
ADJOINT BASED DESIGN OPTIMIZATION OF SUBSONIC AIRFOILS WITH
A PANEL CODE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BERK SARIKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

AEROSPACE ENGINEERING

JULY 2022





Approval of the thesis:

ADJOINT BASED DESIGN OPTIMIZATION OF SUBSONIC AIRFOILS
WITH A PANEL CODE

submitted by BERK SARIKAYA in partial fulfillment of the requirements for the
degree of Master of Science in Aerospace Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Serkan Özgen
Head of Department, Aerospace Engineering

Prof. Dr. İsmail H. Tuncer
Supervisor, Aerospace Engineering, METU

Examining Committee Members:

Prof. Dr. Yusuf Özyörük
Aerospace Engineering, METU

Prof. Dr. İsmail H. Tuncer
Aerospace Engineering, METU

Prof. Dr. Sinan Eyi
Aerospace Engineering, METU

Prof. Dr. Nafiz Alemdaroğlu
Aerospace Engineering, Atılım University

Assoc. Prof. Dr. Mustafa Kaya
Aerospace Engineering, Ankara Yıldırım Beyazıt University

Date: 25.07.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Berk Sarıkaya

Signature :

iv



ABSTRACT

ADJOINT BASED DESIGN OPTIMIZATION OF SUBSONIC AIRFOILS
WITH A PANEL CODE

Sarıkaya, Berk

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. İsmail H. Tuncer

July 2022, 90 pages

An in-house panel code written in Fortran is automatically differentiated and devel-

oped into an adjoint-based aerodynamic shape optimization tool for airfoil profiles.

The automatic differentiation tool, FDOT, is employed in reverse mode to obtain the

discrete-adjoint solver. The adjoint-based sensitivity derivatives (i.e. gradient vector)

are validated against the finite difference approach. The computed sensitivity deriva-

tives are then employed for the gradient based aerodynamic shape optimization of

subsonic airfoil profiles for given target lift and moment coefficients. In addition, an

adverse pressure gradient minimization term is added to the objective function for

milder stall characteristics. A multi-point design optimization method is also imple-

mented for an improved off-design performance. Airfoils are parametrized by the

Class Shape Transformation. Single and multi-point optimizations are driven by the

open-source optimizer, DAKOTA, using a quasi-Newton method. Case studies for

cambered airfoils at low angles of attack are presented for single and multi-point de-

sign optimizations. The surface pressure distributions and the aerodynamic loads for

the optimum airfoil profiles are further verified with the open-source RANS solver,

SU2. It is shown that the adjoint based design optimization methodology developed

v



is efficient and robust.

Keywords: panel method, discrete adjoint, aerodynamic optimization, multi-point

optimization, adverse pressure gradient

vi



ÖZ

PANEL KODU İLE ADJOİNT TABANLI SESALTI KANAT PROFİLİ
ENİYİLEMESİ

Sarıkaya, Berk

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İsmail H. Tuncer

Temmuz 2022, 90 sayfa

Fortran ile yazılan bir panel kodu otomatik türev ile adjoint tabanlı bir aerodinamik

kanat profili şekli eniyileme aracına dönüştürülmüştür. FDOT otomatik türev aracı

ters mod ile ayrık-adjoint çözücü elde edilmesi için kullanılmıştır. Adjoint tabanlı

hassasiyet türevleri (gradyan vektörü) sonlu farklar metodu ile doğrulanmıştır. He-

saplanan hassasiyet türevleri sesaltı kanat profillerinin hedef olarak verilen taşıma ve

yunuslama katsayılarına göre gradyan bazlı aerodinamik tasarım eniyilemesinde kul-

lanılmıştır. Ek olarak bir ters basınç gradyan terimi yumuşak perdövites karakteristiği

için amaç fonksiyonuna eklenmiştir. Ek olarak, tasarım noktası dışındaki performan-

sın daha iyi olması amacıyla çoklu nokta tasarım eniyilemesi yöntemi geliştirilmiştir.

Kanat profilleri Sınıf Şekil Dönüşümü ile parametrize edilmiştir. Tekli ve çoklu nokta

eniyilemeleri açık-kaynak kodlu bir eniyileme aracı olan DAKOTA ile quasi-Newton

yöntemi kullanılarak gerçekleştirilmiştir. Kamburluklu kanat profilleri temel kabul

edilerek düşük hücum açılarında yapılan tek ve çok-noktalı eniyileme sonuçları gös-

terilmiştir. Elde edilen aerodinamik yükler ve yüzey basınç katsayısı dağılımları bir

açık-kaynak RANS çözücüsü olan SU2 ile doğrulanmıştır. Son olarak, gösterilen ta-

vii



sarım eniyileme metodunun fazlasıyla verimli ve gürbüz olduğu gösterilmiştir.

Anahtar Kelimeler: panel metodu, ayrık adjoint, aerodinamik eniyileme, çok noktalı

eniyileme, ters basınç gradyanı

viii



To my family

ix



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Dr. İsmail H. Tuncer

for his encouragement, continuous support, and guidance throughout this study. His

profound knowledge and experience in the field of aerodynamics and optimization

has helped me immensely. I am grateful for the opportunity.

I would like to thank Dr. Reza Djeddi and Prof. Dr. Kivanc Ekici from Department of

Mechanical, Aerospace and Biomedical Engineering at the University of Tennessee,

Knoxville for providing the FDOT toolbox and their assistance on the implementation

of FDOT.

I also appreciate the committee members, Prof. Dr. Yusuf Özyörük, Prof. Dr. Sinan

Eyi, Prof. Dr. Nafiz Alemdaroğlu and Assoc. Prof. Dr. Mustafa Kaya and also Assoc.

Prof. Nilay Sezer UZOL, for their time, constructive criticism and suggestions to

further improve the study.

I am thankful to Dr. Halil Kaya from TAI with his help on the theory.

I would like to thank ASELSAN for the support and providing the necessary funds

throughout this study. My thanks are extended to Tuğcan Selimhocaoğlu and Alper

Sayıcı, to my other colleagues in the Flight Sciences, and the managers of the Aircraft

Integration Engineering Department.

My thanks are extended to my dear friends Buğrahan Öztürk, Melikşah Koca (and

others) from the department of Aerospace Engineering for their support and enjoy-

able discussions throughout the years. I also would like to wholeheartedly thank Ece

Kanbur for her endless support and encouragement.

Finally, I would like to thank my beloved parents, Faik and Handan, who have always

supported and loved me. My thanks are extended to my whole family.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Adjoint Methods and Automatic Differentiation . . . . . . . . . . . . 6

1.2 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

2 OPTIMIZATION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . 11

2.1 In-house Panel Code . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Gradient-Based Optimization . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Evaluation of the Sensitivity Derivatives/Gradient Vector . . . 16

2.2.1.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1.2 Finite Difference Method . . . . . . . . . . . . . . . . 18

xi



2.2.1.3 Adjoint Method . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Automatic/Algorithmic Differentiation . . . . . . . . . . . . . 21

2.2.2.1 Algorithmic Differentiation in Forward Mode . . . . . . 22

2.2.2.2 Algorithmic Differentiation in Reverse Mode . . . . . . 23

2.2.2.3 Source Code Transformation . . . . . . . . . . . . . . . 24

2.2.2.4 Operator Overloading . . . . . . . . . . . . . . . . . . 24

2.2.3 Automatic Differentiation with FDOT . . . . . . . . . . . . . 25

2.2.4 Airfoil Shape Parametrization . . . . . . . . . . . . . . . . . . 28

2.2.4.1 Class Shape Transformation . . . . . . . . . . . . . . . 28

2.3 Gradient Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 RANS solver: SU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Validation and Verification Studies . . . . . . . . . . . . . . . . . . . 37

3.1.1 Validation of the Sensitivity Derivatives . . . . . . . . . . . . 38

3.1.1.1 Validation of the Sensitivity Derivatives for Target Lift
coefficient . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1.2 Validation of the Sensitivity Derivatives for Target Mo-
ment Coefficient . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Verification of Flow Solvers . . . . . . . . . . . . . . . . . . . 44

3.1.2.1 Grid Convergence for RANS Solutions . . . . . . . . . 46

3.2 Design Optimizations of Airfoil Profiles . . . . . . . . . . . . . . . . 49

3.2.1 Case I: Optimization for Target CL . . . . . . . . . . . . . . . 49

3.2.2 Case II: Optimization for Target CL and CM . . . . . . . . . . 54

3.2.2.1 Target Pitching Moment Reduced . . . . . . . . . . . . 61

xii



3.2.3 Case III : Optimization for Target CL and CM with Reduced
dP/dx over the Upper Airfoil Surface . . . . . . . . . . . . . 66

3.2.4 Case IV: Multi-point Design Optimization . . . . . . . . . . . 72

4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



LIST OF TABLES

TABLES

Table 2.1 Classes defined by exponents N1 and N2 . . . . . . . . . . . . . . . 29

Table 2.2 5th order CST weights for NACA0012 . . . . . . . . . . . . . . . . 32

Table 3.1 Lift Coefficient Sensitivity derivatives, AD and FD, NACA0012 . . 40

Table 3.2 Moment Coefficient Sensitivity derivatives, AD and FD, NACA2412 43

Table 3.3 Aerodynamic coefficients for Case I . . . . . . . . . . . . . . . . . 50

Table 3.4 Aerodynamic coefficients for Case II . . . . . . . . . . . . . . . . . 55

Table 3.5 Aerodynamic coefficients for very low pitching moment case . . . . 62

Table 3.6 Aerodynamic coefficients for Case III . . . . . . . . . . . . . . . . 67

Table 3.7 Aerodynamic coefficients in the multi-point design optimization . . 74

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 Optimization process flowchart . . . . . . . . . . . . . . . . . . 15

Figure 2.2 Example forward and adjoint source codes for computation of

A = sin(B) + C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.3 Output of the adjoint code . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.4 5th order CST representation of NACA0012 . . . . . . . . . . . 31

Figure 2.5 5th order CST components of NACA0012. . . . . . . . . . . . . 31

Figure 2.6 Perturbed variants of NACA0012 and shape sensitivity magnitudes 34

Figure 3.1 AD vs FD for NACA0012, target lift coefficient . . . . . . . . . 39

Figure 3.2 dI/dy for NACA2412, target lift coefficient . . . . . . . . . . . 40

Figure 3.3 AD vs FD for NACA2412, target moment coefficient . . . . . . 42

Figure 3.4 dI/dy for NACA2412, target moment coefficient . . . . . . . . 42

Figure 3.5 Pressure coefficient distributions over NACA0012 airfoil at 0 deg

angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.6 Pressure coefficient distributions over NACA0012 airfoil at 2 deg

angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xv



Figure 3.7 Pressure coefficient distributions over NACA0012 airfoil at 6 deg

angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.8 Pressure coefficient distributions over NACA0012 airfoil at 10 deg

angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.9 CL and CM with respect to grid size for NACA2412 airfoil at 0

and 2 deg of angle of attack . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.10 C-type grids used in the grid convergence study . . . . . . . . . 48

Figure 3.11 Baseline and optimized airfoil profiles for case I . . . . . . . . . 51

Figure 3.12 Convergence history of the aerodynamic coefficients for case I . 51

Figure 3.13 The evolution of the objective function with major optimization

steps for case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.14 Optimized airfoil profiles for case I, different baseline airfoils . . 52

Figure 3.15 M and Cp contours for airfoil designed in case I, AoA = 0deg . . 53

Figure 3.16 Baseline and optimized airfoil profiles for case II . . . . . . . . . 56

Figure 3.17 Convergence history of the aerodynamic coefficients for case II . 56

Figure 3.18 The evolution of the objective function with major optimization

steps for case II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.19 Optimized airfoil profiles for case II, different baseline airfoils . 57

Figure 3.20 Surface pressure comparisons for panel vs. RANS solvers, case II 58

Figure 3.21 Aerodynamic coefficients based on SU2 solutions over the de-

signed airfoils of cases I and II . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.22 M and Cp contours for airfoil designed in case II, AoA = 0deg . 60

Figure 3.23 Baseline and optimized airfoil profiles for very low pitching mo-

ment case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvi



Figure 3.24 Convergence history of the aerodynamic coefficients for very

low pitching moment case . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.25 The evolution of the objective function with major optimization

steps for very low pitching moment case . . . . . . . . . . . . . . . . . 64

Figure 3.26 Surface pressure comparisons for panel vs. RANS solvers, very

low pitching moment case . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.27 M and Cp contours for airfoil designed in case II, AoA = 0deg . 65

Figure 3.28 Airfoil profiles and pressure distributions for case III . . . . . . . 68

Figure 3.29 Convergence history of case III . . . . . . . . . . . . . . . . . . 68

Figure 3.30 Convergence history of ∆Cp in case III . . . . . . . . . . . . . . 69

Figure 3.31 The evolution of the objective function with major optimization

steps for case III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.32 Aerodynamic coefficients based on SU2 solutions over the de-

signed airfoil of case III . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.33 Potential flow and RANS surface pressure coefficient distribu-

tions, case III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.34 M and Cp contours for airfoil designed in case III, AoA = 0deg . 71

Figure 3.35 Multi-point optimization flowchart . . . . . . . . . . . . . . . . 73

Figure 3.36 Baseline and optimized airfoil profiles for case IV . . . . . . . . 75

Figure 3.37 Convergence history of the aerodynamic coefficients for case IV 75

Figure 3.38 The evolution of the objective function with major optimization

steps for multi-point design optimization case . . . . . . . . . . . . . . 76

Figure 3.39 Aerodynamic coefficients based on SU2 solutions over the de-

signed airfoil of case IV . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 3.40 M and Cp contours for multi-point designed airfoil, AoA = 0deg 78

xvii



LIST OF ABBREVIATIONS

2D 2 Dimensional

AD Automatic/Algorithmic Differentiation

CFD Computational Fluid Dynamics

CD Drag Coefficient

CL Lift Coefficient

Cp Pressure Coefficient

CST Class Shape Transformation

DV Design Variables

FD Finite Difference

FDOT Fast Automatic Differentiation Based on Operator-Overloading

Technique

GA Genetic Algorithm

NACA National Advisory Committee for Aeronautics

CM Pitching Moment Coefficient

RANS Reynolds-Averaged Navier Stokes

OO Operator Overloading

SCT Source Code Transformation

xviii



CHAPTER 1

INTRODUCTION

Computational Fluid Dynamics (CFD) have become key in aerodynamic design and

shape optimization processes. Even though CFD cannot be separated from the wind

tunnel tests, using CFD allows evaluation of new aerodynamic concepts faster and

cheaper than that of a wind tunnel, generally. As the CFD tools developed and be-

came accessible, these tools have seen widespread usage in the earlier design phases.

With time, CFD branched out in fidelity, i.e. low and high-fidelity tools. The low

fidelity tools are useful for rapid evaluation and exploration of new designs due to

their lower computational cost whereas the high fidelity tools are useful for detailed

design phases, where the design has matured. High-fidelity means that most of the

physics features, if not all, have been properly captured and the solutions are more

accurate than low-fidelity tools at the expense of computational resources. Solving

the Reynolds-Averaged Navier-Stokes equations is an example of high-fidelity solu-

tion, whereas a panel method is an example of a low-fidelity model, which does not

include effects like viscosity and flow separation. In this thesis, it is aimed to cre-

ate an aerodynamic shape optimization tool for subsonic airfoils using a low-fidelity

model with fast turnaround time.

The impact of better aerodynamic designs on aircraft performance cannot be empha-

sized enough. For example, Martins et al. [1] has shown that reduction of 1 drag

count (d.c.) is worth 310 pounds of empty weight for a supersonic business jet. Sim-

ilarly, the studies done on subsonic transport aircraft indicate that a reduction of 1

d.c. corresponds to a payload increase of roughly 200 lbs [2]. Also, while the gov-

erning bodies all around the world enforce strict emission targets, these could only be

achieved by highly optimized aerodynamic configurations [3]. The aerodynamics of

1



the future aircraft is driven by the aviation’s impact on the environment, such as the

greenhouse gases, noise and so on. [3, 4].

The aerodynamic optimization process requires specialized solvers, algorithms and

methods [5]. In the case of methods, there are two main kinds, which are the inverse

methods and the numerical optimization methods, as shown in Fig. 1.1.

