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ABSTRACT

LONGITUDINAL DATA ANALYSIS WITH STATISTICAL AND MACHINE
LEARNING METHODS IN NEUROSCIENCE

Çakar, Serenay

M.S., Department of Statistics

Supervisor: Assist. Prof. Dr. Fulya Gökalp Yavuz

August 2022, 103 pages

Exploration of brain activity under different conditions has been subject to many neu-

roscience studies. The recent developments in cognitive studies provide the oppor-

tunity to work on neural correlates of specific cognitive processes such as working

memory, decision making, response inhibition, perception, and sensation. Brain re-

sponse studies constitute multidimensional, multilevel or nested data sets formed by

different parts of the brain of individuals. Hence, it is of significant importance to

implement data analysis methods appropriate for the longitudinal structures. How-

ever, previous studies on brain response utilized methods that do not consider the

dependency, multilevel and nested structure. In this thesis, we propose to apply dif-

ferent statistical and machine learning methods on cognitive data to fill the aforemen-

tioned deficiencies. We analyze open-access data, including optical density measures

collected from 36 locations of the brain within 26 subjects through functional near-

infrared spectroscopy (fNIRS). fNIRS signals are used to measure relative changes

in oxyhemoglobin and deoxyhemoglobin concentrations. The nested structure of the

data, which is having observations from different brain regions within subjects, is

also considered. The content of this thesis provides a comprehensive implemen-
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tation and comparison of several statistical and machine learning algorithms which

are Linear Mixed Model (LMM) and its robustified version, Generalized LMM Tree

(GLMM tree), Random Effects Expectation-Maximization Tree (RE-EM tree), Un-

biased RE-EM tree, Longitudinal Classification and Regression Tree, and Gaussian

Process Boosting. According to one of our findings, the GLMM tree with nested

structure shows the best predictive performance as it provides the lowest model per-

formance metrics. However, there is a trade-off between accuracy and speed since the

speed of this algorithm is lower compared to other methods except robustified LMM.

Keywords: Cognitive Studies, fNIRS, N-back Data, Linear Mixed Model, Robust

Modeling, Machine Learning Algorithms
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ÖZ

SİNİRBİLİMDE İSTATİSTİKSEL VE MAKİNE ÖĞRENMESİ
YÖNTEMLERİYLE BOYLAMSAL VERİ ANALİZİ

Çakar, Serenay

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Fulya Gökalp Yavuz

Ağustos 2022 , 103 sayfa

Farklı koşullar altında beyin aktivitesinin araştırılması birçok sinirbilim çalışmasına

konu olmuştur. Bilişsel araştırmalardaki son gelişmeler, işleyen bellek, karar verme,

tepki ketleme, algılama ve duyum gibi belirli bilişsel süreçlerin sinirsel bağlantıları

üzerinde çalışma fırsatı sağlamaktadır. Beyin tepki çalışmaları, bireylerin beyninin

farklı bölümlerinin oluşturduğu çok boyutlu, çok düzeyli veya iç içe geçmiş veri kü-

melerini oluşturur. Bu nedenle, boylamsal yapılara uygun veri analiz yöntemlerinin

uygulanması büyük önem taşımaktadır. Bununla birlikte, beyin tepkisi üzerine yapı-

lan önceki çalışmalarda, verilerin bağımlılığını, çok düzeyli ve iç içe yapısını dikkate

almayan yöntemler kullanılmıştır. Bu tezde, yukarıda bahsedilen eksiklikleri gider-

mek için bilişsel veriler üzerinde farklı istatistiksel ve makine öğrenmesi yöntemle-

rinin uygulanmasını öneriyoruz. Fonksiyonel yakın-kızılötesi spektroskopisi (fNIRS)

aracılığıyla 26 deneğin 36 farklı beyin bölgesinden toplanan optik yoğunluk ölçüm-

lerini içeren açık erişime sahip veri setini analiz ediyoruz. fNIRS sinyalleri, oksihe-

moglobin ve deoksihemoglobin konsantrasyonlarındaki nispi değişiklikleri ölçmek

için kullanılır. Deneklerin farklı beyin bölgelerinden gözlemlerin yer aldığı iç içe veri
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yapısı da dikkate alınmıştır. Bu tezin içeriği, Doğrusal Karma Model (LMM) ve bu

modelin sağlamlaştırılmış versiyonu, GLMM ağacı, RE-EM ağacı, Yansız RE-EM

ağacı, LongCART ve GPBoost gibi bilişsel veri yapısına uygun çeşitli algoritmaların

kapsamlı bir uygulamasını ve karşılaştırmasını sağlar. Bulgularımızdan birine göre,

iç içe yapıya sahip GLMM ağacı, en düşük model performans metriklerini sağla-

dığı için en iyi tahmin performansını gösterir. Bununla birlikte, bu algoritmanın hızı,

sağlamlaştırılmış LMM dışındaki diğer yöntemlere kıyasla daha düşük olduğundan,

doğruluk ve hız arasında bir ödünleşim vardır.

Anahtar Kelimeler: Bilişsel Çalışmalar, fNIRS, N-geri Verisi, Doğrusal Karma Mo-

del, Sağlamlaştırılmış Modelleme, Makine Öğrenmesi Algoritmaları
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CHAPTER 1

INTRODUCTION

There are approximately 100 billion neurons in the human brain [1] and every neuron

should pass through almost 1015 neurons to communicate with another neuron [2].

As a non-stop process, the brain functions compose an extensive data system. Con-

sidering the brain’s complexity, the data from neuroscience studies require advanced

analysis to extract features representing brain functionality. Recent developments on

brain-computer interface techniques such as Electroencephalogram (EEG), Positron

Emission Tomography (PET), Functional Near-Infrared Spectroscopy (fNIRS) and

Functional Magnetic Resonance Imaging (fMRI) have opened up the possibility for

observing and examining changes in subjects’ brain activity. Many cognitive studies

include the behavioral and cognitive data collected via these technologies, and fo-

cus on finding out connections between these measures for individuals or group of

subjects. There exist many experimental studies which focus on explaining how the

brain functions and what kind of factors are related to specific changes in the brain

[3, 4, 5, 6, 7, 8, 9, 10, 11]. Many experimental data about the brain include several

measurements taken over time from the same experimental units. So, longitudinal

data structure is an integral part of many neuroscience studies. This type of data

is commonly used in studies across a range of disciplines from the cognitive to the

biomedical sciences. Hence, the number of algorithms to analyze such data continue

to grow and they become more widespread compared to the past.

In the scope of this thesis study, we conduct our analyses using data from n-back

task paradigm which is one of the most commonly used functional neuroimaging

study of working memory [12, 13, 14, 15]. Also, we worked on fNIRS data that is

one of the non-invasive and functional neuroimaging technique used to observe in-
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dividuals’ brain activation. With the help of fNIRS, optical density measures can be

collected through two distinct wavelengths and it is possible to estimate alterations in

the concentration of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) by the use

of Modified Beer-Lambert Law (MBLL) [16]. Although HbO and HbR concentra-

tions are obtained for the subjects, the statistical analyses are conducted to assess the

alterations in the HbO concentrations as this indicator is indicated to be the most reli-

able variable for examining the changes in regional cerebral blood flow [17]. We then

combine the data for HbO measures of each subject and experiment related variables

for analyses.

In this study, taking into account the dependency structure that is mainly ignored in

the analyzes of neuroscience data [18, 19, 20, 21] and the model flexibility brought by

using random parameters, we conduct our analyses through the approaches designed

for longitudinal data. Unlike many studies including longitudinal data structure, our

data have no missing cases. Also, multiple variables are included in the implemented

methods simultaneously to reduce the modeling error arising from conducting uni-

variate analysis several times in some statistical methods for cross-sectional data

such as t-tests and Z-scores used in neuroscience studies dominantly [22, 23, 24, 25].

Initially, Linear Mixed Model (LMM) approach is used to develop a model for ex-

plaining the variation in HbO concentration changes. Additionally, we deal with the

complexity of the neural data sets, including many levels in which some of their cat-

egorical responses are connected with the structure of brain imaging technologies.

As each subjects may behave differently during the experiment, the random intercept

term is added to the model so that alterations in HbO of each subject can differ from

each other. On the other hand, we include the indices variable having 36 distinct

categories nested within each subject with several covariance structures. Also, we

implement a robust LMM approach into neuroscience data to reduce the effects of

unusual observations in the data set.

In addition to LMM and its robustified version, we implement several ML algorithms

for predicting mean HbO response on this data. The algorithms used in this study

are Generalized Linear Mixed-Effects Model Tree (GLMM tree), Random Effects

Expectation-Maximization Tree (RE-EM tree), unbiased RE-EM tree, Longitudinal

Classification and Regression Tree (LongCART), and Gaussian Process Boosting
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(GPBoost). As the last step, we provide comparisons of all the implemented algo-

rithms. As one of our purpose is to compare their fitting performances, we evalu-

ate them through three different statistical measures which are Mean Squared Error

(MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) once the

algorithms are implemented on the data considering with and without nested struc-

ture. According to our findings, the model fitting performance of GLMM tree with

nested structure performs best considering all these three metrics.

