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ABSTRACT

EFFICIENT MULTIVARIATE-BASED RING SIGNATURE SCHEMES

Demircioğlu, Murat

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Murat Cenk

Co-Supervisor : Assoc. Prof. Dr. Sedat Akleylek

August 2022, 53 pages

The ring signature scheme has a wide range of usage areas in public-key cryptogra-
phy. One is leaking information within a group without exposing the signer’s iden-
tity. The majority of the ring signature techniques in use, on the other hand, rely
on classical crypto-systems such as RSA and ECDH, which are known to be vul-
nerable to Shor’s algorithm on a large-scale quantum computer. In this thesis, we
propose efficient quantum-resistant ring signature schemes based on GeMSS and Gui
signature algorithms. Gui was a candidate in Round 1, and GeMSS was one of two
multivariate-based signature algorithms along with Rainbow in Round 3 of the Post-
Quantum Cryptography Standardization Project initiated by NIST in 2016. When
we compare our proposed scheme with a Rainbow-based ring signature scheme, the
experimental results show that we achieve 300 times faster signature verification and
almost 50 times faster signature generation as the number of users in the group in-
creases to 50. Moreover, the proposed scheme provides at least 20% smaller signature
sizes. Therefore, our scheme is verified to be more effective to be used.

Keywords: cryptography, post-quantum, multivariate, GeMSS, Gui, ring signature
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ÖZ

ÇOK DEĞİŞKENLİ TABANLI ETKİN HALKA İMZA ŞEMALARI

Demircioğlu, Murat

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Murat Cenk

Ortak Tez Yöneticisi : Doç. Dr. Sedat Akleylek

Ağustos 2022, 53 sayfa

Halka imza şeması, açık anahtarlı kriptografide geniş bir kullanım alanına sahiptir.
İmzalayanın kimliğini ifşa etmeden bir grup içinde bilgi sızdırma senaryosu bunlar
içerisinden bir örnek olarak verilebilir. Öte yandan, kullanılan halka imza teknikle-
rinin çoğu, büyük ölçekli bir kuantum bilgisayarda Shor algoritmasına karşı savun-
masız olduğu bilinen RSA ve ECDH gibi klasik kripto sistemlerine dayanmaktadır.
Bu tezde, çok değişkenli imzalama algoritmaları olan GeMSS ve Gui algoritmala-
rına dayalı verimli ve kuantum dirençli halka imza şemaları önermekteyiz. GeMSS
ve Gui, 2016 yılında NIST tarafından başlatılan Kuantum Sonrası Kriptografi Stan-
dardizasyon Projesi’nde yer almıştır. Projenin 1. turu sonrasında elenen Gui algorit-
masının ardından 3. turuna GeMSS ile diğer çok değişken tabanlı imza algoritması
Rainbow devam etmiştir. Önerilen GeMSS tabanlı halka imza şemamızı Rainbow ta-
banlı başka bir halka imza şemasıyla karşılaştırdığımızda, deneysel sonuçlar gösteri-
yor ki; gruptaki kullanıcı sayısı 50’ye yükseldikçe 300 kat daha hızlı imza doğrulama
ve neredeyse 50 kat daha hızlı imza oluşturma süreleri elde etmekteyiz. Ayrıca, öneri-
len şema en az %20 daha küçük imza boyutu sağlamaktadır. Bu sayede, önerdiğimiz
şemanın kullanılmak üzere daha etkili olduğu doğrulanmıştır.

Anahtar Kelimeler: kriptografi, kuantum sonrası, çok değişkenli, GeMSS, Gui, halka
imza
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I have worked with many years throughout my academic and professional life.

I am also grateful to all my friends from Cryptography, especially, Ahmet SINAK
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CHAPTER 1

INTRODUCTION

Ring signature schemes are practical when it comes to privacy. It can be used for

leaking secrets, electronic voting, and electronic money, among many other things.

For instance, in order to use the government’s black budget, one of the authorized

managers may need to sign the payment request anonymously. As a result, anyone

can check to see if a member of this group signed the request by using the public keys

of the authorized users to build a ring signature.

The idea of the ring signature was firstly introduced by Rivest et al. [37] in 2001,

and they used the RSA algorithm [36] as the underlying signature algorithm. Since

then, many other ring signature techniques based on standard asymmetric algorithms

have been proposed. One example is the identity-based proxy ring signature scheme

from RSA proposed by Asaar et al. [1]. Later, the design and security aspects of

ring signature techniques were examined by Bender et al. [3]. Ring signatures, un-

like group signatures [10], have no central authority, setup, or revocation procedures.

Anyone can choose a group of possible signers, including himself, and create a ring

signature anonymously by using his secret and other users’ public keys without their

knowledge. Nobody, including the group members, can identify the signer where all

possible signers are associated with a public key.

Ring signature schemes, which are based on the standard asymmetric cryptosystems

such as RSA, DSA [26], and ECC, will be subjected to a critical security risk as large-

scale quantum computers are built. Two most famous quantum algorithms that may

cause a problem in classical cryptosystems are; Shor’s algorithm [39] that solves in-

teger factorization problem on quantum computers in polynomial time, and Grover’s
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algorithm [24] which is a quantum search algorithm for searching an unsorted data

set with n entries in O(
√
n) time and using O(n log n) storage. Therefore, there

arises a need for alternative cryptosystems that will work on classical computers se-

curely against quantum computer-related attacks. This new study area is called Post-

Quantum Cryptography [4]. In order to choose and standardize one or more quantum-

resistant public-key cryptosystems, NIST initiated a process to evaluate candidate al-

gorithms in 2016. Five alternative approaches; lattice-based, hash-based, code-based,

multivariate-based, and supersingular elliptic curve isogeny, are the main focus of the

researchers.

Among these approaches, multivariate cryptosystems [16] are extremely fast and just

demand a small amount of processing power. There exists various multivariate-based

signature algorithms; such as GeMSS [8], Gui [35], Rainbow [17], and UOV [25].

The MQ Problem of solving systems of multivariate quadratic polynomials over a

finite field provides the main security of multivariate cryptosystems. Due to their

huge key sizes with respect to other Post-Quantum approaches, multivariate cryp-

tosystems are not suitable as general-purpose signature algorithms to be used in daily

operations. On the other hand, there are applications that do not need to send keys

very often. Moreover, there are not many quantum-resistant signature schemes with

unique features like ring signatures. As the threat of quantum computers increases,

many ring signature schemes based on multivariate cryptography have been proposed

[29, 34, 41, 40, 43]. One is a Rainbow-based approach proposed by Mohamed et al.

[29].

When we compare Rainbow and Gui signature algorithms, both Round 1 candidates

in NIST’s project, we see that Gui offers a smaller signature size with a faster ver-

ification time. Starting from this point of view, we proposed a new Gui-based ring

signature scheme [12]. However, the Gui signature algorithm was eliminated when

the candidates for Round 2 of NIST’s project were announced. At this point, we

decided to use the GeMSS signature algorithm, which was one of two multivariate

signature algorithms in Round 3. The other one is the Rainbow algorithm which

has a critical security flaw recently published by Ward Beullens [5]. He proposed a

practical key-recovery attack for Level 1 parameter set of Rainbow. After this, the

Rainbow team proposed NIST to replace the Level 1 parameters with Level 3 and

2



Level 3 parameters with Level 5. This solution may enhance Rainbow’s security at

the cost of an increase in the key sizes and computation times.

As we showed in [13], the initial theoretical results for our new GeMSS-based ring

signature scheme are better than both the Rainbow-based ring signature algorithm

[29] and our previous Gui-based proposal [12]. In addition, the implementation re-

sults show that our proposed method provides significantly faster signature genera-

tion and verification time with respect to the Rainbow-based scheme as the number of

group members increases. Our scheme will provide up to 300 times faster verification

and 50 times faster signature generation if the group consists of 50 members.

This thesis is organized as follows. In Chapter 2, we summarize the concept of public

key cryptography and post-quantum cryptography. The definitions for ring signature

schemes and multivariate cryptosystems are also given in this section. We introduce

our Gui-based ring signature scheme and the expected theoretical efficiency results

in Chapter 3. After that, we present our GeMSS-based ring signature technique in

Chapter 4 along with security proofs. In this section, the proposed scheme’s public

key, signature sizes, and computation time are compared with others. We conclude

the thesis in Section 5.
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CHAPTER 2

PRELIMINARIES

In this chapter, we present the necessary background and definitions used in this

thesis. This chapter mainly consists of five sections: Public Key Cryptography,

Post-Quantum Cryptography, Multivariate Public Key Cryptography, Ring Signature

Schemes, and Multivariate-based Ring Signature Schemes.

2.1 Public Key Cryptography

In information security, public-key cryptography plays an essential role in confiden-

tiality, authenticity, and non-reputability for digital communication and data storage.

We can see it in many standard protocols, such as TLS, SSH, and PGP.