Optimization methods

Inverse methods
Numerical

Optimization

Gradient-free

optimization

Gradient-based

optimization

Figure 1.1: Optimization methods

Aerodynamic shape optimization studies, in fact, date as back as to 1680s. New-

ton [6] used calculus of variations to minimize drag over a solid body of revolution

moving in a fluid with constant velocity. In 1935, Betz [7] proposed a way to find

optimum airfoil shapes after applying predetermined pressure distributions by mak-

ing use of conformal mapping, which may be considered as the earliest example of

inverse method. Then, in 1945, Lighthill [8] obtained an exact solution for incom-

pressible flows by conformally mapping the profile to a unit circle for the velocity

over profile, with the help of an analytic mapping function.

Inverse methods allow prescribing the desired (target) pressure distribution directly at

a constant angle of attack, which yields the optimal solution, i.e. the airfoil geometry.

Inverse methods are useful for realizing target pressure distributions or flow veloci-

ties, for example. However, it is challenging to prescribe target distribution(s) that

provide optimal performance over the range of operation. In fact, not knowing the

distributions a priori is the essence of the problem. Moreover, inverse design using

panel methods date as back as 1980s (Hawk and Bristow [9]) to solve problems like

2



matching target pressure coefficient distributions.

Naturally, the inverse problems have been formulated using potential flows due to

the simplicity of the governing equations such as Volpe and Melnik [10]. Similarly,

hodograph techniques are used in Hassan et al. [11] and Hassan et al. [12] for sub-

sonic and transonic cases, respectively. Conformal mappings are also used in the

multi-point inverse design problems by Selig and Maughmer [13] and Selig [14]. Af-

terwards, Malone et al. [15] used user specified target pressures as expressed by flow

velocities to design 2-D airfoils and 3-D asymmetric nacelle profiles using a full-

potential code. As the computational power increased, Euler equations are used in

the optimization process by Jameson and Reuther [16] for inverse design optimiza-

tion of airfoils. Reuther and Jameson [17] extended the work to Euler equations and

successfully applied the adjoint inverse design methodology to wing and wing/body

cases. Euler equations may not yield realizable results due the absence of the vis-

cous features like flow separation, therefore, the Navier-Stokes equations are used by

Jameson et al. [18] and the design optimization of wings in transonic flow is suc-

cessfully carried out. Recently, Morlando [19] used a panel method, which is also

written in Fortran, with the adjoint method for sensitivity analysis of airfoils in in-

verse design where the objective function is automatically differentiated. Zhang et

al. [20] proposed inverse design of airfoils by means of adverse pressure gradient

distribution as the design target. The necessary derivatives are computed by adjoint

method. As discussed above, the inverse design methods require obtaining feasible

target distributions beforehand which need to obey the various constraints and objec-

tive functions (i.e. performance) defined by the designer. Obtaining such profiles is

not a trivial task. Majority of the time may be spent determining the required pressure

distributions rather than the actual optimization process.

As the computers developed and the computational power has increased over the

years, the numerical optimization methods have become more feasible. It was in the

early 1970s when the gradient-based optimization methods have surfaced [21]. Hicks

et al. [22] designed low-drag, non-lifting transonic airfoils using an optimizer which

uses the method of feasible directions. They solved the transonic small disturbance

equation. Similarly, Hicks and Vanderplaats [23] obtained optimal designs for low-

speed airfoils. In the study, lift maximization, pitching moment and adverse pressure

3



gradient minimization cases are shown. Both studies [22, 23] have used higher-order

polynomial coefficients that govern the airfoil surface coordinates as the design vari-

ables. After that, Hicks and Henne optimized a three-dimensional wing [24] using

Hicks-Henne bump functions as the design variables which control the wing twist

and shape. The works cited above use finite-difference method to calculate the gra-

dients of the objective function, such as the drag or the lift coefficient. The gradient

vector can be obtained with small perturbations in design variables as shown in [23].

While this approach is the simplest one, the cost is highest among any method due to

repeated flow solver calls. Additionally, finite differences are prone to truncation er-

rors. There are other ways to compute the gradients to drive the optimization process,

such as the adjoint method. Thus, to compute gradients much more efficiently, adjoint

methods are used. Adjoint methods are widely used in the literature since their intro-

duction by Pironneau in Stokes flow [25] and Euler equations [26]. Adjoint methods

are extended by Jameson [27] to inviscid compressible flows. Afterwards, the method

is applied to Euler equations by Reuther and Jameson [17] in a wing/body drag min-

imization case. Additionally, Baysal and Eleshaky [28] applied adjoint equations on

sensitivity of the 2-D Euler equations on the optimum design of a simplified scramjet

geometry. Eventually, the Navier-Stokes equations are used by Jameson et al. [18] in

transonic wing optimization cases. Adjoint methods are also used by Kim et al. [29]

for multi-element airfoil design in high-lift configuration with the viscous, continu-

ous adjoint method. All the works cited above use structured grids, which may be

burdensome to generate about complex geometries. The adjoint method is extended

to the unstructured grids by Anderson and Venkatakrishnan [30] and Anderson and

Bonhaus [31] for inviscid and viscous airfoil design cases, respectively.

Finally, there are gradient-free optimization techniques, where the gradient informa-

tion with respect to design variables are not required unlike the methods discussed

above. A few examples are genetic algorithms, direct search and random search

methods [32]. Among these algorithms, genetic algorithms (GA) are one of the most

popular ones. Marco et al. [33] successfully performed drag reduction over RAE2822

airfoil in transonic conditions using a genetic algorithm. Similarly, GA was used to

optimize airfoils suitable for wind turbines using a multi-objective approach by He

and Agarwal [34]. Gradient-free algorithms are useful when the problem considered

4



has multiple local minima (multimodal), discontinuous objective functions or discrete

design variables, but the drawback is high number of flow solver calls [35] which au-

tomatically means high cost.

As stated before, the gradient-free methods perform well when the problem possesses

multimodality as these methods are often aimed towards finding the global minimum

[35]. The gradient-based methods may aim towards a local minimum value, rather

than the global minimum value. Zingg et al. [36] has directly compared GA and

gradient-based methods. They have shown that for single-point optimization cases,

the computational cost of GA is 6 to 187 times that of adjoint method [36]. For the

multi-point optimization cases, they have shown that the cost of GA is 24 to 200

times that of the gradient-based method. Moreover, they observed that both meth-

ods produce the same Pareto-fronts. Pulliam et al. [37] have shown that gradient-

free algorithm requires many more flow solutions than adjoint method, but in the

end both gradient-free and gradient-based optimization produce very similar designs.

Chernukhin and Zingg [5] concluded that the airfoil design using Euler equations is

unimodal, even though the wing design had multiple local optima in the absence of

viscosity. Similarly, Holst and Pulliam [38] have indicated the unimodality (i.e. local

minimum is the global minimum) for airfoil and wing optimization cases. Clearly,

gradient-based methods reign supreme in aerodynamic shape optimization problems

due to cost savings associated with obtaining the optimum, which is generally in the

vicinity of the baseline profile. The airfoil design problem itself is also unimodal,

which is beneficial for the gradient-based optimization approach. Finally, Martins

[39] claim that the concern for aerodynamic shape optimization being multimodal is

unwarranted. Additionally, it is impossible to prove whether an optimum is a local

or global one and an optimum should be assumed to be global until proven otherwise

[39].

Even though higher fidelity tools that solve the (Reynolds-Averaged) Navier-Stokes

equations are used nowadays, the usage of the panel methods in aerodynamic opti-

mization should also be addressed. The growing interest in design optimization with

the lower-fidelity tools (which have fast turnaround times) is evident in today’s data

driven world. The availability of the panel methods and their ability to model configu-

rations with ease, and their relative economy favors the use of these methods for many

5



applications [40]. A continuous-adjoint based method is used for shape optimization

in free-surface potential flows in Ragab [41] for surface ships. Panel methods are

used as a medium-fidelity tool in Kennedy et al. for aero-structural multi-disciplinary

optimization (MDO) problems with a coupled-adjoint approach to obtain the aerody-

namic sensitivity derivatives [42, 43, 44]. After that, Morlando [19] used a 2-D panel

code, which is also written in Fortran, for sensitivity analysis of airfoils in inverse

design using the continuous adjoint method. Maple is used to automate the continu-

ous adjoint equation and its boundary conditions. An adjoint method based on a 3-D

panel code is used in Conlan-Smith et al. [45] to evaluate the sensitivity derivatives of

a wing for aerodynamic shape optimization. Finally, Sarıkaya and Tuncer [46] used

FDOT to automatically differentiate an in-house panel code using the reverse mode

with operator overloading to perform aerodynamic shape optimization studies using

the adjoint method.

1.1 Adjoint Methods and Automatic Differentiation

The continuous and discrete adjoint methods differ in a way that in the continuous

adjoint method the field equations are used to derive a new set of equations, which

are discretized later. The continuous adjoint is also known as the optimize-then-

discretize approach. In the continuous adjoint method, new boundary conditions must

be derived for each objective function due to dependency of the objective function to

boundary conditions [47]. This approach is used widely by Jameson and their peers

with potential flows, Euler and N-S equations [27, 16, 17, 18, 48, 29]. In the continu-

ous adjoint method, the exact sensitivity of the cost function with respect to the design

variables are not obtained. The obtained sensitivities may be not be consistent with

the discrete adjoint sensitivities or finite differences. Due to the preliminary work

required just to derive the necessary equations, this method is harder to implement.

The discrete adjoint method is known as the discretize-then-optimize approach. In

this method, the governing equations are discretized first and then optimized later.

The exact sensitivity of the objective function with respect to the design variables

are obtained, which are consistent with the discrete form of the objective function

computed by the discrete form of the governing equations. These properties make

6



this method appealing for gradient-based optimization studies [49]. Development of

a discrete-adjoint solver is easier than a continuous-adjoint one, thanks to automatic

differentiation (AD) techniques. The automatic (or algorithmic) differentiation tech-

nique allows to users to differentiate a code line-by-line [50]. This technique may be

used to develop a discrete-adjoint solver. The discrete-adjoint solvers for CFD can

be generated via two methods, operator-overloading and source-code transformation.

In the former, the whole code is automatically differentiated as given by Djeddi [51],

for example. But the downside is that automatically differentiating the whole code

requires substantial amount of memory since every operation is stored in a file called

tape. It is clear that storing every operation adds overhead compared to storing the

useful parts. The issue is alleviated by fixed-point iterations and checkpointing fea-

tures. FDOT, which is used in this study as the AD tool, adresses the high memory

footprint issue with the help of checkpointing [51]. In the source-code transformation

approach, the code is selectively differentiated by an AD tool as shown in Kaya [49].

The necessary lines are added by the AD tool to compute derivatives after solving

the linear system. This way, flux Jacobian matrices are computed with less memory

footprint and computational cost than operator-overloading. However, since source-

code transformation requires adding to the code with a tool, this step requires more

work than operator overloading approach. Both of these methods will be discussed in

detail in the Method part.

Nevertheless, it is clear that both methods are useful when used appropriately. The ad-

joint method, since its introduction, is widely used in the literature due to advantages

it provides when computing sensitivities. Moreover, aerodynamic shape optimization

using adjoint methods is still a hot topic, as shown in the preceding part. Additionally,

the adjoint methods are also used in transition modeling and uncertainty quantifica-

tion problems [52], which indicates the applicability of the adjoint method in the other

aerodynamics related areas.

1.2 Objectives of the study

This study aims at developing a discrete adjoint based aerodynamic design optimiza-

tion tool for subsonic airfoil profiles. The efficiency and accuracy of panel codes over

7



the RANS solvers for attached flows is exploited in this study. The developed tool

is expected to be effectively used in preliminary and advanced design stages. The

discrete adjoint solver for an in-house panel code written in Fortran is obtained by

using the automatic differentiation. The main objectives of this study are

• to employ the automatic differentiation tool, FDOT, to develop a discrete ad-

joint solver based on the in-house panel code

• to use the reverse mode of FDOT to obtain the adjoint solver

• to validate the adjoint solver and the sensitivity derivatives

• to use Class Shape Transformation (CST) to represent airfoil profiles

• to use an open-source tool, DAKOTA, as the optimizer

• to perform aerodynamic shape optimization of subsonic airfoil profiles for tar-

get lift and moment coefficients

• to incorporate a multi-point design optimization algorithm

• to enhance the design objective for a reduced adverse pressure gradient over the

upper airfoil surface

• to verify the optimum designs against RANS solutions

1.3 The Outline of the Thesis

In the introduction part, the importance of the aerodynamics optimization on the air-

craft performance is mentioned. Advantages and disadvantages of various numerical

optimization techniques and the related works making use of these techniques are

mentioned. Continuous and discrete adjoint methods are discussed. In the Chapter

2, the necessary prerequisites to construct an aerodynamic shape optimization frame-

work are discussed: panel method and the gradient based optimization method is

discussed. The automatic differentiation techniques, and shape parametrization tech-

niques are explained in the following subparts. Then, in Chapter 3, validation and

verification studies are first presented. The in-house panel code and the open-source

RANS solver, SU2, is validated using the experimental pressure coefficient data from

a wind tunnel for various angles of attack. Grid convergence studies for RANS solver

8



are shown. The sensitivity derivatives are validated by using the adjoint solver and the

results are compared with finite differences. The results of the optimization studies

are presented and further discussed. The single-point and the multi-point optimiza-

tion cases are presented with increasing complexity in objective function. In the end,

the conclusions drawn are given in the Chapter 4.

9



10



CHAPTER 2

OPTIMIZATION METHODOLOGY

In this study an in-house panel code is used for the shape optimization of subsonic

airfoil profiles. A gradient-based optimization is performed. The sensitivity deriva-

tives are obtained by means of a discrete adjoint solver. Discrete adjoint method and

automatic differentiation (AD) is discussed. Both forward mode and the reverse mode

of the adjoint method are explained in detail. The AD tool, FDOT, is employed in

reverse (adjoint) mode to obtain the adjoint solver. An automatic differentiation ex-

ample using FDOT is presented for a simple objective function. Application of the

Class Shape Transformation technique is shown. Subsequently, gradient projection

onto the design variables are shown by constructing the shape sensitivity matrix. Fi-

nally, the open-source RANS solver used to verify the optimum designs is introduced.

2.1 In-house Panel Code

The existing in-house panel code is based on constant strength source (σ) and vortex

(γ) panels distributed on the airfoil surface. The solution is based on the superposition

of the potentials induced by the source and the vortex sheets with unknown strengths.

The linear system of equations are obtained in order to satisfy the flow tangency over

the airfoil surface and the Kutta condition at the airfoil trailing edge for the unknown

source and vortex strengths by a Gaussian solver. The velocity field induced by the

source and the vortex panels and the surface pressure distribution based on Bernoulli’s

equation are then evaluated. The panel code written in Fortran 90 is slightly modified

for automatic differentiation using FDOT. The modifications are further discussed in

Chapter 2.2.3.

11



The panel code solves the Laplacian equation, which governs the steady, incompress-

ible, irrotational and inviscid flows,

∇2Φ = 0 (2.1)

where Φ is the scalar potential function. The potential induced by a source sheet, at a

point (x, y) can be obtained by Eq. 2.2,

Φ(x, y) =

∫ L

0

σ

2π
ln
√

(x− xL)2 + y2 dxL (2.2)

where 0 to L indicate local panel coordinates, and the integration is carried over a

panel. The σ distribution over the panels is not known a priori.

Additionally, the potential induced at (x, y) by a vortex sheet is given by Eq. 2.3,

Φ(x, y) =

∫ L

0

γ

2π
tan−1

(
y

x− xL

)
dxL (2.3)

where 0 to L indicate local panel coordinates, and the integration is carried over a

panel. Similarly, the γ distribution over the panels is not known a priori.

The influence of the jth panel on the ith panel can be computed in a discrete manner

to obtain the source and vortex influence coefficients,

σ(i, j) =
1

2π

(
sin(θi − θj)

∫ L

0

x− xL
(x− xL)2 + y2

dxL

+ cos(θi − θj)
∫ L

0

y

(x− xL)2 + y2
xL

) (2.4)

γ(i, j) =
1

2π

(
cos(θi − θj)

∫ L

0

x− xL
(x− xL)2 + y2

dxL

− sin(θi − θj)
∫ L

0

y

(x− xL)2 + y2
dxL

) (2.5)

where θ is the angle between the panel and the global x and y axis. After creating

the influence coefficients matrix using Eqs. 2.4 and 2.5, local source and vortex panel

strengths are obtained with a Gaussian solver. After having obtained these, the local

u and v velocities can be computed with,

uL =
σ

2π

∫ L

0

x− xL
(x− xL)2 + y2

dxL −
γ

2π

∫ L

0

y

(x− xL)2 + y2
dxL (2.6)

12



vL =
σ

2π

∫ L

0

y

(x− xL)2 + y2
dxL +

γ

2π

∫ L

0

x− xL
(x− xL)2 + y2

dxL (2.7)

Therefore, using the Eqs. 2.6 and 2.7, it is possible the obtain the velocity distribution

over the airfoil and subsequently the pressure distribution with Bernoulli’s equation.

