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ABSTRACT 

 

MULTISPECTRAL MULTI-TEMPORAL CROP COVER 

CLASSIFICATION OVER TÜRKİYE USING RANDOM FOREST 

ALGORITHM 

 

 

Dönmez Altındal, Elif 

Master of Science, Civil Engineering 

Supervisor : Assoc. Prof. Dr. Mustafa Tuğrul Yılmaz 

 

 

July 2022, 86 pages 

 
 

Accurate crop cover maps are beneficial for various aspects like water resources 

management, crop yield prediction, regulation insurance policies, and investigation 

of the effects of climate change. In this thesis, agricultural crop mapping is 

performed over Türkiye. Sentinel-2 Level-2A images with 10-meter spatial 

resolution acquired between March 15, 2019, and October 15, 2019, are reduced to 

15-day median images. In addition to spectral bands, Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) are used 

as classification features. Twenty years of ERA5-Land 2-meter temperature data is 

averaged to divide the study area into three temperature zones as Low (LTZ), 

Medium (MTZ), and High-Temperature Zones (HTZ). Before the classification, 

feature selection using random forest importance is performed to select the most 

successful features. After that, a random forest classifier is created for each 

temperature zone. LTZ reached 89% overall accuracy (OA) with a 0.88 Kappa. MTZ 

reached 91% OA with 0.92 Kappa, and HTZ reached 94% OA with 0.94 Kappa, 

giving the best accuracy among the classifiers. Finally, test sets of all temperature 

zones are combined, and OA of 92% with a Kappa of 0.93 is achieved with this 
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combined test set. To test the advantage of temperature zoning, classification is also 

performed without the temperature zones, and it is observed that temperature zoning 

increases the OA and Kappa by 1%. A land cover classification map is then created 

using temperature zone classifiers with 34 crop classes and six non-agricultural 

classes.  

Keywords: Crop Cover Mapping, Remote Sensing, Machine Learning, Supervised 

Classification 
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ÖZ 

 

RASTGELE ORMAN ALGORİTMASI KULLANILARAK TÜRKİYE 

ÜZERİNDE MULTİSPEKTRAL VE ÇOK ZAMANLI TARIM ÜRÜNÜ 

ÖRTÜSÜ SINIFLANDIRMASI 

 

 

Dönmez Altındal, Elif 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Doc. Dr. Mustafa Tuğrul Yılmaz 

 

 

Temmuz 2022, 86 sayfa 

 

Doğru tarımsal mahsul örtüsü haritaları, su kaynakları yönetimi, mahsul verimi 

tahmini, gıda güvenliği değerlendirmesi, sigorta poliçelerinin düzenlenmesi ve iklim 

değişikliğinin etkilerinin araştırılması gibi birçok farklı açıdan faydalıdır. Bu tezde 

Türkiye genelinde tarımsal ürün haritalaması yapılmıştır. 15 Mart 2019 ile 15 Ekim 

2019 arasında elde edilen 10 metre uzamsal çözünürlüğe sahip Sentinel-2 Level-2A 

görüntüleri, sınıflandırma için 15 günlük medyan görüntülere indirgenmiştir. 

Spektral bantlara ek olarak Normalize Edilmiş Bitki İndeksi (NDVI) ve Normalize 

Edilmiş Su İndeksi (NDWI) sınıflandırma öznitelikleri olarak kullanılmıştır. ERA5-

Land aylık ortalamalarının 1999-2019 yılları arasındaki ortalaması alınmıştır ve 

buna göre çalışma alanını düşük, orta ve yüksek sıcaklık bölgeleri olarak üç sıcaklık 

bölgesine bölünmüştür. Sınıflandırmadan önce Rastgele Orman Önem algoritması 

kullanılarak en başarılı sınıflandırma öznitelikleri bulunmuştur. Öznitelik 

seçiminden sonra her sıcaklık bölgesi için bir Rastgele Orman sınıflandırma 

algoritması oluşturulmuştur. Düşük sıcaklık bölgesi, 17 arazi örtüsü sınıfı için 0.88 

Kappa katsayısı ile %89 Genel Doğruluğa, orta sıcaklık bölgesi ise, 35 arazi örtüsü 

sınıfı için 0.92 Kappa katsayısı ile %91 Genel Doğruluğa ulaşmıştır. Son olarak, 

yüksek sıcaklık bölgesi, sınıflandırıcılar arasında en iyi doğruluğu vererek 34 arazi 
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örtüsü sınıfı için 0.94 Kappa katsayısı ile %94 genel doğruluğa ulaşmıştır. Son 

olarak, sıcaklık bölgelerinin test setleri birleştirilmiş ve tüm test verisi için 0.93 

Kappa katsayısı ile %92 Genel Doğruluk elde edilmiştir. Sıcaklık bölgelerinin 

avantajını test etmek için, sıcaklık bölgeleri olmadan da sınıflandırma yapılmış ve 

sıcaklık bölgelerinin genel doğruluğu ve Kappa katsayısını %1 oranında arttırdığı 

gözlemlemiştir. Daha sonra bu sınıflandırıcılar kullanılarak 34 tarımsal ürün sınıfı 

ve 6 tarım dışı sınıf içeren bir arazi örtüsü haritası oluşturulmuştur.  

Anahtar Kelimeler: Tarımsal Arazi Haritası, Uzaktan Algılama, Makine 

Öğrenmesi, Denetimli Sınıflandırma 
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CHAPTER 1  

1 INTRODUCTION  

Land cover is the physical material observed at the Earth's surface (Di Gregorio, 

2005; Liu et al., 2020), and it is a fundamental variable that affects and connects the 

human and physical environment in several aspects (Southworth et al., 2004). Some 

of the many topics that can be implemented using land cover maps and land cover 

change maps are: estimation of soil erosion (e.g., Chen et al., 2019; Uddin et al., 

2018), flood risk and flood damage assessment (e.g., Recanatesi & Petroselli, 2020; 

van der Sande et al., 2003), monitoring deforestation (e.g., Erasmi et al., 2004), forest 

rehabilitation planning (e.g., Apan, 1997), monitoring urban growth dynamics, (e.g., 

Hassan, 2017; Mandal et al., 2019) and assessing ecosystem services supply and 

demand dynamics (e.g., Tao et al., 2018). Along with these topics, agricultural crop 

cover mapping, which provides information to identify major crop types in a region 

and determine the area covered by these crops (Bauer et al., 1978), is also studied in 

this context.   

Accurate information on seasonal or yearly agricultural land cover benefits many 

aspects like water resources management, crop yield prediction, and planning of 

domestic and foreign policies and actions for governments (Bauer et al., 1978). 

Agriculture is the biggest consumer of freshwater, with almost 75% of current human 

water consumption worldwide (Wallace, 2000). The increasing population of the 

world (UNDESA, 2017) and the increasing water use exceeding twice that of the 

population increase (Steduto et al., 2012) show how necessary it is to manage water 

resources with extreme attention. Creating accurate agricultural maps and 

interpreting these maps can be a step toward the well-planned use of water resources.  
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Remote Sensing based crop classification has been done over different regions in 

Türkiye (e.g., Abdikan et al., 2018; Alganci et al., 2013; M Turker & Arikan, 2005). 

However, country-level mapping studies remain missing. Ministry of Agriculture 

and Forestry has datasets showing ground conditions, but these datasets depend on 

farmers' declarations which may not reflect the reality, particularly during disaster 

years. In addition, it is not possible to obtain information about which crops are 

planted by the farmers who do not make a declaration, as such declarations are only 

made for the crops that receive an incentive from the government to compensate for 

the oil and the fertilizer costs of the farmers. So, there is a need for an objective 

methodology to obtain agricultural crop classification maps over Türkiye. There are 

also large-scale landcover projects like CORINE (Coordination of Information on 

The Environment), but these projects lack local information and features unique to 

the country (Özür & Ataol, 2018). 

It is critical that large-scale crop maps include as many of the classes available in the 

area as possible to represent the land cover accurately. Otherwise, classification 

accuracy can be misleading when the study area is covered with various types of 

crop classes on a regional scale. To increase the accuracy of the crop classification 

map, in addition to 6 non-agricultural classes (bare soil, urban, forest, steppe, green 

house, water), 34 crop classes (alfalfa, apple, apricot, bare soil, barley, bean (dry), 

cherry, chickpea, cotton, forest, grape, green house, green tea leaves, hazelnut, 

lemon, maize, mandarin, melon, oat, olive, onion (dry), orange, peach, pepper, 

poppy, potato, rapeseed, red lentil, rice paddy, steppe, sugar beet, sunflower, 

tobacco, tomato, triticale, urban, vetch, water, watermelon, wheat) are selected 

according to the production rates of the previous year are included in the crop 

classification map for this study.  

Although Türkiye is located in the Mediterranean geography with relatively 

temperate climatic conditions, significant differences in climatic conditions from one 

region to another occur due to the variable nature of the landscape and especially the 

presence of mountains extending parallel to the coast (Sensoy et al., 2008). Also, 

previous studies show that phenology correlates highly with temperature (Siebert & 



 

 

 

3 

Ewert, 2012; Zhang & Tao, 2013). To capture the phenology difference and different 

crop distributions across Türkiye, average temperature information is included in the 

classification process for this study. The study area is divided into temperature zones 

in which separate classifications are performed with individual classificaiton 

algorithms for each temperature zone. It is intended to increase the accuracy of the 

crop map while contributing to the literature with this method of dividing a large-

scale study area which has not been done in any other large-scale crop classification 

study. 

This study aims to perform a multi-temporal, multispectral crop classification using 

Sentinel-2 products and random forests classifier to obtain a country-level crop map 

of 2019, including 40 land cover classes with 10 m spatial resolution over Türkiye.  

Apart from utilizing state-of-the-art methods and tools, this study pays attention to 

Türkiye's crop production and climatic factors aiming to represent the land cover 

more accurately with the help of local information.    
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Remote Sensing Products  

Using remote sensing products has been an effective way of mapping land cover 

since it allows collecting information at large scales easier and in a shorter amount 

of time compared to collecting field data (Jia et al., 2014). Crop classification using 

remote sensing products is performed in the literature with the help of mainly two 

types of sources, which are optical and radar remote sensing. Spectral information 

provided by optical products is used for crop identification by utilizing multiple 

spectral bands (e.g., Saini & Ghosh, 2018), time-series data (e.g., Cai et al., 2018; 

Maponya et al., 2020), and spectral indices (e.g., Sonobe et al., 2018; Y. Yang et al., 

2015). Also, optical products enable the calculation of various indices (e.g., 

Normalized Difference Vegetation Index (NDVI)) that can improve land cover 

classification (Joshi et al., 2016). Sonobe et al. (2018) evaluated the contribution of 

spectral bands and vegetation indices to the classification accuracy and concluded 

that vegetation indices (VI’s) increases the classification accuracy. Even though 

these articles prove that spectral band and index information explain a lot for class 

identification, some crops may have similar spectral characteristics in the growing 

period, which can decrease the classification accuracy (Yang et al., 2020). So, along 

with spectral information, temporal information can be used to identify different crop 

classes with the help of information on the growing patterns of crops (e.g., Ji et al., 

2018; Yang et al., 2020).  Nitze et al. (2012) show in their study that using multi-

temporal data improves classification accuracy. Based on the results of these studies, 

temporal and spectral satellite data, in addition to spectral indices, are used in this 

study for more accurate crop classification.  

https://tureng.com/tr/turkce-ingilizce/reinforce
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Cloud-free radar images with high spatial resolution are also used in crop 

classification studies (e.g., Skriver et al., 2011; Zakeri et al., 2017). Apart from 

single-source classifications, there are studies in the literature that utilize both optical 

and radar remote sensing products (Ajadi et al., 2021; David et al., 2021; Sonobe et 

al., 2017). In their study, Dimov et al. (2017) showed that fusing Synthetic Aperture 

Radar (SAR9 and optical products improves the classification accuracy while also 

showing that optical products outperform SAR products. So, only the Sentinel-2 

optical products are selected as the remote sensing source for this study to perform 

classification with high accuracy without increasing the computational cost with 

multiple products. 

