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ABSTRACT 

 

WETLAND SPECTRO-TEMPORAL UNMIXING USING 

MULTITEMPORAL MULTISPECTRAL SATELLITE IMAGES 

 

 

 

Özer, Erdem 

Doctor of Philosophy, Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Uğur Murat Leloğlu 

 

 

February 2022, 157 pages 

 

Wetlands constitute one of the wealthiest and most productive ecosystems on earth. 

These areas are sophisticated aquatic habitats serving not only the locals but also the 

whole Earth system on a broad range. Following tropical forests, they have the 

highest biological diversity. These ecosystems are viable nourishment, reproduction, 

and sheltering environments for a whole range of living beings and are therefore 

accepted as natural wealth museums of the world. Monitoring such valuable areas 

and obtaining crucial information from them, in this regard, has been the primary 

motivation of the studies performed during the preparation of this thesis. When the 

sizes, geographic distribution, and total coverage of wetlands across the earth are 

taken into account, remote sensing shines out as the most economically and 

technically feasible method to realize the goals related to the mentioned motivation. 

Concerning the utilization of medium resolution satellite images as the input, the 

pixel-level approach falls short of understanding the wetland dynamics since vast 

amounts of pixels in such areas have mixed content. 

In this study, the soft classification of wetlands is aimed in order to determine all 

ground characteristics and their exact proportions. The path to achieving this goal 

passes through conducting an investigation within correct boundaries. Hence, 
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detection of the wetland extent prior to sub-pixel analysis is addressed as a critical 

pre-processing step for realizing the subject motivation. The extent determination 

part includes calculating Tasseled Cap Water Index (TCWI) values on time series 

and modeling variations throughout the year by fitting a double-sided sigmoid 

function. This information is coupled with Digital Terrain Model (DTM) 

thresholding to extract the final extent. The sub-pixel analysis covers adopting a 

systematic approach using a three-element (soil, vegetation, water) scheme for 

establishing wetland ontology and implementing supervised spectral unmixing 

enhanced by the band and endmember optimizations. Balıkdamı, one of the most 

impressive wetlands of Turkey, is chosen as the test area. Open access optical 

satellite data, acquired by Sentinel-2 Multispectral Instrument (MSI), are utilized as 

the primary input. Since the abundance values of land cover classes in each Sentinel-

2 pixel are estimated, reference abundance data with a 10 m grid interval are 

generated using four-band aerial images having a 30 cm ground sampling distance 

(GSD) for the verification stage. A new metric entitled "Abundance Confusion 

Matrix (ACOMA)" is introduced for the comparison and detailed assessment of 

reference and estimated fractional land cover. 

Experimental results demonstrate that the extent determination is addressed with a 

sensitivity of 93.55% and a precision of 99.21%. Moreover, abundance values of 

land cover classes are determined with overall accuracies of 66.17% and 66.27% for 

the monotemporal and multitemporal cases, respectively. In addition to a 2% overall 

accuracy increase compared to the hard classification, the detectability of sparse land 

cover classes is demonstrated that are vanished while using pixel-based approaches. 

Furthermore, gradients are able to be observed, particularly at watersides. As a result, 

the proposed method proves to be a valuable tool for the detailed monitoring of 

wetlands. 

Keywords: Wetlands, Spectral Unmixing, Sentinel-2, Abundance Confusion Matrix, 

Fractional Land Cover



 

 

vii 

 

ÖZ 

 

ÇOK ZAMANLI ÇOK BANTLI UYDU GÖRÜNTÜLERİ KULLANILARAK 

SULAK ALANDA SPEKTRO-ZAMANSAL AYRIŞTIRMA 

 

 

 

Özer, Erdem 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

 

 

Şubat 2022, 157 sayfa 

 

Sulak alanlar, yeryüzünün en zengin ve üretken ekosistemleri arasında yer alırlar. Bu 

alanlar, sadece yöre halkına değil yeryüzü sistemine de geniş yelpazede hizmet eden 

sofistike sucul habitatlardır. Tropikal ormanların ardından en yüksek biyolojik 

çeşitliliğe sahiptirler. Bu ekosistemler, birçok canlı için uygun beslenme, üreme ve 

barınma olanağı sağlar ve bu nedenle dünyanın doğal zenginlik müzeleri olarak 

kabul edilirler. Böylesi değerli alanların izlenmesi ve bu alanlara ait önemli bilgilerin 

çıkarılması, bu tezin hazırlanmasında gerçekleştirilen çalışmaların ana motivasyon 

kaynağı olmuştur. Sulak alanların büyüklükleri, coğrafi dağılımları ve dünya 

genelindeki toplam kapsamları dikkate alındığında, uzaktan algılama, bahsedilen 

motivasyona ilişkin amaçların gerçekleştirilmesinde ekonomik ve teknik anlamda en 

makul yöntem olarak öne çıkmaktadır. Orta çözünürlüklü uydu görüntülerinin 

kullanımına ilişkin olarak, piksel tabanlı sınıflama, sulak alana ait birçok pikselin 

karışık içerikli olması nedeniyle, sulak alan dinamiklerini anlama hususunda yetersiz 

kalmaktadır.  

Bu çalışmada, tüm zemin karakteristiklerini ve bunların oranlarını tam olarak 

belirlemek için sulak alanların yumuşak sınıflandırılması amaçlanmıştır. Bu amaca 
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ulaşmanın yolu ise, doğru sınırlar içinde bir araştırma yapmaktan geçmektedir. Bu 

nedenle, alt piksel analizinden önce sulak alan kapsamının tespiti, söz konusu 

motivasyonunun gerçekleştirilebilmesi için kritik bir ön işleme adımı olarak ele 

alınmıştır. Kapsam belirleme kısmı için zaman serilerinde, Püsküllü Kep Su İndeksi 

değerleri hesaplanmış ve yıllık değişimler çift taraflı sigmoid fonksiyonu 

kullanılarak modellenmiştir. Elde edilen bilgiler Sayısal Arazi Modeli eşiklemesi ile 

birleştirilerek nihai kapsam elde edilmiştir. Alt piksel analizi, sulak alan ontolojisinin 

oluşturulması için üç unsurlu (toprak, bitki, su) şema kullanımına dayanan sistematik 

bir yaklaşımın benimsenmesi ile bant ve son üye optimizasyonları aracılığıyla 

iyileştirilen kontrollü spektral ayırma işleminin gerçekleştirilmesini içermektedir. 

Test alanı olarak Türkiye’nin en etkileyici sulak alanlarından birisi olan Balıkdamı 

seçilmiştir. Temel veri girdisi olarak açık erişim sağlanabilen Sentinel-2 çok bantlı 

optik uydu görüntüleri kullanılmıştır. Her bir Sentinel-2 pikselindeki arazi örtüsü 

sınıflarının bolluk değerleri tahmin edildiğinden, doğrulama aşaması için 30 cm yer 

örnekleme aralığına sahip dört bantlı hava görüntüleri kullanılarak, 10 m grid 

aralığında referans bolluk verisi üretilmiştir. Referans ve kestirilmiş üleşke arazi 

örtüsünün karşılaştırılması ve detaylı şekilde değerlendirilmesi için “Bolluk 

Karışıklık Matrisi” isimli yeni bir metrik önerilmiştir.  

Deneysel sonuçlar, kapsam belirlemenin %93,55 duyarlılık ve %99,21 hassasiyet ile 

elde edildiğini göstermektedir. Ayrıca arazi örtüsü sınıflarının bolluk değerleri, tek 

zamanlı ve çok zamanlı durumlar için sırasıyla %66,17 ve %66,27 genel doğrulukla 

belirlenmiştir. Sert sınıflandırmaya kıyasla %2'lik bir genel doğruluk artışına ek 

olarak, piksel tabanlı yaklaşımlar kullanılırken kaybolan seyrek arazi örtüsü 

sınıflarının tespit edilebildiği kanıtlanmıştır. Ayrıca, özellikle su kenarlarındaki 

gradyanların gözlemlenebildiği gösterilmiştir. Sonuç olarak, önerilen yöntemin 

sulak alanların detaylı izlenmesi için değerli bir araç olduğu ortaya konmuştur. 

Anahtar Kelimeler: Sulak Alanlar, Sentinel-2, Ayrıştırma, Bolluk Karışıklık Matrisi, 

Üleşke Arazi Örtüsü
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CHAPTER 1  

1 INTRODUCTION  

1.1 Problem Definition 

Industrialization, population growth, and rapid urbanization threaten the natural life 

and resources of the earth. Considering the fact that earth's resources are finite, they 

may not be able to keep up with the population at its current growth rate. This fact 

makes optimum management of natural resources very critical. One of the highly 

esteemed components of the Earth system is wetlands. They are of great importance 

to the diversity of biota and ecology, thereby to humans (Moore and Garratt, 2006). 

It is indeed ironic bearing in mind that the coal establishing the ground for the 

industrial revolution has been obtained through some of the wetlands dating back to 

ancient times, such as coal-forming swamps. 

There are several wetland definitions in the literature, yet a wetland can be plainly 

defined as any unique ecosystem saturated or flooded with water, either seasonally 

or permanently. Accordingly, they can be generally distinguished by the presence of 

surface or underground water. Their soil conditions differ from adjacent lands, which 

is another distinctive property. Moreover, they are abundant in biota, adaptable to 

wet conditions; in other words, the lack of flooding-intolerant biota characterizes 

them. With their extreme biological diversity, they are among the wealthiest and 

most productive ecosystems (Rafferty, 2011). Thus, they are one of the most 

economically valuable habitats for humans. 

Wetlands can be grouped into two categories as coastal and inland wetlands 

concerning their geolocation (Reddy and DeLaune, 2008) and into six categories as 
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swamps, marshes, bogs, fens, wet meadows, and shallow water with respect to their 

hydrological properties (Keddy, 2010). 

Wetlands support the ecosystem in a wide range of ways (Mooney et al., 2005; 

Mitsch and Gosselink, 2015), which are: 

• Dissipating stream energy and providing flood control, 

• Providing sediment retention, 

• Sequestering and storing carbon (contributing to carbon cycle), 

• Providing denitrification (contributing to nitrate cycle), 

• Removing phosphorus (contributing to phosphorus cycle), 

• Reducing sulfur (contributing to sulfur cycle), 

• Storing water, thus refilling groundwater, 

• Sheltering various species, 

• Enabling tourism and recreational activities, and 

• In general, having a high and long-term capacity to filter pollutants for 

enhanced water quality. Therefore, just as forests are called “the lungs of the 

earth,” wetlands are called the “kidneys of the earth.” 

All those benefits, which have an essential role in mitigating climate change and 

providing sustainable development, are illustrated in Figure 1.1. 
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Figure 1.1 Benefits of wetlands (modified from Capital Regional District, 2008) 

Since wetlands are such precious entities and matter to all living beings, national and 

international organizations strive to guarantee their preservation and wise use by 

means of regulations and treaties. In this respect, an international treaty entitled “The 

Ramsar Convention on Wetlands of International Importance Especially as 

Waterfowl Habitat” was signed in the Iranian city of Ramsar in 1971 and came into 

force in 1975. The Convention is supported by five formally recognized international 

organizations (Ramsar Convention Secretariat, 2013) that are: 

• BirdLife International 

• International Union for Conservation of Nature 

• International Water Management Institute 

• Wetlands International 

• World Wide Fund International 
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These organizations provide technical assistance in line with the agreed goals. 

According to the investigations, 660 million people benefit from wetlands, which are 

home to 100 thousand known species (Ramsar Convention Secretariat, 2017). The 

estimated surface area of worldwide wetlands is 12,1 million km2 as of 2017. 

Furthermore, as of January 2022, the number of designated Ramsar Sites and their 

total surface area are 2.437 and ~2.5 km2, respectively (Ramsar Convention 

Secretariat, 2022). The global distribution of Ramsar Sites is given in Figure 1.2. 

 

Figure 1.2 Global distribution of Ramsar Sites 

Turkey signed the Ramsar Convention in 1993, and it entered into force in 1994. In 

parallel with this development, the first regulation on wetlands protection was 

published in the official gazette in 2002. The first regulation was replaced with 

regulations dated 2005 and 2014, respectively. As of January 2022, the 2014 

regulation is in force, including 2017, 2019, and 2021 revisions. There are 14 sites 

designated as Ramsar in Turkey, given in Table 1.1, with a surface area of 1,845 

km2. Figure 1.3 shows the locations of these sites. 
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Table 1.1 Ramsar Sites in Turkey 

Name 
Site 

Number 
Province 

Area 

(km2) 

Designation 

Date 

Göksu Delta 657 Mersin 150.0 13.07.1994 

Lake Burdur 658 Burdur and Isparta 248.0 13.07.1994 

Lake Seyfe 659 Kırşehir 107.0 13.07.1994 

Lake Kuş 660 Balıkesir 204.0 13.07.1994 

Sultan Marshes 661 Kayseri 172.0 13.07.1994 

Kızılırmak Delta 942 Samsun 217.0 15.04.1998 

Akyatan Lagoon 943 Adana 147.0 15.04.1998 

Lake Uluabat 944 Bursa 199.0 15.04.1998 

Gediz Delta 945 İzmir 149.0 15.04.1998 

Meke Maar 1618 Konya 2.0 21.07.2005 

Yumurtalık Lagoons 1619 Adana 198.5 21.07.2005 

Kızören Obrouk 1620 Konya 1.3 02.05.2006 

Lake Kuyucuk 1890 Kars 4.2 28.08.2009 

Nemrut Caldera 2145 Bitlis 45.9 17.04.2013 

 

 

Figure 1.3 Geolocation of Ramsar Sites in Turkey 
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Although they are such valuable ecosystems, their degradation and loss have 

continued for decades (Daniela et al., 2013; Gardner et al., 2015). Scientific research 

indicates that 64% of the wetlands have disappeared worldwide since 1900 (Ramsar 

Convention Secretariat, 2010). Particularly in Asia and Europe, the loss is more 

significant, which is stressed in various studies (Davidson, 2014; Hu et al., 2017; 

Leadley et al., 2014). Figure 1.4 shows the shrinkage of wetland areas between 1970 

and 2010 through Wetland Extent Index. 

 

Figure 1.4 Wetland Extent Index for period between 1970 and 2010 (Leadley et al., 

2014) 

The subject loss can also be interpreted as a significant decrease in access to fresh 

water, increase in floods, deficiency in carbon storage, and suffering of wetland 

livelihoods. Although the causes of the loss vary from country to country, they can 

mainly be listed as follows: 

• Dramatic changes in land use triggered by agricultural and farming activities 

such as rice cultivation and animal grazing 
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• Construction of dams, dikes, locks, and canals that deteriorates the natural 

drainage system 

• Development of infrastructure works, especially in river valleys and coastal 

regions 

• Air, water, and nutrient pollution 

In view of the rapid and continuous loss of those precious habitats, management and 

conservation become even more crucial (Finlayson et al., 2018; Miklas Scholz, 2016; 

Russo, 2008; Verhoeven et al., 2006). The accomplishment of these tasks depends 

on serious monitoring to take necessary precautions. In this regard, monitoring such 

valuable areas and obtaining crucial information from them play an essential role in 

contributing to sustainable development. This consideration has been the primary 

motivation of the studies performed during the preparation of this thesis. 

Remote sensing is a very efficient tool for monitoring ecosystems thanks to its ability 

to collect repetitive information over large areas at various resolutions and 

wavelengths (Figure 1.5). The practicality and rapidity of data gathering for large 

areas lower costs as well (Ji, 2008; Lopez et al., 2013; Lyon, 2001; Tiner et al., 2015). 

In this context, considering the individual size, geographic distribution, and total 

coverage of wetlands across the earth, remote sensing shines out as the most 

economically and technically feasible method. Therefore, it is widely used for 

monitoring these areas and extracting information, primarily land cover 

classification. However, this classification problem is generally treated at the pixel 

level, which is not accurate enough to grasp the heterogeneous structure of wetland 

areas. The pixel-level approach falls short of understanding the wetland dynamics 

since vast amounts of pixels in subject areas have mixed content. In addition, the 

existing ontologies are incapable of sensing wetland ecology since water levels and 

vegetation phenology are very dynamic. Therefore, there is an apparent need for 

handling mixed pixel problems considering the temporal aspect. Moreover, the 
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assessment of fractional land cover requires delicate approaches rather than 

conventional accuracy metrics. 

