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ABSTRACT

WETLAND SPECTRO-TEMPORAL UNMIXING USING
MULTITEMPORAL MULTISPECTRAL SATELLITE IMAGES

Ozer, Erdem
Doctor of Philosophy, Geodetic and Geographic Information Technologies
Supervisor: Assoc. Prof. Dr. Ugur Murat Leloglu

February 2022, 157 pages

Wetlands constitute one of the wealthiest and most productive ecosystems on earth.
These areas are sophisticated aquatic habitats serving not only the locals but also the
whole Earth system on a broad range. Following tropical forests, they have the
highest biological diversity. These ecosystems are viable nourishment, reproduction,
and sheltering environments for a whole range of living beings and are therefore
accepted as natural wealth museums of the world. Monitoring such valuable areas
and obtaining crucial information from them, in this regard, has been the primary
motivation of the studies performed during the preparation of this thesis. When the
sizes, geographic distribution, and total coverage of wetlands across the earth are
taken into account, remote sensing shines out as the most economically and
technically feasible method to realize the goals related to the mentioned motivation.
Concerning the utilization of medium resolution satellite images as the input, the
pixel-level approach falls short of understanding the wetland dynamics since vast

amounts of pixels in such areas have mixed content.

In this study, the soft classification of wetlands is aimed in order to determine all
ground characteristics and their exact proportions. The path to achieving this goal

passes through conducting an investigation within correct boundaries. Hence,



detection of the wetland extent prior to sub-pixel analysis is addressed as a critical
pre-processing step for realizing the subject motivation. The extent determination
part includes calculating Tasseled Cap Water Index (TCWI) values on time series
and modeling variations throughout the year by fitting a double-sided sigmoid
function. This information is coupled with Digital Terrain Model (DTM)
thresholding to extract the final extent. The sub-pixel analysis covers adopting a
systematic approach using a three-element (soil, vegetation, water) scheme for
establishing wetland ontology and implementing supervised spectral unmixing
enhanced by the band and endmember optimizations. Balikdami, one of the most
impressive wetlands of Turkey, is chosen as the test area. Open access optical
satellite data, acquired by Sentinel-2 Multispectral Instrument (MSI), are utilized as
the primary input. Since the abundance values of land cover classes in each Sentinel-
2 pixel are estimated, reference abundance data with a 10 m grid interval are
generated using four-band aerial images having a 30 cm ground sampling distance
(GSD) for the verification stage. A new metric entitled "Abundance Confusion
Matrix (ACOMA)" is introduced for the comparison and detailed assessment of

reference and estimated fractional land cover.

Experimental results demonstrate that the extent determination is addressed with a
sensitivity of 93.55% and a precision of 99.21%. Moreover, abundance values of
land cover classes are determined with overall accuracies of 66.17% and 66.27% for
the monotemporal and multitemporal cases, respectively. In addition to a 2% overall
accuracy increase compared to the hard classification, the detectability of sparse land
cover classes is demonstrated that are vanished while using pixel-based approaches.
Furthermore, gradients are able to be observed, particularly at watersides. As a result,
the proposed method proves to be a valuable tool for the detailed monitoring of

wetlands.

Keywords: Wetlands, Spectral Unmixing, Sentinel-2, Abundance Confusion Matrix,

Fractional Land Cover
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COK ZAMANLI COK BANTLI UYDU GORUNTULERI KULLANILARAK
SULAK ALANDA SPEKTRO-ZAMANSAL AYRISTIRMA

Ozer, Erdem
Doktora, Jeodezi ve Cografi Bilgi Teknolojileri
Tez Yoneticisi: Dog. Dr. Ugur Murat Leloglu

Subat 2022, 157 sayfa

Sulak alanlar, yeryliziinlin en zengin ve liretken ekosistemleri arasinda yer alirlar. Bu
alanlar, sadece yore halkina degil yeryiizii sistemine de genis yelpazede hizmet eden
sofistike sucul habitatlardir. Tropikal ormanlarin ardindan en yiiksek biyolojik
cesitlilige sahiptirler. Bu ekosistemler, bir¢ok canli i¢in uygun beslenme, iireme ve
barinma olanagi saglar ve bu nedenle diinyanin dogal zenginlik miizeleri olarak
kabul edilirler. Boylesi degerli alanlarin izlenmesi ve bu alanlara ait nemli bilgilerin
cikarilmasi, bu tezin hazirlanmasinda gerceklestirilen ¢aligsmalarin ana motivasyon
kaynagi olmustur. Sulak alanlarin biyiiklikleri, cografi dagilimlari ve diinya
genelindeki toplam kapsamlar1 dikkate alindiginda, uzaktan algilama, bahsedilen
motivasyona iligkin amaclarin gergeklestirilmesinde ekonomik ve teknik anlamda en
makul yontem olarak 6ne c¢ikmaktadir. Orta ¢oziiniirliikli uydu goriintiilerinin
kullanimina iliskin olarak, piksel tabanli siniflama, sulak alana ait bir¢ok pikselin
karisik igerikli olmasi nedeniyle, sulak alan dinamiklerini anlama hususunda yetersiz

kalmaktadir.

Bu calismada, tiim zemin karakteristiklerini ve bunlarin oranlarin1 tam olarak

belirlemek i¢in sulak alanlarin yumusak siniflandirilmasi amaglanmistir. Bu amaca

Vil



ulagmanin yolu ise, dogru sinirlar i¢inde bir arastirma yapmaktan gegcmektedir. Bu
nedenle, alt piksel analizinden once sulak alan kapsamiin tespiti, s6z konusu
motivasyonunun gergeklestirilebilmesi igin Kritik bir 6n isleme adimi olarak ele
almmistir. Kapsam belirleme kismi i¢in zaman serilerinde, Piiskiillii Kep Su Indeksi
degerleri hesaplanmis ve yillik degisimler c¢ift tarafli sigmoid fonksiyonu
kullanilarak modellenmistir. Elde edilen bilgiler Sayisal Arazi Modeli esiklemesi ile
birlestirilerek nihai kapsam elde edilmistir. Alt piksel analizi, sulak alan ontolojisinin
olusturulmasi i¢in ti¢ unsurlu (toprak, bitki, su) sema kullanimina dayanan sistematik
bir yaklasimin benimsenmesi ile bant ve son iiye optimizasyonlar: araciliiyla
iyilestirilen kontrollii spektral ayirma isleminin gergeklestirilmesini igermektedir.
Test alan1 olarak Tiirkiye’nin en etkileyici sulak alanlarindan birisi olan Balikdami1
secilmistir. Temel veri girdisi olarak agik erisim saglanabilen Sentinel-2 ¢ok bantli
optik uydu goriintiileri kullanilmistir. Her bir Sentinel-2 pikselindeki arazi Ortiisii
siiflarinin bolluk degerleri tahmin edildiginden, dogrulama asamasi ig¢in 30 cm yer
ornekleme araligina sahip dort bantli hava goriintiileri kullanilarak, 10 m grid
araliginda referans bolluk verisi iiretilmistir. Referans ve kestirilmis tileske arazi
ortiisiinlin  karsilastirilmas1 ve detayli sekilde degerlendirilmesi i¢in “Bolluk

Karigiklik Matrisi” isimli yeni bir metrik onerilmistir.

Deneysel sonuglar, kapsam belirlemenin %93,55 duyarlilik ve %99,21 hassasiyet ile
elde edildigini gostermektedir. Ayrica arazi Ortiisti siniflarinin bolluk degerleri, tek
zamanli ve ¢ok zamanli durumlar i¢in sirasiyla %66,17 ve %66,27 genel dogrulukla
belirlenmistir. Sert siniflandirmaya kiyasla %2'lik bir genel dogruluk artisina ek
olarak, piksel tabanli yaklasimlar kullanilirken kaybolan seyrek arazi Ortiisii
smiflarinin tespit edilebildigi kanitlanmuistir. Ayrica, 6zellikle su kenarlarindaki
gradyanlarin gézlemlenebildigi gosterilmistir. Sonug olarak, Onerilen yontemin

sulak alanlarin detayl1 izlenmesi i¢in degerli bir ara¢ oldugu ortaya konmustur.

Anahtar Kelimeler: Sulak Alanlar, Sentinel-2, Ayristirma, Bolluk Karisiklik Matrisi,
Uleske Arazi Ortiisii
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Industrialization, population growth, and rapid urbanization threaten the natural life
and resources of the earth. Considering the fact that earth's resources are finite, they
may not be able to keep up with the population at its current growth rate. This fact
makes optimum management of natural resources very critical. One of the highly
esteemed components of the Earth system is wetlands. They are of great importance
to the diversity of biota and ecology, thereby to humans (Moore and Garratt, 2006).
It is indeed ironic bearing in mind that the coal establishing the ground for the
industrial revolution has been obtained through some of the wetlands dating back to

ancient times, such as coal-forming swamps.

There are several wetland definitions in the literature, yet a wetland can be plainly
defined as any unique ecosystem saturated or flooded with water, either seasonally
or permanently. Accordingly, they can be generally distinguished by the presence of
surface or underground water. Their soil conditions differ from adjacent lands, which
is another distinctive property. Moreover, they are abundant in biota, adaptable to
wet conditions; in other words, the lack of flooding-intolerant biota characterizes
them. With their extreme biological diversity, they are among the wealthiest and
most productive ecosystems (Rafferty, 2011). Thus, they are one of the most

economically valuable habitats for humans.

Wetlands can be grouped into two categories as coastal and inland wetlands

concerning their geolocation (Reddy and DeLaune, 2008) and into six categories as



swamps, marshes, bogs, fens, wet meadows, and shallow water with respect to their

hydrological properties (Keddy, 2010).

Wetlands support the ecosystem in a wide range of ways (Mooney et al., 2005;
Mitsch and Gosselink, 2015), which are:

o Dissipating stream energy and providing flood control,

e Providing sediment retention,

e Sequestering and storing carbon (contributing to carbon cycle),

e Providing denitrification (contributing to nitrate cycle),

e Removing phosphorus (contributing to phosphorus cycle),

e Reducing sulfur (contributing to sulfur cycle),

e Storing water, thus refilling groundwater,

e Sheltering various species,

e Enabling tourism and recreational activities, and

e In general, having a high and long-term capacity to filter pollutants for
enhanced water quality. Therefore, just as forests are called “the lungs of the
earth,” wetlands are called the “kidneys of the earth.”

All those benefits, which have an essential role in mitigating climate change and

providing sustainable development, are illustrated in Figure 1.1.
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Figure 1.1 Benefits of wetlands (modified from Capital Regional District, 2008)

Since wetlands are such precious entities and matter to all living beings, national and
international organizations strive to guarantee their preservation and wise use by
means of regulations and treaties. In this respect, an international treaty entitled “The
Ramsar Convention on Wetlands of International Importance Especially as
Waterfowl Habitat” was signed in the Iranian city of Ramsar in 1971 and came into
force in 1975. The Convention is supported by five formally recognized international

organizations (Ramsar Convention Secretariat, 2013) that are:

e BirdLife International

e International Union for Conservation of Nature
¢ International Water Management Institute

e Wetlands International

e World Wide Fund International



These organizations provide technical assistance in line with the agreed goals.
According to the investigations, 660 million people benefit from wetlands, which are
home to 100 thousand known species (Ramsar Convention Secretariat, 2017). The
estimated surface area of worldwide wetlands is 12,1 million km? as of 2017.
Furthermore, as of January 2022, the number of designated Ramsar Sites and their
total surface area are 2.437 and ~2.5 km? respectively (Ramsar Convention
Secretariat, 2022). The global distribution of Ramsar Sites is given in Figure 1.2.

Figure 1.2 Global distribution of Ramsar Sites

Turkey signed the Ramsar Convention in 1993, and it entered into force in 1994. In
parallel with this development, the first regulation on wetlands protection was
published in the official gazette in 2002. The first regulation was replaced with
regulations dated 2005 and 2014, respectively. As of January 2022, the 2014
regulation is in force, including 2017, 2019, and 2021 revisions. There are 14 sites
designated as Ramsar in Turkey, given in Table 1.1, with a surface area of 1,845

km?. Figure 1.3 shows the locations of these sites.



Table 1.1 Ramsar Sites in Turkey

Name Site Province Area | Designation
Number (km?) Date

Goksu Delta 657 Mersin | 150.0 | 13.07.1994
Lake Burdur 658 | Burdur and Isparta | 248.0 | 13.07.1994
Lake Seyfe 659 Kirsehir | 107.0 | 13.07.1994
Lake Kus 660 Balikesir | 204.0 | 13.07.1994
Sultan Marshes 661 Kayseri | 172.0 | 13.07.1994
Kizilirmak Delta 942 Samsun | 217.0 | 15.04.1998
Akyatan Lagoon 943 Adana | 147.0| 15.04.1998
Lake Uluabat 944 Bursa| 199.0 | 15.04.1998
Gediz Delta 945 [zmir | 149.0 | 15.04.1998
Meke Maar 1618 Konya 2.0 | 21.07.2005
Yumurtalik Lagoons 1619 Adana | 198.5| 21.07.2005
Kizéren Obrouk 1620 Konya 1.3 | 02.05.2006
Lake Kuyucuk 1890 Kars 4.2 | 28.08.2009
Nemrut Caldera 2145 Bitlis 459 | 17.04.2013

g ¢Burdur;

Gediz ey

Figure 1.3 Geolocation of Ramsar Sites in Turkey



Although they are such valuable ecosystems, their degradation and loss have
continued for decades (Daniela et al., 2013; Gardner et al., 2015). Scientific research
indicates that 64% of the wetlands have disappeared worldwide since 1900 (Ramsar
Convention Secretariat, 2010). Particularly in Asia and Europe, the loss is more
significant, which is stressed in various studies (Davidson, 2014; Hu et al., 2017;
Leadley et al., 2014). Figure 1.4 shows the shrinkage of wetland areas between 1970
and 2010 through Wetland Extent Index.
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Figure 1.4 Wetland Extent Index for period between 1970 and 2010 (Leadley et al.,
2014)

The subject loss can also be interpreted as a significant decrease in access to fresh
water, increase in floods, deficiency in carbon storage, and suffering of wetland
livelihoods. Although the causes of the loss vary from country to country, they can

mainly be listed as follows:

e Dramatic changes in land use triggered by agricultural and farming activities

such as rice cultivation and animal grazing



e Construction of dams, dikes, locks, and canals that deteriorates the natural
drainage system

e Development of infrastructure works, especially in river valleys and coastal
regions

e Air, water, and nutrient pollution

In view of the rapid and continuous loss of those precious habitats, management and
conservation become even more crucial (Finlayson et al., 2018; Miklas Scholz, 2016;
Russo, 2008; Verhoeven et al., 2006). The accomplishment of these tasks depends
on serious monitoring to take necessary precautions. In this regard, monitoring such
valuable areas and obtaining crucial information from them play an essential role in
contributing to sustainable development. This consideration has been the primary
motivation of the studies performed during the preparation of this thesis.

Remote sensing is a very efficient tool for monitoring ecosystems thanks to its ability
to collect repetitive information over large areas at various resolutions and
wavelengths (Figure 1.5). The practicality and rapidity of data gathering for large
areas lower costs as well (Ji, 2008; Lopez et al., 2013; Lyon, 2001; Tiner etal., 2015).
In this context, considering the individual size, geographic distribution, and total
coverage of wetlands across the earth, remote sensing shines out as the most
economically and technically feasible method. Therefore, it is widely used for
monitoring these areas and extracting information, primarily land cover
classification. However, this classification problem is generally treated at the pixel
level, which is not accurate enough to grasp the heterogeneous structure of wetland
areas. The pixel-level approach falls short of understanding the wetland dynamics
since vast amounts of pixels in subject areas have mixed content. In addition, the
existing ontologies are incapable of sensing wetland ecology since water levels and
vegetation phenology are very dynamic. Therefore, there is an apparent need for

handling mixed pixel problems considering the temporal aspect. Moreover, the



assessment of fractional land cover requires delicate approaches rather than

conventional accuracy metrics.

Figure 1.5 Earth observation from space (European Space Agency, 2015)

1.2 Research Objectives

The most feasible method using remote sensing tools is investigated to overcome the
issues above, and suitable strategies are developed accordingly. In this regard, the
first objective of this study is to create a methodology in order to extract accurate
boundaries of wetlands for delivering further services to the correct address.
Secondly, an appropriate scheme is generated to optimally determine the ontology
that can describe the wetland characteristics. This is an essential step because it is
impossible to strictly reveal existing conditions and relations without a firm grasp of
cover types. To make the proposed procedure utilizable by the whole community,
open access satellite imagery is selected as the main data input. Although this
increases the applicability and brings economy, two significant obstacles come

alongside that are:

e High level of detail provided by high resolution imagery does not exist as the
current options for open access Earth observation data are in the medium

resolution category.



e Panchromatic band is unavailable in the case of Sentinel-2 imagery.
Therefore, alternative approaches should be conducted to upscale bands

having lower spatial resolution.