Unlike symmetric-key cryptography, public-key cryptography is a cryptographic sys-

tem that uses pair of keys, which are a public key and a private key. It requires

keeping the private key secret and distributing the public key without compromis-

ing security. Public-key cryptographic algorithms are based on a trapdoor one-way

function, which is a function that is easy to compute for any input but hard to in-

vert for a given output unless some secret information is known. One of the most

famous trapdoor functions is the integer factorization problem which is used in RSA

algorithm [36].

The idea of public-key cryptography emerged to solve two of the most difficult prob-

lems associated with symmetric-key cryptography; key distribution and digital signa-

tures.
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1. Key distribution under symmetric-key encryption requires either the communi-

cating parties already have a shared key or use a key distribution center. Since

public-key cryptography relies on a public key for encryption and a secret key

for decryption, anyone can encrypt a message or a session key by using the

receiver’s public key, and the encrypted data can only be decrypted by the re-

ceiver’s private key. In the case of sharing a symmetric encryption key by us-

ing a public-key cryptosystem, two parties can safely continue to communicate

over a secure channel by using the symmetric key encryption, which is faster

with respect to public-key cryptography.

2. With the use of public-key cryptography, a sender can create a short signature

for the message by using his secret key. Anyone can easily verify if the message

belongs to the sender by using the sender’s public key.

While Diffie–Hellman key exchange [14] provides key distribution, and Digital Sig-

nature Algorithm [26] provides digital signature, RSA algorithm [36] provides both.

However, public-key cryptography is too slow with respect to symmetric cryptogra-

phy. At this point, modern cryptosystems choose to use a hybrid model in which both

public-key cryptography and symmetric cryptography are used together; by using the

public-key algorithm to share a session key securely and then using it for symmetric

encryption.

2.2 Post-Quantum Cryptography

The development of quantum computers has advanced steadily over the past few

years. If large-scale quantum computers are built, several widely used standard asym-

metric cryptosystems will be in danger of losing their security. The discrete logarithm

problem, the integer factorization problem, and the elliptic-curve discrete logarithm

problem are the three hard mathematical problems that are especially in the scope

of this inevitable danger of quantum computing. Shor’s algorithm [39] can easily

solve all of these problems in polynomial time on a powerful enough quantum com-

puter. Hash functions and other symmetric cryptographic primitives, on the other

hand, would not be as significantly affected. Although Grover’s search algorithm [24]
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speeds up attacks on symmetric ciphers, these attacks may be successfully prevented

by increasing the key size. As a result, the current state of symmetric cryptography

can continue to be used in post-quantum symmetric cryptography.

It is not known when a large-scale quantum computer will be built. Eventually, it will

happen, and at that time, information security systems have to be ready against quan-

tum attacks. Finding new public-key cryptosystems that are compatible with classical

computer architectures and secure against attacks related to quantum computing has

become a new focus of research area as a result. This important new domain of re-

search is known as post-quantum cryptography (PQC) [4]. Current post-quantum

researchers mostly focused on lattice-based cryptography, multivariate cryptography,

hash-based cryptography, code-based cryptography, and supersingular elliptic curve

isogeny cryptography.

The NIST Post-Quantum Cryptography Standardization Process

In December 2016, the National Institute of Standards and Technology (NIST) launched

a public project to choose asymmetric cryptography algorithms that are resistant to

quantum computing. As a result of this project, some of the candidate post-quantum

algorithms have been chosen as the new standard post-quantum algorithms after three

rounds of examination and analysis in July 2022. The selected algorithms to be stan-

dardized are listed in Table 2.1. Both CRYSTALS-KYBER, CRYSTALS-Dilithium,

and FALCON are lattice-based algorithms. Besides these, SPHICNS+ is a hash-based

algorithm.

Table 2.1: First set of quantum-resistant algorithms chosen by NIST to be standard-
ized

Public-Key Encryption/KEMs Digital Signatures

CRYSTALS–KYBER
CRYSTALS–Dilithium

FALCON
SPHINCS+

The evaluation process continues with new candidates in Round 4. These are listed in

Table 2.2. Among these candidates, SIKE is a supersingular isogeny-based algorithm,

and the others are code-based algorithms.

NIST also announced that they are planning to launch a new Call for Proposals for

7



Table 2.2: The 4th round candidates in NIST Post-Quantum standardization project
Public-Key Encryption/KEMs Digital Signatures

BIKE
Classic McEliece

HQC
SIKE

quantum-resistant public-key digital signature algorithms by the end of the summer

of 2022. According to NIST, their main goal is to diversify their signature portfolio;

hence they are most interested in signature schemes that are not based on structured

lattices. NIST is looking for contributions of signature algorithms with fast verifica-

tion time and short signature size. At this point, multivariate algorithms will have an

advantage as they provide the required short signatures and fast verification times.

2.3 Multivariate Public Key Cryptography

Let F be a finite field. The main idea of multivariate cryptography is to choose the cen-

tral map F : Fn → Fm, which is a multivariate system of easily invertible quadratic

polynomials. After the choice of F , two affine linear invertible maps S : Fm → Fm

and T : Fn → Fn are chosen to hide the structure of the central map. Therefore,

public-key is P = S ◦ F ◦ T : Fn → Fm, and private key is (S,F , T ).

Multivariate quadratic equations over finite fields are the basic components of multi-

variate cryptography.

f (1)(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(1)
ij · xixj +

n∑
i=1

f
(1)
i · xi + f

(1)
0

f (2)(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(2)
ij · xixj +

n∑
i=1

f
(2)
i · xi + f

(2)
0

...

f (m)(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(m)
ij · xixj +

n∑
i=1

f
(m)
i · xi + f

(m)
0

(2.1)

The security of multivariate cryptosystems is mainly based on the difficulty of two

following problems; multivariate quadratic polynomial problem (MQ), and MinRank

problem.
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Problem 1 (MQ Problem): For a given finite field F and set of m multivariate

quadratic polynomials f (1), . . . , f (m) in n variables (x1, . . . , xn) as stated in Equa-

tion (2.1), MQ problem is to determine if there exists a solution x ∈ Fn such that

f (1)(x) = · · · = f (m)(x) = 0. This decisional problem was shown to be NP-hard in

all fields in [33]. It is proven to be NP-hard (for m ≈ n) even for quadratic polyno-

mials over F2 [22].

Problem 2 (MinRank Problem): Let m,n, r, k be positive integers and let F be a

finite field. With a given finite field F, k matrices Mi of size m × n with entries in

F, and a rank bound r, the objective of this decisional problem is to check if there are

values of αi ∈ F that satisfy the following equation:

rank(
k∑
i=1

αiMi) ≤ r. (2.2)

According to [7], the MinRank problem is an NP-hard problem.

Gröbner basis algorithms like F4/F5 (see [19, 20]) and linearization algorithms like

XL (see [11]) are two of the most efficient generic known attacks on the MQ problem.

The efficiency of the MinRank attacks may differ depending on the size and quantity

of matrices as well as the target rank. Two primary techniques are the support minors

approach (see [2]) and the combinatorial search approach, which was presented in

[23].

A generic multivariate signature algorithm consists of key generation, signature gen-

eration, and signature verification functions which can be summarized as follows:

• Key Generation: This functions uses a security parameter λ to generate a key

pair (sk, pk) = ((S,F , T ),P).

• Signature Generation: In order to sign a message M , the signer uses a hash

function H : {0, 1}∗ → Fm to compute h = H(M) ∈ Fm. Then he calculates

recursively x = S−1(h) ∈ Fm, y = F−1(x) ∈ Fn and z = S−1(y) ∈ Fn. At

the end, the signature of the message M is σ = T −1(F−1(S−1(h))).

• Signature Verification: In order to check if the signature σ is valid for the

message M , the verifier computes h = H(M) and h′
= P(σ). If the results are

the same, then the signature is valid; otherwise not.

9



h ∈ Fm y ∈ Fnx ∈ Fm σ ∈ Fn
S−1 F−1

Signature Generation

P
Signature Verification

T −1

Figure 2.1: Signature generation and verification in Multivariate Public Key Systems

Due to their large public key size and slow signature generation time, multivariate

signature algorithms are not suitable for daily use. On the other hand, the fast ver-

ification times and small signature sizes make them better candidates for signature

schemes with special properties, such as ring signature, group signature, and thresh-

old signature schemes.

2.4 Ring Signature Schemes

In a group R = {u1, . . . , ut} consisting of t-many possible signers, a user ui ∈ R
can create a ring signature of a message anonymously on behalf of the group R.

Anyone, who wants to verify the authenticity of the message, can easily validate if

the signature of the message is created by a user from this group. Nobody, not even

the members of the belonging group, is able to disclose the true identity of the actual

user who forged the ring signature.

A standard ring signature scheme requires following operations for key generation,

ring signature generation, and ring signature verification operations:

• KeyGen(1λ) is a probabilistic algorithm that generates a public and private

key pair (sk, pk) by taking a security parameter λ as an input. Each user ui ∈ R
generates their key pairs and announces only the public keys.