2.2 Machine Learning Algorithms 

In addition to features of remote sensing products used in crop mapping, 

classification algorithms are vital to obtaining high accuracy (Sonobe et al., 2018). 

Various machine learning algorithms are vastly used for crop classification in the 

literature (e.g., Nitze et al., 2012; Zheng et al., 2015). Machine Learning algorithms 

are suitable for crop classification using remote sensing products due to their 

capability of handling large amounts of data and pattern recognition. Several 

machine learning algorithms are used in crop classification studies, such as the 

support vector machines (SVM) (e.g., Mathur & Foody, 2008), artificial neural 

networks (ANN) (e.g., Ji et al., 2018), and extreme gradient boosting (Xgboost) ( 

(e.g., Ustuner et al., 2019).  One of these algorithms is random forest (RF) classifiers, 

which consist of ensemble decision trees. In this study, these methods are applied to 

the training set, and similar accuracies are obtained, but the random forest algorithm 

is found to be the most cost-effective one, so it is selected as the classification 

algorithm that will be used in the crop classification. The high-performance of the 

classifier is also shown in the studies of Maponya et al. (2012) and Rodriguez-

Galiano et al. (2012a) as the classifier performs well when high-dimensional data is 

used for classification. Another vital feature of Random forest is being consistent 
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with different hyperparameter combinations, which means that even though using 

the optimum parameters that determine how the classifier will treat the training data 

will increase the accuracy, similar accuracies can be obtained with different 

hyperparameter combinations (Ok et al., 2012). RF classifiers are also used for 

feature selection, which can be used for determining the most useful features or 

simply for decreasing the number of features to decrease the computational cost. 

Sonobe et al. (2018) and Hao et al. (2015) utilized random forest importance for 

evaluation of feature contribution to crop classification.  

2.3 Classification Level 

Land cover classifications can be performed in two levels: pixel-based by classifying 

individual pixels or object-based by aggregating a group of adjacent pixels (Long et 

al., 2013). In the context of crop maps, the object of the object-based classifications 

is fields or parcels. Object-based crop classification is studied using different 

methods in the literature, such as aggregating pixels after classification using parcel 

boundary information   (e.g., Kussul et al., 2016) or performing classification over a 

segmented image (e.g., Zhang et al., 2016). For this thesis, pixel-level classification 

is performed since image segmentation for a large study increases the computational 

cost, and readily available parcel data could not be obtained to be used in the study. 

2.4 Studies Performed over Türkiye 

There are several crop classification studies performed over different regions of 

Türkiye. Turker and Arıkan (2005) demonstrated sequential masking classification 

of multi‐temporal Landsat7 ETM+ images to identify summer crops at field level 

and achieved an accuracy of 81.3% over Karacabey, Türkiye. Ozdarici-Ok and 

Akyurek  (2014) also performed object-based classification over Karacabey. They 

used  SVM with multitemporal Kompsat-2 and Envisat ASAR and obtained overall 

accuracy (OA) and Kappa value of approximately 92% and 0.90. Ozdarici and 
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Turker (2011) compared field-based agricultural classifications of the SPOT4 XS, 

SPOT5 XS, IKONOS XS QuickBird XS, and QuickBird PS over the south-west of 

the town of Karacabey. Alganci et al. (2013) used Spectral Angle Mapper (SAM) 

and SVM methods for pixel-based classification and Maximum Likelihood (ML) for 

object-based classification with SPOT5 and Landsat-5 TM data over Şanlıurfa 

province. Akar and Güngör (2015) classified hazelnut and tea plants in the Kumru 

district in Trabzon-Sürmene with the RF classifier using WorldView-2 MS images 

taken in summer and winter. They also utilized NDVI and multiple texture 

information to improve classification accuracy. Abdikan et al. (2018) performed 

crop classification over a test area located at the Konya Basin to evaluate the 

sensitivity of Sentinel-1 SAR image to crop height. Even though these papers reach 

high accuracies, there is still an absence of a crop map that covers the whole Türkiye, 

and the motivation of this study is to fill this gap in the literature.  

2.5 Large Scale Crop Maps 

Crop mapping is practiced over large areas in several studies. Studies have similar 

approaches in terms of the study area, classifier, remote sensing source, and accuracy 

assessment are given in Table 2.1. Jiang et al. (2020) built three remote sensing-

based models using multiple indicators and monitored the distribution of the major 

crop types in the main grain-producing area of China with Sentinel-2. They estimated 

images agreed well with field survey data (average OA = 94%) and the national 

agricultural census data (𝑅2  = 0.78), which proves the applicability of the Sentinel-

2 data for large-scale, high-resolution crop mapping in China. 

Yılmaz et al.  (2020) presented preliminary results of an analysis aimed at classifying 

18 different agricultural products in the Gediz Basin with different climatic areas 

with optical and multi-temporal satellite images using random forest and 3D-CNN 

methods. They observed that 3D-CNN classified crops in the Basin at pixel-level 

and parcel level with overall accuracies of 72.7% and 67.6%, respectively, and 

random forest approach, OA of 70% was achieved in the same region at parcel level.  
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Yang et al. (2019) proposed a new method based on grids to address the inconsistent 

availability of high-medium resolution images for large-scale crop classification. 

They first proposed a method to block the remote sensing data into grids to solve the 

problem of temporal inconsistency. Then they introduced a parallel computing 

technique to improve the efficiency on the grid scale. Random Forest and Support 

Vector Machines algorithms are tested for their performance, and Random Forest 

gave better accuracies. They obtained classification accuracies reaching 88%, 82%, 

and 85% in 2015, 2016, and 2017, respectively. 

d'Andrimont et al. (2021) presented the first continental crop map with 19 crop types 

at 10-m spatial resolution for the EU based on Sentinel 1A and Sentinel 1B SAR 

observations for 2018 using random forest. They obtained an overall accuracy of 

80.3% when grouping main crop classes and 76% when considering 19 crop type 

classes separately. 

Woźniak et al. (2022) proposed a set of multi-temporal indices derived from time-

series Sentinel-1 images to characterize crop phenology. The authors developed an 

object-oriented classification technique and tested it on 16 crop types for the whole 

of  Poland. Their analysis found that OAs varied on a regional level from 86.36% to 

89.13% in 2019 and from 85.95% to 89.81% in 2020. The authors also indicate that 

they performed classification with other machine learning algorithms, K-nearest 

neighbour (KNN) (Cover & Hart, 1967), Naive Bayes (NB) (Duda & Hart, 1973), 

Linear Support Vector Machine (SVM) (Vapnik et al, 1995), Radial Basis Function 

Support Vector Machine (RBF SVM) (Scholkopf et al., 1996), Neural Networks 

(NN) (Kohonen, 1988), Quadratic Discriminant Analysis (QDA) (Frank and 

Friedman, 1989), Decision Tree (DT) (Safavian & Landgrebe 1991), AdaBoost (AB) 

(Freund & Schapire, 1996) in addition to Random Forest and Random Forest gave 

the best accuracies.  

Studies of Jiang et al. (2020), Yılmaz et al. (2020), Yang et al. (2019), and Woźniak 

et al. (2022) shows that Sentinel-2 products are suitable for large-scale crop 

classification. So, it is another motivation for the selection of these products as the 
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remote sensing sources for this study, in addition to their suitable temporal and 

spectral resolution. 

Random forest classifier is used in the studies of Yılmaz et al. (2020), Yang et al. 

(2019), d'Andrimont et al. (2021), and Woźniak et al. (2022), which shows that the 

Random Forest classifier is preferred between all other classifiers. In addition to that, 

Woźniak et al. (2022) and Yang et al. (2019) show in their study that Random Forest 

outperforms other popular classification algorithms. Thus, the Random Forest 

algorithm is selected as the classifier for this study, considering its performance is 

proven by other studies in addition to its other benefits that are mentioned in the ‘2.2. 

Machine Learning Algorithms’ subchapter of the Literature Review chapter. 

The studies given in Table 2.1 have a maximum of 21 classes for classificaiton while 

for this study, 34 crop and six non-agricultural classes are selected for the crop map. 

For large-scale maps, it is important to represent the study area as accurately as 

possible. If the crop fields used in classification are not masked from other land 

covers, as the number of classes increases, the crop map's accuracy and 

representativeness are expected to increase. So, in this study, it is intended to use 

more classes than the studies in the literature for a more accurate crop cover map.  
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CHAPTER 3  

3 METHODOLOGY 

In this chapter of the thesis, the methodology of crop classification is given. Firstly, 

a flowchart with numbered steps in Figure 3.1 is explained briefly for the 

methodology to be followed more easily. The box number for each step is given in 

parentheses while it is described in the text. After that, each method and the dataset 

are explained in detail in the related subchapters of the Methodology chapter.  

Supervised classification is a machine learning method used to assign one of the 

predetermined classes to each data point with the help of a classification algorithm 

trained using predictor variables. In this study, predictor variables are spectral bands 

of Sentinel 2 and some spectral indices that will be explained in detail in subchapter 

'3.5. Spectral Indices' classification algorithm is Random Forest, the study area is 

Türkiye, and the predetermined classes are 40 agricultural and non-agricultural 

classes.  

To prepare the predictors, also called classification features, Sentinel-2 Level-2 

images from March 15 to October 15, 2019, are collected into 14 image collections, 

each covering 15-days of data (Box 1). Sentinel 2 products have a 5-day revisit time 

(temporal resolution), which means that these products have the image of the same 

area taken every five days. So, each image collection has three images for every part 

of the study area. Since optical satellites like Sentinel-2 Level-2 have pixels 

contaminated with cloud and cloud shadows, these pixels are removed from the 

images with the help of a cloud mask and a cloud shadow mask (Box 2). After that, 

image collections cleared from cloud and cloud shadow pixels are reduced to the 15-

median images using the median reducer tool in Google Earth Engine (GEE) 

platform by taking the median of the reflectance values of each image for each pixel 
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(Box 3). This way, each pixel of the study area has one value for each 15-day period 

(Box 4).  

Spectral bands (reflectance values for each wavelength range of the products) of 

satellite images can be utilized to calculate spectral indices. For this study, NDVI, 

NDWI proposed by Gao (1996), and NDWI proposed by McFeeters (1996) are 

calculated for each 15-day period and added to the classification features (Box 5). In 

addition to these indices, "spring rate" and "summer rate" represent NDVI increase 

in spring (from the first half of May to the second half of June) and summer (from 

the first half of July to the second half of August) are calculated to be used as 

classification features (Box 5). 

The ground truth data for this study is obtained from the firm Tarla.io as coordinates 

of fields for crop classes (Box 6). To obtain homogeneous training and test data, this 

data is visualized on GEE, and rectangular polygons are selected manually from this 

dataset for the crop classes (Box 7). And for the non-agricultural classes, pixels are 

selected manually by visualizing selected scenes at the high-resolution satellite view 

of GEE (Box 7). After that, classification features are extracted from the Sentinel-2 

and spectral index data for each selected pixel. (Box 8) 

To be able to capture the phenology difference occurring due to temperature 

differences between regions, the study area is divided into temperature zones. For 

the mask, the 2-meter temperature band of the ERA5-Land monthly averaged dataset 

is averaged for the last 20 years (Box 9). The average temperature map is visualized 

in the GEE, and temperature thresholds that determine the temperature regions are 

selected so that the major crop plains are not divided. As a result, the study area is 

divided into three temperature zones as Low-Temperature Zone (Box 11), Medium-

Temperature Zone (Box 12), and High-Temperature Zone (Box 13). After this step 

of the methodology, each step is repeated for each temperature zone separately, as it 

is shown with a looping arrow. 