The rest of the study is organized as follows. The following chapter includes literature

review on fNIRS and the studies that utilize statistical and machine learning methods

to analyze data from cognitive science. Then, third chapter has three subsections.

In the first subsection of this chapter, details on fNIRS modality are explained. The

second subsection includes information on LMM and its robustified version while the

last subsection describes hybrid methods for longitudinal data analysis utilized in this

thesis study. The first part of the fourth chapter explains experimental data corre-

sponding to n-back task, and implementation of different algorithms are included in

the second part of this chapter. The results derived from the methods and comparison

of algorithms are explained at the end of the same chapter. In the last chapter, the

results of the methods are discussed and important findings are emphasized. Further,

selection of the algorithm for such a data setting is considered with different circum-

stances. The study is finalized by explaining limitations of this study and our future

plan for the analysis of the same data set. The table including accuracy measures of

all subjects are presented in the Appendix.
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CHAPTER 2

LITERATURE REVIEW ON COGNITIVE STUDIES

This literature review part is composed of two different sections due to the interdis-

ciplinary characteristic of the thesis. The first part comprises the explanations for

the historical perspective of fNIRS and the brief information on how fNIRS system

acquire data from people’s scalp. This part also covers literature for the some of the

advantages and disadvantages of this technology. The second part dwells on the meth-

ods for data-driven analyses techniques as well as the issues and the limitations that

they can suffer from. The methods mentioned in the second section are also explained

in an order from simple to complex.

2.1 Historical Review on fNIRS

Neurons need nutrients such as glucose and oxygen to create cerebral activity so that

they can generate energy and action potential during the execution of a particular

task. Numerous experimental studies have been conducted to observe how people

react to specific stimuli and what kind of potential sources of the activations can

occur based on the characteristics of a certain task. Even an individual is on the rest,

the brain does not stop, and the activation continues in the human brain. The neuro-

imaging modalities have been employed to assess the changes in brain activity. fNIRS

is highlighted as one of the approaches that can reveal the hemoglobin reactions of

participants using optical probes placed on the subjects’ foreheads.

The possibility of measuring the changes of oxygenation in an adult’s cortical area

during hyperventilation with the help of Near-Infrared Spectroscopy (NIRS) was first

demonstrated by Frans Jöbsis in 1977 [26]. After 1992, scientists started to explore
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the human cerebral cortex by examining the alterations in oxygenation and hemody-

namic functions of people’s brain activity with the invention of fNIRS. Hence, the

discovery of fNIRS added another dimension to the studies on the brain mapping

research [27].

In light of the absorption spectra differences between HbO and HbR, the concentra-

tion changes of these two measures can be examined from diffusely scattered light

sources [28, 26, 18]. Fantini and Sassaroli [29] stated that the estimated measure-

ments for HbO and HbR could be obtained when MBLL is applied to the data ob-

tained from the light within the near-infrared range of the electromagnetic spectrum,

and can be absorbed by hemoglobin.

The history of the first single-site studies in which people’s brain activities are exam-

ined through fNIRS is based on 1991. The publications of these studies were realized

by four research groups belonging to distinct institutes such as Hokkaido University,

Tokyo National Institute of Neuroscience, University of Munich, and the University

of Pennsylvania. In 1995, the data collection system was improved as the scientists

were able to use a multi-channel system with ten channels (indices) at the beginning

instead of a single channel system in which there exists a poor sensitivity with a low

temporal resolution. The 10-channel system is first introduced by Hitachi in 1994,

and then multichannel systems with more than 10 channels have been developed af-

ter 1998 [27]. The development process of fNIRS modality from single channel to

multi-channel system is illustrated in Figure 2.1 which was taken from [27].
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Figure 2.1: The development of fNIRS from 1992

As a complex data collection procedure, fNIRS has several advantages and limita-

tions. [30, 31] can be examined to check out the advancements and pitfalls of fNIRS

modality in a detailed version .

While analyzing the data, knowing the pros and cons would be necessary. First of

all, fNIRS’s spatial resolution is better than that of event-related potential (ERP) and

EEG. At the same time, it has inferior spatial resolution when compared to fMRI

[32]. Also, the measurements obtained from brain regions through fNIRS technol-

ogy are shallower when compared to the results of fMRI and PET [33]. However,

fNIRS has a better temporal resolution compared to fMRI. Specifically, fNIRS en-

able scientists to obtain brain signals with a temporal resolution of 0.01 second while

this duration takes more time with fMRI. While it takes about 1-2 seconds to occur

hemodynamic response to neural activity, this characteristic of fNIRS can provide

direct measures of neural activity as the better resolution is essential to distinguish

between signal contamination resulting from the physiological changes and motion

artifacts. On the other hand, the spatial resolution of fNIRS is between 2-3 cm, and

the signal obtained through the specific channel samples a 3D volume which is not

known precisely. Hence, the signals can be recorded after fNIRS projects that vol-

ume onto a midchannel located on the scalp [34]. Additionally, it is not possible to

obtain co-registration with anatomical records of the subject’s brain through fNIRS.
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The scientists should try to collect data from a separate structural MRI and align the

location of the optodes with external skull landmarks or averages. Another alternative

solution for that problem is that it is possible to use head size-appropriate subjects to

provide co-registration using averaged skull landmarks [35]. Another advantage of

this technology is that fNIRS is a noninvasive system. Thus, there is no danger in

using this system repeatedly on individuals [32]. It is recorded as an indispensable

feature for situations requiring repeated experiments.

2.2 Review on Cognitive Studies

This section provides illustrative examples for the statistical and machine learning

analysis methods on different studies to explore brain activity in the literature.

In a hand grasping experiment including six healthy adults and six patients with brain

ischemia, the concentration changes of HbO, HbR, and total hemoglobin (HbT) in

the primary sensorimotor cortex (PSMC) contralateral are collected as a task-related

measure [36]. In this study, they utilize both NIRS and BOLD- fMRI signals. The

alterations in HbO, HbR, and HbT concentrations using NIRS in PSMC are measured.

The evoked cerebral blood oxygenation (CBO) changes measured through NIRS are

compared with the activation maps obtained through BOLD-fMRI. The Statistical

Parametric Mapping (SPM) is used to get activation maps with a Z-score higher than

1.5. One of their findings indicates an increase in the PSMC on the lesion side while

the patients performed the task. On the other hand, they also stated that this change

is associated with increases in HbO and HbT concentrations for patients with brain

ischemia, whereas a decrease is concluded for controls.

The t-test as a formal way of identifying any existing mean difference among two

conditions is also widely used in neuroscience research. For instance, in an n-back

study conducted by Herff et al. [37], the participants are expected to remember the

last one, two, or three of rapidly flashing items. This study uses fNIRS to sample

workload activity in the prefrontal cortex. T-tests with Bonferroni corrections to ad-

just type I error for each pairwise comparison are used to identify the percentage of

missed targets differences among n-back conditions. They have concluded a signifi-
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cant difference in difficulty levels of all the three n-back conditions.

Another most widely used statistical method among neuroscientists is the analysis

of variance (ANOVA). In search of Google Scholar, which relates the terms “neu-

roscience” and “ANOVA” the number of hits is seen as 28,600, representing almost

36% of the search with keyword neuroscience in 2015 [38]. ANOVA can examine

the difference in the dependent variable when there exist more than two factors or

explanatory variables. However, as the ANOVA approach is a parametric method and

uses the F-distribution, the reliability of the results of this procedure depends on a

couple of assumptions on the data. Mainly, this procedure assumes that the observa-

tions included in data should be independent of one another, which can be potentially

violated in neuroscience studies as the measures are collected from the same subjects

through time and under different conditions. For instance, it is stated in [39] that

among 314 papers examined from five most popular journals, 53% of these included

this type of data where a single subject is reviewed. One study, including eight vic-

tims of the Tokyo Subway Sarin attack and the 26 people who are not, Watanabe et

al. [40] use the fNIRS system with 24 channels. They conducted two-way ANOVA

with two factors that are diagnosis and categories during the statistical analysis of the

experimental design in which the subjects underwent a memory task using the Wech-

sler Memory Scale-Revised (WMS-R). Hence, the application of the ANOVA method

on the data collected from an experimental design within the scope of neuroscience

should be carefully examined due to the violation of independence assumption. The

same attention must be taken into account for the t-test and Z-score.

As an extension of ANOVA, repeated measures ANOVA is an alternative method for

analyzing the neural data. Although this statistical procedure can take into account

both the between and within subjects’ factors, the limitation of this method reveals

from the fact that the independence can be accounted only when each observation in

data is obtained in a different condition from the previously defined fixed conditions,

not at distinct circumstances for the same factor [38]. When the observations are col-

lected from the same subject, they tend to be more similar than those taken from the

distinct cases. This situation can yield the nested designs in which the observations

within each cluster cannot be thought of as being independent [39]. As the previously

mentioned methods such as t-test and ANOVA assume the independent observations,
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this potential failure for the neural data can threaten the validity of the results obtained

from these procedures.