• RingSign(M, ski, {pk1, . . . , pkt}) is a probabilistic algorithm in which

user ui ∈ R signs the message M on behalf of the groupR. The output of this

operation is the ring signature σ.

• RingVerify((M,σ), {pk1, . . . , pkt}) is a deterministic algorithm that will
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only return true if the ring signature is valid.

A ring signature scheme must be complete, and it has to achieve two essential secu-

rity requirements, which are anonymity and unforgeability. The definitions are given

below, and their proofs are stated in Section 4.3.

Definition 1 [Completeness]: A ring signature is assumed to be complete if the

following equation

RingV erify((M,RingSign(M, ski, {pk1, . . . , pkt})),

{pk1, . . . , pkt}) = TRUE (2.3)

holds for all i ∈ {1, . . . , t}. This ensures that a ring signature of a message created

by any member of the group will always be verified.

Definition 2 [Anonymity]: The signer of the message should remain anonymous,

and the verifier should not have any clue about the identity of the signer. For a clear

understanding, we can define an anonymity game consisting of the following steps:

1. Each user uses KeyGen algorithm to generate their own key pairs (ski, pki),

where i ∈ {1, . . . , t}. All of the public keys {pk1, . . . , pkt} will be shared with

the adversary A.

2. A signing oracleOS(i,M) is available for the adversaryA. Index i ∈ {1, . . . , t}
stands for the group member id, and M is the message that will be signed. The

oracle uses the private key ski of the user ui to calculate a legitimate ring signa-

ture σ of the given message in the name of the target groupR = {u1, . . . , ut}.

3. A message M∗ and two different indices i0, i1 ∈ {1, . . . , t} are chosen by the

adversary A. A signature σ = RingSign(M∗, skib , {pk1, . . . , pkt}) will be

computed and shared with the adversaryAwhere the value b ∈ {0, 1} is chosen

randomly.

4. The adversary A chooses b∗ ∈ {0, 1}. He wins the game if b = b∗ holds.

The ring signature scheme provides anonymity if the probability of being successful

in guessing b∗ is 1/2. In other words, (1− 2 · Pr[b = b∗]) is negligible for every PPT

adversary A.
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Definition 3 [Unforgeability]: An adversary, who is not a member of the group R,

cannot create a legitimate ring signature in the name of the groupR. An unforgeabil-

ity game consisting of the following steps will be used to demonstrate this security

property:

1. Each user uses KeyGen algorithm to generate their own key pairs (ski, pki),

where i ∈ {1, . . . , t}. Public keys {pk1, . . . , pkt} will be shared with the

adversary A.

2. There is a signing oracleOS(M) which takes a messageM as input. On behalf

of the target group R = {u1, . . . , ut}, it outputs a valid ring signature σ of the

provided message. This signing oracle is accessible to the adversary A.

3. A challenge message M∗ is given to A. He wins the game if he can create a

valid ring signature σ∗ for the provided message in the name of the groupR. At

this step, the adversary is not permitted to use the signing oracle for the given

message M∗.

The probability of success PrA[success] can be described as

Pr[RingVerify((M∗, σ∗), {pk1, . . . , pkt}) = TRUE].

If it is negligible for every PPT adversary A, then the ring signature scheme provides

the unforgeability criteria.

2.5 Multivariate-Based Ring Signature Schemes

This section provides brief information about previous ring signature schemes based

on multivariate signature algorithms.

In 2011, Wang et al. presented a general multivariate ring signature system based

on multivariate public-key cryptosystems [41]. In their security analysis, the proofs

of completeness and anonymity were given. Additionally, they claimed that the un-

derlying multivariate signature algorithm had to be secure against known attacks on

MPKCs, such as algebraic attacks, and rank attacks, in order for their proposed ring

signature scheme to be secure against these kind of attacks.
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Threshold ring signatures were introduced in 2002 by Bresson et al. in [6]. In a

(t,R)-threshold ring signature, the verifier will be convinced that t users from the

groupR have signed the message without revealing the members of this subgroup. In

2012, Petzoldt et al. suggested a multivariate-based threshold ring signature scheme

[34]. They extended the identification scheme of [38] to a threshold ring identifica-

tion scheme. After that, they transformed the Fiat-Shamir heuristic (see [21]) into

a threshold ring signature scheme. Its shorter signature is the main advantage of

this scheme with respect to code-based and lattice-based alternatives. They used the

same parameters in [38] to evaluate the performance of their threshold ring signature

scheme. When they compared the results with the alternative Post-Quantum threshold

ring signature schemes (see [28, 9]), their scheme offered smaller size of signatures

with respect to the code-based and the lattice-based schemes with a cost of extra

rounds.

In 2013, Wang presented a ring signature scheme based on MPKC by transforming

the identification scheme of [38] and gave its security analysis in [40]. This approach,

however, is declared unsafe in [29] because it only uses one round of the identification

process, giving an attacker a 2/3 chance to forge a valid signature.

In [43], Zhang and Zhao presented a Γ-protocol based on the MQ problem and con-

verted it to a threshold ring signature scheme by using the Γ-transformation [42]. In

comparison to the Fiat-Shamir heuristic, Γ-transformation preserves all of its bene-

fits, has a stronger level of provable security, and solves some significant drawbacks,

including rigid implementation in interactive protocols and public/private storage re-

strictions. When they compared their scheme with [34], they achieved 29% reduced

rounds and 21% smaller signatures for 80-bit security, 33% reduced rounds and 25%

smaller signatures for 100-bit security.

In [29], Mohamed and Petzoldt presented a multivariate-based ring signature scheme

in 2017. The underlying algorithm in their proposal was the Rainbow signature algo-

rithm [17]. Their proposed scheme requires k−1 evaluations of signature verification

operation and 1 evaluation of signature generation operation. Although Rainbow was

one of two multivariate signature candidates along with GeMSS in Round 3 of NIST

Post-Quantum Standardization Project, a new practical key recovery attack was intro-
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duced by Beullens [5]. For the Security Level 1 parameters of Rainbow, this attack

returns the corresponding secret key after 53 hours of computation time on a standard

computer. In order to enhance security, the Rainbow team proposes to use Level 3

parameters instead of Level 1 parameters and Level 5 parameters instead of Level 3.

As a result, the Rainbow-based ring signature scheme is not providing the defined

security anymore as given in [29].

Demircioglu et al. proposed a Gui-based ring signature in 2018 (see [12]), and a

GeMSS-based ring signature scheme in 2020 (see [13]). These new schemes provide

smaller signature sizes and faster verification times with respect to the Rainbow-based

ring signature scheme in [29]. The details are given in Chapter 3 and Chapter 4.
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CHAPTER 3

GUI BASED RING SIGNATURE SCHEME

In this chapter, we propose a ring signature scheme based on the Gui signature al-

gorithm [35], which was one of the Round 1 candidates in the NIST Post-Quantum

Standardization Project. In Section 3.1, we give the necessary background about Gui

and then show how to use this signature algorithm in our proposed ring signature

scheme in Section 3.2. At the end of this chapter, we give theoretical results for

different security levels of Gui.

This research was presented in CECC’18 conference (Central European Conference

on Cryptology 2018) [12].

3.1 Preliminaries

The HFEv-signature system, which was presented by Patarin [32], is the basis for

the Gui signature algorithm. Gui signature increases the number of minus equations

and vinegar variables while using less HFE polynomial, which speeds up the signa-

ture generation process without compromising security. The short signatures, low

processing requirements, and efficiency of the Gui signature algorithm are its key

benefits. Furthermore, Gui’s private key is considerably smaller, making it possible

to be stored on compact data storage devices like smart cards. On the other side, Gui’s

biggest drawback is the size of its public key, which ranges from 400 KB to 5 MB.

The Gui parameters to be used are as follows:

• F = Fq: finite field with q elements, q = 2e
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• E = Fqn: degree n extension field of F

• φ : Fn → E: isomorphism between the vector space Fn and the extension field

E

• D: degree of the HFE polynomial, set r = blogq(D − 1)c+ 1

• a: number of minus equations

• v: number of vinegar variables

• k: repetition factor

• l̄: length of the random salt to achieve EUF-CMA security

Gui Signature Operations

Three Gui functions are used in this proposed ring signature scheme; GuiKeyGen,

GuiSign, and GuiVer. The flow chart of signature generation and signature veri-

fication of Gui are shown in Figure 3.1.

1. Let GuiKeyGen be the function to generate Gui keypair (pk, sk) (see Sec. 1.2

in [15]).

• Input: Gui parameters (q, n,D, a, v), isomorphism φ, and l̄

• Output: Gui keypair (sk, pk) = ((S,F , T ),P)

– S : Fn → Fn−a: affine transformation of maximal rank

– T : Fn+v → Fn+v: invertible affine transformation

– F : E× Fv → E: central map

– P = S ◦ φ−1 ◦ F ◦ (φ ◦ idv) ◦ T : Fn+v → Fn−a: public key

2. Let GuiSign be the function to generate a Gui signature σ for a given message

d (see Sec. 1.3 in [15]).