For supervised classification, three data subsets can be used to be able to create a 

classifier that is adjusted to give the best results on different datasets with the same 
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predictors. These subsets are the training set (Box 16), which is used to train the 

classifiers, the validation set (Box 17), which is used to test the accuracy while 

finding the best parameters that determine the structure of the classifier, and lastly, 

test (Box 15) set for final accuracy assessment of the classifier that will be used for 

mapping. 

This study aims to create a crop map covering the whole of Türkiye with a 10-meter 

spatial resolution, which means classifying billions of pixels. To decrease the 

computational cost of this process, some classification features that are not 

contributing to the accuracy should be eliminated. For this purpose, feature selection 

by random forest importance is performed on the training data, and classes with the 

least contribution to classifier accuracy are removed from the dataset (Box 18). The 

detail of this process is also further explained in the related subchapter. At the end 

of this step, final classification features are obtained to be used for classification 

(Box 19) 

A random forest classifier has two parameters that determine the classifier's 

structure, called hyperparameters. To find the combination of these hyperparameters 

that gives the highest accuracy on the validation set, hyperparameter tuning using 

grid search is performed (Box 20). Grid search refers to performing classification for 

each combination of selected options for both hyperparameters and calculating the 

accuracy on the validation set for these combinations. After completing this step, 

final hyperparameters are obtained (Box 21). 

Using the final hyperparameters and classification features, a random forest classifier 

is created for each temperature zone (Box 22). Then, selected accuracy measures, 

overall accuracy, user's accuracy, producer's accuracy, and Cohen's Kappa (Cohen, 

1960) are calculated to test the performance of the classifier on independent test data 

(Box 23). The details of the accuracy measures are given in the related subchapter. 

Finally, the classification features for the whole Türkiye are extracted from the 15-

day median images (Box 24). Using the random forest classifiers created for each 

temperature zone, each pixel of Türkiye is classified according to the temperature 
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zone each pixel is located in. After this final step of methodology, a crop cover map 

of Türkiye for the year 2019 is obtained (Box 25).  
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3.1 Study Area 

Türkiye is located in Anatolia in Western Asia, with a portion in Southeast Europe, 

between latitudes from 35.9 to 42.0 Northern and longitudes from 25.9 to 44.6 

Eastern. Although Türkiye is located in the Mediterranean geography with relatively 

temperate climatic conditions, significant differences in climatic conditions from one 

region to another occur due to the variable nature of the landscape and especially the 

presence of mountains extending parallel to the coast (Sensoy et al., 2008). Due to 

its favorable geography, fertile soil structure, and suitable climatic conditions, 

various products such as vegetables, grains, and cotton are grown in almost every 

part of the country (Cakirli Akyüz & Theuvsen, 2021). According to Plant 

Production Data provided by the Turkish Statistical Institute (2020), 29.5% of 

Türkiye's Land was used for agricultural production in 2019.  

3.2 Ground Truth Data 

Ground truth data is received from the observations obtained from the fields of the 

firm named Tarla.io. This company, which provides agricultural risk management 

services, does business with many farmer customers by obtaining information from 

the field where they plant crops. For this reason, the information they provide is 

considered to be reliable. No other data source is used for ground truth data for crop 

classes. In its raw form, data consist of parcel coordinate information of 105 types 

of crop fields all over Türkiye. To perform supervised classification, for which the 

classes should be determined prior to the classification, crop classes are selected with 

the help of agricultural production data for 2018 showing ton production of crops 

provided online by the Turkish Statistical Institute (2018). Crops are sorted 

according to the total ton of production, and the top 34 crops with an adequate 

number of data are selected as classes for the crop map. These selected crops take up 
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to 86% percent of the total ton of production, and the remaining crops are not 

included in the study since they do not cover as much area as selected crops. In 

addition to the crop classes, six non-crop classes: green house, bare soil, water, 

urban, steppe, and forest, are chosen to represent the study area more accurately. 

Final class names are shown in Table 3.1. To obtain homogeneous training and test 

data, provided ground truth data is visualized on GEE, and rectangular polygons are 

selected manually from this dataset. Geometry size and the pixel number in the 

polygons change according to the original field size. Data for non-agricultural classes 

are selected manually by visualizing selected scenes at the high-resolution satellite 

view of GEE. After the data selection, ground truth data is exported from GEE in 

shapefile format for classification.  

Table 3.1. Land Cover Classes Used in the Study 

Alfalfa Cow vetches Red Lentil Peaches Sunflower 

Apples Dry beans Maize Pepper Tobacco 

Apricots Forest Mandarin Poppy Tomatoes 

Bare soil Grapes Melon Potatoes Triticale 

Barley Green House Oats Rapeseed Urban 

Cherries Green Tea Leaves Olive Rice Paddy Water 

Chickpea Hazelnuts Onion (Dry) Steppe Watermelon 

Cotton Lemons Oranges Sugar beets Wheat 

3.3 Remote Sensing and Reanalysis Data 

Remote Sensing is defined as the accusation of physical information about the 

Earth's surface using sensing devices positioned away from the target (Colwell & 

Katibah, 1976).  Remote sensing sensors are basically divided into two types: passive 

and active sensors (Weng, 2013). While active sensors send stimulus to the Earth 

and acquire the response of the target to that stimulus, passive sensors receive 

information from reflected solar radiation (Colwell & Katibah, 1976; Viskovic et al., 
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2019). Airborne light detection and ranging (LiDAR) and Synthetic-Aperture Radar 

(SAR) are commonly used examples of active remote sensing sensors. Radar sensors 

collect the backscatter, which is dependent on the structure and geometry of the 

target (Joshi et al., 2016). The difference in this backscatter information has been 

used for land cover identification in various studies (e.g., Pierce et al., 1998.; Skriver 

et al., 2011; Zakeri et al., 2017). For passive remote sensing, cameras and optical 

satellites can be given as commonly used examples.  Some optical remote sensing 

products like Sentinel 2, Landsat Thematic Map, Satellite Pour l'Observation de la 

Terre (SPOT), and the Moderate Resolution Imaging Spectroradiometer (MODIS) 

dominate land cover studies as these products have offered consistent and easily 

available products for decades (Colwell & Katibah, 1976). Satellites provide 

information in multiple spectral bands defined by their reflectance wavelength and 

bandwidth (Viskovic et al., 2019). While these bands from a single image can be 

used to identify land cover types, various spectral indices can be calculated using 

multiple spectral bands, or a time series of images can be used to further understand 

land covers' pattern of change through the year or growing season. Using time-series 

information utilizes both spectral and temporal information, which can result in 

improved classification performance since crops have different growing patterns (Ji 

et al., 2018).  

Another type of data used in the study is climate reanalysis data. To create climate 

reanalysis datasets, available climate observations are reanalyzed using advanced 

data assimilation methods to obtain an initial state for the following short-term 

forecast, creating a continuous three-dimensional field of meteorological variables 

(Bengtsson et al., 2004). Several climate reanalysis datasets are produced for climate 

and weather forecast studies, such as European Centre for Medium-Range Weather 

Forecasts (ECMWF) 15-year reanalysis (ERA15) (Gibson et al., 1997) and NASA 

Goddard Earth Observing System 1 (GEOS1) reanalysis (Schubert et al., 1993). 



 

 

 

21 

3.3.1 Sentinel-2 for Classification Features 

The European Space Agency's Multispectral Instrument on the Sentinel-2 satellite 

(Earth Resources Observation and Science (EROS) Center, 2018) has been providing 

multispectral images every ten days since 2015 on a global extent. The Sentinel-2 

mission includes two satellites developed to monitor vegetation, land cover, and the 

environment. The Sentinel-2A and Sentinel-2B satellites operate in a sun-

synchronous orbit with a 10-day temporal resolution, and they cover Earth's surface 

in 5-day intervals. Spectral bands of Sentinel-2 are given in Table 3.2.  A Sentinel-2 

tile consists of pixels covering a 100 km*100 km area with a UTM/WGS84 

(Universal Transverse Mercator/World Geodetic System 1984) projection and 

datum.  

Table 3.2. Radiometric and Spatial Resolutions of Sentinel-2 Images (Earth 

Resources Observation and Science (EROS) Center, 2018) 

Band Number Central Wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial Resolution 

(m) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 783 20 20 

8 842 115 10 

8a 865 20 20 

9 945 20 60 

10 1375 30 60 

11 1610 90 20 

12 2190 180 20 

 

Predictor variables are usually called features in classification and pattern 

recognition literature (Hastie et al., 2009) (e.g. spectral bands of setallites for remote 

sensing based crop classification). To obtain the classification features for this study, 

starting from March 15, 2019, to October 15, 2019, for each 15-day interval, tiles of 
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Sentinel-2 Level-2A are collected to create 15-day image collections over the whole 

study area. After that, images in each image collection are cleared from cloud cover 

using the S2 cloud probability dataset (s2cloudless) on GEE with a maximum cloud 

probability of 20%. Cloud shadow pixels are also masked from the images by 

considering cloud projection intersection with low-reflectance NIR pixels, as 

demonstrated by Braaten (n.d.). After the cloud masking process, cloud and cloud 

shadow pixels in the original satellite images have NA values. Since the Sentinel-2 

Level-2 products have an image every five days, each part of the study area has an 

image acquired every five days. In this study, using images with 5-day intervals 

would increase the computational cost. So, after obtaining image collections that are 

cleared from cloud and cloud shadow pixels median of the images that cover the 

same area is taken for each 15-day interval using the median reducer tool in the 

Google Earth Engine platform. This way, the computational cost is decreased by 

decreasing the number of images used in the study, and spectral changes are captured 

twice a month. As a result, 14 images are obtained for classification as one image for 

every 15-day interval between March 15 - October 15, 2019. All bands of obtained 

images are exported separately for each image from GEE except for Band 10 (short 

wave infrared – cirrus), which is used only for cloud probability calculation before 

image reduction. So, 12 bands of each 14 images (168 spectral bands in total) are 

obtained to be used as classification inputs (classification features).  

3.3.2 Era5-Land for Temperature Zones 

This study utilizes crop phenology for the identification of different crops using 

multi-temporal satellite imagery. Previous studies show that phenology correlates 

highly with temperature (Siebert & Ewert, 2012; Zhang & Tao, 2013). Also, when 

vector data is inspected, major crop types like wheat, barley, and potatoes had 

different growing patterns in different regions. In Figure 3.2, this phenology 

difference is demonstrated with the NDVI time-series data of two wheat pixels. One 

pixel is located in eastern Türkiye, while the other pixel is located in western 
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Türkiye, where the average temperatures are much higher than in the east part of 

Türkiye. There is a visible difference between the growing periods of two pixels 

located in different climates. To capture the phenology difference occurring due to 

temperature differences between regions, ERA5-Land is utilized for a temperature 

mask.  

ERA5-Land is produced by replaying the land component of the ECMWF ERA5 

climate reanalysis (Muñoz-Sabater et al., 2021). It contains regular latitude-

longitude gridded record with a temporal resolution of 1 hour since 1950.  Horizontal 

coverage of the ERA5-Land product is 0.1° x 0.1°; (Native resolution is 9 km), and 

its vertical coverage is from 2 m above the surface level to a soil depth of 289 cm. It 

provides information globally with an update frequency of monthly with a delay of 

2-3 months from the actual date. Some of the main variables of ERA5-Land are 2m 

temperature, 2m dewpoint temperature, total precipitation, and total evaporation. 