2.2 Gradient-Based Optimization

In this study, a gradient based algorithm is employed for the optimization. In general

an optimization problem is defined as

minimize f(X)

with respect to X

subject to g(X) ≤ 0

h(X) = 0

(2.8)

In Eq. 2.8, X is the vector of design variables, f is the objective function, g and h are

inequality and equality constraints, respectively [3].

The open source optimization toolbox DAKOTA [53] is used to drive the optimization

process. The gradient information DAKOTA needs is provided by the discrete adjoint

solver developed. In this study, optpp_q_newton algorithm is chosen, which is the

quasi-Newton optimization method suitable for non-linear problems [54]. In this

method, a low-rank approximation to the Hessian is computed by means of a BFGS

(Broyden-Fletcher-Goldfarb-Shanno) [55, 56, 57, 58] update in each design iteration.

A traditional steepest-descent algorithm requires (which is of first-order):

xk+1 = xk − α∇f(xk) (2.9)

where α is the stepsize. There is no curvature information is present in Eq. 2.9,

which may slow down the convergence. Consider Newton’s method given in Eq.

2.10, which also adds curvature information to the problem (second derivatives):

xk+1 = xk −
[
Hk
−1]∇f(xk) (2.10)

13



where Hk is the Hessian matrix, which is nothing but the matrix of the second deriva-

tives. Even though the Hessian matrix could be computed using automatic differentia-

tion techniques outlined prior, the computational cost of this procedure is proportional

to the number of design variables as shown by Rumpfkeil and Mavriplis [59].

Thus, in this study, the quasi-Newton method is employed where Hessians are approx-

imated. One advantage of quasi-Newton method over the traditional steepest-descent

is that convergence is significantly faster in the quasi-Newton method [60]. Jones

and Finch [61] suggest that conjugate gradient (CG) and quasi-Newton methods offer

clear advantages over the basic steepest-descent algorithm in terms of convergence.

In the quasi-Newton optimization algorithm, a new iterate for the design variables is

obtained by Eq. 2.11,

wk+1 = wk − sk B−1k ∇I(wk) (2.11)

where Bk is the kth approximation to the Hessian matrix, sk is the stepsize, and yk

is the yield in the gradients [62] as shown in Eq. 2.12. The optimal stepsize for the

new step sk is obtained via a value based line search, which satisfies the sufficient

decrease condition [53].

yk = ∇wI(wk+1)−∇wI(wk) (2.12)

Hessian matrix is approximated by the BFGS (Broyden-Fletcher-Goldfarb-Shanno)

[55, 56, 57, 58] formula for the (k + 1)th iterate using Eq. 2.13

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
(2.13)

Prior to first update the quasi-Hessian matrix is computed as such,

B0 =
yTk yk
yTk sk

I (2.14)

The convergence is obtained when the relative change in the successive objective

function evaluations drop below a certain threshold, i.e. 1 × 10−8. The optimization

process is halted, and the current point is assumed to be optimal. The optimization

flowchart is given in Fig. 2.1.

14



Reconstruct airfoil

using CST weights

Solver inputs

α, target values

Flow solver

CL, CM , ...

Adjoint solver

Sensitivity analysis

Panel code

DAKOTA

BFGS update

Gradient projection

dI/dX to dI/dw

Converged? End

dX
dw

wn

I(wn), R(wn)

I(wn)

dI/dX

dI/dw

NO

wn = wn+1

YES

Figure 2.1: Optimization process flowchart

15



2.2.1 Evaluation of the Sensitivity Derivatives/Gradient Vector

In an aerodynamic shape optimization problem, the objective function is a function

of the geometric shape, X, and the flow variables q. The flow variables are a function

of X. The objective function generally consists of aerodynamic coefficients such as

lift and drag coefficients or a combination of these such as CL/CD, which is the

aerodynamic efficiency. Without a loss of generality, the choice of objective function,

I, depends on the optimization problem in hand and is given as

I = I
(
X,q(X)

)
(2.15)

Additionally, since shape parameters, p, govern the physical coordinates of the body,

X, the physical coordinates are related to the shape parameters such that

X = X
(
p
)

(2.16)

Eq. 2.15 is the objective function definition, which depends only on the shape pa-

rameters, p. Taking the derivative of the objective function with respect to shape

parameters yields the Eq. 2.17.

dI

dp
=

(
∂I

∂X
+
∂I

∂q
∂q
∂X

)
∂X
∂p

=
dI

dX
dX
dp

(2.17)

Note that X is the panel coordinates which only depends on the shape parameters as

indicated in Eq. 2.16.

In the present study, dI/dX term given in Eq. 2.17 is evaluated by the algorith-

mic/automatic differentiation (AD) of the panel code in reverse/adjoint mode. FDOT

is employed as an AD tool. FDOT, which stands for Fast Automatic Differentiation

Based on Operator-Overloading Technique is a toolbox written by Djeddi and Ekici

[63, 51] for Fortran codes. Details are given in Chapter 2.2.3.

Consider the governing equations, which are solved for flowfield evaluation. In Eq.

2.18, the flowfield is denoted by the residual vector R. As the governing equations

16



are always satisfied, the right hand side in the residual equation is set to zero.

R = R
(
p,q (p)

)
= 0 (2.18)

In essence, any converged flow solution is of the form,

dR
dp

=
∂R
∂p

+
∂R
∂q

dq
dp

= 0 (2.19)

where R is the residual vector. The total derivative of the residual vector with respect

to the design variables should vanish as convergence is reached, since the governing

equations are satisfied [64].

Therefore, the change in flow variables with respect to design variables term, dq/dp

in equation 2.19, can be solved for

dq
dp

= −
[
∂R
∂q

]−1
∂R
∂p

(2.20)

and Eq. 2.20 may be subsequently inserted into equation 2.17, which yields the basis

of sensitivity equation,

dI

dp
=
∂I

∂p
− ∂I

∂q

[
∂R
∂q

]−1
∂R
∂p

(2.21)

This equation represents the change in the objective function with respect to the de-

sign variables, which should be evaluated in the optimization process. In the follow-

ing subsections, the solution strategies for Eq. 2.21 are discussed. First, the direct

method and the finite difference methods are presented, which have cost drawbacks.

Then, the adjoint method, which is much more computationally efficient, is intro-

duced.

2.2.1.1 Direct Method

Clearly, one of the challenges is to evaluate the dq/dp term in Eq. 2.20 due to strong

coupling between the design variables and flow variables as mentioned before.

−
[
∂R
∂q

]−1
∂R
∂p

=
dq
dp

(2.22)

17



If the total derivative is to be computed directly, the following linear system [65] must

be obtained by manipulating Eq. 2.22

−
[
∂R
∂q

]
dq
dp

=
∂R
∂p

(2.23)

Eq. 2.23 may be evaluated via solving the linear system associated. However, the

computational cost scales linearly with the number of design variables. In aerody-

namic shape optimization problems, the design variables may be on the order of hun-

dreds [66] making the direct solution approach infeasible.

2.2.1.2 Finite Difference Method

In the finite difference method, the gradient vector may be obtained by perturbing

each design variable once and obtaining flow solutions by using the finite difference

equation:
dI

dp
=
I(p + h)− I(p)

h
+O(h) (2.24)

This method is the easiest one to implement into an optimization framework. How-

ever, similar to the direct method, this method also requires repeated flow field evalu-

ation, which is on the order of (n+ 1) for n design variables for first-order accuracy.

The cost scales linearly with the number of design variables, hence this method is also

prohibitive in terms of cost. Additionally, this method is prone to truncation errors.

Finally, an additional study for the stepsize, h, must be carried out first to determine

an optimum perturbation size. This method is very effective for validation purposes

as it is straightforward to implement.

2.2.1.3 Adjoint Method

The adjoint method, proposed by Pironneau [25, 26] and extended to compressible

flows by Jameson [27] are widely used in aerodynamic optimization problems due to

its efficiency. In the adjoint approach, the computational cost scales with the number

of objective functions rather than the number of design variables. In general aerody-

namic shape optimization problems, the number of design variables are much larger

18



than the number of objective functions, i.e. NDV � Nobj . For example, the de-

sign variables may be spanwise wing stations that control twist, sweep and thickness

which may be on the order of hundreds for a large-scale optimization case.

The objective functions are generally integral quantities such as CD, CL, CM which

are much less than the number of design variables. Hence, the main advantage of the

adjoint method is the dramatic decrease in the computational cost. For example, an

adjoint solution has a computational cost that is on the order of 1 flow solution, but

finite differences require NDV number of flow solutions, at least.

Consider the following equation which is similar to Eq. 2.21,

dI

dp
=
∂I

∂p
+ ψT ∂R

∂p
(2.25)

where ψT given in Eq. 2.25 is the adjoint vector.

ψT = −∂I
∂q

[
∂R
∂q

]−1
(2.26)

Finally, Eq. 2.26 is solved for the adjoint variable, ψ. After solving for the adjoint

vector, the sensitivities with respect to design variables are obtained by carrying out

the necessary multiplications shown in Eq. 2.25.

When compared with the direct method or the finite difference methods outlined prior,

the adjoint method is much more efficient. However, there may be difficulty in car-

rying out the necessary derivations such as boundary conditions or new functionals

for continuous adjoint formulations. In the continuous adjoint method, by using the

newly derived equations, the adjoint variable, ψ, is solved for. In the discrete adjoint

approach, the CFD code may be viewed as a series of successive functional operations

after initialization [51] such that

q0 =f0(p)

q1 =f1(q0)

...

qn =fn(qn−1)

(2.27)

19



where qn is the converged solution at nth iteration, which itself is a function of qn−1,

and so on. The objective function is evaluated by an operator, ~v, acting on the fully-

converged solution, yielding

I = ~vTqn (2.28)

To compute the gradient (sensitivities) of the objective function with respect to the

input variables, Eq. 2.28 is differentiated and by the implicit function theorem,

∇I = ~vT
[
∂fn
∂qn−1

] [
∂fn−1
∂qn−2

]
...

[
∂f1
∂q0

] [
∂f0
∂p

]
(2.29)

Eq. 2.29 can be evaluated by nmatrix-matrix products and one matrix-vector product

at the end. This method is known as the forward mode of an adjoint solver. The

derivatives are propagated from the initial solution towards the converged solution,

in the forward direction. The computational effort of matrix-matrix products scale

linearly with the number of design variables present in the problem as matrix grows

linearly. In aerodynamic shape optimization applications where the number of design

variables are quite high, this process leads to significant computational costs. On the

contrary, if the Eq. 2.29 is transposed [51],

∇IT = ~vT
[
∂f0
∂p

]T [
∂f1
∂q0

]T
...

[
∂fn−1
∂qn−2

]T [
∂fn
∂qn−1

]T
(2.30)

Evaluation of Eq. 2.30 requires n matrix-vector products. This method is known

as the reverse mode of an adjoint solver. As the name implies, the derivatives are

propagated from the converged solution towards the initial solution, in the backwards

direction. Using the reverse mode, the computational cost is significantly lower but

the drawback is that the process requires storing all the intermediate flow solver val-

ues in the memory. However, storing all of the intermediate steps require very high

memory footprint. More detailed discussions regarding the automatic differentiation

procedure, as well as the forward and the reverse modes are given in the Section 2.2.2.

20



2.2.2 Automatic/Algorithmic Differentiation

Automatic Differentiation -also known as Algorithmic Differentiation- is a method

based on the systematic application of the differentiation chain rule to computer pro-

grams [50]. In the optimization process, there are need for certain partial derivatives

(as shown in the adjoint method) where the specifically developed automatic differ-

entiation (AD) tools are used for evaluation of these terms.

While these derivatives could be computed using finite difference (FD) or complex-

step (CS) methods, the computational cost associated with FD and CS are prohibitive.

As stated in the preceding parts, the cost of these methods scale linearly with the

number of design variables/inputs. However, the AD approach is as accurate as hand-

differentiated/analytically differentiated code and requires just the fraction of a cost.

The implementation is potentially easier since the process is automated [65], which

means that the hassle of lengthy hand derivations or human errors are avoided.

There are two main approaches for AD: source-code transformation and operator-

overloading. In the source-code transformation approach, the code is scanned line

by line and new variables are introduced as new source code lines, when necessary.

This is done procedurally by an AD tool. The AD tool then applies the chain rule in a

systematic manner to evaluate the partial derivatives. Finally, the tool outputs an aug-

mented derivative code, which computes the necessary partial derivatives specified

by the user.

In the operator-overloading approach (OO/AD), the source-code is not changed sig-

nificantly like the former approach. In OO/AD, the variable types are of derived-type.

These variables include both the variable value and also the corresponding derivative

[65]. As a consequence, the operations have to be redefined (overloaded) such that

they also return the derivative of the operation.

Apart from main approaches to AD, there are also two modes of AD, namely the

forward and the reverse modes. These modes are discussed in-depth in Sections

2.2.2.1 and 2.2.2.2, respectively.

21



Define the chain rule as follows,

∂C
∂v

dv

dc
= I =

[
∂C
dv

]T [
∂v

dc

]T
(2.31)

call the left hand side forward chain rule, and the right hand side reverse chain rule

[65].

In an automatically differentiated computer code, the variables v in the Eq. 2.31 are

some combinations of assigned variables, which are denoted with t. Line by line,

the AD method applies the chain rule for every assignment in the code, which may

be considered as functions of their own. These explicit functions are denoted by

T , which are functions of the previous assignments and inputs. Hence, T functions

depend only on previous operations.

Therefore, define the variables and constraints,

v =


t1

t2
...

tn

 C(v) =


t1 − T1()
t2 − T2(t1)

...

tn − Tn(t1, . . . , tn−1)

 (2.32)

2.2.2.1 Algorithmic Differentiation in Forward Mode

Applying the chain rule which is given in the left hand side of Eq. 2.31, the forward

mode of AD is obtained,

1 0 . . . 0

−
∂T2

∂t1
1

. . . ...
... . . . . . . ...

−
∂Tn

∂t1
. . . −

∂Tn

∂tn−1
1





1 0 . . . 0

dt2

dt1
1

. . . ...
... . . . . . . ...

dtn

dt1
. . .

dtn

dtn−1
1


= I (2.33)

Clearly, the forward mode AD shown in Eq. 2.33, yields two lower triangular matri-

ces. The product of these matrices is still a lower triangular matrix. A rather simpli-

22



fied form of Eq. 2.33 can be obtained by index notation,

dti
dtj

= δij +
i−1∑
k=j

∂Ti
∂tk

dtk
dtj

(2.34)

By choosing one tj and keeping j fixed, and marching in index i from 1 to n, a whole

column of the lower triangular matrix is obtained. The result is the derivatives of

all the variables with respect to the chosen variable/input. Moreover, determining

the derivatives for another variable require repeating this computation. Thus, forward

mode is more efficient when the number of outputs are larger than the number of

inputs. This mode is also known as the tangent mode.

2.2.2.2 Algorithmic Differentiation in Reverse Mode

Applying the chain rule which is given in the right hand side of Eq. 2.31, the reverse

mode of AD is obtained,

I =



1 −
∂T2

∂t1
. . . −

∂Tn

∂t1

0 1
. . . ...

... . . . 1 −
∂Tn

∂tn−1

0 . . . 0 1





1
dt2

dt1
. . .

dtn

dt1

0 1
. . . ...

... . . . 1
dtn

dtn−1

0 . . . 0 1


(2.35)

The reverse mode AD shown in Eq. 2.35, yields two upper triangular matrices. The

product of these matrices is still an upper triangular matrix. A rather simplified form

of Eq. 2.35 can be obtained by index notation,

dti
dtj

= δij +
i∑

k=j+1

dti
dtk

∂Tk
∂tj

(2.36)

In the reverse mode, a ti is chosen, which is the quantity to be differentiated. Then,

marching backwards in the index j from n to 1, a column of the upper triangular

matrix is obtained. The result is the derivatives of the chosen quantity with respect

to all other variables/inputs. Thus, reverse mode is more efficient when the number

of inputs are larger than the number of outputs. For example, the sensitivity of lift

coefficient (output size 1) with respect to mesh nodes (input size of Nmesh).