 

Figure 1.5 Earth observation from space (European Space Agency, 2015) 

1.2  Research Objectives 

The most feasible method using remote sensing tools is investigated to overcome the 

issues above, and suitable strategies are developed accordingly. In this regard, the 

first objective of this study is to create a methodology in order to extract accurate 

boundaries of wetlands for delivering further services to the correct address. 

Secondly, an appropriate scheme is generated to optimally determine the ontology 

that can describe the wetland characteristics. This is an essential step because it is 

impossible to strictly reveal existing conditions and relations without a firm grasp of 

cover types. To make the proposed procedure utilizable by the whole community, 

open access satellite imagery is selected as the main data input. Although this 

increases the applicability and brings economy, two significant obstacles come 

alongside that are: 

• High level of detail provided by high resolution imagery does not exist as the 

current options for open access Earth observation data are in the medium 

resolution category. 
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• Panchromatic band is unavailable in the case of Sentinel-2 imagery. 

Therefore, alternative approaches should be conducted to upscale bands 

having lower spatial resolution. 

Considering the fact that wetlands contain highly heterogeneous land cover, special 

approach has to be applied to handle the low detail issue. The sub-pixel analysis is 

conducted to overcome this problem. In spite of the aforementioned obstacles, 

medium resolution imagery has a remarkable advantage over high resolution data, 

which is the presence of data acquired from the different portions of the 

electromagnetic spectrum. This asset can be conveniently exploited to realize sub-

pixel analysis. In this context, the third objective is to develop an enhanced sub-pixel 

method to extract accurate additional information from each pixel. 

Apart from their heterogeneous content, the dynamic structure of wetlands is another 

concern to be addressed. Thus, another objective of this study is to sort out a spectro-

temporal unmixing approach suitable for multispectral satellite images to overcome 

continuously changing mixed pixels. The multitemporal endmember concept is 

constituted using diverse seasonal data with this aim in view. 

Evaluating the outputs through favorable metrics is imperative once the unmixing 

methodology is established and tested on sample data. There are various methods in 

the literature to assess the quality of fractional abundances created by soft (fuzzy) 

classification techniques. Nonetheless, developing a new metric is the final objective 

of this study, provided the concern is treated from a slightly different perspective to 

ensure the interpretation of results straightforwardly. 

1.3 Overview of Proposed Approach 

On the whole, all critical aspects are investigated and addressed for monitoring the 

wetlands in an effort to contribute to the conservation of these extraordinary habitats. 

The flowchart of the research methodology is given in Figure 1.6. 
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1.4 Contributions of Thesis 

In this thesis, a wetland extent determination algorithm and a fully constrained 

optimized linear spectral unmixing method are presented for the accurate 

decomposition of wetland habitat that determines the contribution of various land 

cover types to each pixel, considers the temporal aspect for classification, and 

explicitly addresses the alteration between water and soil. The major contributions 

can be summarized as follows: 

1. A wetland extent determination strategy is proposed as a pre-processing step 

through the index-based stack regression and the use of DTM. 

2. A three-element ontology library scheme is generated as a basis for the 

precise endmember selection in a systematic way. 

3. A procedure is proposed to create endmember abundance ground truth map 

through the classification of high resolution aerial imagery and softening into 

the test data grid. 

4. A band weight optimization method is proposed, and the optimized band 

weights are presented to be used with the same sensor data in similar studies. 

5. An endmember optimization method is proposed in the case of utilizing 

multitemporal endmembers. 

6. A new metric is developed, entitled Abundance Confusion Matrix 

(ACOMA), for the accurate and detailed assessment of fractional cover. 

In addition, a list of minor contributions can be given as follows: 

1. The applicability of different co-registration algorithms is tested, and the 

outputs are compared. 

2. The applicability of different DEM products as auxiliary input data during 

the utilization of the extent determination algorithm is tested. 

3. Different regularization algorithms are investigated, and their effect on 

results is revealed. 
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1.5 Outline of Thesis 

The rest of this thesis is organized as follows: 

In Chapter 2, a thorough literature review is conducted. Different aspects of wetland-

related research are overviewed. The methods and approaches are given together 

with the datasets used. Effects of the utilization of different sensors are mentioned, 

and complementary features are emphasized. 

In Chapter 3, information on the test area is given with descriptive statistics. The 

change in the legal status of the area from past to present time is indicated. In 

addition, datasets used for the study are explained in two categories that are ground 

truth and test. The content of the ground truth is given as products generated using 

high resolution aerial images. The importance of fieldwork is stressed, and the way 

how it contributes to the preparation of ground truth through the observations and 

collected samples is emphasized. 

In Chapter 4, the proposed methodology is introduced in detail. The critical points 

of the operation sequence indicated in the general flowchart are elaborated in 

subsections. Tested co-registration algorithms are mentioned before moving on to 

the extent determination, and the final selection is justified. The logic of the extent 

determination method is explained, and the adopted tools/parameters are indicated. 

The three-element ontology schema is given, and ground truth generation through 

the classification supervised by the help of ontology information is explained. The 

steps followed for obtaining an abundance comparable ground truth are pointed out. 

The utilized spectral unmixing and adopted improvement strategies are stated, and a 

novel method for the assessment of fractional abundances is introduced. 

In Chapter 5, the experimental results are presented. The obtained accuracies are 

given for each computation step. The necessity of co-registration of satellite images 

is demonstrated before moving on to the unmixing operation. The optimized band 
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weights are presented to the scientific society to be exploited in similar studies 

utilizing the same satellite data. The different configurations are tabulated for a 

comprehensible interpretation of the enhancements. The chapter is completed with 

the discussion part. 

In Chapter 6, the conclusions are summarized. The contribution of each operation is 

revealed in terms of accuracy metrics. The trade-off between introducing temporality 

and obtaining higher accuracy is specified. The critical steps in the overall process 

are highlighted, and the significance of the proposed novel assessment strategy is 

emphasized. The study finishes off with the future recommendations. 

The outline of the thesis is given in Figure 1.7. 

 

Figure 1.7 Outline of thesis 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Wetland Detection 

One use of remote sensing for the management of wetlands is detecting their extent. 

Different approaches have been suggested using optical, radar, and lidar data sources 

such as aerial imagery, Sentinel, Landsat, Spot, RapidEye, WorldView, Ikonos, 

QuickBird, Gaofen, MODIS, RADARSAT, ALOS. 

Vanderhof et al. (2016) used matched filtering algorithm to reveal surface water 

connections using Landsat time series. Appropriate bands/indices were extracted 

from MODIS data via different data reduction techniques in order to map wetland 

areas (Bansal et al., 2017). Another approach with the same sensor data combines 

Transformed Wetness Index estimation, time series smoothing, and phenological 

characterization (Gumbricht et al., 2017).  

Support Vector Machines proved their performance when utilized on Sentinel-2 and 

WorldView-2 (Araya-López et al., 2018) as well as Sentinel-2, Landsat-8, and 

RapidEye data (Jakovljević et al., 2019). DTM thresholding, Random Forest (RF) 

classification, and index exploitation were gathered as the Potential, Existing, 

Efficient Wetlands (PEEW) approach by Rapinel et al. (2019) to detect different 

types of wetlands using lidar, Sentinel-1, Sentinel-2, and MODIS annual time series, 

respectively. Ludwig et al. (2019) presented tile-based dynamic thresholding of 

water/wetness indices created from the Sentinel-2 time series as another alternative. 
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2.2 Temporal Dynamics of Wetlands 

Various researchers have used remote sensing to detect the temporal dynamics of 

water within the wetlands. A study focused on water indices (NDWI, MNDWI) using 

Landsat-5 and Landsat-7 imagery to map water bodies and detect the spatio-temporal 

change of water inundation on wetlands (Hui et al., 2008). Their methodology 

successfully determines the water coverage, yet it remains insufficient for estimating 

the spatio-temporal processes. Another study exploited thresholding on NIR and 

SWIR for water presence on a large wetland (Lefebvre et al., 2019).  They tested 

Landsat-5, Landsat-7, Landsat-8, and Sentinel-2 data, and it was found that the 

highest accuracy is obtained from the Sentinel-2 data with a kappa statistic of 0.82. 

Radar and lidar data as complementary tools to optical data proved their value in 

understanding the seasonal dynamics of wetlands as well (Kaplan et al., 2019; Zhu 

et al., 2019). 

2.3 Wetland Parameters 

Much research has aimed to estimate various wetlands parameters, such as soil 

organic matter, soil moisture, and biomass using remote sensing. A study was 

performed focusing on the determination of vegetation spectra using a handheld 

spectrometer to interpret the impacts of soil salt and water content on plant spectra 

(Xiaoping et al., 2017). The manually measured data were then compared with the 

Gaofen-5 Advanced Hyperspectral Imager (AHSI) data. The results indicated that 

AHSI is better at predicting soil salt content and has advantages in monitoring local 

high-precision soil salinization. Optimal spectral parameters derived from the Grey 

Relational Analysis were used to predict soil organic matter content via 

Backpropagation Neural Network in Ebinur Lake Wetland  (Wang et al., 2018). They 

concluded that the soil organic matter content prediction could be enhanced through 

fractional derivation, spectral band subdivision, and optimal index selection. Yang 

et al. (2019) applied Structural Equation Modeling based on statistical approaches to 
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Sentinel-1 time series data to extract soil properties. They used the ratio of 

performance to deviation metric to evaluate the results. They obtained a score of 1.47 

for soil salinity, 0.99 for soil pH, and 1.00 for soil organic carbon. 

2.4 Wetland Classification 

Optical and radar remote sensing platforms have been extensively exploited to 

discover land use/land cover (LU/LC) types using pixel/object-based 

parametric/non-parametric algorithms. An object-based method was applied for the 

segmentation and classification of wetlands using Canadian Digital Surface Model 

(DSM), RapidEye, and Landsat-8 data (Amani et al., 2017). Using the Random 

Forest classifier in five different study areas, they achieved a mean overall accuracy 

of 86% and a mean kappa statistic of 82%. The performance of object-based and 

pixel-based RF algorithms was evaluated to map wetland vegetation using high 

resolution Gaofen-1 satellite imagery, L-band PALSAR, and C-band RADARSAT-

2 data (Fu et al., 2017). They concluded that the object-based method outperforms 

the pixel-based method by 3 to 10%, and the best overall accuracy, 89.64%, is 

obtained through the synergistic use of all three sensors. Another application of 

object-based classification to combined Sentinel-1/2 data produced satisfactory 

results (Kaplan and Avdan, 2019, 2018). The joint utilization of Sentinel-1 and 

Sentinel-2 augmented with the System for Automated Geoscientific Analyses 

(SAGA) Wetness Index for LU/LC mapping on wetlands was evaluated, and a new 

Object-based Image Analysis (OBIA) approach was proposed by Whyte et al. 

(2018). Several wetland/non-wetland classes were extracted from Landsat time 

series spanning 40 years, Gaofen-1 and Spot-7, using five classification methods: 

maximum likelihood, SVM, iterative self-organizing data analysis (ISODATA), 

decision tree, and an object-oriented approach (Sun et al., 2018). They concluded 

that the decision tree provides the highest accuracy, whereas ISODATA has the 

lowest. Combined optical and SAR data were correctly classified via machine 

learning algorithms such as RF, resulting in high accuracies of over 90% for the 
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selected study sites (Salehi et al., 2019). Rather than mapping classes altogether, 

individual classification using a different feature selection for each class was adopted 

by Mahdavi et al. (2019). They applied spectral analysis to determine class levels to 

be mapped, and a merging scheme was established for the remaining classes to 

escalate the accuracy of the target class. They ended up having overall accuracies of 

around 93%. Different configurations of RADARSAT-2, simulated compact 

polarimetric RADARSAT Constellation Mission, and various DEM data were used 

for the classification of six land cover types with Random Forest (Banks et al., 2019). 

They stressed the importance of acquisition period, incidence angle, data variations, 

and elevation models. Various studies demonstrated the productivity and 

indispensability of vegetation/water indices for LU/LC classification using both 

multispectral (Doughty and Cavanaugh, 2019) and hyperspectral data sources 

(Domínguez-Beisiegel et al., 2016; Shen et al., 2019; Stratoulias et al., 2018).  

2.5 Bathymetry 

The determination of bathymetry in shallow waters is also a famous line of research. 

A physics-based method was implemented to obtain the remote bathymetry and 

tested on Worldview-2 data by Eugenio et al. (2013). The potential of Sentinel-2 was 

assessed for water depths through WASI-2D bio-optical modeling tool, which was 

found to be promising in shallow waters (Dörnhöfer et al., 2016). An optical 

empirical algorithm was used to evaluate the robustness of experimental procedures 

for the development of Satellite-Derived Bathymetry (SDB) models for shallow 

waters close to the river mouth (Vilar et al., 2018). The efficiency of WorldView-2 

data on water depth measurements was evaluated using the Lyzenga Bathymetry 

Model (Ebaid et al., 2018) as well as Radiative Transfer Model (RTM) (Abasolo et 

al., 2018). Hyperspectral data, no wonder, were also used for obtaining accurate 

depth estimation through algorithms based on the water’s spectral characteristics 

(Özdemir and Leloğlu, 2014), as well as enhanced benthic classification accuracy 

via introducing the Bottom Index algorithm (Kakuta et al., 2018). Cloud computing, 
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particularly Google Earth Engine (GEE), has become widely used after significant 

improvements. Collecting low-cost site data to augment publicly available Sentinel-

2 optical satellite data accessed by GEE has been adopted to estimate bathymetry 

using an empirical pre-processing workflow (Traganos et al., 2018). SBD proved its 

worth when manipulated on Landsat-8 and Pleiades in addition to Sentinel-2 

(Duplančić-Leder et al., 2019). Support Vector Regression trained using bathymetric 

lidar surveys was tested on a UAV point cloud for obtaining improved depth 

information (Agrafiotis et al., 2019). Research conducted by Casal et al. (2019) 

concluded that the Linear Band Model outperforms the Band Ratio Model for 

bathymetry derivation from Sentinel-2 data. The bathymetry algorithm proposed by 

Yunus et al. (2019) proved that RF is more favorable than empirical models for 

predicting bathymetry using Sentinel-2 and Landsat-8 data. They discovered that the 

applied methodology is efficient, particularly at 0 - 10 m coastal depths and up to 30 

m clear lake water. Other scientists also investigated the abilities of the Sentinel-2 

constellation, and the efficiency of the coastal aerosol band was explored for 

mapping the dominant coastal marine habitats in addition to the bathymetry in 

various survey locations in the East Mediterranean (Poursanidis et al., 2019). A ratio 

transform model was adopted for generating bathymetric maps using Sentinel-2A 

and 2B in South Florida by Caballero and Stumpf (2019). They justified the ability 

of Sentinel-2 satellites to extract bathymetric information as well. They calculated 

median errors around 0.5 m for depths up to 18 m. 

2.6 Data Fusion 

As in many other research areas, one of the biggest challenges in the area of wetland 

mapping is to extract more information from the existing data in terms of spatial and 

temporal properties. There are two main approaches to cope with this issue, which 

are data fusion (Chang and Bai, 2018; David and Llinas, 2001; Klein, 2012; Lillesand 

et al., 2015; Mitchell, 2012) and spectral unmixing (Bioucas-Dias and Figueiredo, 

2010; Dobigeon et al., 2016; Iordache et al., 2011; Khajehrayeni and Ghassemian, 
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2020; Li et al., 2012). Flexible Spatio-Temporal Data Fusion (FSDAF) is among the 

efficient fusion models used for vegetation mapping that blends frequent low and 

infrequent high resolution data (Zhu et al., 2016). Another fusion model generating 

enhanced images by blending multispectral and hyperspectral data through guided 

filtering was tested on the Poyang Lake wetland (Chen et al., 2017). In addition, 

Spatio-Temporal Adaptive Fusion Model for NDVI products (STAFFN) has been 

presented by Chen et al. (2018) to combine spatial and temporal features from 

multiple sensors in an effective way. A decision-based fusion workflow using lidar, 

radar, and optical data was also developed for wetland classification (Montgomery 

et al., 2019). Machine and deep learning-based fusion techniques were proposed in 

this area as well (López-Tapia et al., 2021; Mallick et al., 2021; Mishra and Shahi, 

2021). There are various studies using spectral unmixing techniques on wetlands to 

understand the complex mixture of various components. A method combining RF 

and Spatial Attraction Models was applied to Landsat data to map wetland flooding 

in China (Li et al., 2019). A color mixture analysis method was proposed based on 

the Hue-Saturation-Value (HSV) color space for improving the accuracy and 

efficiency of Fractional Vegetation Cover (FVC) estimation from UAV-captured 

RGB images (Yan et al., 2019). A new spectral unmixing approach was applied to 

Landsat satellite images to extract surface water area information from stock ponds 

by Jarchow et al. (2020). Chang et al. (2021) have made an effort to detect sub-pixel 

level changes via clustering and segmenting multitemporal hyperspectral images. 