The data used in the study is downloaded as post-processed by monthly averaging 

the full ERA5-Land dataset.  

 

Figure 3.2. NDVI vs. Day of the Year for Two Wheat Pixels. Pixel shown in red is 

Located in Eastern Türkiye  (37.473°E,39.182°N), While the Black One is in 

Western Türkiye (26.424°E,41.171°N). 
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For the temperature mask, the 'temperature_2 m' band of ERA5-Land monthly 

averaged dataset is averaged for 20 years (1999-2019). The average temperature map 

is visualized in the GEE, and temperature thresholds that determine the temperature 

regions are selected so that the major crop plains are not divided. Different thresholds 

were also tested, but they resulted in a greater number of crop plains that are divided 

to fall into two temperature zones. As a result, the Low-Temperature Zone (LTZ) is 

set to have a maximum temperature of 9 degrees Celsius; the Medium-Temperature 

Zone (MTZ) is set to have a minimum temperature of 9 degrees Celsius and a 

maximum temperature of 14 degrees Celsius. Finally, the High-Temperature Zone 

(HTZ) is set to have a minimum temperature of 14 degrees Celsius. The temperature 

mask raster is later exported from GEE and resized to match spatial resolutions with 

Sentinel-2 data on QGIS software. Due to a lack of temperature information on 

coastal regions resulting from spatial resolution differences between two products, 

the temperature mask is extended using the R programming language (R Core Team, 

2020) so that each empty pixel is filled with the value of the nearest pixel with a non-

NA value. After these preprocessing steps, Sentinel-2 images and the temperature 

mask are resized and reprojected to have the same Coordinate Reference Systems 

(CRS), spatial resolution, and boundaries. A total of 169 rasters (12 spectral bands 

for each 14 date intervals and one temperature mask) is cropped with the extent of 

vector coordinate data on R, and a resultant data frame is formed to have 168 spectral 

reflectance values, one temperature mask value, the land cover class number for each 

pixel. The data frame is later divided into three separate data frames based on the 

temperature zone information. The reason for averaging multiple years instead of 

selecting the year of the map is to capture the crop planting tendencies of farmers for 

a more realistic crop distribution over the study area. The resultant temperature map 

is shown in Figure 3.3. along with the distribution of agricultural and nonagricultural 

class pixels used in the study. Another reason for not using only 2019 data is to be 

able to apply these classifiers on other years when Sentinel-2 data is available. Using 

only 2019 temperatures would not give generalizable results thus could not to be 
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used in different years. But for a single year classification, temperatures of that years 

can also be used for temperature masking. 

In addition to separate data frames for each temperature zone, one classifier is created 

without separating the dataset into temperature zones. The reason for this is to test 

whether or not the division of the study area into temperature zones increases the 

classification accuracy. The details for this dataset are given in the ‘3.6 Data 

Partitioning’ subtitle of the Methodology chapter.  
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3.4 Gap Filling 

Since there are unavoidable cloud-masked gaps in the data after making cloud and 

cloud shadow pixels have NA values with cloud mask, some crop pixels have NA 

values instead of spectral reflectance values. So, these pixels become unusable since 

each pixel should have the same number of classification features for the classifier 

to work. To use as many pixels as possible, a computationally efficient gap-filling 

procedure based on linear interpolation is followed on a temporal scale similar to the 

method used by Griffiths et al. (2019). Bands with empty (NA) values are filled with 

the average of the next and previous months' same band. For example, if the red band 

of the first 15-days of the May image is NA, it is filled with the average of the red 

band of the second 15-days of the April image and the red band of the second 15-

days of the May image. Later, cloud gaps could not be filled with this method in the 

first 15-day image of April due to consecutive cloud pixels, and these gaps are filled 

with the values of the second 15-day of March. After the gap-filling process, 

remaining NA pixels that could not be filled due to consecutive missing data are 

removed from the dataset.  

3.5 Spectral Indices 

Different land cover types have different spectral curves, which means that they 

reflect different portions of the incoming energy in each wavelength, as shown in 

Figure 3.4. This figure shows the spectral curves of 3 different land cover types, 

water (33.587°E, 39.148°N), vegetation (33.598°E, 39.152°N), and soil (33.590°E, 

39.148°N), obtained using a Hyperion EO-1 Hyperspectral image of June 2016.  
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Figure 3.5. Spectral Curves of 3 Different Land Cover Types (Water, Vegetation, 

Soil) Obtained Using Hyperion EO-1 Hyperspectral Image 

Spectral indices are calculated using combinations of spectral bands that enhance 

specific spectral properties (Palacios-Orueta et al., 2006). Normalized Difference 

Vegetation Index (NDVI) is a commonly used spectral index that can be used to 

benefit from the spectral reflectance difference between near-infrared (NIR) and red 

wavelengths (Bremer et al., 2011). Maximum chlorophyll absorption of a green leaf 

occurs at about 690 nm, which corresponds to red wavelength, while at the NIR 

wavelength interval (650-850 nm), absorption shows a significant decrease (Myneni 

et al., 1995).  This spectral difference is suitable for differentiation between 

vegetation and other classes. Also, the magnitude or time interval of maximum 

NDVI can be used for differentiation between vegetation classes in land cover 

classification. The NDVI is calculated using Equation (1). 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 𝑅𝐸𝐷)⁄                                                                         (1) 

The Normalized Difference Water Index (NDWI), proposed by McFeeters (1996) 

(𝑁𝐷𝑊𝐼𝑀) is a spectral index that increases the visibility of open water features in 

remote sensing products. 𝑁𝐷𝑊𝐼𝑀 enhances the reflectance of water bodies utilizing 

green wavelengths and exploits the low NIR reflectance of water bodies compared 

to vegetation and soil. This way, water bodies that have high positive 𝑁𝐷𝑊𝐼𝑀 can 
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be identified very easily (McFeeters, 1996). The 𝑁𝐷𝑊𝐼𝑀 is calculated using 

Equation (2).  

𝑁𝐷𝑊𝐼𝑀 =  (𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅) (𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅)⁄                                                  (2) 

Normalized Difference Water Index proposed by Gao (1996) (𝑁𝐷𝑊𝐼𝐺), aims to 

assess vegetation water content from remotely sensed data using the combination of  

NIR and short wave infrared (SWIR) channels (Zhang et al., 2017).  Since dry soil, 

dry vegetation, and green vegetation has a different range of  NDWI values (Gao, 

1996), 𝑁𝐷𝑊𝐼𝐺  can be used to differentiate these land cover classes. The 𝑁𝐷𝑊𝐼𝐺  is 

calculated using Equation (3).  

𝑁𝐷𝑊𝐼𝐺 =  (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅) (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)⁄                                                         (3) 

The indices used in the study are demonstrated in Figure 3.5. Normalized Difference 

Vegetation Index, Normalized Difference Water Index proposed by Gao (1996), and 

Normalized Difference Water Index proposed by McFeeters (1996) are calculated 

for each 15-day period and added to the classification features. In addition to VIs, 

two features, "spring rate" and "summer rate", represent NDVI increase in spring 

(from the first half of May to the second half of June) and summer (from the first 

half of July to the second half of August) are calculated and added to classification 

features. With this addition, the classification algorithm has 212 input features (168 

bands + 3 indices for 14 date intervals + 2 NDVI rates).  

Some classification algorithms like SVM and ANN require scaled classification 

features to give accurate classification results. But since RF is a tree-based method 

that can incorporate different features in the classification process (Hastie et al., 

2009), no scaling is performed even though spectral reflectance and spectral indices 

have very different maximum and minimum values. 
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Figure 3.6. True Color (Red Green Blue) b) Normalized Difference Vegetation 

Index, c) Normalized Difference Water Index (M), d) Normalized Difference 

Water Index (G) Versions of a Sentinel-2 Image located at 30.268°E, 37.749°N 

3.6 Data Partitioning 

To perform an unbiased classification, the dataset is divided into three subsets as the 

training set (~70%), validation set (~15%), and test set (~15%). Since ground truth 

polygons contain more than one pixel, dividing a polygon into more than two subsets 

may result in overfitting, which occurs when the classification algorithm fits the 

training data too well and fails to predict when classification is performed on another 

set of data. To avoid that, polygons are distributed to subsets so that no polygon has 

pixels in more than one subset. After data is separated into three independent sets, 

the training set is used to train the classification algorithm, the validation set is used 

for hyperparameter tuning, and the test set is used for the final classification accuracy 

assessment. If a crop class does not have enough ground truth data in a temperature 
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zone to satisfy the needs for data partitioning, that crop is removed from the dataset 

for that temperature zone.  

A dataset without temperature zones is created to test whether dividing the study area 

into temperature zones improves classification accuracy. For this dataset, the 

validation and test subsets, as well as the training subset of each temperature zone, 

are combined. Therefore, the classifier created with this data set has the number of 

training pixels equal to the sum of the training sets of each temperature zone. The 

training, validation, and test pixel number of each class for low, medium, and high-

temperature zones and the dataset with no temperature zone separation are given in 

Table 3.3. 
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Table 3.3. Training, Validation and Test pixel number of each class for Low, 

Medium and High Temperature Zones 

 

3.7 Machine Learning 

Machine learning is a type of artificial intelligence in which the computer is 

programmed to mimic human learning to develop methods to solve problems such 

as classification and regression. In machine learning, the software is not explicitly 

programmed to have details of the processes and steps needed for the solution of a 

problem. Instead, they are programmed to learn from sample data and increase the 

accuracy of the desired results progressively.  

Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Alfalfa 1174 237 241 2413 419 471 1285 221 322 4872 877 1034

Apple 5074 1086 1089 232 34 48 5306 1120 1137

Apricot 6159 1297 1311 1794 365 402 7953 1662 1713

Bare Soil 9053 1882 1980 35679 3830 5455 12386 212 263 57118 5924 7698

Barley 7682 1624 1636 19060 4057 4075 1770 366 382 28512 6047 6093

Bean (Dry) 216 17 71 3503 711 782 3719 728 853

Cherry 231 47 52 2398 297 307 246 22 39 2875 366 398

Chickpea 426 83 99 23197 4922 4959 1061 135 165 24684 5140 5223

Cotton 31440 6666 6713 31440 6666 6713

Forest 6860 1453 1462 11920 2524 2525 4857 1020 1033 23637 4997 5020

Grape 705 138 162 9740 2069 2075 10445 2207 2237

Green House 2583 530 546 2583 530 546

Green Tea Leaves 284 57 60 284 57 60

Hazelnut 2971 597 657 673 140 145 3644 737 802

Lemon 5001 957 1066 5001 957 1066

Maize 284 16 102 27515 5676 5951 14991 3181 3200 42790 8873 9253

Mandarin 5731 1199 1198 5731 1199 1198

Melon 1430 113 454 233 46 54 1663 159 508

Oat 3020 645 649 2317 455 474 5337 1100 1123

Olive 284 13 82 5173 1092 1099 5457 1105 1181

Onion (Dry) 2807 592 608 2807 592 608

Orange 4379 870 911 4379 870 911

Peach 695 136 162 247 32 60 942 168 222

Pepper 520 58 164 876 143 208 1396 201 372

Poppy 7134 1423 1523 7134 1423 1523

Potato 1117 211 212 7711 1625 1648 125 19 26 8953 1855 1886

Rapeseed 3981 821 832 2251 157 617 6232 978 1449

Red Lentil 827 35 178 4203 665 706 5030 700 884

Rice Paddy 799 171 171 3125 644 674 14456 3023 3104 18380 3838 3949

Steppe 3403 706 722 4903 991 1027 7521 1267 1949 15827 2964 3698

Sugar Beet 622 106 143 2602 537 565 3224 643 708

Sunflower 13089 2784 2787 12530 2644 2679 25619 5428 5466

Tobacco 313 56 66 171 19 44 484 75 110

Tomato 816 149 177 3188 671 673 4004 820 850

Triticale 1361 286 288 1361 286 288

Urban 11 2 3 4932 1000 1108 5044 615 1451 9987 1617 2562

Vetch 2729 573 597 1054 217 217 3783 790 814

Water 272 32 40 1860 337 364 2055 435 438 4187 804 842

Watermelon 574 47 185 547 100 110 1121 147 295

Wheat 1234 251 255 14503 3051 3057 39419 8408 8440 55156 11710 11752

LOW TEMPERATURE ZONE MEDIUM TEMPERATURE ZONE HIGH TEMPERATURE ZONE WITHOUT TEMPERATURE ZONES
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Machine learning can be classified into two main types which are supervised learning 

and unsupervised learning. Supervised learning algorithms require labeled training 

data to be able to perform the given task, which can be finding patterns and 

constructing mathematical models (Nasteski, 2017). Supervised learning can be used 

for both classification and regression problems. In classification, prediction takes 

nominal values, while regression aims to obtain continuous results from the 

algorithm (Harrington, 2012).  

