
GENERALIZATIONS OF MULTI-AGENT PATH FINDING PROBLEM FOR
INCREMENTAL ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH SEMİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JULY 2022

Approval of the thesis:

GENERALIZATIONS OF MULTI-AGENT PATH FINDING PROBLEM FOR
INCREMENTAL ENVIRONMENTS

submitted by FATİH SEMİZ in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering, Çankaya University

Prof. Dr. Faruk Polat
Computer Engineering, METU

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Erol Şahin
Computer Engineering, METU

Assoc. Prof. Dr. Mehmet Tan
Computer Engineering, TOBB ETU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Fatih Semiz

Signature :

iv

ABSTRACT

GENERALIZATIONS OF MULTI-AGENT PATH FINDING PROBLEM FOR
INCREMENTAL ENVIRONMENTS

Semiz, Fatih
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

July 2022, 100 pages

Multi-Agent Path Finding problem (MAPF) is finding a path for multiple agents from

a list of starting locations to a list of goal locations in such a way that the agents’

routes do not pass through the same location at the same time. The problem occurs in

real-world during the transporting packages in warehouse environments with robots

moving on rails, cleaning closed areas with cleaning robots, and protecting areas with

multiple robots etc. It is usually sufficient to use discrete maps to express these prob-

lems. However, unlike the standard MAPF setting, in these problems there may be a

need to replan agent paths while the movement of the agents continues. The need to

replan agent paths may be due to the following reasons: packages falling on the road,

passing of external vehicles, or new tasks added to the problem while the problem

continues. Such situations can be better expressed with an incremental MAPF prob-

lem structure. In this thesis, we describe a MAPF variation where certain nodes on

the map become temporarily impassable. We have created methods that effectively

solve this problem definition and have proven through many experiments that they are

effective solutions. We also defined a MAPF problem variation in which agents have

v

multiple destinations in the lifelong MAPF problem structure. We have developed a

new algorithm that solves the MAPF problem involving multiple destinations. For the

task allocation problem, we created heuristic methods to minimize the total amount

of travelled paths, and we tested these methods with many experiments and analyzed

their performance.

Keywords: Multi Agent Path Finding, Incremental Planning, Task Allocation, Heuris-

tic Search, Lifelong Planning

vi

ÖZ

ÇOK ETMENLİ YOL BULMA PROBLEMİNİN ARTIMLI ORTAMLAR
İÇİN GENELLEŞTİRMELERİ

Semiz, Fatih
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Temmuz 2022 , 100 sayfa

Çoklu Etmenler için Yol Bulma problemi (MAPF) gerçek dünyada da örnekleri olan

ve bilgisayar bilimleri alanında sıklıkla çalışılan bir problemdir. Amacı birden çok

etmen için onların başlangıç noktalarından bitiş noktalarına etmenlerin rotaları aynı

anda aynı lokasyondan geçmeyecek şekilde yol bulmaktır. Gerçek dünya problemle-

rine örnek olarak ray üzerinde hareket eden robotlar ile depo ortamlarında paket ta-

şınması, kapalı alanların temizlik robotları ile temizlenmesi, alanların çoklu robotlar

ile korunması gibi problemler verilebilir. Bu problemleri ifade etmek için sayısal hari-

talar kullanmak genelde yeterli olabilmektedir. Ancak bu problemler standart MAPF

senaryolarının aksine yola paketlerin düşmesi, harici araçların geçmesi veya prob-

lem devam ederken probleme yeni işler eklenmesi gibi durumlardan dolayı etmen-

lerin hareketi devam ederken yeniden planlama yapmaya ihtiyaç duyabilir. Bu gibi

durumlar artımlı bir MAPF problem yapısı ile daha iyi ifade edilebilir. Bu tez çalış-

masında haritadaki belli düğümlerin geçici bir süre geçilemez hale geldiği bir MAPF

varyasyonu tanımladık. Bu problem tanımını etkili bir şekilde çözen yöntemler oluş-

turduk ve onların etkili çözümler olduklarını birçok deney ile kanıtladık. Ayrıca hayat

vii

boyu MAPF problem yapısında etmenlerin birden fazla hedef noktasına sahip olduğu

bir MAPF problemi tanımladık. Birden fazla hedef noktasına sahip etmenler içeren

MAPF problemini çözen yeni bir algoritma geliştirdik. İş dağıtımı problemi için de

toplam gezilen yol miktarını minimize etmeye yönelik sezgisel yöntemler oluşturduk

ve bu yöntemleri birçok deney ile test ederek performanslarını analiz ettik.

Anahtar Kelimeler: Çok Etmenli Yol Bulma Problemi, Artımlı Planlama, İş Dağıtımı,

Sezgisel Arama, Hayat Boyu Planlama

viii

Dedicated to my dear family

ix

ACKNOWLEDGMENTS

I would like to thank to my supervisor Prof. Dr. Faruk Polat with whom I started

from my undergraduate years and continued to work together in graduate and doc-

torate studies for always approaching me positively on this long journey and for the

countless experiences he taught me. Working with him has greatly contributed to

improving myself as a person as well as develop myself in academic world.

I would also like to thank my family, who always supported me during my ups and

downs during my doctoral adventure, and who were always there for me. Without

their support, I wouldn’t be here.

Finally, I would like to thank my wife, Ece, for her continuous support on this path

and for being with me through all these difficulties. She motivated me in my doctoral

studies that I am trying to carry out together with my business life. I owe my endless

gratitude to my wife, who brought me back from time to time when I thought about

quitting and when I got close to giving up from time to time. She gave me the strength

to continue.

This thesis is partially supported by TÜBİTAK 1001 project under grant no 120E504.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 2

1.1.1 Conflicts . 3

1.1.2 MAPF Solutions . 4

1.1.3 Assumptions on Agent Behaviors After Reaching Targets . . . 4

1.1.4 Actions Allowed by Agents in the MAPF Problem on Discrete
Maps . 5

1.1.5 Objective Functions . 5

1.1.6 Incremental Multi-Agent Path Finding (I-MAPF) 6

1.1.7 Multi-Agent Path Finding Problem with Multiple Delivery (MAPF-
MD) . 9

xi

1.2 Proposed Methods . 11

1.3 Contributions and Novelties . 11

1.4 The Outline of the Thesis . 13

2 BACKGROUND AND RELATED WORK 15

2.1 Single Agent Path Finding . 15

2.1.1 A* Search Algorithm . 16

2.1.2 Incremental Single Agent Path Finding 18

2.1.3 D*-Lite . 18

2.1.4 LPA* . 19

2.2 Studies Working on Multi Agent Path Finding (MAPF) 20

2.2.1 Optimal MAPF Approaches 21

2.2.1.1 Reduction-based MAPF Approaches 23

2.2.1.2 Conflict Based Search 24

2.2.2 Sub-optimal MAPF Approaches 26

2.2.3 Studies on the Generalized MAPF Problem 27

2.2.3.1 Multi Agent Pick Up and Delivery 28

2.2.3.2 Lifelong Multi-Agent Path Finding 29

2.2.4 Studies on Combined Task Assignment and MAPF Problem . 29

3 INCREMENTAL MULTI-AGENT PATH FINDING WITH CBS-D*-LITE . 33

3.1 Method . 35

3.1.1 The CBS-replanner . 36

3.1.2 CBS-D*-Lite . 39

3.1.3 Theoretical Analysis . 43

xii

3.1.3.1 Optimality Assumptions 43

3.1.3.2 Optimality and Completeness of CBS-replanner 43

3.1.3.3 Running time of each call of CBS-replanner 44

3.1.3.4 Optimality and Completeness of CBS-D*-lite 44

3.1.3.5 Running time of each call of CBS-D*-lite 46

3.1.3.6 Analysis on the Number of Replanning Actions 46

3.1.4 Modifying D*-Lite . 46

3.1.4.1 Adding time steps: . 47

3.1.4.2 Updating the agent starting points as the simulation pro-
gresses: . 48

3.1.4.3 Adding conflict information: 48

3.1.5 Running Example . 50

3.2 Experimental Study . 53

3.2.1 Test Environment . 54

3.2.2 Data Sets . 54

3.2.3 Test Results . 55

3.2.3.1 Hand Crafted Tests . 55

3.2.3.2 Randomly Created Data with Random Changes 58

3.2.3.3 Randomly Created Data with Changes that Occur on a
Path . 60

3.2.3.4 Benchmark maps . 60

3.2.3.5 Comparison on Total-Path-Cost Values and Success Rates 62

3.2.4 Conclusions From Experiments 63

xiii

4 LIFELONG MULTI-AGENT PATH FINDING PROBLEM WITH MUL-
TIPLE DELIVERY LOCATIONS . 65

4.1 Method . 67

4.1.1 MD-DCBS . 67

4.1.2 Job-Assignment Heuristics 70

4.1.2.1 Add to Closest Start Agent 71

4.1.2.2 Add to Closest End Agent 72

4.1.2.3 Add to Closest Average Start End Points 72

4.1.2.4 Add to Closest Point 73

4.1.2.5 Add to closest average agent 74

4.1.2.6 Best Possible Adding 75

4.1.3 Theoretical Analysis . 75

4.1.4 Running Example . 78

4.2 Experimental Study . 79

4.2.1 Datasets . 79

4.2.1.1 Datasets for Testing Heuristics 80

4.2.1.2 Datasets for Testing MAPF-MD Solvers 81

4.2.2 Comparison of the Job-Assignment Heuristics According to
Total-Path Costs and Total Time Spent They Provide 81

4.2.3 Comparison of the MAPF-MD Solvers with Different Low-
Level Solvers . 83

5 CONCLUSION . 85

5.1 Summary . 85

5.2 Future Work . 87

xiv

REFERENCES . 89

CURRICULUM VITAE . 99

xv

LIST OF TABLES

TABLES

Table 3.1 Solutions provided by CBS-replanner vs CBS-D*-lite. 57

Table 3.2 CBS-replanner vs CBS-D*-lite with randomly created environmental-

changes. 3 to 16 agents are used, and for each case 5 environmental-

changes are included in the environment. 58

Table 3.3 CBS-replanner vs CBS-D*-lite with randomly created environmental-

changes that occur on the paths of the agents. 10 agents are used, and for

each case 5 environmental-changes are included in the environment. . . . 63

Table 4.1 Multiple delivery MAPF solution before and after the new package. 79

Table 4.2 Total path cost values (left) and total time spent (right) by running

the several job-assignment heuristics we presented. 5 agents are used in

8× 8 map, and for the den520d and brc202d maps 10 agents are used. . . 82

Table 4.3 Comparison of total path cost results of MAPF-MD solvers with

different low-level solvers on different maps. 83

Table 4.4 Summary of total path cost results on different maps of MAPF-MD

solvers with different low-level solvers. 84

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 An example MAPF problem. 1

Figure 1.2 An example of an vertex conflict where the green agent and the

blue agent collide in the node A2 at time t. 3

Figure 1.3 An example of an edge conflict where the green agent and the

blue agent try to be in the same edge at opposite direction (between A1

and A2) at time t. 3

Figure 1.4 An example of MAPF solution is presented where the green

agent and the blue agent reaches their goals without having any conflicts

(in this example vertex conflicts are used). 4

Figure 1.5 Actions that an agent can take in a time step in a MAPF problem

in a 8-connected grid environment. 5

Figure 1.6 Actions that an agent can take in a time step in a MAPF problem

in a 4-connected grid environment. 6

Figure 1.7 An example of I-MAPF problem where an environmental change

occurs from time-step two to time-step four. Agents updated their plans

accordingly. 7

Figure 1.8 An example MAPF-MD problem is represented where three

agents exists and all of them have two destination locations. A new

job (shown in red) is need to be assigned to one of the agents and the

order in which that work is to be fulfilled must be decided. 10

xvii

Figure 2.1 An example showing single agent path finding in discrete and

continuous maps. 15

Figure 2.2 Some of the CBS definition illustrations; a) presents a conflict

at time t, b) presents a constraint for the green agent and its path after it

adapted its path according to that constraint, c) presents a valid solution

containing consistent paths for each of the agents (to their constraints)

and no conflicts (agents do not visit the same nodes at the same time) . . 24

Figure 2.3 An example constraint tree (CT) is shown. Two of its nodes are

graphically represented. 26

Figure 2.4 An example problem setting of Multi Agent Pickup and Delivery

(MAPD) problem. Light-colored houses represent the pickup locations

and dark-colored houses represent the delivery locations. 28

Figure 2.5 An example problem setting that combines multi-agent pickup

and delivery and task assignment problems. Light-colored houses rep-

resent the pickup locations and the dark-colored houses represent the

delivery locations. a) shows the initial planning, b) the red houses show

the newly added pickup and delivery locations at time t. c) the new job

is assigned to the green agent because it is the only free agent. 30

Figure 3.1 Work-flow of the CBS-replanner algorithm. When there are no

environment changes, the algorithm directly creates the new CT and

runs CBS. 39

Figure 3.2 Work-flow of the CBS-D*-Lite algorithm. When there are no

vertex accessibilities/inaccesibilities the algorithm directly goes to stage-

3. After any vertex changes occur, to make replanning, the algorithm

follows stage-1, stage-2, stage-3 path to find a solution. 42

xviii

Figure 3.3 An image describing the working logic of the D*-lite algorithm

and updating the agent starting points. (a) A grid structure showing

the distances to the starting point that D*-lite has planned with Dijk-

stra algorithm. (b) Shows the process of finding the starting point by

searching backwards. After this process is done, starting from the start-

ing point, the cheapest nodes are selected and the solution is found.

The top numbers are calculated as min(g(s), rhs(s)) + h(s), the bot-

tom numbers are calculated as min(g(s), rhs(s)). Here, g is the cost to

date, rhs is one step lookahead, and h is the heuristic calculation result.

(c) Shows updating a point on the path. Since the necessary calcula-

tions are already made for those nodes, a new route can be planned by

selecting the minimum nodes. 49

Figure 3.4 In this figure, an environmental change has occurred in the prob-

lem illustrated in Figure 3.3 (the resulting environmental change is in-

dicated by red cells). The nodes whose value must be calculated so that

the new route of the agent can be planned are shown in dark green. . . . 50

Figure 3.5 Running example; a) presents the initial agent configurations,

b) presents the initial plans of the agents (t=0), c) presents the agent

plans after the first environmental change (t = 0), d) presents the agent

plans and the realized-paths of the agents after the second environmen-

tal change (t = 2) . 51

Figure 3.6 CBS-D*-lite execution after each environmental change; a) presents

the initial CBS run (t=0), b) presents the calculations after the first en-

vironmental change (t=0), c) presents the calculations after the second

environmental change (t=2). 53

Figure 3.7 8x8 hand crafted grid example with 5 agents and 5 environmen-

tal changes where black cells represent obstacles. 56

Figure 3.8 Performance overview for 8x8 hand crafted grid with 5 agents. . 56

Figure 3.9 Performance overview on randomly created 8x8 dense graphs. . 59

xix

Figure 3.10 Performances of CBS-replanner and CBS-D*-lite with the dif-

ferent number of agents and changing environments. 61

Figure 4.1 An example MAPF-MD problem representation. 66

Figure 4.2 low-level-search-MD function 67

Figure 4.3 The MD-CBS algorithm . 69

Figure 4.4 A graphical overview of the low-level-search-MD which is the

low-level search mechanism of the MD-DCBS. 70

Figure 4.5 The Add to Closest Start Agent (ACSA) heuristic: 1) For each

agent distance of its start location to new job location is calculated.

2) The new job is added after the start location of the agent with the

minimum di distance. 72

Figure 4.6 The Add to Closest End Agent (ACA) heuristic: 1) For each

agent the distance of its last destination location to new job location is

calculated. 2) The new job is added after the last destination location of

the agent with the minimum di distance. 73

Figure 4.7 The Add to Closest Average Start End Points (ACASP) heuris-

tic: 1) For each agent the distance of it from the new job location is

calculated by averaging the distances of its start location and last des-

tination location from the new job location. 2) The new job’s distance

from each of the destinations is calculated for the agent with the min-

imum di distance 3) The new job is added after the closest destination

of the agent with the minimum di distance. 74

xx

Figure 4.8 The Add to Closest Point (ACP) heuristic: 1) For each agent

the distance from all destination points of that agent to the newly added

target point is calculated. The minimum of these distances is recorded

as the calculated value for that agent. 2) The new jobs distance from

each of the destinations is calculated for the agent with the minimum

di distance 3) The new job is added after the closest destination of the

agent with the minimum di distance. 75

Figure 4.9 The Add to Closest Average Agent (ACAA) heuristic: 1) For

each agent the distance of it from the new job location is calculated

by first finding the distance of the newly added target for each agent

from all the destinations of that agent. Then, it calculates the value

determined for that agent by calculating the average of these distances.

2) The new job’s distance from each of the destinations is calculated for

the agent with the minimum di distance 3) The new job is added after

the closest destination of the agent with the minimum di distance. . . . 76

Figure 4.10 The Best Possible Adding (BPA) heuristic: 1) For each agent,

the MAPF problem created by adding the newly added target point to

that agent should be solved. 2) For each agent, the newly added des-

tination point is added before and after all the elements of that agent’s

destination list, and the MAPF problem that occurs with that scenario

is solved. 3) Out of all these solved MAPF problems, the assignment

method that gives the minimum result is chosen as the solution. 77

Figure 4.11 Running example; a) represents an initial multiple delivery prob-

lem, b) represents the initial agent plans generated by MD-DCBS, c)

represents the new destination to be assigned, d) represents the updated

paths after the destination is assigned and visited by closest start point

adding strategy. 78

Figure 4.12 A graphical overview hand crafted map (a) and the benchmark

maps den520d (b), brc202d (c) [1] . 80

xxi

Figure 4.13 Comparison of MAPF-MD solvers in terms of running time with

different low-level solver integrations on different maps and different

destination numbers. 84

xxii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ACAA Add to Closest Average Agent

ACA Add to Closest End Agent

ACASP Add to Closest Average Start End Points

ACP Add to Closest Point

ACSA Add to Closest Start Agent

ASP Answer Set Programming

BPA Best Possible Adding

CBM Conflict-based Min-cost Flow

CBS Conflict Based Search

CBS-D*-Lite Conflict Based Search with D*-lite

CT Constraint Tree

GCC GNU Compiler Collection

HCA* Hierarchical Cooperative A*

ICT Increasing Cost Tree

ICTS Increasing Cost Tree Search

IDA* Iterative Deepening A*

I-MAPF Incremental Multi Agent Path Finding

LPA* Lifelong Planning A*

MAPD Multi Agent Pickup and Delivery

MAPF Multi Agent Path Finding

MAPF-MD Lifelong Multi-Agent Path Finding with Multiple Delivery Lo-

cations

MAPF-TA MAPF Task Assignment

xxiii

MDD Multivalued Decision Diagram

MD-DCBS Multiple Delivery Conflict Based Search with D*-lite

NASA National Aeronautics and Space Administration

NP Nondeterministic Polynomial Time

PERR Package Exchange Robot Routing

SAT Boolean Satisfiability

SMT Satisfiability Modulo Theories

TAPF Target Assignment and Path Finding

TP Token Passing

UAV Unmanned Aerial Vehicle

W-HCA* Windowed HCA*

xxiv

CHAPTER 1

INTRODUCTION

In Multi-Agent Path Finding (MAPF) problem, the main aim is to find conflict-free

paths for more than one agent. Given a graph, the aim is to determine a path from

an initial vertex to a target vertex for each agent such that no two agents can be at

the same vertex at the same time. An example of a MAPF problem with three agents

is shown in Figure 1.1. Many variations of this problem are being studied in the

MAPF community. Generally, in these variations, an objective function is chosen

and the quality of the solution is determined by the degree to which that objective

function is satisfied. This problem, MAPF, is an Artificial Intelligence (AI) planning

Figure 1.1: An example MAPF problem.

problem that is different from conventional robotic route planning problems. MAPF

problems generally focus on how agents (such as robots) will move on a given map,

without considering the physical constraints of the robots [2]. This simplification in

the problem complies with the definition of the problem since the applications of this

problem are mostly grid-based and include narrow corridors. Moreover, the problems

generally contain more agents and target points than the classical robot problems

1

[3, 4]. MAPF has real-world applications in warehouse management (Amazon Kiva

robots, Alibaba Quicktrone robots, Karis robots) [5, 6, 7] and autonomous tug robots

(NASA - Ames project) [8]. This is a difficult problem since the state space grows

exponentially with the number of agents [9, 10].

1.1 Motivation and Problem Definition

Ma et al. [11], showed that MAPF is inadequate for representing real-life problems,

and provided four possible new directions for expanding MAPF. They emphasized

the importance of addressing the generalizations of MAPF to real-world scenarios

as opposed to developing faster methods for the standard formulation of the MAPF

problem.

In this thesis, we wanted to focus on some of the generalizations of MAPF that ad-

dress real-world scenarios. In many real-life problems, changes may occur during

execution of the plan that requires contingency planning [12, 13, 14]. For example,

in a cargo distribution problem, packages have to be delivered to goal locations by

vehicles. During delivery, some parts of the planned paths may become unavailable

because of a traffic jam, maintenance work, or some other reason. Under such cir-

cumstances, some agents need to modify their paths in such a way that the total cost of

re-planning is minimized. As another example, in a warehouse, external effects (such

as people or cargo falling off a shelf) can block the road temporarily or permanently.

Therefore, a broader problem definition is needed to solve real-world problems.

In this thesis, we introduce a variant of MAPF where the environment can change

while the agents are moving from their initial locations to target locations. In these

problems, agents have to adapt their paths in accordance with new obstacles (tem-

porary). We name this variant the Incremental Multi-Agent Path Finding problem

(I-MAPF) [15].

