions are necessary to be presented.

Definition 1. Transition Probabilities , γij , identify the probability of moving to state j from
the current state i, given as

Pr(Xt = j|Xt−1 = i) = γij , t = 2, 3, · · · (2.3)

Moreover, the square matrix with (i, j) element γij is the "Transition Probability Matrix":

Γ =


γ11 · · · γ1m

...
. . .

...
γm1 · · · γmm

 , (2.4)

where m denotes the number states of the Markov chain. It is essential to note that the sum
of rows is equal to 1.

Definition 2. Unconditional Probabilities are the elements of the row vectors that are denoted
by

π(t) = (Pr(Xt = 1) . . . P r(Xt = m)), (2.5)

where Pr(Xt = j) is the probability of being in a given state j at a given time t. π(1) is the
initial distribution of Markov chain which is denoted as δ in the rest of this thesis.
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Definition 3. Emission Probabilities are the probabilities of observing a particular value pro-
vided that the system is in one of the hidden states [6].

pi(o) = Pr(Ot = o|Xt = i) (2.6)

Moreover, P (o) refers to the diagonal matrix consisting of emission probabilities of observa-
tion Ot = o:

P (o) =


p1(o) 0

. . .

0 pm(o)

 . (2.7)

EM algorithm is used to estimate these observation distributions, the parameters initial prob-
ability δ, transition probability matrix Γ and the emission probabilities.

2.1.1 EM Algorithm

The EM algorithm is an iterative method that is used to find the maximum-likelihood esti-
mation of the parameters of an underlying distribution from a given data set when the data is
incomplete or has missing values [17]. The algorithm starts with a likelihood value and gets
new likelihood values by iteration. At each iteration step, the likelihood of the model is better,
or the same [2]. In order to apply this estimation method, we need the backward and forward
probabilities.

Forward probability, αt, is to produce O(t) while ending up in state j and it is presented for
t = 1, 2, . . . , T and j = 1, 2, . . . ,m as

αt(j) = Pr(O(t) = o(t), Xt = j),

αt = δP (o1)ΓP (o2)ΓP (o3) . . .ΓP (ot).
(2.8)

Backward probability, βt, is the probability of producing the observations ot+1, . . . , oT given
that the system is at state i at time t for t = 1, 2, . . . , T − 1, i = 1, 2, . . . ,m. It is formulated
in Equation (2.9) and for convenience, the vector (Ok, Ok+1, . . . , Ol) is denoted by Ol

k.

βt(i) = Pr(Ot+1 = ot+1, Ot+2 = ot+2, . . . , OT = oT |XT = i)

= Pr(OT
t+1 = oTt+1|XT = i)

β′
t = ΓP (ot+1)ΓP (ot+2) . . .ΓP (oT )1

′

(2.9)

The log-likelihood of the complete data that consists of the observed and missing ones is

log(Pr(o(T ), x(T ))) =
m∑
j=1

uj(1) log δj +
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)) log γjk

+

m∑
j=1

T∑
t=1

uj(t) log pj(ot),

(2.10)
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where uj(t) = 1 if and only if Xt = j, for t = 1, . . . , T and vjk(t) = 1 if and only if
Xt−1 = j and Xt = k for t = 2, . . . , T .

In the expectation step, instead of vjk(t) and uj(t), the conditional expectations of being in a
state at a particular time given the observations is employed:

ûj(t) = Pr(Xt = j|o(T ))

=
αt(j)βt(j)

LT
,

(2.11)

v̂jk(t) = Pr(Xt−1 = j,Xt = k|o(T ))

=
αt−1(j)γjkpk(ot)βt(k)

LT
.

(2.12)

Then, in the maximization step, the complete data likelihood is maximized by maximizing
each term of Equation (2.10) and it is observed that the terms of the log-likelihood depend on
initial distribution δ, transition probability matrix Γ, and state-dependent distributions. When
we maximize each component of the complete data log-likelihood, the maximizing values of
relevant parameters are determined as follows:

i. δj =
ûj(1)∑m
j=1 ûj(1)

= ûj(1),

ii. γjk =
∑T

t=2 v̂jk(t)∑m
k=1

∑T
t=2 v̂jk(t)

,

iii. Since the third term is on state-dependent distributions, this part varies by the type of
the distribution. To give some examples, the maximizing value of this term for Poisson-

HMM is λ̂j =
∑T

t=1 ûj(t)ot∑T
t=1 ûj(t)

and the values for Normal-HMM are µ̂j =
∑T

t=1 ûj(t)ot∑T
t=1 ûj(t)

and

σ̂2
j =

∑T
t=1 ûj(t)(ot−µj)

2∑T
t=1 ûj(t)

.

2.1.2 Forecast, State Decoding and State Prediction

Forecast distributions, i.e., conditional distribution of Ot+h given observations OT where h

is the forecast horizon, can be represented as

Pr(OT+h = o|O(T ) = o(T )) =
Pr(O(T ) = o(T ), OT+h = o)

Pr(O(T ) = o(T ))

=
αTΓ

hP (o)1′

αT 1′
.

(2.13)

For state decoding, one can use local decoding that maximize the conditional distribution of
each state for given observations as follows,

i∗ = argmax
i=1,...,m

Pr(Xt = i|O(T ) = o(T ))

= argmax
i=1,...,m

αt(i)βt(i)

LT
.

(2.14)
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or can use the more common method Viterbi algorithm that estimates the most likely se-
quence of states. To illustrate the methodology of the Viterbi algorithm, firstly, the following
probabilities are defined.

φ1i = Pr(X1 = i, O1 = o1)

= δipi(o1)
(2.15)

and,
φti = max

x1,x2,...,xt−1

Pr(X(t−1) = x(t−1), Xt = i, O(T ) = o(T )) (2.16)

for t = 2, 3, . . . , T .

The relation between successive φ ’s can be shown by

φtj = (max
i

(φt−1,iγij))pj(ot) (2.17)

for t = 2, 3, . . . , T and i = 1, 2, . . . ,m.

Afterwards the most likely state sequence is estimated by

iT = argmax
i=1,...,m

φT i (2.18)

and,
it = argmax

i=1,...,m
(φtiγi,it+1). (2.19)

Last, the state prediction can be done by the following probabilities,

Pr(XT+h = i|O(T ) = o(T )) =
αTΓ

h(, i)

LT
(2.20)

where Γh(, i) is the ith column of the hthpower of transition matrix Γ,Γh, and h = t− T .

2.2 Model Selection

As the state number m increases, the model fitting improves. However, more parameters are
needed, but parsimony theory recommends using fewer parameters. Box and Jenkins (1970)
indicates that in statistical models, certain constants and parameters are needed, and they
must be estimated from the data. For adequate representations, we should engage the smallest
number of parameters possible in practice. The study predicts that parsimony plays a critical
role in the use of parameters in future studies [10].

In order to decide the number of the states, m, of the model a criterion that consider the advan-
tages and disadvantages of higher m is needed. The commonly used criteria for determining
the number of parameters are Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC), which are defined as

AIC = −2 logL+ 2p, (2.21)
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Figure 2.2: Dependence structure for a bivariate Hidden Markov Model

BIC = −2 logL+ p log T, (2.22)

respectively. Here, logL is the log-likelihood, p is the number of parameters of the applied
model, and T is the number of observations.

AIC is a function of the model’s likelihood and the number of parameters. This metric is
negatively correlated with the likelihood of a model as well as positively correlated with the
number of parameters. As a result, it makes sense to select the model with a lower AIC value.
While the first term decreases, the second term, which is a penalty term, increases with the
increase of m.

BIC is similar to AIC, but the penalty term is different. It can be seen from Equation (2.22)
that when T > e2, which is the case in most applications, the BIC gives more weight to the
penalty term. Therefore, BIC generally tends to choose models with fewer parameters than
AIC.

2.3 Bivariate Hidden Markov Models (BHMMs)

Let Nt and St (t = 1, 2, . . .) be two variables that have dependencies between each other.
Assume also that there is an unobservable background factor, which is defined by HMM.
Moreover, as in the univariate HMMs each observation Nt and St at time t is generated by
a hidden state Xt and each state is independent from all the states prior to state Xt−1. This
dependence structure is shown in Figure 2.2 for the bivariate case.

Under the assumption of conditional independence (CI) although the series are still dependent
conditional on the underlying hidden state Xt := t = 1, 2, . . . the variable N at time t and the
variable S at time t are assumed to be independent [46]. Hence, the covariance between the
variables are considered under the hidden states and a covariance matrix is not needed in the
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calculations.

Now, we define a joint state-dependent distribution as

pi(st, nt) = P ((St, Nt) = (st, nt)|Xt = i) (2.23)

where t = 1, 2, . . . , T and i = 1, 2, . . . ,m.

Since we have CI assumption, we can write Equation (2.23) as

pi(st, nt) = P ((St, Nt) = (st, nt)|Xt = i)

= P (St = st|Xt = i)P (Nt = nt|Xt = i).
(2.24)

Different types of distributions lead to different joint distributions. For example, for Poisson-
Normal HMM we can write

pi(st, nt) = (2πσ2
i )

− 1
2 e

− 1

2σ2
i

(st−µi)
2−λi λnt

i

nt!
. (2.25)

The most commonly used distributions in finance studies are assumed to follow normal distri-
bution. Moreover, this thesis assumes normality in order to provide convenience in determin-
ing the initial parameters of multivariate HMMs. Bivariate Normal distribution is examined
in this part in more detail. Under the assumption of conditional independence (CI) we have
the following joint state-dependent distribution for time t and state i,

pi(st, nt) = P ((St, Nt) = (st, nt)|Xt = i)

= P (St = st|Xt = i)P (Nt = nt|Xt = i),
(2.26)

where t = 1, 2, . . . , T and i = 1, 2, . . . ,m.

For bivariate normal HMM, the joint distribution is expressed as

pi(st, nt) = (2πσ2
1i)

− 1
2 e

− 1

2σ2
1i

(st−µ1i
)2

(2πσ2
2i)

− 1
2 e

− 1

2σ2
2i

(st−µ2i
)2

= (4π2σ2
1iσ

2
2i)

− 1
2 e

− 1
2
(
(St−µi1

)2

σ2
i1

+
(Nt−µi2

)2

σ2
i2

)

.

(2.27)

The likelihood function that will be maximized by using EM-algorithm is written by using
the joint distributions as follows:

LT = u(1)P (s1, n1)ΓP (s2, n2)ΓP (s3, n3) . . .ΓP (sT , nT )1
T (2.28)

where u(1) is initial distribution function, and

P (s, n) =


p1(s, n) 0

. . .

0 pm(s, n)

 .
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Then, the complete data loglikelihood (CDLL) is defined as

m∑
i=1

T∑
l=1

ûi(l) log pj(st, nt)

where ûi(l) = αt(i)βt(j)/LT .

For a bivariate normal HMM the log-likelihood, F , is

F =
T∑
l=1

ûi(t)

[
−1

2
log
(
4π2σ2

1iσ
2
2i

)
− 1

2

(
(St − µi1)

2

σ2
i1

+
(Nt − µi2)

2

σ2
i2

)]
.

Taking the derivative of F with respect to the parameters of HMM and solving for the expres-
sions maximizing F yields

µ̂1j =

∑T
t=1 ûj(t)St∑T
t=1 ûj(t)

,

µ̂2j =

∑T
t=1 ûj(t)Nt∑T
t=1 ûj(t)

,

σ̂1
2
j =

∑T
t=1 ûj(t)(St − µj)

2∑T
t=1 ûj(t)

,

σ̂2
2
j =

∑T
t=1 ûj(t)(Nt − µj)

2∑T
t=1 ûj(t)

.