Unlike supervised learning, unsupervised learning algorithms do not require training 

data with labels. The main objective of these algorithms is to search for similarities 

in the given data and categorize the data according to these similarities (Nasteski, 

2017). Unsupervised classification is also called clustering, and categorized groups 

are called clusters. These clusters can be labeled by an experienced user in the 

postprocessing if class information is needed. Since the scope of this study is to 

obtain crop maps with crop labels for each pixel, supervised learning using ground 

truth data is performed for classification. Various supervised classification methods 

have been developed in the last decades, such as random forest (Breiman, 2001), 

support vector machines (Vapnik & Chervonenkis, 1964), artificial neural networks 

(McCulloch & Pitts, 1943), and k-nearest neighbor (Fix & Hodges Jr, 1952). In this 

study, the random forest algorithm is used for classification and feature selection. 

The computational times of algorithm training with other classifiers mentioned in 

the ‘2.2. Machine Learning Algorithms’ subchapter (ANN, SVM, Xgboost) are 

tested and it is observed that each of them took more computational time than RF, 

which would make the hyperparameter tuning process very computationally costly 

with other methods. So, RF is preferred for the crop classification since it gives high 

accuracy with less computational cost among all tested classifiers.  

3.7.1 Random Forest 

Random forests (Breiman, 2001) are machine learning algorithms that work by 

growing an ensemble of decision trees and producing predictions by averaging the 
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results of many trees. For categorical variables, random forests choose the most 

popular prediction among all the trees (Breiman, 2001). Usually, a single decision 

tree is programmed to split the feature space at points that create the maximum 

separation in terms of output classes. In Figure 3.6, a decision tree is illustrated for a 

simple classification problem with a single feature 𝑋, and three possible classes. 

 

Figure 3.7. Illustration of a decision tree with a single feature and three possible 

classes. The tree first splits the feature space at the value of 𝑥1, either predicting the 

class C1, or going to the next split. At the next split, at 𝑥2, the decision tree either 

predicts C2 or C2 

There are several tree-based methods that create many decision trees and provide a 

prediction based on the average result of the tree ensemble, such as bagging and 

boosting. Random forests differ from other tree-based methods by enforcing 

uncorrelated trees by randomly selecting candidate features for splitting, and only 

considering those features in the splitting process (James et al., 2013). This enforces 

trees to consider different sets of features for splits, resulting in uncorrelated trees 

with reduced variance (Hastie et al., 2009). The randomness in the algorithm also 

makes the classifier robust to overfitting (Breiman, 2001). Random forest classifiers 
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are also robust to outliers and noise (Rodriguez-Galiano et al., 2012b). Lastly, these 

algorithms are user-friendly as they have fewer parameters than other machine-

learning algorithms (e.g., ANN or SVM) (Zhou et al., 2016). The disadvantage of 

the random forest algorithm is that it is a black-box algorithm that will prevent us 

from understanding the classification process. However, this disadvantage is also 

encountered in other machine learning methods that are frequently used (e.g., SVM, 

ANN). 

Hyperparameters are user-selected parameters that determine the structure of a 

classifier. Two primary hyperparameters of an RF classifier are the number of 

classification trees (NTREE) and the number of classification variables used at each 

split (MTRY) (Ming et al., 2016; Rodriguez-Galiano et al., 2012b). These 

hyperparameters determine the structure of each classification tree. The number of 

classification trees reduces the chance of overfitting as it is increased and limits the 

value of generalization error  (Breiman, 2001). The hyperparameter MTRY is the 

number of features randomly selected at each node, and it must be set with an integer 

in the interval [1, M], where M is the number of classification features (Bernard et 

al., 2009). MTRY determines the level of randomization in the feature selection 

process in such a way that a smaller MTRY means stronger randomization (Bernard 

et al., 2009).  

3.7.2 Feature Selection 

When classification feature space is too large for efficient computation, feature 

selection using random forest importance can be performed. To obtain the 

importance of each feature, the Out Of Bag (OOB) sample, which is a set of data 

points that are not included in the tree-building process, is selected by the algorithm 

(Genuer et al., 2010). For each tree, the prediction error for the OOB sample is 

calculated, and then it is repeated after each feature is permuted (Han et al., 2016). 

The difference between the errors is calculated and averaged for all trees (Han et al., 
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2016). Mean decrease in accuracy for all features can be used to select features that 

contribute more to the classifier's accuracy.  

The available input feature number has increased to 212 with the addition of 

vegetation indices (VIs). Considering that the aim of this thesis is to create a high-

resolution crop map covering Türkiye, the computational cost of the classification is 

decreased through feature selection. After the dataset is processed to its final form, 

five different random forest algorithms are run using the randomForest package in R 

(Liaw & Wiener, 2002). Since different classifiers add randomness to the results, it 

is possible to have a more generalizable opinion with different classifier results. The 

average of these five random forest classifiers 'Mean Decrease Accuracy' output is 

taken for each feature and sorted from highest to lowest. Even though classifiers give 

different importance values for each feature, the order of the best performing features 

so not change significantly. Because of this, only the first 120 features with the 

highest decrease in accuracy are inspected as it is observed that after that point, 

feature importance decreases to have less contribution to accuracy. Table 3.3 shows 

the numbers of each band and index in the best performing 120 inputs for all three 

temperature zone classifiers. Table 3.4 shows the numbers of bands and indices in 

each month in the best performing 120 inputs for the temperature zone classifiers. 

As highlighted in the tables, Band 7 (Vegetation red edge), Band 8 (Near-infrared), 

and Band 8A (Narrow Near-infrared) do not contribute much to increasing accuracy. 

Also, median composites of March, September, and October have less contribution 

to accuracy when compared to other moths. These features are removed from the 

dataset before hyperparameter tuning to decrease the computational cost. After the 

elimination of these features, classification is performed using the remaining 152 

features. 
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Table 3.4. The Numbers of Each Band and Index in the Best Performing 120 Inputs 

for All Temperature Zone Classifiers and the Total of the Temperature Zones. 

Band Low Medium High Total 

B1 13 9 9 31 

B2 9 5 5 19 

B3 11 7 3 21 

B4 14 10 11 35 

B5 11 9 10 30 

B6 3 7 4 14 

B7* 3 4 2 9 

B8* 1 1 0 2 

B8A* 2 1 2 5 

B9 4 4 7 15 

B11 4 7 13 24 

B12 8 12 11 31 

NDVI 12 14 14 40 

𝑵𝑫𝑾𝑰𝑴 12 14 13 39 

𝑵𝑫𝑾𝑰𝑮 11 14 14 39 
* Features removed from the dataset 

 

Table 3.5. The Numbers of Bands and Indices in Each Month in the Best 

Performing 120 Inputs for Each Temperature Zone Classifiers and Total of the 

Zones. 

Month Low Medium High Total 

March* 11 5 5 21 

April 13 15 19 47 

May 19 20 24 63 

June 18 17 12 47 

July 16 27 18 61 

August 25 19 24 68 

September* 11 10 10 31 

October* 6 5 6 17 
* Features removed from the dataset 
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3.7.3 Hyperparameter tuning  

Before the crop mapping step, a random forest classifier that gives the best results 

on the validation set should be found. To find the best performing classifier, 

hyperparameter tuning using grid search is performed. Grid search is the process 

where each combination of hyperparameters is used for classification one by one, 

and the accuracy for these combinations is calculated to find the combination that 

gives the best accuracy. The number of classification trees (NTREE) options are 

selected to increase to 500 trees but no further because computational cost increases 

as NTREE increases. In the case of the number of classification variables used at 

each split (MTRY), apart from some generic numbers,  √𝑀 suggested by Bernard et 

al. (2009), which is also default in the randomForest package, and (log2 𝑀 + 1) 

suggested by Breiman (2001) are selected for hyperparameter tuning where M is the 

number of classification features. Even though a decrease in MTRY weakens 

individual trees, an increase in MTRY reduces the randomness and creates classifiers 

that are more likely to overfit the training data, which results in lower accuracies 

(Bernard et al., 2009; Rodriguez-Galiano et al., 2012b). So, its maximum value is 

limited to 20 to avoid overfitting. Table 3.5 shows the hyperparameters used in the 

grid search. To decide on the best classifier, the overall accuracy of each combination 

of MTRY and NTREE is calculated for the validation set. After tuning, NTREE = 

500 and MTRY = √𝑀 is selected as final hyperparameters. 

Table 3.6. Hyperparameters for Random Forest 

NTREE 1, 5, 10, 50, 100, 200, 300, 500 

MTRY 1, 2, 3, 4,5 ,6, 7, 8, 9, 10, 11, 12, 15, 20 

√𝑀 (Bernard et al. 2009), (log2 𝑀 + 1)(Breiman, 1996) 
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3.8 Crop Mapping 

After determining the optimal hyperparameters, a classifier for each temperature 

zone is created. Each raster file is divided into tiles to make the classification possible 

with limited computer memory. Later, all bands for each tile are read on R and 

preprocessed to have the same bands and same form with the training, test, and 

validation sets. Resultant data frames are classified using one of three classifiers 

according to the temperature zone every pixel is located. After separate classification 

of temperature zones, all classification results are combined in one data frame for 

each tile. Since the used predict() function of R gives only a pixel number and the 

class assigned to that pixel, the resultant data frames are later converted into raster 

format.  

3.9 Accuracy Assessment 

Accuracy assessment is necessary for land cover classifications to evaluate the 

success of the resultant map (Stehman, 1996). The Kappa coefficient, overall 

accuracy (OA), user’s accuracy (UA), and producer’s accuracy (PA) are calculated 

for this study. First of all, an error matrix is formed that compares the ground truth 

data used for validation and test data (shown in the rows of the confusion matrices 

in this study) and classified data (shown in the columns of the confusion matrices in 

this study) (Story & Congalton, 1986). After using the information provided by the 

error matrix, OA, UA, PA, and Kappa coefficient (Cohen, 1960) are calculated. A 

simple error matrix and formulas for the user’s and producer’s accuracy are given in 

Table 3.6, where each class's correctly classified pixel number is given in bold letters 

(A, D). Columns show the number of classified pixels for each class, while rows 

show the number of ground truth pixels for each class. To calculate user’s accuracy, 

which refers to how many of the classified pixels of a class actually belong to that 

class in the ground truth data, the number of correctly classified pixels for a class is 

divided by the column sum. To calculate the producer’s accuracy, which refers to 
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how many ground truth pixels are classified correctly for each class, the number of 

correctly classified pixels for a class is divided by the row sum. Overall accuracy is 

the ratio of the total number of correctly classified pixels for all classes to the total 

number of ground truth pixels. Lastly, the Kappa coefficient is a proportion of 

accuracy that takes into account the possibility of correctness taking place by chance 

(Sun, 2011), and its formulation is given in Equations 5a, 5b, 5c, 5d, and 5e where 

𝑃𝑒 is agreement between classification and ground truth happening by chance, 𝑃0 is 

the overall accuracy, 𝑃𝐶𝑙𝑎𝑠𝑠 1 is the probability that all pixels classified as Class 1 

randomly, and 𝑃𝐶𝑙𝑎𝑠𝑠 2 is the probability that all pixels classified as Class 2 randomly. 