23



2.2.2.3 Source Code Transformation

The AD modes are discussed in detail in the previous section. In this section, the

source code transformation (SCT) method, which is one of the implementation meth-

ods of these modes is discussed. In the source code transformation method, -as

the name implies- the source code is differentiated line by line, and the new vari-

ables (derivatives and temporary variables) are introduced as necessary by the AD

tool. This explicit transformation of the main code (primal) to a separate derivative

(adjoint) program requires careful tooling. In source-code transformation approach

all the intrinsic functions (sin cos etc.) must explicitly be supported [67] otherwise

derivatives cannot be computed.

For SCT, there are various tools available for multiple programming languages. For

C/C++, AD tools that make use of SCT are ADIC [68], OpenAD [69], TAPENADE

[70], to name a few. Similarly, for Fortran, TAF [71] OpenAD/F [72] ADIFOR [73]

TAPENADE [70] are some of the toolboxes that make use of SCT. For other program-

ming languages such as MATLAB (ADIMAT [74]), Python (Tangent [67]), Julia, R

and so on, the reader is referred to autodiff 1 website for further information about the

subject.

2.2.2.4 Operator Overloading

In operator-overloading (OO) approach changes in the source code are negligible. In

OO, the operations are "overloaded", i.e. elementary operation semantics are rede-

fined [75]. Newly derived variable types that contain both the value of the variable

and a corresponding index are used to record operations in a tape [63]. The recorded

tape may be rewound, since each operation is logged to a tape with previously rede-

fined variables at the runtime. With the help of chain rule, the derivatives are then

evaluated.

For C/C++, some of the OO-AD tools are FAD [76] and CoDiPack [77], which is

used in the discrete-adjoint module of SU2. For Fortran, ADOL-F [78], ADF95 [79],

AUTO_DERIV [80] are some of the AD tools that make use of operator overloading.
1 https://www.autodiff.org

24

https://www.autodiff.org


However, recording each operation in a tape may exceed the available memory re-

sources as the expression tree grows (e.g. more operations, bigger mesh) which is a

big problem for operator overloading. According to Djeddi and Ekici, none of the

current Fortran OO implementations have adressed the inherently large memory foot-

print issue [63].

Djeddi [51], Djeddi and Ekici [63] developed a new toolbox (named FDOT) based

on operator overloading with huge reductions in the memory footprint for Fortran

codes. In this study, FDOT is used to automatically differentiate an in-house panel

code written in Fortran. Details regarding FDOT are given in the next section.

2.2.3 Automatic Differentiation with FDOT

In the present study, dI/dX term, which is given in Eq. 2.17, is evaluated by the au-

tomatic differentiation of the panel code in reverse/adjoint mode. FDOT is employed

as an AD tool. FDOT, which stands for Fast Automatic Differentiation Based on

Operator-Overloading Technique is a toolbox written by Djeddi and Ekici [63, 51]

for Fortran codes.

The high-memory requirements of a conventional operator-overloading code is alle-

viated by the checkpointing feature and the fixed-point iteration approach in FDOT

[64]. The fixed-point iteration approach for adjoints are proposed in 1994 by Chris-

tianson [81] and the idea is implemented in codes like ADOL-C [82] and CoDiPack

[77], both of which use the object-oriented features of C/C++ languages. Currently,

no other AD tool for Fortran addresses the high memory issues [63].

FDOT can be used as a black-box for automatic differentiation of a solver with mi-

nor modifications to the Fortran source code. The differentiated code, known as the

adjoint solver, requires the flow solution for initialization. The computational cost of

the adjoint solver is proportional to one flow solution [63]. In the end, the adjoint

solver returns dI/dX values, which are the sensitivities of the objective function with

respect to the panel coordinates. The size of the computed sensitivity vector is equal

to the number of panels, Npanel

To automatically differentiate a code, the REAL variables are redefined as AREAL

25



which is a derived data type used in the FDOT module. The derived data type object

holds a real component and an index component. The derived data type stores 8-byte,

double precision float for former and 4-byte double-precision integer as the latter.

After that, a tape size is defined and tape allocation subroutine is called in the adjoint

code. The expressions in the code are carried out as normal but these expressions are

written into the tape simultaneously. Then, the objective function is computed and

passed onto the relevant subroutine. Finally, by calling adjoint evaluation subroutine

the adjoints are evaluated by employing reverse-mode (i.e. the tape is rewound). The

user has control over the tape iteration convergence tolerance, iterative array sizes,

maximum iterations for fixed-point iteration procedure and checkpoint locations.

In general, CFD codes consist of 3 parts, pre-iterative, iterative and post-iterative

parts. In the pre-iterative section, mesh, solver settings and initialization is carried

out. In the iterative part, the solution is obtained iteratively and convergence checks

are carried out. Finally, in the post-iterative part, the converged solution, objective

function and the necessary files are written into the disk as the outputs.

In the adjoint code, there are minor changes to the code. In the pre-iterative part, the

mesh and the solver settings are read as usual. However, the converged flow solution

is read instead of initializing. After that, the iterative portion of the solver is marked

with checkpoints for better memory efficiency. Then, this portion is run for exactly

1 iteration only, since FDOT makes use of fixed-point iteration approach. After

evaluating the adjoints, the output is written to the disk.

As an example, consider a simple Fortran code given in Fig. 2.2a, which calculates

A = sin(B) + C2.

B and C are user inputs taken as 0.0 and 3.0, respectively. the analytic derivatives

are,

∂A
∂B

= cos(B) = 1.0 (2.37)

∂A
∂C

= 2C = 6.0 (2.38)

Algorithmically differentiated code with FDOT provides the adjoint solver, which is

26



given in Fig. 2.2b. The adjoint solver computes the derivatives of output, which is

considered as the objective, with respect to the input variables input1, input2 in

reverse mode. The print statements at the end outputs the partial derivatives of the ob-

jective function with respect to all the variables at once, which shows the efficiency

of the adjoint solver in reverse mode. The output is shown in Fig. 2.3, where the

derivatives are equal to the analytical values as expected.

The TAPE_R8(input1%INDEX)%A term is the derivative of the output with re-

spect to input1. The TAPE_R8(input2%INDEX)%A term is the derivative of

the output with respect to input2.

1 program example
2 real :: input1,input2, output
3

4 input1 = 0.0
5 input2 = 3.0
6 output = (sin(input1) + input2**2)
7

8 print*, "input1 = ",input1
9 print*, "input2 = ",input2

10 print*, "output = ",output
11

12 end program

(a) Forward code

1 program OO_AD_example
2 use FDOT
3 type(AREAL) input1,input2, output
4 TAPE_SIZE = 500
5 call ALLOCATE_TAPES
6

7 input1 = 0.0
8 input2 = 3.0
9 output = (sin(input1) + input2**2)

10

11 call SET_OBJECTIVE(output)
12 call ADJOINT_EVALUATION
13 call PRINT_TAPE
14

15 print*, "input1 = ",input1%v
16 print*, "input2 = ",input2%v
17 print*, "output = ",output%v
18 print*, TAPE_R8(input1%INDEX)%A
19 print*, TAPE_R8(input2%INDEX)%A
20

21 end program

(b) Adjoint code

Figure 2.2: Example forward and adjoint source codes for computation of

A = sin(B) + C2

1 input1 = 0.00000000000000

2 input2 = 3.00000000000000

3 output = 9.00000000000000

4 1.00000000000000

5 6.00000000000000

Figure 2.3: Output of the adjoint code

27



2.2.4 Airfoil Shape Parametrization

In aerodynamic shape optimization problems, there are many ways to tackle the shape

parametrization problem. Shape parametrization is one of the crucial steps, since

sensitivity of grid coordinates with respect to design variables, namely, ∂X/∂w are

obtained in this step. The robustness and design space coverage are important aspects

that require close attention. If the parametrization technique is not able to adequately

span the design space, then the optimizer may get stuck on a non-optimal point.

In the literature, there are many parametrization methods such as B-Splines, PARSEC

and Class Shape Transformations (CST) and Free-Form Deformation (FFD). These

parametrizations are useful in a way that they reduce the number of design variables

significantly to represent the same shape. Moreover, making use of parametrizations

allow obtaining smoother shapes.

2.2.4.1 Class Shape Transformation

In this study, Class Shape Transformation (CST) which is devised by Kulfan [83, 84]

is used for the parametrization of airfoil profiles with sharp trailing edges. It is shown

by Nadarajah et al. [85] that CST performs well in 2-D applications when compared

to mesh points, which had the highest accuracy. In the same study it is shown that

CST based shape optimization is able to converge to the same minimum drag profile

as the ones based on the mesh point and B-spline techniques using only 5 design

variables.

CST representation of an airfoil may be obtained by using a class function and a

shape function:

ζ = CN1
N2(ψ)S(ψ) + ψ∆τ (2.39)

where ζ in Eq. 2.39 is the non-dimensional y-distance, ψ is the non-dimensional x-

distance, CN1
N2 is the class function with coefficients N1 and N2, S(ψ) is the shape

function, and ∆τ is the trailing edge thickness to chord ratio. Note that due to the

sharp TE requirement of the panel code, the trailing edge thickness term is omitted.

28



The class function is given by

CN1
N2(ψ) = (ψ)N1 (1− ψ)N2 (2.40)

Class functions are used to define "classes" of geometries [86], which are given in

Table 2.1. In this study, to create a round-nose, and a sharp trailing edge exponents

N1 and N2 are set to 0.5 and 1.0, respectively.

Table 2.1: Classes defined by exponents N1 and N2

N1 N2 Class type

0.5 1.0 Round-nose, pointed aft end airfoil

0.5 0.5 Elliptic airfoil

1.0 1.0 Bi-convex airfoil

0.75 0.25 Low-drag projectile

0.75 0.75 Sears-Haack Body

Using Bernstein polynomials of order n, the shape function is obtained by

S(ψ) =
n∑

i=0

wiSi(ψ) =
n∑

i=0

wi

(
Ki ψ

i (1− ψ)i
)

(2.41)

in Eq. 2.41, Ki is the binomial coefficient which is equal to
(
n
i

)
. Therefore, the class

shape transformation is expressed by combining Eqs. 2.39 and 2.41,

ζ = CN1
N2

n∑
i=0

wi

(
Ki ψ

i (1− ψ)i
)

(2.42)

In Eq. 2.42, w is a vector of coefficients that is to be determined with a size of

2(n + 1). This vector of weights determine the unique airfoil shape. Note that Eq.

2.42 uses the class function defined in Eq. 2.40 with coefficients N1 = 0.5 and N2

= 1, which is required for a round LE and sharp TE. Moreover, Eq. 2.42 represents

either the lower or the upper surface of the airfoil, which will change depending on

the signs of the weights. For upper surface, there is a set of unique wi values, and

similarly there are unique wi values for the lower surface. Ultimately, these values

should be obtained using an optimization or a curve fitting method to represent the

baseline airfoil using CST.

29



Additionally, two of the CST parameters are intuitive. These parameters define the

leading edge radius and trailing edge boat-tail angle. Shape function at the ψ = 0 only

influences the leading edge radius by,

S(0) =

√
2 rLE
c

(2.43)

Shape function at the ψ = 1 influences only the trailing edge boat-tail angle, β,

S(1) = tan β + ∆τ (2.44)

where ∆τ is the trailing edge thickness for blunt TE airfoils. It should be noted

that due to sharp TE requirement for the panel code, this term is omitted from the

formulation. All the other terms affect the thickness distribution of the airfoil. Fig.

2.6 shows the effect of perturbing some CST weights.

By the Weierstrass approximation theorem, there always exists a set of coefficients

to bound the approximation error within a small magnitude using finitely many terms

[87]. Thus, in the present study, a code is developed which minimizes the difference

between the analytical coordinates and the CST reconstruction [46]. The airfoils are

approximated with sufficient accuracy using 4 to 10 Bernstein polynomials, depend-

ing on the airfoil, with RMS on the order of 10−5. In Figure 2.4, analytic reconstruc-

tion of NACA 0012 airfoil is shown with the circles, and 5th order CST reconstruction

of the same airfoil is plotted in red. RMS value is on the order of 10−5.

In the Figure 2.5, Bernstein polynomials (shape function components),wi Si, are plot-

ted for NACA0012 using 5th order CST. This is a visual representation of Eq. 2.41,

where the Bernstein polynomials of order 5 result in 6 different curves. Additionally,

the sum of the Bernstein polynomials are then multiplied with the class function to

obtain the CST representation of the NACA0012 airfoil (see Eq. 2.42). Clearly, the

CST reconstruction of the airfoil perfectly agrees with the analytical description of

NACA0012. In Table 2.2, the CST weights are given for NACA0012 airfoil, which

could be used to reconstruct the airfoil with the method outlined above by multiplying

the weights with the appropriate Bernstein polynomials. First half corresponds to the

lower surface and the other half corresponds to the upper surface.

30



-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

x/c

Analytical
5th order CST

Figure 2.4: 5th order CST representation of NACA0012

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

w0 S0
w1 S1

w2 S2
w3 S3

w4 S4
w5 S5

Σ C0.5
1.0 wi Si 

NACA 0012

Figure 2.5: 5th order CST components of NACA0012.

31



Table 2.2: 5th order CST weights for NACA0012

Number (i) Value

0 -0.171652

1 -0.153572

2 -0.161381

3 -0.134693

4 -0.144539

5 -0.140987

6 0.171652

7 0.153572

8 0.161381

9 0.134693

10 0.144539

11 0.140987

32



2.3 Gradient Projection

If a shape parametrization technique is used, the computed gradients with respect

to panel coordinates need to be projected onto the design variables. The procedure

outlined in this section is not necessary if mesh nodes are directly used as design

variables since p = X. To accomplish this consider the Eq. 2.17 again, which is the

general sensitivity equation,

dI

dp
=

(
∂I

∂X
+
∂I

∂q
dq
dX

)
∂X
∂p

=
dI

dX
dX
dp

(2.45)

In Eq. 2.45, X denote mesh variables, q denote flow variables, and p denote design

variables. In Section 2.2.1, computation of the gradient with respect to mesh variables

are explained. Recall that the computed gradient corresponds to dI/dX term in the

RHS of Eq. 2.45. Afterwards, in Section 2.2.4.1, CST parametrization technique is

explained, which represents the airfoil shape. Therefore, only the shape sensitivity

matrix is yet to be constructed, which is the dX/dp term on the RHS of Eq. 2.46. In

this section, shape sensitivity matrix and the gradient projection is discussed.

For cases where the volume mesh is of a concern, the volume mesh is deformed

after the surface mesh deformation has been applied. However, in a panel code there

is only surface mesh and subsequently there is no volume mesh to deform. Hence,

[dXV /dXS] term given in Eq. 2.46 drops out, and in this caseNV = NS . The airfoil x-

coordinates are fixed in this procedure. It is done to prevent the airfoil from shrinking

or expanding in the chordwise direction.

Generalized gradient projection,[
dI

dp

]
1×NDV

=

[
dI

dXV

]
1×NV

[
dXV

dXS

]
NV ×NS

[
dXs

dp

]
NS×NDV

(2.46)

For a panel code, the term involving volume mesh drops out and the following is

obtained, [
dI

dp

]
1×NDV

=

[
dI

dXS

]
1×NS

[
dXs

dp

]
NS×NDV

(2.47)

Thus, dX/dp term is required to project the gradients obtained in the physical space

onto the design variables in the design space. Consider the design variable vector

33



p = [α1, α2, . . . , αN ]. If αi is perturbed by ∆α, a new design (geometry& mesh) is

obtained. The ∆α value should be sufficiently small, but not too small such that nu-

merical errors arise. Example perturbations are shown in Fig. 2.6, which are overlaid

over the original airfoil. Every other CST weight is perturbed on the upper surface

with ∆α = 0.1. It is evident that the airfoil shapes change drastically. Additionally,

dX/dp magnitudes for CST weights are also shown in the same figure. Every pertur-

bation of a design variable leads to a vector, and perturbing all the design variables

form a matrix. Thus, dX/dp matrix is constructed using finite differences. The shape

sensitivity matrix has a size of NS ×NDV . The computational time is insignificant in

contrast to a flow/adjoint solution.

Therefore, if the x-components of the nodes are held fixed, the shape sensitivity ma-

trix is given as, [
y(α1 + ∆α) y(α2 + ∆α) . . . y(αNDV

+ ∆α)
]

(2.48)

where y denotes y-coordinates of the airfoil.