• Input: Gui private key sk = (S,F , T ), message d, repetition factor k

• Output: Signature σ ∈ F(n−a)+k·(a+v) × {0, 1}l̄

3. Let GuiVer be the function to verify if the given Gui signature is valid (see

Sec. 1.4 in [15]).
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Figure 3.1: Signature generation and verification in Gui signature algorithm

• Input: Signature σ, isomorphism φ, Gui public key pk, message d, rep-

etition factor k

• Output: ω ∈ Fn−a. If it is equal to zero, then the signature is valid.

Otherwise, it is not valid.

3.2 Protocol Description

In this section, we propose a multivariate-based ring signature scheme, where the

underlying signature algorithm is Gui.

LetR = {u1, . . . , ut} be a group consisting of t members. Our aim is to create a ring

signature scheme that allows a member of the group to create a signature of a message

without exposing the signer’s identity. In this scheme, we have two assumptions for

the setup:

• All members of the group R have already generated their public key pairs ac-

cordingly and made their public keys available for everyone.

• All possible verifiers have already obtained the public keys of the group R so

that they do not have to download these keys with each ring signature again and

again.
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In this scheme, key generation is a one-time operation for each user. After each mem-

ber generates their key pairs, this operation will not be necessary again. The protocol

mainly consists of two operations; signature generation, and signature verification.

In the scenario where the signer wants to leak a secret by using our proposed scheme,

the signer will do the signature generation operation one time; hence the time and

computational power required for this operation may not be so important. On the

other hand, this ring signature may be verified countless times, which makes the ver-

ification operation more important in terms of time and power. Moreover, It is also

very important that the signature size is small to avoid unnecessary network traffic.

Key Generation

Each user ui ∈ R generates a Gui keypair (ski, pki) = ((Si,Fi, Ti),Pi) according to

the given parameter set by using the function GuiKeyGen. For all members of the

group, the public key Pi is published, while Si,Fi, Ti are kept secret.

Signature Generation

The user ui ∈ R will sign the message M on behalf of the group R consisting of t

users by following the steps:

1. Compute the hash of the message M and take the first n− a bits of the result

h = H(M) ∈ Fn−a, (3.1)

whereH is a hash function. The proper hash functions to be used are described

in the Gui proposal [15]. They are using SHA-2 hash function family members

as follows:

• SHA256 for Gui-184,

• SHA384 for Gui-312, and

• SHA512 for Gui-448.

In our proposed ring signature scheme, choosing a secure hash algorithm that

produces an output of length more than n− a bits would be sufficient. It is not

mandatory to use the hash algorithms suggested by the Gui.

2. Choose random vectors σ1, . . . , σi−1, σi+1, . . . , σt ∈ F(n−a)+k·(a+v) × {0, 1}l̄,
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and then compute

h̄ = h−
t∑

j=1,j 6=i

GuiVer(M, pkj, k, σj) ∈ Fn−a (3.2)

3. Use the secret key ski to find a vector σi such that GuiVer(M, pki, k, σi) = h̄.

4. The ring signature for the messageM is σ = (σ1, σ2, . . . , σt) ∈ Ft·[(n−a)+k·(a+v)]×
{0, 1}l̄·t.

Signature Verification

The verifier will check if the given signature σ of the message M is created by a

member of the groupR by following the steps:

1. Compute the hash of the message M and take the first n− a bits of the result

h = H(M) ∈ Fn−a, (3.3)

whereH is a hash function.

2. Uses the public keys P1, . . . ,Pt of the group members to compute

h̄ =
t∑

j=1

GuiVer(M, pkj, k, σj). (3.4)

If h = h holds, then the ring signature is valid.

3.3 Performance Analysis

Based on different security levels, there are three sets of parameters of Gui; Gui-184,

Gui-312, and Gui-448, as shown in Table 3.1.

Table 3.1: Parameter sets of Gui for the Security Levels 1, 3, and 5, respectively.

Security Level scheme
parameters
(n, D, a, v, k)

I Gui-184 (184, 33, 16, 16, 2)
III Gui-312 (312, 129, 24, 20, 2)
V Gui-448 (448, 513, 32, 28, 2)
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Table 3.2 shows the key and signature sizes (128-bit salt included in signature) of

Gui instances that is proposed for the NIST Post-Quantum Standardization Project.

In this table, the performance results of Gui on the NIST Reference Platform for

signature generation, signature verification, and key generation processes are also

listed, where MC (resp. KC) stands for Mega (resp. Kilo) Cycles. Performance

results on other platforms are also given (see Sec. 4.2 in [15]), and they provide

better results. However, we prefer to continue with the NIST Reference Platform

results in order to make the comparison fair with other signature algorithms.

Table 3.2: Performance of Gui signature algorithm under different parameter sets
|pk|
(KB)

|sk|
(KB)

sign
(bit)

key gen.
(ms)

sign
(ms)

verify
(ms)

key gen.
(MC)

sign
(MC)

verify
(KC)

Gui-184 416.3 19.1 360 213 10.4 0.05 2,408 1,910 152
Gui-312 1,955.1 59.3 504 13,227 7,707 0.26 43,817 25,436 846
Gui-448 5,789.2 155.9 664 71,485 264,530 0.54 239,502 872,949 1,787

As the security level increases, Table 3.2 shows that the computation times of key

generation and signature generation processes increase excessively. Moreover, the

public key sizes may cause a problem if they are supposed to be distributed with each

signed message. However, in a ring signature scheme, the size of the signature and

the speed of verification is much more important. That is why we choose Gui in

our ring signature scheme since it provides small signatures with very fast signature

verification times.

In order to generate a ring signature on behalf of a groupR of users {u1, u2, . . . , ut},
a user ui will perform t − 1 evaluations of GuiVer, and 1 evaluation of GuiSign

functions. The verification can be done by t evaluations of GuiVer function. Based

on the performance on the NIST Reference Platform stated in Gui proposal [15], the

theoretical time estimations for our proposed Gui-based ring signature scheme in F2

are given in Table 3.3.
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Table 3.3: Theoretical performance analysis of Gui-based ring signature scheme in
three different security levels

Parameters
(n,D, a, v, k)

5 users 10 users 20 users 50 users

Gui-184
(184,33,16,16,2)

PK Size (kB) 2,081.5 4,163 8,326 20,815
Sign. size (bit) 1,968 3,768 7,368 18,168
Sign. gen. (ms) 10.604 10.859 11.396 12.899
Sign. ver. (ms) 0.255 0.51 1.02 2.55

Gui-312
(312,129,24,20,2)

PK size (kB) 9,775.5 19,551 39,102 97,755
Sign. size (bit) 2,808 5,328 10,368 25,488
Sign. gen. (ms) 7,708.024 7,709.304 7,711.864 7,719.544
Sign. ver. (ms) 1.28 2.56 5.12 12.8

Gui-448
(448,513,32,28,2)

PK size (kB) 28,946 57,892 115,784 289,460
Sign. size (bit) 3,736 7,056 13,696 33,616
Sign. gen. (ms) 264,532.168 264,534.878 264,540.298 264,556.558
Sign. ver. (ms) 2.71 5.42 10.84 27.1

We compared the theoretical results of our proposed Gui-based ring signature scheme

given in Table 3.3 with the running times and signature sizes of the Rainbow-based

ring signature scheme (see Table 4 in [29]). Table 3.4 shows that the Gui-based ring

signature scheme provides better results with respect to the alternative one.

Table 3.4: Signature verification time and signature size comparison of Gui-based
and Rainbow-based ring signature schemes

Sec.
Level

5 users 10 users 20 users 50 users

I
Gui

Sign. size (bit) 1,968 3,768 7,368 18,168
Sign. ver. (ms) 0.255 0.51 1.02 2.55

Rainbow
Sign. size (bit) 1,920 4,240 10,240 48,800
Sign. ver. (ms) 5.08-10.81 13.54-26.23 27.42-50.51 703-1,200

III
Gui

Sign. size (bit) 2,808 5,328 10,368 25,488
Sign. ver. (ms) 1.28 2.56 5.12 12.8

Rainbow
Sign. size (bit) 2,600 5,680 12,960 54,000
Sign. ver. (ms) 5.57-12.75 16.38-35.55 57.35-115.97 859-1,547

V
Gui

Sign. size (bit) 3,736 7,056 13,696 33,616
Sign. ver. (ms) 2.71 5.42 10.84 27.1

Rainbow
Sign. size (bit) 3,160 6,640 15,040 60,800
Sign. ver. (ms) 7.70-20.03 20.45-50.43 72.24-163.22 1,610-3,110

Although we achieved efficient results with the Gui signature algorithm in our ring

signature scheme, we were supposed to change the underlying signature algorithm.