2.4 Artificial Neural Network

Artificial intelligence (AI) started about the 1930s-1940s, and there have been significant
developments since then. The aim of AI applications is to replicate the human and even animal
intelligence behavior by simulating the brain structures and the thinking process by using
computer models [31]. In basic ANNs, there are three types of neuron layers which are input,
hidden, and output layers. While signal moves from input to output layers strictly without
a feedback connection in feedforward neural networks, it also has a feedback connection in
recurrent neural networks [1].

Feedforward neural networks is explained firstly to examine the RNN easily. According to
the structure presented in Figure 2.3, each connection line has a connection weight. Although
it is shown as all neurons have a connection to previous layer neurons, it might be the case of
not having a connection with some neurons [1]. A one hidden layer RNN is explained in this
section since it is used in the application part of the thesis.

Two weight matrices are included in one hidden layer ANN. The first weight matrix, W, that
connects the input layer with the hidden layer is a n× l matrix where n and l are the node size
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Figure 2.3: A feedforward neural network with a single hidden layer

of the input layer and hidden layer, respectively. The second weight matrix, V, that connects
the hidden layer with output layer is a l × m matrix where m is the node number of output
layer.

In Figure 2.3, wij is the connection weight between the ith external neuron zi (i = 1, . . . , n)

and the jth hidden neuron hj (j = 1, . . . , l), and vjk is the connection weight between hj and
the kth output neuron ck (k = 1, . . . ,m).

The nodes of hidden layer and output layer nodes are computed by Equations (2.29) and
(2.30), respectively.

hj = f

(
n∑

i=1

wijzi

)
, (2.29)

ck = g

 l∑
j=1

vjkhj

 . (2.30)

Here, f and g are the activation functions.

After this step in order to redefine the weights, it is needed to compare the output of the
feedforward application to the actual observations. In this thesis backpropogation algorithm
is used for reweighting. This algorithm uses gradients while determining the weights of the
following iteration step, so the error function must be continuous and differentiable. Hence,
activation functions, unlike the step function used in perceptron, are essential for the back-
propagation learning algorithm [50]. Some of the most popular activation functions for back-
propagation networks are sigmoid, tanh, ReLU, and leaky ReLU functions. Since sigmoid and
tanh functions can cause vanishing problems and ReLU can not perform a backpropagation
algorithm for negative values, leaky ReLU is preferred in this study.
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Leaky ReLU and its derivative are expressed as follows:

f(x) =

0.01x, if x ≤ 0

x, if x>0
(2.31)

d

dx
f(x) =

0.01, if x<0

1, if x>0
(2.32)

The optimal combinations of weights are searched by the learning algorithms. The weights
are initialized firstly, and at each iteration, they are updated to minimize the error, defined as

E =
1

m

m∑
k=1

(ck − yk)
2 (2.33)

where yk’s are the entries in the ground truth label y⃗ and ck’s are the entries in the prediction
matrix C. In fact, Equation (3.7) is a Mean Square Error metric, but there are several loss
function opportunities such as Mean Absolute Error, Mean Bias Error, Hinge Loss, and Cross-
Entropy Loss.

By using Equation (2.29) and Equation (2.30) E can be written as

E =
1

m

m∑
k=1

g

 l∑
j=1

vjkhj

− yk

2

=
1

m

m∑
k=1

g

 l∑
j=1

vjkf

(
n∑

i=1

wijzi

)− yk

2
(2.34)

The step that calculates the gradient of E and the reweighing made is called as backpropa-
gation. The error E of the network is minimized by using an iterative process of gradient
descent which is calculated as

∇E =

(
∂E

∂W
,
∂E

∂V

)
(2.35)

Then, the increments in weight matrices are

∆W ∝ − ∂E

∂W
, (2.36)

∆V ∝ −∂E

∂V
, (2.37)
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and, more explicitly the increments of entries in weight matrices are

∆wij ∝ − ∂E

∂wij
, (2.38)

∆vjk ∝ − ∂E

∂vjk
. (2.39)

To write increments more explicitly, partial derivatives of E should be written more explicitly.
For this reason, the intermediate steps and prediction vector in the ANN structure are written
in terms of weight matrices as follows:

C = f(g(Z × W)× V)

= f(L × V)
(2.40)

θ = Z × W (2.41)

Q = f(Z × W)× V (2.42)

where Z is the input matrix, C is the output matrix and L is the hidden layer matrix.

Then, the partial derivative of E with respect to W can be written using the Chain rule:

∂E

∂W
=

∂E

∂L
∂L
∂θ

∂θ

∂W
(2.43)

and, we have
∂E

∂L
=

∂E

∂C
∂C
∂Q

∂Q
∂L

. (2.44)

Finally, the partial derivative of E with respect to W is

∂E

∂W
=

∂E

∂C
∂C
∂Q

∂Q
∂L

∂L
∂θ

∂θ

∂W
(2.45)

Moreover, the partial derivative of E with respect to V is written as follows

∂E

∂V
=

∂E

∂C
∂C
∂θ

∂θ

∂V
(2.46)

After finding the gradient for iteration step i we recalculate W and V to use in the next iteration
step (i+ 1) as follows:

W(i+ 1) = W(i) + λ
∂E

∂W(i)
, (2.47)
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Figure 2.4: A recurrent neural network with a single hidden layer

V(i+ 1) = V(i) + λ
∂E

∂V(i)
. (2.48)

where λ is the learning rate which determines the step size at each iteration while trying to
reach the minimum loss function. The learning rate needs to be chosen small enough that the
loss function can approximate 0. However, it should not be too small since the increment in
weights would be so tiny, and the algorithm would work so slowly in such a case.

In the Feedforward Neural Network structure, incoming information is only processed for-
ward. However, RNN is a type of ANNs that allows the result not only based on the current
input but also on other inputs. According to the structure presented in Fig. 2.4 RNN addi-
tionally contains a link term with the previous layer in the calculation of the current hidden
layer:

hj
(t) = f

(
n∑

i=1

wijzi + ujhj
(t−1)

)
(2.49)

where hj
(t) and hj

(t−1) are jth hidden layer nodes in time steps t and t− 1, respectively.

Then, the gradient of E becomes

∇E =

(
∂E

∂W
,
∂E

∂V
,
∂E

∂U

)
(2.50)

where U is the hidden-to-hidden recurrent connections matrix, and

∂E

∂U
=

∂E

∂C
∂C
∂Q

∂Q
∂L

∂L
∂θ

∂θ

∂U
(2.51)

Then, U weight matrix of the next iteration step is

U(i+ 1) = U(i) + λ
∂E

∂U(i)
. (2.52)
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Up to here, batch gradient descent is explained. Namely, the gradient of the error function
is computed for the whole training dataset. For one update calculating the gradients for the
whole dataset can make the algorithm very slow [52]. Especially, for very large data set it is
not preferable.

However, in stochastic gradient descent, one example is taken, and the feedforward step is
applied for one epoch. After finding its gradients, the weights are updated by using these
gradients. These steps are applied to all examples in the same epoch. Although it is much
faster than the batch gradient descent, it causes fluctuations in the loss function. Hence, it
cannot reach the minimum although it approaches to 0.

Mini-batch gradient descent is a mixture of batch and stochastic gradient descent. It splits
data into specific mini-batches. In one epoch, it computes gradients of each mini-batch by
taking the average of or summing up the gradients of the examples in the mini-batch. Then,
the weights are updated for the related mini-batch. After applying all these steps to all mini-
batches, the next epoch is started.
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CHAPTER 3

EMPIRICAL APPROACH

This chapter contains the application methodologies of classical HMM and RNN for each
of the univariate, bivariate, and trivariate cases in the frame of financial data. The selected
assests are S&P 500, NASDAQ and EUR/USD exchange rate. The reasons for the choice
of these are explained in Section 3.1. The methodology of the Hybrid HMM-RNN model is
introduced. Since it would be more effective to explain the proposed model over the data set,
first the data set is defined followed by the hybrid model.

3.1 Data and Descriptives

The Standards & Poor’s 500 (S&P 500) stock market index measures the performance of
500 large companies listed on the US stock exchanges. It is a free float-adjusted market
capitalization-weighted index. As the primary indicator of the overall stock market perfor-
mance in the US, it is used to record and monitor daily changes in the largest companies
in the American stock market. S&P 500 is considered as a very important global financial
indicator since the United States is one of the biggest financial centers in the world [42].
National Association of Securities Dealers Automated Quotations (Nasdaq) Composite Index
is also a US based stock market index. While S&P 500 covers different sectors like finance,
health care, industry, energy, information technology, and many others, Nasdaq includes only
the information technology sector. As a result, S&P 500 is risk free while Nasdaq is highly
volatile. Since S&P 500 includes the stocks in Nasdaq Composite, the correlation between
them is expected to be high which is also supported by the data set yielding 99.3% correla-
tion (Table 3.1). The exchange rate EUR/USD is another critical indicator in international and
global markets. It has indirect influence on the assets, especially during global crisis which fits
well to HMM influencing the hidden states. It is interesting to observe that the correlation of
the EUR/USD rate has low correlation to other two selected assets (Table 3.1). The European
single market and the US market are world’s two biggest economies. Therefore, EUR/USD
is the most traded currency pair on the market and this parity is a crucial parameter in the US
economy.

S&P 500 and Nasdaq data used in the application are presented in Figure 3.1a. It includes
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Table 3.1: Correlation Matrix of Nasdaq, S&P 500 and EUR / USD data
Nasdaq S&P 500 EUR/USD

Nasdaq 1 0.973 0.044
S&P 500 0.973 1 0.046
EUR/USD 0.044 0.046 1

20
00

60
00

10
00

0
14

00
0

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

NASDAQ
S&P 500

(a) Daily closing prices of S&P 500 and Nasdaq indexes

(b) Daily EUR/USD exchange rates

Figure 3.1: Time series of the variables
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daily closing prices of S&P 500 and Nasdaq data. Figure 3.1b shows EUR/USD exchange
rate index. They are retrieved from the database of Yahoo Finance for the time period between
22.08.2000 and 30.04.2021, yielding 5205-time points. The partition of training and test sets
are made approximately 80%-20% in line with literature. While 4096 of them are selected as
the training part, 1108 are used as the test part. The cut off lines in Figure 3.1a and Figure 3.1b
correspond to the date of 02.12.2016 and separate the training and the test parts. In fact, 10%
of the test data is used for validation and 10% for testing.

As can be seen from Figure 3.1a, there has been an upward trend in two stock prices since
2009 after the 2008 financial crisis. Large decreases are observed in 2019 and 2020. The first
drop mentioned is due to a global economic slowdown, disruptive trade wars. The declines
in 2020 are related to the effect of the pandemic on the economy. Figure 3.1b illustrates that
there is no obvious trend in the exchange rate data. Also, it should be noted that test data
differs from training data and follows a more stable pattern.

The variables are transformed by using Min-Max normalization technique and used in the
applications in this form since it converts all variables into the same scale (0 − 1) while
preserving their behavior over time. Figure 3.2a shows the transformed data for the training
part of the variables whereas Figure 3.2b represents the whole transformed sets. According to
Figure 3.2b, while S&P 500 and Nasdaq follow a similar pattern from 2009, EUR/USD starts
to follow a different pattern near the end of training data since it becomes more stable in test
period.

Table 3.2 shows the descriptive statistics of the original data set and the training- test parts.
For both of the cases Nasdaq and S&P 500 training data are positively skewed and exchange
rate training data is negatively skewed. While the test part of Nasdaq and S&P 500 show
similar features with the training part, this is not the case for the exchange rate data in terms
of skewness and kurtosis. Moreover, Figure 3.3a, Figure 3.3c and Figure 3.3e represent the
histogram of S&P 500, Nasdaq and exchange rate, respectively, which do not follow nor-
mal distribution, justified also by QQ plots and Shapiro-Wilk test (Figure 3.3b, Figure 3.3d
and Figure 3.3f; Table 3.2). The financial data analysis assumes mostly normality as the
log-returns in theoretical studies are taken as log-normal. For this reason, we stay with the
normality for the rest of the analyses.