 

 

 

 

 

     

Figure 2.6: Perturbed variants of NACA0012 and shape sensitivity magnitudes

34



2.4 RANS solver: SU2

RANS solutions are used to verify attached flow solutions and the aerodynamic loads

predicted by the panel code. For this purpose, the well-known, open-source CFD

suite, SU2 is employed [88]. SU2 stands for Stanford University Unstructured. Being

an open-source code, there are many groups actively contributing to the code 2.

SU2 solves the Reynolds-Averaged Navier Stokes equations together with a turbu-

lence model. In the present study SU2 simulations are carried out on C-grids with

y+ ≈ 1. The inviscid fluxes are computed using Roe’s scheme. The gradients of

the flow variables are computed by the Green-Gauss method, which are then used

to reconstruct the second-order solution. Since Reynolds number is quite high, the

flowfield is assumed to be fully turbulent, and Menter’s SST model [89, 90] is used

for the turbulence closure. An implicit time integration is used to allow high CFL

numbers. The resulting linear system of equations is solved with BCGSTAB and ILU

preconditioner. Cauchy criteria is used in convergence assessment. The convergence

is ensured by keeping the relative changes in CL, CD and CM are less than 1× 10−5

in the last 250 iterations.

2 https://github.com/su2code/SU2

35



36



CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, validation and verification studies are performed first. Airfoil design

optimization studies are then presented. The design optimizations are first performed

for target lift coefficient, then for the combination of target lift and moment coef-

ficients. A term to reduce the adverse pressure gradient is added to the objective

function in order to improve the stall characteristics of the designed airfoil. Finally,

multi-point design optimizations are then carried out in order to further improve the

off-design performance of airfoils.

3.1 Validation and Verification Studies

Sensitivity derivatives of the lift and the pitching moment coefficient computed by

the adjoint solver are validated first. These sensitivity derivatives are computed over

a symmetric and a cambered airfoil, respectively. The verification of RANS solutions

with SU2 and a grid convergence study are performed next.

The sensitivity derivatives computed by the adjoint method are validated with finite

difference method. The sensitivity derivatives match well with finite differences, and

have an accuracy of at least 5 significant digits. Additionally, the pressure coefficient

predictions of the in-house panel code and RANS solver are in very good agreement

with the experimental data for attached flows.

37



3.1.1 Validation of the Sensitivity Derivatives

The computed sensitivity derivatives, i.e. gradient vector, may be validated by using

finite differences. The idea is to perturb each design variable one by one by using the

following formulae, which yield first-order and second-order accurate derivatives,

respectively:
dI

dξ
=
I(ξ + h)− I(ξ)

h
+O(h) (3.1)

dI

dξ
=
I(ξ + h)− I(ξ − h)

2h
+O(h2) (3.2)

In essence, the gradients are calculated by repeatedly evaluating the flowfield. The

number of required flowfield solutions are double that of a first-order scheme if a

second-order accurate scheme is chosen. Moreover, if higher-order accurate gradients

are desired, the number of flowfield evaluations required scale linearly. Additionally

from Eqs. 3.1 and 3.2, it is clear that finite differences are prone to truncation errors.

To summarize, one needs (n+1) flow solutions to obtain first-order accurate gradients

and (2n+ 1) flow solutions for second-order accurate gradients.

3.1.1.1 Validation of the Sensitivity Derivatives for Target Lift coefficient

The objective function is

I =

∣∣∣∣1− CL

0.15

∣∣∣∣ (3.3)

where CL is the lift coefficient and 0.15 is the target lift coefficient. Eq. 3.3 represents

the optimization case where only the target lift coefficient is set. NACA0012 airfoil

is parametrized with 5th order CST, resulting in 12 design variables. Making use

of design variable perturbations and Eq. 3.2, the gradients are obtained using finite

difference method, which require additional 24 flow solutions. Also, using only 1

flow solution and 1 adjoint solution the gradients are calculated by the automatically

differentiated panel code. The numerical values of the gradient vector are given in

Table 3.1. The values obtained by the AD panel code is more accurate than those

of FD since in FD there is truncation and round-off errors whereas the AD toolbox,

FDOT, is accurate down to the machine precision [51]. From the table, it is clear that

at least 5 digits of accuracy is obtained for all the design variables. Additionally, AD

38



and FD results are plotted in Fig. 3.1. First half of the design variables correspond to

the lower surface of the airfoil and the second half of the design variables correspond

to the upper surface of the airfoil. The CST design variables start from leading edge

(Number 0 & 6) to trailing edge (Number 5 & 11). It is seen that the trailing edge

is much more sensitive to the lift coefficient than leading edge. This localized high

sensitivity region at the trailing edge may form a cusp in the optimization studies, as

shown in Sarıkaya and Tuncer [46]. The behavior of the sensitivity derivatives is also

evident from the Fig. 3.2, where dI/dy vs. x/c is plotted over the airfoil surface with

vectors. Deforming the airfoil in the direction of the arrows is going to increase the I .

Since the aim is to minimize I in the problem formulations, the airfoil is going to be

deformed in the opposite sense of the vectors, which is consistent with the sensitivity

derivatives obtained in Fig. 3.1 and Table 3.1. For example, if the lower surface of

the airfoil is perturbed in the direction of the arrows (-y direction), the dy value is

clearly going to be negative. Since the dI/dy value there is also negative, plugging in

a negative dy value results in positive dI , which indicates that the perturbed airfoil is

going to be located further away from the optimum than the original airfoil.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9  10  11

Se
ns

iti
vi

ty
 D

er
iva

tiv
es

Design Variables

Adjoint
Finite Difference

Figure 3.1: AD vs FD for NACA0012, target lift coefficient

39



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
-0.2

-0.1

 0

 0.1

 0.2
dI

/d
y

y/
c

x/c

Figure 3.2: dI/dy for NACA2412, target lift coefficient

Table 3.1: Lift Coefficient Sensitivity derivatives, AD and FD, NACA0012

DV AD FD

0 1.39397052 1.39396593

1 1.59147946 1.59148526

2 1.79220471 1.79220757

3 2.10718406 2.10717891

4 2.74873291 2.74874206

5 5.23381638 5.23381985

6 1.39361352 1.39361309

7 1.59061032 1.59061402

8 1.79182799 1.79182971

9 2.10727332 2.10726515

10 2.74883751 2.74883820

11 5.23491865 5.23490385

40



3.1.1.2 Validation of the Sensitivity Derivatives for Target Moment Coefficient

For this validation case, the objective function is chosen to be

I =

∣∣∣∣1− CM

−0.04

∣∣∣∣ (3.4)

where CM is the pitching moment coefficient and −0.04 is the target moment coef-

ficient. Eq. 3.4 represents the case where only the target moment coefficient is set.

NACA2412 airfoil is parametrized with 5th order CST, resulting in 12 design vari-

ables. Making use of design variable perturbations and Eq. 3.2, the gradients are

obtained using finite difference method, which require 24 flow solutions. Also, using

only 1 flow solution and 1 adjoint solution the gradients are calculated by the auto-

matically differentiated panel code. The numerical values of the gradient vector are

given in Table 3.2. The values obtained by the AD panel code is more accurate than

those of FD since in FD there is truncation and round-off errors whereas the AD tool-

box, FDOT, is accurate down to the machine precision. From the table, it is clear that

at least 5 digits of accuracy is obtained for all the design variables. Additionally, AD

and FD results are plotted in Fig. 3.3. First half of the design variables correspond to

the lower surface of the airfoil and the second half of the design variables correspond

to the upper surface of the airfoil. The CST design variables start from leading edge

(Number 0 & 6) to trailing edge (Number 5 & 11). Again, it is seen that the trailing

edge is more sensitive to the moment coefficient than the leading edge, but now it is in

the opposite direction. Overall, it is seen that the sensitivities are generally oriented

towards decreasing the camber, especially near the trailing edge. Additionally, the

sensitivities near leading edge try to push the leading edge region up (increase the

camber in leading edge) and try to decrease the camber downstream. This behavior is

also evident from the Fig. 3.4, where dI/dy vs. x/c is plotted over the airfoil surface

with vectors. Deforming the airfoil in the direction of the arrows is going to increase

the I . Since the aim is to minimize I in the problem formulations, the airfoil is going

to be deformed in the opposite sense of the vectors, which is consistent with the sen-

sitivity derivatives obtained in Fig. 3.3 and Table 3.2. Additionally, note that changes

near the 0.25c have little effect, since the pitching moment is computed with respect

to this point.

41



-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10  11

Se
ns

iti
vi

ty
 D

er
iva

tiv
es

Design Variables

Adjoint
Finite Difference

Figure 3.3: AD vs FD for NACA2412, target moment coefficient

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
-0.2

-0.1

 0

 0.1

 0.2

dI
/d

y

y/
c

x/c

Figure 3.4: dI/dy for NACA2412, target moment coefficient

42



Table 3.2: Moment Coefficient Sensitivity derivatives, AD and FD, NACA2412

DV AD FD

0 1.86756408 1.86756089

1 0.39536994 0.39537268

2 -0.92120355 -0.92120366

3 -2.01479215 -2.01479072

4 -3.04477785 -3.04478626

5 -5.26380118 -5.26381702

6 2.14946956 2.14946913

7 0.58537172 0.58537679

8 -0.97467666 -0.97466980

9 -2.27062750 -2.27061768

10 -3.40427100 -3.40426584

11 -5.68260108 -5.68262290

43



3.1.2 Verification of Flow Solvers

In this case, the available experimental data from Gregory and O’Reilly [91] are used

to validate the pressure coefficient predictions of the flow solvers (i.e. panel and SU2)

over a NACA0012 airfoil. Pressure coefficient distributions for angles of attack of 0,

2, 6 and 10 deg are plotted in Figs. 3.5 to 3.8. Solid lines and dashed lines indicate

panel and fully-turbulent RANS predictions, respectively. RANS solutions are carried

out using SU2.

SU2 simulations are carried out using a proper C-grid with y+ ≈ 1 for Re= 5×106 and

M = 0.3. The inviscid fluxes are computed using Roe’s scheme, with second-order

reconstruction. Since the Reynolds number is quite high, the flowfield is assumed

to be fully turbulent. The closure in RANS equations are achieved using Menter’s

SST model. If the CL, CD and CM change in the last 250 iterations is less than

1×10−5 the solution is assumed to be converged. Note that the grids used in this case

are generated according to the grid convergence results, which are presented in Part

3.1.2.1.

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel
RANS

Experiment

Figure 3.5: Pressure coefficient distributions over NACA0012 airfoil at 0 deg angle

of attack

Fig.3.5 shows the Panel and RANS Cp predictions over NACA0012 airfoil at α = 0

deg. The pressure coefficient distribution is symmetric due to the symmetric nature

44



of the airfoil, which is expected. The resulting Cp distribution agrees with that of the

experiments almost perfectly for both the panel and the RANS solvers.

-2

-1.5

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel
RANS

Experiment

Figure 3.6: Pressure coefficient distributions over NACA0012 airfoil at 2 deg angle

of attack

Fig. 3.6 depicts the Panel code and RANS predictions for NACA0012 airfoil at 2 deg

of angle of attack. Even though the experimental data for lower surface is unavailable

for this case, the upper surface predictions are in good agreement for both of the

solvers, which predict similar distributions.

For α = 6 deg, Fig. 3.7 indicates that panel code and RANS predictions are nearly

identical with panel code slightly deviating from the minimum Cp at the suction peak.

However, this behavior is expected in inviscid flows. Due to the absence of the viscous

effects, the suction at the upper surface becomes slightly stronger which result in

lower Cp. Both predictions agree with the experiments quite well.

Finally, Fig. 3.8 depicts surface pressure coefficients over NACA0012 airfoil at

10 deg angle of attack for Panel and RANS solvers. Similar to the previous figure,

over-prediction of the suction at the upper surface of the panel code is evident espe-

cially between LE and 0.25c in the panel code. However, both predictions agree with

the experimental data.

To conclude, it is seen that both the panel code and the RANS solver (SU2) provide

45



-3

-2

-1

 0

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel
RANS

Experiment

Figure 3.7: Pressure coefficient distributions over NACA0012 airfoil at 6 deg angle

of attack

similar pressure coefficient predictions. Both are able predict the pressure coefficient

with sufficient accuracy, and both match the wind tunnel data from low to high angles

of attack.

3.1.2.1 Grid Convergence for RANS Solutions

NACA2412 airfoil is used to determine the optimum grid size for RANS solutions.

The number of points in both the streamwise points and the normal direction are suc-

cessively increased until aerodynamic coefficients are determined to be sufficiently

converged. tanh-type spacing is employed near leading edge and trailing edge for

better resolution of flow features. The change in the aerodynamic coefficients, in this

case CL and CM , are shown in Fig. 3.9. Note that increasing the normal resolution,

J, higher than 150 points does not substantially alter the aerodynamic coefficients.

However, as expected, the most dominant effect is the streamwise grid resolution.

The aerodynamic coefficients have sufficiently converged at 621 points in the stream-

wise direction.

The coarsest grid, which has 301 points in streamwise direction and 100 points in the

normal direction is shown in Fig. 3.10a. In Fig. 3.10b, an intermediate 361x150 grid

46



-7
-6
-5
-4
-3
-2
-1
 0
 1

 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel
RANS

Experiment

Figure 3.8: Pressure coefficient distributions over NACA0012 airfoil at 10 deg angle

of attack

is shown. Finally, the sufficiently resolved grid, 621x150, is presented in Fig. 3.10c.

Finally, a zoomed out view is shown in Fig. 3.10d. It should be noted that the far-field

boundary, at its closest, is located at least 30 chord lengths away from the airfoil.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 200  300  400  500  600  700
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

Li
ft 

co
effi

ci
en

t

Pi
tc

hi
ng

 m
om

en
t

Points in I-direction

CL, 0 deg
CL, 2 deg
CM, 0 deg
CM, 2 deg

J < 149
J > 149

Figure 3.9: CL and CM with respect to grid size for NACA2412 airfoil at 0 and 2 deg

of angle of attack

47



(a) NACA2412 C-Grid with I = 301, J = 100 (b) NACA2412 C-Grid with I = 361, J = 150

(c) NACA2412 C-Grid with I = 621, J = 150 (d) NACA2412 C-Grid, zoomed out

Figure 3.10: C-type grids used in the grid convergence study

48



3.2 Design Optimizations of Airfoil Profiles

In the optimization studies, the NACA2412 airfoil, which is cambered, is taken as

the baseline airfoil. The airfoil upper and lower surfaces are parametrized using 5th

order CST resulting in 12 design variables in each case. Four optimization cases are

considered with increasing complexity in the objective function. Target lift, pitch-

ing moment terms and the adverse pressure gradient terms are successively added

case-by-case to the objective function for single-point optimization. The single point

optimization studies are carried out at 0 deg angle of attack. In the fourth and the

final case, a multi-point design optimization is presented to extend the optimum char-

acteristics of the designed airfoil to higher angles of attack. In this case, it is aimed

to improve the performance of a pre-existing airfoil by increasing the lift and either

keeping the pitching moment the same or reducing it over its operational envelope by

simultaneously optimizing it at 0 deg and 4 deg angle of attack.

3.2.1 Case I: Optimization for Target CL

For this design optimization case, the lift coefficient of an airfoil is increased at 0 deg

angle of attack, and the objective function is normalized. The objective function to

be minimized is given in Eq. 3.5, which is in a normalized form. The target lift

coefficient is chosen to be 20% more than that of the baseline airfoil (0.254). The

leading edge radius is constrained between 50% and 150% of the baseline airfoil in

order to have realistic airfoil profiles. The optimization problem formulation is given

as follows in Eq. 3.5,

min I = w1

∣∣∣∣1− CL

0.305

∣∣∣∣
w.r.t w

s.t. 1.5r∗LE ≥ rLE ≥ 0.5r∗LE

(3.5)

where w is the vector of CST weights (12 in total) and w1 is the weight function,

which is taken as unity. The constraint imposed on the leading edge radius is com-

puted as given in Eq. 2.43, since the only the first CST weight terms influence the

49



leading edge radius.

Table 3.3: Aerodynamic coefficients for Case I

Case
CL CM

Panel RANS Panel RANS

Baseline 0.254 0.229 -0.0540 -0.0493

Target 0.305 - - -

Case I 0.305 0.275 -0.0652 -0.0597

From Fig. 3.11, it is seen that due to having an initially cambered airfoil, not much

camber has been added. The airfoil becomes slightly thinner as the lower surface

approaches the chord line, with no noticeable change in the camber. The target value

for lift is reached in 8 steps (Fig. 3.13) with 28 minor iterations (including trial

points), as shown in Fig. 3.12. In the figure, it is clear that while the lift has reached its

target value, the value of the pitching moment at the quarter chord has also increased

from −0.054 to −0.0652, as shown in Table 3.3. In total, 9 gradient calls have been

made with the remainder of the steps being the flowfield solutions. The optimization

history is presented in Fig. 3.13. In the final iteration, the objective function value

drops below of the threshold value.