Considering the fact that wetlands contain highly heterogeneous land cover, special
approach has to be applied to handle the low detail issue. The sub-pixel analysis is
conducted to overcome this problem. In spite of the aforementioned obstacles,
medium resolution imagery has a remarkable advantage over high resolution data,
which is the presence of data acquired from the different portions of the
electromagnetic spectrum. This asset can be conveniently exploited to realize sub-
pixel analysis. In this context, the third objective is to develop an enhanced sub-pixel

method to extract accurate additional information from each pixel.

Apart from their heterogeneous content, the dynamic structure of wetlands is another
concern to be addressed. Thus, another objective of this study is to sort out a spectro-
temporal unmixing approach suitable for multispectral satellite images to overcome
continuously changing mixed pixels. The multitemporal endmember concept is

constituted using diverse seasonal data with this aim in view.

Evaluating the outputs through favorable metrics is imperative once the unmixing
methodology is established and tested on sample data. There are various methods in
the literature to assess the quality of fractional abundances created by soft (fuzzy)
classification techniques. Nonetheless, developing a new metric is the final objective
of this study, provided the concern is treated from a slightly different perspective to

ensure the interpretation of results straightforwardly.

1.3 Overview of Proposed Approach

On the whole, all critical aspects are investigated and addressed for monitoring the
wetlands in an effort to contribute to the conservation of these extraordinary habitats.

The flowchart of the research methodology is given in Figure 1.6.
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1.4 Contributions of Thesis

In this thesis, a wetland extent determination algorithm and a fully constrained
optimized linear spectral unmixing method are presented for the accurate
decomposition of wetland habitat that determines the contribution of various land
cover types to each pixel, considers the temporal aspect for classification, and
explicitly addresses the alteration between water and soil. The major contributions

can be summarized as follows:

1. A wetland extent determination strategy is proposed as a pre-processing step
through the index-based stack regression and the use of DTM.

2. A three-element ontology library scheme is generated as a basis for the
precise endmember selection in a systematic way.

3. A procedure is proposed to create endmember abundance ground truth map
through the classification of high resolution aerial imagery and softening into
the test data grid.

4. A band weight optimization method is proposed, and the optimized band
weights are presented to be used with the same sensor data in similar studies.

5. An endmember optimization method is proposed in the case of utilizing
multitemporal endmembers.

6. A new metric is developed, entitled Abundance Confusion Matrix
(ACOMA), for the accurate and detailed assessment of fractional cover.

In addition, a list of minor contributions can be given as follows:

1. The applicability of different co-registration algorithms is tested, and the
outputs are compared.

2. The applicability of different DEM products as auxiliary input data during
the utilization of the extent determination algorithm is tested.

3. Different regularization algorithms are investigated, and their effect on

results is revealed.
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15 Outline of Thesis

The rest of this thesis is organized as follows:

In Chapter 2, a thorough literature review is conducted. Different aspects of wetland-
related research are overviewed. The methods and approaches are given together
with the datasets used. Effects of the utilization of different sensors are mentioned,

and complementary features are emphasized.

In Chapter 3, information on the test area is given with descriptive statistics. The
change in the legal status of the area from past to present time is indicated. In
addition, datasets used for the study are explained in two categories that are ground
truth and test. The content of the ground truth is given as products generated using
high resolution aerial images. The importance of fieldwork is stressed, and the way
how it contributes to the preparation of ground truth through the observations and

collected samples is emphasized.

In Chapter 4, the proposed methodology is introduced in detail. The critical points
of the operation sequence indicated in the general flowchart are elaborated in
subsections. Tested co-registration algorithms are mentioned before moving on to
the extent determination, and the final selection is justified. The logic of the extent
determination method is explained, and the adopted tools/parameters are indicated.
The three-element ontology schema is given, and ground truth generation through
the classification supervised by the help of ontology information is explained. The
steps followed for obtaining an abundance comparable ground truth are pointed out.
The utilized spectral unmixing and adopted improvement strategies are stated, and a

novel method for the assessment of fractional abundances is introduced.

In Chapter 5, the experimental results are presented. The obtained accuracies are
given for each computation step. The necessity of co-registration of satellite images

is demonstrated before moving on to the unmixing operation. The optimized band

12



weights are presented to the scientific society to be exploited in similar studies
utilizing the same satellite data. The different configurations are tabulated for a
comprehensible interpretation of the enhancements. The chapter is completed with

the discussion part.

In Chapter 6, the conclusions are summarized. The contribution of each operation is
revealed in terms of accuracy metrics. The trade-off between introducing temporality
and obtaining higher accuracy is specified. The critical steps in the overall process
are highlighted, and the significance of the proposed novel assessment strategy is

emphasized. The study finishes off with the future recommendations.

The outline of the thesis is given in Figure 1.7.

CHAPTER 1 - INTRODUCTION
Problem Definition
Objectives
Contributions

i
CHAPTER 2 - LITERATURE REVIEW

Remote Sensing Studies on Wetlands

i
CHAPTER 3 - STUDY AREA and DATA USED
Study Area Selection
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i
CHAPTER 4 - METHODOLOGY

Wetland Extent Determination
Spectral Unmixing & Optimization
Performance Assessment

i
CHAPTER 5— RESULTS and DISCUSSION

CHAPTER 6 - CONCLUSIONS and RECOMMENDATION S\

A

Figure 1.7 Outline of thesis
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CHAPTER 2

LITERATURE REVIEW

2.1 Wetland Detection

One use of remote sensing for the management of wetlands is detecting their extent.
Different approaches have been suggested using optical, radar, and lidar data sources
such as aerial imagery, Sentinel, Landsat, Spot, RapidEye, WorldView, Ikonos,
QuickBird, Gaofen, MODIS, RADARSAT, ALOS.

Vanderhof et al. (2016) used matched filtering algorithm to reveal surface water
connections using Landsat time series. Appropriate bands/indices were extracted
from MODIS data via different data reduction techniques in order to map wetland
areas (Bansal et al., 2017). Another approach with the same sensor data combines
Transformed Wetness Index estimation, time series smoothing, and phenological

characterization (Gumbricht et al., 2017).

Support Vector Machines proved their performance when utilized on Sentinel-2 and
WorldView-2 (Araya-Lopez et al., 2018) as well as Sentinel-2, Landsat-8, and
RapidEye data (Jakovljevi¢ et al., 2019). DTM thresholding, Random Forest (RF)
classification, and index exploitation were gathered as the Potential, Existing,
Efficient Wetlands (PEEW) approach by Rapinel et al. (2019) to detect different
types of wetlands using lidar, Sentinel-1, Sentinel-2, and MODIS annual time series,
respectively. Ludwig et al. (2019) presented tile-based dynamic thresholding of

water/wetness indices created from the Sentinel-2 time series as another alternative.
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2.2  Temporal Dynamics of Wetlands

Various researchers have used remote sensing to detect the temporal dynamics of
water within the wetlands. A study focused on water indices (NDWI, MNDWI) using
Landsat-5 and Landsat-7 imagery to map water bodies and detect the spatio-temporal
change of water inundation on wetlands (Hui et al., 2008). Their methodology
successfully determines the water coverage, yet it remains insufficient for estimating
the spatio-temporal processes. Another study exploited thresholding on NIR and
SWIR for water presence on a large wetland (Lefebvre et al., 2019). They tested
Landsat-5, Landsat-7, Landsat-8, and Sentinel-2 data, and it was found that the
highest accuracy is obtained from the Sentinel-2 data with a kappa statistic of 0.82.
Radar and lidar data as complementary tools to optical data proved their value in
understanding the seasonal dynamics of wetlands as well (Kaplan et al., 2019; Zhu
etal., 2019).

2.3 Wetland Parameters

Much research has aimed to estimate various wetlands parameters, such as soil
organic matter, soil moisture, and biomass using remote sensing. A study was
performed focusing on the determination of vegetation spectra using a handheld
spectrometer to interpret the impacts of soil salt and water content on plant spectra
(Xiaoping et al., 2017). The manually measured data were then compared with the
Gaofen-5 Advanced Hyperspectral Imager (AHSI) data. The results indicated that
AHSI is better at predicting soil salt content and has advantages in monitoring local
high-precision soil salinization. Optimal spectral parameters derived from the Grey
Relational Analysis were used to predict soil organic matter content via
Backpropagation Neural Network in Ebinur Lake Wetland (Wang etal., 2018). They
concluded that the soil organic matter content prediction could be enhanced through
fractional derivation, spectral band subdivision, and optimal index selection. Yang

et al. (2019) applied Structural Equation Modeling based on statistical approaches to

16



Sentinel-1 time series data to extract soil properties. They used the ratio of
performance to deviation metric to evaluate the results. They obtained a score of 1.47
for soil salinity, 0.99 for soil pH, and 1.00 for soil organic carbon.

2.4 Wetland Classification

Optical and radar remote sensing platforms have been extensively exploited to
discover land use/land cover (LU/LC) types using pixel/object-based
parametric/non-parametric algorithms. An object-based method was applied for the
segmentation and classification of wetlands using Canadian Digital Surface Model
(DSM), RapidEye, and Landsat-8 data (Amani et al., 2017). Using the Random
Forest classifier in five different study areas, they achieved a mean overall accuracy
of 86% and a mean kappa statistic of 82%. The performance of object-based and
pixel-based RF algorithms was evaluated to map wetland vegetation using high
resolution Gaofen-1 satellite imagery, L-band PALSAR, and C-band RADARSAT-
2 data (Fu et al., 2017). They concluded that the object-based method outperforms
the pixel-based method by 3 to 10%, and the best overall accuracy, 89.64%, is
obtained through the synergistic use of all three sensors. Another application of
object-based classification to combined Sentinel-1/2 data produced satisfactory
results (Kaplan and Avdan, 2019, 2018). The joint utilization of Sentinel-1 and
Sentinel-2 augmented with the System for Automated Geoscientific Analyses
(SAGA) Wetness Index for LU/LC mapping on wetlands was evaluated, and a new
Object-based Image Analysis (OBIA) approach was proposed by Whyte et al.
(2018). Several wetland/non-wetland classes were extracted from Landsat time
series spanning 40 years, Gaofen-1 and Spot-7, using five classification methods:
maximum likelihood, SVM, iterative self-organizing data analysis (ISODATA),
decision tree, and an object-oriented approach (Sun et al., 2018). They concluded
that the decision tree provides the highest accuracy, whereas ISODATA has the
lowest. Combined optical and SAR data were correctly classified via machine

learning algorithms such as RF, resulting in high accuracies of over 90% for the
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selected study sites (Salehi et al., 2019). Rather than mapping classes altogether,
individual classification using a different feature selection for each class was adopted
by Mahdavi et al. (2019). They applied spectral analysis to determine class levels to
be mapped, and a merging scheme was established for the remaining classes to
escalate the accuracy of the target class. They ended up having overall accuracies of
around 93%. Different configurations of RADARSAT-2, simulated compact
polarimetric RADARSAT Constellation Mission, and various DEM data were used
for the classification of six land cover types with Random Forest (Banks et al., 2019).
They stressed the importance of acquisition period, incidence angle, data variations,
and elevation models. Various studies demonstrated the productivity and
indispensability of vegetation/water indices for LU/LC classification using both
multispectral (Doughty and Cavanaugh, 2019) and hyperspectral data sources
(Dominguez-Beisiegel et al., 2016; Shen et al., 2019; Stratoulias et al., 2018).

2.5 Bathymetry

The determination of bathymetry in shallow waters is also a famous line of research.
A physics-based method was implemented to obtain the remote bathymetry and
tested on Worldview-2 data by Eugenio et al. (2013). The potential of Sentinel-2 was
assessed for water depths through WASI-2D bio-optical modeling tool, which was
found to be promising in shallow waters (Dornhofer et al., 2016). An optical
empirical algorithm was used to evaluate the robustness of experimental procedures
for the development of Satellite-Derived Bathymetry (SDB) models for shallow
waters close to the river mouth (Vilar et al., 2018). The efficiency of WorldView-2
data on water depth measurements was evaluated using the Lyzenga Bathymetry
Model (Ebaid et al., 2018) as well as Radiative Transfer Model (RTM) (Abasolo et
al., 2018). Hyperspectral data, no wonder, were also used for obtaining accurate
depth estimation through algorithms based on the water’s spectral characteristics
(Ozdemir and Leloglu, 2014), as well as enhanced benthic classification accuracy

via introducing the Bottom Index algorithm (Kakuta et al., 2018). Cloud computing,
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particularly Google Earth Engine (GEE), has become widely used after significant
improvements. Collecting low-cost site data to augment publicly available Sentinel-
2 optical satellite data accessed by GEE has been adopted to estimate bathymetry
using an empirical pre-processing workflow (Traganos et al., 2018). SBD proved its
worth when manipulated on Landsat-8 and Pleiades in addition to Sentinel-2
(Duplanci¢-Leder et al., 2019). Support Vector Regression trained using bathymetric
lidar surveys was tested on a UAV point cloud for obtaining improved depth
information (Agrafiotis et al., 2019). Research conducted by Casal et al. (2019)
concluded that the Linear Band Model outperforms the Band Ratio Model for
bathymetry derivation from Sentinel-2 data. The bathymetry algorithm proposed by
Yunus et al. (2019) proved that RF is more favorable than empirical models for
predicting bathymetry using Sentinel-2 and Landsat-8 data. They discovered that the
applied methodology is efficient, particularly at 0 - 10 m coastal depths and up to 30
m clear lake water. Other scientists also investigated the abilities of the Sentinel-2
constellation, and the efficiency of the coastal aerosol band was explored for
mapping the dominant coastal marine habitats in addition to the bathymetry in
various survey locations in the East Mediterranean (Poursanidis et al., 2019). A ratio
transform model was adopted for generating bathymetric maps using Sentinel-2A
and 2B in South Florida by Caballero and Stumpf (2019). They justified the ability
of Sentinel-2 satellites to extract bathymetric information as well. They calculated

median errors around 0.5 m for depths up to 18 m.

2.6 Data Fusion

As in many other research areas, one of the biggest challenges in the area of wetland
mapping is to extract more information from the existing data in terms of spatial and
temporal properties. There are two main approaches to cope with this issue, which
are data fusion (Chang and Bai, 2018; David and Llinas, 2001; Klein, 2012; Lillesand
et al., 2015; Mitchell, 2012) and spectral unmixing (Bioucas-Dias and Figueiredo,
2010; Dobigeon et al., 2016; lordache et al., 2011; Khajehrayeni and Ghassemian,
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2020; Li et al., 2012). Flexible Spatio-Temporal Data Fusion (FSDAF) is among the
efficient fusion models used for vegetation mapping that blends frequent low and
infrequent high resolution data (Zhu et al., 2016). Another fusion model generating
enhanced images by blending multispectral and hyperspectral data through guided
filtering was tested on the Poyang Lake wetland (Chen et al., 2017). In addition,
Spatio-Temporal Adaptive Fusion Model for NDVI products (STAFFN) has been
presented by Chen et al. (2018) to combine spatial and temporal features from
multiple sensors in an effective way. A decision-based fusion workflow using lidar,
radar, and optical data was also developed for wetland classification (Montgomery
et al., 2019). Machine and deep learning-based fusion techniques were proposed in
this area as well (Lopez-Tapia et al., 2021; Mallick et al., 2021; Mishra and Shahi,
2021). There are various studies using spectral unmixing techniques on wetlands to
understand the complex mixture of various components. A method combining RF
and Spatial Attraction Models was applied to Landsat data to map wetland flooding
in China (Li et al., 2019). A color mixture analysis method was proposed based on
the Hue-Saturation-Value (HSV) color space for improving the accuracy and
efficiency of Fractional Vegetation Cover (FVC) estimation from UAV-captured
RGB images (Yan et al., 2019). A new spectral unmixing approach was applied to
Landsat satellite images to extract surface water area information from stock ponds
by Jarchow et al. (2020). Chang et al. (2021) have made an effort to detect sub-pixel
level changes via clustering and segmenting multitemporal hyperspectral images.
Their unmixing method has yielded promising results when tested on the Yellow
River Estuary wetland. A sparse unmixing algorithm was proposed by Ding et al.
(2021) to detect wetland locations using Landsat-8 OLI multispectral images, and
the classification accuracies were compared with the results of the traditional linear
unmixing approach. Another spectral unmixing algorithm based on constrained
linear least squares established upon an adaptive approach was suggested by Na et
al. (2021) for wetland mapping.
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CHAPTER 3

STUDY AREA AND DATA USED

3.1  Study Area

According to the Ministry of Agriculture and Forestry of the Republic of Turkey
(2022), there are 93 wetlands in Turkey grouped under three categories that are
international importance (Ramsar), national importance, and local importance. Table

3.1 shows the categorical distribution and area information of wetlands in Turkey.