LMM can simultaneously consider the crossed structure of the data and its nested

structure. Thereby, this modeling approach can control the type I error, which is not

the case for the approaches covered up to now [41]. The difference of the LMM

from the classical linear regression approach is that it includes both fixed and ran-

dom effects. When the subjects and the different conditions are introduced as the

random effects into the LMM, the model can allow us to generalize the results to the

population [42].

In a study conducted to assess walking performance and prefrontal cortical activity of

39 people with lower limb amputation (LLA) and 33 persons without LLA, LMM is

utilized. Prefrontal cortical (PFC) activity is measured using fNIRS in the experiment,

and the walking performance is evaluated with a walk-test under three distinct condi-

tions. The results of the LMM provided to detect how these measures are changing

among different groups and according to other walking conditions [43].

In a prospective study including 20 healthy adults, the participants are expected to

walk in two conditions. The study assesses whether complex walking situations are

associated with increased PFC activity. The group hemodynamic response is cal-

culated after neural data are collected from the subjects through two wireless near-

infrared spectroscopy. They implement LMM, where 20 subjects are considered as a

random effect. Their findings suggest that walking with unstable shoes engages with

increasing PFC. Therefore, the walking activity, which is unstable and unpredictable,

can increase PFC activity and they conclude that PFC can be associated with walking

stability [44].

Another study investigates how PFC activation changes among depressed subjects

and healthy controls (HC) when emotional and neutral facial expressions are pro-

vided. Manelis et al. [45] conduct two experiments to collect data on both behavioral

and neural data from different participants. The first experiment aims to check the

hypothesis that people with depression give more inaccurate responses than HC to

recognize neutral facial expressions. In the behavioral study, there are 53 subjects, of

which 33 depressed subjects suffer from either major depressive or bipolar disorders
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and 20 HC. Response accuracy and reaction time (RT) measures are first calculated

for each subject to analyze behavioral data in this experiment. To estimate group-

level effects, LMM considering depressed and HC groups as independent variables

and subjects as a random effect are conducted in R with lmerTest package using

Satterthwaite’s degrees of freedom approach to estimate denominator degrees of free-

dom required for F or t-statistic. On the other hand, in experiment 2, the researchers

gathered neural data from 35 distinct individuals (19 diagnosed with either major de-

pressive or bipolar disorders, 16 HC) through fNIRS to examine their PFC activation

while they performed the same task. LMM is implemented on the neuroimaging data,

and depressed and HC groups and three emotions such as happy, neutral and fearful

are included in the set of explanatory variables. Also, they introduce subjects as ran-

dom effect and interaction between two on PFC. The first experiment results reveal

that depressed people diagnosed with either major depressive or bipolar disorders are

slower in the task and respond less accurately in judging neutral facial expressions.

On the other hand, they conclude that lower accuracy regarding neutral emotional ex-

pressions is associated with lower activation in the right PFC for depressed subjects,

but this is not the case for HC. Also, depressed participants tend to provide lower

right PFC activation in judging happy facial expressions than HC.

In the study of exploring naturalistic interactions in parent-child dyads, Nguyen et

al. [46] analyzed fNIRS hyperscanning data. They constructed a generalized lin-

ear mixed-effects model (GLMM) including Wavelet Transform Coherence (WTC),

which is a measure for interpersonal neural synchrony, as a response variable, while

fixed effects entered in the model are conditions with levels of cooperation and indi-

vidual regions of interest with four levels which are left/right dorsolateral prefrontal

cortex (dlPFC), left/right temporoparietal junction (TPJ), and pairing indicating true

or random. Their proposed GLMM was composed of both main effect terms of these

fixed effects and interaction among these variables. The contribution of an interaction

effect among condition and pairing variables and region of interest as a fixed effect

term to the model was significant. In terms of random effects, their model exhibited a

random slope for condition variables as well as a random intercept for dyads. In their

study of the Leiden 85-plus, Spagnoli et al. [47] utilized a mixed-effect logit model

on Mini-Mental Status Examination (MMSE) index to assess the cognitive function-
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ing of adults. One of their findings indicates that subjects with higher education levels

have a lower probability of cognitive impairment, while cognitive functioning tends

to decrease when subjects are getting older.

In addition to statistical methods, machine learning (ML) algorithms are widely used

for classification and regression problems. However, we have recognized a few stud-

ies on implementing ML techniques using neural data in the literature mainly concen-

trating on classification problems. In this part, we review studies on both EEG and

fNIRS since similar ML methods are implemented to analyze these two neuroscience

modalities.

There are few studies in the literature, including the analysis of fNIRS data with ML

algorithms ([48, 49, 50, 51]). For instance, Sitaram et al. [48] used Support Vector

Machine (SVM) to differentiate left-hand imagery and right-hand imagery on the

located NIRS signals. According to their finding, the average accuracy of the SVM

classifier was 73% for all volunteers. Additionally, Girouard et al. [50] implemented

k-nearest-neighbors (kNN) with k = 3 to classify two difficulty levels of the Pacman

game and the resting state of participants on fNIRS data. The average classification

accuracy of kNN for comparing these three conditions is 76.7%. In their experimental

study on the estimation in a flight simulator using fNIRS, Gateau et al. [51] utilized

an SVM-based classifier to differentiate between task difficulty levels which are low

working memory load and high working memory load. According to their estimator

tested on 19 pilots, they reached a classification accuracy of 80%.

Additional to the studies including fNIRS, we also review EEG data analysis cases

in which ML algorithms are used. For instance, Plotnikov et al. [52] used SVM

to analyze the boredom/flow conditions of subjects while they were playing Tetris

games with different levels using EEG data. Considering the average accuracy for

all participants, their 4-class SVM provides an accuracy of 57%. Papakostas et al.

[53] investigated data on EEG signals to predict the outcome of a sequence learning

task using SVM, Random Forest (RF), Extra Tree (ET), and Gradient Boosting (GB)

algorithms. They obtain the highest average accuracy of 74% from the GB classifier.

Although the previously mentioned methods’ predictive capabilities are sufficient to

capture data information, their results are questionable due to the assumptions re-
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quired to implement these algorithms. The methods used in the mentioned studies

depend on the independency among measurement points. However, this assumption

may not hold for the repeated measurements. Violation of dependency assumption

may cause undetectable bias in predictions. To overcome the assumption limitations

of these studies, we suggest methods that consider the dependency among repeated

measures in neuroscience data analyses. In this study, we implement several methods,

including statistical techniques, ML algorithms, and their hybrid forms, appropriate

for analyzing longitudinal data structure. This is the first attempt in the literature that

ML methods considering longitudinal data structure have been used to analyze data

from cognitive studies to the best of our knowledge.
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CHAPTER 3

METHODOLOGY

In the literature, many experimental cognitive studies aim to advance our understand-

ing how nervous system functions and processes information using brain signals col-

lected from different subjects during the specific task. To this end, many researchers

adopt statistical and ML techniques to extract information from neural data.

This chapter mainly consists of four parts due to interdisciplinary aspect of this the-

sis. In the first part, we give an introduction to working principle of fNIRS modality

and information on MBLL which is used to convert optical density measures into

HbO and HbR concentration changes. In the second part, statistical and ML algo-

rithms implemented to cognitive data are explained. Firstly, the concepts involved

in LMM are explained in detail. In addition to theoretical framework of LMM, EM

algorithm, which is one of the most commonly used method to find estimates of the

model parameters in LMM, is explained. As the statistical modeling approaches re-

quire eliminating variables which do not have significant contribution to the model for

explaining the variation in response, the hypothesis testing procedures for both fixed

and random effect parameters in LMM are also explained, separately. Then, hybrid

methods used in this study are explained. At the end of this section, the statistical

measures used to compare different models are explained.

3.1 Functional Near-Infrared Spectroscopy (fNIRS)

fNIRS is a non-invasive light-based neuroimaging technique used to monitor changes

in oxygenation status of tissue. fNIRS utilizes near-infrared (NIR) light to monitor

functional neuroimaging. Functional neuroimaging indicates the use of neuroimaging
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modalities to investigate brain functionality, often with a view to finding out the corre-

lates of a certain brain region and cognitive processes. It is the use of wide variety of

research areas such as neuropsychology and cognitive neuroscience. NIR light allows

direct or indirect measurement of brain activity by evaluating changes in blood flow.

From this information, it is possible to obtain HbO and HbR concentration changes

with the help of this technology.

When brain areas become active, they need more oxygen and food. A specific protein

called hemoglobin is responsible for carrying oxygen to the brain areas. To deliver

oxygen to the brain areas quickly, blood vessels become wider and the blood flow

increases. Hence, the amount of oxygenated hemoglobin arriving to the active brain

region rises up. Further, when brain uses oxygen, the hemoglobin molecules change

form from oxygenated to deoxygenated. Villringer and Chance [54] state that func-

tional state of the brain can affect its optical properties. This concentration change

can be measured by fNIRS as HbO molecules can absorb or swallows some of the

light.