Additionally, the aerodynamic coefficients obtained by the SU2 at 0 degrees angle of

attack agree well with that of the potential flow, as shown in Table 3.3. The RANS

solutions are obtained using a proper C-grid with y+ = 1 with M∞ = 0.3 and Re =

5 × 106. Mach number and pressure coefficient contours over the airfoil designed in

Case I at 0 deg angle of attack are given in Figs. 3.15a and 3.15b. No flow separation

is observed, as expected. Due to viscous (fully turbulent) solutions, a boundary layer

formation over the airfoil is observed. Boundary layer is noted to be relatively thin

due to fully attached flow at high Reynolds number.

The optimization outlined in this section is repeated by taking the symmetric NACA0012

profile as the baseline airfoil. The results of the optimization are shown in Fig. 3.14.

It is seen that airfoil profiles are not exactly the same yet similar with similar sur-

face pressure distributions. Both airfoils provide the target lift coefficient, but their

pitching moments differ slightly (CM = −0.0646 vs CM = −0.0652).

50



-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Optimized
Baseline

Figure 3.11: Baseline and optimized airfoil profiles for case I

 0

 0.1

 0.2

 0.3

 0.4

 0  10  20  30
-0.08

-0.06

-0.04

-0.02

 0

C
L

C
M

Minor iterations

CL
CM

Figure 3.12: Convergence history of the aerodynamic coefficients for case I

51



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0  5  10

O
bj

ec
tiv

e 
fu

nc
tio

n

Major iterations 

Figure 3.13: The evolution of the objective function with major optimization steps

for case I

-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Baseline: NACA2412
Baseline: NACA0012

Figure 3.14: Optimized airfoil profiles for case I, different baseline airfoils

52



(a) Mach number contours for Case I

(b) Pressure coefficient contours for Case I

Figure 3.15: M and Cp contours for airfoil designed in case I, AoA = 0deg

53



3.2.2 Case II: Optimization for Target CL and CM

In this design optimization case, the pitching moment coefficient is added to the nor-

malized objective function definition as given in Eq. 3.6. It should be noted that

in the first case, the CM has increased, which is undesired. Thus, this case aims to

increase CL without changing CM of the airfoil (−0.054) at 0 deg angle of attack,.

The baseline airfoil is chosen as the optimum airfoil obtained in Case I. The target lift

coefficient is unchanged from the previous case, which is equal to 0.305. However,

now the pitching moment coefficient target is taken as the initial pitching moment of

NACA2412 airfoil, −0.054. The baseline values are also shown in Table 3.4.

min I = w1

∣∣∣∣1− CL

0.305

∣∣∣∣+ w2

∣∣∣∣1− CM

−0.054

∣∣∣∣
w.r.t w

s.t. 1.5r∗LE ≥ rLE ≥ 0.5r∗LE

(3.6)

where w1 and w2 are the weight terms taken as 0.5 and 0.5 to have an equal bias in

the objective function. Similar to the previous case, the constraint imposed on the

leading edge radius is computed as given in Eq. 2.43, since the only the first CST

weight terms influence the leading edge radius. In the Fig. 3.16, the baseline and

the optimized airfoil profiles and their pressure coefficient distributions are shown.

Camber addition has been observed, where it is most noticeable between the LE and

0.4c, but the leading edge radius is kept more or less the same. Compared to the

previous case, most of the changes are in the lower surface near leading edge in terms

of pressure coefficient. Moreover, the airfoil is now slightly thinner than that of the

baseline. In Fig. 3.17, the convergence histories of CL and CM are presented. While

searching for a feasible direction, the optimizer may sometimes choose the trial point

such that the aerodynamic coefficients may seem to be dipping, as similar to the 50th

iteration in Fig. 3.17. The optimizer rejects these trial points. The optimization

successfully converges to the target values in 16 major optimization steps. In total, 17

gradient calls and 45 flowfield evaluations are required to converge in only 62 minor

iterations as depicted in Fig 3.17. The change in the successive objective function

evaluations are reduced to below of the threshold in 16 iterations as shown in Fig.

54



3.18. The target values for lift and moment are comfortably reached, as also shown

in Table 3.4.

Additionally, a fully-turbulent RANS solution at 0 deg angle of attack is used to

validate the aerodynamic coefficients. Indeed, it is seen that the lift coefficient has

increased around 20% and the pitching moment is the equal to that of the NACA2412

(Table 3.4) which verifies that the optimization targets have been reached. The surface

pressure coefficient distributions are plotted in Fig. 3.20. In general, the panel code

compares favorably with the SU2 predictions. Overall, a very good agreement is

noted.

The optimization study is similarly repeated by taking the symmetric NACA0012

profile as the baseline airfoil. The results of the optimization are shown in Fig. 3.19.

The resulting surface pressure distributions are observed to be similar, with compara-

ble camber and thickness distributions that are very much alike. Both airfoil profiles

provide the target aerodynamic coefficients.

Table 3.4: Aerodynamic coefficients for Case II

Case
CL CM

Panel RANS Panel RANS

Baseline 0.305 0.275 -0.0652 -0.0597

Target 0.305 - -0.0540 -

Case II 0.305 0.282 -0.0540 -0.0491

Additionally, off-design performance of airfoils designed in Case I and II are as-

sessed with angle of attack sweeps using fully-turbulent solutions obtained via SU2.

The change in the aerodynamic coefficients are given in Fig. 3.21. From the figure,

it is obvious that the designed airfoil in Case I and II have more or less the same

lift curve slope, which is expected since in both cases the target lift coefficient was

20% increase over the baseline (NACA2412). Same delta in the lift curve has been

maintained throughout the operational envelope for both of the airfoils. In terms of

pitching moment, it is clear that due to the unconstrained pitching moment in case I,

the value at 0 deg angle of attack is around −0.06 whereas in the constrained case,

Case II, it is the same as the baseline airfoil (NACA2412). However, as the angle of

55



-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Optimized
Baseline

Figure 3.16: Baseline and optimized airfoil profiles for case II

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60
-0.08

-0.06

-0.04

-0.02

 0

C
L

C
M

Minor iterations

CL
CM

Figure 3.17: Convergence history of the aerodynamic coefficients for case II

56



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0  10  20

O
bj

ec
tiv

e 
fu

nc
tio

n

Major iterations 

Figure 3.18: The evolution of the objective function with major optimization steps

for case II

-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Baseline: NACA2412
Baseline: NACA0012

Figure 3.19: Optimized airfoil profiles for case II, different baseline airfoils

57



attack increases the pitching moment deviates from the baseline airfoil. For drag, the

optimized airfoils do not incur massive penalties, with changes being in the order of

5 drag counts.

Finally, M and Cp contours over the airfoil designed in Case II at 0 deg angle of

attack are given in Figs. 3.22a and 3.22b. Clearly the flow does not separate, which

is expected. Due to viscous (fully turbulent) solutions, there is a boundary layer

formation over the airfoil, which is relatively thin due to fully attached flow at high

Reynolds number. The boundary layer thickness is comparable to that of Case I.

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel RANS

Figure 3.20: Surface pressure comparisons for panel vs. RANS solvers, case II

58



 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  2  4  6  8  10  12  14  16

C
oe

ffi
ci

en
ts

CL

Case II
Case I

NACA2412
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  2  4  6  8  10  12  14  16

Angle of attack [deg]

CM

Case II
Case I

NACA2412

 0  2  4  6  8  10  12  14  16
 50

 100

 150

 200

 250

 300

 350

 400

 450

CD (d.c.)

Case II
Case I

NACA2412

Figure 3.21: Aerodynamic coefficients based on SU2 solutions over the designed

airfoils of cases I and II

59



(a) Mach number contours for Case II

(b) Pressure coefficient contours for Case II

Figure 3.22: M and Cp contours for airfoil designed in case II, AoA = 0deg

60



3.2.2.1 Target Pitching Moment Reduced

In this design optimization subcase, the lift coefficient and pitching moment coeffi-

cient are used in the normalized objective function definition as shown in Eq. 3.7.

The baseline airfoil is chosen to be NACA0012 to demonstrate the robustness of the

framework. This case aims to increase lift with nearly zero CM (−0.005). The target

lift coefficient is lower than those of previous cases, which is equal to 0.15. However,

now the pitching moment coefficient target is taken as −0.005 which is nearly one

tenth of the pitching moment of the NACA2412 airfoil (−0.054). The baseline values

are also shown in Table 3.5.

min I =

∣∣∣∣1− CL

0.15

∣∣∣∣+

∣∣∣∣1− CM

−0.005

∣∣∣∣
w.r.t w

s.t. 1.5r∗LE ≥ rLE ≥ 0.5r∗LE

(3.7)

Similar to the previous cases, the constraint imposed on the leading edge radius is

computed as given in Eq. 2.43, since the only the first CST weight terms influence

the leading edge radius.

In the Fig. 3.23, baseline and the optimized airfoil profiles are plotted, as well as their

pressure coefficient distributions. From the figure, it is observed that camber is added

starting from the leading edge throughout the whole chord. Most of the pressure

changes are observed in the upstream of the 0.6c region. However, due to nearly zero

pitching moment target, the airfoil has a slightly reflexed profile. The convergence

of aerodynamic coefficients are plotted in Fig. 3.24. The aerodynamic coefficients

are converged in 35 minor steps, as shown in the figure. In total, 8 gradient calls

have been made and the remainder are flow solutions, which shows the efficiency of

the optimization algorithm and the method. Additionally, the relative change in the

successive objective function evaluations drops below of the threshold as seen in Fig.

3.25. The optimization converges in 7 major iterations. The resulting aerodynamic

coefficients are shown in Table 3.5. The targets are matched comfortably for the

airfoil designed using the panel solver. Additionally, fully-turbulent RANS solution

over the airfoil using the method outlined in the previous chapters is obtained for

61



0 deg angle of attack. In the end, it is observed that the aerodynamic loads are in

very good agreement (Table 3.5). Also, the surface pressure coefficient predictions of

potential flow and RANS solvers are plotted in Fig. 3.26. It is seen that the potential

flow compares favorably with the RANS solutions, with very good agreement overall.

Finally, the Mach number and pressure coefficient contours are presented in Figs.

3.27a and 3.27b for 0 deg angle of attack. Clearly the flow does not separate over

the designed airfoil, which is expected. Due to fully turbulent solutions, a boundary

layer forms over the airfoil, which is relatively thin due to fully attached flow at high

Reynolds number.

Thus, a lifting, low pitching moment is designed by using a symmetrical NACA0012

airfoil as the baseline airfoil, and the optimum airfoil is verified with a RANS solu-

tion.

Table 3.5: Aerodynamic coefficients for very low pitching moment case

Case
CL CM

Panel RANS Panel RANS

Baseline 0.0 0.0 0.0 0.0

Target 0.150 - -0.005 -

Optimized 0.150 0.149 -0.005 -0.003

62



-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Optimized
Baseline

Figure 3.23: Baseline and optimized airfoil profiles for very low pitching moment

case

 0

 0.15

 0.3

 0.45

 0  10  20  30  40
-0.06

-0.04

-0.02

 0

C
L

C
M

Optimization steps

CL  
CM 

Figure 3.24: Convergence history of the aerodynamic coefficients for very low pitch-

ing moment case

63



0.0001

0.001

0.01

0.1

1

 0  5  10

O
bj

ec
tiv

e 
fu

nc
tio

n

Major iterations 

Figure 3.25: The evolution of the objective function with major optimization steps

for very low pitching moment case

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

Pr
es

su
re

 C
oe

ffi
ci

en
t

x/c

Panel RANS

Figure 3.26: Surface pressure comparisons for panel vs. RANS solvers, very low

pitching moment case

64



(a) Mach number contours for very low pitching moment case

(b) Pressure coefficient contours for very low pitching moment case

Figure 3.27: M and Cp contours for airfoil designed in case II, AoA = 0deg

65



3.2.3 Case III : Optimization for Target CL and CM with Reduced dP/dx over

the Upper Airfoil Surface

Strong adverse pressure gradients located in the vicinity of the leading edge may lead

to massive flow separation at higher angles of attack, especially at the suction side.

Thus, reducing the pressure gradient on the upper surface leads to milder stall char-

acteristics. Therefore, in this design optimization case, the adverse pressure gradient

term [23, 46] is added to the normalized objective function definition as shown in

the Eq. 3.8. The target lift coefficient is unchanged from the previous case, which is

equal to 0.305, as well as the target pitching moment coefficient, which is equal to

−0.054. Finally, the targeted adverse pressure gradient value is −0.005, which still

provides a small suction on the upper surface.

min I = w1

∣∣∣∣1− CL

0.305

∣∣∣∣+ w2

∣∣∣∣1− CM

−0.054

∣∣∣∣+ w3

∣∣∣∣1− ∆Cp

−0.005

∣∣∣∣
w.r.t w

s.t. 1.5r∗LE ≥ rLE ≥ 0.5r∗LE

(3.8)

where ∆Cp is approximated by Cp(x/c = 0.5) − Cp(x/c = 0.1). Weights w1 to

w3 are chosen such that w1 = w2 = 0.495 and w3 = 0.01 (sum of the weights

are equal to unity). w3 is chosen as 0.01 to have similar order of magnitude in the

objective and the gradient when compared to CL and CM . The constraint imposed on

the leading edge radius is computed as given in Eq. 2.43, since the first CST weight

terms influence the leading edge radius, only.

In the Fig. 3.28, the optimized airfoil and the baseline airfoil are depicted. Much of

the changes are indeed focused near leading edge, which is expected in an adverse

pressure gradient minimization case. Thinner LE radius is required to maintain the

suction for a longer percent of the chord on the upper surface. Even though a mod-

ified airfoil profile with significantly thinner LE is obtained, the pressure coefficient

distribution indicates a successful optimization, where the point of minimum pres-

sure moves nearly to 0.35c (from ≈ 0.15c previously). The convergence history of

the aerodynamic coefficients are given in Fig. 3.29. The aerodynamic coefficients

converge without issues in 75 minor steps where 16 of them are gradient calls and the

66



remainder are flowfield evaluations. While searching for a feasible direction, the op-

timizer may sometimes choose the trial point such that the aerodynamic coefficients

may seem to be dipping, similar to dips and peaks in Fig. 3.29. The optimizer rejects

these trial points. Additionally, the change in ∆Cp with respect to minor iterations

are shown in Fig. 3.30. Clearly, ∆Cp is successfully minimized from its initial value

to its target value, which is −0.005, when compared to its baseline value. Table 3.6

indicates that both aerodynamic coefficients have been reached, and the ∆Cp term

is successfully driven into its target value. Finally, as depicted in Fig. 3.31, the op-

timization converges successfully in 15 major iterations and the relative change in

successive objective function evaluations is lower than the threshold.

Table 3.6: Aerodynamic coefficients for Case III

Case
CL CM ∆Cp

Panel RANS Panel RANS Panel RANS

Baseline 0.305 0.282 -0.0540 -0.0491 0.157 0.140

Target 0.305 - -0.0540 - -0.005 -

Case III 0.305 0.290 -0.0540 -0.0496 -0.005 -0.028

With SU2, the high angle of attack behavior is assessed with fully-turbulent RANS

solutions, with the method outlined in the preceding sections. The change in the aero-

dynamic coefficients with respect to the angle of attack are depicted in Fig. 3.32. As

expected, much more gradual lift loss is observed with a slight change in stall angle.

Unlike the Case II or the NACA2412 airfoil, the pitching moment does not exceed

−0.015. Since gradual lift and moment loss are desired stall characteristics (milder),

and the optimization performs as expected. For the 0 deg angle of attack, the RANS

solutions are visualized in Figs. 3.34a and 3.34b. Since the point of minimum pres-

sure moves downstream, separation risk is reduced compared to the previous cases.

The Cp distributions obtained by the potential flow and the RANS solver are com-

pared in Fig. 3.33 for zero degrees angle of attack. Potential flow Cp predictions

compare favorably with the fully-turbulent RANS solutions with similar minimum

pressure predictions. As expected, the point of minimum pressure is obtained at

roughly the same location for both solvers. The aerodynamic loads (Table 3.6) are

also in good agreement. Therefore, the optimum airfoil is verified by the SU2.