Table 3.1 Wetlands in Turkey

Wetland Statue Area (ha) Alr::z:e(zta) Af:;e(i;)) Number
Egtaeg‘sa;:;’”a' Importance 184,487 5,623 3.0 14
National Importance 869,697 67,572 7.8 59
Local Importance 28,660 844 2.9 20
Total 1,082,844 74,039 13.8 93

While selecting the study area, closeness is the primary consideration for
conveniently carrying out site visits, provided that the region possesses the required
investigation criteria. These criteria are diversity in vegetational content, substantial
water mass, and considerable total coverage. Figure 3.1 illustrates all the wetlands
across Turkey.

In Ankara, there is just one official wetland, namely Tol Lake. It is in the national
importance category with an area of 1.4 km?. Apart from its relatively small surface
area, it lacks water mass and is subject to human interactions like established

irrigation canals. Taking these disadvantages of Tol Lake into consideration,
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neighboring cities are examined for a more suitable site. Among the alternatives,
Balikdami wetland appears to be the most appropriate option meeting the criteria

mentioned above.

E Internation Importance (Ramsar)
National Importance

|:| Local Importance

Figure 3.1 Wetlands in Turkey

Balikdami, one of the 59 wetlands of Turkey in the national importance category, is
selected as the study area in this thesis. It is located west of Central Anatolia within
the boundaries of Eskisehir. It is approximately 115 km away from Eskisehir and
135 km away from Ankara city centers. It is about 14.7 km? consisting of many
ponds and reed beds, and the third-longest river in Turkey, Sakarya, passes through
it. It hosts a wide variety of fish types; hence, it is given a name implying the house
of fishes by the locals. In addition, the existence of numerous vegetation and bird
types increases its importance and value. The area was declared a second-degree
natural protection area, wildlife protection area, and wildlife improvement area in
1980, 1994, and 2005, respectively. It officially gained the wetland of national

importance status in February 2019.
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The bounding box for the study area is designated as 39°10'10" to 39°13'15" N
latitudes and 31°35'46" to 31°40'08" E longitudes, given in Figure 3.2. The altitudes
for this frame range from 792 m to 929 m.

7 .,\\ylw - g .
ANVBWVETLAND
_~ BALIKDAMBWETLANDIP S

? -

Figure 3.2 Location and topography of Balikdami

A two-year study conducted between 2002 and 2003 justifies the richness of
Balikdam flora, revealing that there are 51 families and 250 taxa in the region
(Koyuncu et al., 2008). The most prevalent families and their distributions are given
in Table 3.2.
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Table 3.2 Dominant vegetation families in Balikdami

Family Number of Taxa Rate (%) gample
pecies
Brassicaceae (la) 31 12.4
Crucifers (en)
Poaceae (la) 29 11.6
Grasses (en)
Fabaceae (la) 25 10.0
Legumes (en)
Asteraceae (la) 25 10.0
Asters (en)
Lamiaceae (la) 18 7.2

Mints (en)

Note. Photos taken from Wikipedia (2022)
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Table 3.2 Dominant vegetation families in Balikdami1 (continued)

Family Number of Taxa Rate (%) gggl?ég
Caryophyllaceae (la) 12 4.8
Pinks (en)
Apiaceae (la) 10 4.0
Umbellifers (en)
Ranunculaceae (la) 9 3.6
Buttercups (en)
Liliaceae (la) 9 3.6
Lilies (en)
Boraginaceae (la) 8 3.2

Borages (en)

Note. Photos taken from Wikipedia (2022)
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Balikdamu is also known as Bird Paradise since it is located at a wide variety of bird
populations' migratory routes. According to observations made between 2017 and
2019, 210 bird species from 47 families of 18 orders are identified in the region
(Ozkazanc et al., 2019). Among these species, one is categorized as endangered, two
as vulnerable, and seven as near threatened with respect to the International Union
for Conservation of Nature Red List of Threatened Species, founded in 1964. Details
are given in Table 3.3.

Table 3.3 Balikdami bird species on red list

Species Red List Category Photo
Egyptian vulture Endangered
Lesser kestrel Vulnerable
Eastern imperial eagle Vulnerable

Note. Photos taken from Wikipedia (2022)
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Table 3.3 Balikdami bird species on red list (continued)

Species

Red List Category

Photo

Ferruginous Duck Near threatened
Red Kite Near threatened
Cinereous vulture Near threatened
Pallid harrier Near threatened
Red-footed falcon Near threatened

Note. Photos taken from Wikipedia (2022)
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Table 3.3 Balikdami bird species on red list (continued)

Species Red List Category Photo

Black-tailed godwit Near threatened

European roller Near threatened

Note. Photos taken from Wikipedia (2022)

3.2 Data Used

This study uses three types of optical sensor datasets in the implementation and
evaluation parts. The summary of the datasets is given in Table 3.4. The details are

provided in the following three sections.

Table 3.4 Details of data used

Data Type Aerial Imagery Satellite Imagery
UltraCam
Sensor UltraCam Eagle Eagle Sentinel-2
Mark3
Acquisition 2018/2019/ | Aprillduly
Date 15.07.2015 20.07.2019 2020 2019
Stereoscopic Monoscopic
Content (forward overlap — 60%) (fo - 45%) Single Frame L2A
side overlap — 40% so — 40%
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Table 3.4 Details of data used (continued)

Number of 20 12 106 6
Frames
2, 3,4,
Bands Sl Sk | 234 | 567,
Used Red, NIR Red, NIR | 81112 | 8 8A,
11,12
Ground
Sampling 30cm 30cm 10 m*
Distance
Radiometric . . ]
Resolution 8-hit 8-bit 16-bit
Monthly
Generated TCWI
Product DSM DTM Orthophoto Stack _mean
images
Utilized in
rough
Introduced | Wetland | Utilized as Utilized in
as an extent ground recise | Utilized
Intended additional determg'(”a“on truth in P tand in
Purpose band in ortho- spectral V\el,\it:r?t spectral
olrth%phqto rectification unmixing determination unmixing
classification of 2019 assessment
aerial
imagery

* 20 m bands are resampled to a 10 m grid using the Nearest Neighbor algorithm

3.21 Ground Truth

Ground truth data are prepared using high resolution aerial imagery. Two different
datasets are exploited, acquired by UltraCam Eagle on 15.07.2015 and UltraCam
Eagle Mark3 on 20.07.2019. The Ground Sampling Distance (GSD) of both image
sets is 30 cm. These data are delivered with camera calibration reports and exterior
orientation parameters by the data providers. Since accurate geolocation and
orientation information exists, ground control point (GCP) collection and

photogrammetric adjustment process are not applied. Because of the fact that 2015
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data are stereoscopic, they are used to generate Digital Surface Model (DSM) and
Digital Terrain Model (DTM). As shown in Figure 3.3, 2019 images do not have
model overlays. Therefore, the 2015 DTM is utilized to produce orthophoto from the
monoscopic 2019 aerial imagery, which forms the basis of the verification stage. The
same DTM is also adopted in the wetland determination procedure. Besides, the 2015
DSM is appended to the 2019 orthophoto as an additional band to enhance the image
classification later on.

Figure 3.3 Footprints of 2019 aerial imagery
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3.2.2 Fieldwork

In addition to the aerial imagery, observations carried out during the site visits in
three successive years from 2019 to 2021 contribute to the preparation of the ground
truth. Many photos are taken, soil/vegetation samples are collected, and video
recording is done through a low-cost UAV during the site visits. Photos of different
land covers are used to determine the classes (Figure 3.4), and vegetation/soil
samples collected on the site (Figure 3.5) help to distinguish fine details. In addition,
UAV video supports identifying the land cover, particularly in hard-to-reach regions.

An image frame exported from the UAV video is given in Figure 3.6.

Figure 3.4 Passing through Sakarya River (19.08.2020)
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Figure 3.6 Single image frame exported from UAV video record (19.08.2020)

32



All collected information is organized as a log book (Appendix A) not only for this
study but also for other ecology and remote sensing research. In addition, the analysis
report of the soil samples is given in Appendix B, which was prepared by a

professional laboratory.

3.2.3 Test Data

In this study, Sentinel-2 optical satellite data are used for both wetland extent
determination and supervised spectral unmixing processes. Sentinel-2 is a wide-
swath, multispectral imaging mission operated by the European Space Agency
(ESA), providing 10m/pixel resolution at best. The constellation is comprised of two
polar-orbiting satellites, Sentinel-2A and Sentinel-2B, launched on 23.06.2015 and
07.03.2017, respectively. The satellite couple occupies the same sun-synchronous
orbit, yet they are phased at 180° (Figure 3.7).

View on North Pole View on Equator

Sun d

\_\ vy

Figure 3.7 Orbital configuration of Sentinel-2 satellites (European Space Agency,
2021)
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This orbital configuration results in a high revisit time of 5 days under cloud-free
conditions. With a swath width of 290 km, a systematic global optical data
acquisition is obtained, contributing to climate change investigation, land
monitoring, planning, emergency management, surveillance purposes, and many
other applications. Each satellite is equipped with a dual-frequency Global
Navigation Satellite System (GNSS) receiver in order to measure orbital position.
Both satellites have dedicated propulsion systems to maintain their orbital accuracy.
The mean orbital altitude, orbital inclination, orbit period, ground track deviation,
and Mean Local Solar Time (MLST) at the descending node are 786 km, 98.62°,
100.6 min, £ 2 km, and 10:30 a.m., respectively. The reason for choosing this MLST
value is to provide a balance between the level of solar illumination and potential
cloud cover. Another advantage of the adopted MLST value, which is close to the
local overpass time of Landsat missions and almost identical to the Spot-5
configuration, is to enable the integration of Sentinel-2 data with existing and
historical missions and support the establishment of long-term time-series datasets
(European Space Agency, 2022a). There are 13 spectral bands in the instruments;
four provide 10 m, six provide 20 m, and three provide 60 m spatial resolutions. The

details are given in Table 3.5.

Table 3.5 Spectral bands for Sentinel-2 sensors (European Space Agency, 2021)

S2A S2B
B0 | avlengtn | BTN | ol | BN | ol

(hm) (nm) (m)
1 442.7 21 442.3 21 60
2 492 .4 66 492.1 66 10
3 559.8 36 559 36 10
4 664.6 31 665 31 10
5 704.1 15 703.8 16 20
6 740.5 15 739.1 15 20
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Table 3.5 Spectral bands for the Sentinel-2 sensors (continued)

S2A S2B
B0 | alengtn | BTN | ol | BaNON | ol

(hm) (nm) (m)
7 782.8 20 779.7 20 20
8 832.8 106 833 106 10
8a 864.7 21 864 22 20
9 945.1 20 943.2 21 60
10 1373.5 31 1376.9 30 60
11 1613.7 91 1610.4 94 20
12 2202.4 175 2185.7 185 20

There are five Sentinel-2 product types, which are:

Compressed raw image data in Instrument Source Packet (ISP)

Decompressed Level-0 raw image data
Top of atmosphere (TOA) radiances in sensor geometry

Top of atmosphere (TOA) reflectances in cartographic

e Level-0
format
o Level-1A :
e Level-1B :
e Level-1C :
geometry
e Level-2A :

Bottom of atmosphere (BOA) reflectances in cartographic

geometry

The Level-0 and Level-1A products are not released to users. The highest product

level made available to users is Level-2A. Each Level-2A product comprises
100x100 km? tiles in UTM/WGS84 projection and has additional outputs such as

Aerosol Optical Thickness Map, Water Vapor Map, and Scene Classification Map

having Quality Indicators for cloud and snow probabilities at 60 m resolution. On

the other hand, the cirrus band (B10) is omitted as it does not contain surface
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information. Level-2A products were not used to be systematically generated at the
ground segment before March 2018. The users could only produce them through the
Sentinel-2 Toolbox using the Level-1C product as input. Starting from that period,
they have been generated over Europe. The production was extended to global
coverage in December 2018. However, the users can still generate Level-2A data

themselves by playing with the processing parameters of their own will.

In this study, Level-2A products generated at the ground segment spanning three
years (2018-2019-2020) are utilized. There are 215 available frames for the selected
study area belonging to the mentioned period. After the elimination of cloud and
shadow-covered data, 106 frames remain. In the wetland extent determination part,
B2, B3, B4, B8, B11, and B12 of all 106 frames are used in line with the Tasseled
Cap Water Index (TCWI) calculation. In the latter part, 6 out of 106 frames are
utilized. All bands except the remaining two 60 m ones (B1 and B9) are benefited,

and monthly mean images are formed using the ten bands accordingly.
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CHAPTER 4

METHODOLOGY

The methodology proposed to determine wetland extent and ground characteristics
is already shown schematically in Figure 1.6, together with the preparation of ground
truth data to assess the final outputs. The details of these three approaches are
explained in the following sections, and related components of the general flowchart
are shared separately. In this respect, the flowchart, including Sections 4.1, 4.2, and

4.3, is given in Figure 4.1.

Downloading
Sentinel-2 L2A
data and

filtering out Section 4.1
doudy &
shady images
Co-regigtration Section 4.2
HR aerial TCWI calculation and
imagery DTH stack generation
. Double-sigmoid curve
Thresholding fitting
Rough .
wetland extent Thresholding
Wet regions.
over 120 Days
in @ year
Intersection Section 4.3
Small object removwal
Region/hole filing
Muompheological opening

Wetland mask

Figure 4.1 Flowchart of Sections 4.1, 4.2, and 4.3
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4.1  Downloading and Pre-processing of Sentinel-2 Satellite Imagery

Sentinel-2 data can be freely downloaded through the Copernicus Open Access Hub
operated by the European Space Agency (ESA). The hub provides complete and
open access to Sentinel-2 user products. In addition, platforms being a part of the
Copernicus Data and Information Access Services (DIAS) can also be utilized to
gather subject products. It is likely to make a request for archive data that are
generally offline. The data retention period for synchronous access differs according
to the profiles in the case of using Open Access Hub. At least the latest month is
guaranteed to be delivered, and asynchronous access is provided to archive data,
which are restored for download within one hour after request and available for
download via HTTPS at least for the subsequent three days. When dealing with time

series, this can be challenging and time-consuming.

In this study, data download is performed through the Google Earth Engine. This
computing platform allows users to reach multi-petabyte satellite imagery from
various sources and realize geospatial analyses using Google's infrastructure. The
platform is free for academics and researchers. There are several ways to utilize the
provided services, which are a web-based IDE called the Code Editor, a lightweight
web application called the Explorer, and Python/JavaScript libraries. The Code
Editor is used for the data acquisition in this study, enabling JavaScript
implementations. The platform allows different data filters such as date, cloud, and
shadow. There are two options for cloud filtering in this respect. Since cloudy pixel
percentage is provided in the satellite metadata, introducing a percentage as a
threshold is the first option. The second is benefiting from the bitmask band with
cloud mask information (QA60) provided with the image data. The problem with the
first one originates from percentage information being granule-specific. The region
of interest might be a small part of the granule, yet the cloud cover can accumulate
in that area. Therefore, the user does not necessarily end up having cloudless

imagery, even setting a low threshold. Although the second option works on the
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region of interest, it is prone to false negatives to an extent. Therefore, a manual

check is carried out on the entire region of interest data to ensure a solid result.

Apart from the fast access to different sensors and levels of original data, the
platform is quite an incentive to apply geospatial analyses, thanks to the potent
Google infrastructure. During the studies, operations such as time series analyses,
calculation of indices, and pseudo-bathymetric information extraction, are realized,
particularly before ultimate study area selection as a support tool to find out the best

region meeting different research criteria (Figure 4.2 and Figure 4.3).

DVI Time Series for Dense Green Vegetation
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Figure 4.2 Index time series from 7 years data @ Averaged NDVI of sample
vegetation polygon ® Averaged NDWI of sample soil polygon
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Figure 4.3 Dynamic map showing number of days of 2018 for max index values

4.2  Co-registration of Satellite Imagery

Subsequent to downloading and filtering test data, Sentinel-2 L2A images are co-
registered to the high resolution reference image. For this task, four different

algorithms are examined, which are:

1. Intensity-based in-house MATLAB co-registration routine.

2. Lucas-Kanade algorithm based GeFolki (Geoscience Extended Flow Optical
Lucas-Kanade Iterative) Co-registration Processor (Brigot et al., 2016).

3. Cross-correlation based SNAP radar Co-registration Tool (European Space
Agency, 2022b).

4. Python package working in the frequency domain, namely Automated and
Robust Open-Source Image Co-Registration Software (AROSICS)
(Scheffler et al., 2017).