Table 3.7. A Simple Error Matrix and Formulas for User’s Accuracy and 

Producer’s Accuracy. 

  CLASSIFIED  

   Class 1 Class 2  Row Sum Producer’s accuracy 

G
R

O
U

N
D

 

T
R

U
T

H
 

Class 1 A B  A+B A/(A+B) 

Class 2 C D  C+D D/(C+D) 

       

 Column 

Sum 
A+C B+D    

 User’s 

accuracy 
A/(A+C) D/(B+D)    

 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴+𝐷

𝐴+𝐵+𝐶+𝐷
                                                                              (4) 

𝑃𝐶𝑙𝑎𝑠𝑠 1  = (
𝐴+𝐵

𝐴+𝐵+𝐶+𝐷
) × (

𝐴+𝐶

𝐴+𝐵+𝐶+𝐷
)                                                                    (5a) 

𝑃𝐶𝑙𝑎𝑠𝑠 2  =  (
𝐶+𝐷

𝐴+𝐵+𝐶+𝐷
) × (

𝐵+𝐷

𝐴+𝐵+𝐶+𝐷
)                                                                   (5b) 

𝑃0 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴+𝐷

𝐴+𝐵+𝐶+𝐷
                                                                  (5c) 

𝑃𝑒 =  𝑃𝐶𝑙𝑎𝑠𝑠 1 + 𝑃𝐶𝑙𝑎𝑠𝑠 2                                                                                        (5d) 

𝐾𝑎𝑝𝑝𝑎  =
𝑃𝑜 – 𝑃𝑒

1 – 𝑃𝑒
                                                                                                 (5e) 
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

4.1 Random Forest Classifier Accuracy on the Test Set 

As it is mentioned in the methodology, ground truth data is divided into three subsets, 

training, test, and validation. The validation set is used for hyperparameter tuning, 

while the test set is left out until all tuning is done and final classifiers are obtained. 

In this chapter, classifier accuracies of three temperature zones, evaluated using 

measures mentioned in the accuracy assessment part of the thesis, are given. 

4.1.1 Low-Temperature Zone 

The confusion matrix obtained from Low-Temperature Zone (LTZ) classifier using 

the test set is given in Table 4.1. The number of classes in the LTZ is fewer than in 

the other zones since agricultural activities in this zone are sparser than in the others. 

Due to this sparse crop production, the training sample size is smaller than in other 

zones, and this can potentially be the reason for the lower classification accuracy 

obtained from the LTZ with OA of 89% and Kappa coefficient of 0.88. When land 

cover classes are inspected individually, barley, bare soil, rice paddy, forest, cherry, 

chickpea, water, and alfalfa classes reach PA’s higher than 90%, showing the 

classifier's success on these classes. On the other hand, wheat, maize, potato, and 

urban classes reach unsatisfying PA’s. When the confusion matrix is inspected, it 

can be seen that 94 of 255 wheat pixels are classified as barley. This misclassification 

can be explained by the similar phenological features of barley and wheat (Zheng et 

al., 2015). Another confusion occurred between maize and rice paddy as 76 of 102 

maize pixels are classified as rice paddy. Since a significant similarity between 

phenological features of these two crops is not observed in this study,  the reason 
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behind this confusion should be further examined. Urban pixels are misclassified as 

bare soil due to a lack of training data for the classifier to identify urban pixels and 

similar reflectance curves of bare soil and urban pixels (Piyoosh & Ghosh, 2018; 

Zhang et al., 2015). Despite the classes with low performance, the overall 

performance of the Low-Temperature Zone is decided to be used for crop mapping.  

Table 4.1. Confusion Matrix, Producer’s Accuracy, User’s Accuracy, Overall 

Accuracy, Cohen's Kappa, and Pixel Number of Low-Temperature Zone 

 

4.1.2 Medium-Temperature Zone 

Medium-Temperature Zone contains more data for classification than the other 

temperature zones,  and it also contains a greater number of crop types due to high 

agricultural activity in middle Anatolia. Table 4.2 shows that the classifier gives 91% 

OA with Kappa of 0.92. When land cover classes are inspected individually, it is 

seen that 16 of 35 land cover classes (bare soil, barley, chickpea, forest, green tea 

leaves, hazelnut, maize, poppy, potato, rapeseed, rice paddy, steppe, sunflower, 

tomato, urban, water) gives PA’s higher than 90% and 6 of 35 land cover classes  
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(wheat, apple, apricot, dry onion, alfalfa, olive) gives accuracies between 80% and 

90%. There are also classes that are classified with almost complete correctness (bare 

soil, rice paddy, hazelnut, forest, urban,  and water). On the other hand, some classes 

give lower user's and producer's accuracies like tobacco, pepper, and red lentils, 

which can be due to inadequate training data. Confusion between wheat and barley 

can also be observed in MTZ as it is in LTZ. Another confusion occurs between 

melon and tomato, as almost half of the melon pixels are classified as tomato pixels. 

Triticale pixels are also highly misclassified as barley and wheat, potentially due to 

the fact that triticale is hybrid of wheat and barley (Rußwurm & Körner, 2017). 

Tomato and sugar beet have much lower UA's than their PA's, unlike other classes 

since most melon pixels are classified as tomato, and more than one-third of the 

pixels classified as sugar beet belongs to the maize class. The reasons behind these 

misclassifications should be further investigated. 
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4.1.3 High-Temperature Zone 

High-Temperature Zone also includes regions with high agricultural activities like 

MTZ. Especially cotton, sunflower, and fruits like olive, lemon, mandarin, grape, 

and orange crops are cultivated in regions covered by HTZ. Table 4.3 shows that the 

HTZ classifier gives the highest accuracy among the classifiers used in the study, 

with 94% overall accuracy and Kappa of 0.94. Among 34 landcover classes, 16 

classes (sunflower, wheat, rice paddy, hazelnut, bare soil, forest, rapeseed, maize, 

cotton, potato, green house, grape, steppe, urban, water, olive) reach PA’s higher 

than 90%, and three crop classes (tomato, mandarin, alfalfa) reach accuracies 

between 80% and 90%. In addition, cotton, sunflower, wheat, rice paddy, forest, 

rapeseed, potato, greenhouse, urban, and water pixels are classified with more than 

99% accuracy. Peach, apple, tobacco, and chickpea crop pixels are mostly 

misclassified by the classifier, potentially due to the small number of training pixels 

available for these crop classes. One of the most noticeable misclassifications is 

between red lentil and wheat, as 248 of 458 red lentil pixels are classified as wheat. 

This confusion can be a result of similar growing periods over the same region 

(Southeastern Anatolia). Another misclassification occurred between citrus fruits 

orange, lemon, and mandarin, potentially due to the tree structures of the crops. The 

High-Temperature Zone classifier is decided to be used for the mapping step as it 

gives very high accuracies and Kappa coefficient.  



 

 

 