67



However, since the pitching moment values are higher than that of baseline in the

angle of attack range of 0 to 11 degrees (Fig. 3.32), a multi-point design optimization

is performed next for better off-design performance.

-0.1
-0.05

 0
 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Optimized
Baseline

Figure 3.28: Airfoil profiles and pressure distributions for case III

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80
-0.08

-0.06

-0.04

-0.02

 0

C
L

C
M

Minor iterations

CL
CM

Figure 3.29: Convergence history of case III

68



-0.2

-0.1

 0

 0.1

 0.2

 0  20  40  60  80

Δ
C

p

Minor iterations

Figure 3.30: Convergence history of ∆Cp in case III

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0  10  20

O
bj

ec
tiv

e 
fu

nc
tio

n

Major iterations 

Figure 3.31: The evolution of the objective function with major optimization steps

for case III

69



 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  2  4  6  8  10  12  14  16  18

C
oe

ffi
ci

en
ts

CL

Case III
Case II

NACA2412
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  2  4  6  8  10  12  14  16  18

Angle of attack [deg]

CM

Case III
Case II

NACA2412

 0  2  4  6  8  10  12  14  16  18
 50

 100

 150

 200

 250

 300

 350

 400

 450

CD (d.c.)

Case III
Case II

NACA2412

Figure 3.32: Aerodynamic coefficients based on SU2 solutions over the designed

airfoil of case III

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

Panel RANS

Figure 3.33: Potential flow and RANS surface pressure coefficient distributions, case

III

70



(a) Mach number contours for Case III

(b) Pressure coefficient contours for Case III

Figure 3.34: M and Cp contours for airfoil designed in case III, AoA = 0deg

71



3.2.4 Case IV: Multi-point Design Optimization

In the previous cases, the optimization studies are done at a single design point, at

0 deg angle of attack. In this case, the optimization is performed for multiple design

points, i.e. multiple angles of attack for better performance throughout the operational

envelope.

Thus, in this case, the baseline airfoil is chosen to be the optimized airfoil obtained

in Case II. The goal is to increase the performance of this airfoil by simultaneously

optimizing at 0 and 4 deg for target CL and CM values. The target is to keep the

pitching moment lower than that of NACA2412 over the full range angle of attack.

Multi-point optimization flowchart is depicted in Fig. 3.35.

The multi-point optimization problem is formulated in Eq. 3.9.

min I =
2∑

i=1

βi

(
w1,i

∣∣∣∣1− CL

CL,target

∣∣∣∣
i

+ w2,i

∣∣∣∣1− CM

CM,target

∣∣∣∣
i

)
w.r.t w

s.t. 1.5r∗LE ≥ rLE ≥ 0.5r∗LE

(3.9)

where βi are the weights for each optimization point and are taken as 0.5, as both

optimization points are weighted equally. Similarly, wj,i are the relative weights of

CL and CM , which are taken as 0.5, to have equal bias in the objective function. Sum

of the weights at each design point should add up to one. The target values for the

aerodynamic coefficients are given in Table 3.7, where the same increment in lift at

α = 0 deg is imposed at α = 4 deg and the pitching moment is reduced by 5% at

4 deg while the baseline value at 0 deg is kept the same since it is equal to that of

NACA2412. Finally, the leading edge radius constraint is imposed with the first CST

weights for both surfaces of the airfoil as per Eq. 2.43, similar to the previous cases.

To summarize, the lift of the the optimum airfoil obtained in Case II is kept constant

at 0 and 4 deg. Additionally, the pitching moment at 0 deg is unchanged (which is

already the same as the NACA2412 airfoil) and a 5% decrease in the pitching mo-

ment is targeted at 4 deg to keep the pitching moment below the NACA2412 airfoil

throughout the operational envelope. The target aerodynamic coefficients are given

72



Multi-point optimization

Point 1

α = 0◦

Point 2

α = 4◦

Flow solver Flow solver

Adjoint solver Adjoint solver

I(wn) = β1I1(wn) + β2I2(wn)

∇I(wn) = β1∇I1(wn) + β2∇I2(wn)

DAKOTA

Converged?

End

I1(wn) I2(wn)

∂I1/∂w ∂I2/∂w

wn+1

NO, wn = wn+1

wn

YES

Figure 3.35: Multi-point optimization flowchart

73



in Table 3.7 for 0 and 4 deg angle of attack.

The multi-point optimized and the case II (i.e. baseline) airfoils and their pressure

coefficient distributions are shown with solid and dashed lines in Fig. 3.36. From the

figure, it is noted that the leading edge radius has increased compared to the baseline

airfoil. Airfoil thickness increases until 0.25c and subsequently decreases until 0.9c.

Additionally, on the upper and the lower surfaces, stronger leading edge suction is

obtained to reach the target aerodynamic coefficients where the majority of the lift

is generated. Due to reduced thickness, the suction between 0.3c and 0.8c is slightly

reduced.

Convergence history for the multi-point optimization case is presented in Fig. 3.37.

From the figure, it is seen that the aerodynamic coefficients converge in 30 opti-

mization steps with 84 minor iterations where 31 of them are gradient calls. The

aerodynamic coefficients are also given in Table 3.7, where the pitching moment re-

duction is evident under constant lift for the multi-point optimized airfoil. The targets

are reached comfortably using the potential flow solver. Additionally, the evolution

of the objective function with respect to the major optimization steps are depicted in

Fig. 3.38. The objective function converges in 30 steps without issues and the relative

change is lower than the threshold value in the final step.

Table 3.7: Aerodynamic coefficients in the multi-point design optimization

Case
CL CM

0 deg 4 deg 0 deg 4 deg

Baseline, Panel 0.305 0.783 -0.0540 -0.0588

Baseline, RANS 0.282 0.741 -0.0491 -0.0478

Target 0.305 0.783 -0.0540 -0.0558

Optimized, Panel 0.305 0.783 -0.0540 -0.0558

Optimized, RANS 0.282 0.744 -0.0489 -0.0445

In Fig. 3.39, the aerodynamic characteristics of the multi-point optimized airfoil are

assessed with RANS solutions obtained by using SU2. Aerodynamic load predictions

of RANS also agree with that of potential flow as shown in Table 3.7. From the figure,

the CL curves match for the single and multi-point optimized airfoils. Slightly higher

74



-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

y/
c

-1.5

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

0 deg 4 degPr
es

su
re

 C
oe

ffi
ci

en
t

x/c

Optimized Baseline

Figure 3.36: Baseline and optimized airfoil profiles for case IV

 0

 0.25

 0.5

 0.75

 1

 0  20  40  60  80
-0.1

-0.075

-0.05

-0.025

 0

C
L

C
M

Minor iterations

0 deg - CL
4 deg - CL

0 deg - CM
4 deg - CM 

Figure 3.37: Convergence history of the aerodynamic coefficients for case IV

75



CLmax is obtained in the multi-point optimized case but no change is observed in the

stall angle. The pitching moment behaves as expected, and the pitching moment ob-

tained in case II is successfully reduced in multi-point optimization throughout the

operational envelope of the airfoil. Also, the drag change of the multi-point optimiza-

tion is negligible as the differences are on the order of 1 drag count. Finally, the M

and Cp contours obtained with SU2, are given for the multi-point optimized airfoil at

0 deg angle of attack in Figs. 3.40a and 3.40b. As expected, no flow separation or

abrupt changes are observed over the airfoil.

To conclude, the performance of NACA2412 airfoil is successfully enhanced by in-

creasing the lift coefficient at two design points as well as reducing the pitching mo-

ment coefficient to below of NACA2412.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0  10  20  30

O
bj

ec
tiv

e 
fu

nc
tio

n

Major iterations 

Figure 3.38: The evolution of the objective function with major optimization steps

for multi-point design optimization case

76



 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  2  4  6  8  10  12  14  16

C
oe

ffi
ci

en
ts

CL

Multi-point
Case II

NACA2412
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  2  4  6  8  10  12  14  16

Angle of attack [deg]

CM

Multi-point
Case II

NACA2412

 0  2  4  6  8  10  12  14  16
 50

 100

 150

 200

 250

 300

 350

 400

 450

CD (d.c.)

Multi-point
Case II

NACA2412

Figure 3.39: Aerodynamic coefficients based on SU2 solutions over the designed

airfoil of case IV

77



(a) Mach number contours for Case IV

(b) Pressure coefficient contours for Case IV

Figure 3.40: M and Cp contours for multi-point designed airfoil, AoA = 0deg

78



CHAPTER 4

CONCLUSIONS

A discrete-adjoint based aerodynamic design optimization framework for subsonic

airfoils is successfully developed. First, the in-house panel code is discussed. Af-

ter that, the adjoint equations and automatic differentiation techniques are discussed.

Examples are given on forward and reverse mode AD, also some forward and ad-

joint source codes are also shown. The Class Shape Transformation parametrization

technique is discussed, which forms the vector of design variables. Additionally, an

open-source optimizer, DAKOTA, that makes use of the gradient computed by the ad-

joint solver is utilized and the quasi-Newton method with BFGS update is introduced.

The automatic differentiation tool, FDOT, is successfully used to develop an adjoint

solver using an in-house panel code written in Fortran. FDOT toolbox is based on

operator-overloading approach, which requires minor changes to the Fortran source

code. The differentiated code runs on the reverse mode and the sensitivities of an

objective function are efficiently obtained with the computational cost equivalent of

one flow solution. Once the sensitivities of the objective function are evaluated with

respect to panel nodes, the sensitivities are projected onto the design variables (CST

weights).

The validation studies are presented for flow and adjoint solvers. The panel code and

an open-source RANS solver, SU2, are used as the flow solvers. The panel method

agrees well with the fully-turbulent solutions for attached flows, and both solvers are

able to match the experimental data. The good agreement between the panel code

and RANS solver also holds for high angles of attack, where inviscid Cp does not

massively differ from the viscous Cp.

79



The adjoint solver is validated by means of finite differences. It is observed that to

obtain the gradient of any objective function, 1 adjoint solution is required which has

the equivalent cost of 1 flow solution. If finite differences are to be used 24 flow

solutions are required for 2nd order accuracy. The AD based sensitivity derivatives

agree very well with FD for lift and pitching moment coefficients over both symmetric

and cambered airfoils, respectively. The AD based sensitivity derivatives are accurate

down to the machine precision whereas FD based derivatives suffer from numerical

truncation error.

A build-up approach in the objective function is used to create airfoils that satisfy the

prescribed target lift and moment coefficients. In the first case, a target lift coefficient

is prescribed and in the following case its pitching moment is successfully reduced to

that of the baseline. Additionally, an adverse pressure gradient term is employed to

obtain milder stall characteristics. The angle of attack sweeps carried out using SU2

indicate that this is indeed the case and gradual loss of lift and pitching moment are

observed. The off-design performance is improved by keeping the pitching moment

below that of the baseline for all angles of attack by using a multi-point optimization

approach, without actually changing the lift obtained in the optimum airfoils.

The developed framework is used to improve performance of NACA2412 using a

build-up approach in the objective function definition as mentioned above. Addition-

ally, the method is also used to design a lifting, very low pitching moment airfoil.

The robustness of the optimization process is shown by starting from a symmetrical

airfoil and converging to very similar designs for the first two cases. Overall, the

optimum airfoils are further verified with fully-turbulent RANS solutions as well as

the aerodynamic loads. It is seen that the in-house panel code and SU2 solutions are

in very good agreement. The developed aerodynamic shape optimization framework

based on a panel code using the discrete-adjoint method is shown to be quite efficient,

robust and accurate for subsonic airfoil profiles.

80



REFERENCES

[1] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther, “High-fidelity aerostructural

design optimization of a supersonic business jet,” Journal of Aircraft, vol. 41,

pp. 523–530, May 2004.

[2] W. Bacha and W. Ghaly, “Drag prediction in transitional flow over two-

dimensional airfoils,” in 44th AIAA Aerospace Sciences Meeting and Exhibit,

American Institute of Aeronautics and Astronautics, Jan. 2006.

[3] S. Skinner and H. Zare-Behtash, “State-of-the-art in aerodynamic shape optimi-

sation methods,” Applied Soft Computing, vol. 62, pp. 933–962, 2018.

[4] J. E. Green, “Civil Aviation and the Environment – The Next Frontier for

the Aerodynamicist,” The Aeronautical Journal (1968), vol. 110, no. 1110,

p. 469–486, 2006.

[5] O. Chernukhin and D. W. Zingg, “Multimodality and global optimization in

aerodynamic design,” AIAA Journal, vol. 51, pp. 1342–1354, June 2013.

[6] I. Newton, Philosophiæ Naturalis Principia Mathematica. Jussu Societatis Re-

giae ac Typis Josephi Streater; prostat apud plures Bibliopolas Londini, 1687.

[7] A. Betz, “Modification of Wing-Section Shape to Assure a Predetermined

Change in Pressure Distribution,” Tech. Rep. NACA-TM-767, National Advi-

sory Committee for Aeronautics, March 1935. ID: 19930094650.

[8] M. J. Lighthill, “A new method of two dimensional aerodynamic design,” Rep.

Memor. 1111, Aeronautical Research Council, vol. 2112, 1945.

[9] J. D. Hawk and D. R. Bristow, “Development of MCAERO Wing Design Panel

Method with Interactive Graphics Module,” Contractor Report 3775, NASA,

April 1984.

81



[10] G. Volpe and R. E. Melnik, “The design of transonic aerofoils by a well-posed

inverse method,” International Journal for Numerical Methods in Engineering,

vol. 22, no. 2, pp. 341–361, 1986.

[11] A. Hassan, H. Sobieczky, and A. R. Seebass, “Subsonic airfoils with a given

pressure distribution,” AIAA Journal, vol. 22, pp. 1185–1191, Sept. 1984.

[12] A. HASSAN and H. SOBIECZKY, “Transonic airfoils with a given pressure dis-

tribution,” in 14th Fluid and Plasma Dynamics Conference, American Institute

of Aeronautics and Astronautics, June 1981.

[13] M. S. Selig and M. D. Maughmer, “Multipoint inverse airfoil design method

based on conformal mapping,” AIAA Journal, vol. 30, pp. 1162–1170, May

1992.

[14] M. S. Selig, “Multipoint inverse design of an infinite cascade of airfoils,” AIAA

Journal, vol. 32, pp. 774–782, Apr. 1994.

[15] J. B. Malone, J. Vadyak, and L. N. Sankar, “Inverse aerodynamic design method

for aircraft components,” Journal of Aircraft, vol. 24, pp. 8–9, Jan. 1987.

[16] A. Jameson and J. Reuther, “Control theory based airfoil design using the Euler

equations,” in 5th Symposium on Multidisciplinary Analysis and Optimization,

American Institute of Aeronautics and Astronautics, Aug. 1994.

[17] J. Reuther and A. Jameson, “Aerodynamic shape optimization of wing and

wing-body configurations using control theory,” in 33rd Aerospace Sciences

Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Jan.

1995.

[18] A. Jameson, L. Martinelli, and N. Pierce, “Optimum Aerodynamic Design Us-

ing the Navier-Stokes Equations,” Theoretical and Computational Fluid Dy-

namics, vol. 10, pp. 213–237, Jan. 1998.

[19] F. Morlando, “Adjoint-based sensitivity analysis by panel methods and CAS,”

Optimization Letters, vol. 11, pp. 739–752, May 2016.

[20] Y. Zhang, C. Yan, and H. Chen, “An inverse design method for airfoils based on

pressure gradient distribution,” Energies, vol. 13, p. 3400, July 2020.

82



[21] Z. Lyu, G. K. W. Kenway, and J. R. R. A. Martins, “Aerodynamic shape opti-

mization investigations of the common research model wing benchmark,” AIAA

Journal, vol. 53, pp. 968–985, Apr. 2015.

[22] R. M. Hicks, E. M. Murman, and G. N. Vanderplaats, “An assessment of airfoil

design by numerical optimization,” Technical Memorandum X-3092, NASA,

July 1974.

[23] R. M. Hicks and G. N. Vanderplaats, “Design of low-speed airfoils by numerical

optimization,” in SAE Technical Paper Series, SAE International, Feb. 1975.

[24] R. M. Hicks and P. A. Henne, “Wing design by numerical optimization,” Journal

of Aircraft, vol. 15, no. 7, pp. 407–412, 1978.

[25] O. Pironneau, “On Optimum Profiles in Stokes flow,” Journal of Fluid Mechan-

ics, vol. 59, no. 1, p. 117–128, 1973.