Two test data frames are co-registered to high resolution orthophoto to compare the

algorithms. One frame is selected from close to the date of the master image, whereas
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the other is from a different season. The procedure is performed using the green

bands of reference and target images.

4.3 Determination of Wetland Extent

The idea behind the proposed approach is to mathematically detect lands that are
mostly wet in a year, as the name wetland implies. The two primary inputs are high
resolution DTM, if possible, and medium resolution satellite images spanning a
whole year. The former data are used to detect wetland bed via thresholding.
Although this step itself should provide adequate information in theory, only rough
boundaries can be extracted in reality because of human interference in such fruitful
areas. It is very likely to have regions separated from the natural habitat. The latter
data step in at this point. In order to define the annual wetness behavior, data
preferably from multiple years to construct a more vigorous representation of a
yearly dataset are sorted into month-day order for minimizing the gaps between data

acquisition dates and estimation errors caused by hard-to-model natural effects.

Another crucial point is to decide the basis index. In this study, Tasseled Cap
Wetness Index (TCWI) is adopted because of its proven success in wetland mapping
(Ordoyne and Friedl, 2008). The formula used to calculate TCWI is as follows (IDB
Project, 2022):

TCWI = 0.1509 B2 + 0.1973 B3 + 0.3279 B4 + 0.3406 B8

—0.7112 B11 — 0.4572 B12 (4.1)

After calculating TCWI for each co-registered frame, sorting them regarding month-
day order, and stacking them, it is possible to estimate wetness values of a single
location throughout a year. When the scatter of data points is examined, fourth-order
polynomial and double-sigmoid functions are chosen to be fitted on data because of

their congruence. Two methods are performed individually on each multiband b
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image stack composed of hxw pixel data frame for 365 days, as shown in Figure
4.4,

-

0.16
1 20 180 270 365
b Day of Year

Figure 4.4 Curve fitting on each pixel of image stack

Before realizing curve fitting, one last operation is applied: the outlier detection.
Various algorithms are tested, such as Hampel filter, multivariate analysis based on
Mahalanobis distance, and mean filter. Due to the fact that blended three-year data
contain higher fluctuations than that of a single standard year, a loose filter is selected
to avoid marking correct data as the outlier. In this respect, a mean filter is adopted

to eliminate just extremely divergent points.

In the beginning, the behavior of the wetland is modeled using a fourth-order
polynomial with two constraints. For this implementation, Gauss-Markov Model
with constraints method is adopted (Koch, 1999). In Gauss-Markov Model, the

functional and stochastic models are written as:

yt+te=Xp

D(y) = a*P™ 2

where y, e, X, and S are observations, observational residuals, coefficient

(sensitivity/design) matrix, and parameters, respectively. D(y) is the covariance

42



matrix of y with an unknown variance factor o and known weights P. The method
aims to minimize the observational residuals in the least squares sense, which is

obtained through the following equation:
eTPe = min (4.3)

Using matrix algebra, the best linear unbiased estimator of the parameters § and its

covariance matrix D () are given as:

g = XTPX) 1 XTPy

R (4.4)
D(B) = *(X"PX)

In the case of constraints, Hf = w condition is introduced, where H is known

coefficients and w is their known corresponding vector. The best linear unbiased
estimator of the parameters 5 and its covariance matrix D () in the Gauss-Markov

Model with constraints are then given as:

B = XXXy + HT(HXTX)THT) ™ (w — HXTX) X Ty)]

_ (4.5)
D(B) = A[(XTX)™ = (X"X)*HT(H(X"X)"*HT) "' H(XTX)™"]

To represent this minimization problem in matrix form, a vector including Lagrange

multipliers (k) has to be included. If necessary relations are established, normal
equations for the best unbiased estimator of the parameters E and the vector,

including multipliers k are given as:
XTx HTV[B] _ XTy
[H 0”k]_[w] (4.6)

Eventually, both Equations (4.5) and (4.6) give identical estimators for the

parameters.
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In this study, the introduced constraints are:

f() = f(365)

£/(1) = -f'(365) (4.7)

first of which enables the start and end values to be equal. The second one assigns
the negative slope of starting point to the end point of the curve to allow a proper

continuation.

The second implementation is based on the double-sigmoid function, which is

derived from:

) =150 (4.8)

where L, y, and x, denote the curve’s maximum value, growth rate, and x value at
the midpoint, respectively. In this implementation, one of the two sides is formed
from the beginning to the pick point of observations. The double-side is obtained via
reversing the first function and integrating it through the rest of the functional values.
The estimation is done using the Interior-Point algorithm mentioned in Section 4.5.
Initial values are extracted from the TCWI image stack, which are the minimum
TCWI value, maximum TCWI value, and its corresponding Day of Year (DoY)

value.

Once the regression is completed and TCWI values of each pixel are estimated for
the calendar year, it is possible to determine areas above a certain wetness level for
a certain period using an appropriate query containing relevant thresholds. In this
study, the query is formed to identify areas whose TCWI values are larger than -0.1
over 120 days. In other words, regions that are wet for one-third of a year are
determined. The final extent is derived by applying morphological operators to the

intersection of thresholded high resolution DTM and queried TCWI data.
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4.4  Classification Ontology

The flowchart of Sections 4.4, 4.5, 4.6 is given in Figure 4.5.
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Figure 4.5 Flowchart of Sections 4.4, 4.5, and 4.6

The choice of the classes is critical for the success of any classification and the
usefulness of the results. A systematic approach is adopted based on vegetation, soil,
and water cycle. In this context, three site visits were carried out in December 2019,
August 2020, and July 2021. During these visits, many samples were collected, and
different classes were geographically marked on the field. In order to determine soil
types and their behavior, soil analysis was performed by a professional laboratory.
Various combinations of image clustering are utilized to distinguish classes

spectrally and correlate with field observations (Figure 4.6).
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Figure 4.6 Clustering trials

In the beginning, the land cover is categorized into seven groups that are algal bloom,
burned vegetation, mud, steppe, rushes, reed, and water regarding the 2019 site visit.
The supervised classification trials start accordingly. The number of classes is
increased with respect to the quality results. Besides, the second and third site visits
fulfilled later on help collect more information and differentiate classes better. The
classes are continuously re-organized, and training polygons are modified. In
addition, statistical enhancements, such as creating sub-classes from pre-determined
common categories separately by applying 2-means unsupervised classification, help
formalize the ontology and reach the final types. In the end, nine classes
characterizing the wetland cover are determined, which ensures the best
representation. The reference polygons are derived accordingly. The resulting
ontology is shown in Table 4.1. This three-element approach provides a common

basis for wetland ontologies.
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Table 4.1 Three-element ontology

No | Class Name Hydrology Vegetation Soil

1 Gypsum Saturated soil Clusters of Surface: strong
during the hot Salicornia alkali, very
season, very europea and salty, limy,
shallow water Salicornia medium
during winter prostrata organic

(glasswort), substance, silty
small tufts of loam textured
D'.St'Ch“.S Underlayer:
spllcata (inland strong alkali,
saligrass) very salty, very
limy, high
organic
substance, clay
textured

2 | Juncus No water cover | Juncus with Same as the
or occasional 30% — 80% class “Steppe”
water during coverage / rest
winter is same as the

class “Pasture”

3 Pasture 0 -2 m above Short green Same as the
the winter grass class “Steppe”
water level throughout the

year
4 Phragmites Water during Dense Not visible
winter Phragmites
australis
(common reed)
5 Ranunculus Water cover all | Ranunculus Not visible

year, slow flow

trichophyllus
(threadleaf
crowfoot)
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Table 4.1 Three-element ontology (continued)

No | Class Name Hydrology Vegetation Soil
6 | Shallow Water cover No vegetation Same as the
Water during or ignorable class “Gypsum”
December — vegetation
March interval
7 | Steppe 2+ m above the | Partial green Weak alkali, not
winter level / grass during salty, very limy,
no water cover | January — April | high organic
interval substance and
silty clay loam
textured
8 | Typha Tendency for Typha Not visible
longer duration | angustifolia
under water in (narrowleaf
comparison to cattail) and
Phragmites Typha latifolia
(broadleaf
cattail)
9 | Water Permanent No vegetation Not visible

water, increase
in
phytoplankton
during the
warm season

The illustrations for the given classification ontology are shown in Figure 4.7.
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Figure 4.7 lllustrations for given classification ontology @ Gypsum @ Juncus
(3) Pasture @ Phragmites (8) Ranunculus @ Shallow Water @ Steppe (8) Typha
(9) Water
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45  Spectral Library Generation from Pure Pixels

To be able to find out class distributions inside a coarse pixel via spectral unmixing
explained in Section 4.7, spectra of the classes are required. The critical point is to
extract spectrum values from the pixels, perfectly characterizing the category. In
other words, the pixel content should not be mixed, thereby guaranteeing the
representation of the exact member. This concept is known as pure pixel or pure
spectral signature. In order to ensure extracting pure spectral signatures of the final
classes (named as endmembers in spectral unmixing), the following procedure is

carried out:

Intersecting each training polygon with the Sentinel-2 grid
Calculating the area of each partition

Assigning the value to the corresponding Sentinel-2 cell
Removing the cells whose calculated area stay below the threshold

Grouping the remaining cells according to the class information

o g~ wnh e

Extracting the mean reflectance values from the Sentinel-2 image for the

grouped class polygons

The procedure is illustrated in Figure 4.8.
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Figure 4.8 Spectral library generation from pure pixels @ Training polygon
® step-1 ©) Step-2 @) Step-3 © Step-4 ) Steps-5&6

4.6 Generation of Ground Truth for Abundances

The generation of ground truth relies on the RF supervised classification algorithm
of the 4-band high resolution orthophoto. After finalizing the classes under the light
of the three-element ontology approach, manually labeled training sets are
polygonized on the orthophoto. Before moving onto the RF classification, the
reference data is augmented with two indices and surface elevation. In addition to
the existing R/G/B/NIR bands, NDVI, NDWI, and DSM bands are appended to the
data to increase the classification accuracy. All three additional bands are rescaled
to [0, 255] intervals in line with the radiometry of the orthophoto. In order to reduce

variability, the model is trained through the 5-fold cross-validation technique.

The second step is to convert the classified image into an abundance map at 10 m
resolution. In order words, the reference hard classification is softened into the
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Sentinel-2 grid. This operation requires the calculation of class ratios for each
corresponding cell of the test image to be unmixed. When the spatial resolutions of
reference (30 cm/pixel) and test data (10 m/pixel) are taken into consideration, one
test cell contains approximately 1,100 reference pixels. In view of the fact that test
pixel size is not a multiple of reference pixel size, the classified reference image is
converted to vector format and intersected with the test data grid to get exact
abundance values. Then, quantities of classes (abundances) in each satellite grid are
calculated considering the overlapping partitions. Since this process requires various

operations, a model is created on model builder through the following steps:

Classifying the orthophoto using RF algorithm
Converting raster classes into vector polygons
Intersecting each class polygon with the Sentinel-2 grid
Calculating areas of outputs

Dissolving intersection polygons in corresponding Sentinel-2 pixel

o g ~ wnh e

Adding the abundance field and converting the calculations into the unit
interval ([0, 1])
7. Joining the abundance field with the Sentinel-2 grid

8. Exporting each class grid as a single band raster

The outputs of the algorithm are given in Figure 4.9.
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Figure 4.9 Illustrations of outputs after each step ©) Orthophoto ® Step-1
(©) step-2 @ Step-3 (©) Step-4 () Step-5 ®) Steps-6&7 () Step-8
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4.7

Spectral Unmixing of Multispectral Images

The flowchart of Sections 4.7, 4.8, and 4.9 is given in Figure 4.10.
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Figure 4.10 Flowchart of Sections 4.7, 4.8, and 4.9
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One of the primary purposes of this study is to estimate the abundance values of
major classes within each pixel. In other words, soft classification is intended rather
than hard classification. The reason behind tackling the problem in this way is that
the spatial resolution of the sensor is not high enough to separate different elements,
and they occupy a single-pixel jointly in return. Therefore, spectral unmixing is

adopted in this study.

The two main options for spectral unmixing are linear and nonlinear models. Most
of the unmixing algorithms assume that the measured spectrum of a mixed pixel is
the linear combination of the spectral signatures of existing elements. This approach
is known as the Linear Mixture Model, which neglects the multiple scattering effects
in the data acquisition. On the other hand, nonlinear models take the secondary
reflections or intimate mixtures into account. They can be mainly grouped as the
Bilinear Mixture Model and Intimate Mixture Model. The Bilinear Mixture Model
considers the interactions between only two elements in addition to their individual
contributions. In the case of the Intimate Mixture Model, several elements contribute
to the measured spectrum of the pixel (Dobigeon et al., 2016). Figure 4.11 illustrates

the types of mixture models.
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Figure 4.11 Illustrations for mixture models @ Linear Mixture Model @ Bilinear
Mixture Model @ Intimate Mixture Model
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The Linear Mixture Model forms the basis of the operations performed in this study.

For each pixel, it can be formulated as follows:
q
= z ml-jaj + n; (49)
j=1

where 7; is the measured reflectance value at spectral band i, m;; is the reflectance
of the j-th endmember at spectral band i, a; is the fractional abundance of the j-th

endmember, and n; is the residual for the spectral band i.

Considering the data to be unmixed have b bands, Equation (4.9) can be reformulated

in compact matrix form as:
r=Ma+n (4.10)

where r is a b x 1 vector containing the observed spectrum of the pixel, M is a
b x g matrix containing g endmembers (pure spectral signatures), ¢ isa q x 1
vector containing the fractional abundances of the endmembers, and nisa b x 1

vector containing the residuals affecting the observations at each spectra band.

To be able to reflect consistency with reality, two constraints are introduced that are

abundance non-negativity, represented as:
a;=>0(@{=1,..,q9) (4.11)
or in compact form by:
a>0 (4.12)

and abundance sum-to-one, represented as:
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Zq:ai =1 (4.13)

or in compact form by:
lga=1 (4.14)
where 1, isa 1 x q vector containing ones.

In this task, the contributions come from the optimization of band weights and
endmember spectra in order to derive closer agreement with reality and hence higher
accuracy. Therefore, prior to the Constrained Linear Least Squares solution, band
weights are optimized through the Interior Point Algorithm (Byrd et al., 1999), which
follows a barrier approach incorporating Sequential Quadratic Programming
(Nocedal and Wright, 2006) and Trust Region techniques (Moré and Sorensen, 1983)
to solve the issues occurring in the iteration. The Interior Point approach to
constrained minimization solves a sequence of approximate minimization problems,

in which the problem is given as:

min f(x)
x (4.15)
subjectto g(x) < 0and h(x) =0
where g(x) and h(x) are constraint functions.
For each barrier parameter u > 0, the approximate problem is written as:
min f, (x,s) = min f(x) —u 2 In(s;)
o s : (4.16)

subjecttos > 0,h(x) =0and g(x) +s =0
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where s is the slack parameter. As u decreases to zero, the minimum of f, should

approach the minimum of f; in other words, the sequence of solutions to Equation
(4.16) should converge to a stationary point. The algorithm uses either a direct step,
also known as the Newton step or a conjugate gradient step at each iteration to solve

the approximation problem.

Two constraints are introduced before the optimization takes place. One of them is
setting a lower bound for band weights, which is logically greater than or equal to
zero. The second one is fixing one of the band weights to a stationary value in order
to constitute a reference point, which is chosen to be the NIR band's weight equals
to one due to its higher brightness. The last operation is the calculation of the error
function. This is performed by calculating squared residual based on overall accuracy
at each iteration. The computation of overall accuracy is achieved using the

Abundance Confusion Matrix (ACOMA), explained in the next section.

( Start
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initial fractional abundances

l
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optimized band weights 0 Acc = Y ACOMA
based on overall accuracy
through ACOMA d = arg min ||o(Ma — r)”%
a
i subject to: w >0 and @V’ = w” =1
= Error < Tolerance - =
No

Figure 4.12 Flowchart of band optimization process
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After the band weights are optimized, the endmember spectra are optimized with
original and optimized band weights using Interior Point Algorithm as well in an
effort to minimize reconstruction error. The reconstruction image is obtained by
multiplying the reference abundances and optimized endmember spectra at each
iteration. No constraint is introduced in this implementation. Figure 4.13 shows an

example of the original image and its corresponding reconstruction.

Figure 4.13 Example of original (left) vs. reconstructed (right) RGB images

4.8 Performance Assessment

The performance assessment of the wetland extent determination is carried out using
the metrics given in Table 4.2.