Figure 3.1: Absorption spectrum in optical window

The NIR light is the light with a wavelength between 700 and 900 nanometers (nm),

and HbO and HbR molecules absorb light in an infrared spectrum. The absorption

spectrum in NIR window can be examined in Figure 3.1 retrieved from [55]. If the

used wavelengths were lower than 700 nm then the main absorber would be biolog-
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ical tissue. If wavelengths higher than 900 nm were used, water would be the main

absorber. Hence, devices are arranged according to this situation, and many of them

emit light into the tissue with two wavelengths which are 760 nm and 850 nm as they

give the best resolution that make it possible to distinguish the concentration changes

in the oxygen-related chromophores, which are HbO and HbR, separately [56].

Figure 3.2: Banana shaped photon path of fNIRS

fNIRS modality has sources and detectors, and these two components are called op-

todes as shown in Figure 3.2 taken from [57]. The source can transmit light into the

skin while detector receives the light back from the skin.

Two types of interactions are possible when photons enter the brain tissue: scattering

and absorption [58]. Scattering can mainly cause deviation in the straight trajectory

of the light beam while absorption indicates that photons to dissipate their energy into

the medium. As can be seen from Figure 3.2, when photons are sent to the brain, they

follow a banana shaped pathway along the path from a source to a detector if they are

not absorbed. Photons are mainly absorbed by tissue due to the existence of chro-

mophores such as HbO, HbR, and water. Scattering is assumed to be constant while

absorption can be different depending on concentration changes of chromophores.

The absorbance of these constituents is small within the optical window, and this al-

lows photons to penetrate the tissue (see Figure 3.1). Considering the range of optical

window, main absorbers are HbO and HbR as compared to other tissue chromophores

such as water. Also, the differences in absorption conditions can be calculated from

the variations in HbO and HbR concentrations in the brain due to the fact that these
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two constituents have significantly different absorption spectra. This result indicates a

relation between cerebral hemodynamic changes and brain functionality through the

term "neurovascular coupling" [59]. Fortunately, functional brain imaging is possible

from this relation and the ability of fNIRS to measure concentration changes in HbO

and HbR.

In the following part, we explain MBLL which is used to obtain concentration changes

in HbO and HbR from optical density measures obtained by fNIRS modality.

3.1.1 Modified Beer-Lambert Law (MBLL)

The fNIRS data including raw intensity measures are required to be converted into

concentration changes of tissue chromophores, mainly HbO and HbR. MBLL is used

to distract changes in HbO and HbR obtained from each optode of the fNIRS tech-

nology. In this section, the formula for Beer-Lambert Law (BLL) and its modified

version included in the conversion of raw fNIRS measures are specified [60].

According to BLL, the following equation can be calculated.

log10

(
Iinc
Idet

)
= ε.C.l, (3.1)

where Iinc shows the incident light intensity, Idet is for detected light intensity, ε in-

dicates molar absorption coefficient and C is the concentration of substance in media

while l represents the path length. However, as brain tissue does not transmit the

light perfectly, this equation should be modified so that scattering can be taken into

account. This can yield us to consider MBLL [61].

A = log10

(
Iinc

Idet

)
= ε.C.DPF +G, (3.2)

where A is attenuation. The parameters such as G and differential path length factor

(DPF) are introduced in MBLL formula. G is the geometry dependent factor and it

represents the intensity lost resulted from scattering. The DPF is mainly the ratio

of averaged path length of light to the distance between source and detector. As to
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convert attenuation data into concentration changes, the distance travelled by photons

has to be considered. To this end, DPF is used to realize this conversion.

The optical density (OD) for a given wavelength, denoted by (ODλ), can be calcu-

lated from the following equation

ODλ = log

(
Iin

Iout

)
≈ ελ · c.d.DPF +G. (3.3)

The changes in optical density, represented by ∆OD, when having the same Iin in

two distinct conditions can be written as

∆ODλ = log

(
Irest

Itest

)
= εHbR

λ ·∆cHbR · d.DPF + εHbO
λ ·∆cHbO · d.DPF. (3.4)

If the fNIRS measures are obtained in two distinct wavelengths denoted by λ1 and λ2,

the formula becomes

 ODλ1

ODλ2

 =

 εHbR
λ1 · d.DPF εHbO

λ1 · d ·DPF
εHbR
λ2 · d.DPF εHbO

λ2 · d.DPF

 ∆cHbR

∆cHbO

 . (3.5)

The concentration changes for HbR and HbO denoted by ∆cHbR and ∆cHbO, respec-

tively, can be found from the Equation (3.6) if the 2x2 matrix is non-singular.

 ∆cHbR

∆cHbO0

 =

 εHbR
λ1 · d.DPF εHbO

λ1 · d ·DPF
εHbR
λ2 · d.DPF εHbO

λ2 · d.DPF

−1  ODλ1

ODλ2

 . (3.6)

3.2 Linear Mixed Model (LMM)

LMM is an advanced regression model used for repeated measurements, including

neuroscience experiments. Unlike classical linear regression models that include only

fixed effects and the assumption of independent or uncorrelated errors, LMM can be

constructed by incorporating random and fixed effects for correlated and dependent

data. LMM does not have the disadvantages of ANOVA, which is often used in
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neuroscience studies (see [40]). More clearly, nested/hierarchical structures can be

included in LMM and the results for the subject or conditions can be generalized to

the population with the help of random terms.

LMM relates the response variable to the random and fixed effects and the general

matrix form of this model for each unit, i, can be expressed in Equation (3.7) [62].

Y i = X iβ︸︷︷︸
fixed

+Ziui + εi,︸ ︷︷ ︸
random

ui ∼ N(0,D),

εi ∼ N (0, Ri) ,

(3.7)

where Yi represents the (ni × 1) vector of observed response values for the ith indi-

vidual. Xi having the dimension of (ni × p) denotes the fixed effects design matrix

including the observed values for p predictors on each subject while β represents a

(p × 1) column matrix of unknown population parameters which are assumed to be

the same for each subject in the data. That is why they are called fixed effects. On the

other hand, Zi denotes an (ni × q) matrix of the observed values of q covariates and

ui is a vector of q unknown random effects. The within-group error term, εi, consists

of the vector of errors for each subject and it has dimension of (ni × 1). This model

assumes that the errors and the random effects are independent of each other for a

given subject.

The errors are assumed to follow a normal distribution with 0 mean and variance of

Ri, that is εi ∼ N(0, Ri). Ri is a positive definite symmetric matrix and different

structures can be assumed for this covariance matrix. Unlike fixed effects, random

effects (ui) which can reflect the variability among individuals for each regressor

in Zi, are assumed to come from a statistical distribution. They follow a normal

distribution with mean 0 and variance-covariance matrix of D. This symmetric and

positive definite D matrix has the dimension of (q × q), where q represents the total

number of random effect terms included in the model. Hence, it can be written as

ui ∼ N(0, D).

Depending on the assumptions that the random effects ui and random errors εi are
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independently normally distributed and they are linear in LMM model, we assume

that each response vectors, Yi, comes from a normal distribution with mean Xiβ and

covariance matrix Vi = ZiDZ
′
i+Ri. The marginal covariances of the Yi vector can be

represented in the off-diagonal elements of Vi matrix having dimension of (ni × ni) .

Hence, the marginal distribution of Yi can be expressed as Yi ∼ N(Xiβ, Vi).

The maximum likelihood estimation (MLE) and restricted maximum likelihood esti-

mation (REML) methods are used to estimate the fixed-effect parameters, β, and the

parameters in the variance-covariance matrices, shown with θ [63].

As the MLEs can provide the values for the unknown parameters, which can make the

observed data most likely to occur under the distributional assumptions, the likelihood

function for an observed data Yi = yi should be derived. The marginal distribution of

response Yi which has multivariate normal distribution, f (Yi | β, θ), is given by

f (Yi | β, θ) = (2π)−ni/2 det (Vi)
−1/2

× exp
(
−0.5 (Yi −Xiβ)

′ V −1
i (Yi −Xiβ)

)
,

(3.8)

where det is used to refer to the determinant [63]. On the other hand, the vector θ

includes the variance-covariances included in both D and Ri matrices.

The likelihood function for observed data Yi = yi for the i− th subject can be stated

as follows:

Li(β, θ) = (2π)−ni/2 det(Vi)
−1/2

× exp(−0.5(yi −Xiβ)
′V −1

i (yi −Xiβ)).
(3.9)

When all m individuals are considered, the corresponding likelihood function which

will be the product including the contribution of each m subjects (i = 1, 2, . . . ..,m)

can be derived as follows:

L(β, θ) = ΠiLi(β, θ) = Πi[(2π)
−ni/2 det (Vi)

−1/2

× exp
(
−0.5 (yi −Xiβ)

′ V −1
i (yi −Xiβ)

)
].