Another MAPF generalization is lifelong MAPF, where new jobs are constantly added

to the system and need to be assigned to agents. This real-world problem is a common

problem especially in automated warehouse environments, where it is valuable to find

effective solutions [16, 14, 17, 18].

2

Another MAPF generalization is the MAPF problems involving agents with multiple

destinations. Although there are pick-up and delivery variations of this problem in

the literature [19, 20, 21], problems involving agents that schedule multiple jobs and

do those jobs one by one will also be valuable in warehouse like environments.

The following sub-sections refer to terms that are frequently used in the MAPF prob-

lem:

1.1.1 Conflicts

1 2 3

At

Figure 1.2: An example of an vertex conflict where the green agent and the blue agent

collide in the node A2 at time t.

Although the term conflict varies from study to study, it can generally be defined as a

situation that prevents a MAPF solution from being valid.

One of the commonly used conflict definitions is vertex conflicts. An illustration

explaining vertex conflicts is provided in Figure 1.2. Vertex conflicts refer to the

situation of two agents ai and aj being on the same node v at the same time step t in

a grid-based world.

Another widely used definition of conflict is edge conflict. In this definition, two

agents ai and aj cannot cross the same edge e at opposite direction at the same time

t. An illustration explaining edge conflicts is provided in Figure 1.3.

1 2 3

At

Figure 1.3: An example of an edge conflict where the green agent and the blue agent

try to be in the same edge at opposite direction (between A1 and A2) at time t.

3

Other conflict types used are the following conflict and cycle conflict. Following

conflict prevents agents from passing through the same node at one-second intervals.

At a time step t, a cycle occurs if all the agents involved in the problem move to

a node where an agent was previously present. Cycle conflict prevents cycles in a

solution.

1.1.2 MAPF Solutions

The solution to the MAPF problem includes the routes that all agents reach from their

starting point to their ending point. For the solution to be valid, conflict situations

should not occur between the agent paths. In Figure 1.4 an example MAPF problem

solution is presented. In this MAPF problem, two agents operate in a 4x4 word.

Black cells represent obstacles. The solution routes are presented on the right side

of the picture. Also, the paths that the agents follow are presented on the map. This

solution is a valid MAPF solution because the paths do not have any conflicts.

1 2 3 4

A

B

C

D

MAPF Solution !

 t 0 1 2 3 4

Green: A1 A2 B3 C4 D4

Blue: B4 C3 D2 C1

Figure 1.4: An example of MAPF solution is presented where the green agent and

the blue agent reaches their goals without having any conflicts (in this example vertex

conflicts are used).

1.1.3 Assumptions on Agent Behaviors After Reaching Targets

In MAPF solutions, agents can arrive at their targets at different times. In such cases,

different assumptions can be made about the agents reaching the target. The most

4

common assumption is that the agent continues to stay or disappear after reaching the

target. Both assumptions can be used in MAPF problems.

1.1.4 Actions Allowed by Agents in the MAPF Problem on Discrete Maps

In this section, we talked about the possible actions that agents can take at each time

step in discrete maps. Allowed action sets can vary from problem to problem. Nor-

mally 9 different actions are allowed on a grid map. These actions are shown in

Figure 1.5: move one cell to the right, left, top, bottom, top right, bottom right, top

left, bottom left, and wait in the same cell. However, in most MAPF studies, diago-

Figure 1.5: Actions that an agent can take in a time step in a MAPF problem in a

8-connected grid environment.

nal moves are not allowed. In such problem settings, the number of actions the agent

can take decreases to 5. The reason for this is that robots generally have to move on

rails or linear paths in environments such as warehouses. The allowed actions in such

problems are also shown in Figure 1.6.

When there is an obstacle in one or more of the neighboring cells around the agent,

these cells should be removed from the list of cells that the agent can move into.

1.1.5 Objective Functions

In order to determine which MAPF solution is better than the other, a metric that

measures the quality of the solution must be determined. Two common metrics are

5

Figure 1.6: Actions that an agent can take in a time step in a MAPF problem in a

4-connected grid environment.

the sum of costs and makespan.

The sum of costs metric is calculated as the sum of the total times that all agents in

the problem reach their destination. The formulation is provided below where k is

the agent count, i is the agent number that is being processed and Ci is the cost of ith

agent:

k∑
i=1

Ci (11)

The makespan metric is calculated as the maximum time to reach the target for all

agents in the problem. The formulation is provided below where k is the agent count,

i is the agent number that is being processed and Ci is the cost of ith agent:

max(Ci) where 1 ≤ i ≤ k (12)

1.1.6 Incremental Multi-Agent Path Finding (I-MAPF)

In this study, in addition to the standard MAPF problem, we have defined a MAPF

variation in which some nodes on the map become unavailable for a time period while

the problem continues, and if at least one of these nodes is in the route of at least one

agent, the routes must be updated for those agents. We call this variant the Incremen-

tal Multi-Agent Path Finding problem (I-MAPF). In Figure 1.7, an environmental

change that occurs in the second time step and disappears in the fourth time step is

6

defined as an example of an I-MAPF problem with three agents. It is possible to see

the routes that the agents planned while there was no environmental change in the

upper left. Since a location in their plan became unavailable from the second time

step, the agents updated their initial plans from that time step.

Figure 1.7: An example of I-MAPF problem where an environmental change occurs

from time-step two to time-step four. Agents updated their plans accordingly.

In an I-MAPF problem, there are n agents A = {a1, a2 · · · an} on an undirected

graph G = (V,E) trying to go from the start point determined for it si to the end

point determined for it fi. In this setting, V represents the nodes on which agents

can stand, and E represents the edges between those nodes. Each agent has a specific

start point si and an specific endpoint fi where si and fi ∈ V . In this problem vertex

conflicts and edge conflicts are used. There are two actions the agent can take at each

time step. The first of these is to move to a new node, and the second is to wait at the

current node. We can represent current state of an agent as (ai, vj, t) where ai is the

agent, vj is the node it stays and t is the time step. The next step of the same agent can

either be (ai, vk, t+ 1) or (ai, vj, t+ 1) where k ̸= j. Agents can start from the same

starting point but must leave their start points at different time steps. It is assumed

7

that agents disappear when they arrive at their goal location. We evaluated the actions

of moving to a neighboring node or waiting on the same node as equally weighted.

In the I-MAPF problem, we defined the term environmental change as a node vi ∈ V

becoming unreachable for a period of time. The number of environmental changes

and how long those environmental changes will take is given as inputs to the problem.

Agents are informed that a node is unavailable, only one-time step in advance. Only

the information that that node cannot be reached is shared in this information, and the

information on how long this situation will last is not provided to the agents by the

system. The system notifies the agents that a node is available again one-time step

before that node is available. The formal definition of environmental changes can be

explained as follows: ECn is a dynamic list with n ordered entries. Each input in

the ECn consists of triples as in the {v, t,∆t} example. In this example, v is the

vertex that will become unavailable, the t value represents the time when the node v

will become inaccessible, and ∆t represents the length of the unavailability period.

The EC list is ordered according to the t values of the triples in it. At the start of

the problem, the EC list is initialized as empty EC = ∅. When each environmental

change occurs, n is incremented by one, and a node v is selected from the V list and

added to the EC list with the time information it will occur (t) and the duration it will

last (∆t). The notation ECi is used to represent the ith element of the EC list, and

the notation |EC| is used to represent the size of EC list.

Let ∆i be the period during which the node vi (which is the first element of the triple

ECi, shortly ECi(1)) will stay blocked. Then, for time period ∆i, the vertex ECi(1)

will be inaccessible in V , we call this updated version of vertex list as V ′. During ∆i,

agents are only allowed to visit vertices from V ′. After ∆i expires, the vertex that was

inaccessible is included in the vertex list again (more than one change can occur si-

multaneously and these vertex changes update V incrementally for the time steps they

occur). If an environmental change blocks a vertex vi for time-period t to t′ (where

t′ = t+∆i), then any agent planning to visit vi during time-period t to t′ must update

its plan to avoid visiting vi during time-period t to t′. We assumed that environmental

changes do not occur at the start locations of the agents. However, they can occur at

the goal locations. In that case, the agent should arrive at the vertex after the goal

node becomes available again. The goal of each agent is to find a path (a sequence

8

of actions) from its start vertex to its goal vertex without any conflicts. A solution to

this problem is the set of all agent paths without any conflicts. Also, agent paths must

adapt to environmental changes. The output of the I-MAPF problem is a set of paths

{P0...Pk}where Pi is a sequence of vertexes with time information without conflict or

block. Formally, Pi = {(v0, 0), (v1, 1), · · · , (vi, i), (vi+1, ti+1), · · · , (vm,m)} where

v0 is the start vertex of ai and vm is the goal vertex of ai (i.e., v0 = si and vm = fi).

The optimization criterion (objective function) used in this problem is the sum of the

costs of the paths of the agents.

1.1.7 Multi-Agent Path Finding Problem with Multiple Delivery (MAPF-MD)

We worked on an lifelong variation in which agents can have more than one or-

dered destination. New destinations can be inserted into the system anytime after

the initial job-assignment has been made, and these new destinations must also be as-

signed to agents, and the time of visiting the new destination must also be determined.

We called this Lifelong Multi-Agent Path Finding with Multiple Delivery Locations

(MAPF-MD). For example, problems in which some sub-domains of a certain area

are assigned to agents and covered by them simultaneously can be given as an exam-

ple of this type of problem (i.e, cleaning an area with autonomous robots). In such

problems, it may be necessary to cover certain sub-areas repeatedly, and the decision

to assign these tasks to which agent may need to be made in order to minimize the

total energy consumed.

An example MAPF-MD problem is shown in Figure 1.8. In this example, there are

three agents and each agent has two destinations. In addition, we can see a newly

added job in the system as marked in red. The problem should also include the order

in which this job will be added to which agent’s destinations. What is mentioned here

is not a capacity but a job scheduling sequence.

Similar to the I-MAPF problem described in the previous Section (1.1.6), an in-

stance of MAPF-MD also consists an agent set A = {a1, a2, · · · , ak} and an undi-

rected graph G = (V,E). Similarly, the starting vertexes where agents can start

S = {s1, s2, · · · , sk} and the ending vertexes they can finish F = {f1, f2, · · · , fk}
are determined. Any agent ai has a specific start vertex si and a set of goal vertices

9

?

Figure 1.8: An example MAPF-MD problem is represented where three agents exists

and all of them have two destination locations. A new job (shown in red) is need to be

assigned to one of the agents and the order in which that work is to be fulfilled must

be decided.

Fi. Fi is the ordered set of goal vertices that agent ai must visit sequentially, and it

is a subset of all goal vertices: Fi ⊂ F . For each agent ai the length of Fi can be

different and Since Fi is a dynamic list, Fi may change as time steps progress. Fx

is the list of goal vertices that are added to the system after the job has started. It is

initially empty: Fx = ∅. As time progresses, goal locations in Fx are distributed to

agents, and these goal locations are added to the agents’ own destination lists. There

are two actions the agent can take at each time step. The first of these is to move to a

new node, and the second is to wait at the current node. These actions both have the

same cost in this setting. We used the similar problem settings used in in the previ-

ous Section (1.1.6) on conflicts (vertex and edge conflicts are used), agent disappears

assumptions (agents disappear after they reach their final destinations) and cost cal-

culations (objective function is the sum of costs of the paths of the agents). At any

time a new goal vertex fx can be added to system (a new destination to be visited)

such that fx /∈ F and fx ∈ V . After this addition F becomes F = F ∪ {fx}, Fx

becomes Fx = Fx ∪ {fx} and the destination list of the agent ai that the new job fx

is assigned to becomes Fi = Fi ∪ {fx}. Here fx does not have to be inserted to the

end of the list Fi, it can be inserted anywhere in Fi. The goal of each agent is to find

a path (a sequence of actions) from its start vertex to its last goal vertex, by visiting

all of its goal vertexes in an ordered fashion, without any conflicts. A solution to this

problem is the set of all agent paths without any conflicts.

10

1.2 Proposed Methods

In this thesis, we worked on generalizations of the MAPF problem to represent the

real word needs better, and we proposed methods to solve these variations efficiently.

The methods that we offer are as follows:

• In Chapter 3, we first solve the I-MAPF problem with CBS (one of the standard

MAPF solutions). For this, we proposed the CBS-replanner algorithm. Then

we used D*-lite as a low-level solver to make this solution more suitable for

the incremental domain, and we made a number of changes in the outline of

the algorithm to make it more effective and complete. With the results, we

showed that the newly proposed algorithm quickly updates its path according

to environmental changes and is much more suitable for replanning,

• In Chapter 4, we developed an algorithm that solves a variation of MAPF con-

sisting of agents with multiple delivery locations. To solve this problem, we

ran a low-level search for each delivery location pair. We chose to use an incre-

mental low-level solver to take advantage of its ability to cache previous search

information as there are many replanning actions in the known environment.

Then we used the CBS algorithm by combining the paths found for these deliv-

ery location pairs. Thus, we found a solution to this problem by finding optimal

distance paths. We also solved the problem of constantly adding new jobs to the

problem (a.k.a. Lifelong MAPF) by creating a set of heuristic job assignment

algorithms. Our primary goal here was to minimize the total path cost by using

these heuristics.

1.3 Contributions and Novelties

Throughout this thesis, we have proposed several solutions to problems that extend

MAPF in a way that brings it closer to real-world problems. We focused on solutions

that increase the replanning speed for the incremental domain. We have defined a

novel algorithm that plans optimal paths for agents with multiple locations. In ad-

dition, while planning continues, we focused on path cost instead of makespan and

11

worked on cost optimization.

Our contributions are as follows:

• We provided a new generalization of MAPF and present a new problem I-

MAPF which is more appropriate for real-life scenarios. This new general-

ization includes adding dynamic node changes (availability/inavailability) to

the MAPF problem and requiring agents to adapt to these changes quickly.

• We provided two novel algorithms to solve I-MAPF problem:

– The CBS-replanner is the incremental version of the CBS algorithm. With

each new environmental change, it updates the agent starting points and

calls a new CBS algorithm to update the solution. This approach produces

solutions that adapt to environmental changes but are, unfortunately too

expensive to be used in real-life problems. Furthermore, the A* algorithm

is not suitable for dynamical environments because it cannot cache previ-

ous searches. Therefore, it has to recalculate all the paths from scratch.

– We proposed the CBS-D*-lite algorithm to use the advantages of D*-lite

in dynamical environments. Furthermore, we made a couple of changes in

the overall structure of the CBS algorithm. The algorithm generally works

in three steps. Whichever of these three steps it finds a solution, it stops

there. Since the aim is to search as little as possible, a wider search is

made in the solution area at each step. In this way, both fast and complete

solutions that are not far from optimal are produced.

• We provided a new generalization of MAPF in which agents can have multiple

destinations. We combined this problem with lifelong MAPF to create a new

realistic problem.

• We provide a new optimal solution to solve MAPF instances having multiple

delivery locations.

• We provided several new heuristic algorithms to assign jobs to agents and de-

cide the order of these new destinations in agents’ destination lists. Our heuris-

tics use sum cost minimization.

12

1.4 The Outline of the Thesis

The remainder of the thesis is organized as follows: In Chapter 2, the previous studies

in this field and the details of the studies in the field that form the basis of this study

are explained. In Chapter 3, the algorithms of CBS-planner and CBS-D*-lite from

I-MAPF solutions are explained in detail. The analyzes made about them and the re-

sults of the experiments are shared. In Chapter 4, the multiple delivery conflict-based

search algorithm (MD-DCBS) algorithm for solving the MAPF problem involving

multiple delivery locations for agents is described. In addition, five new heuristic al-

gorithms that decide the job distribution and when to do the new job are introduced,

and the results of the experiment are shown with a solution in which these two al-

gorithms are used jointly. Finally, Chapter 5 summarizes all these described studies,

emphasizes their importance in the field, and conveys the inferences made from the

experimental results.

13

14

CHAPTER 2

BACKGROUND AND RELATED WORK

In this section, the preliminary information necessary to better explain the studies

described in the thesis is presented. In addition, summaries of current studies in

the fields related to the studies in this thesis are also presented in this section. This

chapter discusses the evolution of path finding algorithms, a survey on multi-agent

path finding solutions, examples of generalized multi-agent path finding problems,

and studies attacking them.

2.1 Single Agent Path Finding

The single agent path planning problem is the problem of creating a path by choosing

one of the actions allowed for each time step of an agent from a certain starting point

to the endpoint in the graph and avoiding the obstacles on the map.

A

B
C

D

E

F

G

H

1 2 3 4 5 6 7 8

(a) Discrete Map (b) Continuous Map

Figure 2.1: An example showing single agent path finding in discrete and continuous

maps.

15

There are many studies to solve the single agent path finding problem. Some of

these are methods that work on discrete maps, while others are methods that work

on continuous maps. Figure 2.1 shows an example problem presented in a discrete

and a continuous map. To give an example of studies on path finding for continuous

space: studies on visibility graphs [22, 23], voronoi diagrams [24], cell decomposition

[25, 26], potential fields [24] and sensor-based path finding [27, 28] can be cited as

examples. Since the focus of this thesis is mostly on discrete maps, the rest of this

section will focus on studies working on discrete maps.

Studies that solve the path finding problem generally focus on the solution with

heuristic-based algorithms [29]. Path finding problem is studied in many different

areas, the unmanned aerial vehicles (UAV) [30, 31], route planning for robots [32],

and studies on transportation [33] can be given as examples.

2.1.1 A* Search Algorithm

A* search algorithm [34] is an optimal and complete graph traversal algorithm that

is frequently used in path finding problems. It avoids expanding paths that are al-

ready expensive. It performs a best-first search to find the optimal solution where the

evaluation function is f(n) = g(n) + h(n):

• g(n) = cost so far to reach the node n.

• h(n) = estimated cost from node n to goal.

• f(n) = estimated total cost (via an admissible heuristic) of path through node

n to goal.

The determining factor in the performance of the A* search algorithm is the chosen

heuristic function. The selected heuristic will determine the number of nodes the A*

algorithm will traverse. If h(n) is admissible and consistent, the A* search algorithm

will operate optimally.

In the A* algorithm, c(x, y) represents the one-step cost of switching between nodes

x and y. The algorithm starts by assigning the starting node to the open list and

16

equating the value function to infinity. It then starts repeating the next steps until the

open list is empty. It selects the node with the lowest f-function value from the open

list, marks it as the best node, and adds nbest to the closed list. If this node is equal to

the destination node, the algorithm terminates and returns the path found through the

closed list. If this node is not equal to the target node, the next steps are executed. The

next steps are performed for all neighbors of the nbest node. For each neighbor, its

distance from its target node is calculated by heuristic functions. The value function

(f) is calculated by summing the heuristic value (h) with the total cost spent up to

this node (g). If this node is not in the open list, it is added to the open list, if it is

already in the open list, the new g value is compared with the old g value. If the new

value is smaller, this value is updated. A pseudocode of the A* algorithm is provided

at Algorithm 1.

Algorithm 1 A* Search Algorithm
Input: A graph and a root node to start

1: Add root node to OpenList.

2: f(n) =∞
3: while OpenList NOT empty do

4: Pick nbest from OpenList such that f(nbest) <= f(n)

5: Remove nbest from OpenList and add it to ClosedList

6: if nbest == goal then

7: return ClosedList ▷ Return the found path

8: else

9: Expand ∀x that are neighbors of nbest and ̸∈ ClosedList

10: for Each successor node x of nbest do

11: h(x) = heuristically estimate distance to goal

12: g(x) = g(best) + c(best, x)

13: f(x) = g(x) + h(x)

14: if x is NOT in OpenList then

15: Add x to OpenList

16: else

17: if (g(nbest) + c(nbest, x) < g(x)) Update x ▷ Compare new g(x)

with the previous g(x)

17

2.1.2 Incremental Single Agent Path Finding

In incremental search algorithms, if there are changes in the world in which the agents

are planning, they must update their plan according to these changes [35]. There

are many studies focusing on incremental single-agent path finding in the literature.

Lumelsky and Stepanov [36], Pinadeh and Snyder [37], Korf [38] and Zelinsky [39]

tried to use existing information to re-plan the path dynamically. Stentz tried to solve

the problem by generalizing the A* algorithm by making it responsive to environ-

mental changes to use in dynamic environments. He developed two algorithms, D*

[40] which partially changes the f and g values of the vertexes when environmental

change occurs, and Focused D*, which is the improved version of the D* [41] that

focuses on updating the costs to reduce the number of expanded states. Later, Rama-

lingam and Reps came up with an incremental algorithm called DynamicSWSF-FP

[42] to solve a similar problem which is a grammar problem. DynamicSWSF-FP is

capable of handling the arbitrary number of edge insertion, edge deletion, and cost

changes. Koenig et al. [43] combined A* and DynamicSWSF-FP in Lifelong Plan-

ning A*. Koenig and Likhachev also proposed D*-Lite, which behaves similarly to

D* but algorithmically different. It includes fewer conditional branches, which makes

it easier to implement and extend [44].

2.1.3 D*-Lite

This subsection provides the general structure of the D*-lite [44] algorithm. D*-

lite considers a goal-directed robot navigation task inside an unknown terrain. The

robot starts its navigation from the start cell and tries to reach the goal cell. The

terrain is unknown but the robot can observe its adjacent cells. It moves to one of the

adjacent and accessible cells. D*-lite first computes the shortest path from the robot’s

current cell to the goal cell under the assumption that all of the unobserved cells are

reachable. The robot follows this path until it reaches its goal cell or until it observes

an inaccessible cell on its path. If the robot observes an inaccessible cell on its path

(robot observes a new obstacle), then the robot re-computes the shortest path from its

current location to the goal cell. D*-lite re-calculates goal distances only for those

cells that can be used in the shortest path. It continues this process until it reaches

18

goal coordinates or determines that the goal location is unreachable.