Table 4.2 Performance metrics for evaluating wetland extent determination

Frame Area (FA) Extracted from the map
Manually Marked Area (MMA) Extracted from the map
Predicted Area (PA) Extracted from the map
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Table 4.2 Performance metrics for evaluating wetland extent determination

(continued)

Union of MMA and PA

MMA U PA

True Positive Area (TPA)

MMA N PA

True Negative Area (TNA)

FA\ (MMA U PA)

False Positive Area (FPA)

PA\ (MMA N PA)

False Negative Area (FNA)

MMA \ (MMA N PA)

o .- TPA
Sensitivity/Recall (True Positive Rate) —_
TPA + FNA

Specificity/Selectivity (True Negative Rate) TNA
> . J : TNA + FPA

. - . TPA
Precision (Positive Predictive Value) —_—
TPA + FPA

. .. TNA
Negative Predictive Value _
TNA + FNA

. . FNA
Miss Rate (False Negative Rate) _—
FNA + TPA

.. FPA
Fall-out (False Positive Rate) T
FPA + TNA

. FPA
False Discovery Rate _—
FPA + TPA

. FNA
False Omission Rate _—
FNA + TNA
TPA + TNA

Overall Accuracy A
TPA + TNA + FPA + FNA
2TPA

F1 Score

2TPA + FPA + FNA
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The classification performance for the high resolution orthophoto is assessed by the
calculation of the standard confusion matrix indicating the producer’s and user’s
accuracies, together with the omission and commission errors. Additionally, overall
accuracy (0A), kappa statistic (x), and coefficient of determination (R?) are

computed.
The overall accuracy (0A) is calculated through Confusion Matrix as follows:

_ccs

A=—= 4.17
PG (4.17)

where CCS is the correctly classified sites, and RS is the total number of reference

sites.

The kappa statistic (x), which is widely used to measure the classifier performance,

is calculated as follows:

:po_Pe
l_pe

K (4.18)

where p, is the probability of correct classification, and p, is the probability of

chance agreement.

The coefficient of determination (R?), which is a measure of how well observations
are estimated by the model based on the proportion of total variation of estimations,

is calculated as follows:

SSres

R?=1-
SStot

(4.19)

where SS,..¢ is the sum of squares of residuals, and SS;,; is the total sum of squares.
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Two new metrics are introduced for the assessment of abundances obtained via

spectral unmixing.

The proposed abundance performance metric (apm), indicating the rate at which the
maximum abundance value of each pixel belongs to the same endmember both in

reference and unmixed data, is defined as:

card(A)
= — 4.20
apm h xXw ( )
where A is the set of consistent abundance elements that have the characteristic
mentioned above, whereas h and w are the height and width of the unmixed data.

The algorithm for the calculation of A is given in Algorithm 1.

Algorithm 1

1. start

2. read reference_abuny, « ,, x p, Unmixed_abuny x ,, x p
3.A=0

4.fori=1:(h X w)

5 [vall, idx1] = max (reference_abun,);

6. [val2, idx2] = max (unmixed_abun;);
7
8

if idx1 == idx2;
. A+=1;
9. end if
10.end for
11.stop
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Below is a simple example of how the metric works at a two-pixel sample.

Reference Target
Width Width
Height | Pixel-1 | Pixel-2 | Pixel-1 | Pixel-2
Class 1 - Gypsum 0.00 0.00 0.05 0.05
Class 2 - Juncus 0.05 0.10 0.00 0.00
Class 3 - Pasture 0.05 0.00 0.20
Class 4 - Phragmites 0.00 0.10 0.45
Class 5-Ranunculus [§0.40 || 0.10 |} 035 || 015
Class 6 - Shallow W. . 0.05 | 0.00 | 0.00
Class 7 - Steppe 0.15 0.00 0.00
Class 8 - Typha 0.00 0.60 0.20 0.15
Class 9 - Water 020 | 010 | 010 | 0.10
1.00 1.00 1.00 1.00

This example states that there are two 1 x 2 images to be compared. The cardinality
value is one because only the first pixel has the highest abundance for the same class
(band) in both reference and target images. Then, the solution is computed using the

given formula:

card(4) _ 1
(hxw) (1x2)

= 0.50 = 50%

apm =

The interpretation of this result is that half of the total number of pixels have an

agreement in terms of possessing the highest abundance for the same class.

All these metrics give an idea about the overall performance; however, there is still
a need for a technique showing class-level performances like the standard confusion

matrix.

Various approaches have been proposed for assessing soft/fuzzy classification
results in the literature. Early practices tended to either harden the soft classification

outputs or focus just on pure pixels in order to apply traditional accuracy metrics. As
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expected, the results were not very liable due to information loss (Foody and Trodd,
1993; Wang, 1990). Another study conducted by Foody (1996) suggested using
measures of closeness through distance metrics and probability distributions.
Binaghi et al. (1999) proposed a method quantifying the index of fuzziness (IF) based
on Hamming distance of reference and target fuzzy sets. This method was improved
by Stehman et al. (2007) in terms of precision and standard errors of the less common
classes, utilizing stratified random sampling estimators. Using a generalized area-
based error matrix introduced by Lewis and Brown (2001), relative errors were
derived together with the overall and class-based proportions of the area in error.
Silvan-Cardenas and Wang (2008) proposed a new technique, the sub-pixel
confusion-uncertainty matrix, indicating the confusion intervals through the
magnitude of maximum error around the center value. A software tool named Soft
Classification Accuracy Assessment using SCM, FERM, Entropy, and RMSE
(SCAASFER) was developed that makes the use of the techniques mentioned above
(Khangarot et al., 2016). In addition to matrices, a metric like overall accuracy and
kappa, namely the correctness coefficient involving the generation of the binary map

for each class from ground truth, was introduced by Emami and Mojaradi (2009).

This study proposes a new approach, namely Abundance Confusion Matrix
(ACOMA), which considers the issue from a slightly different perspective. It is also
the adaptation of the confusion matrix, providing the accuracy of fractional
compatibility.

The main contribution provided by ACOMA is the determination of area allocation
for a single pixel through regression when there are infinite solutions. If the number
of classes is N, the method takes reference abundances, a;;, and estimated
abundances, @;,, where i denotes the class number (€ {1, 2, ... N}) and k denotes the
pixel number. The method calculates an error matrix from whom the omission and
commission errors, together with overall accuracy and kappa statistic, can be
derived. It allows for assessing the partial agreement for each element rather than
one-to-one matching. The entries of the ACOMA, cij, are defined as “the actual
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abundance of class i which is attributed to class j” on average. Firstly, the abundance
confusion matrix for a single pixel, Cy, is calculated. The diagonal elements can
easily be found as c;;;, = min(ay, @;). For the rest of the matrix, there are the

following constraints:
ajr = Z] Cijk s a’ik = Z] Ciik and Cijk =0 (421)

Because of the constraints, if a;;, < @, all elements in the i-th column except the
diagonal element are zero. Similarly, all elements in the j-th row except the diagonal
element are zero if a;;, > a@;;,. For the remaining entries, a linear equation in the form
of Ax = b can be constructed. However, matrix A is rank deficient in most of the
cases, especially if N is large. The problem can be solved by some sort of
regularization like using a minimum norm constraint. Lawson-Hanson algorithm,
LU decomposition, QR decomposition, singular value decomposition (SVD),
orthogonal decomposition, Tikhonov regularization, and TNT-NN algorithm are
tested to solve this problem. The first four methods do not provide uniform
distribution of estimations in case of rank deficiency, whereas the last three methods
do. Nevertheless, the fifth and sixth can produce negative outputs since they do not
have a non-negativity constraint. Therefore, the TNT-NN is adopted, a fast active set
method primarily developed to solve non-negative least squares problems (Myre et
al., 2017). The approach also enables the balanced distribution of estimations in case
of rank deficiency.

Once the pixel level abundance confusion matrix is calculated, the ACOMA is the

sum of all pixel level matrices. That is:

C= z Cx (4.22)

k

Below are two simple examples of how the metric works at the pixel level. Assuming

the problem is given as:
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Cl| C2 ]| C3
Known Abundance 0.60 | 0.30 | 0.10
Estimated Abundance 0.50 | 0.20 | 0.30

The confusion matrix is quickly found to be:

Confusion Estimated
Matrix
0.50 0.00 a 0.60
Known 0.00 0.20 b 0.30
0.00 0.00 0.10 0.10
0.50 0.20 0.30

Then, the solution is:
1 0 a 0.1
\o 1] [b]=[o.1] (4.23)
1 1 0.2

Since the rank of the matrix is two, the unique solution is a = b = 0.1. As a result,
the Abundance Confusion Matrix (ACOMA) is:

Overall Accuracy = 0.80
C1 0.50 0.00 0.10 16.7%
c2 0.00 0.20 0.10 33.3%
@
o
% C3 0.00 0.00 0.10
=
|_
100.0%  100.0% 33.3%
66.7%
C1 c2 C3

Predicted Class
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In the case of four classes, an example problem is given as:

C1

C2 | C3 | C4

Known Abundance

0.50 | 0.20 | 0.20 | 0.10

Estimated Abundance

0.40|0.30 | 0.10 | 0.20

The confusion matrix is found to be:

Matrix
0.40 a 0.00 b 0.50
0.00 0.20 0.00 0.00 0.20
Known 0.00 c 0.10 d 0.20
0.00 0.00 0.00 0.10 0.10
0.40 0.30 0.10 0.20
The equations can be written as:
a+b=0.10
c+d=0.10
(4.24)
a+c=0.10
b+d=0.10
or in the compact matrix form as:
1 1 0 0ffa 0.10
0 0 1 1|{b|_1[0.10
1 0 1 offc| Jo.10 (4.25)
0 1 o 1lldl lo1o
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where determinant is zero, and there will be an infinite number of solutions. This
issue can be solved by regularization. This is where the TNT-NN fast active set

method steps in, as mentioned above. TNT-NN produces the following outputs:

a = 0.0493
b = 0.0507

(4.26)
¢ = 0.0507
d = 0.0493

As a result, the Abundance Confusion Matrix (ACOMA) is:

Overall Accuracy = 0.80

0.05 0.00 0.05 80.0% QAoKek:

(@]

c2| 0.00 0.20 0.00 0.00 100.0%
w
ECS 0.00 0.05 0.10 0.05 50.0% | 50.0%
(&)
304 0.00 0.00 0.00 0.10 100.0%
|_
100.0% (VK7 50.0%
33.3% 50.0%
C1 Cc2 C3 Cc4
Predicted Class

4.9 Visualization of Gathered and Generated Data

In this thesis, a dynamic web map containing all gathered and generated data is
created for visualization purposes. There are numerous open-source and commercial
mapping & data visualization libraries like Leaflet, OpenLayers, D3, MapBox GL
JS, Kartography, Mango, GIS Cloud, Carto, Google Maps JavaScript API, and
ArcGIS API for JavaScript. Leaflet, a lightweight, relatively simple, and flexible
open-source JavaScript library for generating interactive maps, is utilized for the

visualization task. JavaScript programming language is primarily used for defining
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the interactive behavior of web pages by accessing and modifying the contents.
Although the core library is tiny by design to avoid dependencies, there are dozens
of ready-to-use plugins available for users to extend the functionality of web
mapping applications. Hence, most of the necessary tools are already included in the
extensive plugin library. Leaflet inherently supports Web Map Service (WMS)
layers, GeoJSON layers, vector layers, and tile layers. Support for many other types
of layers can be ensured via plugins. In the case of establishing a web server, it is
possible to share interactive maps through the internet, which is the essential purpose
of the platform. On the other hand, it can also be used as a desktop application just

for personal use.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results

51.1 Co-registration of Satellite Imagery

Two test data frames are co-registered to high resolution orthophoto to compare the
algorithms. One frame is selected from close to the date of the master image, whereas
the other is from a different season. The procedure is performed using the green
bands of reference and target images. Table 5.1 shows the correlation coefficients

for each algorithm.

Table 5.1 Correlation of coefficient values for each algorithm

Date of Reference 20.07.2019

Date of Target 11.02.2019 31.07.2019
Metric Correlation Coefficient
Original 0.69 0.87
In-house routine 0.70 0.88
GeFolki 0.70 0.88
SNAP radar 0.70 0.88
AROSICS 0.70 0.88

All alternatives produce the same result in terms of correlation coefficients.
Nevertheless, with its practical capabilities, such as ensuring tie point data export,
including displacement vector information, and easy implementation of batch

processing thanks to the Python environment, AROSICS is primarily adopted in this
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thesis. Since the data to be co-registered are more than 100 frames, straightforward
batch processing is a vital requirement. Moreover, the software supports cloud and
shadow masking as well as three-step outlier detection using reliability, Mean
Structural Similarity Index (MSSIM), and Random Sample Consensus (RANSAC)
filtering techniques. Figure 5.1 shows one of the co-registered images with the

collected tie points and their absolute shift values.
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Figure 5.1 Absolute shift values of tie points for image dated 23.03.2019
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5.1.2 Wetland Mask

With respect to the flowchart given in Figure 4.1, the first thresholding is applied to
DTM for the extraction of rough boundaries. When the area is examined, the best
elevation thresholding values appear to be 797 and 804 to describe the wetland bed.
The thresholding procedure is tested using open-access DEM data as well. With this
end in view, Advanced Land Observing Satellite (ALOS) HR Terrain Corrected
DEM (12.5m), Copernicus EU-DEM v1.1 (25m), and Shuttle Radar Topography
Mission (SRTM) Global v3.0 (~30m) data are examined. Reasonable wetland beds

are obtained, as demonstrated in Figure 5.2.

Figure 5.2 Comparison of different elevation models - Red polygon represents
ground truth extent digitized manually from high resolution orthophoto @ Aerial
DTM ® ALOS (© Copernicus @ SRTM
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Meanwhile, fine adjustment is performed using 106 cloud and shadow-free co-
registered images. The results of the fourth-order polynomial with two constraints

can be seen in Figure 5.3, Figure 5.4, and Figure 5.5.
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Figure 5.3 Example of fourth-order polynomial fitting on 106-band image stack
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Figure 5.4 Total number of days having TCWI over -0.1 in a calendar year
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Pixels Showing TCWI over -0.1 for more than 120 Days

Figure 5.5 Locations having TCWI over -0.1 more than 120 days in a calendar year

The results of double-sigmoid optimization can be seen in Figure 5.6, Figure 5.7,

and Figure 5.8.
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Figure 5.6 Example of double-sigmoid curve fitting on 106-band image stack
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Number of Total Days for TCWI over -0.1

Figure 5.7 Total number of days having TCWI over -0.1 in a calendar year

Pixels Showing TCWI over -0.1 for more than 120 Days

Figure 5.8 Locations having TCWI over -0.1 more than 120 days in a calendar year
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Both of the methods provide satisfactory results in terms of accuracy (Table 5.2) and
can be applied to other wetlands considering the inherent features. However, in this
study, it is proceeded with the double-sigmoid fitting since it gives better results with

regard to cleaning out agricultural fields.

Table 5.2 Standard deviations of fitting results

Fourth-Order Polynomial with Two Constraints

Standard

Deviation All pixels Outside ground Inside ground truth
P truth extent extent

max 0.1459 0.1459 0.1024

min 0.0066 0.0099 0.0066

mean 0.0395 0.0425 0.0297

Standard Double-Sigmoid Function

Deviation All pixels Outside ground Inside ground truth
P truth extent extent

max 0.1461 0.1461 0.1331

min 0.0067 0.0090 0.0067

mean 0.0413 0.0446 0.0302

After intersecting this output with the thresholded DTM, small object removal, hole
filling, and morphological opening operations are applied to obtain the final extent.

The evolution of the mask is given in Figure 5.9.

77



Figure 5.9 Evolution of wetland mask @ DTM thresholding ® Double-sigmoid
fitting on TCWI stack (© Intersection of a and b (d Small object removal
® Region/hole filling ® Morphological opening
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The final extent is compared with the ground truth extent digitized manually from

high resolution orthophoto (Figure 5.10).

Pl ¥

[_IManually Marked
|[_IPredicte
o 1

Figure 5.10 Manually marked vs. predicted wetland boundaries

The metric computations for the comparison are given in Table 5.3.