46 

  
T

ab
le 4

.3
. C

o
n
fu

sio
n
 M

atrix
, P

ro
d
u
cer's A

ccu
racy

, U
ser's A

ccu
racy

, O
v
erall A

ccu
racy

, C
o
h
en

's K
ap

p
a, an

d
 P

ix
el n

u
m

b
er o

f 

H
ig

h
-T

em
p
eratu

re Z
o
n

e 

Alfalfa

Apple

Apricot

Bare Soil

Barley

Cherry

Chickpea

Cotton

Forest

Grape

Green House

Hazelnut

Lemon

Maize

Mandarin

Melon

Olive

Orange

Peach

Pepper

Potato

Rapeseed

Red Lentil

Rice Paddy

Steppe

Sunflower

Tobacco

Tomato

Urban

Water

Watermelon

Wheat

Row Sum

PA

A
lfalfa

2
7
1

0
0

0
0

0
0

1
8

0
2
0

0
0

2
1

0
0

6
0

0
0

0
0

0
0

0
4

0
0

0
0

0
0

3
2
2

0
.8

4

A
p
p
le

0
6

0
0

0
0

0
0

0
7

0
0

1
2

0
8

0
0

1
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
8

0
.1

3

A
p
rico

t
3

0
2
7
9

0
0

0
0

1
0

2
5

0
0

6
5

1
1
9

0
1

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4
0
2

0
.6

9

B
are S

o
il

0
0

0
2
5
2

0
0

0
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

8
0

0
0

0
0

0
0

2
6
3

0
.9

6

B
arley

0
0

0
0

2
6
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1
6

3
8
2

0
.7

0

C
h
erry

0
0

0
0

0
2
9

0
0

0
5

0
1

1
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
9

0
.7

4

C
h
ick

p
ea

0
0

0
0

0
0

6
0

0
0

0
0

0
1

0
0

0
6
9

0
0

0
0

0
0

0
0

1
6

0
0

0
0

0
1
9

1
6
5

0
.3

6

C
o
tto

n
6

0
0

0
2

0
0

6
6
4
4

0
0

0
0

0
2
0

0
0

0
0

0
1

0
0

0
0

0
2

0
3
7

0
0

0
1

6
7
1
3

0
.9

9

F
o
rest

0
0

0
0

0
0

0
0

1
0
3
2

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1
0
3
3

1
.0

0

G
rap

e
0

0
2
2

0
0

0
0

2
2

0
1
9
8
6

0
0

4
0

9
0

2
6

0
0

0
0

0
0

0
0

6
0

0
0

0
0

0
2
0
7
5

0
.9

6

G
reen

 H
o
u
se

0
0

0
0

0
0

0
0

0
0

5
4
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
5
4
6

1
.0

0

H
azeln

u
t

0
0

0
0

0
0

0
0

0
0

0
1
4
0

4
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
4
5

0
.9

7

L
em

o
n

0
0

4
0

2
5

1
0

0
0

2
6

0
0

7
4
4

0
5
6

0
1
5
3

3
7

0
0

0
0

0
0

0
1
8

0
0

0
0

0
2

1
0
6
6

0
.7

0

M
aize

0
0

0
0

0
0

0
5
4

0
0

0
0

0
3
1
4
1

0
0

0
0

0
0

0
0

0
2

0
1

0
2

0
0

0
0

3
2
0
0

0
.9

8

M
an

d
arin

0
0

0
0

0
0

0
0

1
8

1
1

0
0

4
6

0
1
0
5
0

0
1
4

2
4

0
0

0
0

0
0

0
3
4

0
0

1
0

0
0

1
1
9
8

0
.8

8

M
elo

n
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

2
9

0
0

0
0

0
0

0
4

0
1
5

0
3

0
0

0
0

5
4

0
.5

4

O
liv

e
0

0
0

0
0

0
0

0
4

8
0

0
0

0
3

0
1
0
7
4

9
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1
0
9
9

0
.9

8

O
ran

ge
0

0
0

0
0

0
0

0
0

9
0

0
1
4
0

0
2
1
9

0
1
6

5
2
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
1
1

0
.5

8

P
each

0
0

0
0

0
0

0
0

0
7

0
0

1
3

2
8

2
0

1
3

5
0

0
0

0
0

0
0

0
0

0
0

0
1

6
0

0
.0

8

P
ep

p
er

0
0

0
0

0
0

0
8
3

0
0

0
0

0
0

0
0

0
0

0
1
1
6

0
0

0
0

0
6

0
3

0
0

0
0

2
0
8

0
.5

6

P
o
tato

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
6

0
0

0
0

0
0

0
0

0
0

0
2
6

1
.0

0

R
ap

eseed
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

6
1
6

0
0

0
0

0
0

0
0

0
0

6
1
7

1
.0

0

R
ed

 L
en

til
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4
5
8

0
0

0
0

0
0

0
0

2
4
8

7
0
6

0
.6

5

R
ice P

ad
d
y

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
3
1
0
2

0
1

0
0

0
0

0
0

3
1
0
4

1
.0

0

S
tep

p
e

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

1
3

0
0

0
0

0
4
9

0
1
7
9
7

0
0

0
0

0
0

8
5

1
9
4
9

0
.9

2

S
u
n
flo

w
er

0
0

0
0

0
0

0
0

0
5

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0
2
6
6
5

0
6

0
0

0
0

2
6
7
9

0
.9

9

T
o
b
acco

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1
7

1
1

0
1
6

0
0

0
4
4

0
.2

5

T
o
m

ato
0

0
0

0
0

0
0

2
1

0
3

0
0

3
0

0
0

1
0

0
1

0
0

0
0

0
4
2

0
6
0
2

0
0

0
0

6
7
3

0
.8

9

U
rb

an
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1
3

0
0

0
0

0
0

0
0

0
0

0
1
4
3
8

0
0

0
1
4
5
1

0
.9

9

W
ater

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4
3
8

0
0

4
3
8

1
.0

0

W
aterm

elo
n

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

0
0

0
8

0
2
9

0
0

6
8

0
1
1
0

0
.6

2

W
h
eat

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

2
0

0
0

0
0

0
0

0
8
4
3
5

8
4
4
0

1
.0

0

C
o
lu

m
n
 S

u
m

2
8
0

6
3
0
5

2
5
2

2
9
8

3
0

6
0

6
8
4
6

1
0
5
4

2
1
1
2

5
4
5

1
4
1

1
0
3
6

3
1
9
3

1
3
7
2

3
4

1
3
9
3

6
2
4

5
1
1
8

2
6

6
1
6

5
0
9

3
1
0
8

1
8
0
6

2
8
3
5

1
1

6
8
2

1
4
5
6

4
3
8

6
8

8
9
0
7

U
A

0
.9

7
1
.0

0
0
.9

1
1
.0

0
0
.8

9
0
.9

7
1
.0

0
0
.9

7
0
.9

8
0
.9

4
1
.0

0
0
.9

9
0
.7

2
0
.9

8
0
.7

7
0
.8

5
0
.7

7
0
.8

4
1
.0

0
0
.9

8
1
.0

0
1
.0

0
0
.9

0
1
.0

0
1
.0

0
0
.9

4
1
.0

0
0
.8

8
0
.9

9
1
.0

0
1
.0

0
0
.9

5

O
A

=
0
.9

4

K
a
p

p
a
=

0
.9

4



 

  

 

47 

4.1.4 Combined Temperature Zones 

Confusion matrices of temperature zones are combined to evaluate the accuracy of 

the whole test set. With this combined confusion matrix, it is possible to see how 

accurately the whole test data is classified with temperature zoning. The resultant 

confusion matrix is given in Table 4.4. shows 92% OA with a Kappa of 0.93. More 

than 85% of the test pixels are classified correctly for 23 of 40 land cover classes 

(barley, sunflower, bare soil, wheat, green tea leaves, rice paddy, tomato, hazelnut, 

forest, poppy, rapeseed, mandarin, maize, chickpea, cotton, green house, dry onion, 

steppe, urban, grape, water, alfalfa, olive). In addition to that, it is shown in the 

confusion matrix that more than 95% of the test pixels are classified correctly for 13 

classes (forest, green house, water, urban, bare soil, rice paddy, hazelnut, cotton, 

poppy, olive, chickpea, sunflower, green tea leaves). On the other hand, PA’s lower 

than or equal to 60% are obtained for classes peach, tobacco, triticale, pepper, melon, 

red lentil, orange, watermelon, and potato. These classes also reached lower 

accuracies in separate temperature zones except for potato in HTZ, where all potato 

test pixels are classified correctly. As discussed for each temperature zone 

previously, these misclassifications potentially occur due to the inadequate number 

of training pixels (e.g., for peach and tobacco) or similar spectral and phenological 

features of different crops. Misclassification of triticale as wheat and barley is an 

example of confusion due to similar features of different crops as it is a hybrid of 

wheat and barley. Another misclassification that is observed in the separate 

temperature zones is between wheat and barley. Even though the confusion between 

these crops decreases the accuracies for one of the classes in separate temperature 

zones, the combined PA’s of the crops exceeds 90%. These accuracy measures 

represent the correct classification of only the predetermined test pixels and not the 

whole map. Nevertheless, the accuracy obtained from the combination of test sets of 

temperature zones is satisfactory when it is compared with the results of other large-

scale studies (e.g., Yılmaz et al., 2020; Yang et al., 2019; d'Andrimont et al., 2021) and 

can give an opinion about the accuracy of the classification map.
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4.1.5 Comparison with the Classifier without the Temperature Zones  

The dataset before the division of temperature zones is also used for classification. 

The training subset of this dataset contains all training data used in each temperature 

zone. So, the total number of training pixels used in each temperature classifier is 

used for one classifier, which is also the case for test and training pixels. The 

confusion matrix for this classifier which gives 92% OA with Kappa of 0.91, is given 

in Table 4.5. In addition, Table 4.6 is given for the comparison between OA and 

Kappa coefficient obtained using the classifier without the temperature zoning and 

the confusion matrix of combined temperature zones, and Table 4.7 show the PA’s 

for each class for this comparison. OA and Kappa coefficients increase less than %1 

when the study area is divided into temperature zones (OA increases 0.81% and 

Kappa increases 0.87%). Even though, on average, the use of temperature zones 

yielded marginally appoved results, when individual classes are inspected, PA’s of 

25 classes increase with temperature zones while PA’s of 13 classes decrease with 

temperature zoning. Since the accuracies obtained using temperature zones is higher 

and the computational power and time required for the temperature zoning procedure 

is not high, dividing the study area into temperature zone is recommended.  

One unexpected result from the classification without the temperature zones is that 

even though wheat pixels have different spectral curves in different temperature 

zones,  the classification accuracy does not improve with temperature zones. It is 

also observed that classes with the highest increase in accuracy with temperature 

zones (dry beans, cherry, tomato, olive, lemon, and green tea leaves) have more than 

80% of their training pixels in one temperature zone. In contrast, classes with the 

highest decrease in accuracy with temperature zones (rapeseed, pepper) have training 

pixels that are more equally distributed to temperature zones. So, it is possible that 

classifying a crop in the temperature zone that the crop is mostly cultivated in, rather 

than classifying it with a classifier that includes areas that the crop is not commonly 

cultivated, can increase the accuracy of that crop. In addition to that, dividing the 
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ground truth data into more temperature zones decreases the training pixel number, 

which can potentially be a reason for decreased accuracy with temperature zoning 

for classes distributed to temperature zones. 
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Table 4.6. Kappa Coefficient and Overall Accuracy for Combined Temperature 

Zones and Classification Without Temperature Zones with Improvement in 

Accuracy with Temperature Zoning 

 
Combined 

Temperature Zones (%) 

Without  

Temperature Zones (%) 

Improvement with 

Temperature Zoning 

(%) 

Overall Accuracy 92.35 91.54 0.81 

Cohen's Kappa 91.86 90.99 0.87 

 

Table 4.7. Producer’s Accuracy for Each Class for Combined Temperature Zones 

and Classification  Without Temperature Zones with Improvement in PA with 

Temperature Zoning 

Class Name 
PA for Combined 

Temperature Zones (%) 

PA for Without  

Temperature Zones (%) 

Improvement in PA 

with Temperature 

Zoning (%) 

Bean (Dry) 77.02 64.13 12.90 

Cherry 75.13 63.32 11.81 

Tomato 90.82 80.59 10.24 

Olive 97.04 88.23 8.81 

Lemon 69.79 61.07 8.72 

Green Tea Leaves 95.00 86.67 8.33 

Tobacco 25.45 17.27 8.18 

Onion (Dry) 85.69 78.13 7.57 

Oat 71.06 64.38 6.68 

Peach 40.09 35.59 4.50 

Triticale 28.13 23.96 4.17 

Green House 99.82 97.44 2.38 

Bare Soil 99.36 97.09 2.27 

Alfalfa 88.39 86.27 2.13 

Mandarin 87.65 85.56 2.09 

Barley 92.94 90.87 2.07 

Apple 84.61 82.59 2.02 

Poppy 97.77 96.06 1.71 

Urban 99.38 97.93 1.44 

Watermelon 58.64 57.63 1.02 

Water 99.76 99.29 0.48 

Hazelnut 99.25 98.88 0.37 

Grape 94.41 94.19 0.22 

Cotton 98.97 98.76 0.21 

Forest 99.84 99.70 0.14 

Melon 41.93 41.93 0.00 

Rice Paddy 99.75 99.75 0.00 

Maize 94.27 94.29 -0.02 

Potato 90.72 90.77 -0.05 

Wheat 93.87 93.98 -0.10 

Sugar Beet 77.54 77.68 -0.14 
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Table 4.7 (continued) 

Class Name 
PA for Combined 

Temperature Zones (%) 

PA for Without  

Temperature Zones (%) 

Improvement in PA 

with Temperature 

Zoning (%) 

Vetch 75.06 75.68 -0.61 

Red Lentil 56.56 57.58 -1.02 

Chickpea 95.85 97.05 -1.21 

Sunflower 95.50 96.78 -1.28 

Steppe 91.81 93.16 -1.35 

Orange 57.85 59.39 -1.54 

Apricot 81.79 83.36 -1.58 

Rapeseed 93.93 98.07 -4.14 

Pepper 40.32 44.89 -4.57 

 

4.2 Visual Inspection of the Classification Map 

As mentioned in the Methodology chapter, a crop classification map is created using 

the random forest classifiers. The resultant map is given in Figure 4.1. In this part of 

the thesis, the classification map is inspected to identify visible problems. The first 

problem that draws attention is the misclassification of Salt Lake as urban and 

greenhouse, as shown in Figure 4.2. This confusion potentially occurs due to the 

similar spectral characteristics of bare soil and urban surfaces (Piyoosh & Ghosh, 

2018; Zhang et al., 2015).  

Another significant misclassification is the abundance of pixels classified as olive in 

the west. A representative part of the map is given in Figure 4.3. The reason for this 

misclassification is potentially the absence of shrub class or specifically maquis, 

which is the characteristic plant formation of the Mediterranean climate that has a 

widespread distribution along the coast and east-west oriented valleys in the Aegean 

Region (Günal, 2013). In addition to the number of olive pixels, a rectangular region 

that is visibly classified differently from its surrounding can be seen in the center of 

the image. That rectangular region does not contain as many olive pixels as the rest 

of the image. The same patchy structure is also seen in other parts of the map, and 

an example region located in the southeastern part of Türkiye is given in Figure 4.4. 

Both patches correspond to different temperature zones from their surroundings, 
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which may mean that the temperature zones should have been smoothed to have a 

more homogeneous classification.  