The bivariate histograms of the binary combinations of S&P 500 and Nasdaq indeces and
exchange rate are represented in Figure 3.4 since they guide for the choice of the initial pa-
rameters of the bivariate and trivariate HMMs. State centers are tried to be selected according
to the concentration regions.

3.2 Application of the Proposed Methodology

In this section, we illustrate the proposed approach on the selected variables. To elaborate
the impact of hybrid model, i.e. RNN-HMM, the traditional models are applied firstly. The
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(a) For training set

(b) For whole time frame

Figure 3.2: Min-Max transformed variables
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Figure 3.3: Histogram and QQ-plots of training sets
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Figure 3.4: Bivariate histograms of S&P 500 and Nasdaq indexes and Exchange Rate data
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Table 3.2: Descriptive statistics of daily S&P 500 and Nasdaq close prices and EUR/USD
exchange rates (nA = 5205, nTr = 4096, nT = 1108)

Variable n Mean Std. Dev. Min Max Skewness Kurtosis

Shapiro
-Wilk
(p-
value)

Nasdaq
nA 3936.41 2673.81 1114.11 14138.78 1.57 5.15 0.00
nTr 2749.84 1090.01 1114.11 5398.92 0.95 2.77 0.00
nT 8316.12 2182.48 5251.11 14138.78 1.12 0.38 0.00

S&P 500
nA 1696.18 735.42 676.53 4211.47 1.11 3.42 0.00
nTr 1369.27 364.02 676.53 2213.35 0.77 2.64 0.00
nT 2902.93 443.40 2191.08 4211.47 0.89 0.31 0.00

EUR/USD
nA 1.21 0.16 0.83 1.60 -0.27 -0.16 0.00
nTr 1.23 0.17 0.83 1.60 -0.55 -0.28 0.00
nT 1.15 0.05 1.15 1.25 0.02 -0.78 0.00

analysis contain three dimensions in the variables: Univariate, Bivariate and Trivariate cases.
They are applied for HMM, RNN and Hybrid (RNN-HMM) approaches. The performance of
the forecasting results are summarized in terms of the RMSE, MAPE and MAE measures.

3.2.1 HMM Methodology for Univariate, Bivariate and Trivariate Cases

Firstly, for the application of univariate HMM, the initial parameters of mean µ, standard
deviation σ, transition probability, Γ, and initial distribution δ are determined by trying to get
rid of the local maximums. This step is applied to several univariate HMMs with different
number of states to choose the most suitable one with respect to their AIC and BIC values.

At each step of EM algorithm logL is computed by using the formula in Equation (2.10).
Since there are (m2 −m) parameters for Γ, m parameters for each of the µ and σ variables
and m − 1 parameters for δ, p can be written as p = m2 + 2m − 1 where m is the state
number.

In the bivariate case, the mean, µ1, and standard deviation, σ1, of the first variable and the
mean, µ2, and standard deviation, σ2, of the second variable are determined. Moreover,
transition probability Γ and initial distribution δ are initialized as in the univariate HMM
application. Similarly, state number is determined according to AIC and BIC results. How-
ever, notice that the number of parameters is p = m2 + 4m − 1 for the bivariate case and
p = m2 +6m− 1 for the trivariate case. Covariance matrices are not included because of the
conditional independence assumption. The effect of covariance is considered to be handled
under hidden states, due to the assumption that the variables are bound to the same states. For
each of the univariate, bivariate, and trivariate HMM applications, after performing the EM
algorithm, the parameters of the models are estimated, and forecasting is achieved by using
Equation (2.13).
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Figure 3.5: Structure of the Hybrid RNN-HMM

3.2.2 RNN-HMM Methodology

A hybrid model constructed in this thesis implements RNN and HMM algorithms sequen-
tially and uses EM and discriminative algorithms of RNN to optimize the whole model. The
proposed model is illustrated in Figure 3.5 whose details are given in Algorithm 1 and the
flowchart in Figure 3.6. This algorithm can be extended for larger number of variables. Here,
we illustrate the bivariate case for simplicity.

To elaborate more, we describe the process given in Figure 3.5 as follows. Data is divided
into training and test sets as a requirement for RNNs. The training part (nTr) is then divided
k equal subsamples with size nTr/k. After that, initial weights are simultaneously given to
each subsample in order to make forward propagation. The outputs of forward propagation
are used as the input of HMM part. After applying the HMM part, final outputs of the first
round are produced. Then, the loss function is calculated by taking the average of MSE results
based on the actual values of the data at time nTr

k + 1. According to gradient results by using
Back Propagation the weights are recalculated for use in the next step. All these steps are
reapplied until reaching the tolerance criteria of the loss function.
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Algorithm 1 Algorithm of Hybrid RNN-HMM.

Data: Read S and N (nTr data points for each variable)
Output: Forecasting results

Divide data into k equal parts for attaining k subsamples
Randomize initial weights and propose the learning rate of RNN
Propose the learning rate and iteration number of RNN
Set the forms of initial parameters of HMM
Apply feedforward part of RNN to each subsample
Use outputs of feedforward part as the input of HMM and apply EM algorithm

E-step: Calculate likelihood
M-step: Obtain the parameters that maximizes the likelihood
If The convergence condition is not satisfied
Then Return to E-step
Else Obtain the optimal estimated parameters
End

Forecasting
Compute the loss function and the gradient descent of the weights
Update the weights of RNN part

If The iteration number is not reached
Then Return to feedforward application part
Else Obtain the weights
End

Make validation
If Validation does not reach to the minimum loss
Then Restructure RNN
Else Make final forecasting by using ultimate HMM and RNN parameters
End

Nasdaq, S&P 500 and EUR/USD exchange observations starting at time 1 till t are accepted
as input depending on the number of variables of incorporated into RNN. Training set of
4096 is separated into 4 subsamples whose size is chosen to be 1024 attain to be the power of
2. There could be problems like overfitting and not being able to determine the appropriate
number of states for the HMM part for smaller subsamples may occur.

The input-to-hidden, hidden-to-hidden and the hidden-to-output weights in RNN part are
named as W, U and V, respectively. According to loss function results of the validation
part 4-node case is preferred for the hidden layer of the RNN part. Therefore, for example,
for the bivariate case the input data, W, U and V are constructed as 2 × 1024, 2 × 4, 4 × 4

and 4× 2 matrices, respectively. The weights W, U and V are shown as

W =

[
wS1 wS2 wS3 wS4

wN1 wN2 wN3 wN4

]
, (3.1a)
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U =


u11 u21 u31 u41

u12 u22 u32 u42

u13 u23 u33 u43

u14 u24 u34 u44

 , (3.1b)

V =


vS1 vN1

vS2 vN2

vS3 vN3

vS4 vN4

 . (3.1c)

This can be easily applied when the number of variables increase by simply adjusting the
matrices accordingly. To illustrate, the input data, W, U and V are constructed as 1 × 1024,
1× 4, 4× 4 and 4× 1 matrices for the univariate case and 3× 1024, 3× 4, 4× 4 and 4× 3

matrices for the trivariate cases, respectively.

The activation function used in this model is leakyRelu (LR). Therefore, He initialization
is preferred since it is the most suitable weight initialization technique for this activation
function currently.

Then, for the first time step the hidden layer (L(1)) is computed as

L(1) = LR




S1 N1

...
...

S1024 N1024


[
wS1 wS2 wS3 wS4

wN1 wN2 wN3 wN4

] (3.2)

and, for the tth time step the hidden layer (L(t), t = 2, . . .) is as follows

L(t) = LR




S1 N1

...
...

S1024 N1024


[
wS1 wS2 wS3 wS4

wN1 wN2 wN3 wN4

]

+L(t−1)


u11 u21 u31 u41

u12 u22 u32 u42

u13 u23 u33 u43

u14 u24 u34 u44


 .

(3.3)

The output matrix of the RNN part C is calculated by using V presented in Equation (3.4) and
is obtained as a 2× 1024 matrix.

C(t) = LR

L(t) ×


vS1 vN1

vS2 vN2

vS3 vN3

vS4 vN4


 (3.4)
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Five-state is used for the HMM part and it is fed by C, whose output matrix of this last part
is named as O. These two output matrices are formulated explicitly in Equations (3.5) and
(3.6), respectively, where H is the function representation of HMM part.

C(1) = LR (LR (Z × W)× V)

= LR
(

L(1) × V
) (3.5a)

O(1) = H (LR (LR (Z × W)× V))

= H
(

LR
(

L(1) × V
))

= H
(

C(1)
) (3.5b)

C(t) = LR
(

LR (Z × W)× V + L(t−1)U
)

= LR
(

L(t) × V
) (3.6a)

O(t) = H
(

LR
(

LR (Z × W)× V + L(t−1)U
))

= H
(

LR
(

L(t) × V
))

= H
(

C(t)
) (3.6b)

Then the loss function E is

E =
1

m

m∑
k=1

(ok − yk)
2 (3.7)

where yk’s are the entries in the ground truth label y⃗ and ok’s are the entries in the prediction
matrix O.

In order to recalculate the weights, we take the partial derivatives of loss function with respect
to W, U and V. Before representing the derivatives following terms are needed to be defined.
These are

θ(t) = Z × W + L(t−1) × U (3.8a)

Q(t) =
(

LR
(

Z × W + L(t−1) × U
))

× V (3.8b)

Then, the derivative with respect to W can be written as follows:

∂E

∂W
=

∂E

∂L
∂L
∂Q

∂Q
∂W

. (3.9)

Based on Equation (3.9), we propose
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∂E

∂L
=

∂E

∂O
∂O
∂C

∂C
∂θ

∂θ

∂L
(3.10)

Finally, the partial derivative of loss function according to W becomes

∂E

∂W
=

∂E

∂O
∂O
∂C

∂C
∂Q

∂Q
∂L

∂L
∂θ

∂θ

∂W
. (3.11)

The partial derivative of loss function according to U is

∂E

∂U
=

∂E

∂O
∂O
∂C

∂C
∂Q

∂Q
∂L

∂L
∂θ

∂θ

∂U
. (3.12)

The derivative of loss function with respect to V is written as follows

∂E

∂V
=

∂E

∂O
∂O
∂C

∂C
∂θ

∂θ

∂V
(3.13)

When the matrix derivation is taken into account, the derivatives are fixed as follows

∂E

∂W
= ZT ×

[[(
2
(
y − O(t)

)
H ′
(
C(t)

)
LR′

(
C(t)

))
×VT

]
LR′

(
L(t)

)] (3.14)

∂E

∂U
=
(
L(t−1)

)T
×
[[(

2
(
y − O(t)

)
H ′
(

C(t)
)

LR′
(

C(t)
))

×VT
]

LR′
(
L(t)

)] (3.15)

∂E

∂V
=
(
L(t)

)T
×
[
2
(
y − O(t)

)
H ′
(

O(t)
)

LR′
(

C(t)
)]

(3.16)

Since the HMM part is not feasible to take the derivative we need to use numerical derivative
for H ′ in above equations. It can be recognized that when all the input values increase at the
same amount of h, the estimated means are expected to increase at this amount while the other
parameters remain the same. Hence, the forecasting values are expected to increase about h.
Therefore, in order to improve the time performance of the application derivative of HMM
part is accepted as 1.

After finding the derivatives we recalculate W, U and V as follows:

W(i+ 1) = W(i) + λ
∂E

∂W(i)
(3.17)

U(i+ 1) = U(i) + λ
∂E

∂U(i)
(3.18)
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V(i+ 1) = V(i) + λ
∂E

∂V(i)
(3.19)

where i is the iteration number and λ is the learning rate.