Table 5.3 Extent determination metric results for double-sigmoid fitting

Frame Area (FA) 3,899.10 ha
Manually Marked Area (MMA) 959.98 ha
Predicted Area (PA) 912.01 ha
Union of MMA and PA (MMA U PA) 967.20 ha
True Positive Area (MMA N PA) 904.79 ha
True Negative Area (FA\ (MMA U PA)) 2,931.90 ha
False Positive Area (PA\ (MMA N PA)) 7.22 ha
False Negative Area (MMA \ (MMA N PA)) 55.19 ha
Sensitivity/Recall (True Positive Rate) 9425 %
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Table 5.3 Extent determination metric results for double-sigmoid fitting

(continued)

Specificity/Selectivity (True Negative Rate) 99.75 %
Precision (Positive Predictive Value) 99.21 %
Negative Predictive Value 98.15 %
Miss Rate (False Negative Rate) 575 %
Fall-out (False Positive Rate) 025 %
False Discovery Rate 0.79 %
False Omission Rate 185 %
Overall Accuracy 98.40 %
F1 Score 96.67 %
513 Spectral Signatures of Classes

Using the method explained in Section 4.5, the spectral signatures of the final classes

are extracted. For the period between February and August 2019, the results are

demonstrated in Figure 5.11.
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Figure 5.11 Spectral signatures of classes of 2019 mean monthly imagery for period

between February and August
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In order to check how the individual pixels contribute to the class-based spectral
signatures, plots for polygon mean superimposed on single-pixel lines are generated
for each class (Figure 5.12). In this way, the purity and similarity of pixels are
inspected. In addition to the ten satellite bands, NDVI, NDWI, and TWCI bands are
appended. In the end, irrelevant pixels are excluded, and the spectral library is refined

accordingly.

Training Polygon Mean vs 20 Separate Pixels
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Figure 5.12 Spectrum comparison between mean and individual pixels

514 Classification of Reference Orthophoto

5-fold cross-validated RF classification is performed in an effort to group wetland
cover under nine classes mentioned in Section 4.4, which are Gypsum, Juncus,
Pasture, Phragmites, Ranunculus, Shallow Water, Steppe, Typha, and Water. The
confusion matrix is calculated once the procedure is completed (Figure 5.13). Using
the elements of the calculated confusion matrix, the OA, k, and R? are found as
98.86%, 98.56%, and 97.23%, respectively.
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Overall Accuracy = 0.9886 | | Kappa=09856 | _

100.0% 90.3% 99.1% 98.6% 99.9% 99.1% 98.4%  100.0%
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Gypsum | 369976 7 16 100.0%
Juncus 119424 435 8370 4047 90.3%
Pasture 1 146 621407 269 61 2 4764 838
Phragmites 7913 295 1 9422
@ Ranunculus 70 6468 23 1 28
?“: Shallow Water 22 53 14 229783 9 158 26
Ig Steppe 3467 629532 333
Typha 4817 1483 12472 67 886 920185 56
Water 1 4 17 15 161 4 277 411766
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Figure 5.13 Confusion matrix for RF classification of orthophoto

The computed predictor importance estimates indicate that the DSM, NIR, and blue

bands have the highest impacts (Figure 5.14, left). Moreover, out-of-bag (OOB)

classification errors suggest that 15 trees are sufficient to reach the minimum error

level (Figure 5.14, right).
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Figure 5.14 Parameter importance (left) and OOB error (right)
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The output of the classification is displayed in Figure 5.15.
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Figure 5.15 Classified orthophoto
5.15 Soft Classification of Sentinel-2 L2A Data
5.15.1  Spectral Unmixing
Five cloudless Sentinel-2 L2A images are used at this unmixing stage. The

acquisition dates are given in Table 5.4. Considering the acquisition date of reference
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data (20.07.2019), the maximum time interval between reference and target images

is 19 days.

Table 5.4 Acquisition dates of Sentinel-2 July imagery

Acquisition Dates
01/07/2019
06/07/2019
16/07/2019
26/07/2019
31/07/2019

The final test data are formed by taking an average of above five frames to minimize
the noise. The fully constrained linear spectral unmixing is performed subsequent to
the band weight optimization procedure. The optimized band weights are given in

Table 5.5, which are obtained through the algorithm demonstrated in Figure 4.12.

Table 5.5 Optimized band weights

Band No Description Weight
2 Blue 2.79
3 Green 3.98
4 Red 2.59
5 Vegetation Red Edge 1.27
6 Vegetation Red Edge 0.19
7 Vegetation Red Edge 0.21
8 Near Infrared 1.00

8A Narrow Near Infrared 0.15
11 Short Wave Infrared 0.25
12 Short Wave Infrared 0.31
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During the unmixing, non-negativity and sum-to-one constraints are included in line
with the logic of the study. The estimated abundances are then compared with the
reference data examining the ACOMA together with other aforementioned metrics.
The accuracy metrics calculated for the spectral unmixing before and after the band

weight optimization are given in Table 5.6.

Table 5.6 Comparison of spectral unmixing accuracy metrics for unoptimized and
optimized band weight cases

Without With Band
Optimization | Optimization
Overall Accuracy (0A) 0.57 0.66
Kappa (k) 0.46 0.56
Coefficient of Determination (R?) 0.42 0.64
Abundance Performance Metric (apm) 0.64 0.73

The calculated abundance confusion matrix for the band weight optimization case is

given in Figure 5.16.

| Qverall Accuracy = 0.6617 ‘ ‘ Kappa = 0.5633 ‘ _ apm =0.7290

Gypsum | 4867.2 13.1 117.4 154 164 229.9 299.1 39.2 47.0
Juncus 147.8 1421.3 174.7 1050.6 94.3 16.0 52.6 524.7 198.3 38.6% 61.4%
Pasture | 1634.2 1190.8 42828 1669.6 314.4 412.0 615.3 379.5 1851 40.0% 60.0%
Phragmites 195.3 21258 519.6 569.7 103.2 219.7 2423.8 1511.3 -E
@ Ranunculus 12.8 19.0 38 16.2 946 15.7 43 125 26.8 46.2% 53.8%
§ Shallow Water | 677.2 100.0 25.0 85.4 150.2 779.1 98.9 152.0 501.8 30.3% 69.7%
|g Steppe 1074 55.4 108.5 69.3 55 268 12303 150.2 118.0 34.3%
Typha| 353.6 3120.0 568.8 1452.9 436.6 4456 1102.2 2789.1 29.3%
Water 202 87.7 26.5 168.2 442 84.1 57.7 456.0 2871.3 24.3%

81.6% . 37.2% 33.4% 85.7% 34.8%

39.3% 26.5% 18.4% X 62.8% 66.6% 14.3% 65.2%
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Figure 5.16 ACOMA for unmixed test data
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In addition to the calculated metrics, endmember abundance distributions (Figure

5.17) and standard deviations are computed (Figure 5.18).

Gypsum Juncus Pasture
" [

Shallow Water
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Figure 5.17 Abundance distribution for each endmember

10

Figure 5.18 Standard deviations for monotemporal unmixing
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Besides, the scatter plot of the reference and unmixed data is generated (Figure 5.19).
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Figure 5.19 Scatter plot for randomly selected 10% of reference and unmixed pixels
(colorbar shows consistency whereas black line denotes least squares line)

Abundance values are examined through a sample route to reveal the transition
between land cover classes. The route and its direction are given in Figure 5.20. It
intersects 45 unmixed pixels, whose contents are calculated and visualized with

smoothing in Figure 5.21.
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Figure 5.21 Plant zonation along transition route
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The spectral unmixing accuracy is also compared with the RF classification of the
same satellite data. Thus, the confusion matrix is calculated for the Sentinel-2 mean
image (Figure 5.22). As in ground truth orthophoto classification, a 5-fold cross-
validated RF approach is applied through the training polygons established to create

the pure pixel spectral library.

‘ Overall Accuracy = 0.6423 ‘ ‘ Kappa = 0.5339 ‘ _

Gypsum | 5731080 2658 405577 829 57766 54977 8689 145

Juncus 4214 1805257 | 592728 | 1029598 164 8716 11307 626669 1711

Pasture | 1666843 | 1633449 | 6729604 | 287252 797 362784 | 599637 | 564775 3789

Phragmites 100 5452129 | 1456936 EUEMEEEGY 1966 27843 42650 3472209 | 30626

Ranunculus | 13756 6507 23643 24481 10511 80116 6471 51676 10097

Shallow Water | 907800 39777 153193 76704 2555 1049528 79603 410959 133682

True Class

Steppe | 19332 62686 351651 16363 105766 | 1134094 | 385351 1500

Typha | 68425 | 4266731 | 902397 | 4861216 | 11556 967288 | 665661 720996
Water | 29208 159484 51655 571760 20075 315406 19498 1203934 | 1842196

35.3% | 434%

56.6% | 20.3% | 32.9%
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G W et @
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Figure 5.22 Confusion matrix for RF classification of Sentinel-2 data

The comparison between the RF classification and spectral unmixing for an example
area is shown in Figure 5.23.
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Figure 5.23 Example of land cover determination @ RGB Orthophoto
@ Orthophoto RF classification @ Sentinel-2 RF classification @ Reference
abundance data for water class only ® Unmixing result for water class only
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5.15.2  Spectro-Temporal Unmixing

In the next step, datasets of two seasons are stacked in order to exploit vegetation
phenology for better classification and observe temporal changes throughout the
year. For this task, imagery of April and July are utilized. In addition to the images
mentioned in Table 5.4, an image dated 27/04/2019 is included in the process. So, a
single April and an average of five July images are concatenated into a stack. Since

there is only one cloudless image in April, averaging does not apply for April.

In addition to the band weight optimization, the endmember spectra are optimized
using the sum of squared residuals between actual and reconstructed images as the

error function. The original and optimized spectra are demonstrated in Figure 5.24.
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Figure 5.24 Unoptimized (solid) vs. optimized (dashed) endmember spectra for April
and July image stack

After the spectra optimization, the spectral unmixing procedure is performed for the

different combinations, and an accuracy check is carried out for the estimated
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abundances. Different configurations are compared to reveal the impact of the

individual and combined optimization steps (Table 5.7).

Table 5.7 Comparison of spectral unmixing accuracy metrics for different
configurations

With With Band
Without With Band and
. N Endmember
Optimization | Optimization Obtimizati Endmember
ptimization L
Optimization
0A 0.47 0.59 0.57 0.66
K 0.37 0.49 0.47 0.56
R? 0.13 0.49 0.40 0.64
apm 0.48 0.65 0.63 0.73

The calculated abundance confusion matrix for the combined optimization case is

given in Figure 5.25.

‘ Overall Accuracy = 0.6627 ‘ | Kappa = 0.5639 ‘ _ apm = 0.7253

Gypsum | 4534.9 65.0 4514 13 26.0 452.6 59.0 213 33.2
Juncus 513 1884 4 3024 7443 343 80.7 251 300.5 260.0
Pasture | 533.3 781.1 6516.5 959.9 410 946.6 2857 3915 241.0

Phragmites |  305.4 3715.7 1206.4 - 552.4 280.7 127.7 1780.7 982.0

@ Ranunculus 8.0 33 104 276 35.0 222 23 62.2 355
©
% Shallow Water | 385.3 33.9 132.8 44.3 104.4 1072.9 53.8 389.5 355.5
3
S Steppe 50.6 151.0 352.3 442 6.8 251.2 668.4 190.4 1604

Typha | 409.8 2323.2 7918 2166.8 684.0 849.2 348.8 25186.8‘ 2245.1

Water 236 243 682 167.8 135.7 121.2 63.7 1341.0 1852.0 48.8% 51.2%
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Figure 5.25 ACOMA for stacked data
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Endmember abundance distributions (Figure 5.26) and standard deviations are

computed (Figure 5.27) for the multitemporal outputs as in the single-input case.
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Figure 5.27 Standard deviations for multitemporal unmixing
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Besides, the scatter plot of the reference and unmixed data is generated (Figure 5.28).
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Figure 5.28 Scatter plot for randomly selected 10% of reference and unmixed
multitemporal pixels (colorbar shows consistency whereas black line denotes least

squares line)
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The delta between monotemporal and multitemporal cases is computed for a more
straightforward interpretation by subtracting the multitemporal stack from the
monotemporal image. The result is given in Table 5.8.

Table 5.8 Delta matrix between monotemporal and multitemporal ACOMA

Gypsum | 332.3 520 | -334.0 14.1 96| 2227 | 2401 17.9 13.8
Juncus 963 | -463.1 | -127.7 | 3063 60.0 -64.7 275 | 2242 616
Pasture [Elooel| 4009 WEPXENA 7097 | 2734 | 5346 | 3296 12,0 -46.0

Phragmites -1589.9 ALY 173 | -1775 920 | 6431 | 5293
Ranunculus 38 15.6 6.6 123 595 6.4 21 497 8.7
Shallow | =559 g 66.1 | -107.8 4.1 458 | 2938 451 | 2375 146.3
Water ' ’ ’ ' ’ ' ’ ' ’
Steppe 56.9 955 | -243.8 25.1 13| 2244 | 5619 40.1 414
Typha 562 | 7968 | -2228 | 7189 | -247.4 | -4036 | 7584 | -4531 | 544.0
Water 56 63.4 417 9.7 915 57.1 60 | -885.0
e | 2| 2| 8| 3 |38| 8| £ s
<) S ) € 3 =S & S S
> = & ) c == n = =
O © = n
£ S
Predicted o

5.1.6 Data Visualization

All input and output data are collected under a dynamic map for practical access and
more straightforward interpretation. A temporary web server is exploited for
publishing. The platform is also convenient to be used on desktop computers in case
of the absence of a web server. It has a very user-friendly and easy-to-use interface.

The map shows the dynamic scale and cursor coordinates continuously. It is
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equipped with functional tools such as swipe, zoom, and geocoding. It has an
additional magnifier and allows distance/area measurement, real-time location
display, and local vector data upload. Figure 5.29 shows the interface of the
interactive map.
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Figure 5.29 Visualization of inputs and outputs via the interactive map
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5.2 Discussion

In order to check the necessity of co-registration, a simple test is performed, which
is shifting the reference abundance map for one pixel in the east direction since it is
very likely to have an offset to such a degree in the satellite data. For the assessment
of the variation between original and shifted values, R? is calculated. The value of

0.72 suggests that a significant loss occurs if there is a misalignment. Since absolute
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shifts of more than half a pixel (> 5 m) are present in the satellite imagery, as shown

in Figure 5.1, the necessity of co-registration is verified.

In the evaluation of the co-registration process, only the correlation coefficient is
appraised as an assessment metric. The reason not to use distance-based metrics such
as the sum of squared errors (SSE), mean squared error (MSE), root mean squared
error (RMSE), and mean absolute error (MAE) is because the reference data
generated from aerial imagery quantify radiance, whereas the target satellite data
quantify scaled BOA reflectance. Even if normalization is applied, this variation
causes inconsistency in the comparison outputs. The similarity-based metrics such
as spectral angle mapper (SAM), structural similarity index measure (SSIM), and
universal image quality index (UIQI) are not also reported since one of the target
images dates back to five months earlier in addition to the former reasoning. The gap
between the acquisition dates of reference and target data results in a substantial
amount of absolute dissimilarity. In the case of utilizing reference and target datasets
of similar nature and close acquisition dates, checking the mentioned metrics will be

useful.

The proposed wetland extent determination algorithm indicates that the actual extent
is extracted with a miss rate of 5.75%. It should be noted that the algorithm’s
precision is very high (99.21%). One of the challenges is the existence of large
agricultural fields irrigated all year long in the vicinity of wetland. They tend to
reflect wetland characteristics in a wetness sense. Another error source is the
existence of arid regions, especially in the north part, where the large Gypsum cover
locates. This part remains entirely parched during the summer season, insomuch that
a cracked texture occurs. As a result, the TCWI stays low in this area, and the
thresholding operation incorrectly filters out that part of the wetland. Even though
introducing proper settings during morphological operations sorts out this issue on a
large scale, the most significant error accumulation is still observed in the
northernmost boundary of the wetland, where the TCWI values hardly ever exceed

the specified threshold throughout the year. On the other hand, there is no vital error,
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in general, affecting the subsequent phases, and the proposed approach is essentially

applicable to wetlands in arid and semi-arid climates.

The best part of the proposed wetland extent determination algorithm is that it does
not necessarily require high resolution DEM. Publicly available elevation data
provide sufficient locational accuracy to fulfill the DEM thresholding requirement
for rough boundary extraction. A sensible outcome is obtained as a starting point
even with 1-arc second SRTM data dating back to 2000. The rest is handled through
the use of Sentinel-2 data. In case of need, other free-of-charge satellite data such as

Landsat-8 can be utilized.

The data provider claims 2 m absolute mapping accuracy for the provided interior
and exterior parameters. As a rule of thumb, the expected relative accuracy of an
aerial mapping project is within one to three times GSD, that is, a value between 30
cm and 90 cm for this dataset. On the other hand, the sub-pixel scale co-registration
procedure is applied to the satellite images using the generated orthophoto.

Therefore, the reference orthophoto is not corrected for better positional accuracy.