Their unmixing method has yielded promising results when tested on the Yellow 

River Estuary wetland. A sparse unmixing algorithm was proposed by Ding et al. 

(2021) to detect wetland locations using Landsat-8 OLI multispectral images, and 

the classification accuracies were compared with the results of  the traditional linear 

unmixing approach. Another spectral unmixing algorithm based on constrained 

linear least squares established upon an adaptive approach was suggested by Na et 

al. (2021) for wetland mapping.
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CHAPTER 3  

3 STUDY AREA AND DATA USED 

3.1 Study Area 

According to the Ministry of Agriculture and Forestry of the Republic of Turkey 

(2022), there are 93 wetlands in Turkey grouped under three categories that are 

international importance (Ramsar), national importance, and local importance. Table 

3.1 shows the categorical distribution and area information of wetlands in Turkey. 

Table 3.1 Wetlands in Turkey 

Wetland Statue Area (ha) 
Forest 

Area (ha) 

Forest 

Area (%) 
Number 

International Importance 

(Ramsar) 
184,487 5,623 3.0 14 

National Importance 869,697 67,572 7.8 59 

Local Importance 28,660 844 2.9 20 

Total 1,082,844 74,039 13.8 93 

 

While selecting the study area, closeness is the primary consideration for 

conveniently carrying out site visits, provided that the region possesses the required 

investigation criteria. These criteria are diversity in vegetational content, substantial 

water mass, and considerable total coverage. Figure 3.1 illustrates all the wetlands 

across Turkey. 

In Ankara, there is just one official wetland, namely Tol Lake. It is in the national 

importance category with an area of 1.4 km2. Apart from its relatively small surface 

area, it lacks water mass and is subject to human interactions like established 

irrigation canals. Taking these disadvantages of Tol Lake into consideration, 
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neighboring cities are examined for a more suitable site. Among the alternatives, 

Balıkdamı wetland appears to be the most appropriate option meeting the criteria 

mentioned above. 

 

Figure 3.1 Wetlands in Turkey  

Balıkdamı, one of the 59 wetlands of Turkey in the national importance category, is 

selected as the study area in this thesis. It is located west of Central Anatolia within 

the boundaries of Eskişehir. It is approximately 115 km away from Eskişehir and 

135 km away from Ankara city centers. It is about 14.7 km2 consisting of many 

ponds and reed beds, and the third-longest river in Turkey, Sakarya, passes through 

it. It hosts a wide variety of fish types; hence, it is given a name implying the house 

of fishes by the locals. In addition, the existence of numerous vegetation and bird 

types increases its importance and value. The area was declared a second-degree 

natural protection area, wildlife protection area, and wildlife improvement area in 

1980, 1994, and 2005, respectively. It officially gained the wetland of national 

importance status in February 2019.  
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The bounding box for the study area is designated as 39°10'10" to 39°13'15" N 

latitudes and 31°35'46" to 31°40'08" E longitudes, given in Figure 3.2. The altitudes 

for this frame range from 792 m to 929 m. 

 

Figure 3.2 Location and topography of Balıkdamı 

A two-year study conducted between 2002 and 2003 justifies the richness of 

Balıkdamı flora, revealing that there are 51 families and 250 taxa in the region 

(Koyuncu et al., 2008). The most prevalent families and their distributions are given 

in Table 3.2. 
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Table 3.2 Dominant vegetation families in Balıkdamı 

Family Number of Taxa Rate (%) 
Sample 

Species 

Brassicaceae (la) 

Crucifers (en) 
31 12.4 

 

Poaceae (la) 

Grasses (en) 
29 11.6 

 

Fabaceae (la) 

Legumes (en) 
25 10.0 

 

Asteraceae (la) 

Asters (en) 
25 10.0 

 

Lamiaceae (la) 

Mints (en) 
18 7.2 

 

   Note. Photos taken from Wikipedia (2022) 
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Table 3.2 Dominant vegetation families in Balıkdamı (continued) 

Family Number of Taxa Rate (%) 
Sample 

Species 

Caryophyllaceae (la) 

Pinks (en) 
12 4.8 

 

Apiaceae (la) 

Umbellifers (en) 
10 4.0 

 

Ranunculaceae (la) 

Buttercups (en) 
9 3.6 

 

Liliaceae (la) 

Lilies (en) 
9 3.6 

 

Boraginaceae (la) 

Borages (en) 
8 3.2 

 

   Note. Photos taken from Wikipedia (2022) 
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Balıkdamı is also known as Bird Paradise since it is located at a wide variety of bird 

populations' migratory routes.  According to observations made between 2017 and 

2019, 210 bird species from 47 families of 18 orders are identified in the region 

(Ozkazanc et al., 2019). Among these species, one is categorized as endangered, two 

as vulnerable, and seven as near threatened with respect to the International Union 

for Conservation of Nature Red List of Threatened Species, founded in 1964. Details 

are given in Table 3.3. 

Table 3.3 Balıkdamı bird species on red list 

Species Red List Category Photo 

Egyptian vulture Endangered 

 

Lesser kestrel Vulnerable 

 

Eastern imperial eagle Vulnerable 

 

   Note. Photos taken from Wikipedia (2022) 
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Table 3.3 Balıkdamı bird species on red list (continued) 

Species Red List Category Photo 

Ferruginous Duck Near threatened 

 

Red Kite Near threatened 

 

Cinereous vulture Near threatened 

 

Pallid harrier Near threatened 

 

Red-footed falcon Near threatened 

 

 Note. Photos taken from Wikipedia (2022) 
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Table 3.3 Balıkdamı bird species on red list (continued) 

Species Red List Category Photo 

Black-tailed godwit Near threatened 

 

European roller Near threatened 

 

   Note. Photos taken from Wikipedia (2022) 

3.2 Data Used 

This study uses three types of optical sensor datasets in the implementation and 

evaluation parts. The summary of the datasets is given in Table 3.4. The details are 

provided in the following three sections. 

Table 3.4 Details of data used 

Data Type Aerial Imagery Satellite Imagery 

Sensor UltraCam Eagle 

UltraCam 

Eagle 

Mark3 

Sentinel-2 

Acquisition 

Date 
15.07.2015 20.07.2019 

2018/2019/ 

2020 

April/July 

2019 

Content 
Stereoscopic 

(
forward overlap − 60%

side overlap − 40%
) 

Monoscopic 

(
fo −  45%
so −  40%

) Single Frame L2A 
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Table 3.4 Details of data used (continued) 

Number of 

Frames 
20 12 106 6 

Bands 

Used 

Blue, 

Green,  

Red, NIR 

Blue, 

Green, 

Red, NIR 

2, 3, 4,  

8, 11, 12 

2, 3, 4, 

5, 6, 7, 

8, 8A, 

11, 12 

Ground 

Sampling 

Distance 

30 cm 30 cm 10 m* 

Radiometric 

Resolution 8-bit 8-bit 16-bit 

Generated 

Product 
DSM DTM Orthophoto 

TCWI 

Stack 

Monthly 

mean 

images 

Intended 

Purpose 

Introduced 

as an 

additional 

band in 

orthophoto 
classification 

Utilized in 

rough 

wetland 

extent 
determination 

& 

ortho-
rectification 

of 2019 

aerial 

imagery 

Utilized as 

ground 

truth in 

spectral 

unmixing 

assessment 

Utilized in 

precise 

wetland 

extent 
determination 

Utilized 

in 

spectral 
unmixing 

* 20 m bands are resampled to a 10 m grid using the Nearest Neighbor algorithm  

3.2.1 Ground Truth 

Ground truth data are prepared using high resolution aerial imagery. Two different 

datasets are exploited, acquired by UltraCam Eagle on 15.07.2015 and UltraCam 

Eagle Mark3 on 20.07.2019. The Ground Sampling Distance (GSD) of both image 

sets is 30 cm. These data are delivered with camera calibration reports and exterior 

orientation parameters by the data providers. Since accurate geolocation and 

orientation information exists, ground control point (GCP) collection and 

photogrammetric adjustment process are not applied. Because of the fact that 2015 
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data are stereoscopic, they are used to generate Digital Surface Model (DSM) and 

Digital Terrain Model (DTM). As shown in Figure 3.3, 2019 images do not have 

model overlays. Therefore, the 2015 DTM is utilized to produce orthophoto from the 

monoscopic 2019 aerial imagery, which forms the basis of the verification stage. The 

same DTM is also adopted in the wetland determination procedure. Besides, the 2015 

DSM is appended to the 2019 orthophoto as an additional band to enhance the image 

classification later on. 

 

Figure 3.3 Footprints of 2019 aerial imagery 
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3.2.2 Fieldwork 

In addition to the aerial imagery, observations carried out during the site visits in 

three successive years from 2019 to 2021 contribute to the preparation of the ground 

truth. Many photos are taken, soil/vegetation samples are collected, and video 

recording is done through a low-cost UAV during the site visits. Photos of different 

land covers are used to determine the classes (Figure 3.4), and vegetation/soil 

samples collected on the site (Figure 3.5)  help to distinguish fine details. In addition, 

UAV video supports identifying the land cover, particularly in hard-to-reach regions. 

An image frame exported from the UAV video is given in Figure 3.6. 

 

Figure 3.4 Passing through Sakarya River (19.08.2020) 



 

 

32 

 

Figure 3.5 Ranunculus sample collection (19.08.2020) 

 

Figure 3.6 Single image frame exported from UAV video record (19.08.2020) 
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All collected information is organized as a log book (Appendix A) not only for this 

study but also for other ecology and remote sensing research. In addition, the analysis 

report of the soil samples is given in Appendix B, which was prepared by a 

professional laboratory. 

3.2.3 Test Data 

In this study, Sentinel-2 optical satellite data are used for both wetland extent 

determination and supervised spectral unmixing processes. Sentinel-2 is a wide-

swath, multispectral imaging mission operated by the European Space Agency 

(ESA), providing 10m/pixel resolution at best. The constellation is comprised of two 

polar-orbiting satellites, Sentinel-2A and Sentinel-2B, launched on 23.06.2015 and 

07.03.2017, respectively. The satellite couple occupies the same sun-synchronous 

orbit, yet they are phased at 180° (Figure 3.7). 

 

Figure 3.7 Orbital configuration of Sentinel-2 satellites (European Space Agency, 

2021) 
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This orbital configuration results in a high revisit time of 5 days under cloud-free 

conditions. With a swath width of 290 km, a systematic global optical data 

acquisition is obtained, contributing to climate change investigation, land 

monitoring, planning, emergency management, surveillance purposes, and many 

other applications. Each satellite is equipped with a dual-frequency Global 

Navigation Satellite System (GNSS) receiver in order to measure orbital position. 

Both satellites have dedicated propulsion systems to maintain their orbital accuracy. 

The mean orbital altitude, orbital inclination, orbit period, ground track deviation, 

and Mean Local Solar Time (MLST) at the descending node are 786 km, 98.62°, 

100.6 min, ± 2 km, and 10:30 a.m., respectively. The reason for choosing this MLST 

value is to provide a balance between the level of solar illumination and potential 

cloud cover. Another advantage of the adopted MLST value, which is close to the 

local overpass time of Landsat missions and almost identical to the Spot-5 

configuration, is to enable the integration of Sentinel-2 data with existing and 

historical missions and support the establishment of long-term time-series datasets 

(European Space Agency, 2022a). There are 13 spectral bands in the instruments; 

four provide 10 m, six provide 20 m, and three provide 60 m spatial resolutions. The 

details are given in Table 3.5. 

Table 3.5 Spectral bands for Sentinel-2 sensors (European Space Agency, 2021) 

 S2A S2B  

Band 

Number 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

Resolution 

(m) 

1 442.7 21 442.3 21 60 

2 492.4 66 492.1 66 10 

3 559.8 36 559 36 10 

4 664.6 31 665 31 10 

5 704.1 15 703.8 16 20 

6 740.5 15 739.1 15 20 
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Table 3.5 Spectral bands for the Sentinel-2 sensors (continued) 

 S2A S2B  

Band 

Number 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

Resolution 

(m) 

7 782.8 20 779.7 20 20 

8 832.8 106 833 106 10 

8a 864.7 21 864 22 20 

9 945.1 20 943.2 21 60 

10 1373.5 31 1376.9 30 60 

11 1613.7 91 1610.4 94 20 

12 2202.4 175 2185.7 185 20 

 

There are five Sentinel-2 product types, which are: 

• Level-0 : Compressed raw image data in Instrument Source Packet (ISP) 

     format 

• Level-1A : Decompressed Level-0 raw image data 

• Level-1B : Top of atmosphere (TOA) radiances in sensor geometry 

• Level-1C : Top of atmosphere (TOA) reflectances in cartographic 

    geometry 

• Level-2A : Bottom of atmosphere (BOA) reflectances in cartographic 

   geometry 

The Level-0 and Level-1A products are not released to users. The highest product 

level made available to users is Level-2A. Each Level-2A product comprises 

100x100 km2 tiles in UTM/WGS84 projection and has additional outputs such as 

Aerosol Optical Thickness Map, Water Vapor Map, and Scene Classification Map 

having Quality Indicators for cloud and snow probabilities at 60 m resolution. On 

the other hand, the cirrus band (B10) is omitted as it does not contain surface 
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information. Level-2A products were not used to be systematically generated at the 

ground segment before March 2018. The users could only produce them through the 

Sentinel-2 Toolbox using the Level-1C product as input. Starting from that period, 

they have been generated over Europe. The production was extended to global 

coverage in December 2018. However, the users can still generate Level-2A data 

themselves by playing with the processing parameters of their own will. 

In this study, Level-2A products generated at the ground segment spanning three 

years (2018-2019-2020) are utilized. There are 215 available frames for the selected 

study area belonging to the mentioned period. After the elimination of cloud and 

shadow-covered data, 106 frames remain. In the wetland extent determination part, 

B2, B3, B4, B8, B11, and B12 of all 106 frames are used in line with the Tasseled 

Cap Water Index (TCWI) calculation. In the latter part, 6 out of 106 frames are 

utilized. All bands except the remaining two 60 m ones (B1 and B9) are benefited, 

and monthly mean images are formed using the ten bands accordingly.
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CHAPTER 4  

4 METHODOLOGY 

The methodology proposed to determine wetland extent and ground characteristics 

is already shown schematically in Figure 1.6, together with the preparation of ground 

truth data to assess the final outputs. The details of these three approaches are 

explained in the following sections, and related components of the general flowchart 

are shared separately. In this respect, the flowchart, including Sections 4.1, 4.2, and 

4.3, is given in Figure 4.1.  

 

Figure 4.1 Flowchart of Sections 4.1, 4.2, and 4.3 
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4.1 Downloading and Pre-processing of Sentinel-2 Satellite Imagery 

Sentinel-2 data can be freely downloaded through the Copernicus Open Access Hub 

operated by the European Space Agency (ESA). The hub provides complete and 

open access to Sentinel-2 user products. In addition, platforms being a part of the 

Copernicus Data and Information Access Services (DIAS) can also be utilized to 

gather subject products. It is likely to make a request for archive data that are 

generally offline. The data retention period for synchronous access differs according 

to the profiles in the case of using Open Access Hub. At least the latest month is 

guaranteed to be delivered, and asynchronous access is provided to archive data, 

which are restored for download within one hour after request and available for 

download via HTTPS at least for the subsequent three days. When dealing with time 

series, this can be challenging and time-consuming. 

In this study, data download is performed through the Google Earth Engine. This 

computing platform allows users to reach multi-petabyte satellite imagery from 

various sources and realize geospatial analyses using Google's infrastructure. The 

platform is free for academics and researchers. There are several ways to utilize the 

provided services, which are a web-based IDE called the Code Editor, a lightweight 

web application called the Explorer, and Python/JavaScript libraries. The Code 

Editor is used for the data acquisition in this study, enabling JavaScript 

implementations. The platform allows different data filters such as date, cloud, and 

shadow. There are two options for cloud filtering in this respect. Since cloudy pixel 

percentage is provided in the satellite metadata, introducing a percentage as a 

threshold is the first option. The second is benefiting from the bitmask band with 

cloud mask information (QA60) provided with the image data. The problem with the 

first one originates from percentage information being granule-specific. The region 

of interest might be a small part of the granule, yet the cloud cover can accumulate 

in that area. Therefore, the user does not necessarily end up having cloudless 

imagery, even setting a low threshold. Although the second option works on the 
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region of interest, it is prone to false negatives to an extent. Therefore, a manual 

check is carried out on the entire region of interest data to ensure a solid result. 