Finally, the estimated weight values of RNN part and the parameters of HMM part attained
from the training application are fixed. The forecasting is performed by using these fixed
parameters while the input data is updated at each time point.

3.2.3 Basic RNN Methodology

Besides the basic HMM and Hybrid RNN-HMM methods, RNN is applied to training set to
be able to make a comparison with the proposed method. Here, a basic RNN is used since
the combined RNN of RNN-HMM is also a basic version of RNN. In classical RNN appli-
cations, one hidden layer is used and the loss function is chosen as MSE. Four subsamples
with 1024 batch size are used and for each sample, the gradient is computed. The weights are
updated by using their sum at the backpropagation step as in the Hybrid model to be compa-
rable. LeakyRelu function is used as activation function. He initialization technique is used
while initial weights are given. The iteration number and the learning rate are determined by
controlling the RMSE on validation data. After determining the ultimate weights, forecasting
is performed.

All the models mentioned in this section are applied on the training data and their results and
comparisons are presented in the next chapter.
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CHAPTER 4

APPLICATION RESULTS

In this chapter, the forecasting results of the Hybrid model are explained for each of the
univariate, bivariate and trivariate cases. Moreover, basic HMMs and RNNs are applied, and
the results are introduced to be able to evaluate the performance of the developed model
relative to the classical models. All results in this section are one ahead forecast results. In
other words, after the optimal parameters are fixed for each model, the input data is updated
at each step and estimations are made.

4.1 Univariate Analyses

4.1.1 S&P 500 Analyses

The S&P 500 closing prices from 22.08.2000 to 30.04.2021 is presented once again in Fig-
ure 4.1. The first crisis of this period is the bubble in the stock market in 2000 (Dot-com
bubble). Overvaluations, public enthusiasm for stocks, and speculation in the technology
sector are the main reasons of this crisis. The S&P 500 is damaged when the bubble burst
between 2000 and 2002. Moreover, during 2008 financial crisis and its recession, the S&P
500 dropped over 40% from late 2007 to early 2009, but recovered all its losses by 2013.
The growth trend after this crisis is interrupted by the pandemic conditions that entered our
lives at the beginning of 2020 and cause a sharp decline. The coronavirus pandemic causes a
global recession and disrupts stock markets, including the S&P 500. However, it recovers in
the second half of 2020 and hits all-time highs in 2021.

4.1.1.1 HMM on S&P 500

The univariate HMM applied to S&P 500 requires the initial parameters to be determined by
eliminating the local maximums with control of the AIC and BIC values. For three different
state numbers, this model is compared and presented in Table 4.1. Since the high state num-
bers are not preferred in HMMs, it is set up to 5-state. In addition, with the higher number of
variables, the number of parameters will increase and this will further increase the probability

35



Figure 4.1: Daily closing prices of S&P 500

Table 4.1: Test statistics of 3-state, 4-state and 5-state univariate HMMs
mllk AIC BIC

3-state univariate HMM -4666.964 -9305.929 -9217.48
4-state univariate HMM -5732.058 -11418.12 -11272.81
5-state univariate HMM -6856.77 -13645.54 -13430.74

of getting stuck at local minimums when setting the initial parameters. Based on the smallest
AIC and BIC values, the 5-state model is chosen which is used for all HMM implementation.

Following a five-state specification, the choice of initial parameters is made by trial-and error
using the histogram of the data (Figure 3.3a). Five normal distributions, whose means and
standard deviations are given in initial parameter vectors µ and σ, are predicted to generate
all S&P 500 data. After applying the EM algorithm to the initial mean and standard deviation
predictions, AIC and BIC values are compared. The ones with lower criteria are chosen as the
initial parameters of the HMM. The estimated parameters µ, σ, δ and Γ are derived from the
initial ones by EM algorithm and they are presented with AIC, BIC and negative likelihood
(mllk) results for fivestate univariate HMM as:

µ =
(
0.1560 0.2993 0.4007 0.5258 0.8660

)

σ =
(
0.0501 0.0310 0.0285 0.0607 0.0749

)
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Γ =


0.9916 0.0056 0.0028 0 0

0.0069 0.9885 0 0.0046 0

0.0050 0 0.9933 0.0017 0

0 0.0053 0 0.9934 0.001

0 0 0 0 1



δ =
(
0 0 1 0 0

)

mllk = −6856.77, AIC = −13645.54, BIC = −13430.74

The transition probability matrix results show that the probability of being in the same state
is very close to 1, which is expected to be due to the long time series. However, these high
probability ratios prevent HMM from working actively, which behaves differently and is not
close to 1 in the proposed approach. This is one of the strengths of the proposed model. Since
it works by breaking up long data, it allows transitions between states even for long data.

Equation (2.13) is used to forecast the S&P 500 with the estimated parameters and the result
is presented in Figure 4.2. The figure shows that it is in agreement with the trend and captures
the sharp fall after 2020. Moreover, RMSE, MAPE and MAE results of this application are
presented in Table 4.3. The results are compared with the estimation results obtained from
the hybrid model application in the next section.

4.1.1.2 RNN-HMM on S&P 500

After the application of univariate HMM to S&P 500, the RNN-HMM model is performed.
The weight matrices W, U and V are initialized randomly using He normal initialization
technique. In the HMM part, the structure of the output matrix C is analyzed to construct
the parameters of the EM algorithm. For the proposed hybrid model, the mean and standard
deviation parameters of the EM algorithm are constructed as functions, although they are
numeric in the classical HMM. The reason is the input data changes at each iteration. As a
result, the initial parameters µ and σ of EM for the univariate case are chosen by trial and
error as follows:

µ =
(
µ(C)− 2a1 µ(C)− a1 µ(C) µ(C) + a1 µ(C) + 2a1

)

σ =
(
σ(C)− σ(C)/10 σ(C)− σ(C)/10 σ(C) σ(C)− σ(C)/9 σ(C)− σ(C)/8

)
where C is S&P 500 output of RNN and a1 is given as
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Table 4.2: Comparison of univariate HMMs with different initial mean and standard deviation
values

Initial
Values

I
µ = (µ(C)− a1 µ(C) µ(C) + a1 µ(C) + 2a1 µ(C) + 3a1)

σ = (σ(C)− σ(C)
10 σ(C)− σ(C)

10 σ(C) σ(C)− σ(C)
9 σ(C)− σ(C)

8 )

mllk AIC BIC
1st subsample -2398.727 -4729.454 -4561.784
2nd subsample -2607.466 -5146.933 -4979.263
3rd subsample -2283.173 -4498.346 -4330.676
4th subsample -2169.873 -4271.745 -4104.075

II
µ = (µ(C)− 2a1 µ(C)− a1 µ(C) µ(C) + a1 µ(C) + 2a1)

σ = (σ(C)
10

σ(C)
10 σ(C) σ(C)

9
σ(C)
8 )

mllk AIC BIC
1st subsample -2405.307 -4742.614 -4574.943
2nd subsample -2591.693 -5115.386 -4947.716
3rd subsample -2250.923 -4433.846 -4266.176
4th subsample -2137.562 -4207.125 -4039.455

III
µ = (µ(C)− 2a1 µ(C)− a1 µ(C) µ(C) + a1 µ(C) + 2a1)

σ = (σ(C)− σ(C)
10 σ(C)− σ(C)

10 σ(C) σ(C)− σ(C)
9 σ(C)− σ(C)

8 )

mllk AIC BIC
1st subsample -2494.845 -4921.69 -4754.02
2nd subsample -2580.526 -5093.052 -4925.382
3rd subsample -2299.975 -4531.95 -4364.28
4th subsample -2232.479 -4396.957 -4229.287

a1 =
max(C1)−min(C1)

8
.

Three different (I, II, III) trials are represented in Table 4.2 to illustrate the choices of initial
criteria determined by trial and error. Different mean and standard deviation formulas are
chosen for each trial, and mllk, AIC, and BIC values are reported for each subsample of each
trial. The III. initial parameters in Table 4.2 give the lower AIC and BIC values in general.

The estimated parameters of EM algorithm are presented in Appendix A (Table A.1). Using
these parameters of HMM and initial weights of RNN forecasting is performed and presented
in Figure 4.2. The obtained results capture the fluctuations as well as catch the trend. More-
over, despite the sharp declines in 2019 and 2021, it also yields successful results.

In addition to HMM and hybrid model application, a simple RNN is also applied to make
comparisons and clarify the success of proposed model. The results are shown in Figure 4.2
with HMM and RNN-HMM. Basic RNN is just able to catch the trend but cannot capture the
fluctuations of data.
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Figure 4.2: Forecasting results of S&P 500 for univariate HMM, RNN and RNN-HMM

Table 4.3: Univariate S&P 500 performance for each model
RMSE MAPE MAE

HMM 255.515 7.937 233.125
RNN 224.156 5.622 172.382
RNN-HMM 119.787 3.710 108.289

Figure 4.2 and Table 4.3 show that adding the learning algorithm of neural networks improves
the forecasting performance of univariate basic HMM on S&P 500. Moreover, it gives much
better results than the basic RNN. Among the univariate applications, the model with the best
accuracy is the hybrid model with smallest RMSE (119.787) andd MAPE (3.710). In the
second place is the HMM model, which performs better than the classical RNN application.

4.1.2 Nasdaq Analyses

Nasdaq prices which are reposted in Figure 4.3 also follow a very close path with the S&P
500. However, since the Dot-com bubble is actually a bubble about technology companies, it
affects the Nasdaq significantly. As in the S&P 500, it has experienced sharp declines being
affected by the 2008 recession and the 2020 pandemic conditions, but recent prices show
increasing trend even faster than the S&P 500.
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Figure 4.3: Daily closing prices of Nasdaq

4.1.2.1 HMM on Nasdaq

Initial parameters are determined by comparing the AIC and BIC results of several trials for
the basic univariate HMM application to Nasdaq as in the S&P 500 case. The histogram of
Nasdaq in Figure 3.3c is used for this purpose and the parameters of the normally distributed
five Nasdaq prices are found as:

µ =
(
0.1012 0.2163 0.3070 0.4463 0.8248

)

σ =
(
0.0429 0.0246 0.0345 0.0633 0.1002

)

Γ =


0.9906 0.0094 0 0 0

0.0061 0.9872 0 0.0066 0

0 0.0068 0.9878 0.0043 0

0 0 0.0062 0.9923 0.0015

0 0 0 0.0012 0.9988



δ =
(
0 0 1 0 0

)

mllk = −6713.109, AIC = −13358.22, BIC = −13143.41
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Figure 4.4: Forecasting results of Nasdaq for univariate HMM, RNN and RNN-HMM

Table 4.4: Univariate Nasdaq performance for each model
RMSE MAPE MAE

HMM 1134.232 12.330 1038.582
RNN 1379.549 9.959 965.990
RNN-HMM 382.071 3.911 326.958

Forecasting result in Figure 4.4 shows that fluctuations could not be detected by HMM effec-
tively. In order to examine its performance, RMSE, MAPE and MAE results are presented in
Table 4.4.

4.1.2.2 RNN-HMM on Nasdaq

Then, RNN-HMM Hybrid model is tested on Nasdaq for univariate case. The initial param-
eters of HMM part are determined by trial and error as given in Table 4.2 and they are as
follows for the univariate Hybrid application to Nasdaq:

µ =
(
µ(C)− 2a1 µ(C)− a1 µ(C) µ(C) + a1 µ(C) + 2a1

)

σ =
(
σ(C)− σ(C)/10 σ(C)− σ(C)/10 σ(C) σ(C)− σ(C)/9 σ(C)− σ(C)/8

)
where C is Nasdaq output of RNN, and
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Figure 4.5: EUR/USD Exchange Rate

a1 =
max(C1)−min(C1)

8
.