(3.10)

When the logarithm is applied, the log-likelihood function, l(β, θ), can be defined as
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l(β, θ) = lnL(β, θ) = −1

2
n ln(2π)− 1

2

∑
i

ln (det (Vi))

− 1

2

∑
i

(yi −Xiβ)
′ V −1

i (yi −Xiβ) ,
(3.11)

where n represents the total number of observations in the data and the function ”ln”

corresponds to the natural logarithm [63].

3.2.1 Expectation Maximization (EM) Algorithm in LMM

The MLEs of LMM include other unknown parameters. This consequent is required

to use an iterative algorithm to implement LMM. We use the EM algorithm, intro-

duced by [64], which is numerically stable and guarantees to have the parameters in

the desired parameter spaces.

The EM algorithm consists of two steps which are Expectation and Maximization. In

the E-step, the algorithm computes the conditional expectation of the log-likelihood

of the complete data given the current parameter estimates. M-step is based on maxi-

mizing the conditional expectation derived in the E-step to obtain updated parameter

estimates. The algorithm starts with the initial values for the unknown parameters and

the E-step and M-step iterations continue until the convergence. As a result, when the

algorithm stops, the obtained values for the unknown parameters are supposed to

maximize the likelihood function [65].

At this point, the η = (β, θ) is considered the matrix of all unknown parameters in

the LMM. The random effects are treated as unobserved data for implementing the

EM algorithm. Let k represents the iteration number, k = 0, 1, ... and the function

calculated in the k − th iteration of E-step of EM algorithm is given by

Q
(
η | η(k)

)
= E

(
logL(η | y, u) | y, η(k)

)
= E

(
n∑

i=1

[log f(yi | ui, β, Ri) + log f(ui | D) | yi, η(k)]

)
,

(3.12)

where the conditional expectation is derived from the conditional distribution f
(
ui | yi, η(k)

)
.
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The E-step provides the computations of the following sufficient statistics for the pa-

rameters included in the matrices of variance-covariance, D and Ri in LMM.

n∑
i=1

E
(
ε′iεi | yi, η̂(k)

)
=

n∑
i=1

[
ε̂
(k)′
i ε̂

(k)
i + tr

(
Cov

(
εi | yi, η̂(k)

))]
, (3.13)

n∑
i=1

E
(
uiu

′
i | yi, η̂(k)

)
=

n∑
i=1

[
û
(k)
i û

(k)′
i + tr

(
Cov

(
ui | yi, η̂(k)

)]
, (3.14)

where

ε̂
(k)
i = yi −Xiβ̂

(k) − Ziû
(k)
i ,

û
(k)
i = D

(
η̂(k)
)
Z ′

iV
−1
i

(
η̂(k)
) (
yi −Xiβ̂

(k)
)
,

Vi
(
η̂(k)
)
= ZiD

(
η̂(k)
)
Z ′

i +Ri

(
η̂(k)
)
.

The final forms for the parameter estimators are derived as follows.

β̂(k+1) =

[
n∑

i=1

X ′
iV̂

−1
i

(
η̂(k)
)
Xi

]−1 n∑
i=1

X ′
iV̂

−1
i

(
η̂(k)
)
yi,

σ̂(k+1)2 =

∑n
i=1E

(
ε′iεi | yi, η̂(k)

)∑n
i=1 ni

,

D̂(k+1) =

∑n
i=1E

(
uiu

′
i | yiη̂(k)

)
n

, k = 0, 1, . . .

The iteration of the procedures mentioned above continues until the convergence, and

then the MLE of η can be obtained when the convergence is realized [65].

Once the data set is obtained, empirical Bayesian estimators specified in Equation

3.15 are used to determine the estimates of the random effects.

ûi = E (βi | yi, η̂) = D̂(η̂)Z ′
iV

−1
i (η̂)

(
yi −Xiβ̂

)
. (3.15)

Using the estimates of the random effects obtained by the formula given in Equation
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3.15, it is possible to make subject-specific inferences. For instance, the estimated

response for the i− th subject is shown in the following equation [65].

ŷi = Xiβ̂ + Ziûi. (3.16)

After the definition of LMM and EM for LMM, the following sections provide de-

tails related to the hypothesis testing procedures for the elimination of insignificant

random and fixed effect terms.

3.2.2 Hypothesis Testing Procedures in LMMs

In statistical modeling applications, hypothesis tests play an essential role in deciding

which variables significantly contribute to the model. The hypotheses as statements

about the model parameters in LMM can also be denoted by H0 (null hypothesis) and

H1 (alternative hypothesis). In the formulation of test statistics, the term “reduced

model” can be used and it can indicate the model where the statement under H0 is

assumed to be true. In other words, the reduced model, which contains only param-

eters not being tested, can be compared with the full model, including all the model

parameters. In the following two sections, Likelihood Ratio Test (LRT) procedures

for both fixed and random effects are mentioned.

3.2.2.1 Likelihood Ratio Tests

The likelihood functions of two distinct models can be compared within the context

of LRTs so that one can assess the significance of single or multiple regression co-

efficients. As a test statistic, the following formula (Eq. 3.17), based on comparing

the likelihood functions of the nested and reference models, can be defined in the

applications of hypothesis tests for the fixed effect coefficients within the scope of

LMMs.

In the following equation, the notationsLreduced andLfull correspond to the likelihood

of the reduced and full model, respectively. The full model is the model that includes
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all variables of interest in data while the reduced model is constructed after removing

the coefficients of variables whose contributions are in our interest.

−2 log

(
Lreduced

Lfull

)
= −2 log (Lreduced ) − (−2 log (Lfull )) ∼ χ2

df . (3.17)

The critical value or p-value approaches can decide the stated hypotheses. In the

critical value approach, the calculated test statistic can be compared with the cor-

responding quantile value from the χ2 distribution having degrees of freedom that

equals the difference in the number of fixed-effect parameters between the full and

reduced model. The larger test statistic can provide evidence against the null hypoth-

esis and one can continue with the full model in this case. On the other hand, the

p-value can be calculated using the calculated test statistic and the obtained value can

be compared with the predetermined significance level. The null hypothesis states

that the reduced model fits the data as well as the full model and the full model can

be rejected when the p-value is lower than the significance level.

In this part, we first briefly mention how to check the significance of the fixed-effect

parameters, and then the procedures for examining the significance of random-effect

parameters will be explained.

When we consider two models with the same random effects with distinct sets of

fixed-effect parameters, LRT can be used to compare the likelihood functions of re-

duced and full models. The ML method instead of the REML algorithm should be

used to apply LRT on only the fixed-effect parameters. The likelihood functions are

calculated after the models with and without the parameters to be tested fitted based

on the ML method. Then the corresponding test statistic can be obtained from the

Equation 3.17. When the likelihood values of both the full and reduced models are

close to each other, the test statistic will take a small value indicating that the reduced

model can work as well as the full model. So, one can continue with the reduced

model. On the other hand, the large test statistic value indicates evidence against the

statement under the null hypothesis. The full model should be used as there can be

stated that the contribution of the regressors under the null hypothesis to the model is

significant.
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LMM models during testing procedures of the fixed effects are required to use the

ML method as a fitting algorithm. Unlike testing the significance of fixed effects, the

model should be fitted with the REML method if one would like to test whether to

include random effects into the model or not, given that the fixed-effects are the same

[63]. Then, anova function can be used to compare log-likelihood values of both

reduced and full models.

In the application of this procedure in the R programming language, the gls function

fits marginal linear models without random effects using REML estimation. Then

the model including the random effect term can be constructed with lme function

[66]. After fitting these two models, the significance of a random effect term can be

assessed through anova function.

3.3 Robust Estimation of Linear Mixed-Effects Models

In this method, the scoring equations of the log-likelihood derivatives are robustified.

The residuals and spherical random effects with bounded functions are replaced with

the scoring equations to obtain robust estimates. In M-estimation terminology, the

bounded functions are called ψ-functions, the derivatives of ρ-function. The Huber

function that takes quadratic form for the values around zero and becomes linear

for the values outside ±k is a ρ-function in which k is called a tuning parameter.

The choice of this tuning parameter can change the efficiency and robustness of the

estimates. Specifically, the larger tuning parameter choices yield more efficient but

less robust estimates, whereas smaller cases result in more robust but less efficient

estimates. The most common choice is fixing the asymptotic efficiency at 95% of the

ordinary estimates. Hence, k = 1.345 for the Huber function. By default, ρ-function

used in the rlmer is the smoothed Huber ρ-function which is defined in Equation

3.18.

ψ(x, k, s) =

x |x| ≤ c

sign(x)
(
k − 1

(|x|−d)s

)
otherwise

, (3.18)
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where c = k − s
−s
s+1 and d = c − s

1
s+1 . The value of s = 10 is recommended as the

properties of both Huber function and the smoothed Huber function become identical

asymptotically when this value is taken.

The weights can be obtained from the following formula for a given ψ function.

w.(v) =

ψ(v)/x if x ̸= 0

1 if x = 0
, (3.19)

Although rlmer function does not provide fitting LMMs with specific correlation

structures for random effects such as compound symmetry, the tuning parameter can

be controlled to fit a robust model which includes correlation parameters. Specifi-

cally, while k is taken as 2.28 for the models with simple covariance components,

this value becomes 5.11 for variance components with correlations for the smoothed

Huber function to obtain 95% efficiency [67].