Apart from the fast access to different sensors and levels of original data, the 

platform is quite an incentive to apply geospatial analyses, thanks to the potent 

Google infrastructure. During the studies, operations such as time series analyses, 

calculation of indices, and pseudo-bathymetric information extraction, are realized, 

particularly before ultimate study area selection as a support tool to find out the best 

region meeting different research criteria (Figure 4.2 and Figure 4.3). 

 

Figure 4.2 Index time series from 7 years data ⓐ Averaged NDVI of sample 

vegetation polygon ⓑ Averaged NDWI of sample soil polygon 
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Figure 4.3 Dynamic map showing number of days of 2018 for max index values 

4.2 Co-registration of Satellite Imagery  

Subsequent to downloading and filtering test data, Sentinel-2 L2A images are co-

registered to the high resolution reference image. For this task, four different 

algorithms are examined, which are: 

1. Intensity-based in-house MATLAB co-registration routine. 

2. Lucas-Kanade algorithm based GeFolki (Geoscience Extended Flow Optical 

Lucas-Kanade Iterative) Co-registration Processor (Brigot et al., 2016). 

3. Cross-correlation based SNAP radar Co-registration Tool (European Space 

Agency, 2022b). 

4. Python package working in the frequency domain, namely Automated and 

Robust Open-Source Image Co-Registration Software (AROSICS) 

(Scheffler et al., 2017). 

Two test data frames are co-registered to high resolution orthophoto to compare the 

algorithms. One frame is selected from close to the date of the master image, whereas 
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the other is from a different season. The procedure is performed using the green 

bands of reference and target images. 

4.3 Determination of Wetland Extent 

The idea behind the proposed approach is to mathematically detect lands that are 

mostly wet in a year, as the name wetland implies. The two primary inputs are high 

resolution DTM, if possible, and medium resolution satellite images spanning a 

whole year. The former data are used to detect wetland bed via thresholding. 

Although this step itself should provide adequate information in theory, only rough 

boundaries can be extracted in reality because of human interference in such fruitful 

areas. It is very likely to have regions separated from the natural habitat. The latter 

data step in at this point. In order to define the annual wetness behavior, data 

preferably from multiple years to construct a more vigorous representation of a 

yearly dataset are sorted into month-day order for minimizing the gaps between data 

acquisition dates and estimation errors caused by hard-to-model natural effects. 

Another crucial point is to decide the basis index. In this study, Tasseled Cap 

Wetness Index (TCWI) is adopted because of its proven success in wetland mapping 

(Ordoyne and Friedl, 2008). The formula used to calculate TCWI is as follows (IDB 

Project, 2022): 

 

TCWI = 0.1509 𝐵2 + 0.1973 𝐵3 + 0.3279 𝐵4 + 0.3406 𝐵8 

− 0.7112 𝐵11 − 0.4572 𝐵12 
(4.1) 

After calculating TCWI for each co-registered frame, sorting them regarding month-

day order, and stacking them, it is possible to estimate wetness values of a single 

location throughout a year. When the scatter of data points is examined, fourth-order 

polynomial and double-sigmoid functions are chosen to be fitted on data because of 

their congruence. Two methods are performed individually on each multiband 𝒃 
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image stack composed of 𝒉 𝒘 pixel data frame for 365 days, as shown in Figure 

4.4. 

 

Figure 4.4 Curve fitting on each pixel of image stack 

Before realizing curve fitting, one last operation is applied: the outlier detection. 

Various algorithms are tested, such as Hampel filter, multivariate analysis based on 

Mahalanobis distance, and mean filter. Due to the fact that blended three-year data 

contain higher fluctuations than that of a single standard year, a loose filter is selected 

to avoid marking correct data as the outlier. In this respect, a mean filter is adopted 

to eliminate just extremely divergent points. 

In the beginning, the behavior of the wetland is modeled using a fourth-order 

polynomial with two constraints. For this implementation, Gauss-Markov Model 

with constraints method is adopted (Koch, 1999). In Gauss-Markov Model, the 

functional and stochastic models are written as: 

 

𝑦 + 𝑒 = 𝑋  

𝐷(𝑦) = 2𝑃−1  
(4.2) 

where 𝑦, 𝑒, 𝑋, and   are observations, observational residuals, coefficient 

(sensitivity/design) matrix, and parameters, respectively. 𝐷(𝑦) is the covariance 
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matrix of 𝑦 with an unknown variance factor 2 and known weights 𝑃. The method 

aims to minimize the observational residuals in the least squares sense, which is 

obtained through the following equation: 

 
𝑒𝑇𝑃𝑒 = 𝑚𝑖𝑛 (4.3) 

Using matrix algebra, the best linear unbiased estimator of the parameters 𝛽̂ and its 

covariance matrix 𝐷(𝛽̂) are given as: 

 

 𝛽̂  = (𝑋𝑇𝑃𝑋)−1 𝑋𝑇𝑃𝑦 

𝐷(𝛽̂) = 2(𝑋𝑇𝑃𝑋)−1 
(4.4) 

In the case of constraints, 𝐻 = 𝑤 condition is introduced, where 𝐻 is known 

coefficients and 𝑤 is their known corresponding vector. The best linear unbiased 

estimator of the parameters 𝛽̃ and its covariance matrix 𝐷(𝛽̃) in the Gauss-Markov 

Model with constraints are then given as: 

 𝛽̃  = (𝑋𝑇𝑋)−1[ 𝑋𝑇𝑦 + 𝐻𝑇(𝐻(𝑋𝑇𝑋)−1𝐻𝑇)−1(𝑤 − 𝐻(𝑋𝑇𝑋)−1𝑋𝑇𝑦)] 

𝐷(𝛽̃) = 2[(𝑋𝑇𝑋)−1 − (𝑋𝑇𝑋)−1𝐻𝑇(𝐻(𝑋𝑇𝑋)−1𝐻𝑇)−1 𝐻(𝑋𝑇𝑋)−1] 
(4.5) 

To represent this minimization problem in matrix form, a vector including Lagrange 

multipliers (𝑘) has to be included. If necessary relations are established, normal 

equations for the best unbiased estimator of the parameters 𝛽̃ and the vector, 

including multipliers 𝑘 are given as: 

 
[𝑋𝑇𝑋    𝐻𝑇

  𝐻      0 
] [𝛽̃

𝑘
] = [𝑋𝑇𝑦

𝑤
] (4.6) 

Eventually, both Equations (4.5) and (4.6) give identical estimators for the 

parameters. 
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In this study, the introduced constraints are: 

 𝑓(1) = 𝑓(365) 

𝑓′(1) = -𝑓′(365) 
(4.7) 

first of which enables the start and end values to be equal. The second one assigns 

the negative slope of starting point to the end point of the curve to allow a proper 

continuation. 

The second implementation is based on the double-sigmoid function, which is 

derived from: 

 
𝑓(𝑥) =

𝐿

1 + 𝑒−𝛾(𝑥−𝑥0)
 (4.8) 

where 𝐿, 𝛾, and 𝑥0 denote the curve’s maximum value, growth rate, and 𝑥 value at 

the midpoint, respectively. In this implementation, one of the two sides is formed 

from the beginning to the pick point of observations. The double-side is obtained via 

reversing the first function and integrating it through the rest of the functional values. 

The estimation is done using the Interior-Point algorithm mentioned in Section 4.5. 

Initial values are extracted from the TCWI image stack, which are the minimum 

TCWI value, maximum TCWI value, and its corresponding Day of Year (DoY) 

value. 

Once the regression is completed and TCWI values of each pixel are estimated for 

the calendar year, it is possible to determine areas above a certain wetness level for 

a certain period using an appropriate query containing relevant thresholds. In this 

study, the query is formed to identify areas whose TCWI values are larger than -0.1 

over 120 days. In other words, regions that are wet for one-third of a year are 

determined. The final extent is derived by applying morphological operators to the 

intersection of thresholded high resolution DTM and queried TCWI data. 
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4.4 Classification Ontology 

The flowchart of Sections 4.4, 4.5, 4.6 is given in Figure 4.5. 

 

Figure 4.5 Flowchart of Sections 4.4, 4.5, and 4.6 

The choice of the classes is critical for the success of any classification and the 

usefulness of the results. A systematic approach is adopted based on vegetation, soil, 

and water cycle. In this context, three site visits were carried out in December 2019, 

August 2020, and July 2021. During these visits, many samples were collected, and 

different classes were geographically marked on the field. In order to determine soil 

types and their behavior, soil analysis was performed by a professional laboratory. 

Various combinations of image clustering are utilized to distinguish classes 

spectrally and correlate with field observations (Figure 4.6). 
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Figure 4.6 Clustering trials 

In the beginning, the land cover is categorized into seven groups that are algal bloom, 

burned vegetation, mud, steppe, rushes, reed, and water regarding the 2019 site visit. 

The supervised classification trials start accordingly. The number of classes is 

increased with respect to the quality results. Besides, the second and third site visits 

fulfilled later on help collect more information and differentiate classes better. The 

classes are continuously re-organized, and training polygons are modified. In 

addition, statistical enhancements, such as creating sub-classes from pre-determined 

common categories separately by applying 2-means unsupervised classification, help 

formalize the ontology and reach the final types. In the end, nine classes 

characterizing the wetland cover are determined, which ensures the best 

representation. The reference polygons are derived accordingly. The resulting 

ontology is shown in Table 4.1. This three-element approach provides a common 

basis for wetland ontologies. 
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Table 4.1 Three-element ontology 

No Class Name Hydrology Vegetation Soil 

1 Gypsum Saturated soil 

during the hot 

season, very 

shallow water 

during winter 

Clusters of 

Salicornia 

europea and 

Salicornia 

prostrata 

(glasswort), 

small tufts of 

Distichlis 

spicata (inland 

saltgrass) 

Surface: strong 

alkali, very 

salty, limy, 

medium 

organic 

substance, silty 

loam textured 

Underlayer: 

strong alkali, 

very salty, very 

limy, high 

organic 

substance, clay 

textured 

2 Juncus No water cover 

or occasional 

water during 

winter 

Juncus with 

30% – 80% 

coverage / rest 

is same as the 

class “Pasture” 

Same as the 

class “Steppe” 

3 Pasture 0 – 2 m above 

the winter 

water level 

Short green 

grass 

throughout the 

year 

Same as the 

class “Steppe” 

4 Phragmites Water during 

winter 

Dense 

Phragmites 

australis 

(common reed) 

Not visible 

5 Ranunculus Water cover all 

year, slow flow 

Ranunculus 

trichophyllus 

(threadleaf 

crowfoot) 

Not visible 
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Table 4.1 Three-element ontology (continued) 

No Class Name Hydrology Vegetation Soil 

6 Shallow 

Water 

Water cover 

during 

December – 

March interval 

No vegetation 

or ignorable 

vegetation 

Same as the 

class “Gypsum” 

7 Steppe 2+ m above the 

winter level / 

no water cover 

Partial green 

grass during 

January – April 

interval 

Weak alkali, not 

salty, very limy, 

high organic 

substance and 

silty clay loam 

textured 

8 Typha Tendency for 

longer duration 

under water in 

comparison to 

Phragmites 

Typha 

angustifolia 

(narrowleaf 

cattail) and 

Typha latifolia 

(broadleaf 

cattail) 

Not visible 

9 Water Permanent 

water, increase 

in 

phytoplankton 

during the 

warm season 

No vegetation Not visible 

 

The illustrations for the given classification ontology are shown in Figure 4.7. 
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Figure 4.7 Illustrations for given classification ontology B Gypsum C Juncus          

D Pasture E Phragmites F Ranunculus G Shallow Water H Steppe I Typha        

J Water 
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4.5 Spectral Library Generation from Pure Pixels 

To be able to find out class distributions inside a coarse pixel via spectral unmixing 

explained in Section 4.7, spectra of the classes are required. The critical point is to 

extract spectrum values from the pixels, perfectly characterizing the category. In 

other words, the pixel content should not be mixed, thereby guaranteeing the 

representation of the exact member. This concept is known as pure pixel or pure 

spectral signature. In order to ensure extracting pure spectral signatures of the final 

classes (named as endmembers in spectral unmixing), the following procedure is 

carried out: 

1. Intersecting each training polygon with the Sentinel-2 grid 

2. Calculating the area of each partition  

3. Assigning the value to the corresponding Sentinel-2 cell 

4. Removing the cells whose calculated area stay below the threshold 

5. Grouping the remaining cells according to the class information 

6. Extracting the mean reflectance values from the Sentinel-2 image for the 

grouped class polygons 

The procedure is illustrated in Figure 4.8. 
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Figure 4.8 Spectral library generation from pure pixels ⓐ Training polygon               

ⓑ Step-1 ⓒ Step-2 ⓓ Step-3 ⓔ Step-4 ⓕ Steps-5&6 

4.6 Generation of Ground Truth for Abundances 

The generation of ground truth relies on the RF supervised classification algorithm 

of the 4-band high resolution orthophoto. After finalizing the classes under the light 

of the three-element ontology approach, manually labeled training sets are 

polygonized on the orthophoto. Before moving onto the RF classification, the 

reference data is augmented with two indices and surface elevation. In addition to 

the existing R/G/B/NIR bands, NDVI, NDWI, and DSM bands are appended to the 

data to increase the classification accuracy. All three additional bands are rescaled 

to [0, 255] intervals in line with the radiometry of the orthophoto. In order to reduce 

variability, the model is trained through the 5-fold cross-validation technique.  

The second step is to convert the classified image into an abundance map at 10 m 

resolution. In order words, the reference hard classification is softened into the 
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Sentinel-2 grid. This operation requires the calculation of class ratios for each 

corresponding cell of the test image to be unmixed. When the spatial resolutions of 

reference (30 cm/pixel) and test data (10 m/pixel) are taken into consideration, one 

test cell contains approximately 1,100 reference pixels. In view of the fact that test 

pixel size is not a multiple of reference pixel size, the classified reference image is 

converted to vector format and intersected with the test data grid to get exact 

abundance values. Then, quantities of classes (abundances) in each satellite grid are 

calculated considering the overlapping partitions. Since this process requires various 

operations, a model is created on model builder through the following steps: 

1. Classifying the orthophoto using RF algorithm 

2. Converting raster classes into vector polygons 

3. Intersecting each class polygon with the Sentinel-2 grid 

4. Calculating areas of outputs 

5. Dissolving intersection polygons in corresponding Sentinel-2 pixel 

6. Adding the abundance field and converting the calculations into the unit 

interval ([0, 1]) 

7. Joining the abundance field with the Sentinel-2 grid 

8. Exporting each class grid as a single band raster 

The outputs of the algorithm are given in Figure 4.9. 
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Figure 4.9 Illustrations of outputs after each step ⓐ Orthophoto ⓑ Step-1                   

ⓒ Step-2 ⓓ Step-3 ⓔ Step-4 ⓕ Step-5 ⓖ Steps-6&7 ⓗ Step-8 
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4.7 Spectral Unmixing of Multispectral Images 

The flowchart of Sections 4.7, 4.8, and 4.9 is given in Figure 4.10. 

 

Figure 4.10 Flowchart of Sections 4.7, 4.8, and 4.9 
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One of the primary purposes of this study is to estimate the abundance values of 

major classes within each pixel. In other words, soft classification is intended rather 

than hard classification. The reason behind tackling the problem in this way is that 

the spatial resolution of the sensor is not high enough to separate different elements, 

and they occupy a single-pixel jointly in return. Therefore, spectral unmixing is 

adopted in this study.  

The two main options for spectral unmixing are linear and nonlinear models. Most 

of the unmixing algorithms assume that the measured spectrum of a mixed pixel is 

the linear combination of the spectral signatures of existing elements. This approach 

is known as the Linear Mixture Model, which neglects the multiple scattering effects 

in the data acquisition. On the other hand, nonlinear models take the secondary 

reflections or intimate mixtures into account. They can be mainly grouped as the 

Bilinear Mixture Model and Intimate Mixture Model. The Bilinear Mixture Model 

considers the interactions between only two elements in addition to their individual 

contributions. In the case of the Intimate Mixture Model, several elements contribute 

to the measured spectrum of the pixel (Dobigeon et al., 2016). Figure 4.11 illustrates 

the types of mixture models. 
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Figure 4.11 Illustrations for mixture models ⓐ Linear Mixture Model ⓑ Bilinear 

Mixture Model ⓒ Intimate Mixture Model 



 

 

57 

The Linear Mixture Model forms the basis of the operations performed in this study. 