The main difference of this algorithm is that for each node it keeps two estimated

values of that node. One of them is g, which is the estimation of the objective func-

tion value based on the available information. The second is rhs. Rhs is a one-step

forward estimation of the objective function value. The system uses these two esti-

mated values to define consistency. If they are equal, the node is marked as consistent.

Otherwise, the node is marked as inconsistent. Inconsistent nodes are added to the

open list for processing. D*-lite does not store any pointers in memory. If there is a

directional edge defined from node a to node b, a is called the successor of b, and b is

called the predecessor of a. Also, the rhs value of a node is calculated with the help

of the g values of its successors and the cost of passing the edges to that successor

nodes.

For case u, rhs is calculated as: rhs(u) = mins′∈succ(u)(c(u, s
′)+ g(s′)). The priority

of a node is determined by the heuristic h algorithm, along with the minimum g and

rhs values. The primary key is calculated as follows: min(g(s), rhs(s))+h(sstart, s),

the secondary key is calculated as: min(g(s), rhs(s)).

One of the most important features of the D*-lite algorithm for fast replanning is that

it searches backward from the target node first (so that only the relevant nodes are

expanded). In this way, it is quite easy to update the starting point of the agent in this

algorithm. However, since the search is backward, it is difficult to understand which

node was created in which time step when the nodes were first created. A pseudocode

of the D*-lite algorithm is provided at Algorithm 2.

2.1.4 LPA*

Lifelong planning A* (LPA*) [43] is developed to generalize A* for dynamic en-

vironments where edge costs may change during the search. Unlike traditional A*,

LPA* is capable of handling changes by just expanding the nodes that are affected by

the change. It checks whether the shortest path from the start node to the current node

is subject to the edge cost change. The algorithm does that by taking a minimum of

the paths adding edge costs to the parents of the node. If the shortest path is changed,

19

Algorithm 2 D*-Lite Search Algorithm
Input: A graph and a root node to start

1: while robot did not reach the goal do

2: initialize()

3: compute_shortest_path()

4: while sstart ! = sgoal do

5: sstart = argmins’ ∈ Succ(sstart)(c(sstart, s
’) + g(s’))

6: Move to sstart

7: Scan graph for changed edge costs

8: if any edge costs changed then

9: for all directed edges (u, v) with changed edge cost do

10: Update the edge cost c(u, v)

11: update_vertex(u)

12: for all s ∈ U do

13: u.update(s, calculate_key(s))

14: update_vertex(u)

15: compute_shortest_path()

LPA* updates the node’s g value and then marks its children as their shortest path

might also be changed. Child nodes are pushed to the open list to be expanded later.

LPA* is complete and optimal if the heuristic is consistent and non-negative.

The LPA* algorithm does a forward search, unlike the D*-lite algorithm. D*-lite

works faster by searching backward. However, if it is desired to have information

such as which node was generated in which time step while resolving conflicts, it will

be much easier to add the time information of each generated node, since LPA* uses

a forward search. This will facilitate conflict resolution processes. A pseudocode of

the LPA* algorithm is provided at Algorithm 3 and Algorithm 4.

2.2 Studies Working on Multi Agent Path Finding (MAPF)

In this section, we provided the survey we made about the studies that solved the

Multi Agent Path Finding problem, under the headings we made according to the

20

Algorithm 3 LPA* Algorithm - Main
Input: A graph and a root node to start

1: function PROCEDURE CALCULATEKEY(s)

2: Initialize()

3: while do

4: ComputeShortestPath()

5: Wait for changes in edge costs

6: for all directed edges (u, v) with changed edge costs do

7: Update the edge cost c(u, v)

8: UpdateVertex(v)

categories of the studies.

2.2.1 Optimal MAPF Approaches

Optimal MAPF approaches aim to find the most optimal solution in the solution

space. They usually find the best solution, but sometimes it can take a long time

for them to find a solution because of the high time complexity of large problems.

The general aim of studies in this field is to develop methods to find the best solu-

tion without searching the entire space. Since the solution space size of the MAPF

problem grows exponentially depending on the number of agents, it is possible to

gain an exponential acceleration by reducing the number of agents in the problem.

In this context, Standley [45] introduced the independence detection framework (ID).

According to this study, if the solutions of the two agent groups do not conflict with

each other, these two agent groups are independent of each other. The purpose of

ID is to reduce the problem to independent groups of agents and solve the problem

for them. Coupled methods can be given as another example of optimal MAPF ap-

proaches. These methods perceive agents as multidimensional composite systems.

Increasing cost tree search (ICTS) [46] can be given as an example of optimal MAPF

solvers. ICTS is a two-level algorithm, the top-level ICTS looks for the increasing

cost tree (ICT). Each node in the ICT contains a list of individual route costs with

as many elements as the number of agents. In this study, all possible outcomes at a

cost c for each agent are stored in data structures called multi-value decision diagram

21

Algorithm 4 LPA* Algorithm
Input: A graph and a root node to start

1: function PROCEDURE CALCULATEKEY(s)

2: return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))]

3: function PROCEDURE INITIALIZE

4: U = ∅
5: for all S rhs(s) = g(s) =∞
6: (rhs(sstart) = 0

7: U.Insert(sstart,[h(sstart);0]

8: function PROCEDURE UPDATEVERTEX(u)

9: if (u ̸= sstart) rhs(u) = mins′∈pred(u)(g(s
′
) + c(s

′
, u))

10: if (u ∈ U) U.Remove(u)

11: if (g(u) ̸= rhs(u)) U.Insert(u,CalculateKey(u))

12: function PROCEDURE COMPUTESHORTESTPATH

13: while U.TopKey() < CalculateKey(sgoal) OR rhs(sgoal) ̸= g(sgoal) do

14: u = U.Pop()

15: if g(u) > rhs(u) then

16: g(u) = rhs(u)

17: for all s ∈ succ(u) UpdateVertex(s)

18: else

19: g(u) =∞
20: for all s ∈ succ(u)

⋃
{u} UpdateVertex(s)

(MDD) [47]. MDDs are compact data structures that are a special case of directed

acyclic graphs. ICTS tests whether nodes at the lower level contain optimal results,

by looking for k non-conflicting routes for k different agents in the cross product of

MDDs. If a set of non-conflicting agents can be found in this way, the lower level re-

sult returns true and the search results, otherwise the lower level returns false and the

search continues with another node at the higher level. Another example of a paired

method is the CBS algorithm [48]. CBS is a two-level algorithm just like ICST. CBS

performs its search on a tree called a constraint tree (CT). Unlike ICTS in CBS, at

each node of the tree, a solution set of agent plans maintains a list of agent plans,

total cost, and agent-plan conflicts. A new node on the CT is created by removing a

22

conflict in the previous node’s conflict list. At the lower level, the agent routes are

updated according to the newly defined constraints, while at the upper level, the CT

tree is visited and the optimal solution is tried to be found. Another optimal solution

example is SMT-CBS. SMT stands for satisfiability modulo theories (SMT). SMT-

CBS is a study that brings together compilation-based and search-based studies [49].

SMT-CBS outperforms CBS and ICTS and performs closely but generates less space

than SAT-based approaches (we provide details about reduction-based approaches in

the Subsection 2.2.1.1). Boyarski et. al., 2020, proposed an optimal algorithm that

solves the MAPF problem with an iterative deepening version of CBS. In this study,

the authors created a memory-efficient CBS version by applying the logic applied

in the iterative deepening A* (IDA*) study [50] to the CBS algorithm. In addition,

this new approach is an optimal and complete approach like the CBS algorithm. The

main difference between iterative deepening approaches and the best first search ap-

proaches is that iterative deepening approaches use a limit-based depth-first search

approach instead of best-first search. Memory savings are generally achieved by this

change. Also, this study uses LPA* in low-level search, using the idea that incremen-

tal approaches make use of prior knowledge [51]. This study is similar to our study

in terms of using an incremental single-agent planner as a low-level solver. While

D*-lite was preferred in our study, LPA* algorithm was preferred in this study. It is

seen that the tests performed are aimed at solving the standard MAPF problem. In

our study, the I-MAPF problem, which is a MAPF generalization, is solved. Also,

in our study, we continued to build the CBS tree from where it left off and searched

for a sub-optimal but very fast replanning version. Their version, on the other hand,

follows the perspective of accelerating sub-steps without interfering with the main

working structure of the CBS algorithm.

2.2.1.1 Reduction-based MAPF Approaches

Reduction-based solvers can also be given as examples of optimal MAPF solvents.

We wanted to examine the studies within this scope under a separate subsection. The

main purpose of reduction-based solvers is to reduce the MAPF problem to well-

known problems in computer science and solve that reduced problem. Examples of

such methods include the studies that reduce MAPF problem to boolean satisfiability

23

(SAT) [52, 53] problem, integer linear programming [9, 54] and answer set program-

ming [55, 56, 57]. As a disadvantage of such methods, it can be shown that the

conversion of the problem to another problem requires extra operations in addition to

the solution of the problem and can increase the solution time [48].

2.2.1.2 Conflict Based Search

1 2 3 4

A

B

C

D

 t 0 1 2 3 4

Green: A1 A2 B3 C4 D4

Blue: B4 C3 D2 C1

X

X

1 2 3

At

1 2 3

A

t
B

X

a) b)

c)

Figure 2.2: Some of the CBS definition illustrations; a) presents a conflict at time t, b)

presents a constraint for the green agent and its path after it adapted its path according

to that constraint, c) presents a valid solution containing consistent paths for each of

the agents (to their constraints) and no conflicts (agents do not visit the same nodes at

the same time)

CBS [48] is an offline search-based algorithm to find optimal paths for the agents in

the MAPF problem. The optimization criterion used in CBS is the sum of costs of

the paths of the agents. CBS represents all possible solutions to the MAPF problem

as a state space. It represents every possible solution in state space as a node. It

generates a special tree from these nodes, this tree is called the constraint tree (CT).

CBS searches this tree to find the optimal solution. CBS starts its operation by finding

paths for each of the agents from their starting locations to goal locations ignoring

other agents. The root of three (CT) contains these single-agent paths. The set of k

24

paths for k agents forms a solution to a MAPF task. Afterward, the algorithm checks

whether there is a conflict between these agent paths. They define a conflict as a

situation in which two agents ai and aj occupy the same node v at the same time-step

t (Figure 2.2-a). Each conflict is formalized to be between 2 agents if more than 2

agents try to occupy the same node at the same time, this is expressed by more than

one conflict involving 2 agents each. New nodes in the state space (new CT nodes)

are created by resolving conflicts. To resolve a conflict, one of the agents in that

conflict should be told not to go through that node at that time step, and the restriction

for this single agent is called a constraint. A constraint specifies a restriction that a

particular agent ai cannot occupy a node v at a specific time t (Figure 2.2-b). Since

CBS does not know which of the agent paths will bring the optimal solution later, it

creates a constraint for both agents. CBS creates 2 new nodes to CT by adding these

two constraints to the previous CT node (one constraint is added to the right child

node and one constraint is added to the left child node). When new nodes are created,

agents that constraints are added to plan their routes again (satisfying the constraints

added), and conflicts are recalculated according to the new paths. The tree continues

to expand until it finds a node without conflicts. They call the solutions that conform

to the given constraints and do not contain any conflicts as valid solutions (Figure

2.2-c). The algorithm performs a best-first search on the CT where nodes are ordered

by their costs (sum of total costs of all agent paths). An example CT is provided

in Figure 2.3. The best-first search maintains two lists during the search which are

open-list and closed-list. The open list is the list of all generated nodes. These nodes

are the states that the algorithm generated, which is a subset of all possible states.

They include the states that are created but are not chosen by the algorithm later to be

expanded. The closed list is the list of all expanded nodes. Ties are broken by using

a conflict avoidance table (CAT) [45]. This policy suggests that when two states with

the same cost are placed on the open-list, choosing the states having a lower number

of conflicts with other agent paths is favorable. In the CBS algorithm, the process of

searching the constraint tree and creating new nodes is called high-level-search. On

the other hand, planning individual paths that satisfy the given constraints is called a

low-level search. CBS uses the A* algorithm to make a single-agent search in low-

level search.

25

Con: {}

1- {A2, B3, B4}

2- {A4, B3, C2, D1}

Cost: 6,7

Con: {1,B3,1}

2- {A4, B3, C2, D1}

Cost: 6,7

1- {A2, A3, B4}

Con: {2,B3,1}

2- {A4, A3, B3, C2, D1}

Cost: 7,2

1- {A2, B3, B4}

GoalGoal

1 2 3 4

A

B

C

D

1 2 3 4

A

B

C

D

Conflict
Constraint for

Blue agent

Figure 2.3: An example constraint tree (CT) is shown. Two of its nodes are graphi-

cally represented.

2.2.2 Sub-optimal MAPF Approaches

Since the methods used to find optimal results are costly in terms of the amount

of computation, there has also been a trend towards sub-optimal approaches. Sub-

optimal approaches focus on finding good enough results, rather than focusing on

finding the best solution in the entire solution space. Some sub-optimal studies guar-

antee that the difference between the solutions they find and the optimal solution is

below a certain limit, these studies are called bounded sub-optimal studies. One of the

examples of bounded sub-optimal solvers is enhanced partial expansion A* (EPEA*)

[58]. EPEA* is the enhanced version partial expansion A* (PEA*) [59]. PEA* is an

A*-based search algorithm that ensures that nodes that are generated and not used in

the A* algorithm are not expanded. EPEA* does not even generate the surplus nodes

with the help of prior domain and heuristic-specific knowledge. Another bounded

sub-optimal example of MAPF solvers is M* (A Complete Multirobot Path Planning

Algorithm with Performance Bounds) [60]. This algorithm aims to minimize the di-

mensionality of the search space by coupling the robots that are found to interact.

They dynamically generate low-dimensional search spaces inside the full configura-

tion space. Another sub-optimal MAPF solver example is hierarchical cooperative

A* (Eng. hierarchical cooperative A* - HCA*) [61]. In this method, agent routes

are planned one by one in a predetermined order. When the first agent finds a route

26

to reach the endpoint, it records it in a global reservation table. Then, the planning

agents plan their routes so that they do not conflict with the routes in that table and

add their routes to the reservation table. As another variation of the HCA* method,

the windowed HCA* method (W-HCA*) [61] has been proposed. One disadvantage

of the HCA* method and its variations is that deadlocks can occur in multi-agent en-

vironments and therefore the HCA* algorithm is not complete. In addition, HCA*

cannot guarantee that the solution will be above a certain quality and may produce

solutions that are far from optimal. Another subset of sub-optimal approaches spe-

cific to MAPF is rule-based algorithms. Rule-based approaches define specific action

sets for agents, and the problem is tried to be solved by making agents use these ac-

tion sets where appropriate [62, 63, 64, 65]. In such approaches, the aim is to reach

a solution quickly by searching a small part of the solution space. Such approaches

may compromise the quality of the solution to reach quick solutions.

2.2.3 Studies on the Generalized MAPF Problem

Recent studies have revealed that MAPF problem modeling is insufficient to reflect

real-life scenarios [66, 67]. Researchers have begun to focus on solving extended

MAPF problems in order to meet real-life requirements. One of these extended

MAPF problems is the combined target assignment and path finding problem (TAPF)

[68]. In this study, the problem of distributing tasks to agents is discussed, the solution

must include a set of agents, and the tasks are distributed first to the teams and then to

the agents within the teams themselves. In most real-life scenarios, agents can swap

their payloads. Ma et al. [68] formulated this scenario and introduced the package

exchange robot routing (PERR) problem and, inspired by MAPF solutions, presented

optimal and semi-optimal solutions for solving PERR. In another study, Cohen and

Koenig [69] presented a new constrained semi-optimal algorithm that takes advan-

tage of the problem infrastructure and calculates the agent route using only edges

(either by the user or automatically) from the supplied edge set. Cohen and Koenig

named this supplied set of edges the highway. Wan et al., in 2018, presented a MAPF

approach that solves a life-long study of MAPF in dynamic environments. In the pre-

sented article, dynamism is defined by adding new agents to the environment. The

lifelong definition of the problem comes from the fact that new agents can be added to

27

the problem all the time. In this problem, the newly added agents are added to the sys-

tem with their targets assigned. After adding agents to the system no job assignment

is made to the agents. In addition, after adding new agents, the previous solution in

the CBS algorithm is modified and the new agents are run again from where they left

off in a way to calculate their routes. This study differs from the problem definition

of our project because the definition of dynamism is different and it does not allocate

targets [70]. Bogatarkan et al., 2018, proposed a solution to the dynamic MAPF prob-

lem. The dynamism in this study is defined as the introduction of new obstacles to the

map or the displacement of obstacles. The proposed solution method makes use of

the answer set programming method. In this study, minimization of task completion

times was determined for each agent as a minimization criterion [71].

2.2.3.1 Multi Agent Pick Up and Delivery

Figure 2.4: An example problem setting of Multi Agent Pickup and Delivery (MAPD)

problem. Light-colored houses represent the pickup locations and dark-colored

houses represent the delivery locations.

The pickup and delivery problem is a problem where mobile agents have to pick up

an object from one place and leave it in another place. Figure 2.4 shows an example

multi-agent pickup and delivery problem. This problem has been studied extensively

before and its complexity has proven to be NP-hard [72, 73]. Recently, this prob-

28

lem has been combined with the multi-agent path finding problem and has started to

work in this domain. This problem is a frequently encountered problem, especially in

warehouse environments. Problems, where multiple mobile robots take the packages

placed on the shelves without colliding with each other and move on a grid structure

and leave the package on another shelf, are an example of the real-world application

of this problem. This problem is often worked together with the problem of allocat-

ing work to agents [74, 75]. Such studies will be discussed in more detail in Section

2.2.4.

2.2.3.2 Lifelong Multi-Agent Path Finding

Tasks can be added to the system at any time in the Lifelong Multi-Agent Path Finding

problem. Agents are expected to be assigned to these added jobs and the Multi-Agent

Path Finding problem is expected to be resolved after these assignments are made

[75].

2.2.4 Studies on Combined Task Assignment and MAPF Problem

Examples combining MAPF and target assignment problems can be found in the lit-

erature recently [76, 68, 77]. Ma and Koenig presented the conflict-based min-cost-

flow (CBM), a hierarchical algorithm, to solve the TAPF problem. In 2017, Nguyen

expanded the TAPF problem to include an unequal number of targets and agents, set-

ting deadlines for targets, queuing grouped targets, and targets that could consist of a

string of checkpoints, and solved the problem using solution set programming (ASP).

Hönig et al. in 2019, introduced a new optimal and complete solution method called

MAPF-TA, and introduced an algorithm that solves the MAPF and target allocation

problems together. In this study, the search process was carried out on a forest struc-

ture instead of a tree. The biggest difference between these types of studies and our

present study is that in these studies, target allocation is done at the beginning of the

problem and new targets cannot be added later. In our study, on the other hand, as-

suming that the initial target allocation has already been made, we plan to allow the

addition of targets to the system later and focus on the allocation of those targets to

29

0

(a) Initial planning

t

(b) Simulation time t

t

(c) Simulation time t after task assignment

Figure 2.5: An example problem setting that combines multi-agent pickup and de-

livery and task assignment problems. Light-colored houses represent the pickup lo-

cations and the dark-colored houses represent the delivery locations. a) shows the

initial planning, b) the red houses show the newly added pickup and delivery loca-

tions at time t. c) the new job is assigned to the green agent because it is the only free

agent.

30

the agents, and we aim to reduce the cost of the solutions that result from these new

additions. Another study that does the target allocation process in a more similar way

to the method we want to do is Ma et al. by 2017 [75]. In this study, they studied

a lifelong version of the MAPF problem with pick-up and delivery locations. In the

lifelong MAPF problem, new targets can be added to the system continuously. To

match objectives with agents, Ma et al. used a token passing mechanism. Each agent

that finishes its job requests a token to be able to select a new job from the job list, and

when the token is given to it, it chooses the appropriate job from the list. Wu et. al.

worked on a version of the multi-agent pick-up and delivery problem in 2021, where

each task must be completed within a certain deadline. They solved the problem by

integrating task assignments and path planning processes. They decided which task

would be selected and assigned to the agents with a metric called flexibility [78]. In

2021, Chen and colleagues worked on a variation of the multi-agent pick-up and de-

livery problem where agents can have capacities. This study proposes an approach

that solves task assignment and path planning together. In this approach, marginal-

cost assignment heuristic and meta-heuristic improvement strategies are used [79].

An example setting combining MAPD and task assignment is provided in Figure 2.5.

31

32

CHAPTER 3

INCREMENTAL MULTI-AGENT PATH FINDING WITH CBS-D*-LITE

Existing multi-agent path finding (MAPF) algorithms are offline methods that aim at

finding conflict-free paths for more than one agent. In many real-life applications, it

is possible that a multi-agent plan cannot be fully executed due to some changes in the

environment (represented as a graph), or in missions in which the agents are involved.

Even in the case of a minor change, the offline planning algorithm must be re-started

from scratch to generate a new plan, and this often requires a substantial amount of

time. Motivated by this real-life requirement, we introduced the Incremental Multi-

Agent Path Finding (I-MAPF) problem (Section 1.1.6). In this problem, any location

(node) in the initial environment (graph) can become unavailable for some time and

then become available again. Agents can be informed about these changes before they

occur and some agents have to update their plans if they planned to use that location.