3.4 Hybrid Methods for Longitudinal Data Analysis

3.4.1 Generalized Linear Mixed-Effects Model Trees (GLMM trees)

GLMM trees were first proposed by Fokkema et al. [68] in 2018 so that one can

detect interactions among the subgroups of treatments in clustered data. These mod-

els compose of two parts, namely global and local. The global part of the GLMM

includes the random effect terms with all observations. On the other hand, the local

part constitutes the fixed effect terms estimated locally, indicating that the algorithm

partitions the observations in the data set based on the additional variables known as

partitioning variables. Then, it estimates a fixed-effect model in each of the separated

portions of the data [68]. The GLMM trees algorithm has the flexibility of detecting

subgroups as this method works based on model-based recursive partitioning (MOB)

introduced by Zeileis et al. [69] in 2008. MOB assumes that a single global model

such as a generalized linear model (GLM) may not fully describe the data. Hence,

it looks for any possible partitioning of the data with additional regressors to detect

whether there is a better fit in each partition cell. To illustrate the working principle of
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MOB, we will first handle the procedure for the model with only a fixed effect term.

Then, we will explain the method for the clustered or longitudinal data structure.

3.4.2 Model-based recursive partitioning

The logic of MOB is that the data may not be described well by a single global

model such as GLM in some cases, and the data can be partitioned concerning any

other additional covariates. In such cases, it can be possible to find better fits in each

partition for the data. For instance, one can fit a global GLM to examine the treatment

effect on the response, but this effect will be the same for all observations as the fitted

model can exhibit the same coefficient for the indicator of the treatment variable. On

the other hand, the partition of data concerning other regressors can be needed to

get separate models through different sets of observations in data if distinct groups

exhibit different treatment effects.

We can write down a single global GLM which can model the expected response yi

given treatment covariate xi through a link function as follows:

g (µi) = x⊤i β, (3.20)

where xi corresponds to a matrix of predictor values for i − th data observation, β

is the vector including the fixed effect regression coefficients. In this formulation,

µi, which is the expected response given the predictor xi, is linearly modeled by xiβ

through a link function of g() . The best-fitting may not be obtained with such a single

model, especially when partitioning variables exist. This model cannot fit data well

if there are potential partitioning variables as it considers the same effect/coefficient

on the response for all data points. The MOB algorithm can take the other regressors

into account while finding partitions of data, and it can fit better local models. The

MOB algorithm utilizes parameter stability tests on a set of partitioning variables to

achieve this.
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3.4.2.1 Including random effects

As it is mentioned in the previous sections, using mixed-effects model would be more

appropriate for the analysis of clustered or repeated data structure. The GLM ex-

tended from (3.20) for the analysis of such data sets can be written as follows:

g (µi) = x⊤i β + z⊤i b. (3.21)

If the model is composed of only a random intercept, zi represents a unit vector with

M components, of which the m− th entry (m = 1, ...,M) is 1 while the other entries

take a value of 0. Them represents the cluster of the i−th observation. Furthermore, b

corresponds to a random vector of length M, of which eachm−th element represents

the random intercept for the m− th cluster.

In Equation (3.21), although the clustered structure of data can be accounted by the

random part, the global fixed-effects part x⊤i β may not fit data well. Considering this

limitation of the mixed-effects model, Fokkema et al. [68] proposed the GLMM tree

method. In their proposed method, fixed-effect coefficients can also partition the data.

g (µij) = x⊤i βj + z⊤i b. (3.22)

As can be seen from the Equation (3.22), the fixed-effect coefficients βj constitute

the local part, and the values of these terms depend on the terminal node j while the

random effects b corresponds to the global part of the algorithm.

The steps for estimating the Equation (3.22) using the GLMM tree algorithm are

listed below.

Step 0: Set r and all values b̂(r) to 0.

Step 1: Set r = r + 1. Fit a GLM tree by using z⊤i b̂(r−1).

Step 2: Estimate the mixed-effects model g(µij) = x⊤i βj + z⊤i b with terminal node

j(r) from the GLM tree in Step 1. Get posterior predictions b̂(r) from the fitted model.

Step 3: Repeat Step 1 and Step 2 until convergence.
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As the random effects are initially unknown, the algorithm starts by equating them

to 0. In each iteration, the algorithm recursively fits the GLM tree in step 1 so that

fixed and random effects can be re-estimated in step 2. There is no partitioning on

the random effects, but these are estimated globally. On the other hand, the algorithm

estimates fixed effects locally in each partition cell.

The GLMM trees can be applied using lmertree function under glmertree

package in R [68]. The glmertree package utilizes package partykit [70] to

obtain partitions and lme4 package [71] to fit the mixed-effects model.

3.5 Random Effects Expectation-Maximization Tree (RE-EM Tree)

RE-EM tree was first released by Sela and Simonoff [72]. The most general LMM

form can be specified to exhibit functional form for the relation between fixed effect

terms and response. The underlying model with the distributional assumptions on the

error term and random effects can be expressed as:

yit = Zitbi + f (xit1, . . . , xitK) + εit,

εit ∼ N(0, Ri),

bi ∼ N(0, D).

(3.23)

In this formalization, while i stands for the longitudinal data objects (i = 1, 2, . . . ., n),

the indices of t(t = 1, ..., Ti) is used to represent repeated measures which are es-

pecially taken through time. That is, objects in the data exhibit multiple observa-

tions in which each observation is represented by a vector of K variables xit =

(xit1, ..., xitK)
⊤. The function, f , is introduced to allow different forms for the re-

lation among variables included as fixed effects and numerical response. Also, the

known design matrix, Zit, corresponds to the random effect terms and bi is the un-

known random effect coefficient to represent the subject-specific effects.

To fit the model in Equation (3.23), one can use the MLE technique with numerical

algorithms such as EM. According to the structure and characteristics of the data set to

be analyzed, these traditional methods may suffer from some problems. For instance,
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the LMM assumes a parametric form for the function, f (where f = Xβ). However,

this assumption might be too restrictive because f is generally unknown, and fitting

a linear model on the data may not be the best choice. It is important to note that

the linear model may not be flexible enough to approximate the real relation between

response and explanatory variables. So, it may result in some bias in the estimate

of f . Sela and Simonoff [72] proposed a method named Random Effects/EM tree, or

RE–EM tree. Their method for longitudinal or clustered data is reminiscent of the EM

algorithm, and it can estimate f by incorporating random effects, bi. In this method,

distinct observational units corresponding to the same subject may be included in

different nodes. The advantage of the RE-EM tree is indicated as having a flexible

structure on the fixed effects compared to the traditional LMM approach. We now

move one step further by explaining the estimation methodology of the RE-EM tree

method.

The steps for estimating the RE-EM tree are given as follows:

Step 0: Initialize by setting the estimated random effects, b̂i, to zero.

Step 1: Iterate the following two steps of the algorithm until the estimated random

effect terms converge which is controlled based on alteration in the likelihood or

restricted likelihood function to be less than determined tolerance value:

a. Fit a regression tree approximating the function, f , given that the target variable is

yit −Zitb̂i while attributes are expressed as xit = (xit1, ..., xitK) for (i = 1, 2, . . . ., n)

and t(t = 1, ..., Ti). Extract a set of indicator variables I (xit ∈ gp) where gp ranges

over all of the terminal nodes using the estimated regression tree.

b. Estimate the mixed effects model, yit = Zitbi+I (xit ∈ gp)µp+εit and get b̂i from

the fitted model.

Step 2: Replace the estimated response value at each terminal node of the fitted tree

with the predicted mean µ̂p obtained from the mixed-effects model in Step 1b.

The function REEMtree under the package with the same name in R can be im-

plemented to fit RE-EM tree. This function utilizes both rpart() from rpart

package [73] to construct a regression tree, and lme() from nlme package [74] to
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fit LMM part of the RE-EM tree.

3.6 Unbiased regression trees for longitudinal and clustered data

The RE–EM tree explained in the previous section can incorporate a mixed-effects

regression model with tree-based algorithms. One of the advantages of this technique

is that the RE-EM tree can assume a general structure for the relation between the

fixed effects and response. This technique is more robust to parametric assumptions

than the models that can handle random effects and regression trees with only fixed

effects. The RE-EM tree’s drawback is that it utilizes CART as a tree-based algorithm

to split data into nodes. CART, which was firstly introduced by Breiman et al. [75], is

one of the widely used algorithms to construct regression tree models for longitudinal

and multivariate data. However, many researchers argue that the CART algorithm has

limitations, such as overfitting and selection bias. Although pruning trees can avoid

the overfitting problem, unsatisfactory results can be obtained due to the variable

selection (splitting) bias of CART, in that CART tends to select the variables which

have a large number of split points [76].