The orthophoto classification looks virtually flawless, with an overall accuracy of
98.86%. The main reason for achieving unexpectedly high accuracy is the
designation strategy of training samples, which is simple random sampling. Simple
random sampling may lead to relatively deceptive performance originating from
sampling error if the collected sample of a class is not large enough to represent the
views of the entire population. Although it is challenging to implement stratified
random sampling in such a highly heterogeneous environment containing relatively
small land covers, it should be preferred to ensure equal statistical power when
comparing sub-pixels. On the other hand, adding the extra bands and applying the
folding procedure should be credited as well as the Random Forest classification
method itself since it utilizes bagging and feature randomness to create uncorrelated
forest structures. In turn, the RF outperforms single decision trees thanks to the

improved performance and generalization. Among the classes, Juncus has relatively
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low accuracy (Figure 5.13) and is confused with Phragmites, Typha, and Pasture.
This confusion makes sense since the Juncus cover is mainly located at these classes'
transition zones. The most likely cause for the confusion is that the Juncus cover is

not dense.

The DSM, NIR, and blue are the highest importance bands concerning the predictor
importance estimates. Since the altitude has a distinctive effect on most land cover
classes, DSM is logically the dominant feature. The NIR band effectively separates
water bodies from vegetation with its sensitivity to vegetation type, biomass,
moisture content, and general plant health. Thus, it comes after DSM rationally. It is
not surprising to have the blue band in third place since it provides good water
penetration. Therefore, it is widely preferred in remote sensing applications like
submerged aquatic vegetation, turbidity, and bathymetric mapping. It should be
borne in mind that Figure 5.14 shows relative importance. In order to reveal the
contribution of other bands, the RF orthophoto classification is renewed just using
the mentioned three dominant bands. Figure 5.30 demonstrates that the accuracy
decreases dramatically, mainly for two classes. Hence, other features provided by

different spectral portions should not be omitted.
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Figure 5.30 RF classification results for 3-band (Blue/NIR/DSM) composite

The smaller weights calculated for bands 5, 6, 7, 8A, 11, and 12 compared to bands
2, 3, and 4 (Blue, Green, and Red) are reasonable since they are resampled from
20m x 20m pixels using the Nearest Neighbor algorithm. Ultimately, the proposed
band optimization step justifies its significance regarding the increases in accuracy
metrics. The 0A, k, R?, and apm escalate in the order of 9%, 10%, 22%, and 9%,
respectively (Table 5.6). The increase in R? is strikingly formidable as it doubles the
other metrics. This increase means that the distribution of errors is homogenized
apart from obtaining better predictions. In other words, error accumulation for an
individual class is avoided. Two classes, Juncus and Ranunculus, have sizably high
commission errors. Nonetheless, it is still meaningful to keep them, considering the
relatively lower omission errors. Particularly the total surface area of Ranunculus is
already tiny and very dispersed in the reference data, causing inefficiency in the pure
spectral signature determination. This issue, unfortunately, propagates into the

unmixing process heavily.
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The endmember abundance distributions shown in Figure 5.17 apparently reveal the
class-based presence throughout the wetland area. Broader red areas seen on
Gypsum, Phragmites, and Typha sub-plots signify that these three classes are more
compact than other classes. The following classes are Pasture, Steppe, and Water in
terms of denseness. Another noticeable point is the existence of water to a certain
extent all over the wetland. The unified Shallow Water and Water cover
demonstrates that nearly the whole land is partly wet, reflecting the general wetland
character. This feature is also consistent with the findings of the wetland extent
determination part. The overestimation of Ranunculus is notable, whose reason is

already emphasized.

Figure 5.18 suggests that the highest standard deviations are observed in the Gypsum
class. At first glance, it might seem quite odd to have such a large and continuous
cover in the lead. Although abundance estimates are accurate and spectral signature
is extracted from a sufficient number of truly pure pixels, the figure demonstrates the
higher residuals between original and reconstructed images obtained over the
brightest areas. This anomaly occurs due to moisture. Even though the surface is
arid, the underneath moisture modulates the radiance values. This collective
modulation, in return, does not affect the accuracy of abundance estimation but the

class spectrum.

Figure 5.19 delineates the scatter of the predicted abundances against reference data.
The aspects mentioned earlier are clearly highlighted. The class-based levels for over
and underestimates are more comprehensible thanks to the least square lines. It can

be easily realized that the Ranunculus and Juncus classes are highly overestimated.

One of the great potentials of the adopted approach is its ability to ensure plant
zonation in transition routes. Figure 5.21 cleverly demonstrates the results generated
for the example route given in Figure 5.20. It illustrates the class alterations starting
from the waterside to an inner region. As moving towards inland, the water content

of the pixels gradually decreases, whereas the plants slowly emerge. The area where
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this route lies is explored during site visits. As Figure 5.21 illustrates, the order of
plants is Typha, Phragmites, and Juncus. The smooth transition in between can also
be seen in the high resolution base map. Besides, the broad Pasture and Steppe
regions without mixed content reveal themselves. The increasing elevation values
observed through the route support the other findings. The slope alterations seen on
the transition spots of the plot agree with the class interactions. It should be expressed
that the elevation values slightly fluctuate between adjacent pixels because they are
calculated by averaging the pixels of the high resolution elevation model falling into
the related Sentinel-2 grid. In other words, each corresponding elevation value on

the plot represents the mean of approximately 1,100 high resolution pixels.

The spectral unmixing approach proves its functionality in identifying sparse land
covers. As shown in Figure 5.23, narrow land covers with respect to the Sentinel-2
grid are able to be detected with the implemented procedure. In addition to
preventing the disappearance of sparse land covers, the 0A, k, and R? of 66%, 56%,
and 64% for fractional mapping (Figure 5.16) and 64%, 53%, and 3% for hard
classification (Figure 5.22) prove that the unmixing approach outperforms the pixel-
based classification in terms of the accuracy. Especially the difference for R? values
is very remarkable, which signifies the class-based error accumulation in the hard
classification. This difference lies behind the extremely low producer's accuracy for

the Ranunculus class given in Figure 5.22.

In the multitemporal case, endmember optimization is implemented in contrast to the
monotemporal case. In theory, the lower bound for the estimated spectra must be
zero since reflectance values cannot be negative. However, no bound is set to cancel
out artifacts. For this reason, some of the band spectra belonging to the Ranunculus
class end up with negative values, as seen in Figure 5.24. The calculation of metrics
stresses the importance of optimization steps. The best results are obtained when the
proposed band weights are utilized together with the optimized spectra for the
spectro-temporal case. In addition to the reported two-month stack accuracies,

composites created from different combinations of more months' data are unmixed
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and evaluated. However, the overall accuracy does not rise above the result of the
two-month composite. This is mainly due to irregular land surface phenology caused
by external factors/anomalies. Under entirely natural conditions, stacking data from
more months/seasons/years is expected to provide higher accuracy. On the other
hand, the temporal behavior of changes can still be interpreted thanks to the
ACOMA.

As in the monotemporal case, ACOMA provides an outstanding contribution to
interpreting the outcomes. When the results of the monotemporal and multitemporal
implementations are compared (Figure 5.16 vs. Figure 5.25), the exchange between
particular classes draws attention. One of the most evident exchanges that can be
commented on in Table 5.8 is the transformation of Pasture into Gypsum. This makes
perfect sense because stack data include April/July images, whereas the
monotemporal data contain only July information. In other words, entering the
summer season has an effect of a decrease in the water level and drying grass.
Another relation is seen between Phragmites and Juncus. Since the flowering months
are July and August for Juncus (Groww, 2022), a larger area of the Juncus cover is
anticipated in July compared to April. Thus, this alteration is reasonable as well.
Lastly, the interaction between Typha and Water is striking. Especially the last row
of the delta matrix reveals this relation. Considering the fact that Typha grows
primarily next to the water in the area, this relation is comprehensible. On the other

hand, the reason for such a decrease in the Typha cover is a bit confusing.
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Figure 5.31 Location of Sakarya N. Aktas stream gauge and region topography

Figure 5.26 and Figure 5.27 indicate similar outputs apart from the absolute increase
in standard deviations. This is an expected situation since the reference data belong
to a single season. In addition, the issue with Ranunculus is rationally even more
severe (Figure 5.28). Except for the seasonal effect, the mobility of the class should
be taken into account. Although this class is mainly observed on the surface of slow-
flowing water, displacement is anticipated considering the three-month interval. In
relation to the subject displacement, the river's flow rate is checked with the data
provided by the nearest stream gauge (E12A024 — Sakarya N. Aktas). It is located
about 30 km northwest of the wetland, whose approximate elevation is 837 m

(Error! Reference source not found.).
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The most recent accessible data belong to the 2015 water year (General Directorate
of State Hydraulic Works, 2018). The monthly average flow rates contained in the
report indicate that the rate of July (5.77 m3/sec) is below the annual average (6.45
md/sec), whereas the fastest rate is observed in April (11.20 m3/sec). Hence, it is very
likely to have displaced Ranunculus formation, if any exists in April. Figure 5.32
shows the observed average flow rates. The complete station report, including daily
observations, is given in Appendix D.

E12A024 SAKARYA N. AKTAS Stream Gauge
01.10.2014 - 30.09.2015 Average Flow Rate (m3/sec)
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Figure 5.32 Monthly average flow rate (m3/sec) at Sakarya N. Aktas stream gauge
for 2015 water year

The assumption deduced from the mentioned flow rates is supported by the monthly
precipitation totals for 2019. The statistics show that the precipitation total for July
2019 (17.4 mm) is almost half the annual average (32.8 mm), whereas the April total
(43.9 mm) is two and a half times higher than that of July (Eskisehir Metropolitan
Municipality, 2020).
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Figure 5.33 Eskisehir City 2019 monthly precipitation totals (mm)

The assumption deduced from the mentioned flow rates is supported by the monthly
precipitation totals for 2019. The statistics show that the precipitation total for July
2019 (17.4 mm) is almost half the annual average (32.8 mm), whereas the April total
(43.9 mm) is two and a half times higher than that of July (Eskisehir Metropolitan
Municipality, 2020).

The behavior of Ranunculus is also checked out using the high resolution satellite
imagery provided by Google Earth. In order to reveal the dynamic change and
movement, the reference orthophoto (20.07.2019) and the most recent image to
orthophoto existing on GE (15.09.2019) are visually compared. It is clearly seen that
there is a significant amount of Ranunculus coverage difference between the two
datasets. Considering the fact that the period between two images is shorter than two
months, benefiting from multiple seasons for this class type is quite tricky. It should
be emphasized that these kinds of dynamic targets require special attention and the
implementation of complex approaches. Figure 5.34 shows the two images

mentioned above.
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Figure 5.34 Comparison of orthophoto (above) vs. GE image (below)

The proposed abundance performance metric provides a straightforward
understanding of the consistent pixel-based class distributions between the reference

and estimated abundances. It is relatively easy to edit the apm algorithm so as to
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indicate the rate of the total pixels consistent in terms of possessing two or more
classes with the highest abundances within each pixel. The results for the optimized
monotemporal dataset are given in Figure 5.35. As already mentioned, the apm
points out that 72.90% of the total pixels are correctly estimated to have the same
highest class proportion. Conversely, it can be interpreted as 27.10% of the reference
pixels have a different highest class proportion compared to the unmixed pixels. The
rate of consistent highest two classes is 27.41%. The figure also shows that the
maximum number of classes in a single pixel is six since the last four apm values

are equal, 7.57.

Compared Number of Classes Inside a Pixel

Figure 5.35 Calculated apm for optimized monotemporal data

The results for the optimized multitemporal dataset are given in Figure 5.36. It has

similar rates as the monotemporal data apart from a slight decrease.
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Figure 5.36 Calculated apm for optimized multitemporal data
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this study, a framework is proposed for determining the extent of wetlands as a
pre-processing step and then extracting their ground characteristics at the sub-pixel
level. The study area is selected as Balikdam1 Wetland in Eskisehir. The Sentinel-2

L2A data are used in both pre-processing and unmixing phases.

The data download and preliminary geospatial investigations are conducted on the
Google Earth Engine platform. Besides being a very versatile system, it is very
potent in terms of processing vast amounts of remote sensing data rapidly and

accurately since operations are conducted on the server-side.

To justify the necessity of co-registration, the ground truth is shifted for one pixel in
the east direction since it is very likely to have an offset to such a degree in the
satellite data. Then, its consistency is checked with its unshifted version through the
determination of coefficient. The value of 0.72 suggests that a significant loss occurs
if there is a misalignment. In this respect, four different algorithms are tested and
compared. Although all methods provide similar outputs in terms of accuracy,
Automated and Robust Open-Source Image Co-Registration Software (AROSICS)
is primarily adopted due to its additional capabilities and practicality in working with

crowded datasets.

The wetland extent is determined through the DTM and index-based stack
regression. The DTM is introduced to extract the rough wetland bed. Then, stacked
Sentinel-2 data are utilized in the double-sigmoid function fitting to enhance the

rough wetland bed. Fine adjustments are performed via morphological operators.
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The results demonstrate that the proposed method is very successful in predicting the
extent with the sensitivity, specificity, precision, overall accuracy, and F1 score of
94.25%, 99.75%, 99.21%, 98.40%, and 96.67%, respectively. The algorithm does
not count on high resolution DTM. The first phase is satisfactorily realized even with

a rather old lower resolution surface model, the STRM.

Before moving on to the unmixing stage, the most relevant land cover types have to
be chosen. The endmember selection, which might be the most crucial step of this
study, is carried out with the help of a three-element ontology library. The inspection
is done with respect to soil, vegetation, and water characteristics. Once the optimum
number and land cover types of endmembers are determined using the ontology
library, the training polygons are finalized. Since the training polygons are digitized
on the high resolution orthophoto, pure pixels corresponding to the Sentinel-2 grid
must be identified in order to extract the Sentinel-2 spectra of the endmembers
correctly. In this regard, the spectral library is established precisely by the procedure
explained in Section 4.5, which is implemented to detect pure pixels within training
polygons and calculate endmember spectra.

The noise mitigation is applied to the test data by averaging available monthly
images. Then, the band optimization procedure is implemented with the help of the
reference data. In similar Sentinel-2 studies where a high resolution ground truth
does not exist to be exploited for band optimization, the recommended band weights
can be adopted as a first approximation since basic endmembers in natural habitats

are likely to be similar to those in this thesis.

Subsequent to the band optimization, a fully constrained linear spectral unmixing
method is performed on the monotemporal data. The 0A, k, R?, and apm are
calculated as 0.66, 0.56, 0.64, and 0.73, respectively. The noise mitigation approach
supports the overall accuracy of about 3-4%, whereas optimized band weights using
the overall accuracy as the cost function enhances the subject metrics in the order of
9%, 10%, 22%, and 9%, respectively.
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The transition between classes follows particular patterns across the wetland. This
study contributes to the determination of such patterns as well. One of the gradients
observed in the study area, clearly seen in Figure 5.20, is shown schematically in

Figure 6.1 as an example.

Figure 6.1 Vegetation gradient as a function of distance to lake: Typha, Phragmites,
Juncus, Pasture, Steppe

For the temporal endmember case subject to spectro-temporal unmixing, the
endmember optimization is proven to meet the deficit originating from seasonal
anomalies. A similar degree of accuracy is achieved when applied with the
aforementioned band weights. Furthermore, the trade-off between accuracy and

temporality is highlighted.

One of the primary reasons for the confusion between classes is the incapability of
the sensor’s spectral resolution to define unique class spectra. Therefore, the use of
hyperspectral data is superior at unmixing operations. Another related error source
is the instrument’s Point Spread Function (PSF). A significant portion of recorded

radiance originates from neighboring pixels due to the PSF effect, whose adverse
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effects penetrate surface information. Thus, special care should be taken to model
PSF for better results. Although the overall accuracy of orthophoto classification is
very high, it should be noted that absolute classification errors still exist.

The proposed Abundance Confusion Matrix (ACOMA) calculation proves its
efficiency in the delicate assessment of fractional mapping. It helps researchers
figure out the interactions between endmembers and interpret the phenomena that
take place. The ACOMA requires a reference set to compare the estimates. This
study handles the subject requirement by softening the classified high resolution
orthophoto. The procedure implemented in Section 4.6 attains this aim with perfect

precision.

The study provides an overall methodology for monitoring the wetlands relatively
accurate using the Sentinel-2 images. In addition, the detectability of sparse cover
classes is demonstrated. The proposed methodology enables the temporal analysis of
wetlands to determine the effects of anthropogenic pressure and climate change on
these precious ecosystems. The unmixing strategy is also applicable to other

ecosystems.

6.2 Recommendations

Balikdami can be considered a marsh-dominant, fair-sized inland wetland. In order
to verify the robustness of the proposed methodology, the procedure should be tested
on different types of wetlands such as swamps dominated by woody plants, bogs
characterized by spongy peat deposits, acidic waters, and a thick carpet of sphagnum
moss floor, and peat-forming fens nurtured by nutrients from sources other than
precipitation. In addition, performance on a broader geographical extent should be

investigated.