For each pixel, it can be formulated as follows: 

 
𝑟𝑖 = ∑ 𝑚𝑖𝑗𝛼𝑗 +

𝑞

𝑗=1

𝑛𝑖 (4.9) 

where 𝑟𝑖 is the measured reflectance value at spectral band 𝑖,  𝑚𝑖𝑗 is the reflectance 

of the 𝑗-th endmember at spectral band 𝑖, 𝛼𝑗 is the fractional abundance of the 𝑗-th 

endmember, and 𝑛𝑖 is the residual for the spectral band 𝑖. 

Considering the data to be unmixed have 𝑏 bands, Equation (4.9) can be reformulated 

in compact matrix form as: 

 
𝑟 = 𝑀 + 𝑛 (4.10) 

where 𝑟 is a 𝑏 ×  1 vector containing the observed spectrum of the pixel, 𝑀 is a 

𝑏 ×  𝑞 matrix containing 𝑞 endmembers (pure spectral signatures),  is a 𝑞 ×  1 

vector containing the fractional abundances of the endmembers, and 𝑛 is a 𝑏 ×  1  

vector containing the residuals affecting the observations at each spectra band. 

To be able to reflect consistency with reality, two constraints are introduced that are 

abundance non-negativity, represented as: 

 
𝛼𝑖   0 (𝑖 = 1, … , 𝑞) (4.11) 

or in compact form by: 

 
𝛼   0 (4.12) 

and abundance sum-to-one, represented as: 
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∑ 𝛼𝑖 = 1

𝑞

𝑖=1

 (4.13) 

or in compact form by: 

 
1𝑞𝛼 = 1 (4.14) 

where 1𝑞 is a 1 ×  𝑞 vector containing ones. 

In this task, the contributions come from the optimization of band weights and 

endmember spectra in order to derive closer agreement with reality and hence higher 

accuracy. Therefore, prior to the Constrained Linear Least Squares solution, band 

weights are optimized through the Interior Point Algorithm (Byrd et al., 1999), which 

follows a barrier approach incorporating Sequential Quadratic Programming 

(Nocedal and Wright, 2006) and Trust Region techniques (Moré and Sorensen, 1983) 

to solve the issues occurring in the iteration. The Interior Point approach to 

constrained minimization solves a sequence of approximate minimization problems, 

in which the problem is given as: 

 

min
𝑥

𝑓(𝑥) 

subject to 𝑔(𝑥) ≤ 0 and ℎ(𝑥) = 0 
(4.15) 

where 𝑔(𝑥) and ℎ(𝑥) are constraint functions. 

For each barrier parameter 𝜇 > 0, the approximate problem is written as: 

 

min
𝑥,𝑠

𝑓𝜇(𝑥, 𝑠) = min
𝑥,𝑠

𝑓(𝑥) − 𝜇 ∑ ln(𝑠𝑖)

𝑖

 

subject to 𝑠 ≥ 0, ℎ(𝑥) = 0 and 𝑔(𝑥) + 𝑠 = 0 

(4.16) 
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where 𝑠 is the slack parameter. As 𝜇 decreases to zero, the minimum of 𝑓𝜇 should 

approach the minimum of 𝑓; in other words, the sequence of solutions to Equation  

(4.16) should converge to a stationary point. The algorithm uses either a direct step, 

also known as the Newton step or a conjugate gradient step at each iteration to solve 

the approximation problem. 

Two constraints are introduced before the optimization takes place. One of them is 

setting a lower bound for band weights, which is logically greater than or equal to 

zero. The second one is fixing one of the band weights to a stationary value in order 

to constitute a reference point, which is chosen to be the NIR band's weight equals 

to one due to its higher brightness. The last operation is the calculation of the error 

function. This is performed by calculating squared residual based on overall accuracy 

at each iteration. The computation of overall accuracy is achieved using the 

Abundance Confusion Matrix (ACOMA), explained in the next section. 

 

Figure 4.12 Flowchart of band optimization process 
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After the band weights are optimized, the endmember spectra are optimized with 

original and optimized band weights using Interior Point Algorithm as well in an 

effort to minimize reconstruction error. The reconstruction image is obtained by 

multiplying the reference abundances and optimized endmember spectra at each 

iteration. No constraint is introduced in this implementation. Figure 4.13 shows an 

example of the original image and its corresponding reconstruction. 

 

Figure 4.13 Example of original (left) vs. reconstructed (right) RGB images 

4.8 Performance Assessment 

The performance assessment of the wetland extent determination is carried out using 

the metrics given in Table 4.2. 

Table 4.2 Performance metrics for evaluating wetland extent determination 

Frame Area (FA) Extracted from the map 

Manually Marked Area (MMA) Extracted from the map 

Predicted Area (PA) Extracted from the map 
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Table 4.2 Performance metrics for evaluating wetland extent determination 

(continued) 

Union of MMA and PA  MMA ∪ PA 

True Positive Area (TPA) MMA ∩ PA 

True Negative Area (TNA) FA \ (MMA ∪ PA) 

False Positive Area (FPA) PA \ (MMA ∩ PA) 

False Negative Area (FNA) MMA \ (MMA ∩ PA) 

Sensitivity/Recall (True Positive Rate) 
TPA

TPA +  FNA
 

Specificity/Selectivity (True Negative Rate) 
TNA

TNA +  FPA
 

Precision (Positive Predictive Value) 
TPA

TPA +  FPA
 

Negative Predictive Value 
TNA

TNA +  FNA
 

Miss Rate (False Negative Rate) 
FNA

FNA +  TPA
 

Fall-out (False Positive Rate) 
FPA

FPA +  TNA
 

False Discovery Rate 
FPA

FPA +  TPA
 

False Omission Rate  
FNA

FNA +  TNA
 

Overall Accuracy 
TPA +  TNA

TPA +  TNA +  FPA +  FNA
 

F1 Score 
2TPA

2TPA +  FPA +  FNA
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The classification performance for the high resolution orthophoto is assessed by the 

calculation of the standard confusion matrix indicating the producer’s and user’s 

accuracies, together with the omission and commission errors. Additionally, overall 

accuracy (𝑂𝐴), kappa statistic (𝜅), and coefficient of determination (𝑅2) are 

computed.  

The overall accuracy (𝑂𝐴) is calculated through Confusion Matrix as follows: 

 
𝑂𝐴 =

𝐶𝐶𝑆

𝑅𝑆
 (4.17) 

where 𝐶𝐶𝑆 is the correctly classified sites, and 𝑅𝑆 is the total number of reference 

sites. 

The kappa statistic (𝜅), which is widely used to measure the classifier performance, 

is calculated as follows: 

 
𝜅 =

𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (4.18) 

where 𝑝0 is the probability of correct classification, and 𝑝𝑒 is the probability of 

chance agreement. 

The coefficient of determination (𝑅2), which is a measure of how well observations 

are estimated by the model based on the proportion of total variation of estimations, 

is calculated as follows: 

 
𝑅2 =  1 −

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (4.19) 

where 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals, and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares. 
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Two new metrics are introduced for the assessment of abundances obtained via 

spectral unmixing. 

The proposed abundance performance metric (apm), indicating the rate at which the 

maximum abundance value of each pixel belongs to the same endmember both in 

reference and unmixed data, is defined as: 

 
𝑎𝑝𝑚 =  

𝑐𝑎𝑟𝑑(𝐴)

ℎ ×  𝑤
 (4.20) 

where 𝐴 is the set of consistent abundance elements that have the characteristic 

mentioned above, whereas ℎ and 𝑤 are the height and width of the unmixed data. 

The algorithm for the calculation of 𝐴 is given in Algorithm 1. 

Algorithm 1 

 1. start  

 2. read 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑎𝑏𝑢𝑛ℎ × 𝑤 × 𝑏, 𝑢𝑛𝑚𝑖𝑥𝑒𝑑_𝑎𝑏𝑢𝑛ℎ × 𝑤 × 𝑏 

 3. 𝐴 = 0 

 4. for i = 1 : (ℎ ×  𝑤) 

 5. [val1, idx1] = max (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑎𝑏𝑢𝑛𝑖); 

 6. [val2, idx2] = max (𝑢𝑛𝑚𝑖𝑥𝑒𝑑_𝑎𝑏𝑢𝑛𝑖); 

 7. if idx1 == idx2; 

 8.  𝐴 += 1; 

 9. end if 

 10.end for 

 11.stop 
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Below is a simple example of how the metric works at a two-pixel sample. 

  Reference Target 

  Width Width 

Height Pixel-1 Pixel-2 Pixel-1 Pixel-2 

Class 1 - Gypsum 0.00 0.00 0.05 0.05 

Class 2 - Juncus 0.05 0.10 0.00 0.00 

Class 3 - Pasture 0.05 0.00 0.20 0.10 

Class 4 - Phragmites 0.10 0.00 0.10 0.45 

Class 5 - Ranunculus 0.40 0.10 0.35 0.15 

Class 6 - Shallow W. 0.05 0.05 0.00 0.00 

Class 7 - Steppe 0.15 0.05 0.00 0.00 

Class 8 - Typha 0.00 0.60 0.20 0.15 

Class 9 - Water 0.20 0.10 0.10 0.10 

  1.00 1.00 1.00 1.00 

This example states that there are two 1 x 2 images to be compared. The cardinality 

value is one because only the first pixel has the highest abundance for the same class 

(band) in both reference and target images. Then, the solution is computed using the 

given formula: 

𝑎𝑝𝑚 =  
𝑐𝑎𝑟𝑑(𝐴)

(ℎ × 𝑤 )
=

1

(1 × 2 )
= 0.50 = 50%  

The interpretation of this result is that half of the total number of pixels have an 

agreement in terms of possessing the highest abundance for the same class.  

All these metrics give an idea about the overall performance; however, there is still 

a need for a technique showing class-level performances like the standard confusion 

matrix. 

Various approaches have been proposed for assessing soft/fuzzy classification 

results in the literature. Early practices tended to either harden the soft classification 

outputs or focus just on pure pixels in order to apply traditional accuracy metrics. As 
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expected, the results were not very liable due to information loss (Foody and Trodd, 

1993; Wang, 1990). Another study conducted by Foody (1996) suggested using 

measures of closeness through distance metrics and probability distributions. 

Binaghi et al. (1999) proposed a method quantifying the index of fuzziness (IF) based 

on Hamming distance of reference and target fuzzy sets. This method was improved 

by Stehman et al. (2007) in terms of precision and standard errors of the less common 

classes, utilizing stratified random sampling estimators. Using a generalized area-

based error matrix introduced by Lewis and Brown (2001), relative errors were 

derived together with the overall and class-based proportions of the area in error. 

Silván-Cárdenas and Wang (2008) proposed a new technique, the sub-pixel 

confusion-uncertainty matrix, indicating the confusion intervals through the 

magnitude of maximum error around the center value. A software tool named Soft 

Classification Accuracy Assessment using SCM, FERM, Entropy, and RMSE 

(SCAASFER) was developed that makes the use of the techniques mentioned above 

(Khangarot et al., 2016). In addition to matrices, a metric like overall accuracy and 

kappa, namely the correctness coefficient involving the generation of the binary map 

for each class from ground truth, was introduced by Emami and Mojaradi (2009). 

This study proposes a new approach, namely Abundance Confusion Matrix 

(ACOMA), which considers the issue from a slightly different perspective. It is also 

the adaptation of the confusion matrix, providing the accuracy of fractional 

compatibility. 

The main contribution provided by ACOMA is the determination of area allocation 

for a single pixel through regression when there are infinite solutions. If the number 

of classes is N, the method takes reference abundances, 𝑎𝑖𝑘, and estimated 

abundances, 𝑎̂𝑖𝑘, where i denotes the class number (∈ {1, 2, … 𝑁}) and k denotes the 

pixel number. The method calculates an error matrix from whom the omission and 

commission errors, together with overall accuracy and kappa statistic, can be 

derived. It allows for assessing the partial agreement for each element rather than 

one-to-one matching. The entries of the ACOMA, cij, are defined as “the actual 
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abundance of class i which is attributed to class j” on average. Firstly, the abundance 

confusion matrix for a single pixel, 𝐶𝑘, is calculated. The diagonal elements can 

easily be found as 𝑐𝑖𝑖,𝑘 = min (𝑎𝑖𝑘, 𝑎̂𝑖𝑘). For the rest of the matrix, there are the 

following constraints: 

 
𝑎𝑖𝑘 = ∑ 𝑐𝑖𝑗,𝑘𝑗  ,  𝑎̂𝑖𝑘 = ∑ 𝑐𝑗𝑖,𝑘𝑗     and     𝑐𝑖𝑗,𝑘 ≥ 0 (4.21) 

Because of the constraints, if 𝑎𝑖𝑘 < 𝑎̂𝑖𝑘, all elements in the i-th column except the 

diagonal element are zero. Similarly, all elements in the j-th row except the diagonal 

element are zero if 𝑎𝑖𝑘 > 𝑎̂𝑖𝑘. For the remaining entries, a linear equation in the form 

of 𝑨𝒙 = 𝒃 can be constructed. However, matrix A is rank deficient in most of the 

cases, especially if N is large. The problem can be solved by some sort of 

regularization like using a minimum norm constraint. Lawson-Hanson algorithm, 

LU decomposition, QR decomposition, singular value decomposition (SVD), 

orthogonal decomposition, Tikhonov regularization, and TNT-NN algorithm are 

tested to solve this problem. The first four methods do not provide uniform 

distribution of estimations in case of rank deficiency, whereas the last three methods 

do. Nevertheless, the fifth and sixth can produce negative outputs since they do not 

have a non-negativity constraint. Therefore, the TNT-NN is adopted, a fast active set 

method primarily developed to solve non-negative least squares problems (Myre et 

al., 2017). The approach also enables the balanced distribution of estimations in case 

of rank deficiency. 

Once the pixel level abundance confusion matrix is calculated, the ACOMA is the 

sum of all pixel level matrices. That is: 

 
𝐶 = ∑ 𝐶𝑘

𝑘

 (4.22) 

Below are two simple examples of how the metric works at the pixel level. Assuming 

the problem is given as: 
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 C1 C2 C3 

Known Abundance 0.60 0.30 0.10 

Estimated Abundance 0.50 0.20 0.30 

 

The confusion matrix is quickly found to be: 

Confusion 

Matrix 
Estimated  

Known 

0.50 0.00 𝑎 0.60 

0.00 0.20 𝑏 0.30 

0.00 0.00 0.10 0.10 

 0.50 0.20 0.30  

 

Then, the solution is: 

 
[
1
0
1

0
1
1

] [
𝑎
𝑏

] = [
0.1
0.1
0.2

] (4.23) 

Since the rank of the matrix is two, the unique solution is 𝑎 = 𝑏 = 0.1. As a result, 

the Abundance Confusion Matrix (ACOMA) is: 
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In the case of four classes, an example problem is given as: 

 C1 C2 C3 C4 

Known Abundance 0.50 0.20 0.20 0.10 

Estimated Abundance 0.40 0.30 0.10 0.20 

 

The confusion matrix is found to be: 

Confusion 

Matrix 
Estimated  

 

Known 

0.40 𝑎 0.00 𝑏 0.50 

0.00 0.20 0.00 0.00 0.20 

0.00 𝑐 0.10 𝑑 0.20 

0.00 0.00 0.00 0.10 0.10 

 0.40 0.30 0.10 0.20  

 

The equations can be written as: 

 

𝑎 + 𝑏 = 0.10 

𝑐 + 𝑑 = 0.10 

𝑎 + 𝑐 = 0.10 

𝑏 + 𝑑 = 0.10 

(4.24) 

or in the compact matrix form as: 

 
[

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

] [

𝑎
𝑏
𝑐
𝑑

] = [

0.10
0.10
0.10
0.10

] (4.25) 
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where determinant is zero, and there will be an infinite number of solutions. This 

issue can be solved by regularization. This is where the TNT-NN fast active set 

method steps in, as mentioned above. TNT-NN produces the following outputs: 

 

𝑎 = 0.0493 

𝑏 = 0.0507 

𝑐 = 0.0507 

𝑑 = 0.0493 

(4.26) 

As a result, the Abundance Confusion Matrix (ACOMA) is: 

 

4.9 Visualization of Gathered and Generated Data 

In this thesis, a dynamic web map containing all gathered and generated data is 

created for visualization purposes. There are numerous open-source and commercial 

mapping & data visualization libraries like Leaflet, OpenLayers, D3, MapBox GL 

JS, Kartography, Mango, GIS Cloud, Carto, Google Maps JavaScript API, and 

ArcGIS API for JavaScript. Leaflet, a lightweight, relatively simple, and flexible 

open-source JavaScript library for generating interactive maps, is utilized for the 

visualization task. JavaScript programming language is primarily used for defining 
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the interactive behavior of web pages by accessing and modifying the contents. 