Fu and Simonoff [76] revised the RE-EM tree algorithm and suggested using the

conditional inference tree (ctree) of Hothorn et al. [77] rather than using CART in

Step 1a to construct an unbiased regression tree method for longitudinal and clustered

data which can overcome bias problem.

The implementation of unbiased RE-EM tree can be realized through REEMctree

function from party package in R.

3.7 Longitudinal Classification and Regression Tree (LongCART)

The LongCART algorithm, which is firt proposed by Kundu and Harezlak [78], uti-

lizes baseline characteristics as partitioning variables. This algorithm can be utilized

for the analysis of longitudinal data, including several distinct subgroups as the cor-

rect model parameter values of the mixed-effects can alter among these subgroups.

For instance, Raudenbush [79] argued that although it may be applicable to assume
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that all subjects in the study exhibit growth in a common function, the magnitude

of this change might differ among these different observation units. Apart from the

differences in the magnitudes, some studies may include the results changing their

directions over time. To illustrate such a situation, Raudenbush [79] gave an example

of an analysis of depression and argued that while some patients might experience

a decrease in their depression level, some of them might have increasing depression

levels. In such cases, a common parametric form assumption cannot capture the sub-

group differences in the changes. As Kundu and Harezlak [78] argued, their proposed

method of LongCART can overcome such limitations by taking a two-step approach

into account. This method can control type I error while giving a decision on further

splitting at each node, and it can be applied to situations when the data exhibit mul-

tiple measurements taken from the same subject at specific time points. To control

the type I error rate; the LongCART algorithm decides whether there is a need for a

further split through parameter instability tests at each node. If this decision is that the

data can be divided further, the algorithm decides on the optimum number of splitting

points.

The working mechanism of the LongCART algorithm can be summarized as follows:

Step 1. Conduct instability test on each partitioning variable separately at a predeter-

mined significance level, α. The significance level is subject to adjustment to control

type I error rate for pairwise comparisons.

Step 2. Stop the algorithm if there is no need for a further split at significance level

α. Otherwise, select the variable having the smallest p-value for further split and

continue to step 3.

Step 3. At each possible cut-off point of the selected partitioning variable, extract the

improvement in the goodness of fit criterion such as deviance. Given that XG is the

partitioning variable chosen, the gain in the goodness of fit criterion can be calculated

at the cut-off point c(g) through the following two steps:

a. Obtain two splits in which one group includes the observations from individuals

with XG ≤ c(g) while the other consists of the observations from subjects with XG >

c(g).
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b. Estimate longitudinal model on (i) all the subjects in the node, (ii) the subjects with

XG ≤ c(g) and (iii) the subjects with XG > c(g). Obtain the goodness of fit criteria of

these three models. Then, denote them as GOFall, GOFI , and GOFII , respectively.

c. Extract the improvement in goodness of fit criterion calculating GOFI +GOFII −
GOFall.

Step 4. Extract the cut-off value, which maximizes the goodness of fit measure im-

provement, and use this value for binary splitting.

Step 5. Repeat these four steps for each non-terminal node.

3.8 Gaussian Process Boosting

Boosting [80] is a general technique that can improve the predictive capability of an

ML algorithm. Apart from increasing the predictive performance of the algorithm,

boosting using trees as base learners can deal with multicollinearity, non-linearities,

discontinuities, and high-order interactions. Also, it makes the method robust against

potential outliers, and it can be used for data sets with missing values in explanatory

variables without losing any information [81]. On the other hand, there are some

limitations to boosting, such as the observations assumed to be independent among

different data points. The algorithm cannot work accurately when the residuals ex-

hibit a correlation. Besides the correlation structure in data, boosting has difficulty

with the categorical variables on many levels.

Rasmussen [82] define Gaussian Process as "a collection of random variables, any fi-

nite number of which have (consistent) joint Gaussian distributions." These processes

can allow flexible non-parametric models to provide superior predictive accuracy and

make probabilistic predictions. As mentioned in the previous sections, mixed-effects

models have widely used techniques for panel or longitudinal data. The observations

may exhibit correlation due to the grouping structure of such data sets. These models

can handle categorical variables with high cardinality.

The mean is assumed to be either zero or a linear function of given independent vari-

ables in the Gaussian process and mixed-effects regression models. The structured
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residual variation can be modeled using a Gaussian process with zero-mean and a

mixed-effects model. However, assuming both zero-mean and linearity is generally

not realistic, and it may be required to relax these assumptions to get high predictive

performance [81].

Considering the difficulties above in methods, Sigrist [81] proposed a technique that

can combine tree-boosting with the Gaussian process and mixed-effects model. The

gpboost package in R can be used to implement this method.

3.8.1 Combining Gaussian process and mixed-effects models with boosting

The mixed-effects model with a flexible functional form to represent the relation be-

tween fixed effects and response can be expressed as in Equation (3.24).

y = F (X) + Zb+ ε,

b ∼ N(0,Σ),

ε ∼ N
(
0, σ2In

)
,

(3.24)

where y = (y1, ..., yn)
⊤ ∈ Rn is response variable, F (X) ∈ Rn represent the fixed

effects, b ∈ Rm are the random effects with covariance matrix Σ ∈ Rm×m and ε =

(ε1, ..., εn)
⊤ ∈ Rn is the error term. Also, n represents the number of observations, m

represents the dimension of the random effects, and p represents the number of fixed

effects. For the case of grouped random effects, Z matrix in Equation (3.24) is an

incidence matrix Z ∈ {0, 1}n×m and this matrix relates group-level random effects to

data points.

The likelihood function, which is also known as the risk function, for the model given

in (3.24) to be optimized, can be written as follows:

p(y | F, θ) =
∫
p(y | b, F, θ)p(b | θ)db,

where

p(b | θ) = exp

(
−1

2
bTΣ−1b

)
|Σ|−1/2(2π)−m/2,

p(y | b, F, θ) = exp

(
− 1

2σ2
(y − F − Zb)T (y − F − Zb)

)(
2πσ2

)−n/2
.
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In this formulation, F = F (X) and θ ∈ Θ ⊂ Rq represents all variance and covari-

ance parameters. According to the representation in [81], the function ”F (·)” will be

used to denote the function F evaluated at X . Further, it will be assumed that θ1, the

first element of θ, equals to variance, σ2.

The marginal distribution of the response variable is given by

y ∼ N(F (X),Ψ), Ψ = ZΣZT + σ2In. (3.25)

Hence, the negative log-likelihood of this model is

L(y, F, θ) =
1

2
(y − F )TΨ−1(y − F ) +

1

2
log det(Ψ) +

n

2
log(2π). (3.26)

The following reparametrizations will be used for the ease of representations:

y ∼ N
(
F (X), σ2Ψ†) , (3.27)

where

Σ† = Σ/σ2 and Ψ† = Ψ/σ2. (3.28)

The goal is to minimize the risk function for this given negative log-likelihoodL(y;F ; θ).

R(F (·), θ) : (F (·), θ) 7→ L(y, F, θ)|F=F (X) , (3.29)

As stated before, F(.) is a function at X, and its function space will be denoted by H.

According to the algorithm proposed by Sigrist [81], the following joint minimizer

can be found combining the Gaussian process with LMM:

(F̂ (·), θ̂) = argmin
(F (·),θ)∈(H,Θ)

R(F (·), θ). (3.30)

3.8.2 Boosting when θ is fixed

In this section, the algorithm will be explained under the assumption of a fixed

variance-covariance matrix, θ. When θ is given, boosting algorithm performs in an

iterative manner updating the estimate Fm−1(·) by adding fm(·) to its current value.

Fm(·) = Fm−1(·) + fm(·), fm ∈ S, m = 1, . . . ,M, (3.31)
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In gradient boosting, fm(·) is found by the least-squares approximation

fm(·) = argmin
f(·)∈S

∥∥Ψ−1 (y − Fm−1)− f
∥∥2 , (3.32)

where f = (f(X1), ...., f(XM))T . For a fixed θ, Newton boosting finds the minimizer

of a second-order functional Taylor approximation

fm(·) = argmin
f(·)∈S

(y − Fm−1 − f)T Ψ†−1

(y − Fm−1 − f) . (3.33)

There is also a hybrid gradient-Newton boosting method which combines these two

methods. In this case, the base learners are assumed in the following form:

f(·) = h(·;α)Tγ, h(·;α), γ ∈ RK , α ∈ RQ, (3.34)

where α and γ represent parameters of the base learners and h(·;α) : Rp → RK .

This denotes the regression tree case in which α is for the splitting variables and split

locations while γ includes the values for terminal nodes. Further, h(·;α) represents

a function that maps the predictors to terminal nodes of the tree. In such a case, this

boosting method initially learns αm using gradient boosting defined in (3.32), and

then it learns γm using a Newton boosting step defined in (3.33). An explicit form of

the generalized least squares solution is given by

γm =
(
hTαm

Ψ†−1hαm

)−1
hTαm

Ψ†−1 (y − Fm−1) , (3.35)

where hαm ∈ Rn×K is the matrix with elements (hαm)ik = (h(Xi;αm))k, i =

1, ...., n, k = 1, ...., K.