The Conflict Based Search (CBS) is one of most the successful algorithms in solving

MAPF problems. To our best knowledge, there are no currently existing studies that

attempt at solving the I-MAPF problem. In this chapter, we propose a new method to

solve the I-MAPF problem, called CBS-D*-lite. CBS-D*-lite is built upon CBS and

avoids re-planing for agents that are not affected by the environmental changes. To

achieve this, CBS-D*-lite employs D*-lite, an incremental single-agent path-finding

algorithm as the lower-level search method in CBS. Empirically, we show that the

CBS-D*-lite provided faster results than regular CBS, and the total cost provided by

CBS-D*-lite is generally close to the total cost values provided by the regular CBS

when there are environmental changes.

In this section, we propose a solution method [15] for the I-MAPF problem. The first

step of this method involves using the D*-lite algorithm as the lower-level planner.

33

We talked about how the D*-lite algorithm needs to go through a series of updates to

do this, and how these updates can be done. Secondly, we made a few changes in the

structure of the CBS algorithm that could increase the replanning speed and presented

them.

When the availability status of cells in the map can change dynamically, some agents

need to modify their paths in such a way that the total cost of re-planning is mini-

mized. CBS is not a suitable approach for this because it employs A* in the low-level

search and A* is an off-line algorithm, not suitable for dynamic environments. Be-

cause CBS uses A*, CBS has to re-compute all of the agent paths and re-generate the

CBS tree from scratch to provide a new optimal plan for the agents. Consequently, us-

ing CBS in I-MAPF will produce an optimal strategy, but it will significantly increase

the running time. Motivated by this inefficiency, we proposed a modified version of

CBS to minimize re-planning overheads. We employed D*-lite [44], an incremental

search algorithm, as a low-level search instead of A*. At the beginning of the task,

we create a D*-lite instance for each agent. As CBS generates new constraints, D*-

lite only modifies the relevant parts of the paths. When a new environmental change

occurs, only the affected agents change their paths. If this change causes new con-

flicts with other agents paths, we add new nodes to the CBS tree. CBS-D*-lite does

not create the CBS tree from scratch. It expands the CBS tree from where it left off.

By dint of this expansion strategy, CBS-D*-lite avoids a significant amount of the

re-planning. Thereby, CBS-D*-lite rapidly adapts the agent paths to environmental

changes. Since there is no algorithm solving I-MAPF problem is presented before, we

developed an incremental version of regular CBS, called the CBS-replanner, to eval-

uate the performance of our proposal. The CBS-replanner basically updates its map

after every environmental change and runs the original CBS algorithm from scratch.

We show that the CBS-replanner is complete and optimal, but it is too slow to be

used. On the other hand, CBS-D*-lite is complete but not optimal. It is faster than the

CBS-replanner in dynamical environments. We tested and compared our algorithm

on different planning problems. First we compared the two approaches on hand-

crafted inputs. Then we randomly generated 8x8 graphs and made tests with a varying

number of agents. After that we compared the effect of various types of environmental

changes (hand crafted, randomly created and randomly created changes that forced

34

to occur at one of the agents path) to the overall running time, total path cost, and

success rates of the algorithms. Finally, we tested both approaches on benchmark

maps from [1]. Our approach returned better results in both stationary and dynamical

environments. We observe that the difference between the performance of regular

the CBS-replanner and CBS-D*-lite becomes more recognizable as the number of

changes increases. In addition, in another study that is not within the scope of this

thesis, we solved the problem we defined in this thesis with a CBS variation that uses

LPA* as a low-level planner with a similar structure defined in this study [80]. We

compared that variation with CBS-D*-lite. In the results, we observed that the CBS-

D*-lite version found better results in terms of path cost. In terms of replanning speed,

when the number of environmental changes are high, incremental CBS variation using

LPA* is also seemed to be a good alternative to solve this problem.

3.1 Method

In this section, we present a novel approach, CBS-D*-lite, which can solve I-MAPF

problem instances efficiently. Our method is based on the CBS algorithm [48] and it

extends CBS in a couple of ways. First of all, regular CBS cannot solve incremental

problems. To address this, we started with a naïve approach called the CBS-replanner.

This naïve approach produces solutions that adapt to environmental changes but is,

unfortunately too expensive to be used in real-life problems. The main reason why

CBS is not suitable for incremental searches is that it uses A* as its low-level search.

The A* algorithm cannot cache previous searches. Therefore, it has to recalculate

all the paths from scratch. To solve this problem efficiently, we needed a mechanism

to make use of previously calculated data. D*-lite [44] is shown to be a fast and

efficient approach for solving single agent incremental path planning problems. So

we changed the low-level planner of the CBS-replanner from A* to D*-lite. This

novel approach is called CBS-D*-lite. It has the ability to cache previous searches. It

only calculates the part of the paths that are affected by the environmental changes.

Our method of deciding when to call both algorithms is the same, so we found it

appropriate to describe this method here. The system notifies every new vertex ac-

cessibility/inaccessibility one time-step before the change, but it does not provide

35

information about how long they will last. For this reason, for each time step, if there

is a change (a new change or a previous change that ∆i > 1) and that change causes a

conflict with the current solution in that time step, we call our algorithms in that time

step and update the result by resolving the conflict. If there is more than one vertex

unavailability that causes conflict at the same time step, we solve them one by one

(we resolve the first conflict by calling our algorithm, then after finding the solution

we resolve the second, etc). In these situations, we resolve the conflicts by first come

first served strategy. If both occurred at the same time we randomly select one of

them. Also at the time of replanning, if one or more vertices that were inaccessible

become accessible again we add them back to the vertex list and then execute the

algorithm.

Both algorithms provided below use the same input-output convention. They take a

set of agents (A) with start (S) and finish locations (F), set of edges (E) and vertices

(V) to represent a map and the current vertex accessibility/inaccessibility and its time

(ECi and EC_timesi). EC is a dynamically allocated list and updated after sensing

every new change. The output of the algorithms is a set of non-conflicting agent paths

and the total cost of that solution. The algorithms return this information inside the

goal node of the created constraint tree.

In the following subsections, we describe the CBS-replanner, CBS-D*-lite and their

theoretical analysis, respectively. After that, we explain the modifications we made on

D*-lite to adapt it to our algorithm. Lastly, we provide a running example to explain

better the working logic of the algorithms.

3.1.1 The CBS-replanner

The CBS-replanner is the incremental version of the CBS algorithm. In Algorithm 5,

we provide a pseudo code of the CBS-replanner algorithm. At the beginning we pro-

vide the function that reads the number of environmental changes, the time-steps at

which they will occur at and their durations (lines 1-11). These initialization jobs are

given under the initialize_variables() procedure. Here we used randomly generated

data, but when there is real data this section can be updated. Before any environ-

mental changes, we make an initial plan without considering environmental changes

36

(CBS(A,E, V, S, F)). This first plan works exactly the same as the regular CBS.

When CBS-replanner is called it first reads the current changes and the last time step

that CBS-replanner called where i is the number of change and t is the current time

step (line 12). Then, it reads the previous solution (line 13). Then, CBS-replanner

prepares the agents to make them ready for the new plan. Preparations of the agents

include clearing the previously assigned constraints, saving the traversed part of the

paths and updating the start locations of the agents. We cannot change parts of the

agent paths that are already traversed. Hence, agents save traversed agent paths. We

call these traversed paths realized-paths. Realized-paths contain physically visited

locations (not plans). Each time the CBS-replanner is called, it appends recently

traversed paths to realized-paths (line 15). In the end, the solution will contain the

realized-paths of all agents. Each time the CBS is re-run it solves the problem for

the remaining parts of the agent paths, so we need to update the start location of the

agents with their current locations (line 16). It is important to notice that agents’ cur-

rent locations are the last locations of their realized-paths. The CBS-replanner clears

the previously assigned constraints before the new run to find the optimal path un-

der these circumstances (line 17). Of course, this causes re-planning of previously

resolved conflicts and results in creating many surplus states at the high-level. Here

we update the start time of ECi, in this way we will process ECi until its ∆i fin-

ishes (lines 18,19). After the preparations are completed, the vertex list is updated

by making the blocked vertex inaccessible which is the current element of the EC.

The updated vertex list is called V ′ (line 21). Since we do not know how long the

change will take, we act as if it will last forever and adjust our solution accordingly.

If there is a change again in the future, we will adjust our path again in the future calls

of this function. Then, we check the previous ∆i values of the previous unavailabil-

ities and if any of the vertices becomes accessible we make it accessible in V ′ (line

22). CBS is re-run with the new temporary vertex list V ′ and agent paths are adapted

to environmental changes (line 23). Actually, here CT is created from scratch and

the problem is solved from scratch with the new starting points of the agents and a

temporary vertex list V ′. The solution returned is a constraint tree (CT) node which

contains the optimal solution under the given knowledge of the environment. Af-

ter the last environmental change has occurred, remaining parts of the planned paths

will be appended to realized-paths. The overall work-flow of the CBS-replanner is

37

Algorithm 5 CBS-replanner algorithm

Require: I-MAPF instance = {A,E, V, S, F,ECi}
Ensure: realized-paths

1: procedure INITIALIZE_VARIABLES()

2: n← rand(1,MAX_NUMBER_OF_CHANGES)

3: t = 0

4: EC ← ∅ ▷ Initialize all elements to ∅
5: for n times do ▷ Randomly determine values

6: ECi(2)← rand(1,MAX_TIME_STEP) ▷ Initialize t value

7: ECi(3)← rand(1,MAX_CHANGE_DURATION) ▷ Initialize ∆i value

8: sort(EC) ▷ Sort according to EC(2)

9: for each env. change occurrence time ECi(2) do

10: ECi(1) = rand(1, |V |)

11: return EC,t

12: ECi, t← initialize_variables() ▷ Read current change

13: solution← previous MAPF solution

14: for each agent aj in A do

15: realized-pathsj = realized-pathsj ∪ solution.planned pathsj[t : ECi(2)]

16: sj ← vj where state aj is (aj, vj, t)

17: aj .clear_constraints()

18: if ECi(2) <= ECi(3) then

19: ECi(2) = ECi(2) + 1 ▷ Prepare ECi for next time step

20: t← ECi(2)

21: V ′ ← make_temporal_unavaliable_vertex_inaccessible(vECi(1))

22: V ′ ← apply_vertex_changes(V ′) ▷ Add accessible vertices to list

23: solution← CBS(A,E, V ′, S, F)

38

summarized in Figure 3.1.

Map,
Agent Start/Goal

Locations

Update Agent
Locations

(Start Points)

Create New CT
and Run CBS Goal Node

of CT

CBS-replanner

 New Vertex Accessibility/Inaccessibility
(If Any)

Figure 3.1: Work-flow of the CBS-replanner algorithm. When there are no environ-

ment changes, the algorithm directly creates the new CT and runs CBS.

3.1.2 CBS-D*-Lite

We developed the CBS-D*-lite method to use the advantages of D*-lite in dynamical

environments. In Algorithm 6, we give the pseudo code of the CBS-D*-lite algo-

rithm. Before any environment change occurs a solution is calculated by running

classical CBS that used D*-lite as low-level-search (DCBS(A,E, V, S, F)). Here

the dynamical conflict based search (DCBS) function is called. DCBS works similar

to the CBS algorithm but there are small differences. The first difference is that it

uses the D*-lite search algorithm at the low-level search. Furthermore, a few design

constraints used in the CBS algorithm are modified. As A* does not cache any in-

formation and does not use any previous information from earlier searches, there was

no need to make individual A* copies for the agents in CBS. However, this situation

has changed in DCBS. To cache previous searches and make a faster replanning, each

agent has its own D*-lite instance in DCBS. The algorithm starts by reading the cur-

rent environmental change (line 1). This initialization process is exactly the same as

the initialize_variables() procedure provided in Algorithm 5 and called at the begin-

ning of the problem. Hence, we used the same procedure and did not here repeat the

same procedure definition. Then, it reads the previous solution (line 2). Each time

the CBS-D*-lite called, it appends recently traversed paths to realized-paths (line 4).

39

Algorithm 6 CBS-D*-lite algorithm

Require: I-MAPF instance = {A,E, V, S, F,ECi}
Ensure: realized-paths

1: ECi, t← initialize_variables() ▷ Read current change

2: solution← previous MAPF solution

3: for each agent aj in A do

4: realized-pathsj = realized-pathsj ∪ solution.planned pathsj[t : ECi(2)]

5: for each agent aj in A do ▷ Stage-1 starts

6: if conflicts(aj , ECi(1)) at ECi(2) then

7: aj .addConstraint(ECi(1), ECi(2))

8: sj ← vj where state aj is (aj, vj, t)

9: solution.pathsj ← low_level_search()

10: break

11: if solution is NOT valid then ▷ Stage-2 starts

12: add Constraint(ECi(1), ECi(2)) to solution

13: solution← DCBS(solution,A,E, V, S, F)

14: V ′ ← make_temporal_unavaliable_vertex_inaccessible(vECi(1)) ▷ Stage-3

starts

15: V ′ ← apply_vertex_changes(V ′) ▷ Add accessible vertices to list

16: if solution is NOT valid then

17: for each agent aj in A do

18: sj ← vj where state aj is (aj, vj, t)

19: aj .clear_constraints()

20: solution← DCBS(A,E, V ′, S, F)

21: if ECi(2) <= ECi(3) then

22: ECi(2) = ECi(2) + 1 ▷ Prepare ECi for next time step

23: t← ECi(2)

40

After this point the CBS-D*-lite algorithm has three stages:

• Stage-1: It finds the agent that its path conflicts with the current vertex unavail-

ability. Then, it modifies only the affected agent’s path. If the solution is valid

after this process, the algorithm is done for the current environmental change.

• Stage-2: If stage-1 is unsuccessful (if the solution is not valid) then CBS-D*-

lite starts a new CBS search in which the root of the CT is the best node (solu-

tion) of the previous CBS run’s CT. There will not be any conflict in this new

root as it is the previous solution. The constraint that was found in stage-1 will

be added to the new root’s constraint list. The DCBS will then generate new

nodes to find a solution.

• Stage-3: If the second stage is also unsuccessful then CBS-D*-lite clears all

of the previous constraints and starts a new search from scratch (just like the

CBS-replanner).

Then, the algorithm starts its first stage (lines 5-10). In this stage, the algorithm uses

an important observation, as we already have a non-conflicting solution set the new

environmental change (one time step of it) can only conflict with the path of one

agent. By environmental change we mean the portion of it to be adapted, which is

one time-step long. The other parts of the environmental change will be adapted in the

following calls to CBS-D*-lite if needed. There may be more than one change at the

same time, but as we adapt to them one by one, this observation still holds. So we find

that agent (lines 5-6) and replan its path with its D*-lite instance without considering

the optimality of the overall solution (line 9). If the agent can find a way to modify

its path without conflicting with the environmental change and the other agent’s paths

then this means that we find a valid solution in a very fast fashion. If this generated

solution is not valid, we move to stage-2 of the algorithm (lines 11-13). Stage-2 starts

its operation by adding the constraint that found on stage-1 to the goal node of the

previous solution (line 12). Then, it makes a call to DCBS (line 13), but this time it

also provides the previous solution (after the constraint is added) as a parameter. We

overloaded the DCBS function to use the previous solution in the search tree. DCBS

takes this solution and makes it the root of the CT. Then it calculates and adds the

current constraint to the constraint list and performs a conflict-based search. The first

41

thing to notice here is that the thing that enables us to search from where we left is

the usage of D*-lite instances. The second important aspect is that this call to CBS

starts to search a CT from its middle. By saying middle, we mean that we make the

goal node of the previous tree as the root node of the new tree (which means we carry

the constraints created for the agents with us), and some of these constraints would

have changed if we would make a CBS search from the scratch for the new vertex set.

This means that it is not guaranteed to always find a solution if it exists; it is only a

faster attempt to modify the solution to an environmental change. If this attempt also

does not yield a valid solution, then we move to stage-3 which is identical to what

the CBS-replanner does (lines 14-20). Then, we prepare ECi for next time step (lines

21-23). We actually add this stage to the algorithm to make CBS-D*-lite a complete

algorithm. After the last environmental change has occurred, the remaining parts of

the planned paths will be appended to the realized-paths. The overall work-flow of

the CBS-D*-Lite is summarized in Figure 3.2.

Map,
Agent Start/Goal

Locations

Update Agent
Locations

(Start Points)

Create New CT
and Run CBS

Goal Node

 New Vertex Accessibility/Inaccessibility
(If Any)

No Conflict

Solution
Found

Previous
Goal Node

Modify Conflicting
Agent

Create New CT
where Prev. Goal Node

is the Root and Run CBS

No

Yes

Yes

No

Stage-1 Stage-2

Stage-3

CBS-D*-Lite

Figure 3.2: Work-flow of the CBS-D*-Lite algorithm. When there are no vertex

accessibilities/inaccesibilities the algorithm directly goes to stage-3. After any vertex

changes occur, to make replanning, the algorithm follows stage-1, stage-2, stage-3

path to find a solution.

42

3.1.3 Theoretical Analysis

We examine theoretical analysis under 5 subsections. We first provide a discussion

about our optimality assumptions. We then introduce some subsections on the opti-

mality and completeness of both algorithms provided. Lastly, we provide subsections

to analyze the running times of the provided algorithms.

3.1.3.1 Optimality Assumptions

An optimal action that an agent performed before an environmental change can result

in an overall solution that is non-optimal. In this study we assumed that an optimal

solution in the dynamical domain is generated by always behaving optimally under

the current conditions. We assumed that, when an environmental change occurs,

current conditions change and agents must calculate new optimal plans to maintain

optimality (for that time step). Furthermore, the agents don’t know how long an

environmental change will last, so when they encounter an environmental change

they presume that it will last forever. They can only correct their paths after they

learn that the vertex inaccessibility (environmental change) has ended.

3.1.3.2 Optimality and Completeness of CBS-replanner

Lemma 3.1.1. CBS returns an optimal solution and it returns a solution if one does

exists (complete) [48].

Corollary 3.1.1.1. CBS-replanner provides the optimal solution for non-proactive

myopic agents and it is complete when there are no environmental changes.

Corollary 3.1.1.1 holds because CBS-replanner calls CBS when there are no environ-

mental changes and it is proven to be optimal and complete in Lemma 3.1.1.

Corollary 3.1.1.2. At each call, CBS-replanner provides the optimal solution and it

is complete.

Corollary 3.1.1.2 holds because, at each call to the CBS-replanner, it sets up a new

MAPF problem from where agents left off. Then it runs a new CBS instance for

43

that problem. This is exactly the same as running a new CBS for a MAPF problem

(Lemma 3.1.1).

Theorem 3.1.2. CBS-replanner provides optimal (the optimality defined in Section

3.1.3.1) solutions to I-MAPF problem and it is complete.

Proof. We prove it by induction. The base case consists of the first call of CBS-

replanner where I-MAPF problem does not have any environmental changes. It is

shown to provide optimal and complete solutions in 3.1.1.1. Now, assume CBS-

replanner provided the optimal solution after the first i − 1 calls. During the ith call

CBS-replanner will provide the optimal solution if there exists one which is shown

in 3.1.1.2. Thus, this completes the induction, CBS-replanner provides the optimal

solution for the I-MAPF problem if a solution exists.

3.1.3.3 Running time of each call of CBS-replanner

The complexity of each call of the CBS-replanner is O(CBS). Here, O(CBS) is the

worst-case complexity of the CBS algorithm. At each call to CBS-replanner, agents

perform some actions and get closer to their goals. In a worst case, the total distance to

the solution can stay the same (this comes from the nature of a conflict-based search).

Therefore, the complexity of the new plan can be at most equal to O(CBS). As a

result, this guarantees that the CBS-replanner can take at most O(CBS) time for a

single call. The downside of the CBS-replanner is that it usually works close to its

worst-case running time. Hence, it is too slow to be used for a real-world problem.

3.1.3.4 Optimality and Completeness of CBS-D*-lite

Lemma 3.1.3. D*-lite is an optimal and complete single agent search algorithm

which can work on static and dynamical environments [44].

Theorem 3.1.4. CBS that uses D*-lite in its low-level-search is complete and optimal

for solving MAPF problems.

Proof. Lemma 3.1.1 shows that CBS is optimal and complete for MAPF problems.

44

When we change the low-level-solver of CBS from A* to D*-lite, D*-lite will still

solve all of the single agent searches optimally from Lemma 3.1.3. The high-level-

search will work exactly same as the original CBS. As the low-level-search function

will return the same results, the CBS that uses D*-lite (note that this is different

than CBS-D*-lite we provided, this function only used for the planning before any

environmental changes occurred) will work exactly same with CBS which is shown

to be optimal and complete for MAPF problems in Lemma 3.1.1.

Corollary 3.1.4.1. CBS-D*-lite provides the optimal solution and it is complete when

there are no environmental changes.

Corollary 3.1.4.1 holds because CBS-D*-lite calls CBS that uses D*-lite (these two

are different) when there are no environmental changes and it is proven to be optimal

and complete in Theorem 3.1.4.

Theorem 3.1.5. At each call, CBS-D*-lite finds a solution to the current MAPF prob-

lem if there exists one but the solution is not guaranteed to be optimal.

Proof. This proof has two parts, the completeness and optimality parts. For the

completeness, CBS-D*-lite algorithm either finds a solutions in Stage-1 or Stage-2,

or it moves to Stage-3 which provides a similar behavior to CBS-replanner. CBS-

replanner is proved to be complete, hence CBS-D*-lite is also guaranteed to find the

solution.