Although the core library is tiny by design to avoid dependencies, there are dozens 

of ready-to-use plugins available for users to extend the functionality of web 

mapping applications. Hence, most of the necessary tools are already included in the 

extensive plugin library. Leaflet inherently supports Web Map Service (WMS) 

layers, GeoJSON layers, vector layers, and tile layers. Support for many other types 

of layers can be ensured via plugins. In the case of establishing a web server, it is 

possible to share interactive maps through the internet, which is the essential purpose 

of the platform. On the other hand, it can also be used as a desktop application just 

for personal use.
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CHAPTER 5  

5 RESULTS AND DISCUSSION 

5.1 Results 

5.1.1 Co-registration of Satellite Imagery 

Two test data frames are co-registered to high resolution orthophoto to compare the 

algorithms. One frame is selected from close to the date of the master image, whereas 

the other is from a different season. The procedure is performed using the green 

bands of reference and target images. Table 5.1 shows the correlation coefficients 

for each algorithm. 

Table 5.1 Correlation of coefficient values for each algorithm 

Date of Reference 20.07.2019 

Date of Target 11.02.2019 31.07.2019 

Metric Correlation Coefficient 

Original 0.69 0.87 

In-house routine 0.70 0.88 

GeFolki 0.70 0.88 

SNAP radar 0.70 0.88 

AROSICS 0.70 0.88 

 

All alternatives produce the same result in terms of correlation coefficients. 

Nevertheless, with its practical capabilities, such as ensuring tie point data export, 

including displacement vector information, and easy implementation of batch 

processing thanks to the Python environment, AROSICS is primarily adopted in this 
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thesis. Since the data to be co-registered are more than 100 frames, straightforward 

batch processing is a vital requirement. Moreover, the software supports cloud and 

shadow masking as well as three-step outlier detection using reliability, Mean 

Structural Similarity Index (MSSIM), and Random Sample Consensus (RANSAC) 

filtering techniques. Figure 5.1 shows one of the co-registered images with the 

collected tie points and their absolute shift values. 

 

Figure 5.1 Absolute shift values of tie points for image dated 23.03.2019 
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5.1.2 Wetland Mask 

With respect to the flowchart given in Figure 4.1, the first thresholding is applied to 

DTM for the extraction of rough boundaries. When the area is examined, the best 

elevation thresholding values appear to be 797 and 804 to describe the wetland bed. 

The thresholding procedure is tested using open-access DEM data as well. With this 

end in view, Advanced Land Observing Satellite (ALOS) HR Terrain Corrected 

DEM (12.5m), Copernicus EU-DEM v1.1 (25m), and Shuttle Radar Topography 

Mission (SRTM) Global v3.0 (~30m) data are examined. Reasonable wetland beds 

are obtained, as demonstrated in Figure 5.2. 

 

Figure 5.2 Comparison of different elevation models - Red polygon represents 

ground truth extent digitized manually from high resolution orthophoto ⓐ Aerial 

DTM ⓑ ALOS ⓒ Copernicus ⓓ SRTM 
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Meanwhile, fine adjustment is performed using 106 cloud and shadow-free co-

registered images. The results of the fourth-order polynomial with two constraints 

can be seen in  Figure 5.3, Figure 5.4, and Figure 5.5. 

  

Figure 5.3 Example of fourth-order polynomial fitting on 106-band image stack 

 

Figure 5.4 Total number of days having TCWI over -0.1 in a calendar year 
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Figure 5.5 Locations having TCWI over -0.1 more than 120 days in a calendar year 

The results of double-sigmoid optimization can be seen in Figure 5.6, Figure 5.7, 

and Figure 5.8. 

 

Figure 5.6 Example of double-sigmoid curve fitting on 106-band image stack 
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Figure 5.7 Total number of days having TCWI over -0.1 in a calendar year 

 

Figure 5.8 Locations having TCWI over -0.1 more than 120 days in a calendar year 
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Both of the methods provide satisfactory results in terms of accuracy (Table 5.2) and 

can be applied to other wetlands considering the inherent features. However, in this 

study, it is proceeded with the double-sigmoid fitting since it gives better results with 

regard to cleaning out agricultural fields.  

Table 5.2 Standard deviations of fitting results 

Standard 

Deviation 

Fourth-Order Polynomial with Two Constraints 

All pixels 
Outside ground 

truth extent 

Inside ground truth 

extent 

max 0.1459 0.1459 0.1024 

min 0.0066 0.0099 0.0066 

mean 0.0395 0.0425 0.0297 

Standard 

Deviation 

Double-Sigmoid Function 

All pixels 
Outside ground 

truth extent 

Inside ground truth 

extent 

max 0.1461 0.1461 0.1331 

min 0.0067 0.0090 0.0067 

mean 0.0413 0.0446 0.0302 

 

After intersecting this output with the thresholded DTM, small object removal, hole 

filling, and morphological opening operations are applied to obtain the final extent. 

The evolution of the mask is given in Figure 5.9. 
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Figure 5.9 Evolution of wetland mask ⓐ DTM thresholding ⓑ Double-sigmoid 

fitting on TCWI stack ⓒ Intersection of a and b ⓓ Small object removal                      

ⓔ Region/hole filling ⓕ Morphological opening 
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The final extent is compared with the ground truth extent digitized manually from 

high resolution orthophoto (Figure 5.10). 

 

Figure 5.10 Manually marked vs. predicted wetland boundaries 

The metric computations for the comparison are given in Table 5.3. 

Table 5.3 Extent determination metric results for double-sigmoid fitting 

Frame Area (FA) 3,899.10 ha 

Manually Marked Area (MMA) 959.98 ha 

Predicted Area (PA) 912.01 ha 

Union of MMA and PA (MMA ∪ PA) 967.20 ha 

True Positive Area (MMA ∩ PA) 904.79 ha 

True Negative Area (FA \ (MMA ∪ PA)) 2,931.90 ha 

False Positive Area (PA \ (MMA ∩ PA)) 7.22 ha 

False Negative Area (MMA \ (MMA ∩ PA)) 55.19 ha 

Sensitivity/Recall (True Positive Rate) 94.25 % 
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Table 5.3 Extent determination metric results for double-sigmoid fitting 

(continued) 

Specificity/Selectivity (True Negative Rate) 99.75 % 

Precision (Positive Predictive Value) 99.21 % 

Negative Predictive Value 98.15 % 

Miss Rate (False Negative Rate) 5.75 % 

Fall-out (False Positive Rate) 0.25 % 

False Discovery Rate 0.79 % 

False Omission Rate  1.85 % 

Overall Accuracy 98.40 % 

F1 Score 96.67 % 

 

5.1.3 Spectral Signatures of Classes 

Using the method explained in Section 4.5, the spectral signatures of the final classes 

are extracted. For the period between February and August 2019, the results are 

demonstrated in Figure 5.11.  

 

Figure 5.11 Spectral signatures of classes of 2019 mean monthly imagery for period 

between February and August 
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In order to check how the individual pixels contribute to the class-based spectral 

signatures, plots for polygon mean superimposed on single-pixel lines are generated 

for each class (Figure 5.12). In this way, the purity and similarity of pixels are 

inspected. In addition to the ten satellite bands, NDVI, NDWI, and TWCI bands are 

appended. In the end, irrelevant pixels are excluded, and the spectral library is refined 

accordingly.  

 

Figure 5.12 Spectrum comparison between mean and individual pixels 

5.1.4 Classification of Reference Orthophoto 

5-fold cross-validated RF classification is performed in an effort to group wetland 

cover under nine classes mentioned in Section 4.4, which are Gypsum, Juncus, 

Pasture, Phragmites, Ranunculus, Shallow Water, Steppe, Typha, and Water. The 

confusion matrix is calculated once the procedure is completed (Figure 5.13). Using 

the elements of the calculated confusion matrix, the 𝑂𝐴, 𝜅, and 𝑅2 are found as 

98.86%, 98.56%, and 97.23%, respectively. 
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Figure 5.13 Confusion matrix for RF classification of orthophoto 

The computed predictor importance estimates indicate that the DSM, NIR, and blue 

bands have the highest impacts (Figure 5.14, left). Moreover, out-of-bag (OOB) 

classification errors suggest that 15 trees are sufficient to reach the minimum error 

level (Figure 5.14, right). 

 

Figure 5.14 Parameter importance (left) and OOB error (right) 



 

 

83 

The output of the classification is displayed in Figure 5.15. 

 

Figure 5.15 Classified orthophoto 

5.1.5 Soft Classification of Sentinel-2 L2A Data 

5.1.5.1 Spectral Unmixing 

Five cloudless Sentinel-2 L2A images are used at this unmixing stage. The 

acquisition dates are given in Table 5.4. Considering the acquisition date of reference 
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data (20.07.2019), the maximum time interval between reference and target images 

is 19 days. 

Table 5.4 Acquisition dates of Sentinel-2 July imagery 

Acquisition Dates 

01/07/2019 

06/07/2019 

16/07/2019 

26/07/2019 

31/07/2019 

 

The final test data are formed by taking an average of above five frames to minimize 

the noise. The fully constrained linear spectral unmixing is performed subsequent to 

the band weight optimization procedure. The optimized band weights are given in 

Table 5.5, which are obtained through the algorithm demonstrated in Figure 4.12. 

Table 5.5 Optimized band weights 

Band No Description Weight 

2 Blue 2.79 

3 Green 3.98 

4 Red 2.59 

5 Vegetation Red Edge 1.27 

6 Vegetation Red Edge 0.19 

7 Vegetation Red Edge 0.21 

8 Near Infrared 1.00 

8A Narrow Near Infrared 0.15 

11 Short Wave Infrared 0.25 

12 Short Wave Infrared 0.31 
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During the unmixing, non-negativity and sum-to-one constraints are included in line 

with the logic of the study. The estimated abundances are then compared with the 

reference data examining the ACOMA together with other aforementioned metrics. 

The accuracy metrics calculated for the spectral unmixing before and after the band 

weight optimization are given in Table 5.6. 

Table 5.6 Comparison of spectral unmixing accuracy metrics for unoptimized and 

optimized band weight cases 

 
Without 

Optimization 

With Band 

Optimization 

Overall Accuracy (𝑶𝑨) 0.57 0.66 

Kappa (𝜿) 0.46 0.56 

Coefficient of Determination (𝑹𝟐) 0.42 0.64 

Abundance Performance Metric (𝒂𝒑𝒎) 0.64 0.73 

 

The calculated abundance confusion matrix for the band weight optimization case is 

given in Figure 5.16. 

 

Figure 5.16 ACOMA for unmixed test data 



 

 

86 

In addition to the calculated metrics, endmember abundance distributions (Figure 

5.17) and standard deviations are computed (Figure 5.18).  

 

Figure 5.17 Abundance distribution for each endmember 

 

Figure 5.18 Standard deviations for monotemporal unmixing 
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Besides, the scatter plot of the reference and unmixed data is generated (Figure 5.19). 

 

Figure 5.19 Scatter plot for randomly selected 10% of reference and unmixed pixels 

(colorbar shows consistency whereas black line denotes least squares line) 

Abundance values are examined through a sample route to reveal the transition 

between land cover classes. The route and its direction are given in Figure 5.20. It 

intersects 45 unmixed pixels, whose contents are calculated and visualized with 

smoothing in Figure 5.21. 
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Figure 5.20 Transition route along which plant zonation is observed 

 

Figure 5.21 Plant zonation along transition route 
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The spectral unmixing accuracy is also compared with the RF classification of the 

same satellite data. Thus, the confusion matrix is calculated for the Sentinel-2 mean 

image (Figure 5.22). As in ground truth orthophoto classification, a 5-fold cross-

validated RF approach is applied through the training polygons established to create 

the pure pixel spectral library.  

 

Figure 5.22 Confusion matrix for RF classification of Sentinel-2 data 

The comparison between the RF classification and spectral unmixing for an example 

area is shown in Figure 5.23. 
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Figure 5.23 Example of land cover determination ⓐ RGB Orthophoto                         

ⓑ Orthophoto RF classification ⓒ Sentinel-2 RF classification ⓓ Reference 

abundance data for water class only ⓔ Unmixing result for water class only 
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5.1.5.2 Spectro-Temporal Unmixing 

In the next step, datasets of two seasons are stacked in order to exploit vegetation 

phenology for better classification and observe temporal changes throughout the 

year. For this task, imagery of April and July are utilized. In addition to the images 

mentioned in Table 5.4, an image dated 27/04/2019 is included in the process.  So, a 

single April and an average of five July images are concatenated into a stack. Since 

there is only one cloudless image in April, averaging does not apply for April. 

In addition to the band weight optimization, the endmember spectra are optimized 

using the sum of squared residuals between actual and reconstructed images as the 

error function. The original and optimized spectra are demonstrated in Figure 5.24. 

 

Figure 5.24 Unoptimized (solid) vs. optimized (dashed) endmember spectra for April 

and July image stack 

After the spectra optimization, the spectral unmixing procedure is performed for the 

different combinations, and an accuracy check is carried out for the estimated 
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abundances. Different configurations are compared to reveal the impact of the 

individual and combined optimization steps (Table 5.7). 

Table 5.7 Comparison of spectral unmixing accuracy metrics for different 

configurations 

 

Without 

Optimization 

With Band 

Optimization 

With 

Endmember 

Optimization 

With Band 

and 

Endmember 

Optimization 

𝑶𝑨 0.47 0.59 0.57 0.66 

𝜿 0.37 0.49 0.47 0.56 

R2 0.13 0.49 0.40 0.64 

𝒂𝒑𝒎 0.48 0.65 0.63 0.73 

 

The calculated abundance confusion matrix for the combined optimization case is 

given in Figure 5.25. 

 

Figure 5.25 ACOMA for stacked data 
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Endmember abundance distributions (Figure 5.26) and standard deviations are 

computed (Figure 5.27) for the multitemporal outputs as in the single-input case. 

 

Figure 5.26 Abundance distribution for each multitemporal endmember 

 

Figure 5.27 Standard deviations for multitemporal unmixing 
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Besides, the scatter plot of the reference and unmixed data is generated (Figure 5.28). 

 

Figure 5.28 Scatter plot for randomly selected 10% of reference and unmixed 

multitemporal pixels (colorbar shows consistency whereas black line denotes least 

squares line) 
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The delta between monotemporal and multitemporal cases is computed for a more 

straightforward interpretation by subtracting the multitemporal stack from the 

monotemporal image. The result is given in Table 5.8. 

Table 5.8 Delta matrix between monotemporal and multitemporal ACOMA 

Gypsum 332.3 -52.0 -334.0 14.1 -9.6 -222.7 240.1 17.9 13.8 

Juncus 96.3 -463.1 -127.7 306.3 60.0 -64.7 27.5 224.2 -61.6 

Pasture 1100.9 409.9 -2233.7 709.7 273.4 -534.6 329.6 -12.0 -46.0 

Phragmites -110.1 -1589.9 -776.8 1369.8 17.3 -177.5 92.0 643.1 529.3 

Ranunculus 3.8 15.6 -6.6 -12.3 59.5 -6.4 2.1 -49.7 -8.7 

Shallow 

Water 
291.9 66.1 -107.8 41.1 45.8 -293.8 45.1 -237.5 146.3 

Steppe 56.9 -95.5 -243.8 25.1 -1.3 -224.4 561.9 -40.1 -41.4 

Typha -56.2 796.8 -222.8 -713.9 -247.4 -403.6 753.4 -453.1 544.0 

Water 5.6 63.4 -41.7 -9.7 -91.5 -57.1 -6.0 -885.0 1019.3 

True 
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5.1.6 Data Visualization 

All input and output data are collected under a dynamic map for practical access and 

more straightforward interpretation. A temporary web server is exploited for 

publishing. The platform is also convenient to be used on desktop computers in case 

of the absence of a web server. It has a very user-friendly and easy-to-use interface. 