A large region classified as oat can be seen in the upper left corner of Türkiye in 

Figure 4.1. The region is also shown in Figure 4.5 in more detail. There is no 

information found in the literature or other sources that imply an abundant 

production of oat in the region. So, it can be concluded that the classification is 

incorrect in the specified region. The reason behind this error should be further 

investigated.  
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Figure 4.2. Misclassification of Salt Lake
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Figure 4.3. Misclassification as Olive in West Türkiye 
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Figure 4.4. Misclassification as Oat in Northeast Türkiye 

4.3 Percent Area Comparison with Province Production Data of Ministry 

of Agriculture and Forestry 

Republic Of Türkiye Ministry of Agriculture and Forestry (TMA) publishes yearly 

production reports for certain crops that contain information about which provinces 

have the most production for the year. This information is usually in terms of percent 
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area, while in some reports, it is in tons of production. In this part of the Results and 

Discussion chapter, available production data for 2019 is compared with the 

classification map. First, the pixel number of each crop is obtained using Semi-

Automatic Classification Plugin in QGis for each province. Then, crop percent areas 

are calculated and sorted by the highest percent area. Provinces with the highest 

production of a certain crop are compared with the data provided by the Ministry of 

Agriculture and Forestry, which contains data for only ten provinces with the highest 

production.   

Area comparison for sugar beet crop is given in Figure 4.6 (Republic of Türkiye 

Ministry of Agriculture and Forestry, 2020a). Percent area for the crop is similar for 

both datasets except for Erzurum and Erzincan. These provinces have a high percent 

area in the classification map even though they do not appear in the TMA data. This 

means some other crop or crops are classified as sugar beet in these provinces. 

Erzurum and Erzincan are parts of the Low-Temperature Zone, and Table 4.1 shows 

that 14 out of 255 wheat pixels are classified as sugar beet in LTZ. So, sugar beet 

production may be high in these provinces because wheat pixels are misclassified as 

sugar beet. 

 

Figure 4.5. Percent Area Comparison with Province Production Data of Ministry of 

Agriculture and Forestry for Sugar Beet 
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The potato production area comparison is given in Figure 4.7 (Republic of Türkiye 

Ministry of Agriculture and Forestry, 2021a). Even though the first six provinces 

with the highest potato pixels in the classification map are coherent with the TMA 

data, the second half of the graph shows a discrepancy between the datasets. 

Eskişehir and Yozgat have a high number of pixels in the classification map, while 

they do not appear in the highest ten provinces of TMA potato production data. Most 

of the pixels of these provinces fall into MTZ. The confusion matrix of MTZ (Table 

4.2) shows that potato reaches 89% UA, with eight grape pixels classified as potato. 

So, one explanation for the high number of potato pixels in Eskişehir and Yozgat can 

be the misclassification of grape pixels as potato. On the other hand, Bolu, Adana, 

and İzmir have a low number of pixels in the classification map, but they are in the 

highest ten provinces of TMA potato production data.  These three provinces have 

pixels that fall into all three temperature zones. When confusion matrices for LTZ 

(Table 4.1)  and MTZ (Table 4.2) are inspected, it can be seen that potato pixels are 

misclassified as cow vetches, alfalfa, oat, and apples. These misclassifications can 

be the reason for the discrepancy between the TMA data and the classification map 

for the potato class. 

 

Figure 4.6. Percent Area Comparison with Province Production Data of Ministry of 

Agriculture and Forestry for Potato 
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Area comparison between classified map and TMA data for cotton is given in Figure 

4.8. The distribution of the provinces with the highest areas is very similar for cotton, 

with a maximum of 3.7% difference, which occurs in Hatay. In the classification 

map, Hatay has large portions of missing data due to consistent cloud cover, which 

can be the reason for the lower percent area in the classification map.  

 

Figure 4.7. Percent Area Comparison with Province Production Data of Ministry of 

Agriculture and Forestry for Cotton 

Area comparison between classified map and TMA data for cotton is given in Figure 
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of the misclassification of chickpea occurs due to chickpea pixels classified as 

another crop instead of the opposite case. So, having more percent area in the 

classification map than TMA for a province that falls into HTZ is not an expected 
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and 99% PA for LTZ,  92% UA, and 98% PA for MTZ). No explanation is offered 

for the low percent areas in Adıyaman, Uşak, and Karaman. 

 

Figure 4.8. Percent Area Comparison with Province Production Data of Ministry of 

Agriculture and Forestry for Chickpea 
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248 of 706 red lentil test pixels are misclassified as wheat. This misclassification can 

potentially be the reason for the disproportionate percent areas. 

 

Figure 4.9. Percent Area Comparison with Province Production Data of Ministry of 

Agriculture and Forestry for Maize 

 

Figure 4.10. Percent Area Comparison with Province Production Data of Ministry 

of Agriculture and Forestry for Red Lentil 
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Barley production percent area comparison is given in Figure 4.12 (Republic of 

Türkiye Ministry of Agriculture and Forestry, 2020c). Percent area for the crop is 

similar for both datasets except for Yozgat, Erzurum, and Muş. These provinces have 

a high percent area in the classification map even though they do not appear in the 

TMA data. This means some other crops or crops are classified as barley in these 

provinces. Yozgat, Erzurum, and Muş have pixels mostly in LTZ, and some of the 

pixels in these provinces fall into MTZ. The confusion matrix of LTZ shows that  94 

out of 255 wheat pixels are classified as barley. Also, the confusion matrix of MTZ 

shows that  497 of 3057 wheat pixels are classified as barley. So, barley production 

in these provinces may appear higher because of the misclassification between barley 

and wheat.  

 

Figure 4.11. Percent Area Comparison with Province Production Data of Ministry 

of Agriculture and Forestry for Barley 
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TMA. Even though Diyarbakır, Şanlıurfa, Mardin, Tekirdağ, Konya, Ankara, 

Çorum, Yozgat, Sivas, and Eskişehir provinces are mutual for both datasets,  Edirne, 

Kırklareli, Balıkesir, Çanakkale, Adıyaman, Batman, Şırnak and Gaziantep 

provinces have high area percentages for wheat and these provinces do not appear in 

the highest 10 provinces of TMA wheat production data. These provinces have pixels 

in all temperature zones. When confusion matrices of all classifiers are inspected, it 

can be seen that in LTZ barley, in MTZ barley and triticale, and in HTZ barley, red 

lentil and steppe are confused with wheat. This confusion may be the reason for the 

higher and lower percent areas of the classification map compared to the TMA data. 

 

Figure 4.12. Percent Area Comparison with Province Production Data of Ministry 

of Agriculture and Forestry for Wheat 

Rice paddy production percent area comparison is given in Figure 4.14 (Republic of 
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the datasets may be due to cloud cover, spatial resolution, or other factors unrelated 

to the classifiers' performance.   

 

Figure 4.13. Percent Area Comparison with Province Production Data of Ministry 

of Agriculture and Forestry for Rice Paddy 
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CHAPTER 5  

5 CONCLUSION 

Agricultural crop cover information benefits water resources management and food 

security assessment. Creating crop maps using remotely sensed data and machine 

learning algorithms is an objective and time-efficient way of obtaining crop cover 

information. This way, it is possible to classify crop areas over a region with a limited 

amount of field observation data.  

In this study, a crop cover map of Türkiye is created for 2019. All bands except Band 

10 of Sentinel-2 Level-2A are reduced to 15-day median images from March 15, 

2019, to October 15, 2019. Apart from the spectral bands of Sentinel-2, the 

Normalized Difference Vegetation Index, Normalized Difference Water Index 

proposed by Gao (1996), and Normalized Difference Water Index proposed by 

McFeeters (1996) are calculated to be used as classification features. When 

contributions of classification features are inspected through random forest 

importance, it is observed that indices used in the study contributed to the 

classification accuracy, and they are recommended for similar studies. 

This study investigates the advantage of temperature zoning for large-scale crop 

mapping. When confusion matrices of the whole test set with and without 

temperature zoning are examined,  even though overall accuracy differs marginally, 

it is observed that more classes reach better accuracies with temperature zoning. 

Considering that the product map is a large-scale map, minor increases in accuracy 

mean better performance over a large region. In addition, although the division of 

ground truth data is disadvantageous due to the decrease in the number of training 

samples for each class, the increase in accuracy with temperature zones shows the 

importance and success of temperature zoning. The process of temperature zoning is 

not computationally costly, so for the classification of large areas that have multiple 
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climate types, temperature zoning is recommended based on the results obtained 

from this study. In addition, because the crop map patches occur due to different 

temperature zones, smoothing of the temperature zones can be recommended for 

future work. The temperature thresholds (9°C & 14°C) selected arbitrarily for this 

study can be adjusted for better accuracy for future studies. Also, the study area can 

be divided into zones according to other factors affecting crop growth or crop 

distribution, like humidity (Heuvelink & Dorais, 2005) and elevation (Machado et 

al., 2002). For future work, temperature information can be used as classification 

input as it is in the study of Zhang et al. (2022), and results can be compared to a 

classification in which temperature is used for the division of the study area.  

When classifiers are applied to the test set, the Low-Temperature Zone reached 89% 

overall accuracy with a 0.88 Kappa coefficient for 17 land cover classes. The 

Medium-Temperature Zone reached 91% overall accuracy with a 0.92 Kappa 

coefficient for 35 land cover classes, and High-Temperature Zone reached %94 

overall accuracy with a 0.94 Kappa coefficient for 34 land cover classes, giving the 

best accuracy among the classifiers. Finally, test sets of the temperature zones are 

combined, and overall accuracy of 92% with a Kappa coefficient of 0.93 is achieved 

with this combined test set. When these accuracies are compared, the accuracy on 

the test set is observed to be higher than in other large-scale crop classification 

studies (e.g., Yılmaz et al., 2020; Yang et al., 2019; d'Andrimont et al., 2021; Woźniak et 

al., 2022)  except for the study of Jiang et al. (2020), with 94% overall accuracy. Even 

the LTZ classifier, which gives the lowest accuracy, is satisfactory when the 

accuracies of other studies (Yılmaz et al., 2020; Yang et al., 2019; d'Andrimont et al., 

2021)  are considered. Another sign of the success of the crop map is the similarity 

of crop distribution with the crop area data provided by the Ministry of Agriculture 

and Forestry. It is also very important to consider that this study has 40 classes, which 

is more than any other large-scale crop mapping study, which means that there is 

more chance of crops with similar phenological and spectral similarities. So, it can 

be concluded that the methodology used in this study gives satisfactory results when 

the accuracy on the scale and content of the map is compared with similar studies. 
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Wheat and barley pixels are misclassified in LTZ and MTZ. According to tons of 

crop production data provided by the Turkish Statistical Institute (2019), among all 

products, wheat has the highest (16.9%), and barley has the fourth highest production 

percentage (6.44%). Although the misclassification of these two crops affects the 

overall accuracy of the classification map as large areas are covered by wheat and 

barley, the fact that these two crops have very similar water footprints (Batan, 2021; 

Bulut and Canbaz, 2022) shows that this misclassification would not affect water 

management practices as much as misclassification among crops with different water 

demands. 

The classification map is visually inspected to detect significant problems. One of 

the most noticeable misclassifications occurred between urban and bare soil surfaces. 

To overcome this problem, NDBI proposed by Zha et al. (2003) to map urban and 

built-up areas, dry built-up index (DBI), and dry bare-soil index (DBSI) to map built-

up and bare areas in a dry climate proposed by Rasul et al. (2018) can be utilized. In 

addition to that, training pixel number of urban class can be increased for better 

results. 

Agricultural classification can also be performed over different years using the same 

algorithm for the years Sentinel-2 Level 2 data is available, and land cover change 

maps can be obtained over multiple years. For future work, the resultant crop maps 

can be compared to other crop maps such as CORINE (Bossard et al., 2000) for the 

years that both maps are available for the mutual land cover classes. To obtain future 

crop maps, it is only necessary to wait until the end of August of that year for the 

necessary inputs to be available. Nevertheless, obtaining agricultural crop maps for 

different years can be useful for agricultural production and irrigation management. 
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