[26] O. Pironneau, “On Optimum Design in Fluid Mechanics,” Journal of Fluid Me-

chanics, vol. 64, no. 1, p. 97–110, 1974.

[27] A. Jameson, “Aerodynamic design via control theory,” Journal of Scientific

Computing, vol. 3, pp. 233–260, Sept. 1988.

[28] O. Baysal and M. E. Eleshaky, “Aerodynamic design optimization using sen-

sitivity analysis and computational fluid dynamics,” AIAA Journal, vol. 30,

pp. 718–725, Mar. 1992.

[29] S. Kim, J. J. Alonso, and A. Jameson, “Multi-element high-lift configuration de-

sign optimization using viscous continuous adjoint method,” Journal of Aircraft,

vol. 41, pp. 1082–1097, Sept. 2004.

[30] W. Anderson and V. Venkatakrishnan, “Aerodynamic design optimization on

unstructured grids with a continuous adjoint formulation,” Computers & Fluids,

vol. 28, no. 4, pp. 443–480, 1999.

[31] W. K. Anderson and D. L. Bonhaus, “Airfoil design on unstructured grids for

turbulent flows,” AIAA Journal, vol. 37, pp. 185–191, Feb. 1999.

[32] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization meth-

ods,” Acta Numerica, vol. 28, pp. 287–404, May 2019.

83



[33] N. Marco, S. Lanteri, J.-A. Désidéri, B. Mantel, and J. Périaux, “Parallel genetic

algorithms applied to optimum shape design in aeronautics,” in Euro-Par'97

Parallel Processing, pp. 856–863, Springer Berlin Heidelberg, 1997.

[34] Y. He and R. K. Agarwal, “Shape Optimization of NREL S809 Airfoil for Wind

Turbine Blades Using a Multi-Objective Genetic Algorithm,” in 32nd AIAA Ap-

plied Aerodynamics Conference, American Institute of Aeronautics and Astro-

nautics, June 2014.

[35] Y. Yu, Z. Lyu, Z. Xu, and J. R. Martins, “On the Influence of Optimization Algo-

rithm and Initial Design on Wing Aerodynamic Shape Optimization,” Aerospace

Science and Technology, vol. 75, pp. 183–199, Apr. 2018.

[36] D. W. Zingg, M. Nemec, and T. H. Pulliam, “A Comparative Evaluation of

Genetic and Gradient-Based Algorithms Applied to Aerodynamic Optimiza-

tion,” European Journal of Computational Mechanics, vol. 17, pp. 103–126,

Jan. 2008.

[37] T. Pulliam, M. Nemec, T. Holst, and D. Zingg, “Comparison of evolutionary

(genetic) algorithm and adjoint methods for multi-objective viscous airfoil opti-

mizations,” in 41st Aerospace Sciences Meeting and Exhibit, American Institute

of Aeronautics and Astronautics, Jan. 2003.

[38] T. Holst and T. Pulliam, “Aerodynamic shape optimization using a real-number-

encoded genetic algorithm,” in 19th AIAA Applied Aerodynamics Conference,

American Institute of Aeronautics and Astronautics, June 2001.

[39] J. R. R. A. Martins, “Perspectives on Aerodynamic Design Optimization,” in

AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics,

Jan. 2020.

[40] E. N. Tinocco, CFD Applications to Complex Configurations: A Survey,

ch. Chapter 15, pp. 559–615.

[41] S. A. Ragab, “Shape Optimization of Surface Ships in Potential Flow Using an

Adjoint Formulation,” AIAA Journal, vol. 42, pp. 296–304, Feb. 2004.

[42] G. Kennedy and J. R. R. A. Martins, “A comparison of metallic and com-

posite aircraft wings using aerostructural design optimization,” in 12th AIAA

84



Aviation Technology, Integration, and Operations (ATIO) Conference and 14th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Ameri-

can Institute of Aeronautics and Astronautics, Sept. 2012.

[43] G. Kennedy and J. R. R. A. Martins, “An adjoint-based derivative evaluation

method for time-dependent aeroelastic optimization of flexible aircraft,” in 54th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, American Institute of Aeronautics and Astronautics, Apr. 2013.

[44] G. Kennedy, G. Kenway, and J. R. R. A. Martins, “Towards gradient-based de-

sign optimization of flexible transport aircraft with flutter constraints,” in 15th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Ameri-

can Institute of Aeronautics and Astronautics, June 2014.

[45] C. Conlan-Smith, N. Ramos-García, O. Sigmund, and C. S. Andreasen, “Aero-

dynamic shape optimization of aircraft wings using panel methods,” AIAA Jour-

nal, vol. 58, pp. 3765–3776, Sept. 2020.

[46] B. Sarikaya and I. H. Tuncer, “Adjoint Based Design Optimization of Subsonic

Airfoils using a Panel Code Together with a RANS Solver,” in AIAA SciTech

2022 Forum, San Diego, CA, American Institute of Aeronautics and Astronau-

tics, Jan. 2022.

[47] N. Gauger and J. Brezillon, “The continuous adjoint approach in aerodynamic

shape optimization,” in MEGAFLOW - Numerical Flow Simulation for Aircraft

Design, pp. 181–193, Springer Berlin Heidelberg, 2005.

[48] A. Jameson, “Efficient Aerodynamic Shape Optimization,” in 10th AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, American Institute of

Aeronautics and Astronautics, Aug. 2004.

[49] H. Kaya, Development of a discrete adjoint-based aerodynamic shape optimiza-

tion tool for natural laminar flows. PhD thesis, Middle East Technical Univer-

sity, 2020.

[50] U. Naumann, The Art of Differentiating Computer Programs. Society for In-

dustrial and Applied Mathematics, Jan. 2011.

85



[51] S. Djeddi, Towards Adaptive and Grid-Transparent Adjoint-Based Design Op-

timization Frameworks. PhD thesis, University of Tennessee, 2018.

[52] R. Djeddi, C. D. Floyd, J. G. Coder, and K. Ekici, “Adjoint-based uncertainty

quantification and calibration of RANS-based transition modeling,” in AIAA

AVIATION 2021 FORUM, American Institute of Aeronautics and Astronautics,

July 2021.

[53] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, M. S. Ebeida, J. P. Eddy, M. S. El-

dred, G. Geraci, R. W. Hooper, P. D. Hough, K. T. Hu, J. D. Jakeman, M. Khalil,

K. A. Maupin, J. A. Monschke, E. M. Ridgway, A. A. Rushdi, J. A. Stephens,

L. P. Swiler, D. M. Vigil, T. M. Wildey, and J. G. Winokur, “Dakota, A Multi-

level Parallel Object-Oriented Framework for Design Optimization, Parameter

Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11

User’s Manual,” Tech. Rep. SAND2014-4633, Sandia National Laboratories,

July 2014. updated November 2019.

[54] J. C. Meza, R. A. Oliva, P. D. Hough, and P. J. Williams, “Opt++: An object-

oriented toolkit for nonlinear optimization,” ACM Trans. Math. Softw., vol. 33,

p. 12–es, jun 2007.

[55] C. G. BROYDEN, “The Convergence of a Class of Double-rank Minimization

Algorithms 1. General Considerations,” IMA Journal of Applied Mathematics,

vol. 6, pp. 76–90, 03 1970.

[56] D. Goldfarb, “A family of variable-metric methods derived by variational

means,” Mathematics of Computation, vol. 24, no. 109, pp. 23–26, 1970.

[57] R. Fletcher, “A new approach to variable metric algorithms,” The Computer

Journal, vol. 13, pp. 317–322, 01 1970.

[58] D. F. Shanno, “Conditioning of quasi-newton methods for function minimiza-

tion,” Mathematics of Computation, vol. 24, no. 111, pp. 647–656, 1970.

[59] M. P. Rumpfkeil and D. J. Mavriplis, “Efficient hessian calculations using auto-

matic differentiation and the adjoint method with applications,” AIAA Journal,

vol. 48, pp. 2406–2417, Oct. 2010.

86



[60] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:

Springer, 2e ed., 2006.

[61] D. I. Jones and J. W. Finch, “Comparison of optimization algorithms,” Interna-

tional Journal of Control, vol. 40, pp. 747–761, Oct. 1984.

[62] F. Gallard, M. Meaux, M. Montagnac, and B. Mohammadi, Aerodynamic air-

craft design for mission performance by multipoint optimization.

[63] R. Djeddi and K. Ekici, “Fdot: A fast, memory-efficient and automated ap-

proach for discrete adjoint sensitivity analysis using the operator overloading

technique,” Aerospace Science and Technology, vol. 91, p. 159–174, 2019.

[64] R. Djeddi and K. Ekici, “Helicopter rotor optimization via operator overloading-

based discrete adjoint approach,” in AIAA Scitech 2021 Forum, American Insti-

tute of Aeronautics and Astronautics, Jan. 2021.

[65] J. R. R. A. Martins and J. T. Hwang, “Review and Unification of Methods

for Computing Derivatives of Multidisciplinary Computational Models,” AIAA

Journal, vol. 51, pp. 2582–2599, Nov. 2013.

[66] Z. Lyu and J. R. R. A. Martins, “Aerodynamic design optimization studies of a

blended-wing-body aircraft,” Journal of Aircraft, vol. 51, pp. 1604–1617, Sept.

2014.

[67] B. van Merrienboer, D. Moldovan, and A. Wiltschko, “Tangent: Automatic dif-

ferentiation using source-code transformation for dynamically typed array pro-

gramming,” in Advances in Neural Information Processing Systems (S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.),

vol. 31, Curran Associates, Inc., 2018.

[68] C. H. Bischof, L. Roh, and A. Mauer, “ADIC — An extensible automatic differ-

entiation tool for ANSI-C,” Software–Practice and Experience, vol. 27, no. 12,

pp. 1427–1456, 1997.

[69] J. Utke, “OpenAD: Algorithm implementation user guide,” Technical Mem-

orandum ANL/MCS–TM–274, Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, Ill., 2004. available online at ftp://

info.mcs.anl.gov/pub/tech_reports/reports/TM-274.pdf.

87

ftp://info.mcs.anl.gov/pub/tech_reports/reports/TM-274.pdf
ftp://info.mcs.anl.gov/pub/tech_reports/reports/TM-274.pdf


[70] L. Hascoet and V. Pascual, “The Tapenade Automatic Differentiation Tool,”

ACM Transactions on Mathematical Software, vol. 39, pp. 1–43, Apr. 2013.

[71] R. Giering, T. Kaminski, and T. Slawig, “Generating efficient derivative code

with TAF: Adjoint and tangent linear Euler flow around an airfoil,” Future Gen-

eration Computer Systems, vol. 21, no. 8, pp. 1345–1355, 2005.

[72] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and

C. Wunsch, “OpenAD/F: A modular, open-source tool for automatic differenti-

ation of Fortran codes,” ACM Transactions on Mathematical Software, vol. 34,

no. 4, pp. 18:1–18:36, 2008.

[73] C. H. Bischof, A. Carle, G. F. Corliss, A. Griewank, and P. D. Hovland, “ADI-

FOR: Generating derivative codes from Fortran programs,” Scientific Program-

ming, vol. 1, no. 1, pp. 11–29, 1992.

[74] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild, “Com-

bining source transformation and operator overloading techniques to compute

derivatives for MATLAB programs,” in Proceedings of the Second IEEE Inter-

national Workshop on Source Code Analysis and Manipulation (SCAM 2002),

(Los Alamitos, CA, USA), pp. 65–72, IEEE Computer Society, 2002.

[75] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind, “Automatic differentiation

in machine learning: A survey,” Journal of Machine Learning Research, vol. 18,

pp. 1–43, 04 2018.

[76] P. Aubert and N. Di Césaré, “Expression templates and forward mode automatic

differentiation,” in Automatic Differentiation of Algorithms: From Simulation to

Optimization, Computer and Information Science, ch. 37, pp. 311–315, New

York, NY: Springer, 2002.

[77] M. Sagebaum, T. Albring, and N. Gauger, “High-performance derivative com-

putations using CoDiPack,” ACM Transactions on Mathematical Software,

vol. 45, no. 4, 2019.

[78] D. Shiriaev, A. Griewank, and J. Utke, “A user guide to ADOL–F: Automatic

differentiation of Fortran codes,” Tech. Report IOKOMO–04–1995, TU Dres-

den, Dept. of Mathematics, 1996.

88



[79] C. W. Straka, “Adf95: Tool for automatic differentiation of a fortran code de-

signed for large numbers of independent variables,” Computer Physics Commu-

nications, vol. 168, no. 2, pp. 123–139, 2005.

[80] S. Stamatiadis, R. Prosmiti, and S. C. Farantos, “AUTO_DERIV: Tool for auto-

matic differentiation of a FORTRAN code,” Comput. Phys. Commun., vol. 127,

pp. 343–355, may 2000. Catalog number: ADLS.

[81] B. Christianson, “Reverse accumulation and attractive fixed points,” Optimiza-

tion Methods and Software, vol. 3, no. 4, pp. 311–326, 1994.

[82] A. Walther and A. Griewank, “Getting started with adol-c,” in Combinatorial

Scientific Computing (U. Naumann and O. Schenk, eds.), ch. 7, pp. 181–202,

Chapman-Hall CRC Computational Science, 2012.

[83] B. Kulfan, “A Universal Parametric Geometry Representation Method - "CST",”

in 45th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of

Aeronautics and Astronautics, Jan. 2007.

[84] B. M. Kulfan, “Universal Parametric Geometry Representation Method,” Jour-

nal of Aircraft, vol. 45, pp. 142–158, Jan. 2008.

[85] S. Nadarajah, P. Castonguay, and A. Mousavi, “Survey of Shape Parameteriza-

tion Techniques and its Effect on Three-Dimensional Aerodynamic Shape Opti-

mization,” in 18th AIAA Computational Fluid Dynamics Conference, American

Institute of Aeronautics and Astronautics, June 2007.

[86] B. Kulfan, ““CST” Universal Parametric Geometry Representation Method

With Applications to Supersonic Aircraft,” in Fourth International Conference

on Flow Dynamics, Sendai International Center, Japan, Sept. 2007.

[87] E. D. Olson, “Three-Dimensional Piecewise-Continuous Class-Shape Transfor-

mation of Wings,” in 16th AIAA/ISSMO Multidisciplinary Analysis and Opti-

mization Conference, American Institute of Aeronautics and Astronautics, June

2015.

[88] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso,

“SU2: An Open-Source Suite for Multiphysics Simulation and Design,” AIAA

Journal, vol. 54, pp. 828–846, Mar. 2016.

89



[89] F. Menter, “Zonal two equation k-w turbulence models for aerodynamic flows,”

in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, American

Institute of Aeronautics and Astronautics, July 1993.

[90] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering

applications,” AIAA Journal, vol. 32, pp. 1598–1605, Aug. 1994.

[91] N. Gregory and C. O’Reilly, Low-speed Aerodynamic Characteristics of NACA

0012 Aerofoil Section, Including the Effects of Upper-surface Roughness Simu-

lating Hoar Frost. Aeronautical Research Council Reports and Memoranda, R.

& M. No. 3726, H.M. Stationery Office, 1973.

90


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Adjoint Methods and Automatic Differentiation
	Objectives of the study
	The Outline of the Thesis

	OPTIMIZATION METHODOLOGY
	In-house Panel Code
	Gradient-Based Optimization
	Evaluation of the Sensitivity Derivatives/Gradient Vector
	Direct Method
	Finite Difference Method
	Adjoint Method

	Automatic/Algorithmic Differentiation
	Algorithmic Differentiation in Forward Mode
	Algorithmic Differentiation in Reverse Mode
	Source Code Transformation
	Operator Overloading

	Automatic Differentiation with FDOT
	Airfoil Shape Parametrization
	Class Shape Transformation


	Gradient Projection
	RANS solver: SU2

	RESULTS AND DISCUSSION
	Validation and Verification Studies
	Validation of the Sensitivity Derivatives
	Validation of the Sensitivity Derivatives for Target Lift coefficient
	Validation of the Sensitivity Derivatives for Target Moment Coefficient

	Verification of Flow Solvers
	Grid Convergence for RANS Solutions


	Design Optimizations of Airfoil Profiles
	Case I: Optimization for Target CL
	Case II: Optimization for Target CL and CM
	Target Pitching Moment Reduced

	Case III : Optimization for Target CL and CM with Reduced dP/dx over the Upper Airfoil Surface
	Case IV: Multi-point Design Optimization


	CONCLUSIONS
	REFERENCES