The map shows the dynamic scale and cursor coordinates continuously. It is 
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equipped with functional tools such as swipe, zoom, and geocoding. It has an 

additional magnifier and allows distance/area measurement, real-time location 

display, and local vector data upload. Figure 5.29 shows the interface of the 

interactive map.  

 

Figure 5.29 Visualization of inputs and outputs via the interactive map 

5.2 Discussion 

In order to check the necessity of co-registration, a simple test is performed, which 

is shifting the reference abundance map for one pixel in the east direction since it is 

very likely to have an offset to such a degree in the satellite data. For the assessment 

of the variation between original and shifted values, 𝑅2 is calculated. The value of 

0.72 suggests that a significant loss occurs if there is a misalignment. Since absolute 



 

 

97 

shifts of more than half a pixel (> 5 m) are present in the satellite imagery, as shown 

in Figure 5.1, the necessity of co-registration is verified. 

In the evaluation of the co-registration process, only the correlation coefficient is 

appraised as an assessment metric. The reason not to use distance-based metrics such 

as the sum of squared errors (SSE), mean squared error (MSE), root mean squared 

error (RMSE), and mean absolute error (MAE) is because the reference data 

generated from aerial imagery quantify radiance, whereas the target satellite data 

quantify scaled BOA reflectance. Even if normalization is applied, this variation 

causes inconsistency in the comparison outputs. The similarity-based metrics such 

as spectral angle mapper (SAM), structural similarity index measure (SSIM), and 

universal image quality index (UIQI) are not also reported since one of the target 

images dates back to five months earlier in addition to the former reasoning. The gap 

between the acquisition dates of reference and target data results in a substantial 

amount of absolute dissimilarity. In the case of utilizing reference and target datasets 

of similar nature and close acquisition dates, checking the mentioned metrics will be 

useful. 

The proposed wetland extent determination algorithm indicates that the actual extent 

is extracted with a miss rate of 5.75%. It should be noted that the algorithm’s 

precision is very high (99.21%). One of the challenges is the existence of large 

agricultural fields irrigated all year long in the vicinity of wetland. They tend to 

reflect wetland characteristics in a wetness sense. Another error source is the 

existence of arid regions, especially in the north part, where the large Gypsum cover 

locates. This part remains entirely parched during the summer season, insomuch that 

a cracked texture occurs. As a result, the TCWI stays low in this area, and the 

thresholding operation incorrectly filters out that part of the wetland. Even though 

introducing proper settings during morphological operations sorts out this issue on a 

large scale, the most significant error accumulation is still observed in the 

northernmost boundary of the wetland, where the TCWI values hardly ever exceed 

the specified threshold throughout the year. On the other hand, there is no vital error, 
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in general, affecting the subsequent phases, and the proposed approach is essentially 

applicable to wetlands in arid and semi-arid climates.  

The best part of the proposed wetland extent determination algorithm is that it does 

not necessarily require high resolution DEM. Publicly available elevation data 

provide sufficient locational accuracy to fulfill the DEM thresholding requirement 

for rough boundary extraction. A sensible outcome is obtained as a starting point 

even with 1-arc second SRTM data dating back to 2000. The rest is handled through 

the use of Sentinel-2 data. In case of need, other free-of-charge satellite data such as 

Landsat-8 can be utilized. 

The data provider claims 2 m absolute mapping accuracy for the provided interior 

and exterior parameters. As a rule of thumb, the expected relative accuracy of an 

aerial mapping project is within one to three times GSD, that is, a value between 30 

cm and 90 cm for this dataset. On the other hand, the sub-pixel scale co-registration 

procedure is applied to the satellite images using the generated orthophoto. 

Therefore, the reference orthophoto is not corrected for better positional accuracy. 

The orthophoto classification looks virtually flawless, with an overall accuracy of 

98.86%. The main reason for achieving unexpectedly high accuracy is the 

designation strategy of training samples, which is simple random sampling. Simple 

random sampling may lead to relatively deceptive performance originating from 

sampling error if the collected sample of a class is not large enough to represent the 

views of the entire population. Although it is challenging to implement stratified 

random sampling in such a highly heterogeneous environment containing relatively 

small land covers, it should be preferred to ensure equal statistical power when 

comparing sub-pixels. On the other hand, adding the extra bands and applying the 

folding procedure should be credited as well as the Random Forest classification 

method itself since it utilizes bagging and feature randomness to create uncorrelated 

forest structures. In turn, the RF outperforms single decision trees thanks to the 

improved performance and generalization. Among the classes, Juncus has relatively 
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low accuracy (Figure 5.13) and is confused with Phragmites, Typha, and Pasture. 

This confusion makes sense since the Juncus cover is mainly located at these classes' 

transition zones. The most likely cause for the confusion is that the Juncus cover is 

not dense. 

The DSM, NIR, and blue are the highest importance bands concerning the predictor 

importance estimates. Since the altitude has a distinctive effect on most land cover 

classes, DSM is logically the dominant feature. The NIR band effectively separates 

water bodies from vegetation with its sensitivity to vegetation type, biomass, 

moisture content, and general plant health. Thus, it comes after DSM rationally. It is 

not surprising to have the blue band in third place since it provides good water 

penetration. Therefore, it is widely preferred in remote sensing applications like 

submerged aquatic vegetation, turbidity, and bathymetric mapping. It should be 

borne in mind that Figure 5.14 shows relative importance. In order to reveal the 

contribution of other bands, the RF orthophoto classification is renewed just using 

the mentioned three dominant bands. Figure 5.30 demonstrates that the accuracy 

decreases dramatically, mainly for two classes. Hence, other features provided by 

different spectral portions should not be omitted.  
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Figure 5.30 RF classification results for 3-band (Blue/NIR/DSM) composite 

The smaller weights calculated for bands 5, 6, 7, 8A, 11, and 12 compared to bands 

2, 3, and 4 (Blue, Green, and Red) are reasonable since they are resampled from 

20𝑚 × 20𝑚 pixels using the Nearest Neighbor algorithm. Ultimately, the proposed 

band optimization step justifies its significance regarding the increases in accuracy 

metrics. The 𝑂𝐴, 𝜅, 𝑅2, and 𝑎𝑝𝑚 escalate in the order of 9%, 10%, 22%, and 9%, 

respectively (Table 5.6). The increase in 𝑅2 is strikingly formidable as it doubles the 

other metrics. This increase means that the distribution of errors is homogenized 

apart from obtaining better predictions. In other words, error accumulation for an 

individual class is avoided. Two classes, Juncus and Ranunculus, have sizably high 

commission errors. Nonetheless, it is still meaningful to keep them, considering the 

relatively lower omission errors. Particularly the total surface area of Ranunculus is 

already tiny and very dispersed in the reference data, causing inefficiency in the pure 

spectral signature determination. This issue, unfortunately, propagates into the 

unmixing process heavily. 
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The endmember abundance distributions shown in Figure 5.17 apparently reveal the 

class-based presence throughout the wetland area. Broader red areas seen on 

Gypsum, Phragmites, and Typha sub-plots signify that these three classes are more 

compact than other classes. The following classes are Pasture, Steppe, and Water in 

terms of denseness. Another noticeable point is the existence of water to a certain 

extent all over the wetland. The unified Shallow Water and Water cover 

demonstrates that nearly the whole land is partly wet, reflecting the general wetland 

character. This feature is also consistent with the findings of the wetland extent 

determination part. The overestimation of Ranunculus is notable, whose reason is 

already emphasized. 

Figure 5.18 suggests that the highest standard deviations are observed in the Gypsum 

class. At first glance, it might seem quite odd to have such a large and continuous 

cover in the lead. Although abundance estimates are accurate and spectral signature 

is extracted from a sufficient number of truly pure pixels, the figure demonstrates the 

higher residuals between original and reconstructed images obtained over the 

brightest areas. This anomaly occurs due to moisture. Even though the surface is 

arid, the underneath moisture modulates the radiance values. This collective 

modulation, in return, does not affect the accuracy of abundance estimation but the 

class spectrum. 

Figure 5.19 delineates the scatter of the predicted abundances against reference data. 

The aspects mentioned earlier are clearly highlighted. The class-based levels for over 

and underestimates are more comprehensible thanks to the least square lines. It can 

be easily realized that the Ranunculus and Juncus classes are highly overestimated. 

One of the great potentials of the adopted approach is its ability to ensure plant 

zonation in transition routes. Figure 5.21 cleverly demonstrates the results generated 

for the example route given in Figure 5.20. It illustrates the class alterations starting 

from the waterside to an inner region. As moving towards inland, the water content 

of the pixels gradually decreases, whereas the plants slowly emerge. The area where 
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this route lies is explored during site visits. As Figure 5.21 illustrates, the order of 

plants is Typha, Phragmites, and Juncus. The smooth transition in between can also 

be seen in the high resolution base map. Besides, the broad Pasture and Steppe 

regions without mixed content reveal themselves. The increasing elevation values 

observed through the route support the other findings. The slope alterations seen on 

the transition spots of the plot agree with the class interactions. It should be expressed 

that the elevation values slightly fluctuate between adjacent pixels because they are 

calculated by averaging the pixels of the high resolution elevation model falling into 

the related Sentinel-2 grid. In other words, each corresponding elevation value on 

the plot represents the mean of approximately 1,100 high resolution pixels. 

The spectral unmixing approach proves its functionality in identifying sparse land 

covers. As shown in Figure 5.23, narrow land covers with respect to the Sentinel-2 

grid are able to be detected with the implemented procedure. In addition to 

preventing the disappearance of sparse land covers, the 𝑂𝐴, 𝜅, and 𝑅2 of 66%, 56%, 

and 64% for fractional mapping (Figure 5.16) and 64%, 53%, and 3% for hard 

classification (Figure 5.22) prove that the unmixing approach outperforms the pixel-

based classification in terms of the accuracy. Especially the difference for 𝑅2 values 

is very remarkable, which signifies the class-based error accumulation in the hard 

classification. This difference lies behind the extremely low producer's accuracy for 

the Ranunculus class given in Figure 5.22. 

In the multitemporal case, endmember optimization is implemented in contrast to the 

monotemporal case. In theory, the lower bound for the estimated spectra must be 

zero since reflectance values cannot be negative. However, no bound is set to cancel 

out artifacts. For this reason, some of the band spectra belonging to the Ranunculus 

class end up with negative values, as seen in Figure 5.24. The calculation of metrics 

stresses the importance of optimization steps. The best results are obtained when the 

proposed band weights are utilized together with the optimized spectra for the 

spectro-temporal case. In addition to the reported two-month stack accuracies, 

composites created from different combinations of more months' data are unmixed 
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and evaluated. However, the overall accuracy does not rise above the result of the 

two-month composite. This is mainly due to irregular land surface phenology caused 

by external factors/anomalies. Under entirely natural conditions, stacking data from 

more months/seasons/years is expected to provide higher accuracy. On the other 

hand, the temporal behavior of changes can still be interpreted thanks to the 

ACOMA. 

As in the monotemporal case, ACOMA provides an outstanding contribution to 

interpreting the outcomes. When the results of the monotemporal and multitemporal 

implementations are compared (Figure 5.16 vs. Figure 5.25), the exchange between 

particular classes draws attention. One of the most evident exchanges that can be 

commented on in Table 5.8 is the transformation of Pasture into Gypsum. This makes 

perfect sense because stack data include April/July images, whereas the 

monotemporal data contain only July information. In other words, entering the 

summer season has an effect of a decrease in the water level and drying grass. 

Another relation is seen between Phragmites and Juncus. Since the flowering months 

are July and August for Juncus (Groww, 2022), a larger area of the Juncus cover is 

anticipated in July compared to April. Thus, this alteration is reasonable as well. 

Lastly, the interaction between Typha and Water is striking. Especially the last row 

of the delta matrix reveals this relation. Considering the fact that Typha grows 

primarily next to the water in the area, this relation is comprehensible. On the other 

hand, the reason for such a decrease in the Typha cover is a bit confusing. 



 

 

104 

 

Figure 5.31 Location of Sakarya N. Aktaş stream gauge and region topography 

Figure 5.26 and Figure 5.27 indicate similar outputs apart from the absolute increase 

in standard deviations. This is an expected situation since the reference data belong 

to a single season. In addition, the issue with Ranunculus is rationally even more 

severe (Figure 5.28). Except for the seasonal effect, the mobility of the class should 

be taken into account. Although this class is mainly observed on the surface of slow-

flowing water, displacement is anticipated considering the three-month interval. In 

relation to the subject displacement, the river's flow rate is checked with the data 

provided by the nearest stream gauge (E12A024 – Sakarya N. Aktaş). It is located 

about 30 km northwest of the wetland, whose approximate elevation is 837 m 

(Error! Reference source not found.). 
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The most recent accessible data belong to the 2015 water year (General Directorate 

of State Hydraulic Works, 2018). The monthly average flow rates contained in the 

report indicate that the rate of July (5.77 m3/sec) is below the annual average (6.45 

m3/sec), whereas the fastest rate is observed in April (11.20 m3/sec). Hence, it is very 

likely to have displaced Ranunculus formation, if any exists in April. Figure 5.32 

shows the observed average flow rates. The complete station report, including daily 

observations, is given in Appendix D. 

 

Figure 5.32 Monthly average flow rate (m3/sec) at Sakarya N. Aktaş stream gauge 

for 2015 water year 

The assumption deduced from the mentioned flow rates is supported by the monthly 

precipitation totals for 2019. The statistics show that the precipitation total for July 

2019 (17.4 mm) is almost half the annual average (32.8 mm), whereas the April total 

(43.9 mm) is two and a half times higher than that of July (Eskişehir Metropolitan 

Municipality, 2020). 
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Figure 5.33 Eskişehir City 2019 monthly precipitation totals (mm) 

The assumption deduced from the mentioned flow rates is supported by the monthly 

precipitation totals for 2019. The statistics show that the precipitation total for July 

2019 (17.4 mm) is almost half the annual average (32.8 mm), whereas the April total 

(43.9 mm) is two and a half times higher than that of July (Eskişehir Metropolitan 

Municipality, 2020). 

The behavior of Ranunculus is also checked out using the high resolution satellite 

imagery provided by Google Earth. In order to reveal the dynamic change and 

movement, the reference orthophoto (20.07.2019) and the most recent image to 

orthophoto existing on GE (15.09.2019) are visually compared. It is clearly seen that 

there is a significant amount of Ranunculus coverage difference between the two 

datasets. Considering the fact that the period between two images is shorter than two 

months, benefiting from multiple seasons for this class type is quite tricky. It should 

be emphasized that these kinds of dynamic targets require special attention and the 

implementation of complex approaches. Figure 5.34 shows the two images 

mentioned above. 
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Figure 5.34 Comparison of orthophoto (above) vs. GE image (below) 

The proposed abundance performance metric provides a straightforward 

understanding of the consistent pixel-based class distributions between the reference 

and estimated abundances. It is relatively easy to edit the 𝑎𝑝𝑚 algorithm so as to 
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indicate the rate of the total pixels consistent in terms of possessing two or more 

classes with the highest abundances within each pixel. The results for the optimized 

monotemporal dataset are given in Figure 5.35. As already mentioned, the 𝑎𝑝𝑚 

points out that 72.90% of the total pixels are correctly estimated to have the same 

highest class proportion. Conversely, it can be interpreted as 27.10% of the reference 

pixels have a different highest class proportion compared to the unmixed pixels. The 

rate of consistent highest two classes is 27.41%. The figure also shows that the 

maximum number of classes in a single pixel is six since the last four 𝑎𝑝𝑚 values 

are equal, 7.57. 

 

Figure 5.35 Calculated 𝑎𝑝𝑚 for optimized monotemporal data 

The results for the optimized multitemporal dataset are given in Figure 5.36. It has 

similar rates as the monotemporal data apart from a slight decrease. 
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Figure 5.36 Calculated 𝑎𝑝𝑚 for optimized multitemporal data 
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CHAPTER 6  

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this study, a framework is proposed for determining the extent of wetlands as a 

pre-processing step and then extracting their ground characteristics at the sub-pixel 

level. The study area is selected as Balıkdamı Wetland in Eskişehir. The Sentinel-2 

L2A data are used in both pre-processing and unmixing phases. 

The data download and preliminary geospatial investigations are conducted on the 

Google Earth Engine platform. Besides being a very versatile system, it is very 

potent in terms of processing vast amounts of remote sensing data rapidly and 

accurately since operations are conducted on the server-side. 