The unmixing approach is fundamentally designed for higher-dimensional data. This

study utilizes open access multispectral imagery in an effort to keep the cost low;
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nevertheless, experiments can be extended to include hyperspectral data to construct
better endmember spectral signatures. It is worth learning the cost-performance
trade-off when different data sources are introduced. An economical alternative
might be the synergistic use of multispectral and open access radar data such as
Sentinel-1. The positive impact of the fusing strategy on the hard classification of
wetland studies is already mentioned in the introduction. Advantages of day and
night capability, independency of weather conditions, and sensitivity to soil
properties make the radar data appealing. On the other hand, to be able to use radar
data in spectral unmixing, restraining properties based on a priori information are

required to be designated.

In the case of having limited knowledge of endmembers or aiming to unmix
particular endmembers, filters like Matched Filtering (MF) or Mixture-Tuned
Matched Filtering (MTMF) can be applied beforehand. In case of having no
endmember knowledge, either data reduction techniques can be applied, or methods
like Gap Statistic, Elbow, Silhouette Coefficient, Calinski-Harabasz Index, Davies-
Bouldin Index, and Bayesian Information Criterion can be adopted for

approximation.

In this thesis, a consolidated spectral mixture model is implemented. As mentioned
in Section 4.7, non-linear models, taking the endmember interactions into account,
are worth to be tested due to their complex structure. Fan Model (Fan et al., 2009)
based on the bilinear mixture approach is partially tested during the experiments.
The version, including all possible cross-terms and the version narrowed down to a
few apparent interactions, are introduced into the unmixing process. However,
satisfactory results are not obtained. This effort should be elaborated and expanded

S0 as to contain alternatives of the intimate mixture method.

Tracing the rise and fall of water levels has a moderate place in wetland management.
Hydrodynamical, geomorphological, and ecological processes can be better

understood by the characterization of wetland bathymetry. Satellite-derived
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bathymetry is widely used accordingly. In this study, pseudo-bathymetric
information extraction is tested using NDWI thresholding based on boxcar kernel
smoothing. Figure 6.2 shows iso-NDWI polygons for the shallow water regions
located in the north part. The outcomes are promising yet require further

investigation and terrestrial validation.

e

Figure 6.2 Preliminary outcomes of pseudo-bathymetric information extraction

Considering the fact that wetlands contain highly heterogeneous land cover, using
the same reflectance value for four composing pixels owing to the Nearest Neighbor
resampling algorithm remains incapable. Although this handicap is relieved with the
help of band optimization, the pan-sharpening procedure can be applied for improved
results. Due to the absence of a panchromatic band in the Sentinel-2 satellite,
alternative solutions have been introduced by using or enhancing existing pan-
sharpening techniques (Kaplan, 2018; Li et al., 2020; Park et al., 2017; Ronchetti
and Sona, 2018; Wang et al., 2016), concluding significant improvements in
comparison to the initial state. Apart from these approaches, super-resolution
imaging based on neural networks has become popular to improve the imaging

system resolution. The success of Sentinel-2 implementations has been demonstrated
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by several studies (Brodu, 2017; Lanaras et al., 2017; Salgueiro et al., 2021). The
technique proposed by Lanaras et al. (2017) is tested out on the mean monthly image
used in the monotemporal unmixing stage. The result indicates that the initial overall
accuracy of 57% escalates in the order of 3.5%. This increase is quite an
improvement to be further investigated. The whole procedure is to be renewed in the

future, including the optimization steps.

In the case of having reference abundances, from abundance to abundance estimation
using Multivariate Random Forest can also be adopted rather than directly utilizing
the reference data. The idea behind this approach is to estimate adjusted Sentinel-2
abundances from the reference abundance map. In order to obtain multi-output using
an RF regressor, a separate RF model for each endmember is to be trained. A certain
amount of the corresponding abundance values from reference data can be utilized
as a training set during the model training. Then, each endmember’s target
abundance values for the study area are predicted using the relevant RF model on the
test data. At the end of the procedure, as many single-band images as the total number
of endmember are obtained, each of which has percentages of related class existence
in its pixels. Finally, those individual images are combined in order to get a full map
showing percentages of all class existences on each pixel. In theory, the sum of all
bands for a pixel has to be one since it represents the distribution ratios of various
classes. To check what happens in practice, the histogram for the summation of
estimated abundances of each pixel can be plotted. Moreover, the number of trees
and tree depths should be chosen small enough to prevent memorization for the

Multivariate Random Forest method.

One thing is certain, which is to monitor these extraordinary habitats and take
necessary precautions to prevent their degradation and destruction. Historical
Google Earth images clearly show the massive degradation occurring in the past
years (Figure 6.3). In order to avoid such damages, periodic checks should be

realized and a robust warning mechanism should be established.
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Figure 6.3 Images showing degradation of Balikdami at two-year intervals
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APPENDICES

A. Site Visit Observations

Figure A.1 Location of the photos taken on 19.12.2019 (date of base map is
03.12.2019)
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Figure A.2 (1 Dry Salicormia on wet Gypsum @ General view of Gypsum area
@) Pasture (@) Juncus
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Figure A.3 @ Tuft of Juncus @ @ Flood area (8) Submerged plants
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Figure A4 @ Dense Typha (10) Trees @ Limestone @ East side of bridge located
at easternmost boundary
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Figure A.5 (13 West side of bridge located at easternmost boundary Tufts of
Juncus @), @) Burned Typha
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Figure A.6 Location of the photos taken on 19.08.2020 (date of base map is
19.08.2020)

140



Figure A.7 @ Partial Salicornia on Gypsum @ Vegetated Gypsum @ Juncus
@ North side of wetland
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Figure A.8 @Juncus dominated mixed vegetation @Adjacent Pasture, Juncus and
Phragmites clusters @ Cracked Gypsum (8) Distichlis spicata on Gypsum
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Figure A.9 @ Cracked Gypsum , @ Distichlis spicata @ Dry Salicornia on
Gypsum
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Figure A.10 @ Juncus (4) Steppe @ Vegetated Gypsum ({6) Gauge plate on center
bridge pillar
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Figure A.11 @ Dense Typha next to river Pond inside dense Typha
, @ Pasture to Phragmites and Typha Transition
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Figure A.12 @ @ @Typha and Phragmites dominated mixed vegetation @Tufts
of Juncus
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Figure A.13 @Tufts of Ranunculus on river basin @ Bird watching tower@Tufts
of Ranunculus on river basin Tufts of Ranunculus on easternmost boundary
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Figure A.14 Location of the photos taken on 02.09.2021 (date of base map is
08.09.2021)
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Figure A.15 @ Salicornia on Gypsum @ Mud beneath Gypsum @ Juncus and
Distichlis spicata border @ Juncus and Phragmites mixture
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Figure A.16 @ Gauge plate on center bridge pillar @ Phragmites and Ranunculus
@ Phragmites dominated mixed vegetation (8) Pond inside Phragmites and Typha

150



Figure A.17 @ Steppe Pasture @ Pasture and Juncus transition @ Tufts of
Ranunculus on easternmost boundary
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B. Analysis Results for Samples Taken from Balikdam Wetland

Table B.1 Evaluation of soil sample-1

Sample Sample Coordinates
Identity SEMmplE PreE (Lat/Lon)
Gypsum 39°13'25.91" N
(surface) 31°37'25.33"E
Parameters Methods Result Unit | Evaluation | References
Power of TOVEP,
Hydrogen 1SO 10390 8.82 ; Stlrkoqg 1991,
(Electrometric) alkall Eytipoglu,
1999
USDA,
1954
. Internal Agriculture
Electrical
Conductivity method 29.50 dS/m | Very salty Hand.book
(Electrometric) (Anonymous, NO'GO
2009) Saline and
Alkaline
Soils
Internal
method
Lime (Calcimetric 0 :
(Calcimetric) method / 9.05 % Limy Kacar, 2012
Caglar, 1949;
Tiiziiner, 1990)
Internal
Organic Matter method 0 . TOVEP,
(Titrimetric) (Walkley- 2.91 % | Medium 1991
Black, 1934)
] Bouyoucos,
Sand: - 1951; Millar
Bouyoucos Silt: - % No results K
Clay: - and Turk,
Texture 1954
Manual i ) Silty loam Millar and
determination y Turk, 1954
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Table B.2 Evaluation of soil sample-2

Sample Sample Coordinates
Identity SEpls P e (Lat/Lon)
Gypsum 39°13'25.91" N

(underlayer)

31°37'25.33"E

Parameters Methods Result Unit | Evaluation | References
Power of TOVEP,
Hydrogen 1SO 10390 8.64 . Stong 199L;
(Electrometric) alkall Eytipoglu,

1999
USDA,
1954
. Internal Agriculture
Electrical
Conductivity method 16.70 dS/m | Very salty Hand.book
(Electrometric) (Anonymous, '\!0'60
2009) Saline and
Alkaline
Soils
Internal
method
Lime (Calcimetric 0 ,
(Calcimetric) method / 41.51 %o Very limy | Kacar, 2012
Caglar, 1949;
Tiiziiner, 1990)
Internal
Organic Matter method 0 : TOVEP,
(Titrimetric) (Walkley- 4.40 % High 1991
Black, 1934)
. Bouyoucos,
Sand: - 1951; Millar
Bouyoucos Silt: - % No results q K
Clay: - and Turk,
Texture 1954
Manual i i Cla Millar and
determination y Turk, 1954
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Table B.3 Evaluation of soil sample-3

Sample Sample Coordinates
Identity SEImlE Pt (Lat/Lon)
Steppe 39°11'54.79" N
PP 31°37'41.36" E
Parameters Methods Result Unit | Evaluation | References
TOVEP,
Power of 1991
Hydrogen ISO 10390 8.40 - Weak alkali L
(Electrometric) Eytpoglu,
1999
USDA,
1954
Electrical Internal Agriculture
Conductivity A method 0.38 dS/m Not salty Hal\r;d.té%ok
(Electrometric) (Anonymous, 0:
2009) Saline and
Alkaline
Soils
Internal
method
Lime (Calcimetric 0 ,
(Calcimetric) method / 24.22 Y% Very limy | Kacar, 2012
Caglar, 1949;
Tiiziiner, 1990)
Internal
Organic Matter method 0 : TOVEP,
(Titrimetric) (Walkley- 9.48 % High 1991
Black, 1934)
) Bouyoucos,
Sand: - 1951: Millar
Bouyoucos Silt: - % No results K
Clay: - and Turk,
Texture 1954
Manual i i Silty clay Millar and
determination loam Turk, 1954
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C. Stream Gauge Observations for 2015 Water Year

12. Sakarya Havzasi
E122024 SAKRARYZ N. BEKTBES

YERT : ESKigERHIR ILi CIFTELER ILCESININ 25 RM. GUNEYDOGUSUMDA AKTAS KOYU YAKININDADIR
(PAFTA J26-B4)
31°20'11" Dogu - 39°19'18" Kuzey
YASTS ALANT 1 4342,20 kn2 YAKIASTK KOT : 837 m
GOZLEM SUREST 1 01.10.1952 - 30.09.2015
ORTALAMA. AKIMLAR : Gizlem siresinde 6.785 m3/sn. (51 yallik ) 2015 Su yalinda 6.415 m3/sn.
ANLIK EN QOK VE EN AZ AKIMLZR:
2015 Su yalinda anlik  encok akim : 16.700 m3/sn 05.07.2015
2015 Su yalinda anlik enaz akim : 1.230 m3/sn 11.10.2014
Gozlem siresinde anlik encok akim : 81.700 mi3/sn 19.04.1984
GSzlam siresinde anlik enaz akim H 0.247 m3/sn 13.07.2014
10. Anahtar Ejrisi (Seviyeler om colarak)
Seviye 2kim Seviye Bkim Seviye Akim Seviye ZBkim
& 0.270 140 14.7 240 45.5 310 70.3
75 0.940 160 20.4 260 52.4 320 74.0
85 2.1 180 26.4 280 59.4 330 71.8
100 4.7 200 32.4 290 63.0 340 81.6
120 9.4 220 38.7 300 66.6 350 85.4

Gin Ekim Kasim Aralak Cealk Subat Mart Misan May1s Haziran Teomz Afustes  Evlul
01 5.62 7.48 5.16 5.16 5.62 13.4 12.3 5.16 5.16 15.5 1.68 4.51
02 5.62 7.00 5.62 5.16 5.62 13.6 12.5 5.16 5.16 16.1 1.56 4.33
03 5.62 6.54 5.62 5.16 5.62 13.6 12.5 4.93 5.16 16.4 1.56 4.33
04 5.62 5.85 5.85 5.16 5.39 13.1 12.5 4.93 7.24 16.4 1.68 4.14
05 5.62 5.39 5.85 5.39 5.16 1z.8 12.0 4.70 8.20 16.4 1.61 4.14
06 5.62 5.39 5.62 5.39 5.16 12.5 11.7 4.70 8.44 13.6 1.68 4.14
07 5.16 4.93 5.62 5.39 5.16 12.3 11.5 4.51 8.68 10.4 1.81 4.14
08 4.93 4.70 5.62 5.16 5.16 11.7 10.7 5.39 8.68 7.00 1.61 4.33
09 3.96 4.70 5.62 5.16 4.93 11.2 9.16 5.62 8.20 6.31 2.22 4.14
10 Z2.06 4.70 5.62 5.16 6.08 11.0 10.2 5.39 8.44 5.85 2.53 3.58
11 1.23 4.93 5.62 5.16 8.44 11.0 12.0 5.39 7.96 5.16 3.40 3.03
12 1.23 4.93 4.93 5.16 9.16 11.0 13.1 5.62 8.20 4.33 3.58 2.84
13 1.23 4.93 4.93 5.39 9.66 11.0 13.4 5.85 8.92 3.58 3.40 2.84
14 2.37 4.51 4.93 5.39 9.92 11.0 14.2 5.16 8.68 3.40 3.7 2.84
15 3.77 4.33 4.93 5.39 11.0 11.2 14.2 4.70 8.44 3.03 4.14 3.21
16 3.96 4.33 4.93 5.39 11.2 11.0 12.8 4.14 7.00 2.84 4.33 3.03
17 3.96 4.33 5.16 5.39 11.5 10.2 12.5 3.40 5.16 3.21 4.70 3.03
18 3.96 5.16 5.39 5.39 11.2 9,92 12.5 3.03 5.39 3.21 5.16 3.03
19 3.96 6.54 5.39 5.39 11.2 9.40 15.3 2.68 6.54 2.84 7.24 3.96
20 3.96 7.24 5.16 5.39 1.2 9.16 15.0 2.68 7.48 2.53 7.00 4.51
21 3.96 6.54 5.16 5.16 11.0 8.92 14.4 2.68 10.7 2.53 4.51 4.51
22 3.96 5.85 5.16 5.16 11.0 9.1 131 2.84 10.7 2.22 3.7 4.70
23 3.96 5.85 5.16 5.16 9.92 8.92 12.3 2.68 9.40 1.93 3.7 4.93
24 4.33 5.85 5.16 5.39 9.66 g.68 11.2 2.37 9.40 1.81 3.7 7.00
25 .72 5.62 5.16 5.39 10.2 8.44 G.92 2.37 8.68 1.93 3.58 .24
26 7.24 5.39 5.16 5.39 8.44 4.93 2.53 8.44 1.93 3.58 6.77
27 7.00 5.39 5.16 5.39 8.20 4.33 3.03 9.16 1.81 3.58 6.54
28 7.24 5.39 5.16 5.39 8.92 4.14 3.58 9.40 1.93 3.58 6.08
29 7.48 5.62 5.16 562 9.1¢ 5.16 3.7 9.16 1.68 3.58 4.33
30 7.24 5.62 5.16 5.85 - 9.92 5.16 4.14 12.8 1.56 4.33 3.97
31 7.24 — 5.16 5,62 — 11.7 ——— 4.70 —— 1.56 4.70
Meks. 9.16 7.48 5.85 5.85 13.6 13.9 15.5 5.85 15.0 16.7 7.96 7.48
Min. 1.23 4.33 4.51 4.70 4.51 8.20 3.21 2.37 5.16 1.43 1.43 2.68
Ortalama 4.74 5.50 5.30 5.33 8.76 10.7 11.2 4.12 8.17 5.77 3.48 4.33
LT/E/He 1.09 1.27 1.22 1.23 z.02 2.46 2.97 0,950 1.68 1.33 0.801 0.9%3
AKIM . 2.92 3.28 3.27 3.29 4.88 6.58 6.66 2.54 4.87 3.56 2.15 2.58
MIL. M3 12.7 14.3 14.2 14.3 21.2 28.6 28.9 11.0 21.2 15.5 9.3 11.2
SU YILI ( 2015 )  YILLIK TOPLAM AKIM 202.41 MILYCN M3 47 MM 1.5 LT/SN/Fu2

409

Figure C.1 Flow data of Sakarya N. Aktas Station (General Directorate of State
Hydraulic Works, 2018)
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