For the optimality, the CBS-D*-lite is not guaranteed to be optimal. When it finds

a solution at Stage-1 or Stage-2, that solutions may not be optimal. However, any

solution generated by the algorithm through Stage-3 is optimal. Hence, CBS-D*-lite

is not guaranteed to find the optimal solution.

Theorem 3.1.6. CBS-D*-lite returns a solution for I-MAPF if one exist, and it is not

guaranteed to be optimal.

Proof. Completeness of CBS-D*-lite can be proved by following a similar approach

shown in Theorem 3.1.2. The base case is again the first call and it is shown to be

complete in Corollary 3.1.4.1. Assume that it finds a solution if it existed in first i− 1

calls, and it is shown that CBS-D*-lite is complete for each call in Theorem 3.1.5.

45

So, the ith call is also guaranteed to find a solution if there exists a solution. Hence

the induction holds for the completeness of CBS-D*-lite.

For the optimality we show that it is not guaranteed to be optimal for each call, hence

it is not guaranteed to be optimal for the overall solution.

3.1.3.5 Running time of each call of CBS-D*-lite

At Stage-1, CBS-D*-lite only makes replanning for a single agent. At Stage-2, it runs

CBS algorithm with a smaller state space because it has already resolved conflicts

recently. At Stage-3, it makes exactly the same thing as CBS-replanner does; but

for most of the cases the algorithm does not reach Stage-3 (as can be seen in the

experiments). So its worst time complexity for a single call is O(CBS) again, but in

practice the running time is significantly shorter.

3.1.3.6 Analysis on the Number of Replanning Actions

We call both algorithms for each time-step that the environmental state causes a con-

flict with the current solution (when ∆i > 1), and we solve them by making a replan-

ning at each of these time-steps. Furthermore, when there is more than one environ-

mental change at each time step we make a replanning for them sequentially. This

will increase the number of replannings that need to be done as the ∆i grows and the

number of environmental changes increases.

3.1.4 Modifying D*-Lite

We used Neufeld and Sredzki’s D*-lite implementation [81] and modified it to make

it suitable for our work. Two versions of this algorithm are available on the inter-

net. In this study, we used the old version, that is, the version without new extra

optimizations.

It seems that 3 basic questions need to be answered in order to integrate the D*-

lite algorithm into the incremental algorithm (a modified version of CBS) we have

46

designed:

1. Adding the time steps to the lower level planners: this step is necessary because

every time there is a new environmental change, the paths of the agents up to

that time must be recorded and the starting points updated, and conflicts with

other agents can be avoided.

2. Updating the agent starting points as the simulation progresses: this step is

not simply updating the agent starting points as coordinates, but recording the

agent’s route up to that time when the time steps progress, deleting the conflict

information sent to the agent’s lower-level planner so far that no longer needs

to be used, and updating the state space in the agent’s algorithm.

3. Adding conflict information: this step is to ensure that nodes that are already

unreachable due to conflict or environmental change at the time of planning of

the solver algorithm are not expanded. The steps to be taken to achieve this will

be examined under this heading.

3.1.4.1 Adding time steps:

Usually, D*-lite is designed to be a 2D path-planning algorithm for single agent path

planning. In MAPF, the time of use of a particular vertex is also essential (because

it is a multi-agent problem). A vertex that is busy at a time step can be available at

another step. Hence, we needed a 3rd dimension which is time. To introduce time,

we inserted a third variable to a vertex which is t. So, for every vertex vi ∈ V , we

have the tuple (x, y, t) where x and y represent the coordinates of the vertex and t

represents the visit time of that vertex. Accordingly, since our problem works on

a discrete world and on 4-connected maps, each step added to the agent route will

actually correspond to a time step (the waiting process will add a value to the path

file by increasing the g value by 1 from the same node. Since, it will not create a

different situation than going right, left, up or down). Therefore, the g values held for

each node in the algorithms will actually correspond to the time step values t. For

this reason, time step values will be determined by using g values in operations (such

as conflict resolution).

47

3.1.4.2 Updating the agent starting points as the simulation progresses:

This is pretty easy in this algorithm as D*-lite does a backward search. The D*-lite

algorithm updates the state space from target location to start location and expands the

minimum number of states to form a solution space. Then, it creates the agent route

by choosing the ones with the minimum g value from these nodes. Since the state

space is already updated, when the starting point of the agent is updated to be on its

route or its neighbors, this situation can be solved by simply updating the coordinates

without any action, since those states are already updated with g values in the state

space. If the starting point of the agent is updated to a location that is not in or around

the calculated route, since these nodes are not created, a route is planned again to

create these situations. However, in our case, the starting point can be updated very

quickly before this second mentioned situation occurs, as the agent will progress by

following the plan it has prepared. Figure 3.3.

3.1.4.3 Adding conflict information:

This process can be shown as perhaps the biggest problem we encountered in the pro-

cess of integrating the D*-lite algorithm. Since the states to be added to the solution

space are determined and created by backward search and no new states are added

to the solution space, we need to change the content of the algorithm here. This is

because when a new conflict is added, it can make a node on this route impassable.

For every vertex, D*-lite stores the predecessor and successor vertices in lists such

that (vi /∈ PR) & (vi /∈ SU) where PR is predecessor list and SU is successor list.

We exclude constrainted nodes from the successor list. When this change affects a

single node, you can switch to the next node and continue without taking any action.

However, if multiple changes are concentrated in the same region (an example of this

situation is given with red environmental changes in Figure 3.4), then there may not

be a neighboring node in a suitable state to go to. In order to avoid this situation,

if a node becomes unsuitable due to an environmental change or a conflict, its low-

est cost neighbor should be added to the route (hence the neighbor states should be

expanded).

48

Figure 3.3: An image describing the working logic of the D*-lite algorithm and up-

dating the agent starting points. (a) A grid structure showing the distances to the

starting point that D*-lite has planned with Dijkstra algorithm. (b) Shows the process

of finding the starting point by searching backwards. After this process is done, start-

ing from the starting point, the cheapest nodes are selected and the solution is found.

The top numbers are calculated as min(g(s), rhs(s))+h(s), the bottom numbers are

calculated as min(g(s), rhs(s)). Here, g is the cost to date, rhs is one step looka-

head, and h is the heuristic calculation result. (c) Shows updating a point on the path.

Since the necessary calculations are already made for those nodes, a new route can

be planned by selecting the minimum nodes.

49

Figure 3.4: In this figure, an environmental change has occurred in the problem il-

lustrated in Figure 3.3 (the resulting environmental change is indicated by red cells).

The nodes whose value must be calculated so that the new route of the agent can be

planned are shown in dark green.

3.1.5 Running Example

We demonstrate the flow of the CBS-D*-lite with a simple running example of two

agents in a grid-world environment of size 4 x 4 (see Figure 3.5). In this scenario, S1

and S2 represent the starting locations, and G1 and G2 represent the goal locations

of the agents. Robot drawings with the agent ids show the current locations of the

agents. Agent-1 wants to reach location D1 starting from A4, and agent-2 wants

to reach location B4 starting from A2 (Figure 3.5-a). In the scenario, we have two

different environmental changes. One of them occurs at time-step t = 1 on location

B3, and the second one occurs at time-step t = 3 on location C2. At these time-steps,

locations B3 and C2 become unavailable for one time-step and become available

again. Agents are informed about these changes one time-step before they occur.

That is to say, the first change is announced to agents at t = 0 and the second one

is announced at t = 2. Between each environmental change, calculations that are

made to update agent paths are visualized in Figure 3.6. This representation presents

the contents of the CT nodes, for each run of CBS. We present the current constraints

used with con and current environmental change that is announced with env. We

placed these on the upper left-hand corner of the CT node. At the upper right-hand

corner we show the total cost of the solution of the current CT node. On the lower part

50

 t = 1

t = 3

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

1

G1

2

G2

G1

G2

12

G1

G2

12

1

G1

2

S2 S1

a) b)

c) d)

Figure 3.5: Running example; a) presents the initial agent configurations, b) presents

the initial plans of the agents (t=0), c) presents the agent plans after the first environ-

mental change (t = 0), d) presents the agent plans and the realized-paths of the agents

after the second environmental change (t = 2)

of the CT we provide the current solution. Here, first the agent-ID and then the set of

visited locations are provided as an ordered list. This list shows the locations of the

specified agents at each time-step. If two agents’ plans conflict with each other, or an

environmental change conflicts with one of the agents’ plan, then we represent these

conflicts by drawing red rectangles around them. The planned actions are colored

black and the locations that are already visited by the agents are colored green in the

agent plans. The CT nodes that contain valid solutions are provided with a dotted

outline and labeled as goal nodes.

CBS-D*-lite starts to solve the problem by running a CBS and producing a plan

before any environmental change occurs. This provides a non-conflicting plan for

the two agents. Figure 3.6-a represents the CT of the initial plan. Here, at the root

node, agents plan their paths without considering each other. Agent-1 planned the

route ⟨A2, B3, B4⟩ and agent-2 planned the route ⟨A4, B3, C2, D1⟩. Both agents

planned to use the location B3 at time-step 1, and this caused a conflict. So CBS

created two new nodes by adding B3 as the constraint to each conflicting agents.

51

These new nodes do not contain any conflicts, hence they are labeled as goal nodes.

Initial plans of the agents returned from the CBS (goal node) can be seen at Figure

3.5-b.

After the initial plan, agents are informed about the first environmental change that

will occur at t = 1. Because of this announcement, agents have to modify their paths

in such a way that they do not use B3 at t = 1. Figure 3.6-b, shows the calculations

that CBS-D*-lite does to modify the agent paths without running CBS from scratch.

Agent-2’s previously planned path includes visiting B3 at t = 1, this conflicts with

the environmental change. CBS-D*-lite first adds a new constraint to agent-2 and

runs its low-level-search to adapt its path (stage-1 in CBS-D*-lite). This clears the

conflict with the environmental change, but this time agent-1 and agent-2’s paths

conflict at location A3 at time-step 1. So, CBS-D*-lite moves to stage-2 and runs

the CBS by using this new node as the root node and it does not change the previous

constraints. This new run of the CBS finds a goal node after adding (A3, 1) to agent-

2’s constraint list. Thus the CBS-D*-lite returns the solution after running two stages.

If this tree search were unsuccessful then CBS-D*-lite would move to stage-3 which

runs a new CBS from scratch, but this time it was not needed. The agent plans after

this environmental change can be seen in Figure 3.5-c. Here the red text at B3 states

that that node is not available at time-step 1.

Until the second environmental change occurs, agents follow the previously planned

routes. At time-step 2, agents are informed about the second environmental change.

Figure 3.6-c provides the calculations to adapt the solution to this change. This time,

CBS-D*-lite returns a solution at stage-1 just by changing the path of agent-2. The

returned agent paths and plans are provided in Figure 3.5-d, where The green line

shows the realized-path of agent-2, the blue path shows the realized-path of the agent-

1 and the dotted line is the planned path of agent-1 after the environmental change.

As there are no further environmental changes, agent-1 will simply follow the dotted

line after this point.

52

Con: {}
Env: {}

1- {A2, B3, B4}

2- {A4, B3, C2, D1}

Cost: 6,7

Con: {1,B3,1}
Env: {}

2- {A4, B3, C2, D1}

Cost: 6,7

1- {A2, A3, B4}

Con: {2,B3,1}
Env: {}

2- {A4, A3, B3, C2, D1}

Cost: 7,2

1- {A2, B3, B4}

Con: {1,B3,1
 2,B3,1}

Env: {B3,1}

1- {A2, A3, B4}

2- {A4, A3, B3, C2, D1}

Cost: 7,2

2- {A4, A3, B3, C2, D1}

Cost: 7,8

Env: {B3,1}

1- {A2, B2, B3, B4}

Con: {1,B3,1}
Env: {B3,1}

2- {A4, B3, C2, D1}

Cost: 6,7

1- {A2, A3, B4}

Con: {1,B3,1
 2,B3,1
 1,A3,1}

2- {A4, B4, B3, C2, D1}

Cost: 7,2

Env: {B3,1}

1- {A2, A3, B4}

Con: {1,B3,1
 2,B3,1
 2,A3,1}

2- { , , , C2, D1} A4 B4 B3

Cost: 7,2
Env: {C2,3}

1- { , , } A2 A3 B4

Con: {1,B3,1
 2,A3,1}

2- { , , , B2, C2, D1} A4 B4 B3

Cost: 7,8

Env: {C2,3}

1- { , , } A2 A3 B4

Con: {1,B3,1
 2,A3,1
 2,C3,2}

GoalGoal

Goal

Goal

a) b) c)

Figure 3.6: CBS-D*-lite execution after each environmental change; a) presents the

initial CBS run (t=0), b) presents the calculations after the first environmental change

(t=0), c) presents the calculations after the second environmental change (t=2).

3.2 Experimental Study

CBS algorithm is shown to provide optimal solutions for plain MAPF problem and

it is fast. It has been already compared with the majority of existing MAPF solvers

[48]. There are no studies solving I-MAPF problem we introduced in this paper.

Existing algorithms do not have extensions to handle I-MAPF problem and we think

that they are not suitable for comparison as they are not shown to be better than CBS

[48]. That’s why we base our experimental study on CBS and its extensions, CBS-

replanner and CBS-D*-lite proposed in this study.

Since there are no previous attempts that use a CBS variant to solve the I-MAPF

problem, we compared the performance of the CBS-replanner and the CBS-D*-lite

algorithms in this section. We examined the performances of the algorithms with

experiments involving environmental changes in different numbers and lengths.

The length of the environmental changes was randomly changed between 1 and 3

(1 ≤ ∆i ≤ 3). For both algorithms, we made replanning for every time step where

any change caused a conflict. When more than one change causes conflict at the same

time-step, we make replanning for them sequentially. This situation may cause the

53

solution to be slow when ∆i values increase. For this reason, in this study we worked

on small ∆i values (1 ≤ ∆i ≤ 3). Note that this information is not shared with agents.

Furthermore, larger ∆i values may cause agents to proceed longer on paths that later

turn out to be unfeasible (they cannot anticipate) which can raise the total cost. It will

be on our agenda to make this algorithm suitable for large ∆i values and we also plan

to provide a version where the duration of the failure is provided to agents.

We examined the impact of environmental changes on the running time and the total

path costs of the approaches. We tested the algorithms on two different datasets. The

first data set consists of 8x8 grids with a varying number of agents. The second data

set consists of two maps from the Dragon Age: Origins (DAO) game. These maps and

some scenarios are reachable at the benchmark set provided by Nathan Sturtevant [1].

We introduced a time limit for the runs. We stop the experiment if it takes more than

three hundred seconds. If the algorithms fail to return a solution within this time

period, then we mark those experiments as unsuccessful experiments. We included a

test case in the average only if it was successful for both of the algorithms otherwise

we discarded that test case. We provide the test environment, details of the data sets,

the test results and the conclusions from the test results in the following subsections.

3.2.1 Test Environment

We developed the project on a PC with a 64 bit 3.40 GHz Intel i7 processor. We

used the Ubuntu 14.04.2 LTS operating system and, C++ programming language for

implementation.

3.2.2 Data Sets

In the first data set, we started by creating a handcrafted map and manually generating

a scenario for it. We also developed a random graph generator to generate grids

with varying number of obstacles that are randomly placed. We also used randomly

generated scenarios for the agents. We perform the experiments with 3 to 16 agents.

For each agent count, we generate 100 grids with randomly generated obstacles in

it. We report the average of all these 100 tests. In each test case, we applied five

54

environmental changes. In each time-step, we chose one of the nodes in the graph

randomly and made it unavailable. Another different experiment is the case where

we made unavailable only the nodes from the agent plans. In this scenario, each

environmental change is guaranteed to effect at least one agent’s path. We call these

critical node failures.

In the second data set, we worked with den520d and brc202d maps from DAO game.

These two maps have different topologies. The den520d map has many open spaces

and has no bottlenecks. In contrast, the brc202d has no open spaces and many bot-

tlenecks. We selected some of the scenarios presented in benchmark data sets [1].

These scenarios use ten agents for MAPF. These scenarios determine the starting and

goal locations of the agents. In each scenario, we applied five critical node failures as

environmental changes.

3.2.3 Test Results

In the following subsections, we provide different experiments on handcrafted and

benchmark maps. In the following subsection, we reported the test results on hand-

crafted scenarios. Then in the following three subsections we reported the elapsed

times of both algorithms and compared their performances after each replanning ac-

tion on different maps and scenarios. Lastly, we provide a comparison of both algo-

rithms in terms of total-path-cost and success rates.

3.2.3.1 Hand Crafted Tests

We first examined the performances of the algorithms on a single handcrafted grid.

The hand-crafted grid is generated to analyze the behavior of the algorithms when

there are numerous conflicts. Figure 3.7, shows the input used for this experiment.

It is an 8x8 grid with some obstacles in it. For both of the algorithms, we prepared

five different environmental changes. We chose each environmental change to occur

on one of the agent paths. For example, in the first environmental change node, B6

becomes unavailable for the 1st time-step. So, agents have to adapt their plans in such

a way that they do not use B6 at time step 1. Each agent’s starting point is provided

55

1A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

G1

2 G2

3

G3

4

G4

5

G5

Environmental
Changes

B6 at t=1

D4 at t=2

C5 at t=3

G2 at t=9

H3 at t=10

Figure 3.7: 8x8 hand crafted grid example with 5 agents and 5 environmental changes

where black cells represent obstacles.

with a robot picture with the referred agent’s id on it. The goal locations of the agents

are provided with G signs. G1, for example, is the goal location of the first agent.

The goal location of agent-5 is (E3) and the start point of the agent-3 is E4.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0_change 1_change 2_change 3_change 4_change 5_change

T
im

e
 e

la
p

se
d

 (
sn

)

Time elapsed vs number of changes in environment on hand-crafted grid

CBS-replanner
CBS-D*-lite

Figure 3.8: Performance overview for 8x8 hand crafted grid with 5 agents.

Results of both algorithms are given in Figure 3.8. Here, the x-axis contains envi-

ronmental changes and the y-axis contains the total time passed since the start. In

Figure 3.8, CBS-D*-lite is shown to provide better results than the CBS-replanner.

With each environmental change, CBS-D*-lite finds the solution by only changing a

few numbers of agents’ paths, which takes much less time compared to computing

56

all agent paths from scratch and resolving conflicts. This happens because for most

of the cases CBS-D*-lite can find a solution by just going into stage-1 and stage-2.

In a more complex map, CBS-D*-lite would enter stage-3 in some cases, and the re-

sults in those cases would be closer to CBS-replanner. As time passes, agent paths

get smaller; smaller paths cause fewer conflicts. With each environmental change,

this causes a decrease in the increase rate of the total time for the CBS-replanner.

CBS-D*-lite resolves single environmental changes by modifying a few numbers of

agent paths (because it enters stage-1). The amount of time it spends for this is very

small compared to running CBS from scratch. For this reason, its curve looks flat-

ter compared to the CBS-replanner. Table 3.1 provides the solutions generated by

Table 3.1: Solutions provided by CBS-replanner vs CBS-D*-lite.

CBS-replanner

{1 - A5, A5, B6, C6, D5, E4, F3, G2, H3, H4}

{2 - D1, C2, C3, C4, C5, D6, D7, D8}

{3 - E3, D4, C5, B6, A6}

{4 - F6, E5, D5, D4, C3}

{5 - A7, B7, C6, D5, E4, E3}

Total cost = 35,63

CBS-D*-lite

{1 - A5, A5, A6, A6, B6, C5, D5, E4, F3, G2, H3, H4}

{2 - D1, C2, C3, C4, C5, D6, D7, D8}

{3 - E3, D4, C4, C5, C6, B6, A6}

{4 - F6, E5, D5, D4, C3}

{5 - A7, B7, C6, D5, E4, E3}

Total cost = 38,39

both algorithms. Both solutions are valid and do not conflict with the environmental

changes. The total path-cost of the CBS-replanner is smaller than the cost of CBS-

D*-lite because it provides optimal solutions whereas CBS-D*-lite does not. For our

study, making fast replanning is more valuable than finding optimal solutions. Since

this amount of difference in the total path-cost is acceptable for us.

57

3.2.3.2 Randomly Created Data with Random Changes

Table 3.2: CBS-replanner vs CBS-D*-lite with randomly created environmental-

changes. 3 to 16 agents are used, and for each case 5 environmental-changes are

included in the environment.