Figure 4.4 contains forecast results obtained using the optimized HMM parameters in Ta-
ble A.2 and ultimate RNN parameters. Unlike the HMM implementation, this model is quite
successful in capturing fluctuations on Nasdaq. On the other hand, RNN can only catch the
trend. RMSE, MAPE and MAE results of HMM, RNN and the Hybrid applications (Ta-
ble 4.4). These results reinforce that RNN-HMM gives the smallest errors (RMSE of 382.071
and MAPE 3.911).

4.1.3 EUR/USD Analyses

The EUR/USD exchange rates (reposted in Figure 4.5) between 22.08.2000 and 30.04.2021
does not have long history as Euro is launched in 1999 and used only in online applications
for 3 years. It is started to be used as coins and banknotes in 2002. Due to the fact that Europe
has a very large market, the Euro, the official currency of the European Union, has appreciated
against the USD as well as against many currencies up to 2008. Due to the Greek economic
crisis in 2008, the Euro experienced a sharp decline. The exchange rate follows a fluctuating
course afterward. In 2014, one of the most significant decreases in the EUR/USD exchange
rate takes place due to the strengthening of the US economy and the political instability in
Greece.
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4.1.3.1 HMM on EUR/USD

After examining the estimation results of the univariate models applied to the S&P 500 and
Nasdaq data, the models applied to the univariate EUR/USD data are shown in this section.

The histogram in Figure 3.3e is used for determining the initial parameters. Then, the opti-
mized parameters are obtained by controlling the AIC and BIC results of EM algorithm as
follows:

µ =
(
0.0794 0.2030 0.3745 0.5749 0.7578

)

σ =
(
0.0308 0.0302 0.0416 0.0555 0.0852

)

Γ =


0.9953 0.0047 0 0 0

0.0062 0.9876 0.0062 0 0

0 0 0.9973 0.0027 0

0 0 0.0013 0.9934 0.0053

0 0 0 0.0070 0.9930



δ =
(
1 0 0 0 0

)

mllk = −5974.19, AIC = −11880.27, BIC = −11665.57

Estimated parameters plugged in Equation (2.13) yield the forecasts of univariate HMM. Fig-
ure 4.6 includes this result and shows that forecasting values can follow actual values.

4.1.3.2 RNN-HMM on EUR/USD

We obtain the initial parameter formulas of HMM by trial and error as follows

µ =
(
µ(C)− 3a1 µ(C) + a1 µ(C) + a1 µ(C) µ(C)− a1

)

σ =
(
σ(C)/4 σ(C)/5 σ(C)/4 σ(C)/5 σ(C)/5

)
where C is EUR/USD exchange rate output of RNN, and
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Figure 4.6: Forecasting results of EUR/USD for univariate HMM, RNN and RNN-HMM

Table 4.5: Univariate EUR/USD performance for each model
RMSE MAPE MAE

HMM 0.039 2.390 0.027
RNN 0.061 3.912 0.044
RNN-HMM 0.035 2.492 0.028

a1 =
max(C1)−min(C1)

9
.

Forecasting is performed with the estimated parameters are presented in Table A.3. Although
the test data of EUR/USD has a very different structure than its training data, the forecasting
results are successful. However, the Hybrid model does not significantly contribute to the
classical HMM. RMSE, MAPE, and MAE results in Table 4.5 depict that the simple HMM
(RMSE of 0.039 and MAPE 2.390) and the proposed hybrid model (RMSE of 0.035 and
MAPE 2.492) have similar accuracy and give better results than the basic RNN.

4.2 Bivariate Analyses

In this section, S&P 500, Nasdaq and EUR/USD variables are subjected to HMM, RNN and
RNN-HMM applications in bivariate combinations.
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4.2.1 Bivariate S&P 500 and Nasdaq Analyses

The bivariate case is applied first for the two highly correlated variables, S&P 500 and Nasdaq,
for the classical and proposed Hybrid model.

4.2.1.1 HMM on S&P 500 and Nasdaq

The initial mean and standard deviation parameters of two variables are determined by exam-
ining the bivariate histogram in Figure 3.4a. According to the points where the data is con-
centrated, the mean and standard deviation initial parameters of the 5 states are determined.
Then, the parameters are estimated by using EM algorithm and controlling the information
criteria. The estimated mean, standard deviation, transition probability and initial distribution
parameters and AIC, BIC, and mllk results of 5-state bivariate HMM application for S&P
500 and Nasdaq indices are selected. Because of the conditional independence assumption,
covariance matrix is not among the estimated parameters in this part and in the multivariate
applications after this part. The parameters are:

µ1 =
(
0.0984 0.2228 0.3584 0.6638 0.8916

)

µ2 =
(
0.1591 0.3104 0.4430 0.7072 0.9103

)

σ1 =
(
0.0433 0.0343 0.0639 0.0928 0.0503

)

σ2 =
(
0.0541 0.0445 0.0612 0.0964 0.0407

)

Γ =


0.9950 0.0050 0 0 0

0.0025 0.9933 0.0042 0 0

0 0.0004 0.9946 0.0015 0

0 0 0.0022 0.9898 0.0080

0 0 0 0.0050 0.9950


δ =

(
0 0 1 0 0

)

mllk = −12378.42, AIC = −24668.84, BIC = −24390.86

Figure 4.7a contains the forecasting results for the S&P 500 while Figure 4.7b exposes the
forecasting results for Nasdaq. In both cases the results can follow the real observations and
catch the two sharp drops in 2019 and 2021.
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(a)

(b)

Figure 4.7: Forecasting results of (a) S&P 500 and (b) Nasdaq for Bivariate HMM, RNN and
RNN-HMM
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Table 4.6: Bivariate S&P 500 performances for each model
2nd
Variable

RMSE MAPE MAE

HMM
Nasdaq 162.374 5.098 148.060
EUR/USD 199.924 7.937 233.125

RNN
Nasdaq 180.957 3.937 120.541
EUR/USD 259.345 6.992 212.478

RNN-HMM
Nasdaq 93.056 2.158 63.074
EUR/USD 178.161 4.968 142.149

4.2.1.2 RNN-HMM on S&P 500 and Nasdaq

The parameters of EM algorithm part of bivariate RNN-HMM are chosen by trial and error
as in the case of univariate RNN-HMMs. The initial parameters are determined as formulas
after checking the selection criteria as follows:

µ1 =
(
µ(C)− 2a1 µ(C1)− a1 µ(C1) µ(C1) + 2a1 µ(C1) + 3a1

)

µ2 =
(
µ(C2)− 2a2 µ(C2)− a2 µ(C2) µ(C2) + 2a2 µ(C2) + 3a2

)

σ1 =
(
σ(C1)/8 σ(C1)/8 σ(C1)/4 σ(C1)/4 σ(C1)/8

)

σ2 =
(
σ(C2)/4 σ(C2)/5 σ(C2)/4 σ(C2)/5 σ(C2)/5

)
where C1 is Nasdaq output and C2 is S&P 500 output of RNN, and

a1 =
max(C1)−min(C1)

8
, a2 =

max(C2)−min(C2)

7
.

After reaching the RNN part’s ultimate weights and the EM algorithm’s parameters in Ta-
ble A.4, the forecasting is performed for both S&P 500 and Nasdaq and shown in Figure 4.7a
and Figure 4.7b, respectively. Figure 4.7a and Table 4.6 illustrate that the Hybrid model
(RMSE of 93.056 and MAPE 2.158) better fits the actual values of S&P 500 than the classical
RNN (RMSE of 162.374 and MAPE 3.937) and HMM (RMSE of 180.957 and MAPE 7.937)
in the case of bivariate S&P 500 and Nasdaq. Similarly, Figure 4.7b and Table 4.7 shows that
Hybrid model on Nasdaq (RMSE of 374.436 and MAPE 3.607) provides better results than
classical models.
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Table 4.7: Bivariate Nasdaq performances for each model
2nd
Variable

RMSE MAPE MAE

HMM
S&P 500 676.588 7.146 598.548
EUR/USD 911.658 8.647 1724.225

RNN
S&P 500 1274.026 9.564 911.510
EUR/USD 1649.092 14.301 1310.124

RNN-HMM
S&P 500 374.436 3.607 302.828
EUR/USD 371.790 3.306 268.968

4.2.2 Bivariate S&P 500 and EUR/USD Analyses

In this part, to examine the effect of the less correlated second variable on the proposed model,
EUR/USD is modeled with S&P 500.

4.2.2.1 HMM on S&P 500 and EUR/USD

The initial mean and standard deviation parameters are determined as in previous applications
by using bivariate histogram in Figure 3.4c. The estimated parameters, AIC, BIC, and mllk
results of 5-state bivariate HMM application for S&P 500 index and EUR/USD exchange rate
data are:

µ1 =
(
0.3218 0.2808 0.8233 0.6214 0.9256

)

µ2 =
(
0.6359 0.1387 0.3685 0.6521 0.3708

)

σ1 =
(
0.0984 0.1209 0.0315 0.1395 0.0303

)

σ2 =
(
0.1446 0.0907 0.0244 0.0505 0.0375

)

Γ =


0.9985 0 0 0 0.0015

0.0015 0.9985 0 0 0

0 0 0.9770 0 0.0230

0.0022 0 0 0.9967 0.0011

0 0 0 0.0050 0.9950



δ =
(
0 1 0 0 0

)
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mllk = −7820.732, AIC = −15553.46, BIC = −15275.48

According to the forecasting results in Figure 4.8a and Figure 4.8b, the model follows the
real values, but does not give as satisfying results as the application on two highly correlated
variables.

4.2.2.2 RNN-HMM on S&P 500 and EUR/USD

The initial parameter formulas of the EM algorithm for the bivariate case with S&P 500 and
EUR/USD are shown below.

µ1 =
(
µ(C) + 1.5a1 µ(C1) + 2.5a1 µ(C1) µ(C1)− 2a1 µ(C1) + 3a1

)

µ2 =
(
µ(C2)− 3a2 µ(C2) + 2a2 µ(C2) + a2 µ(C2) µ(C2)

)

σ1 =
(
σ(C1)/4 σ(C1)/5 σ(C1)/4 σ(C1)/5 σ(C1)/5

)

σ2 =
(
σ(C2)/4 σ(C2)/5 σ(C2)/4 σ(C2)/5 σ(C2)/5

)
where C1 is S&P 500 output, C2 is EUR/USD output of RNN, and

a1 =
max(C1)−min(C1)

9
, a2 =

max(C2)−min(C2)

9

The forecasting is performed by the help of estimated parameters of EM algorithm in Ta-
ble A.5 and the results of the S&P 500 are displayed in Figure 4.8a and those for EUR/USD
are presented in Figure 4.8b. Although the implementation where the second variable is EU-
R/USD provides less improvement than the implementation with Nasdaq, as it presented in
Tables 4.6 and 4.8 for both variables S&P 500 and EUR/USD, RNN-HMM provides better
accuracy estimation than HMM does.

The fact that the estimations are almost flat, which is seen in most of the bivariate applications
made with EUR/USD, is also seen here. The reason is that as seen in Figure 3.2b, while S&P
500 and Nasdaq are increasing rapidly, EUR/USD is relatively stable. In this case, catching
the mean of the EUR/USD is sufficient to keep the common RMSE low, while capturing the
values of the S&P 500 and Nasdaq outweighs the low RMSE. Moreover, another possible
reason is that EUR/USD starts to follow a different pattern towards the end of the training
data.
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(a)

(b)

Figure 4.8: Forecasting results of (a) S&P 500 and (b) EUR/USD for Bivariate HMM, RNN
and RNN-HMM
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4.2.3 Bivariate Nasdaq and EUR/USD Analyses

4.2.3.1 HMM on Nasdaq and EUR/USD

The initial mean and standard deviations of the states are determined by considering the bi-
variate histogram (Figure 3.4b). The parameters, AIC, BIC, and mllk results of 5-state are
estimated for the bivariate HMM application to Nasdaq and EUR/USD data and given as:

µ1 =
(
0.2168 0.1928 0.6690 0.3700 0.8949

)

µ2 =
(
0.6155 0.1393 0.6499 0.6774 0.3683

)

σ1 =
(
0.0589 0.1562 0.1124 0.0504 0.0522

)

σ2 =
(
0.1526 0.0913 0.0553 0.0790 0.0316

)

Γ =


0.9980 0 0 0.0020 0

0.0015 0.9985 0 0 0

0 0 0.9980 0 0.0020

0.0022 0 0.0011 0.9967 0

0 0 0 0 1



δ =
(
0 1 0 0 0

)

mllk = −9077.304, AIC = −18066.61, BIC = −17788.63.