This was because Gui was not announced within the Round 2 candidates of the NIST
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Post-Quantum Standardization Project. When we checked the possible candidates to

replace Gui, we decided to continue with the GeMSS signature algorithm. The details

of the new GeMSS-based ring signature scheme are given in the next chapter of the

thesis.
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CHAPTER 4

GEMSS BASED RING SIGNATURE SCHEME

In this chapter, we propose another ring signature scheme based on the GeMSS sig-

nature algorithm, which is one of Round 3 candidates in NIST Post-Quantum Stan-

dardization Project. In Section 4.1, we give necessary background about GeMSS

algorithm, and then show how to use it in our proposed signature scheme in Section

4.2. The security proofs are given in Section 4.3. After that, in Section 4.4, we give

both theoretical results for all three security levels and implementation results for

only Security Level 1. At the end of this chapter, we compare our proposed scheme

results with both the Gui-based (see Chapter 3) and the Rainbow-based ring signature

schemes (see [29]).

This new GeMSS-based ring signature scheme and the theoretical results was pre-

sented in 2 IWCA 19 (Second International Workshop on Cryptography and Its Ap-

plications) conference, and then published in [13].

4.1 Preliminaries

GeMSS [8] (Great Multivariate Short Signature) is a multivariate signature algorithm

with a short signature size, fast verification, and a medium/large public key size. As

well as being in direct descendant from QUARTZ [32], GeMSS also adopts some

parts of the Gui signature algorithm [18]. It utilizes Feistel-Patarin iterations and

adheres to the hash-and-sign paradigm. The trapdoor function in GeMSS is based on

Hidden Field Equation with Vinegar Variables and the Minus Modifier (HFEv-).
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It is a member of the multivariate cryptosystems’ big field family. In order to de-

scribe the multivariate trapdoor function stated in terms of the small field GF (q)

as a univariate function over the big field, GF (qn), these schemes use a bijective

mapping between GF (qn) and GF (q)n. Thus, this makes it possible to invert the

function effectively. In order to generate the public key, the function is composed of

linear mappings over the small field, which is thought to hide the structure. After the

original big field scheme of Matsumoto and Imai [27] was broken by [30], the HFE

cryptosystem was created [31]. HFE, however, has very slow signing when using

secure parameters. By [32], the Vinegar and Minus modifiers were added in an effort

to boost security with minimum sacrifice to performance.

The main parameters of GeMSS are:

• D, a positive integer that is the degree of a secret polynomial such that D = 2i

for i ≥ 0, or D = 2i + 2j for i 6= j, and i, j ≥ 0,

• K, the output size in bits of the hash function,

• λ, the security level of GeMSS,

• m, number of equations in the public-key,

• nb_ite > 0, number of iterations in the public-key,

• n, the degree of a field extension of F2,

• v, the number of vinegar variables,

• ∆, the number of minus, where m = n−∆.

GeMMS Signature Operations

The secret-key is composed of a couple of invertible matrices (S, T ) ∈ GLn+v(F2)×
GLn(F2) and a polynomial F ∈ F2n [X, v1, . . . , vv] with a specific structure detailed

in [8]. The procedure of generating a signature is mainly based on finding the roots

of F . The public-key is a set P = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m of m quadratic

equations in n+ v variables. These equations are derived from a multivariate polyno-

mial F .
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There are three main algorithms of GeMSS; key generation, signing process, and

verification process. Let F = F2 and choose nb_ite = 4 as stated in [8].

1. Let GKeyGen be the function to generate GeMSS keypair (pk, sk) (see Sec.

2.2 in [8]).

• Input: GeMSS parameters (λ,D, n, v,m)

• Output: GeMSS keypair (sk, pk) = ((F ,S, T ),P)

2. Let GSign be the function to generate a GeMSS signature σ for a given mes-

sage M (see Sec. 2.3 in [8]). Algorithm 1 shows the steps of this function.

• Input: GeMSS private-key sk = (F ,S, T ), message M , repetition fac-

tor nb_ite

• Output: Signature σ = (Snb_ite, Xnb_ite, . . . , X1) ∈ Fm+nb_ite(n+v−m)

Algorithm 1 GeMSS signing process
Input: sk = (F ,S, T ), M ∈ {0, 1}∗, nb_ite
Output: σ = (Snb_ite, Xnb_ite, . . . , X1) ∈ Fn+nb_ite(n+v−m)

1: H ← SHA3(M)

2: S0 ← 0 ∈ Fm2
3: for i← 1 to nb_ite do

4: Di ← first m bits of H

5: (Si, Xi)← GeMSS.Invp(Di ⊕ Si−1) . Si ∈ F, Xi ∈ Fn+v−m, and ⊕ is the

component-wise XOR

6: H ← SHA3(H)

7: end for

8: return (Snb_ite, Xnb_ite, . . . , X1)

3. Let GVer be the function to verify if the given GeMSS signature is valid (see

Sec. 2.4 in [8]). Algorithm 2 shows the steps of this function.

• Input: Signature σ, GeMSS public key pk, message M , repetition factor

nb_ite

• Output: Returns TRUE only if the signature is valid.
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Algorithm 2 GeMSS verification process
Input: σ ∈ Fn+nb_ite(n+v−m), pk = P , M ∈ {0, 1}∗, nb_ite
Output: True or False

1: H ← SHA3(M)

2: (Snb_ite, Xnb_ite, . . . , X1)← σ

3: for i← nb_ite to 1 do

4: Di ← first m bits of H

5: H ← SHA3(H)

6: end for

7: for i← (nb_ite− 1) to 0 do

8: Si ← P(Si+1, Xi+1)⊕Di+ 1

9: end for

10: return VALID if S0 = 0 and INVALID otherwise.

In the signing process function GSign, an S0 ∈ Fm vector is initialized to zero, and

after that the calculations are completed as stated in (Algorithm 4, [8]). In order to

check if the given signature is valid, the verification process GVer does the calcula-

tions as stated in (Algorithm 5, [8]), and at the end, it checks if the S0 vector equals

to zero. However, we have to generate a signature with a given non-zero S0 value in

our proposed ring signature scheme. This means that, during the signature generation

process, S0 will be taken as an input, and the verification process will calculate the

final S0 value as an output. So we need to modify the signature generation and verifi-

cation functions. Let’s rename them as GSignM and GV erM to imply that they are

modified.

1. Let GSignM be the modified GSign function. In the original signature process

defined in Algorithm 4 in [8], S0 ∈ Fm value is initialized to all-zero vector.

However, we need to use a non-zero S0 vector as input as stated in Algorithm

3.
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Algorithm 3 Modified GeMSS signing process
Input: sk = (F ,S, T ), M ∈ {0, 1}∗, nb_ite, S0 ∈ Fm

Output: σ = (Snb_ite, Xnb_ite, . . . , X1) ∈ Fn+nb_ite(n+v−m)

1: H ← SHA3(M)

2: for i← 1 to nb_ite do

3: Di ← first m bits of H

4: (Si, Xi)← GeMSS.Invp(Di ⊕ Si−1) . Si ∈ F, Xi ∈ Fn+v−m, and ⊕ is the

component-wise XOR

5: H ← SHA3(H)

6: end for

7: return (Snb_ite, Xnb_ite, . . . , X1)

2. Let GVerM be the modified GVer function which is defined in Algorithm 5 in

[8]. Instead of checking if S0 is all-zero, the new function will return its value

as shown in Algorithm 4.

Algorithm 4 Modified GeMSS verification process
Input: σ ∈ Fn+nb_ite(n+v−m), pk = P , M ∈ {0, 1}∗, nb_ite
Output: S0 ∈ Fm

1: H ← SHA3(M)

2: (Snb_ite, Xnb_ite, . . . , X1)← σ

3: for i← nb_ite to 1 do

4: Di ← first m bits of H

5: H ← SHA3(H)

6: end for

7: for i← (nb_ite− 1) to 0 do

8: Si ← P(Si+1, Xi+1)⊕Di+ 1

9: end for

10: return S0

Please note that, instead of using an initialized S0, the new signature function will

take S0 as an input. Additionally, instead of returning TRUE or FALSE, the new ver-

ification function will output the final value of S0. Therefore, the extra computation

cost of these modifications will be negligible.
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4.2 Protocol Description

In this section, we propose a new multivariate ring signature scheme based on the

GeMSS signature algorithm. Since our proposed scheme is mainly based on the ver-

ification process, GeMSS is a perfect choice with its fast verification time and small

signature size.

Let R = {u1, . . . , ut} be a group consisting of t members. We aim to create a ring

signature scheme that allows a group member to create a signature of a message

without exposing the signer’s identity. In this ring signature scheme, there are two

initial assumptions:

• All members of the group R have already generated their public key pairs ac-

cordingly and made their public keys available for everyone.

• All possible verifiers have already got the public keys of the group R so that

they do not have to download these keys with each ring signature again and

again.

In our proposed scheme, key generation is a one-time operation for any member of

the group R. After each member generates their key pairs, this operation will not be

necessary again. The protocol mainly consists of two operations; signature genera-

tion, and signature verification. The signer will do the signature operation one time;

hence the time and computational power required for this operation may not be so im-

portant. On the other hand, this ring signature may be verified countless times, which

makes the verification operation more important in terms of time and power. More-

over, It is also very important that the signature size is small to avoid unnecessary

network traffic.