CBS-replanner Elapsed Time (Sn) CBS-D*-lite Elapsed Time (Sn)

Agent No Environmental Change Environmental Change

0 1 2 3 4 5 0 1 2 3 4 5

3 0.007 0.013 0.016 0.016 0.016 0.016 0.006 0.009 0.009 0.009 0.009 0.009

4 0.028 0.056 0.062 0.064 0.064 0.065 0.025 0.035 0.038 0.038 0.038 0.039

5 0.032 0.064 0.071 0.073 0.074 0.074 0.029 0.041 0.044 0.044 0.045 0.045

6 0.132 0.262 0.294 0.301 0.303 0.304 0.122 0.172 0.184 0.187 0.188 0.188

7 0.416 0.827 0.927 0.949 0.955 0.958 0.386 0.544 0.581 0.591 0.594 0.594

8 2.151 4.274 4.796 4.906 4.938 4.954 1.955 2.757 2.941 2.994 3.006 3.011

9 4.028 8.004 8.980 9.187 9.246 9.277 3.565 5.027 5.363 5.460 5.482 5.490

10 8.516 16.92 18.99 19.42 19.55 19.61 7.604 10.72 11.44 11.65 11.69 11.71

11 18.22 36.20 40.62 41.55 41.82 41.96 15.71 22.15 23.64 24.06 24.16 24.19

12 42.97 85.38 95.80 98.00 98.64 98.96 36.42 51.35 54.79 55.78 56.00 56.09

13 53.81 106.9 120.0 122.7 123.5 123.9 48.92 68.98 73.60 74.92 75.22 75.34

14 76.91 152.8 171.5 175.4 176.6 177.1 71.88 101.4 108.1 110.1 110.5 110.7

15 118.2 234.9 263.5 269.6 271.3 272.2 113.7 160.3 171.1 174.1 174.8 175.1

16 123.2 244.8 274.7 281.0 282.8 283.7 120.8 170.3 181.7 185.0 185.8 186.0

In Table 3.2 we provide the results of performance with randomly generated failures

on 8x8 randomly generated grids. In this experiment, we create five environmen-

tal changes. These environmental changes are created by, randomly making one of

the nodes in the graph unavailable at each time-step. As the graphs are dense, for a

low number of agents, they create less conflicts. Hence, both of the algorithms pro-

vided fast solutions for them. For the experiments including a high number of agents,

performance differences become more explicit. For some of the cases, a randomly

selected node did not cause any conflict on any agent’s path. For cases consisting

of a low number of agents, some agents already reached their destinations before

the environmental change occurred. This situation caused faster solutions because

finding a solution to a low number of agents is easier. In most of the cases, CBS-

D*-lite was able to find a solution by just going into stage-1 and stage-2. The time

difference before and after an environmental change occurred because of the cases

that made CBS-D*-lite go into stage-3. CBS-replanners running time value is simi-

lar to CBS-D*-lite’s stage-3 performance, but since CBS-replanner always performs

58

with this performance its average running times are worse than the ones provided by

CBS-D*-lite.

(a) Performances on randomly created data with random changes.

(b) Performances on randomly created data with changes occur on path.

Figure 3.9: Performance overview on randomly created 8x8 dense graphs.

In every experiment the first environmental change causes the largest time increase,

and each subsequent causes a smaller increase in time than the previous one. The

reason for this is that the problem has nearly the same size as the zero environmental

change scenario. With each succeeding environmental change, the size of the problem

59

to be solved decreases. This situation causes a decrease in spent time. It is impor-

tant to notice that we reported the total time that elapsed after each environmental

change, not the time spent on that environmental change. To see the difference be-

tween the two methods, we generated a bar chart for the same example 3.9. In Figure

3.9a we provide only the results for a high number of agents. The trend of the total

solution time is more explicit in this figure. CBS-D*-lite total spent time increase

is slower than the CBS-replanner’s increase-rate. The difference between the two

algorithms arose from situations where CBS-D*-lite can solve the problem without

entering stage-3. The largest difference occurs after the first change. Then, as the

solution size decreases, the algorithms spend less time to find the solution.

3.2.3.3 Randomly Created Data with Changes that Occur on a Path

We constructed this experiment to confirm that environmental change affects the

agent paths. The results are similar to the random change scenario. As these two

experiments contain two different inputs, it is not possible to compare them head-to-

head. The main difference between Figure 3.9a and Figure 3.9b occurs because of the

problem size. In this experiment, problem size did not shrink as fast as in the previ-

ous experiment. The reason for this is that each environmental change affects at least

one agent’s path. This situation keeps the problem large. For both of the algorithms,

there are jumps after the first, second and third environmental changes, but for the

experiment that randomly created environmental changes are used, these jumps have

occurred with smaller sizes.

3.2.3.4 Benchmark maps

Figure 3.10, reports the results of the experiments on den520d and brc202d maps. In

these results, our A* implementation (used as a low-level-solver in CBS-replanner)

worked slower than our D*-lite implementation (used as a low-level-solver in CBS-

D*-lite). We can recognize this difference by examining the times presented in the

zero-change bar for both of the implementations. Apart from this difference, the ratio

of replanning time to overall solving time is significant. For the den520d map, each

60

(a) Performance overview in den520d map.

(b) Performance overview in brc202d map.

Figure 3.10: Performances of CBS-replanner and CBS-D*-lite with the different

number of agents and changing environments.

replanning for the CBS-D*-lite implementation took ten to twenty percent of the time

to solve the case from scratch. Again the main reason for the changes in the CBS-D*-

lite bar are the cases that the algorithm entered into stage-3. After the first change,

the CBS-replanner implementation took nearly the same amount of time to solve the

case from scratch. After the second change, this ratio decreased from fifty percent

to seventy percent. As the number of changes increased, some of the agents finished

61

their job, causing a decrease in the time of replanning for both algorithms. As the

replanning is more costly for the CBS-replanner it caused a greater decrease of the

replanning time on it with respect to earlier environmental changes. For the brc202d

map, both algorithms took four to five times longer to solve the initial problem than

the den520d case. In the brc202d map experiments, we observed a larger ratio of

replanning times according to the complex nature of the map.

3.2.3.5 Comparison on Total-Path-Cost Values and Success Rates

In this section, we compared the path-cost values provided by the CBS-D*-lite and

CBS-replanner. In Table 3.3, we presented the results on the three different maps. We

plotted the average path-cost values of 100 randomly created 10-agent experiments.

In the den520d map, there are many open areas. In open areas, agents have lots of

low-cost alternative ways to follow when one node in their path becomes unavailable.

Because of the open areas, CBS-D*-lite and CBS-replanner produced similar path-

cost values on the majority of the test cases. The average path cost difference is

around 1 to 1.5 units. In the brc202d map, the difference is a little bit larger. The

reason for the difference is brc202d has some narrow streets which provide fewer

low-cost alternative paths. So, for the cases including narrow streets, CBS-D*-lite

found higher value path-costs compared to CBS-replanner. The average path cost

difference is 2 to 7 units. 8x8 map is a small, dense environment where there is a

limited number of alternative paths to follow. Hence, on the 8x8 map, the path cost

value differences are more recognizable. For some cases CBS-D*-lite’s stage-1 and

stage-2 returned results far from optimal on this map. This caused a difference of

around 1 to 3 units. The average path costs on this map are much smaller compared

to den520d or brc202d. Therefore, the path cost difference of 3 units has a much

larger impact compared to brc202d or den520d maps.

During the same experiment, the success rate values of the algorithms do not change

much after the environmental changes. Therefore, we found it appropriate to set

only one success rate value for each experiment. Both algorithms generally able to

find fast solutions on 8 × 8 map experiments, and hence their success rate values

are high on these experiments. On the experiments conducted on the den520d map,

62

Table 3.3: CBS-replanner vs CBS-D*-lite with randomly created environmental-

changes that occur on the paths of the agents. 10 agents are used, and for each case 5

environmental-changes are included in the environment.

CBS-replanner (Total Path Cost) CBS-D*-lite (Total Path Cost)

Map Environmental Change Environmental Change

0 1 2 3 4 5 0 1 2 3 4 5

average 42.09 43.03 44.04 44.82 45.86 46.69 42.09 44.07 45.63 47.08 48.58 49.85

8x8 min 11.24 11.24 11.94 12.07 12.73 13.07 11.24 11.24 11.94 12.07 12.73 13.07

max 70.21 70.21 70.21 72.46 72.87 73.46 70.21 73.63 75.04 76.04 77.46 78.46

success rate 92.91% 96.4%

average 1420.4 1421.9 1423.5 1424.6 1425.8 1427.3 1420.4 1422.6 1424.7 1426.4 1427.9 1429.8

den520d min 26.73 27.73 28.15 26.73 30.98 31.98 26.73 27.73 28.15 26.73 30.98 31.98

max 2176.7 2179.7 2181.0 2183.4 2184.4 2188.6 2176.7 2182.3 2184.3 2187.2 2188.2 2193.9

success rate 72.43% 91.01%

average 2959.96 2961.58 2964.04 2965.41 2966.54 2967.59 2959.96 2963.17 2967.00 2969.57 2971.47 2973.53

brc202d min 32.80 33.63 34.21 34.21 35.04 35.04 32.80 33.63 34.21 34.21 35.04 35.04

max 6175.38 6179.79 6184.03 6187.03 6189.44 6192.85 6175.38 6181.2 6188.28 6192.03 6194.44 6198.27

success rate 66.72% 86.29%

the CBS-replanner generally worked slowly and provided a low success rate on these

experiments. On the other hand, CBS-D*-lite generally provided fast results, but

in some cases, stage-1 of CBS-D*-lite was unable to find a solution. Therefore, the

algorithm has passed to stage-2 and stage-3. In these situations, the algorithm worked

slowly and exceeded the time limit. In the brc202d map, the situation is similar; the

CBS-D*-lite provided a better success rate value than the CBS-replanner. The success

rate values of both algorithms are a little bit smaller because of the complexity of the

brc202d map.

3.2.4 Conclusions From Experiments

This experimental study showed that CBS-D*-lite, which is an incremental algorithm

can find the results by rapid replanning (especially when a new solution can be gener-

ated by modifying one or two agents paths). On average CBS-D*-lite provided much

faster replanning than CBS-replanner. The solutions provided are sometimes optimal

and sometimes sub-optimal (not far from optimal). The path cost difference of CBS-

D*-lite and CBS-replanner was small on average in all of the maps. The largest cost

difference occurred in dense environments having narrow streets where there are not

63

many low-cost path alternatives after an environmental change.

64

CHAPTER 4

LIFELONG MULTI-AGENT PATH FINDING PROBLEM WITH MULTIPLE

DELIVERY LOCATIONS

In lifelong MAPF problems, new jobs can be added to the problem during the simula-

tion period. The problem of allocating these new jobs to agents needs to be resolved.

Another problem we are trying to solve here is to find solutions for agents that include

more than one destination in their plans. While designing this problem, it is aimed to

distribute the new jobs to the agents while they continue their work. Thus, it is ensured

that the agents continue with their new work just as they have finished their current

work. This situation can be advantageous in terms of minimizing the total distance

spent in problems such as continuous monitoring of areas with multi-robots, cleaning

of certain areas with multi-robots and so on. We called this Lifelong Multi-Agent

Path Finding with Multiple Delivery Locations (MAPF-MD). To solve this problem

we introduced the Multiple Delivery Conflict-Based Search algorithm (MD-DCBS).

To handle multiple delivery locations we define multiple low-level solver instances

for each agent. The aggregations of all of the paths produced by the low-level solver

instances constitute the path of that agent. After that we run CBS on aggregated

paths. We have shown that this version solves MAPF-MD instances correctly. We

also proposed multiple job-assignment heuristics to generate low-total-cost solutions

and determined the best performing method amongst them. In this variation, agents

do not carry a load, unlike the capacitated MAPF problem. Instead, they should visit

more than one place.

A representation of a MAPF-MD problem is provided in Figure 4.1. In this figure,

there are 3 agents and each of them has 2 ordered destinations. The robots represent

the starting points of the agents and the houses represent the delivery locations of the

65

?

Figure 4.1: An example MAPF-MD problem representation.

agents. Agents and their delivery locations are color-matched. The red house is a new

job that needs to be assigned. The aim is to assign it to one of the agents and visit it

in such a time that will cause minimal cost change in the current multi-agent plan.

In this study we worked on heuristic algorithms that assign destinations to agents in

such a way that the resulting multiple delivery MAPF problem generates low-cost so-

lutions. In this problem, we used the sum of the total path lengths of the agents in the

problem for cost measurement. We generated many heuristics to assign destinations

and determine when to visit those destinations. Then we decided which heuristic

strategy to use according to the results of various experiments. After assigning the

destination we solved the resulting MAPF-MD problem with a modified version of

the CBS algorithm [48] in which we used the D*-lite search algorithm [44] as the

low-level search. As there are many replanning actions on the known environment

we used the D*-lite search strategy to cache previous search information instead of

using A* [82] in the low-level search. For each destination pair (source and the des-

tination) we generated a D*-lite object, and for each agent we aggregated the paths

generated from that D*-lite object and ran the CBS on those aggregated paths.

We tested our solution method on 8×8 handcrafted grids and on real-world scenarios

like the benchmark maps provided by Nathan Sturtevant [1]. Moreover, we generated

experiments with several different job-assignment strategies on the same maps and

scenarios, and revealed the best performing of the experimented heuristics. We also

integrated another incremental MAPF solver we generated before [80] to this idea and

compared their results by using the best performing heuristic amongst the ones we

66

created. In the results, we observed that the D*-lite powered version of MAPF-MD

solutions produces faster results as the number of target points added to the problem

increases. Our contributions to this field were the new strategy (MD-DCBS) to solve

MAPF-MD problem, and providing a heuristic for the job-assignment problem to find

low-cost solutions.

4.1 Method

4.1.1 MD-DCBS

Require: Agent and path-ID = {ai, k}
1: if No input provided then ▷ Calculate path for all agents

2: for each agent ai in C do

3: for each destination fj in Fi do

4: ai.dstarList← ai.dstarList + dstar-lite(fj−1,fj) ▷ fj−1 is si for the

first destination

5: ai.pathList← ai.pathList + dstar-lite(fj−1,fj).plan()

6: ai.path = aggregate(ai.pathList)

7: else ▷ Update a part of the path

8: ai.path = ai.dstarList[k].plan()

9: ai.path = aggregate(ai.pathList)

Figure 4.2: low-level-search-MD function

The multiple delivery DCBS (MD-DCBS) algorithm has a flow similar to that of

the CBS algorithm, with a couple of differences. The first difference is that it uses

D*-lite instead of A* search in the low-level search. Adding new destinations to the

system and introducing new constraints actually gives the system dynamical behavior.

Due to its ability to cache previous search information, D*-lite is a better match than

A* for dynamic environments, which is why we decided to use D*-lite instead of

A*. We call the version of the CBS algorithm using D*-lite as the low-level search

DCBS. Another big difference between the MD-DCBS and the CBS concerns the

number of operations to handle multiple delivery locations of the agents. In MD-

67

DCBS we used more than one D*-lite instances per agent. Each agent has n locations

to visit, 1 start location and n − 1 destination locations. We need to plan a path

for each successive destination, and for this we defined a D*-lite instance for each

successive destination pair. We planned paths for each of the D*-lite instances and

then aggregated all of the paths to generate an agents’ aggregated path. The CBS is

run on the aggregated paths of the agents. When a conflict occurs, the corresponding

constraint is added to the concerned part of the aggregated path. Then the constraint is

added to the corresponding D*-lite instance and the conflict is resolved by replanning

that path. This new updated part of the path is then updated on the aggregated path

and CBS will continue its process as normal. In terms of CBS nothing changes but

we handled an agent’s path as a combination of many smaller paths each of which is

calculated by the D*-lite instances created for that agent. Figure 4.3 presents the

MD-DCBS algorithm. After each new destination is added to the system the MD-

DCBS algorithm is called again. Fx is the list where the destinations introduced to

the system after the agents started their jobs are kept. We use the notation Fxi
to

specify that ith element of the list Fx. We also use |Fx| to denote the size of Fx. If

a new destination is added to the system, then the job-assignment-heuristic decides

which agent to assign that job to and when to visit that destination (lines 1-3). Then

the assigned job is deleted from the Fx list (line 4) (the details of the job-assignment

heuristic are provided in section 5.2 below). After that, the root node is initialized

in the same way as the CBS. In MD-DCBS the low-level search works differently

from that in the CBS, hence we named it low-level-search-MD. Figure 4.2 presents

the structure of the low-level-search-MD function. The low-level-search-MD is the

place where we define and plan paths with D*-lite instances. If the parameter set is

empty it defines and calculates paths for each successive destination pairs and then

aggregates (lines 1-6 - low-level-search-MD). This part is used at the beginning of the

MD-DCBS. If an agent and the path-ID are provided, then the function only plans

a path for that part and then aggregates the paths to update the overall path (lines

7-9 - low-level-search-MD). A graphic representation of this function is provided in

Figure 4.4. In this representation, an agent and its destinations are provided above

where the start point of the agent is the robot and the destinations are the houses.

In the lower part, a D*-lite object is defined for each of the successive destination

pairs (S −D1, D1−D2 and D2−D3). The aggregated path is the aggregations of

68

Require: MAPF-MD Instance = {A,E, V, S, F, Fx}
1: if |Fx| > 0 then

2: AgentID,order = Job-assignment-heuristic (Fx|Fx|)

3: FAgentID.insert(Fx|Fx|,order)

4: Fx = Fx/Fx|Fx|

5: root.constraints = ∅
6: root.solution = low-level-search-MD()

7: root.cost =
∑

root.solution

8: Insert root to Open-List

9: while Open-List NOT empty do

10: P ← Best Node from Open-List

11: Validate paths in P until a conflict occurs

12: if P has no conflict then

13: return P.solution

14: C ← first conflict (ai, aj, v, t) in P

15: for each agent ai in C do

16: A← new-CT-node()

17: A.constraints← P .constraints

18: k = find-the-part-of-the-agent-path-conflicting(A,(ai, v, t))

19: A.constraints[k]← P .constraints[k] + (ai, v, t)

20: A.solution← P .solution

21: A.solution← low-level-search-MD(ai,k) ▷ Update solution

22: A.cost =
∑

A.solution

23: if A.solution <∞ then ▷ Solution was found

24: Insert A to Open-List

Figure 4.3: The MD-CBS algorithm

these paths with time-steps adjusted. When a new conflict occurs, the constraint is

added to the part where it occurs and only that part is repaired. After this point, until

the constraints are added to the agents (line 17) MD-DCBS works similarly to CBS.

MD-DCBS determines which D*-lite objects path should be updated, and calls the

low-level-search-MD with that information (lines 18-21). The remaining part of the

69

S
D1 D3D2

S-D1 D1-D2 D2-D3

AGGREGATED PATH

D*-lite1 D*-lite2 D*-lite3

CONFLİCT

PATHS

Figure 4.4: A graphical overview of the low-level-search-MD which is the low-level

search mechanism of the MD-DCBS.

algorithm works identically to CBS.

4.1.2 Job-Assignment Heuristics

For this problem, the aim is to calculate the distance of the newly added target to the

plans of the agents and to allocate it to the closest agent. In addition, after allocating

to the target agent, the order of visit is also decided to be before or after the target

point to which it is closest. At this stage, we conducted an experimental study. As

new heuristics were created, we tested their results and selected the best performing

algorithm. Since the objective function we used for the problem here is total path

cost, we compared the created heuristic algorithms firstly according to the difference

of the result they return from the optimal total path cost and then according to their

calculation speed. The important point here is to calculate how far the chosen heuris-

tic algorithms are from the optimal result. Although it is not possible to find the

optimal solution for such incremental problems, it is possible to determine a realistic

lower limit by trying all possible additions. Since trying all possible places where the

new target can be added will cause an exponential problem, it will only be possible

to use this metric for small-scale problems. While creating the heuristic algorithms

in this study, we were inspired by the closeness centrality method in the graph theory

literature [83, 84].

According to this method, in a connected graph, the closeness centrality (or closeness)

of a node is a measure of centrality in a network calculated as the sum of the lengths

of the shortest paths between the node and all other nodes in the graph. Thus we can

70

infer that, the more central a node is, the closer it is to all other nodes. Calculation of

the closeness centrality is provided by the following equation:

C(x) =
1∑

y d(y, x)
(41)

In the following sub-sections, we will talk about the heuristic methods we have devel-

oped, respectively. The path we followed while developing these methods is to apply

the closeness centrality logic to this problem. Also our aim was to create simplified

versions of this method that generate results by applying fewer operations. Each sub-

section will describe a job-assignment heuristic. For each approach, we have shared

a graphical representation of that approach and its explanations. In these pictures,

the circles represent the agent starting points, the squares represent the agent ending

points, the pentagons represent the newly added target point to the system and the di

values represent the distance value between the two nodes.

In the heuristic algorithms we present in the following sub-sections we defined t as

the arrival time of each new job. The paths traversed by each agent until the moment

t are recorded as the paths traveled, and the starting point of the agent is updated

as the current location at the time t. Agents destinations are also updated (traversed

destinations are deleted). Then the new job is added with the heuristics to this up-

dated destination list. In this section, the proposed heuristics and their strategies are

provided.

4.1.2.1 Add to Closest Start Agent

The Add to Closest Start Agent (ACSA) heuristic, makes a distance calculation for

each agent. In this distance calculation, for each agent, the distance from agent’s start

point to the target point is calculated. Then, the agent with the minimum value of

these calculated values is selected to add the target point. Then the target point is

added to the selected agent plans to be visited just after the starting point of the se-

lected agent. An illustration of this working mechanism is presented in Figure (Figure

4.5) where t represents the time step that the new target is added to the system. The

71

Ai di

New Job

Agent with min d valuei

1)

2)

t

Figure 4.5: The Add to Closest Start Agent (ACSA) heuristic: 1) For each agent

distance of its start location to new job location is calculated. 2) The new job is added

after the start location of the agent with the minimum di distance.

sub-picture indicated by the number-1 (on the top) describe the distance calculation

made for each agent. The sub-picture expressed with number-2 (below) describe how

that target is added to the agent.

4.1.2.2 Add to Closest End Agent

The Add to Closest End Agent (ACA) heuristic, works in a similar way to the ACSA

heuristic. As a difference, this heuristic calculates distances from the ending point to

the target point instead of the start point. Other than that, the working mechanism of

ACA is the same as ACSA. An illustration of this heuristic is represented in Figure

4.6.

4.1.2.3 Add to Closest Average Start End Points

The Add to Closest Average Start end Points (ACASP) heuristic works with the fol-

lowing mechanism. For all agents, the distance between the newly added target and

the starting point of the agent is calculated. Then, the distance between the newly

added target and the agent’s endpoint is calculated. By taking the average of these

72

Ai

New Job

Agent with min d valuei

1)

2)

di

t

Figure 4.6: The Add to Closest End Agent (ACA) heuristic: 1) For each agent the

distance of its last destination location to new job location is calculated. 2) The new

job is added after the last destination location of the agent with the minimum di dis-

tance.

two distances, the value of that agent is calculated. The agent with the minimum value

among all agents is selected for adding the new incoming target. In this algorithm,

when the new incoming target will be visited between the target points of the agent is

also decided differently from the first two heuristics. The distance of all target points

of the selected agent to the new target point is calculated one by one. The target list

of the agent is updated by adding the new incoming target after the target point where

the shortest distance is calculated. An illustration of this heuristic is represented in

Figure 4.7.