Figure 4.9a and Figure 4.9b include the forecasting results of HMM application to Nasdaq
and EUR/USD, respectively. Moreover, the performance measures are presented in Table 4.7
and Table 4.8.

4.2.3.2 RNN-HMM on Nasdaq and EUR/USD

The initial parameters for the bivariate case with Nasdaq and EUR/USD are shown below.

µ1 =
(
µ(C)− a1 µ(C1) + 2a1 µ(C1)− 0.5a1 µ(C1)− 2a1 µ(C1) + 3.5a1

)
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(a)

(b)

Figure 4.9: Forecasting results of (a) Nasdaq and (b) EUR/USD for Bivariate HMM, RNN
and RNN-HMM
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Table 4.8: Bivariate EUR/USD performances for each model
2nd
Variable

RMSE MAPE MAE

HMM
S&P 500 0.054 3.738 0.043
Nasdaq 0.051 3.667 0.043

RNN
S&P 500 0.111 8.294 0.080
Nasdaq 0.101 7.224 212.478

RNN-HMM
S&P 500 0.047 3.551 0.040
Nasdaq 0.060 4.290 0.050

µ2 =
(
µ(C2)− 3a2 µ(C2) + 2a2 µ(C2) + a2 µ(C2) µ(C2) + a2

)

σ1 =
(
σ(C1)/8 σ(C1)/8 σ(C1)/4 σ(C1)/4 σ(C1)/8

)

σ2 =
(
σ(C2)/4 σ(C2)/5 σ(C2)/4 σ(C2)/5 σ(C2)/5

)

where C1 is Nasdaq output and C2 is EUR/USD output of RNN, and

a1 =
max(C1)−min(C1)

9
, a2 =

max(C2)−min(C2)

9

The estimated parameters of EM-algorithm part is presented in Table A.6. Figure 4.9a and
Figure 4.9b includes the forecasting results of RNN-HMM application to Nasdaq and EU-
R/USD, respectively. Additionaly, the figures include RNN results. According to the fig-
ures, the Nasdaq estimation results show that the RNN-HMM model provides a significant
improvement over the classical RNN and HMM models. The proposed model is more suc-
cessful in catching fluctuations. As in the previous cases, the hybrid model cannot produce
better results than the HMM application in EUR/USD. This is because the proposed model is
built for S&P 500 and indirectly for Nasdaq modeling.

When the performance measures in Table 4.8 are compared, the EUR/USD estimations give
the best results for the proposed model when the second variable is S&P 500. However, when
the second variable is Nasdaq, although HMM gives the best results, these results are actually
quite close to the RNN-HMM ones.
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4.3 Trivariate Analyses

4.3.1 HMM on S&P 500, Nasdaq and EUR/USD

The parameters, AIC, BIC and mllk results of 5-state trivariate HMM application to S&P 500,
Nasdaq and EUR/USD are:

µ1 =
(
0.2802 0.1848 0.8255 0.6313 0.9216

)

µ2 =
(
0.3578 0.2694 0.8565 0.6917 0.9322

)

µ3 =
(
0.6497 0.1764 0.4556 0.6675 0.3617

)

σ1 =
(
0.0890 0.1467 0.0308 0.0996 0.0327

)

σ2 =
(
0.1096 0.1157 0.0379 0.0948 0.0277

)

σ3 =
(
0.1264 0.1260 0.0971 0.0391 0.0289

)

Γ =


0.9996 0.0004 0 0 0

0.0013 0.9987 0 0 0

0 0 0.9946 0.0004 0

0 0 0.0040 0.9744 0.0213

0 0 0.0118 0 0.9881



δ =
(
0 1 0 0 0

)

mllk = −11873, AIC = −23638.63, BIC = −23296.47

The forecasting results of trivariate HMM for S&P 500, Nasdaq and EUR/USD are presented
in Figure 4.10, Figure 4.11 and Figure 4.12, respectively. Especially in the case of S&P 500
and Nasdaq, forecasting results are quite successful in capturing the actual data.
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Figure 4.10: Forecasting results of S&P 500 for trivariate HMM, RNN and RNN-HMM

Figure 4.11: Forecasting results of Nasdaq for trivariate HMM, RNN and RNN-HMM
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Figure 4.12: Forecasting results of EUR/USD for trivariate HMM, RNN and RNN-HMM

Table 4.9: Trivariate performance for each model
RMSE MAPE MAE

S&P500
HMM 159.496 4.350 126.360
RNN 273.472 7.543 228.199
RNN-HMM 103.634 2.848 83.310

Nasdaq
HMM 618.278 5.842 481.954
RNN 1656.112 14.425 1314.052
RNN-HMM 363.918 3.641 301.135

EUR/USD
HMM 0.057 4.097 0.048
RNN 0.111 8.243 0.092
RNN-HMM 0.054 3.718 0.043
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4.3.2 RNN-HMM on S&P 500, Nasdaq and EUR/USD

The initial parameters of EM algorithm part in the form of formulas as are determined as
follows for the trivariate model.

µ1 =
(
µ(C)− a1 µ(C1) + 2a1 µ(C1)− 0.5a1 µ(C1)− 2a1 µ(C1) + 3.5a1

)

µ2 =
(
µ(C2)− a2 µ(C2) + 2.5a2 µ(C2) µ(C2)− 2a2 µ(C2) + 3.5a2

)

µ3 =
(
µ(C3)− 3a3 µ(C3) + a3 µ(C3) + a3 µ(C3) µ(C3)− a3

)

σ1 =
(
σ(C1)/8 σ(C1)/8 σ(C1)/4 σ(C1)/4 σ(C1)/8

)

σ2 =
(
σ(C2)/4 σ(C2)/5 σ(C2)/4 σ(C2)/5 σ(C2)/5

)

σ3 =
(
σ(C3)/4 σ(C3)/5 σ(C3)/4 σ(C3)/5 σ(C3)/5

)
where C1 , C2, and C3 are Nasdaq, S&P 500 and Exchange Rate output of RNN, respectively.
Moreover,

a1 =
max(C1)−min(C1)

9
, a2 =

max(C2)−min(C2)

9
, and a3 =

max(C3)−min(C3)

9

Then, the EM- algorithm parameters are estimated as in Table A.7. The forecasting results
of trivariate RNN-HMM for S&P 500, Nasdaq and EUR/USD are presented in Figure 4.10,
Figure 4.11 and Figure 4.12, respectively. Trivariate RNN-HMM application also gives suc-
cessful results like Trivariate HMM. Although the results in the figures look very close to each
other, when the error metrics in Table 4.9 are examined, it becomes clear that the RNN-HMM
model performs better.

HMM, RNN and RNN-HMM models based on variations in dimension are compared and the
ones giving best accuracy results are summarized in Table 4.10. It is seen that the proposed
model gives better results than the classical models for most of the cases based on perfor-
mance measures. However, the proposed model only gives similar results with the HMM
in univariate EUR/USD application and does not give better results than the HMM for the
bivariate application of EUR/USD applied with the Nasdaq.
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Table 4.10: Summary of the best fitting model
HMM RNN-HMM RNN

Univariate
SP500 X
Nasdaq X
EUR/USD X X

Bivariate

SP500 X
Nasdaq X
SP500 X
EUR/USD X
Nasdaq X
EUR/USD X

Trivariate
SP500 X
Nasdaq X
EUR/USD X

4.4 Comparison of models with respect to the Number of Variables

4.4.1 Univariate, Bivariate and Trivariate comparisons of HMM

All the univariate, bivariate and trivariate HMM application results of S&P 500 are shown in
Figure 4.13a and Figure 4.13b to see the differences between behavior of different numbers
and type of variable choice. Figures are shown twice to reflect the two different combinations
in the bivariate case. As the second variable, one shows the Nasdaq and the other shows the
EUR/USD. These figures clearly show that trivariate application gives the best results among
the HMM applications. Moreover, it is seen that each of the bivariate HMMs that uses Nasdaq
and EUR/USD as the second variable gives better results than the univariate case. However,
highly correlated variables increase accuracy more than those with low correlation.

The inferences made on the Nasdaq data are quite similar to those in the S&P 500 application,
as the two variables are highly correlated. For basic HMM applications, all variable applica-
tions are shown in Figure 4.14a and Figure 4.14b for comparison. It is clear that the bivariate
HMM forecasting results are better than the univariate HMM. The trivariate model provides
the best estimations among HMM applications.

In Figure 4.15a and Figure 4.15b, the forecasting results of EUR/USD including for all vari-
able number choice are displayed. In S&P 500 and Nasdaq applications, the accuracy in-
creases as the number of variables increases in HMM applications. In contrast, the increase in
the number of variables in the applications made on the exchange rate decreases the accuracy.
The closest results are obtained from the univariate model. This is because the models are
built for S&P 500 and, therefore, for highly correlated Nasdaq data. The addition of one of
these data may cause the model to be suppressed.
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(a)

(b)

Figure 4.13: Forecasting results of S&P 500 index for univariate, bivariate and trivariate
HMMs
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(a)

(b)

Figure 4.14: Forecasting results of Nasdaq index for univariate, bivariate and trivariate HMMs
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(a)

(b)

Figure 4.15: Forecasting results of EUR/USD index for univariate, bivariate and trivariate
HMMs
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4.4.2 Univariate, Bivariate and Trivariate Comparisons of RNN-HMM

All the number of variable cases for RNN-HMM on S&P 500 are presented together in Fig-
ure 4.16a and Figure 4.16b. These figures show that the univariate model has the lowest accu-
racy among the hybrid models. Moreover, as expected, the bivariate RNN-HMM application
with Nasdaq data gives better results than the bivariate application with the exchange rate
data. The trivariate model does not significantly improve the accuracy of the hybrid model.
Although it gives better results than the case using the EUR/USD as the second variable, it
does not have an advantage over the case using the Nasdaq as the second variable.

The forecasting results of RNN-HMM on Nasdaq obtained according to all variable numbers
are compared in Figure 4.17a and Figure 4.17b. Although bivariate and trivariate results have
higher accuracy than the univariate case, the estimation results for all variables are close to
each other.

Estimation results for all variable number selections are shown in Figure 4.18a and Fig-
ure 4.18b. Accordingly, adding variables to RNN-HMM models on EUR/USD data does
not improve their accuracy, as in the HMM applications on them.

The tables (Table 4.3 - 4.9) are presented to summarize all the applications of all the variable
choices. For S&P 500 data we see that increasing the number of variables provides better
accuracy. However, bivariate RNN-HMM that uses Nasdaq as the second variable performs
better than the trivariate RNN-HMM. For all of the methods applied on Nasdaq data shows
that while the increase in the number of variables in HMMs significantly contributes to the
accuracy, this is not the case for the hybrid case. Bivariate RNN-HMMs perform better than
the univariate RNN-HMM as in the applications of S&P 500. However, when two and three
variables are compared, it is not possible to say which one is more successful. Because
according to the RMSE results, the trivariate model seems less successful, whereas it performs
better according to the MAPE and MAE results. To compare the models, the best model here
is the RNN-HMM Hybrid model, and the HMM follows it as in S&P 500 applications. For
EUR/USD although the test and training part of the EUR/USD are structurally different, the
proposed hybrid model gives good results. However, while it provides a clear advantage to
the RNN model, this is not the case against the HMM model.