Key Generation

Each member ui ∈ R generates their own key pairs (ski, pki) = ((Fi,Si, Ti),Pi) by
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using the key generation function GKeyGen of GeMSS, where

(Si, Ti) ∈ GLn+v(F2)× GLn(F2)

Fi ∈ F2n [X, v1, . . . , vv]

Pi ∈ F2[x1, . . . , xn+v]
m

(4.1)

The group public key is the list of the public keys of all users, i.e. PK = {P1,P2, . . . ,Pt}.
Each user ui keeps their private key ski = (Fi,Si, Ti) as secret.

Signature Generation

A user ui should follow the steps below to sign a message M on behalf of the group

R:

1. Compute the hash of the message M and take the first m-bits:

h = H(M) ∈ Fm2 (4.2)

In our proposed ring signature scheme, choosing a secure hash algorithm that

produces an output of length more than m-bits would be sufficient.

2. Choose random vectors σ1, . . . , σi−1, σi+1, . . . , σt ∈ Fm+nb_ite(n+v−m)
2 as fake

signatures, and then calculate

h = h−
t∑

j=1,j 6=i

GVerM(σj, pkj,M, nb_ite) (4.3)

3. Compute a vector σi such that GVerM(σi, pki,M, nb_ite) = h. In order to that,

the signer will calculate GSignM(ski,M, nb_ite, h) = σi by using his private

key ski

The ring signature for the message M is σ = (σ1, . . . , σt) ∈ F[m+nb_ite(n+v−m)]t
2 .

Signature Verification

In order to check if the given ring signature σ is valid for the message M , the verifier

follows the following steps:

1. Compute the hash of the message M and take the first m-bits:

h = H(M) ∈ Fm2 (4.4)
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2. Use the group public key PK and compute

h =
t∑

j=1

GVerM(σj, pkj,M, nb_ite) (4.5)

If h = h holds, then the ring signature is valid. Otherwise, the given ring signature

for the message M is not valid.

4.3 Security Analysis

Instead of analyzing the security of the underlying GeMSS signature algorithm, we

will be concentrated on the security of our construction. Therefore, the anonymity and

unforgeability properties of the proposed ring signature scheme have to be analyzed.

Theorem 1 (Completeness). Our proposed ring signature scheme provides complete-

ness. In other words, if a message is signed by a group member by using our ring

signature method, then it will always be verified to be true by any verifier.

Proof. The verifier gets a ring signature σ = (σ1, . . . , σt) of a message M with re-

spective to the group R consisting of t−users. We assume that the signature is gen-

erated according to our proposed ring signature scheme, and there isn’t any data loss

during the transmission of the data. We know that t − 1 components of σ were ran-

domly generated during the ring signature generation process. These (t − 1) fake

signatures will always be summed up to the same result

C =
t∑

j=1,j 6=i

GVerM(σj, pkj,M, nb_ite). (4.6)

Regardless of which user in the group creates the ring signature scheme, the signer

will use his private key to calculate σi such that GVerM(σi, pki,M, nb_ite) = h−C,

where h is the first m−bits of the hash of the message M . This can be done simply

by calculating σi ← GSignM(ski,M, nb_ite, h− C).

The verifier then uses GVerM function to check if the given ring signature is valid or
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not.
t∑

j=1

GVerM(σj, pkj,M, nb_ite) =

t∑
j=1,j 6=i

GVerM(σj, pkj,M, nb_ite)

+GVerM(σi, pki,M, nb_ite)

= C + (h− C) = h

(4.7)

Regardless of the signer, the result of the ring signature verification will always be

the hash of the message if the message is signed by a group member. Therefore, this

concludes the completeness of our proposed scheme.

Theorem 2 (Anonymity). Full anonymity is provided with our proposed ring sig-

nature scheme. This means that the calculated ring signature does not contain any

information about the actual identity of the signer. The verifier will only know that

the signer is a member of the group.

Proof. Assume that the adversary A has access to a signing oracle OS(i,M) which

returns a valid ring signature in the name of the group R by using the secret key

ski of the user ui ∈ R. As defined in the anonymity game, adversary A chooses a

message M along with two separate indices i0, i1 ∈ {1, . . . , t}. After that, b ∈ {0, 1}
is chosen randomly, and then the ring signature σ is generated by using the secret

key skib which belongs to user uib ∈ R. Then the ring signature σ = (σ1, . . . , σt)

and the entire secret keys {sk1, . . . , skt} are given to the adversary A. At this point,

adversary A is not allowed to use the signing oracle to query for i0 and i1.

Next, we will analyze the distribution of the ring signature σ. During the ring sig-

nature generation process, all σi’s, where i 6= ib, are randomly chosen, and σib is

calculated by using the secret key skib that will be resulted as one of 2m+nb_ite(n+v−m)

possible ring signatures for the message M . Because of this reason, we may con-

clude that σ = (σ1, . . . , σt) is uniformly distributed. Even if the adversary has ac-

cess to all of the group members’ private keys, his chances of guessing the actual

signer’s identity between ski0 and ski1 is not greater than 1/2. In other words, we

have Pr[ski0 is used to generate σ] = Pr[ski1 is used to generate σ] ≈ 1/2.

Therefore, adversary A doesn’t have any advantage in this game, and he can only
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make a guess whether σ was computed with ski0 or ski1 . In conclusion, our proposed

scheme satisfies the anonymity criteria.

Theorem 3 (Unforgeability). Our proposed scheme provides unforgeability; thus, no

one out of the group can create a valid ring signature on behalf of the target group by

using our method.

Proof. If an adversary A wants to forge a valid ring signature on behalf of a group

R = {u1, . . . , ut}, then he may try to follow the steps of creating a ring signature as

a member of the target group by simply

• Choosing random vectors σ1, . . . , σt−1 ∈ Fm+nb_ite(n+v−m)
2 ,

• Computing h = h−
∑t−1

j=1 GVerM(σj, pkj,M, nb_ite),

• Trying to find a σt solution such that GVerM(σt, pkt,M, nb_ite) = h.

The last step requires the secret key skt of the group’s tth user. Without knowing

the secret key, finding a solution for that equation means the underlying signature

algorithm GeMSS is broken.

The public-key of GeMSS is a set P = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m of m non-

linear equations in n+v variables. For a given hash h = (h1, . . . , hm) ∈ Fm2 , forging

a signature is equivalent to solve the following system of non-linear equations:

p1(x1, . . . , xn+v)− h1 = 0

p2(x1, . . . , xn+v)− h2 = 0

...

pm(x1, . . . , xn+v)− hm = 0

(4.8)

Since the parameters are chosen as n + v > m, this system is underdetermined. In

[8], the number of binary operations needed for exhaustive search is calculated as

4 log2(m)2m. For the security Levels 1, 3, and 5, the values of m are 162, 243,

and 324, respectively. These parameter choices result in 2166.87, 2247.98, 2329.98 binary

operations in the given order. Another proposed method in [8] is to perform a fast

quantum exhaustive search by using Grover’s algorithm [24]. Again, the cost for this

operation is not feasible.
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The security of GeMSS is studied deeply in [8] by the authors. It is also one of the

signature algorithm candidates in NIST’s project since 2016, and that makes it a target

for cryptanalysis researchers. Until now, there is not any published article concern-

ing about practical security flaws of GeMSS. If we follow the recommendations to

choose the parameters for the GeMSS signature algorithm as stated in their paper, our

proposed ring signature scheme will also be secure, thus unforgeable.

4.4 Performance Analysis

This section explains why the GeMSS signature algorithm is a better choice for our

ring signature scheme with respect to other alternatives. We give both theoretical and

implementation results for our proposed scheme. In order to create a ring signature on

behalf of a groupR = {u1, . . . , ut} consisting of t members, a signer has to perform

one signature generation operation and t − 1 signature verification operations. We

can conclude that the performance of the overall scheme mainly relies on how fast

the verification process is. If we assume that the public keys of the group members

have already been published, then the verifier only needs to download the signature

along with the signed document. This is why the signature size of the chosen signature

algorithm is also important.