4.1.2.4 Add to Closest Point

The Add to Closest Point (ACP) heuristic is the closest approach to the closeness

centrality approach among the developed heuristic algorithms. This could also be

called the way we have adapted the closeness centrality approach to this problem. In

this approach, we calculated the distance from all destination points of each agent

to the newly added target point. The minimum of these distances is recorded as the

calculated value for that agent. The agent with the minimum value among all agents

73

Ai

New Job

Agent with min d valuei

1)

2)

d2

d1

d = (d + d) /2i 1 2

d1

d2

d3 d4

Agent with min d valuei3)

t

Figure 4.7: The Add to Closest Average Start End Points (ACASP) heuristic: 1) For

each agent the distance of it from the new job location is calculated by averaging the

distances of its start location and last destination location from the new job location.

2) The new job’s distance from each of the destinations is calculated for the agent

with the minimum di distance 3) The new job is added after the closest destination of

the agent with the minimum di distance.

is selected for adding the new incoming target. We decided with the same method

used in Section 4.1.2.3 how to add the newly added target point to the chosen agent.

Accordingly, the new destination is added to the destination list of the agent after

the nearest destination of the agent. An illustration of this heuristic is represented in

Figure 4.8.

4.1.2.5 Add to closest average agent

The Add to Closest Average Agent (ACAA) heuristic calculates the distance of the

newly added target for each agent from all the destinations of that agent. Then, it

calculates the value determined for that agent by calculating the average of these

distances. The agent for which this value is minimum is selected to add the new

target point. The order in which the new target will be visited is decided by the

method described in Section 4.1.2.3. An illustration of this heuristic is represented in

Figure 4.9.

74

Ai

New Job

Agent with min d valueij

1)

2)

d1

d1

d2

d3 d4

Agent with min d valueij3)
d2

d3

d4

t

Figure 4.8: The Add to Closest Point (ACP) heuristic: 1) For each agent the distance

from all destination points of that agent to the newly added target point is calculated.

The minimum of these distances is recorded as the calculated value for that agent. 2)

The new jobs distance from each of the destinations is calculated for the agent with

the minimum di distance 3) The new job is added after the closest destination of the

agent with the minimum di distance.

4.1.2.6 Best Possible Adding

The Best Possible Adding (BPA) heuristic is an algorithm we have developed to cal-

culate the distances of other heuristics to a near-optimal lower limit. For this, for each

agent, we have added the newly added target point to the destination list of that agent,

with all possible orderings (trying one at a time). We found the total path cost by

solving the total problem for each case with the modified CBS solver we developed.

Then, the new target is added to the list of destinations of that agent in the order that

gives the lowest total result from all these possibilities. An illustration of this heuristic

is represented in Figure 4.10.

4.1.3 Theoretical Analysis

After each new job is added to the system, the optimal solution changes. We assumed

that behaving optimally during each job-assignment process will provide an optimal

75

Ai

New Job

Agent with min d valuei

1)

2)

d1

d1

d2

d3 d4

Agent with min d valuei3)

d2
d3

d4

d = avg(d , d , d , d)i 1 2 3 4

t

Figure 4.9: The Add to Closest Average Agent (ACAA) heuristic: 1) For each agent

the distance of it from the new job location is calculated by first finding the distance

of the newly added target for each agent from all the destinations of that agent. Then,

it calculates the value determined for that agent by calculating the average of these

distances. 2) The new job’s distance from each of the destinations is calculated for

the agent with the minimum di distance 3) The new job is added after the closest

destination of the agent with the minimum di distance.

solution. The overall solution provided by this strategy does not have to be optimal

every time. However, as we do not know in advance which new job will be added to

the system, this is a realistic approach.

The only difference between DCBS and CBS is the use of D*-lite instead of A*. Both

D*-lite and A* are optimal and complete approaches [82, 44]. [48] proved that CBS

returns an optimal solution and it returns a solution if one exists (complete). DCBS

uses the exact same tree search mechanism that CBS uses. Hence, DCBS is also an

optimal and complete approach. In terms of running time, running DCBS multiple

times after each new job assignment is faster than running CBS multiple times be-

cause DCBS uses D*-lite which can cache previous search information. MD-DCBS

is also a complete and optimal approach apart from the job-assignment strategy. As

we made job assignments via heuristics the overall algorithm is not optimal. After job

76

Ai

New Job

1)

Ai2)

Ai3)

t

Figure 4.10: The Best Possible Adding (BPA) heuristic: 1) For each agent, the MAPF

problem created by adding the newly added target point to that agent should be solved.

2) For each agent, the newly added destination point is added before and after all the

elements of that agent’s destination list, and the MAPF problem that occurs with that

scenario is solved. 3) Out of all these solved MAPF problems, the assignment method

that gives the minimum result is chosen as the solution.

assignment and aggregation, MD-DCBS provides the same input to the CBS search,

and hence that part of the MD-DCBS is optimal and complete. If we assume that there

are n destinations for each of the agents. This means that there will be n different path

planning jobs for each agent when replanning is needed for that agent’s path. This

was 1 for each agent in the CBS algorithm. Apart from that, there will be a cost of

aggregating paths. Each time a low-level search is called for an agent, an aggregation

job is also performed (at the start of the MD-DCBS aggregation is performed for all

agents). So the running time is roughly |CT nodes|×(n×D*-lite search + aggregation

cost). MD-DCBS is called again after each new job assignment. The overall solution

is not optimal but it behaves optimally between each new job assignment.

We generated an all-pairs shortest path table before running these heuristics, so we did

not recalculate distances when we call the heuristics. Apart from BPA, all heuristics

are called MD-DCBS once to calculate the total cost. The distances are retrieved from

77

the table, hence they took O(1) time. If there are n agents and k destinations for each

agent, BPA calls MD-DCBS n× (k + 2) times.

4.1.4 Running Example

1 2 3 4

A

B

C

D

a) b) c) d)

1 2 3 4

A

B

C

D

1

2

1

2

1 2 3 4

A

B

C

D

1 2 3 4

A

B

C

D

1

2

1

2

3

Figure 4.11: Running example; a) represents an initial multiple delivery problem,

b) represents the initial agent plans generated by MD-DCBS, c) represents the new

destination to be assigned, d) represents the updated paths after the destination is

assigned and visited by closest start point adding strategy.

In Figure 4.11, a toy MAPF-MD problem is presented with two agents and two des-

tinations to be visited for each agent. Agents are represented by robots and the des-

tinations are represented by houses. Each agent and its destination is given the same

color. After the agents start their jobs a new destination (shown in red) is added to

the system. The initial system configuration is presented in Figure 4.11-a. The results

after the MD-DCBS run are given in Table 4.1 where the graphical representation of

MAPF-MD is depicted in Figure 4.11-b. A new destination is then added to the sys-

tem (represented by a red house in Figure 4.11-c). Next, we used the ACSA heuristic

to assign the new destination. The coordinate of the new destination is C4. The start

point of the green agent is A1 and the start point of the blue agent is A3. Distance

from C4 to A1 is 1.414× 3+1 = 5.242 (there are 3 diagonal moves and a horizontal

move) and the distance from C4 to A3 is 1.414 × 1 + 1 = 2.414. As the second dis-

tance is smaller, the new destination is added before the start point of the blue agent.

In Figure 4.11-d, the resulting paths of the agents are presented. The path going to

the new destination is presented with a red color. The paths generated after the new

destination are given in Table 4.1.

78

Table 4.1: Multiple delivery MAPF solution before and after the new package.

MAPF-MD MAPF-MD after new job added

{1 - A1, A2, B3, C3, D2, D1} {1 - A1, A2, B3, C3, D2, D1}

{2 - A3, B4, C3, D2, C1} {2 - A3, B3, C4, B4, C3, D2, C1}

Total cost = 11.4853 Total cost = 13.4853

4.2 Experimental Study

To our best knowledge, there are no previous attempts that focus on minimizing total

cost after new job-assignment. For this reason, we compared the effect of the sev-

eral job-assignment strategies we suggested (presented in the method section) on the

total cost. We used the MD-DCBS algorithm to solve the multiple delivery MAPF

problems.

As a second type of experiment, we integrated the proposed method in this study with

a different low-level incremental planner and examined the effect of the lower-level

planner on the outcome. For this, we integrated the incremental MAPF solver using

LPA*, which we proposed in 2022 into the algorithm provided in this study [80]. The

reason for this preference is that these two algorithms have similar infrastructures

and the integration process can be performed more quickly. Using the best heuristic

selected by these two studies, we solved the MAPF-MD problem and compared the

performance of these algorithms.

We developed the project on a PC with a 64 bit 3.40 GHz Intel i7 processor. We

used the Ubuntu 14.04.2 LTS operating system and C++ programming language for

implementation.

4.2.1 Datasets

In this section, we talked about the datasets we created to test the heuristic algorithms

developed for job assignment and the datasets we created to test the different methods

we developed to solve the MAPF-MD problem, under separate headings.

79

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

a) b) c)

Figure 4.12: A graphical overview hand crafted map (a) and the benchmark maps

den520d (b), brc202d (c) [1]

We used 3 different maps for the tests in both parts. The first of these maps is the

8 × 8 map. This map is a grid map that we created ourselves, which contains some

obstacles. We thought it was a good option for examining the results of algorithms in

small and cramped environments and for testing their accuracy in hand-crafted tests.

The created 8× 8 map is shared in Figure 4.12-a. The other two maps we used in the

tests consist of maps from the benchmark set provided by Nathan Sturtevant [1]. We

used the den520d and brc202d maps from the Dragon Age: Origins (DAO) game. The

den520d and the brc202d maps are grid-like environments and have sizes of 257×256
and 481× 530 respectively.

In our experiments, we randomly created the starting and goal points of the agents in a

way that they do not coincide with the obstacles on the maps. Similarly, we randomly

created the destinations to be added to the agents. The new destination locations were

guaranteed to not collide with the previous destinations and the obstacles on the maps.

4.2.1.1 Datasets for Testing Heuristics

In the experiments with the 8× 8 grid, we used five randomly generated agents with

two destination locations and then added one new destination to these multi-agent

plans. We generate results in 100 different scenarios. For the experiments on the

den520d and brc202d maps, we used 10 randomly generated agents with two desti-

nation locations and then added one new destination to these multi-agent plans. We

generated results in 100 different scenarios.

80

4.2.1.2 Datasets for Testing MAPF-MD Solvers

In the experiments with the 8× 8 grid, we used five randomly generated agents with

two destination locations and then added eight new destinations to these multi-agent

plans. We generate results in 330 different scenarios. For the experiments on the

den520d, we have two different settings. In the first one, we used five randomly

generated agents with two destination locations and then added eight new destinations

to the problem. We generated 260 in different scenarios for this setting. In the second

setting, we wanted to test the algorithms with a higher number of agents and a higher

number of destinations added. Hence, we used ten randomly generated agents with

two destination locations and added twenty-four new destinations to the problem. We

generated 156 in different scenarios for this case. Lastly, for the experiments on the

brc202d map, we used five randomly generated agents with two destination locations

and then added eight new destinations to the problem. We generated 166 in different

scenarios for this case.

4.2.2 Comparison of the Job-Assignment Heuristics According to Total-Path

Costs and Total Time Spent They Provide

In Table 4.2, we present the total-path-cost (left) and total elapsed time values (right)

produced on three different maps by the heuristic algorithms. We calculated the av-

erage, minimum, and maximum of these values by using different job-assignment

heuristics. These total cost and the elapsed-time values are calculated after the new

destination is added to the system. The minimum values of the minimum, maximum,

and average values are shown in bold in the tables.

In the results produced in 8 × 8 grid, for all three cases, the ACP method is closest

to the BPA method which is the result of all possible combinations. ACSA is able

to find a minimum solution but on average it provided worse results than the ACP. A

similar situation occurred on maximum values with the ACAA and the ACA heuris-

tics. The ranking according to average cost values is ACP > ACAA > ACASP >

ACA > ACSA (from best to worst, excluding BPA). Throughout the experiments on

the den520d map, again the ACP method provided the closest results to BPA. The al-

81

Table 4.2: Total path cost values (left) and total time spent (right) by running the

several job-assignment heuristics we presented. 5 agents are used in 8 × 8 map, and

for the den520d and brc202d maps 10 agents are used.

Map Total Path Cost Values Total Time Spent (sec)

ACSA ACA ACASP ACP ACAA BPA ACSA ACA ACASP ACP ACAA BPA

8x8

Min. 27.49 29.49 29.49 27.49 30.90 27.49 0.008 0.008 0.011 0.012 0.011 0.181

Max. 77.08 76.01 77.08 76.01 76.01 74.25 1.214 1.200 1.205 1.234 1.267 2.590

Avg. 51.55 51.10 50.78 50.19 50.66 49.51 0.029 0.029 0.037 0.038 0.039 0.512

den520d

Min. 1032.3 929.28 1027.9 922.6 922.6 922.0 1.543 1.444 2.003 2.075 2.269 32.466

Max. 2278.3 2260.7 2260.7 2260.7 2260.7 2243.5 5.740 4.591 7.411 6.930 7.681 63.211

Avg. 1548.1 1544.2 1531.1 1513.6 1523.8 1500.1 2.876 2.212 3.490 3.413 4.647 41.148

brc202d

Min. 1243.3 1121.0 1117.5 1117.5 1193.8 1117.5 8.726 8.060 11.37 10.70 11.98 64.40

Max. 3151.7 3352.9 3356.3 3004.9 3108.8 2982.9 25.82 24.00 26.92 27.16 32.44 131.1

Avg. 1998.5 2015.6 1956.8 1895.9 1947.8 1852.4 11.79 10.83 15.25 14.30 18.87 85.72

gorithms which provided the minimum and the maximum total averages are changed.

ACP and ACAA provided the minimum total cost and ACP, ACAA, ACASP, and

ACA provided the maximum total cost. The ranking according to average cost values

is identical to 8 × 8 grid experiments. This time the differences between the total

cost values are larger in these results. In the experiments on the brc202d map, ACP

is still the best-performing heuristic. ACP and ACASP provided the minimum path

cost values. On the maximum path cost values, ACP is the one that is closest to BPA.

On the average values, the ranking is similar to the previous experiments but this time

the total path cost values provided by ACSA are smaller than the values provided by

ACA.

In the results produced in the 8 × 8 grid, ACA is the algorithm that provided the

results in the shortest amount of time on average. ACSA provided similar results to

ACA. ACASP, ACP, and ACAAs results are close, and the ranking is ACASP, ACP,

and ACAA. BPA worked clearly slower than the other heuristics as expected. ACSA

provided the fastest result, and ACA is the one that spent the smallest amount of time

among the maximum values provided by the heuristics.

82

4.2.3 Comparison of the MAPF-MD Solvers with Different Low-Level Solvers

In this section, we compared MAPF-MD solvers with different low-level solvers. The

method proposed in this article, MD-DCBS, uses the low-level D*-lite algorithm,

while the MD-DCBS with LIMP algorithm uses the low-level LPA* algorithm.

In Table 4.3, we shared the total-path-cost results provided by the algorithms in cases

with 8 destinations added. The 0 state indicates the initial case. The agents have one

start and two goal points at the beginning. After each destination is added, the job is

assigned to one of the agents and the problem is resolved, and the total path cost for

each addition is included in the table. Since the case of adding 24 destinations is too

large to include in this table, we created a second table with a summary of the total-

path-cost results. We shared a summary of the total path cost results of the algorithms

in Table 4.4. In this summary, the average total path costs of the algorithms, the

average total path cost differences of the algorithms, and the total-path-cost value for

the case where the total-path cost difference is maximum are included for all datasets

(including the 24 destination experiment). When we examine the results provided in

Table 4.3 and Table 4.4 we can see that the two algorithms show close performances

in terms of total-path cost.

Table 4.3: Comparison of total path cost results of MAPF-MD solvers with different

low-level solvers on different maps.

Destinations Added

0 1 2 3 4 5 6 7 8

8x8 - 8
MD-DCBS 56,991 59,091 61,342 63,336 65,418 67,530 69,803 72,767 75,794

MD-DCBS with LIMP 56,400 58,442 60,636 62,615 64,570 66,633 68,830 71,694 74,533

den520d - 8
MD-DCBS 1616,5 1673,0 1727,1 1781,2 1841,9 1903,6 1972,6 2033,3 2105,2

MD-DCBS with LIMP 1620,8 1678,5 1732,1 1786,4 1847,1 1908,7 1978,5 2038,9 2112,2

brc202d - 8
MD-DCBS 2218,4 2302,1 2390,5 2484,4 2561,3 2654,9 2741,0 2842,7 2949,1

MD-DCBS with LIMP 2218,2 2301,9 2390,3 2484,2 2561,1 2654,8 2740,9 2842,5 2948,9

A comparison of the running times of the algorithms is presented in Figure 4.13.

According to these results, it is seen that the algorithms work similarly in terms of

speed on the 8× 8 map. However, as the map gets larger, it is seen that the difference

in operating speed between the two algorithms increases in favor of MD-DCBS. In

addition, in the tests performed by increasing the number of added destinations, it

83

Table 4.4: Summary of total path cost results on different maps of MAPF-MD solvers

with different low-level solvers.

8x8 - 8 den520d - 8 brc202d - 8 den520d - 24

Solver avg-dif max-dif avg-cost avg-dif max-dif avg-cost avg-dif max-dif avg-cost avg-dif max-dif avg-cost

MD-DCBS
0,8576 1,2606

65,786
-5,4235 -6,9885

1850,5
0,1647 0,1988

2571,6
0,3321 0,5513

3771,75

MD-DCBS with LIMP 64,928 1855,9 2571,4 3771,4

is seen that the algorithms produce similar results with the situations with a small

number of destinations, but as the number of destinations added increases we see that

the difference in the running time of these algorithms increased.

(a) 8× 8 map - 8 destinations added (b) den520d map - 8 destinations added

(c) brc202d map - 8 destinations added (d) den520d map - 24 destinations added

Figure 4.13: Comparison of MAPF-MD solvers in terms of running time with differ-

ent low-level solver integrations on different maps and different destination numbers.

84

CHAPTER 5

CONCLUSION

This section includes the problems we attacked in this thesis, the solutions we pro-

duced for those problems, and discussions on how to proceed in the future.

5.1 Summary

Since the CBS algorithm is not designed for incremental environments, it cannot

cache previous information when the need for replanning arises. In this context, us-

ing an incremental single-agent search algorithm that can cache previous information

in the lower-level search can speed up the low-level replanning process. Speeding

up low-level planning is valuable, but not sufficient. When the working logic of

CBS is examined, it can be observed that the main effect on the time spent during

the operation of CBS is the number of nodes produced during the high-level search.

Minimizing the total number of low-level planners run by reducing the number of

nodes produced by the high-level search will further increase the replanning speed of

the algorithm. That’s why we decided on making modifications to the main structure

of CBS to reduce the number of nodes that need to be produced in high-level search.

Here, it is of great importance to do replanning quickly to adapt quickly to changes in

incremental environments. For this reason, it seems appropriate to the nature of the

problem to renounce the optimality and find fast and near-optimal quality results.

Another topic we were working on was generating a MAPF solver for multi-destination

agents. The solution method we created here was to place a middle layer between the

low-level search and the high-level search and thus produce optimal solutions after

that the middle layer sends its computed paths to a high-level search. This would con-

85

serve standard CBS working logic. In the middle layer, the idea of considering the

destinations as pairs and planning the paths between them with low-level planners as-

signed to them was our idea. Here we solved the incoming constraints in that planner

and matched the time steps of different low-level planners to each other. Finally, we

combined the created paths as a single path and send that single path to the high-level

search. The only question mark that could arise here was the memory usage that the

separately kept low-level planners would spend to keep the maps.

Lastly, in the lifelong MAPF problem, we wanted to plan a job distribution in such

a way as to optimize the path total cost. Here it was logical to use heuristic meth-

ods to make a quick distribution when new jobs arrived. However, a limiting value

was needed to measure the path cost quality of these created methods. For this, we

have developed another algorithm that considers all possible job-distribution options,

which are too slow to use under normal conditions, but which can help to understand

the differences in the values of the developed methods from the optimal.

In this thesis, we created algorithms that can make fast replanning in incremental

environments by basing on the CBS algorithm and modifying it. We designed an

optimal approach for the MAPF problem involving multi-destination agents, and we

created several heuristic algorithms for the job distribution problem.

Chapter 3 proposes two new algorithms to solve the I-MAPF problem. One of them

is the CBS-replanner algorithm, which uses the CBS algorithm as it is and enables it

to work incrementally. This algorithm guarantees to find the optimal result for each

of the MAPF problems created after each environmental change. Since we cannot

know the changes in advance, it does not seem possible to reach a global optimum

for this problem. However, although it produces optimal results for the problems

created after each change, it is considered too slow to use in real life, since it solves

a new MAPF problem from scratch for each new change. The second developed

algorithm is the CBS-D*-lite algorithm. In this algorithm, the D*-lite algorithm is

used as a low-level planner. The D*-lite algorithm has been modified so that D*-lite

can be integrated with CBS. Afterward, the CBS algorithm was also modified. Here,

3 stages are defined for the algorithm when replanning will be done. CBS-D*-lite

follows a 3-stage strategy when replanning. The aim here is to achieve the result by

86

producing as few nodes as possible. With each new stage, slightly more nodes are

generated. Stage-3 of this algorithm is exactly the same as what CBS-replanner does.