4.5 Global Decoding

The best sequences of hidden states are determined by the Viterbi Algorithm explained in
Section 2.1.2. The global decoding results of HMM are presented in Appendix B.

Figure B.1 shows the state decoding results of univariate HMM application on S&P 500. In
this figure, the 1st state is the representative of recession in US economy. The 5th state belongs
to the last peak of the training set, while the 4th state belongs to the peak periods in the US
economy until 2014. Since the US economy’s longest draw-down period is between August
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(a)

(b)

Figure 4.16: Forecasting results of S&P 500 index for univariate, bivariate and trivariate
RNN-HMMs
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(a)

(b)

Figure 4.17: Forecasting results of Nasdaq index for univariate, bivariate and trivariate RNN-
HMMs
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(a)

(b)

Figure 4.18: Forecasting results of EUR/USD index for univariate, bivariate and trivariate
RNN-HMMs
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2000 and December 2013, the model assigns a state specific to the period after 2013. The
2nd and 3rd states are the stationary periods in the expansion and contraction periods of the
business cycle. Moreover, the decoding results of univariate HMM on Nasdaq is presented in
Figure B.2. Since, Nasdaq is highly correlated with S&P 500, the states are the representative
of same business cycles. In both figures, the states fit the real data successfully.

The state decoding of univariate HMM on EUR/USD is shown in Figure B.3. It is seen that
the first circulation period of the EUR is determined as the first state by the model. A turning
point in the US economy in 2014 caused the EUR to depreciate against the USD and to enter
a new era. This period is represented as 3rd state together with the 2003-2004 time interval in
the first appreciation periods of the EUR. For the remaining part outside these time intervals,
the periods when the EUR peaks are represented by 5th state, and the periods when it troughs
are represented by 4th state.

When the bivariate S&P 500 and Nasdaq application in Figure B.4 and Figure B.5 are exam-
ined, the number of states has increased especially after 2014. This section is represented by
two states. The 4th and 5th states represent the peaks and troughs of this period, and the 1st
and 3rd states represent the peaks and troughs before 2014. The second state represents the
stationary periods in the expansion and contraction periods.

When the bivariate HMM application of Nasdaq and S&P 500 with EUR/USD is examined
as shown in Figure B.6 and Figure B.8, one state in both variables is dominated by the low
value of EUR/USD in the initial period. However, while peak periods are still represented by
a state, a separate state is not formed for the lowest points. Instead, draw down periods are
represented by a state. However, looking at the forecast results, this situation still provides
better results than univariate applications. Since EUR/USD is the second variables of these
bivariate applications the decoding results in Figure B.7 and Figure B.9 represent the same
states with above mentioned ones. However, an extra conclusion that can be drawn from the
figures is that the S&P 500 and Nasdaq dominate the EUR/USD states. The means of the
states in 2004-2015 and 2015-2017 time periods are very close to each other. This explains
why the EUR/USD forecast results are mostly straight lines.

S&P 500, Nasdaq and EUR/USD results for trivariate HMM are shown in Figure B.10, Fig-
ure B.11 and Figure B.12, respectively. Since S&P 500 and Nasdaq are used together in
this application, they dominate EUR/USD more and ensure that the states are more on stock
prices. However, it should be noted that the state boundaries are different for each variable
dimension and combination. The EUR/USD variable contributes to determine the boundaries
of the states of the stock variables. However, as expected, such a combination causes the
inaccuracy of the EUR/USD forecast results.
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CHAPTER 5

CONCLUSION AND OUTLOOK

The starting point of this thesis is to benefit from the possibilities of machine learning in the
financial sector, which has a vital place in today’s world. HMM, which is a probability model
used in machine learning area also, gives successful results in time series. However, HMM
still can suffer from local maximum points without finding the global maximum since it only
guarantees to converge to a zero gradient point. With this study, it is aimed to take advantage
of the classification power using RNNs and to maximize the likelihood of HMM. Classifica-
tion power is used to classify the hidden states of HMM. It is also desired to obtain the closest
estimation results to the stock prices. This does not only give the RNN the function of approx-
imating the real result, but it can also indirectly optimize the EM parameters as the estimation
is done with the parameters of the EM algorithm. To elaborate more, in our study at each step
parameter estimation is made by EM-algorithm and the gradients are computed according to
the cost function of the forecast values. Hence, we investigate whether combining RNNs and
HMMs in the proposed way described leads to improved performance.

This study introduces a novel approach by modifying an existing approach on non-categorical
data sets such as financial data. Moreover, several variable choices are considered to see
the effect of the number and the correlation factor of the variables involved in. Therefore,
three variables are chosen to practice the model and compare it with the classical HMMs
and RNNs. Firstly, S&P 500 data is determined to model. Then, in order to measure the
performance of the model on data with different characteristics, the Nasdaq, which is highly
correlated with the S&P 500, and the EUR/USD, which has a very important place in the
US economy but has a very low correlation with the S&P 500, are selected for modeling.
The results show that S&P 500 and Nasdaq bivariate applications gives better results than the
univariate ones. Morever, adding a low correlated variable EUR/USD increases the accuracy
although the contribution of it is not as high as an correlated variable. This is because a
second variable contributes when determining state boundaries. Since the hidden states of
the highly correlated variables is expected to be very similar, they contribute more than the
second variable with low correlation.

Another point to be remarked in this thesis is that the exchange rate data has very different
features for the training and test sections, but the proposed model still provides promising
results. According to the results, in almost all applications, the hybrid model introduced
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in this study offers better performance metrics. Moreover, bivariate applications that uses
highly correlated S&P 500 and Nasdaq variables give better results than the univariate cases.
Trivariate applications provide a significant improvement in the classical model, while it is
shown to be not proper for the Hybrid models since these models have already made sufficient
improvement. Moreover, the difficulty in determining the initial values chosen as the formulas
is another possible reason. On the other hand, increasing the number of variables up to three
variables does not increase the accuracy of the exchange rate variable. The reason is that the
structure of the models is adjusted according to the S&P 500 and Nasdaq variables.

As a future work, it is planned to replace the basic RNN part of this model with Neural
Network types such as LSTM and CNN, which generally provide more successful results to
increase the performance even more.
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APPENDIX A

ESTIMATED PARAMETERS OF SUBSAMPLES OF
RNN-HMM APPLICATIONS

In the hybrid models proposed in this thesis, the initial parameters of the HMM section are
determined in the form of formulas. These initial parameters converge to specific parameters
for each subsample after the EM algorithm. Since there are 4 subsamples for each applica-
tion, the details are presented in this section. The results of these converged parameters are
presented for all variable number selections in the order of S&P 500, Nasdaq, and EUR/USD
exchange rates.
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Table A.1: Estimated Parameters of Each Subsample of Univariate RNN-HMM application
to S&P 500 index

1st subsample 2nd subsample

µSP

(
0.0840 0.1349 0.1663 0.1861 0.2578

) (
0.3138 0.3493 0.3774 0.4248 0.4798

)
σSP

(
0.0159 0.0109 0.0067 0.0067 0.0368

) (
0.0287 0.0074 0.0116 0.0147 0.0189

)

Γ


0.9955 0.0045 0 0 0

0.0061 0.9816 0.0123 0 0

0 0.0129 0.947 0.0398 0

0 0 0.0247 0.9714 0.0040

0 0 0 0.0088 0.9912




0.9691 0.0309 0 0 0

0.0153 0.9730 0.0117 0 0

0 0.0135 0.9778 0.0088 0

0 0 0.0094 0.9831 0.0008

0 0 0 0.0009 0.9909


δ

(
0 0 0 0 1

) (
1 0 0 0 0

)
3rd subsample 4th subsample

µSP

(
0.2030 0.3197 0.3898 0.4549 0.4906

) (
0.5685 0.7335 0.8105 0.8755 0.9309

)
σSP

(
0.0382 0.0195 0.0201 0.0125 0.0157

) (
0.0593 0.0270 0.0175 0.0160 0.0225

)

Γ


0.9953 0.0047 0 0 0

0 0.9915 0.0085 0 0

0 0.0057 0.9718 0.0225 0

0 0 0.0162 0.9598 0.0240

0 0 0 0.0212 0.9788




0.9958 0.0042 0 0 0

0 0.9858 0.0014 0 0

0 0.0053 0.9748 0.0198 0

0 0 0.0200 0.9448 0.0352

0 0 0 0.0117 0.9883


δ

(
1 0 0 0 0

) (
1 0 0 0 0

)

Table A.2: Estimated Parameters of Each Subsample of Univariate RNN-HMM application
to Nasdaq index

1st subsample 2nd subsample

µN

(
0.0932 0.2134 0.2857 0.3442 0.0721

) (
0.1972 0.2275 0.2581 0.2877 0.3302

)
σN

(
0.0337 0.0245 0.0171 0.0282 0.0201

) (
0.0170 0.0084 0.0086 0.0105 0.0185

)

Γ


0.9922 0.0078 0 0 0

0.0119 0.9581 0.0300 0 0

0 0.0203 0.9578 0.0219 0

0 0 0.0292 0.9708 0

0 0 0 0.0078 0.9922




0.9699 0.0300 0 0 0

0.0147 0.9739 0.0114 0 0

0 0.0115 0.9696 0.0192 0

0 0 0.0264 0.9640 0.0097

0 0 0 0.0129 0.9871


δ

(
0 0 0 0 1

) (
0 1 0 0 0

)
3rd subsample 4th subsample

µN

(
0.1604 0.2795 0.3504 0.4058 0.4521

) (
0.5118 0.7034 0.7702 0.8511 0.9355

)
σ

(
0.0285 0.0220 0.0194 0.0129 0.0199

) (
0.0626 0.0291 0.0162 0.0244 0.0311

)

Γ


0.9948 0.0052 0 0 0

0 0.9919 0.0081 0 0

0 0.0068 0.9780 0.0152 0

0 0 0.0068 0.9780 0.0156

0 0 0 0.0089 0.9911




0.9958 0.0042 0 0 0

0 0.9858 0.0014 0 0

0 0.0053 0.9748 0.0198 0

0 0 0.0200 0.9448 0.0352

0 0 0 0.0117 0.9883


δ

(
1 0 0 0 0

) (
1 0 0 0 0

)
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Table A.3: Estimated Parameters of Each Subsample of Univariate RNN-HMM application
to EUR/USD data

1st subsample 2nd subsample

µex

(
0.0539 0.2886 0.4095 0.1719 0.1027

) (
0.4169 0.6172 0.7833 0.5482 0.4988

)
σex

(
0.0181 0.0377 0.0342 0.0138 0.0161

) (
0.0205 0.0210 0.0642 0.0136 0.0152

)

Γ


0.9894 0 0 0 0.0106

0 0.9876 0.0124 0 0

0 0.0043 0.9957 0 0

0 0.0081 0 0.9919 0

0.017 0 0 0.0071 0.9762




0.9921 0 0 0 0.0079

0 0.9928 0.0072 0 0

0 0.0039 0.9961 0 0

0 0.0074 0 0.9776 0.0150

0.0042 0 0 0.0128 0.9830


δ

(
1 0 0 0 0

) (
1 0 0 0 0

)
3rd subsample 4th subsample

µex

(
0.5502 0.6959 0.7546 0.6531 0.6091

) (
0.3976 0.6406 0.6930 0.5775 0.4397

)
σex

(
0.0264 0.0167 0.0194 0.0139 0.0155

) (
0.0174 0.0168 0.0113 0.0245 0.0133

)