There are six sets of parameters for GeMSS, as show in Table 4.1. These are GeMSS,

BlueGeMSS, RedGeMSS, WhiteGeMSS, CyanGeMSS and MagentaGeMSS.
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Table 4.1: Parameter sets for GeMSS for the Security Levels 1, 3, and 5, respectively.
Security Level Scheme (λ, D, n, ∆, v, nb_ite)

I

GeMSS128 (128, 513, 174, 12, 12, 4)
BlueGeMSS128 (128, 129, 175, 13, 14, 4)
RedGeMSS128 (128, 17, 177, 15, 15, 4)
WhiteGeMSS128 (128, 513, 175, 12, 12, 3)
CyanGeMSS128 (128, 129, 177, 14, 13, 3)
MagentaGeMSS128 (128, 17, 178, 15, 15, 3)

III

GeMSS192 (192, 513, 265, 22, 20, 4)
BlueGeMSS192 (192, 129, 265, 22, 23, 4)
RedGeMSS192 (192, 17, 266, 23, 25, 4)
WhiteGeMSS192 (192, 513, 268, 21, 21, 3)
CyanGeMSS192 (192, 129, 270, 23, 22, 3)
MagentaGeMSS192 (192, 17, 271, 24, 24, 3)

V

GeMSS256 (256, 513, 354, 30, 33, 4)
BlueGeMSS256 (256, 129, 358, 34, 32, 4)
RedGeMSS256 (256, 17, 358, 34, 35, 4)
WhiteGeMSS256 (256, 513, 364, 31, 29, 3)
CyanGeMSS256 (256, 129, 364, 31, 32, 3)
MagentaGeMSS256 (256, 17, 366, 33, 33, 3)

Table 4.2 shows public and secret key sizes, signature size, and performance results

of signature generation and verification processes where MC (resp. KC) stands for

Mega (resp. Kilo) Cycles. Even though the MagentaGeMSS parameter set does

not provide the fastest verification, it has the fastest signature time with respect to

other parameter sets. Although the signature generation function is used only once

during ring signature generation, it greatly impacts overall computation time. Unless

the scheme is used by a group consisting of thousands of members, it is better to

choose the parameter set with a faster signature generation time. On the other hand,

RedGeMSS provides similar performance results with smaller public key sizes with

respect to Magenta GeMSS. Our proposed scheme works on any parameter sets of

GeMSS. Our aim is to show that the scheme works fluently. Because of this reason,

we choose to use the RedGeMSS parameter set in our implementation.
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Table 4.2: Performance of GeMSS signature algorithm under different parameter sets
Security
Level

Scheme
key gen.
(MC)

sign
(MC)

verify
(KC)

|pk|
(KB)

|sk|
(bits)

sign
(bits)

I

GeMSS128 19.6 608 106 352.19 128 258
BlueGeMSS128 18.4 67.2 134 363.61 128 270
RedGeMSS128 16.3 2.05 141 375.21 128 282
WhiteGeMSS128 20 436 91.7 358.17 128 235
CyanGeMSS128 18.5 49.8 91 369.72 128 244
MagentaGeMSS128 16.7 1.82 101 381.46 128 253

III

GeMSS192 69.4 1,760 304 1,237.96 192 411
BlueGeMSS192 65 173 325 1,264.12 192 423
RedGeMSS192 57.1 5.55 335 1,290.54 192 435
WhiteGeMSS192 73.1 1,330 263 1,293.85 192 373
CyanGeMSS192 68.2 131 269 1,320.8 192 382
MagentaGeMSS192 60.3 4.53 274 1,348.03 192 391

V

GeMSS256 158 2,490 665 3,040.7 256 576
BlueGeMSS256 152 248 680 3,087.96 256 588
RedGeMSS256 143 8.76 709 3,135.59 256 600
WhiteGeMSS256 163 1,920 516 3,222.69 256 513
CyanGeMSS256 159 190 535 3,272.02 256 522
MagentaGeMSS256 148 7.61 535 3,321.72 256 531

Theoretical Performance Results

Based on the expectations from our proposed scheme in terms of fast signature gen-

eration, fast verification, or small key and signature sizes, a signer will choose the

parameter set to be used. We use Table 4.2 to calculate the theoretical performance

of our scheme for a group consisting of 5, 10, 20, and 50 users, respectively, and

show the results for all GeMSS parameter sets on 3 different security levels in Tables

4.3, 4.4, and 4.5. By checking these tables, a signer in a group consisting of 50 users

may choose WhiteGeMSS for shorter signatures, MagentaGeMSS for faster signature

generation, CyanGeMSS for faster verification, etc. There will be a trade-off between

these properties while choosing the appropriate set of parameters.
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Table 4.3: Theoretical results of GeMSS-based ring signature schemes for all GeMSS
parameter sets in Security Level 1

5 users 10 users 20 users 50 users

GeMSS128

PK size (kB) 1,761 3,522 7,044 17,610
Sign. size (bit) 1,290 2,580 5,160 12,900
Sign. Gen (MC) 608 609 610 613
Sign Ver. (KC) 530 1,060 2,120 5,300

BlueGeMSS128

PK size (kB) 1,818 3,636 7,272 18,181
Sign. size (bit) 1,350 2,700 5,400 13,500
Sign. Gen (MC) 67.74 68.41 69.75 73.77
Sign Ver. (KC) 670 1,340 2,680 6,700

RedGeMSS128

PK size (kB) 1,876 3,752 7,504 18,761
Sign. size (bit) 1,410 2,820 5,640 14,100
Sign. Gen (MC) 2.61 3.32 4.73 8.96
Sign Ver. (KC) 705 1,410 2,820 7,050

WhiteGeMSS128

PK size (kB) 1,791 3,582 7,163 17,909
Sign. size (bit) 1,175 2,350 4,700 11,750
Sign. Gen (MC) 436 437 438 440
Sign Ver. (KC) 459 917 1,834 4,585

CyanGeMSS128

PK size (kB) 1,849 3,697 7,394 18,486
Sign. size (bit) 1,220 2,440 4,880 12,200
Sign. Gen (MC) 50.16 50.62 51.53 54.26
Sign Ver. (KC) 455 910 1,820 4,550

MagentaGeMSS128

PK size (kB) 1,907 3,815 7,629 19,073
Sign. size (bit) 1,265 2,530 5,060 12,650
Sign. Gen (MC) 2.22 2.73 3.74 6.77
Sign Ver. (KC) 505 1,010 2,020 5,050
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Table 4.4: Theoretical results of GeMSS-based ring signature schemes for all GeMSS
parameter sets in Security Level 3

5 users 10 users 20 users 50 users

GeMSS192

PK size (kB) 6,190 12,380 24,759 61,898
Sign. size (bit) 2,055 4,110 8,220 20,550
Sign. Gen (MC) 1,761 1,763 1,766 1,775
Sign Ver. (KC) 1,520 3,040 6,080 15,200

BlueGeMSS192

PK size (kB) 6,321 12,641 25,282 63,206
Sign. size (bit) 2,115 4,230 8,460 21,150
Sign. Gen (MC) 174.30 175.93 179.18 188.93
Sign Ver. (KC) 1,625 3,250 6,500 16,250

RedGeMSS192

PK size (kB) 6,453 12,905 25,811 64,527
Sign. size (bit) 2,175 4,350 8,700 21,750
Sign. Gen (MC) 6.89 8.57 11.92 21.97
Sign Ver. (KC) 1,675 3,350 6,700 16,750

WhiteGeMSS192

PK size (kB) 6,469 12,939 25,877 64,693
Sign. size (bit) 1,865 3,730 7,460 18,650
Sign. Gen (MC) 1,331 1,332 1,335 1,343
Sign Ver. (KC) 1,315 3,350 5,260 13,150

CyanGeMSS192

PK size (kB) 6,604 13,208 26,416 66,040
Sign. size (bit) 1,910 3,820 7,640 19,100
Sign. Gen (MC) 132.08 133.42 136.11 144.18
Sign Ver. (KC) 1,345 2,690 5,380 13,450

MagentaGeMSS192

PK size (kB) 6,740 13,480 26,961 67,402
Sign. size (bit) 1,955 3,910 7,820 19,550
Sign. Gen (MC) 5.63 7 9.74 17.96
Sign Ver. (KC) 1,370 2,740 5,480 13,700
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Table 4.5: Theoretical results of GeMSS-based ring signature schemes for all GeMSS
parameter sets in Security Level 5

5 users 10 users 20 users 50 users

GeMSS256

PK size (kB) 15,204 30,407 60,814 152,035
Sign. size (bit) 2,880 5,760 11,520 28,800
Sign. Gen (MC) 2,493 2,496 2,503 2,523
Sign Ver. (KC) 3,325 6,650 13,300 33,250

BlueGeMSS256

PK size (kB) 15,440 30,880 61,759 154,398
Sign. size (bit) 2,940 5,880 11,760 29,400
Sign. Gen (MC) 250.72 254.12 260.92 281.32
Sign Ver. (KC) 3,400 6,800 13,600 34,000

RedGeMSS256

PK size (kB) 15,678 31,356 62,712 156,780
Sign. size (bit) 3,000 6,000 12,000 30,000
Sign. Gen (MC) 11.60 15.14 22.23 43.50
Sign Ver. (KC) 3,545 7,090 14,180 35,450

WhiteGeMSS256

PK size (kB) 16,113 32,227 64,454 161,135
Sign. size (bit) 2,565 5,130 10,260 25,650
Sign. Gen (MC) 1,922 1,925 1,930 1,945
Sign Ver. (KC) 2,580 5,160 10,320 25,800

CyanGeMSS256

PK size (kB) 16,360 32,720 65,440 163,601
Sign. size (bit) 2,610 5,220 10,440 26,100
Sign. Gen (MC) 192.14 194.82 200.17 216.22
Sign Ver. (KC) 2,675 5,350 10,700 26,750

MagentaGeMSS256

PK size (kB) 16,609 33,217 66,434 166,086
Sign. size (bit) 2,655 5,310 10,620 26,550
Sign. Gen (MC) 9.75 12.43 17.78 33.83
Sign Ver. (KC) 2,675 5,350 10,700 26,750

Implementation Results

In order to show that our proposed GeMSS-based ring signature scheme works ef-

ficiently without any problem, we implemented it in the C programming language

by using the reference implementation of the GeMSS project. The source code of

the reference implementation, which was submitted to the second round of the NIST

Post-Quantum standardization project, is available on the GeMSS project website 1.