But the main goal is to reach the conclusion in the first two stages in most scenarios.

When the results are examined, it is seen that CBS-D*-lite performs replanning much

faster than CBS-replanner and the path cost results are close to CBS-replanner.

Lastly, in Chapter 4, for the MAPF problem including multi-destination agents, we

kept a separate D*-lite object for each destination pair. We replanned the route for

the affected part of the path. This is achieved by adding the incoming constraint

to the D*-lite object of the corresponding part of the agent path. Afterward, we

combined this newly planned route with the routes previously planned by other D*-

lite objects and made time adjustments. Finally, we ran the CBS algorithm with the

aggregated path of all D*-lite objects. This resulting algorithm does not violate the

optimal and complete structure of the CBS algorithm. However, keeping multiple

D*-lite objects can consume a lot of memory in problems where the map is too large

or when agents have too many destinations. In addition, we developed heuristic job

distribution algorithms to solve the job distribution problem by optimizing the total

path cost. Among these developed heuristic algorithms ACP, which was the algorithm

whose working logic was the most similar to the closeness centrality method, gave

the most balanced performance in terms of both working speed and total path cost

performance for us. While the path costs it found were close to BPA, which we can

see as a brute force approach, ACP gave a very fast performance compared to BPA

in terms of working speed. Also, to explore the effect of using different low-level

solvers on the MD-DCBS algorithm, we created a version of MD-DCBS that uses the

LPA* algorithm as a low-level solver and compared these two algorithms in various

situations. In the results, we observed that these two algorithms work closely in terms

of total-path-cost, but in cases where the number of added destinations increases, the

MD-DCBS algorithm produces faster results in running time.

5.2 Future Work

The studies presented within the scope of this thesis are considered to be developable

in many respects.

87

Firstly, it has been observed that the solutions presented for the I-MAPF problem

work at small delta values when considering the duration of an environmental change.

It has been evaluated that the amount of replanning should be reduced in order for the

solutions to be suitable for environmental changes with higher delta values. For this

reason, the solution presented can be designed to group the environmental changes.

By this way, making replanning for the groups of environmental changes can lead to

less replanning.

Another idea is to combine the existing incremental problem ideas (such as adding

agents to the problem at any time) with the I-MAPF problem, thus producing a solu-

tion to a problem that more accurately reflects real-life problems.

Finally, for the job distribution algorithms being developed to optimize the total path

cost, it is evaluated that the jobs added to the system can be grouped with a clustering

mechanism and assignments can be made to the agents in groups.

88

REFERENCES

[1] N. R. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE Transactions

on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144–148,

2012.

[2] H. Ma and S. Koenig, “Ai buzzwords explained: Multi-agent path finding

(mapf),” AI Matters, vol. 3, no. 3, p. 15–19, 2017.

[3] R. Stern, “Multi-agent path finding - an overview,” in RAAI Summer School,

2019.

[4] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,

D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Barták, “Multi-agent

pathfinding: Definitions, variants, and benchmarks,” in SOCS, 2019.

[5] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian, “Persistent and

robust execution of mapf schedules in warehouses,” IEEE Robotics and Automa-

tion Letters, vol. 4, no. 2, pp. 1125–1131, 2019.

[6] P. Dasler and D. M. Mount, “Online Algorithms for Warehouse Management,”

in 30th International Symposium on Algorithms and Computation (ISAAC

2019), vol. 149 of Leibniz International Proceedings in Informatics (LIPIcs),

pp. 56:1–56:21, 2019.

[7] J. Stenzel and D. Luensch, “Concept of decentralized cooperative path conflict

resolution for heterogeneous mobile robots,” in 2016 IEEE International Con-

ference on Automation Science and Engineering (CASE), pp. 715–720, 2016.

[8] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, T. K. S. Kumar, and

S. Koenig, “Planning, scheduling and monitoring for airport surface operations,”

in AAAI-16 Workshop on Planning for Hybrid Systems (PlanHS), 2016.

[9] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots on graphs,”

2013.

89

[10] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and S. Koenig,

“Multi-agent path finding with kinematic constraints,” in Twenty-Sixth In-

ternational Conference on Automated Planning and Scheduling, ICAPS’16,

p. 477–485, 2016.

[11] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. K. S. Kumar, T. Uras,

H. Xu, C. A. Tovey, and G. Sharon, “Overview: Generalizations of multi-agent

path finding to real-world scenarios,” CoRR, vol. abs/1702.05515, 2017.

[12] A. Murano, G. Perelli, and S. Rubin, “Multi-agent path planning in known dy-

namic environments,” in PRIMA 2015: Principles and Practice of Multi-Agent

Systems, pp. 218–231, 2015.

[13] B. Atiq, V. Patoglu, and E. Erdem, “Dynamic multi-agent path finding based

on conflict resolution using answer set programming,” in Proceedings 36th In-

ternational Conference on Logic Programming (Technical Communications),

ICLP Technical Communications 2020, vol. 325, pp. 223–229, 2020.

[14] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong multi-agent

path finding in a dynamic environment,” in 2018 15th International Conference

on Control, Automation, Robotics and Vision (ICARCV), pp. 875–882, 2018.

[15] F. Semiz and F. Polat, “Incremental multi-agent path finding,” Future Genera-

tion Computer Systems, vol. 116, pp. 220–233, 2021.

[16] H. Ma, J. Li, T. S. Kumar, and S. Koenig, “Lifelong multi-agent path finding for

online pickup and delivery tasks,” AAMAS ’17, p. 837–845, 2017.

[17] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S. Koenig, “Life-

long multi-agent path finding in large-scale warehouses,” Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 35, pp. 11272–11281, May

2021.

[18] H. Ma, W. Hönig, T. K. S. Kumar, N. Ayanian, and S. Koenig, “Lifelong path

planning with kinematic constraints for multi-agent pickup and delivery,” CoRR,

vol. abs/1812.06355, 2018.

[19] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-agent

pickup and delivery,” in AAMAS, 2019.

90

[20] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey, “Integrated

task assignment and path planning for capacitated multi-agent pickup and de-

livery,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5816–5823,

2021.

[21] O. Salzman and R. Stern, “Research challenges and opportunities in multi-

agent path finding and multi-agent pickup and delivery problems,” AAMAS

’20, p. 1711–1715, 2020.

[22] K. Yu, “Finding a natural-looking path by using generalized visibility graphs,”

in PRICAI 2006: Trends in Artificial Intelligence, 9th Pacific Rim International

Conference on Artificial Intelligence, Proceedings (Q. Yang and G. I. Webb,

eds.), vol. 4099 of Lecture Notes in Computer Science, pp. 170–179, 2006.

[23] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf, “Visibility

graphs,” in Computational geometry, pp. 307–317, Springer, 2000.

[24] E. J. Gómez, F. M. Martínez Santa, and F. H. M. Sarmiento, “A comparative

study of geometric path planning methods for a mobile robot: Potential field and

voronoi diagrams,” in 2013 II International Congress of Engineering Mecha-

tronics and Automation (CIIMA), pp. 1–6, 2013.

[25] F. Lingelbach, “Path planning using probabilistic cell decomposition,” in IEEE

International Conference on Robotics and Automation, 2004. Proceedings.

ICRA’04. 2004, vol. 1, pp. 467–472, IEEE, 2004.

[26] R. Gonzalez, M. Kloetzer, and C. Mahulea, “Comparative study of trajectories

resulted from cell decomposition path planning approaches,” in 2017 21st In-

ternational Conference on System Theory, Control and Computing (ICSTCC),

pp. 49–54, IEEE, 2017.

[27] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard, Prin-

ciples of robot motion: theory, algorithms, and implementations. MIT press,

2005.

[28] K. N. McGuire, G. C. de Croon, and K. Tuyls, “A comparative study of bug

algorithms for robot navigation,” Robotics and Autonomous Systems, vol. 121,

p. 103261, 2019.

91

[29] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristicbased path plan-

ning,” in in: Proceedings of the Workshop on Planning under Uncertainty for

Autonomous Systems at The International Conference on Automated Planning

and Scheduling (ICAPS, 2005.

[30] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial

vehicles: A review, solutions, and challenges,” Computer Communications,

vol. 149, pp. 270–299, 2020.

[31] F. Semiz and F. Polat, “Solving the area coverage problem with uavs: A vehi-

cle routing with time windows variation,” Robotics and Autonomous Systems,

vol. 126, p. 103435, 2020.

[32] B. Fu, L. Chen, Y. Zhou, D. Zheng, Z. Wei, J. Dai, and H. Pan, “An improved a*

algorithm for the industrial robot path planning with high success rate and short

length,” Robotics and Autonomous Systems, vol. 106, pp. 26–37, 2018.

[33] G. Jagadeesh, T. Srikanthan, and K. Quek, “Heuristic techniques for acceler-

ating hierarchical routing on road networks,” IEEE Transactions on Intelligent

Transportation Systems, vol. 3, no. 4, pp. 301–309, 2002.

[34] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic deter-

mination of minimum cost paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, pp. 100–107, July 1968.

[35] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in

ai,” AI Magazine, vol. 25, no. 2, pp. 99–99, 2004.

[36] V. Lumelsky and A. Stepanov, “Dynamic path planning for a mobile automaton

with limited information on the environment,” IEEE Transactions on Automatic

Control, vol. 31, no. 11, pp. 1058–1063, 1986.

[37] A. Pirzadeh and W. Snyder, “A unified solution to coverage and search in ex-

plored and unexplored terrains using indirect control,” in Proceedings., IEEE

International Conference on Robotics and Automation, pp. 2113–2119 vol.3,

1990.

[38] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 2,

pp. 189–211, 1990.

92

[39] A. Zelinsky, “A mobile robot exploration algorithm,” IEEE Transactions on

Robotics and Automation, vol. 8, no. 6, pp. 707–717, 1992.

[40] A. Stentz, “Optimal and efficient path planning for unknown and dynamic envi-

ronments,” INTERNATIONAL JOURNAL OF ROBOTICS AND AUTOMATION,

vol. 10, pp. 89–100, 1993.

[41] A. Stentz, “The focussed d* algorithm for real-time replanning,” in In Proceed-

ings of the International Joint Conference on Artificial Intelligence, pp. 1652–

1659, 1995.

[42] G. Ramalingam and T. Reps, “An incremental algorithm for a generalization of

the shortest-path problem,” Journal of Algorithms, vol. 21, no. 2, pp. 267–305,

1996.

[43] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial Intel-

ligence, vol. 155, no. 1, pp. 93–146, 2004.

[44] S. Koenig and M. Likhachev, “Dlite,” in Eighteenth National Conference on

Artificial Intelligence, p. 476–483, 2002.

[45] S. T. Scott, “Finding optimal solutions to cooperative pathfinding problems,” in

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,

pp. 173–178, AAAI Press, 2010.

[46] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost tree

search for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 195,

pp. 470–495, 2013.

[47] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton, “Algorithms for discrete

function manipulation,” in 1990 IEEE international conference on computer-

aided design, pp. 92–93, IEEE Computer Society, 1990.

[48] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for

optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp. 40–66, Feb. 2015.

[49] P. Surynek, “Unifying search-based and compilation-based approaches to multi-

agent path finding through satisfiability modulo theories,” in Proceedings of the

93

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-

19, pp. 1177–1183, International Joint Conferences on Artificial Intelligence

Organization, 7 2019.

[50] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,”

Artificial intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[51] E. Boyarski, A. Felner, D. Harabor, P. J. Stuckey, L. Cohen, J. Li, and S. Koenig,

“Iterative-deepening conflict-based search,” in Proceedings of the Twenty-Ninth

International Conference on International Joint Conferences on Artificial Intel-

ligence, pp. 4084–4090, 2021.

[52] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “An empirical comparison of

the hardness of multi-agent path finding under the makespan and the sum of

costs objectives,” in Ninth Annual Symposium on Combinatorial Search, 2016.

[53] A. Andreychuk, K. Yakovlev, P. Surynek, D. Atzmon, and R. Stern, “Multi-

agent pathfinding with continuous time,” Artificial Intelligence, p. 103662,

2022.

[54] E. Lam, P. Le Bodic, D. D. Harabor, and P. J. Stuckey, “Branch-and-cut-and-

price for multi-agent pathfinding.,” in IJCAI, pp. 1289–1296, 2019.

[55] R. N. Gómez, C. Hernández, and J. A. Baier, “Solving sum-of-costs multi-agent

pathfinding with answer-set programming,” in Proceedings of the AAAI Confer-

ence on Artificial Intelligence, vol. 34, pp. 9867–9874, 2020.

[56] A. Bogatarkan and E. Erdem, “Explanation generation for multi-modal multi-

agent path finding with optimal resource utilization using answer set program-

ming,” Theory and Practice of Logic Programming, vol. 20, no. 6, pp. 974–989,

2020.

[57] E. Erdem, D. G. Kisa, U. Oztok, and P. Schüller, “A general formal framework

for pathfinding problems with multiple agents,” in Twenty-Seventh AAAI Con-

ference on Artificial Intelligence, 2013.

[58] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and

J. Schaeffer, “Enhanced partial expansion a,” Journal of Artificial Intelligence

Research, vol. 50, pp. 141–187, 2014.

94

[59] T. Yoshizumi, T. Miura, and T. Ishida, “A* with partial expansion for large

branching factor problems.,” in AAAI/IAAI, pp. 923–929, 2000.

[60] G. Wagner and H. Choset, “M*: A complete multirobot path planning algo-

rithm with performance bounds,” in 2011 IEEE/RSJ international conference

on intelligent robots and systems, pp. 3260–3267, IEEE, 2011.

[61] D. Silver, “Cooperative pathfinding.,” Aiide, vol. 1, pp. 117–122, 2005.

[62] M. M. Khorshid, R. C. Holte, and N. R. Sturtevant, “A polynomial-time algo-

rithm for non-optimal multi-agent pathfinding,” in Fourth Annual Symposium

on Combinatorial Search, 2011.

[63] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-robot path

planning,” in 2011 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 3268–3275, IEEE, 2011.

[64] Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent pathfinding with simultaneous

execution of single-agent primitives.,” in SoCS, 2012.

[65] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and rotate: cooperative

multi-agent path planning,” in Proceedings of the 2013 international conference

on Autonomous agents and multi-agent systems, pp. 87–94, 2013.

[66] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of co-

operative, autonomous vehicles in warehouses,” AI magazine, vol. 29, no. 1,

pp. 9–9, 2008.

[67] R. Morris, C. S. Pasareanu, K. Luckow, W. Malik, H. Ma, T. S. Kumar, and

S. Koenig, “Planning, scheduling and monitoring for airport surface operations,”

in Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[68] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of

agents,” arXiv preprint arXiv:1612.05693, 2016.

[69] L. Cohen and S. Koenig, “Bounded suboptimal multi-agent path finding using

highways.,” in IJCAI, pp. 3978–3979, 2016.

[70] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong multi-agent

path finding in a dynamic environment,” in 2018 15th International Conference

95

on Control, Automation, Robotics and Vision (ICARCV), pp. 875–882, IEEE,

2018.

[71] A. Bogatarkan, V. Patoglu, and E. Erdem, “A declarative method for dynamic

multi-agent path finding.,” in GCAI, pp. 54–67, 2019.

[72] B. Coltin, “Multi-agent pickup and delivery planning with transfers,” 2014.

[73] G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and delivery

problems,” European journal of operational research, vol. 202, no. 1, pp. 8–15,

2010.

[74] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-agent

pickup and delivery,” in Proceedings of the International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS), 2019.

[75] H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-agent path finding for

online pickup and delivery tasks,” arXiv preprint arXiv:1705.10868, 2017.

[76] W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-based

search with optimal task assignment,” in Proceedings of the International Joint

Conference on Autonomous Agents and Multiagent Systems, 2018.

[77] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “Generalized

target assignment and path finding using answer set programming,” in Twelfth

Annual Symposium on Combinatorial Search, 2019.

[78] X. Wu, Y. Liu, X. Tang, W. Cai, F. Bai, G. Khonstantine, and G. Zhao, “Multi-

agent pickup and delivery with task deadlines,” in Proceedings of the Interna-

tional Symposium on Combinatorial Search, vol. 12, pp. 206–208, 2021.

[79] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey, “Integrated

task assignment and path planning for capacitated multi-agent pickup and deliv-

ery,” IEEE Robotics and Automation Letters, 2021.

[80] M. A. Yorgancı., F. Semiz., and F. Polat., “Limp: Incremental multi-agent

path planning with lpa,” in Proceedings of the 14th International Confer-

ence on Agents and Artificial Intelligence - Volume 1: ICAART,, pp. 208–215,

SciTePress, 2022.

96

[81] J. Neufeld and A. Sredzki, “dstar-lite.” https://github.com/ArekSredzki/dstar-

lite/blob/master/Dstar.cpp, 2015.

[82] N. Nilsson, Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,

1971.

[83] A. Bavelas, “Communication patterns in task-oriented groups,” The journal of

the acoustical society of America, vol. 22, no. 6, pp. 725–730, 1950.

[84] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31, no. 4,

pp. 581–603, 1966.

97

98

CURRICULUM VITAE

Personal Information

Surname, Name : Semiz, Fatih

Nationality : Turkish

Education

Degree Institution Year of Graduation

M.Sc. METU Computer Engineering 2015

B.Sc. METU Computer Engineering 2012

Work Experience

Year Place Enrollment

2021-Present ASELSAN Inc. Software Engineer

2012-2021 METU - Computer Eng. Dep. Research, Teaching Assistant

2011 June-Jan. KOVAN Research Lab. Intern, Part Time Researcher

2010 June-Dec. MODSIMMER Intern, Part Time Researcher

Foreign Languages

Advanced English

Publications

1. Semiz Fatih, and Polat Faruk. "Incremental multi-agent path finding." Future

Generation Computer Systems 116: 220-233, 2021.

99

2. Yorgancı Mucahit, Semiz Fatih, and Polat Faruk. "LIMP: Incremental Multi-

agent Path Planning with LPA". Proceedings of the 14th International Con-

ference on Agents and Artificial Intelligence (ICAART) - Volume 1: 208-215,

2022.

3. Semiz Fatih, and Polat Faruk. "Solving the area coverage problem with UAVs:

A vehicle routing with time windows variation." Robotics and Autonomous

Systems 126: 103435, 2020.

4. Bender Bahar, Atasoy Mehmet Emre, and Semiz Fatih. "Deep Learning-Based

Human and Vehicle Detection in Drone Videos." 2021 6th International Con-

ference on Computer Science and Engineering (UBMK). IEEE, 2021.

5. Seylan Çağlar, Semiz Fatih, and Bican Özgür Saygın. "İnsansız araçlarla dü-

zlemsel olmayan alanların taranması." Savunma Bilimleri Dergisi 11.1: 107-

117, 2012.

Interests and Hobbies

Basketball, Photography, Movies

100

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Conflicts
	MAPF Solutions
	Assumptions on Agent Behaviors After Reaching Targets
	Actions Allowed by Agents in the MAPF Problem on Discrete Maps
	Objective Functions
	Incremental Multi-Agent Path Finding (I-MAPF)
	Multi-Agent Path Finding Problem with Multiple Delivery (MAPF-MD)

	Proposed Methods
	Contributions and Novelties
	The Outline of the Thesis

	Background and Related Work
	Single Agent Path Finding
	A* Search Algorithm
	Incremental Single Agent Path Finding
	D*-Lite
	LPA*

	Studies Working on Multi Agent Path Finding (MAPF)
	Optimal MAPF Approaches
	Reduction-based MAPF Approaches
	Conflict Based Search

	Sub-optimal MAPF Approaches
	Studies on the Generalized MAPF Problem
	Multi Agent Pick Up and Delivery
	Lifelong Multi-Agent Path Finding

	Studies on Combined Task Assignment and MAPF Problem

	Incremental Multi-Agent Path Finding with CBS-D*-Lite
	Method
	The CBS-replanner
	CBS-D*-Lite
	Theoretical Analysis
	Optimality Assumptions
	Optimality and Completeness of CBS-replanner
	Running time of each call of CBS-replanner
	Optimality and Completeness of CBS-D*-lite
	Running time of each call of CBS-D*-lite
	Analysis on the Number of Replanning Actions

	Modifying D*-Lite
	Adding time steps:
	Updating the agent starting points as the simulation progresses:
	Adding conflict information:

	Running Example

	Experimental Study
	Test Environment
	Data Sets
	Test Results
	Hand Crafted Tests
	Randomly Created Data with Random Changes
	Randomly Created Data with Changes that Occur on a Path
	Benchmark maps
	Comparison on Total-Path-Cost Values and Success Rates

	Conclusions From Experiments

	Lifelong Multi-Agent Path Finding Problem with Multiple Delivery Locations
	Method
	MD-DCBS
	Job-Assignment Heuristics
	Add to Closest Start Agent
	Add to Closest End Agent
	Add to Closest Average Start End Points
	Add to Closest Point
	Add to closest average agent
	Best Possible Adding

	Theoretical Analysis
	Running Example

	Experimental Study
	Datasets
	Datasets for Testing Heuristics
	Datasets for Testing MAPF-MD Solvers

	Comparison of the Job-Assignment Heuristics According to Total-Path Costs and Total Time Spent They Provide
	Comparison of the MAPF-MD Solvers with Different Low-Level Solvers

	Conclusion
	Summary
	Future Work

	REFERENCES
	CURRICULUM VITAE