Γ


0.9702 0 0 0 0.0298

0 0.9630 0.0109 0.0260 0

0 0.0127 0.9873 0 0

0 0.0252 0 0.9411 0.0337

0.0227 0 0 0.0302 0.9470




0.9880 0 0 0 0.0120

0 0.9785 0.0048 0.0167 0

0 0.0059 0.9941 0 0

0 0.0221 0 0.9717 0.0063

0.0200 0 0 0.0302 0.9800


δ

(
0 0 0 0 1

) (
0 0 0 1 0

)

Table A.4: Estimated Parameters of Each Subsample of Bivariate RNN-HMM application to
S&P 500 and Nasdaq index

1st subsample 2nd subsample

µN

µSP

(
0.0950 0.1741 0.2206 0.2974 0.4249

)(
0.0802 0.1561 0.1994 0.2740 0.4285

) (
0.1502 0.1833 0.2097 0.2357 0.2766

)(
0.2463 0.2831 0.3116 0.3406 0.3862

)
σN

σSP

(
0.0204 0.0186 0.0112 0.0366 0.0392

)(
0.0186 0.0183 0.0114 0.0409 0.0461

) (
0.0128 0.0096 0.0080 0.0093 0.0164

)(
0.0018 0.0088 0.0089 0.0129 0.0152

)

Γ


0.9957 0.0043 0 0 0

0.0040 0.9717 0.0243 0 0

0 0.0188 0.9780 0.0031 0

0 0 0.0131 0.9869 0

0 0 0 0.0158 0.9842




0.9781 0.0219 0 0 0

0.0180 0.9584 0.0236 0 0

0 0.0185 0.9619 0.0195 0

0 0 0.0291 0.9621 0.0088

0 0 0 0.0216 0.9784


δ

(
0 0 0 0 1

) (
0 0 1 0 0

)
3rd subsample 4th subsample

µN

µSP

(
0.1614 0.2667 0.3358 0.3880 0.4358

)(
0.1922 0.2996 0.3672 0.4259 0.4745

) (
0.4792 0.6953 0.8233 0.8948 0.9608

)(
0.5218 0.7344 0.8492 0.9175 0.9782

)
σN

σSP

(
0.0239 0.0211 0.0185 0.0126 0.0179

)(
0.0263 0.0214 0.0167 0.0145 0.0175

) (
0.0619 0.0391 0.0240 0.0216 0.0166

)(
0.0608 0.0396 0.0226 0.0172 0.0115

)

Γ


0.9953 0.0047 0 0 0

0 0.9915 0.0085 0 0

0 0.0057 0.9718 0.0225 0

0 0 0.0162 0.9598 0.0240

0 0 0 0.0212 0.9788




0.9948 0.0052 0 0 0

0 0.9921 0.0079 0 0

0 0.0073 0.9696 0.0230 0

0 0 0.0092 0.9750 0.0158

0 0 0 0.0181 0.9819


δ

(
1 0 0 0 0

) (
1 0 0 0 0

)
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Table A.5: Estimated Parameters of Each Subsample of Bivariate RNN-HMM application to
S&P 500 and EUR/USD

1st subsample 2nd subsample

µSP

µex

(
0.2303 0.1806 0.1329 0.0752 0.3256

)(
0.0770 0.1117 0.4230 0.2296 0.0791

) (
0.2927 0.3840 0.3064 0.2574 0.3663

)(
0.4688 0.7526 0.8435 0.5450 0.6196

)
σSP

σex

(
0.0150 0.0190 0.0237 0.0197 0.0455

)(
0.0149 0.0188 0.0527 0.0513 0.0358

) (
0.0151 0.0227 0.0228 0.0175 0.0293

)(
0.0363 0.0309 0.0587 0.0454 0.0367

)

Γ


0.9826 0.0116 0 0 0.0058

0.0133 0.9738 0 0.0129 0

0 0 1 0 0

0 0 0.0045 0.9955 0

0.0097 0 0 0 0.9903




0.9887 0 0 0.0075 0.0037

0 0.9875 0.0125 0 0

0 0 0.9945 0.0056 0

0.0107 0 0 0.9893 0

0 0.0047 0 0 0.9953


δ

(
0 0 0 0 1

) (
0 0 0 1 0

)
3rd subsample 4th subsample

µSP

µex

(
0.2556 0.4047 0.3021 0.2424 0.4920

)(
0.5585 0.7157 0.7115 0.6717 0.6135

) (
0.9310 0.8044 0.7054 0.5509 0.8585

)(
0.4238 0.5955 0.7010 0.6318 0.5126

)
σSP

σex

(
0.0331 0.0157 0.0323 0.0080 0.0207

)(
0.0311 0.0534 0.0583 0.0395 0.0372

) (
0.0451 0.0366 0.0348 0.0542 0.0103

)(
0.0254 0.0263 0.0182 0.0258 0.0274

)

Γ


0.9775 0 0.0056 0.0169 0

0 0.9907 0.0047 0 0.0046

0.0035 0.0071 0.9894 0 0

0.0237 0 0.0078 0.9685 0

0 0 0 0 1




1 0 0 0 0

0 0.9882 0 0 0.1184

0 0.0043 0.99957 0 0

0 0 0.0047 0.9953 0

0.0444 0 0 0.0181 0.9556


δ

(
0 0 0 1 0

) (
0 0 0 1 0

)

Table A.6: Estimated Parameters of Each Subsample of Bivariate RNN-HMM application to
Nasdaq and EUR/USD

1st subsample 2nd subsample

µN

µex

(
0.1647 0.2903 0.1247 0.0581 0.4994

)(
0.0493 0.0821 0.3949 0.1841 0.0031

) (
0.2477 0.2680 0.2411 0.1973 0.3460

)(
0.3960 0.6383 0.7915 0.5354 0.4030

)
σN

σex

(
0.0380 0.0464 0.0166 0.0127 0.0985

)(
0.0250 0.0179 0.0526 0.0461 0.0078

) (
0.0169 0.0150 0.0125 0.0261 0.0235

)(
0.0222 0.0993 0.0794 0.0524 0.0606

)

Γ


0.9931 0 0 0.0069 0

0.0177 0.9823 0 0 0

0 0 1 0 0

0.0041 0 0.0041 0.9919 0

0 0.0124 0 0 0.9876




0.9905 0 0 0.0095 0.0037

0 0.9651 0.0176 0.0174 0

0 0.0070 0.9896 0.0035 0

0.0059 0.0030 0.0029 0.9882 0

0 0.0148 0 0 0.9852


δ

(
0 0 0 0 1

) (
0 0 0 1 0

)
3rd subsample 4th subsample

µN

µex

(
0.1816 0.2964 0.2249 0.1809 0.3687

)(
0.5552 0.7456 0.7573 0.6512 0.6985

) (
0.7944 0.8779 0.7052 0.5034 0.9721

)(
0.4416 0.4044 0.6313 0.7069 0.3553

)
σN

σex

(
0.0471 0.0204 0.0149 0.0147 0.0196

)(
0.0220 0.0661 0.0455 0.0332 0.0386

) (
0.0247 0.0220 0.0358 0.0987 0.0189

)(
0.0408 0.0282 0.0379 0.0400 0.0220

)

Γ


0.9706 0 0 0.0294 0

0.0031 0.9874 0.0064 0 0.0031

0 0.0019 0.9805 0 0

0.0136 0 0.0112 0.9752 0

0 0 0 0 1




0.9738 0.0262 0 0 0

0.0071 0.9893 0 0 0.0035

0.0068 0.0043 0.9932 0 0

0 0 0.0026 0.9974 0

0 0 0 0 1


δ

(
0 0 0 1 0

) (
0 0 0 1 0

)
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Table A.7: Estimated Parameters of Each Subsample of Trivariate RNN-HMM application
1st subsample 2nd subsample

µN

µSP

µex

(
0.1785 0.2870 0.1316 0.0531 0.5282

)(
0.1915 0.2987 0.1837 0.0785 0.5451

)(
0.0774 0.0446 0.2911 0.1759 −0.0003

)
(
0.2349 0.2891 0.2846 0.2127 0.3313

)(
0.2670 0.3615 0.3195 0.2878 0.4070

)(
0.3697 0.4969 0.3259 0.6683 0.5398

)
σN

σSP

σex

(
0.0284 0.0575 0.0217 0.0209 0.0602

)(
0.0268 0.0603 0.0277 0.0225 0.0644

)(
0.0159 0.0180 0.369 0.0430 0.0001

)
(
0.0222 0.0144 0.0124 0.0348 0.0141

)(
0.0195 0.0155 0.0116 0.0425 0.0148

)(
0.0404 0.0616 0.0368 0.0476 0.0284

)

Γ


0.9886 0.0208 0 0.0107 0

0.0100 0.9900 0 0 0

0 0 1 0 0

0 0 0.0042 0.9958 0

0 0.0145 0 0 0.9855




0.9920 0 0 0.0080 0

0 0.9631 0 0.0057 0.0312

0.0125 0.0062 0.9813 0 0

0 0 0 1 0

0 0.0476 0 0 0.9524


δ

(
0 0 0 0 1

) (
1 0 0 0 0

)
3rd subsample 4th subsample

µN

µSP

µex

(
0.2177 0.2976 0.1963 0.0852 0.3678

)(
0.2513 0.3476 0.2347 0.0906 0.4142

)(
0.5044 0.6152 0.6099 0.5347 0.5947

)
(
0.8165 0.8576 0.6824 0.4578 0.9546

)(
0.8181 0.8752 0.7343 0.5120 0.9601

)(
0.3766 0.4286 0.5723 0.5719 0.3763

)
σN

σSP

σex

(
0.0256 0.0163 0.0404 0.0264 0.0228

)(
0.0280 0.0195 0.0458 0.0322 0.0254

)(
0.0372 0.0446 0.0308 0.0424 0.0279

)
(
0.0241 0.0310 0.0575 0.0635 0.0344

)(
0.0243 0.0241 0.0539 0.0662 0.0326

)(
0.0114 0.0394 0.0435 0.0276 0.0250

)

Γ


0.9895 0.0053 0.0053 0 0

0 0.9869 0.0087 0 0.0044

0.0097 0.0097 0.9806 0 0

0 0 0.0052 0.9948 0

0 0 0 0 1




0.9719 0.0281 0 0 0

0.0065 0.9616 0 0 0.0320

0 0.0038 0.9962 0 0

0 0 0.0042 0.9958 0

0 0.0119 0 0 0.9881


δ

(
0 0 0 1 0

) (
0 0 0 1 0

)
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APPENDIX B

GLOBAL DECODING OF HMM APPLICATIONS

Global decoding is performed to determine the best sequences of hidden states. Viterbi algo-
rithm explained in Section 2.1.2 is used for this purpose. The states are computed by using
Equation (2.17). The hidden states decoding of HMM applications are presented in this sec-
tion.
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Figure B.1: Global Decoding of Univariate S&P 500 HMM
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Figure B.2: Global Decoding of Univariate Nasdaq HMM

Figure B.3: Global Decoding of Univariate EUR/USD HMM
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Figure B.4: Global Decoding of S&P 500 for Bivariate S&P 500 and Nasdaq HMM
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Figure B.5: Global Decoding of Nasdaq for Bivariate S&P 500 and Nasdaq HMM
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Figure B.6: Global Decoding of S&P 500 for Bivariate S&P 500 and EUR/USD HMM

Figure B.7: Global Decoding of EUR/USD for Bivariate S&P 500 and EUR/USD HMM
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Figure B.8: Global Decoding of Nasdaq for Bivariate Nasdaq and EUR/USD HMM

Figure B.9: Global Decoding of EUR/USD for Bivariate Nasdaq and EUR/USD HMM
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Figure B.10: Global Decoding of S&P 500 for Trivariate HMM

Figure B.11: Global Decoding of Nasdaq for Trivariate HMM
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Figure B.12: Global Decoding of EUR/USD for Trivariate HMM
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