This reference implementation includes only GeMSS, BlueGeMSS, and RedGeMSS

parameter sets. Due to its faster verification performance, we decided to continue with

GeMSS128 parameter set for the proof of concept implementation. We had to make

some modification in the code to use the modified signature generation GSignM and
1 See https://www-polsys.lip6.fr/Links/NIST/GeMSS.html for the reference implementation.
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verification GVerM functions as described in Section 4.1.

We run our code on a machine with the following specifications:

• Processor: 2.0 GHz quad-core Intel Core i7 processor with 6MB shared L3

cache

• Clock Speed: 2.0 GHz

• Memory: 16GB of 1600MHz DDR3L onboard memory

• Operating System: MacOS Big Sur Version 11.6.5, Apple clang version

13.0.0 (clang-1300.0.29.30)

Table 4.6 shows the computation time of our code after running it 1,000 times and

taking the average times of both signature generation and verification functions.

Source code for our proposed GeMSS-based ring signature scheme with RedGeMSS128

parameter set can be accessed online 2.

Table 4.6: Implementation results of our RedGeMSS based ring signature scheme for
Security Level 1 parameter set

5 users 10 users 20 users 50 users
PK size (kB) 1,876.05 3,752.1 7,504.2 18,760.5
Signature size (bit) 1,440 2,880 5,760 14,400
Sign. Gen. (ms) 21.57 21.5 22.04 25.28
Sign. Ver. (ms) 0.368 0.77 1.54 4.06

A 2.0 gigahertz (GHz) processor means 2 billion cycles per second. In other words,

the computer can achieve 2 megacycles (MC) in 1 millisecond. In Table 4.3, the

theoretical verification time of the RedGeMSS128-based scheme for 50 users group

is approximately 7 MC, and it will take 3.5 ms to be calculated if there do not exist

other processes at that time. When we check the verification time in Table 4.6, we see

that the verification time is 4.06 ms for 50 users case. Therefore, it can be said that

the theoretical and practical results are close to each other.

2 See https://github.com/ofLee34/GeMSS_Based_Signature_Scheme for the code.
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4.5 Comparison

In Table 4.7, we compare three multivariate signature algorithms. Rainbow is used in

[29] and Gui is used in our previous research [12]. RedGeMSS provides the fastest

verification time and the smallest signature size with respect to others. Rainbow is

slightly better than RedGeMSS in signature generation time. However, due to the

slower verification time of Rainbow, the RedGeMMS-based ring signature scheme

provides better overall time as the number of members increases in the group.

Table 4.7: Comparison of 3 multivariate signature algorithms in the same security
level

Sec.
Level

Scheme
public key
(KB)

signature
(bits)

sign
(MC)

verify
(KC)

I
Rainbow Ic 187.70 832 1.52 939
Gui-184 416.30 360 1,910 152
RedGeMSS128 375.21 282 2.05 141

III
Rainbow IIIc 703.90 1,248 4.05 2,974
Gui-312 1,995.10 504 25,436 846
RedGeMSS192 1,290.54 435 5.55 335

V
Rainbow Vc 1,683.30 1,632 8.69 6,174
Gui-448 5,789.20 664 872,949 1,787
RedGeMSS256 3,135.59 600 8.76 709

In Table 4.8, we compare our proposed Gui-based and GeMSS-based ring signature

algorithms with the Rainbow-based ring signature algorithm in Security Level 1. This

table contains experimental results of GeMSS-based and Rainbow-based ring signa-

ture schemes, and theoretical results for Gui-based ring signature scheme. Signature

generation and signature verification time for the Rainbow-based scheme are given

as the slowest and fastest execution time in [29]. That is why we use the same nota-

tion for the comparison. Compared to the Rainbow-based approach, the experimental

results reveal that our suggested GeMSS-based ring signature technique offers 20%

shorter signature sizes in the case of 5 users group, and we get better signature sizes

with larger groups. As the number of users increases in the group, our scheme also

provides better signature generation time. While the signature generation time is close

to each other for ten users case, the GeMSS-based scheme provides up to 50 times

faster ring signature generation time with respect to the Rainbow-based scheme as the
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number of group members is just above 50 users. Moreover, we get up to 300 times

faster verification time and 20% smaller signature size within a group of 50 users.

Table 4.8: Comparison of experimental results of our proposed schemes with
Rainbow-based scheme for Security Level 1

# users Rainbow [29] Gui [12] GeMSS [13]

5 users

PK size (kB) 191 2,081.5 1,876
Sign. size (bit) 1,920 1,968 1,440
Sign. gen. time (ms) 9.15 – 13.31 10.604 21.50
Sign. ver. time (ms) 5.08 – 10.81 0.255 0.368

10 users

PK size (kB) 551 4,163 3,752.13
Sign. size (bit) 4,240 3,768 2,880
Sign. gen. time (ms) 17.31 – 28.73 10.859 21.57
Sign. ver. time (ms) 13.54 – 26.23 0.51 0.770

20 users

PK size (kB) 2,095 8,326 7,504.26
Sign. size (bit) 10,240 7,368 5,760
Sign. gen. time (ms) 37.04 – 58.98 11.396 22.04
Sign. ver. time (ms) 27.42 – 50.51 1.02 1.54

50 users

PK size (kB) 40,588 20,815 18,760.65
Sign. size (bit) 48,800 18,168 14,400
Sign. gen. time (ms) 738 – 1,225 12.899 25.28
Sign. ver. time (ms) 703 - 1200 2.55 4.06

After a practical key-recovery attack for the Level 1 parameter set of Rainbow is

published in [5], the Rainbow team proposes to replace Level 1 parameters with Level

3 parameters and Level 3 parameters with Level 5 parameters. After we redesign

Table 4.7 with these new offered security parameters, we get Table 4.9.

Table 4.9: Comparison of 3 multivariate signature algorithms after the offered solu-
tion of Rainbow team against security flaw

Sec.
Level

Scheme
public key
(KB)

signature
(bits)

sign
(MC)

verify
(KC)

I
Rainbow Ic 703.90 1,248 4.05 2,974
Gui-184 416.30 360 1,910 152
RedGeMSS128 375.21 282 2.05 141

III
Rainbow IIIc 1,683.30 1,632 8.69 6,174
Gui-312 1,995.10 504 25,436 846
RedGeMSS192 1,290.54 435 5.55 335

V
Rainbow Vc N/A N/A N/A N/A
Gui-448 5,789.20 664 872,949 1,787
RedGeMSS256 3,135.59 600 8.76 709
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As a result, GeMSS becomes a much better choice with respect to Rainbow. At all

security levels, GeMSS provides smaller public keys and signatures along with much

faster signature generation and signature verification. This security update of param-

eters in Rainbow will also affect the efficiency of the Rainbow-based ring signature

scheme in [29]. Their implementation results will be less efficient and less effective

when they adopt the new suggested parameters.
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CHAPTER 5

CONCLUSION

GeMSS, Gui, and Rainbow algorithms are both multivariate-based cryptosystems

proposed in the NIST Post-Quantum Cryptography Standardization Project. If we

compare their key and signature sizes and performances on their reference implemen-

tations under the same security levels, one can see that the GeMSS and Gui signature

algorithms provide smaller signature sizes and faster verification times with respect

to the Rainbow signature algorithm. Signature generation times for both GeMSS and

Rainbow are close to each other. Since our proposed ring signature scheme is mainly

based on a signature verification algorithm, using GeMSS as a signature algorithm in

a ring signature scheme will result in a faster evaluation time and smaller signature

sizes with respect to the ring signature scheme [29], which is based on the Rainbow

algorithm.

In this thesis, we show how to use Gui and GeMSS multivariate signature algorithms

in a ring signature scheme efficiently. Moreover, we give the theoretical compu-

tation times, signature, and key sizes for both Gui and GeMSS-based schemes un-

der all three security levels with different parameter sets. We also implemented the

RedGeMSS128 parameter set of the GeMSS signature algorithm to compare the ex-

perimental and theoretical results. Since the other security levels of RedGeMSS pa-

rameter set provides faster verification times and smaller signature sizes with respect

to the Rainbow algorithm in the same security levels, the implementation results can

be projected to provide better results. Finally, we give security necessary security

proofs for a ring signature algorithm, which are completeness, anonymity, and un-

forgeability. In conclusion, we provide an efficient GeMSS-based ring signature algo-
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rithm, which provides small signatures with fast calculation time in terms of signature

generation, and signature verification.
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