To justify the necessity of co-registration, the ground truth is shifted for one pixel in 

the east direction since it is very likely to have an offset to such a degree in the 

satellite data. Then, its consistency is checked with its unshifted version through the 

determination of coefficient. The value of 0.72 suggests that a significant loss occurs 

if there is a misalignment. In this respect, four different algorithms are tested and 

compared. Although all methods provide similar outputs in terms of accuracy, 

Automated and Robust Open-Source Image Co-Registration Software (AROSICS) 

is primarily adopted due to its additional capabilities and practicality in working with 

crowded datasets. 

The wetland extent is determined through the DTM and index-based stack 

regression. The DTM is introduced to extract the rough wetland bed. Then, stacked 

Sentinel-2 data are utilized in the double-sigmoid function fitting to enhance the 

rough wetland bed. Fine adjustments are performed via morphological operators. 
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The results demonstrate that the proposed method is very successful in predicting the 

extent with the sensitivity, specificity, precision, overall accuracy, and F1 score of   

94.25%, 99.75%, 99.21%, 98.40%, and 96.67%, respectively. The algorithm does 

not count on high resolution DTM. The first phase is satisfactorily realized even with 

a rather old lower resolution surface model, the STRM. 

Before moving on to the unmixing stage, the most relevant land cover types have to 

be chosen. The endmember selection, which might be the most crucial step of this 

study, is carried out with the help of a three-element ontology library. The inspection 

is done with respect to soil, vegetation, and water characteristics. Once the optimum 

number and land cover types of endmembers are determined using the ontology 

library, the training polygons are finalized. Since the training polygons are digitized 

on the high resolution orthophoto, pure pixels corresponding to the Sentinel-2 grid 

must be identified in order to extract the Sentinel-2 spectra of the endmembers 

correctly. In this regard, the spectral library is established precisely by the procedure 

explained in Section 4.5, which is implemented to detect pure pixels within training 

polygons and calculate endmember spectra. 

The noise mitigation is applied to the test data by averaging available monthly 

images. Then, the band optimization procedure is implemented with the help of the 

reference data. In similar Sentinel-2 studies where a high resolution ground truth 

does not exist to be exploited for band optimization, the recommended band weights 

can be adopted as a first approximation since basic endmembers in natural habitats 

are likely to be similar to those in this thesis. 

Subsequent to the band optimization, a fully constrained linear spectral unmixing 

method is performed on the monotemporal data. The 𝑂𝐴, 𝜅, 𝑅2, and  𝑎𝑝𝑚 are 

calculated as 0.66, 0.56, 0.64, and 0.73, respectively. The noise mitigation approach 

supports the overall accuracy of about 3-4%, whereas optimized band weights using 

the overall accuracy as the cost function enhances the subject metrics in the order of 

9%, 10%, 22%, and 9%, respectively. 
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The transition between classes follows particular patterns across the wetland. This 

study contributes to the determination of such patterns as well. One of the gradients 

observed in the study area, clearly seen in Figure 5.20, is shown schematically in 

Figure 6.1 as an example.  

 

Figure 6.1 Vegetation gradient as a function of distance to lake: Typha, Phragmites, 

Juncus, Pasture, Steppe 

For the temporal endmember case subject to spectro-temporal unmixing, the 

endmember optimization is proven to meet the deficit originating from seasonal 

anomalies. A similar degree of accuracy is achieved when applied with the 

aforementioned band weights. Furthermore, the trade-off between accuracy and 

temporality is highlighted. 

One of the primary reasons for the confusion between classes is the incapability of 

the sensor’s spectral resolution to define unique class spectra. Therefore, the use of 

hyperspectral data is superior at unmixing operations. Another related error source 

is the instrument’s Point Spread Function (PSF). A significant portion of recorded 

radiance originates from neighboring pixels due to the PSF effect, whose adverse 
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effects penetrate surface information. Thus, special care should be taken to model 

PSF for better results. Although the overall accuracy of orthophoto classification is 

very high, it should be noted that absolute classification errors still exist. 

The proposed Abundance Confusion Matrix (ACOMA) calculation proves its 

efficiency in the delicate assessment of fractional mapping. It helps researchers 

figure out the interactions between endmembers and interpret the phenomena that 

take place. The ACOMA requires a reference set to compare the estimates. This 

study handles the subject requirement by softening the classified high resolution 

orthophoto. The procedure implemented in Section 4.6 attains this aim with perfect 

precision. 

The study provides an overall methodology for monitoring the wetlands relatively 

accurate using the Sentinel-2 images. In addition, the detectability of sparse cover 

classes is demonstrated. The proposed methodology enables the temporal analysis of 

wetlands to determine the effects of anthropogenic pressure and climate change on 

these precious ecosystems. The unmixing strategy is also applicable to other 

ecosystems.  

6.2 Recommendations 

Balıkdamı can be considered a marsh-dominant, fair-sized inland wetland. In order 

to verify the robustness of the proposed methodology, the procedure should be tested 

on different types of wetlands such as swamps dominated by woody plants, bogs 

characterized by spongy peat deposits, acidic waters, and a thick carpet of sphagnum 

moss floor, and peat-forming fens nurtured by nutrients from sources other than 

precipitation. In addition, performance on a broader geographical extent should be 

investigated. 

The unmixing approach is fundamentally designed for higher-dimensional data. This 

study utilizes open access multispectral imagery in an effort to keep the cost low; 



 

 

115 

nevertheless, experiments can be extended to include hyperspectral data to construct 

better endmember spectral signatures. It is worth learning the cost-performance 

trade-off when different data sources are introduced. An economical alternative 

might be the synergistic use of multispectral and open access radar data such as 

Sentinel-1. The positive impact of the fusing strategy on the hard classification of 

wetland studies is already mentioned in the introduction. Advantages of day and 

night capability, independency of weather conditions, and sensitivity to soil 

properties make the radar data appealing. On the other hand, to be able to use radar 

data in spectral unmixing, restraining properties based on a priori information are 

required to be designated. 

In the case of having limited knowledge of endmembers or aiming to unmix 

particular endmembers, filters like Matched Filtering (MF) or Mixture-Tuned 

Matched Filtering (MTMF) can be applied beforehand. In case of having no 

endmember knowledge, either data reduction techniques can be applied, or methods 

like Gap Statistic, Elbow, Silhouette Coefficient, Calinski-Harabasz Index, Davies-

Bouldin Index, and Bayesian Information Criterion can be adopted for 

approximation. 

In this thesis, a consolidated spectral mixture model is implemented. As mentioned 

in Section 4.7, non-linear models, taking the endmember interactions into account, 

are worth to be tested due to their complex structure. Fan Model (Fan et al., 2009) 

based on the bilinear mixture approach is partially tested during the experiments. 

The version, including all possible cross-terms and the version narrowed down to a 

few apparent interactions, are introduced into the unmixing process. However, 

satisfactory results are not obtained. This effort should be elaborated and expanded 

so as to contain alternatives of the intimate mixture method. 

Tracing the rise and fall of water levels has a moderate place in wetland management. 

Hydrodynamical, geomorphological, and ecological processes can be better 

understood by the characterization of wetland bathymetry. Satellite-derived 
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bathymetry is widely used accordingly. In this study, pseudo-bathymetric 

information extraction is tested using NDWI thresholding based on boxcar kernel 

smoothing. Figure 6.2 shows iso-NDWI polygons for the shallow water regions 

located in the north part. The outcomes are promising yet require further 

investigation and terrestrial validation. 

 

Figure 6.2 Preliminary outcomes of pseudo-bathymetric information extraction  

Considering the fact that wetlands contain highly heterogeneous land cover, using 

the same reflectance value for four composing pixels owing to the Nearest Neighbor 

resampling algorithm remains incapable. Although this handicap is relieved with the 

help of band optimization, the pan-sharpening procedure can be applied for improved 

results. Due to the absence of a panchromatic band in the Sentinel-2 satellite, 

alternative solutions have been introduced by using or enhancing existing pan-

sharpening techniques (Kaplan, 2018; Li et al., 2020; Park et al., 2017; Ronchetti 

and Sona, 2018; Wang et al., 2016), concluding significant improvements in 

comparison to the initial state. Apart from these approaches, super-resolution 

imaging based on neural networks has become popular to improve the imaging 

system resolution. The success of Sentinel-2 implementations has been demonstrated 
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by several studies (Brodu, 2017; Lanaras et al., 2017; Salgueiro et al., 2021). The 

technique proposed by Lanaras et al. (2017) is tested out on the mean monthly image 

used in the monotemporal unmixing stage. The result indicates that the initial overall 

accuracy of 57% escalates in the order of 3.5%. This increase is quite an 

improvement to be further investigated. The whole procedure is to be renewed in the 

future, including the optimization steps. 

In the case of having reference abundances, from abundance to abundance estimation 

using Multivariate Random Forest can also be adopted rather than directly utilizing 

the reference data. The idea behind this approach is to estimate adjusted Sentinel-2 

abundances from the reference abundance map. In order to obtain multi-output using 

an RF regressor, a separate RF model for each endmember is to be trained. A certain 

amount of the corresponding abundance values from reference data can be utilized 

as a training set during the model training. Then, each endmember’s target 

abundance values for the study area are predicted using the relevant RF model on the 

test data. At the end of the procedure, as many single-band images as the total number 

of endmember are obtained, each of which has percentages of related class existence 

in its pixels. Finally, those individual images are combined in order to get a full map 

showing percentages of all class existences on each pixel. In theory, the sum of all 

bands for a pixel has to be one since it represents the distribution ratios of various 

classes. To check what happens in practice, the histogram for the summation of 

estimated abundances of each pixel can be plotted. Moreover, the number of trees 

and tree depths should be chosen small enough to prevent memorization for the 

Multivariate Random Forest method. 

One thing is certain, which is to monitor these extraordinary habitats and take 

necessary precautions to prevent their degradation and destruction. Historical 

Google Earth images clearly show the massive degradation occurring in the past 

years (Figure 6.3). In order to avoid such damages, periodic checks should be 

realized and a robust warning mechanism should be established. 
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Figure 6.3 Images showing degradation of Balıkdamı at two-year intervals
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APPENDICES 

A. Site Visit Observations 

 

Figure A.1 Location of the photos taken on 19.12.2019 (date of base map is 

03.12.2019) 
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Figure A.2 B Dry Salicormia on wet Gypsum C General view of Gypsum area       

D Pasture E Juncus 
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Figure A.3 F Tuft of Juncus G, H Flood area I Submerged plants 
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Figure A.4 J Dense Typha K Trees L Limestone M East side of bridge located 

at easternmost boundary 
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Figure A.5 N West side of bridge located at easternmost boundary O Tufts of 

Juncus P, Q Burned Typha 
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Figure A.6 Location of the photos taken on 19.08.2020 (date of base map is 

19.08.2020) 
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Figure A.7 B Partial Salicornia on Gypsum C Vegetated Gypsum D Juncus             

E North side of wetland 
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Figure A.8 F Juncus dominated mixed vegetation G Adjacent Pasture, Juncus and 

Phragmites clusters H Cracked Gypsum I Distichlis spicata on Gypsum 
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Figure A.9 J Cracked Gypsum K, L Distichlis spicata M Dry Salicornia on 

Gypsum 
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Figure A.10 N Juncus O Steppe P Vegetated Gypsum Q Gauge plate on center 

bridge pillar 
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Figure A.11 R Dense Typha next to river S Pond inside dense Typha                         

T, U Pasture to Phragmites and Typha Transition 



 

 

146 

 

Figure A.12 V, W, X Typha and Phragmites dominated mixed vegetation Y Tufts 

of Juncus 
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Figure A.13 Z Tufts of Ranunculus on river basin 8 Bird watching tower 9 Tufts 

of Ranunculus on river basin : Tufts of Ranunculus on easternmost boundary  
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Figure A.14 Location of the photos taken on 02.09.2021 (date of base map is 

08.09.2021) 
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Figure A.15 B Salicornia on Gypsum C Mud beneath Gypsum D Juncus and 

Distichlis spicata border E Juncus and Phragmites mixture  
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Figure A.16 F Gauge plate on center bridge pillar G Phragmites and Ranunculus          

H Phragmites dominated mixed vegetation I Pond inside Phragmites and Typha 
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Figure A.17 J Steppe K Pasture L Pasture and Juncus transition M Tufts of 

Ranunculus on easternmost boundary 
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B. Analysis Results for Samples Taken from Balıkdamı Wetland 

Table B.1 Evaluation of soil sample-1 

Sample 

Identity 
Sample Photo 

Sample Coordinates 

(Lat/Lon) 

Gypsum 

(surface) 

 

39° 13' 25.91" N 

31° 37' 25.33" E 

Parameters Methods Result Unit Evaluation References 

Power of 

Hydrogen 

(Electrometric) 

ISO 10390 8.82 - 
Strong 

alkali 

TOVEP, 

1991; 

Eyüpoğlu, 

1999 

Electrical 

Conductivity 

(Electrometric) 

Internal 

method 

(Anonymous, 

2009) 

29.50 dS/m Very salty 

USDA, 

1954 

Agriculture 

Handbook 

No:60 

Saline and 

Alkaline 

Soils 

Lime 

(Calcimetric) 

Internal 

method 

(Calcimetric 

method / 

Çağlar, 1949; 

Tüzüner, 1990) 

9.05 % Limy Kacar, 2012 

Organic Matter 

(Titrimetric) 

Internal 

method 

(Walkley-

Black, 1934) 

2.91 % Medium 
TOVEP, 

1991 

Texture 

Bouyoucos 

Sand: - 

Silt: - 

Clay: - 

% No results 

Bouyoucos, 

1951; Millar 

and Turk, 

1954  

Manual 

determination 
- - Silty loam 

Millar and 

Turk, 1954  
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Table B.2 Evaluation of soil sample-2 

Sample 

Identity 
Sample Photo 

Sample Coordinates 

(Lat/Lon) 

Gypsum 

(underlayer) 

 

39° 13' 25.91" N 

31° 37' 25.33" E 

Parameters Methods Result Unit Evaluation References 

Power of 

Hydrogen 

(Electrometric) 

ISO 10390 8.64 - 
Strong 

alkali 

TOVEP, 

1991; 

Eyüpoğlu, 

1999 

Electrical 

Conductivity 

(Electrometric) 

Internal 

method 

(Anonymous, 

2009) 

16.70 dS/m Very salty 

USDA, 

1954 

Agriculture 

Handbook 

No:60 

Saline and 

Alkaline 

Soils 

Lime 

(Calcimetric) 

Internal 

method 

(Calcimetric 

method / 

Çağlar, 1949; 

Tüzüner, 1990) 

41.51 % Very limy Kacar, 2012 

Organic Matter 

(Titrimetric) 

Internal 

method 

(Walkley-

Black, 1934) 

4.40 % High 
TOVEP, 

1991 

Texture 

Bouyoucos 

Sand: - 

Silt: - 

Clay: - 

% No results 

Bouyoucos, 

1951; Millar 

and Turk, 

1954  

Manual 

determination 
- - Clay 

Millar and 

Turk, 1954  
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Table B.3 Evaluation of soil sample-3 

Sample 

Identity 
Sample Photo 

Sample Coordinates 

(Lat/Lon) 

Steppe 

 

39° 11' 54.79" N 

31° 37' 41.36" E 

Parameters Methods Result Unit Evaluation References 

Power of 

Hydrogen 

(Electrometric) 

ISO 10390 8.40 - Weak alkali 

TOVEP, 

1991; 

Eyüpoğlu, 

1999 

Electrical 

Conductivity 

(Electrometric) 

Internal 

method 

(Anonymous, 

2009) 

0.38 dS/m Not salty 

USDA, 

1954 

Agriculture 

Handbook 

No:60 

Saline and 

Alkaline 

Soils 

Lime 

(Calcimetric) 

Internal 

method 

(Calcimetric 

method / 

Çağlar, 1949; 

Tüzüner, 1990) 

24.22 % Very limy Kacar, 2012 

Organic Matter 

(Titrimetric) 

Internal 

method 

(Walkley-

Black, 1934) 

9.48 % High 
TOVEP, 

1991 

Texture 

Bouyoucos 

Sand: - 

Silt: - 

Clay: - 

% No results 

Bouyoucos, 

1951; Millar 

and Turk, 

1954  

Manual 

determination 
- - 
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C. Stream Gauge Observations for 2015 Water Year 

 

Figure C.1 Flow data of Sakarya N. Aktaş Station (General Directorate of State 

Hydraulic Works, 2018)
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