The update in (3.31) can be damped by a factor ν to get higher predictive perfor-

mance:

Fm(·) = Fm−1(·) + νfm(·), ν > 0, (3.36)

where ν is called the learning rate.

3.9 Model Performance Metrics

In the literature, there are several measurements to evaluate the goodness of models

with continuous response. They can measure the model performance by compar-
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ing the predicted values of the dependent variable with actual response values. In

this study, we examine the Mean Squared Error (MSE), Root-Mean-Squared Error

(RMSE), and Mean Absolute Error (MAE) results of different methods to compare

their fitting performances. In principle, although these mentioned performance mea-

sures can evaluate the model performance using the train data used to develop the

algorithm, it is also possible to get these metrics based on the newly seen test data set.

We demonstrate the only train data set approach results after explaining the model-

performance measures in the next section.

MSE is based on the averaged squared residuals, which are the differences between

the fitted and actual response values. In other words, MSE can be defined as

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (3.37)

where ŷi is the fitted response value while yi is the observed response for the i − th

observation, and n represents the number of data points.

Although MSE is a widely used metric for evaluating the model performance, this

measure can be affected by the outliers, which are observations showing different

fashion than most of the remaining data points, as it gives them the equal weight of

all differences. In other words, MSE is sensitive to the data points with large residuals.

RMSE is the squared version of MSE as given in the following equation.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2 (3.38)

While MSE shows the averaged squared error, RMSE demonstrates the average devi-

ation between the predicted dependent variable and observed response in the model.

RMSE is used more often since this measurement has the same unit as the response

variable, unlike MSE, which is measured in the squared unit of the dependent vari-

able.

MAE measures the averaged magnitude of residuals. The formula of this measure is

given as follows:
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MAE =
1

n

n∑
i=1

|ŷi − yi| (3.39)

Unlike MSE, which is calculated by squaring the errors, MAE takes the absolute

difference between the fitted and actual response values. This is the principal reason

why MAE is known to be more robust against outliers compared to MSE.
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CHAPTER 4

DATA ANALYSIS

In this section, we first give an introduction to data. Then, pre-processing steps im-

plemented on raw data in MATLAB are explained. After explaining these steps,

the exploratory data analysis results are provided to get insight about the individual

variables and their relations with each other. At the end of the following section,

we investigate the fitting performances of the different methods through n-back data.

The implementations of the mentioned algorithms are realized in R programming

language. After constructing the models, MSE, RMSE, and MAE values are esti-

mated to evaluate their performances. Additional to these metrics, the speed of the

implemented methods is assessed through elapsed time obtained by system.time

function in R.

4.1 Data on n-back task

An open-access EEG-fNIRS data include brain activity measurements of 26 healthy

participants who performed three distinct cognitive tasks in order of n-back, discrim-

ination/selection response (DSR) task, and word generation (WG) tasks [83]. The

demographic characteristics of data indicated that there were nine males and 17 fe-

males in the experimental study while their ages were ranged from 17 to 33 years.

Also, the mean age of all participants was reported as 26.1, with a standard deviation

of 3.5 years. There were no reported participants who have been diagnosed with any

neurological, psychiatric, or other brain-related diseases which can potentially affect

the results.

The collection of fNIRS data set during each task was realized with 16 sources and
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16 detectors system that was placed at frontal, motor, parietal, and occipital areas of

the subjects. According to the international 10-5 system, the fNIRS channels were

created around AFpz, AFp3, AFp4, AFp7, AFp8, AF1, AF2, AF5h, AF6h, AF7, AF8,

AFFz, AFF3h, AFF4h, AFF5h, AFF6, FCC3, FCC4, C3h, C4h, C5h, C6h, CCP3,

CCP4, CPP3, CPP4, P3h, P4h, P5h, P6h, PPOz, PPO3, PPO4, PO1, PO2, and POOz.

In addition to the fNIRS data set for the n-back task, including neural activity obtained

through NIRScout technology at a sampling rate of 10.4 Hz, behavioral measures of

26 different experimenters who participated in the n-back task are provided.

The subjects are presented with a series of numbers as visual stimuli. In the experi-

ment, participants are asked to respond when the correct number matches the previ-

ously seen in 2 or 3 trials is displayed on the screen. As behavioral data, the response

times are recorded on each trial even if the corresponding participant did not give

the correct answer for the stimuli. Hence, it is also possible to check the accuracy

measures of the subjects as the data set include correct and incorrect responses.

Figure 4.1: Modality of single n-back task

In this study, only data for the n-back task is analyzed. In the n-back dataset, three

sessions correspond to each subject’s behavioral measures. Participants are provided

with nine equally distributed 0-, 2-, and 3-back tasks in each session in different

orders. As can be seen in Figure 4.1 which was taken from [83], each n-back session

begins with a 2 s instruction showing whether the task is 0-, 2- or 3-back task. After

a short beep (250 ms), the task period starts and the numbers are seen on the screen.

The timing order of each of these nine series is constructed with 20 s instruction,

40 s task period, and 20 s resting state. A short beep with the same duration is also

provided to indicate the end of the task period additional to the ‘STOP’ word, which
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displays the duration of 1 s on the screen. After this sound, participants switch to

a rest period. Also, a fixation cross appears on the screen when the participants are

in the resting state. In the n-back task period, the random numbers ranging from

0 to 9 were displayed on the screen for 0.5 s and then fixation cross appeared with

a duration of 1.5 s. In each task period, there were 20 trials in which the targets

occurred with a probability of 30% while non-targets have 70% of a chance to be

seen. During the 0-back, participants are asked to press either button numbered 7

with their right index finger or button 8 with their right middle finger so that the

analyst can be ensured that the subjects are engaged with the experiment. In other

2- and 3-back conditions, the number 7 button was considered a target button, while

non-target cases were represented with a button of 8. Unlike the 0-back task period,

experimenters should remember the previous numbers during 2- and 3- back tasks.

They were asked to press the target button if the seen number is matched with the

2 or 3 preceding digits, respectively. If the displayed number is not matched with

the previously seen one, they should press the non-target button. The participants are

provided with a resting period when each session ends to relax, and their brain state

can return to a baseline.

This experiment is designed and conducted by Shin et al. [83]. The open raw data can

be found at http://doc.ml.tu-berlin.de/simultaneous_EEG_NIRS.

After gathering the raw data from the source, MBLL is implemented to convert op-

tical density measures to HbO and HbR concentrations. Biologically, an increased

blood flow occurs to the active brain region [84]. This results in a decreasing HbR

and increasing HbO concentrations [85] which are indirect indicators of cortical ac-

tivity. Only HbO concentrations are analyzed since Hoshi [17] stated that they are

the most reliable measures to work on alterations in regional cerebral blood flow.

Then Butterworth low-pass filter is implemented on the data, including concentration

changes with the help of butter() function in MATLAB. The observations corre-

sponding to each block (i.e., 0-, 2-, and 3-back) were separated with the command of

proc_segmentation().

The rest of the analyses such as LMM and ML algorithms are implemented in R

programming language [86]. The variable names with their descriptions are listed in

Table 4.1.

43

http://doc.ml.tu-berlin.de/simultaneous_EEG_NIRS


Table 4.1: Variable Descriptions

Variable Name Variable Type Description

Values Numeric Indicating HbO values

Accuracy Numeric The ratio of correct responses over all responses

MeanRT Numeric Mean response time on each n-back condition

Age Numeric The age of each subject

n-back Factor Indicating 0-, 2- and 3-back condition levels

Subject Factor ID for each of the 26 subjects

Gender Factor Indicating whether the subject is Female or Male

Session Factor Indicating the levels for each three sessions

Indices Factor Indicating the locations of fNIRS channels

The descriptive statistics for quantitative variables in terms of both demographical

and experiment-related variables in this data set are summarized in Table 4.2.

Table 4.2: Summary statistics of the variables

Values Accuracy MeanRT Age

Min. −4.39× 10−3 51.85 0.31 17.00

1st Qu. −4.37× 10−4 80.62 0.64 24.00

Median 5.31× 10−5 89.06 0.81 26.00

Mean 4.84× 10−5 88.18 0.82 26.00

3rd Qu. 5.14× 10−4 96.29 0.98 28.00

Max. 8.68× 10−3 100.00 1.28 33.00

In addition to the descriptive statistics for quantitative variables, MeanRT and Ac-

curacy measures of each subject for three different sessions of the experiment are

obtained. The distribution of MeanRT according to n-back conditions for distinct

sessions of the experiment can be seen in Figure 4.2 for a randomly selected sub-

ject. Also, error bars are added on each bar to indicate the variability in the obtained

measures. According to bar plot in Figure 4.2, highest MeanRT results are occurred

at 3-back condition in all sessions. Specifically, the highest MeanRT is obtained as

0.96±0.24 and this result belongs to the 3-back condition in the first session. Also, 2-

and 3-back conditions have higher MeanRT compared to 0-back condition in which
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participants do not have to remember the previously seen numbers.

Figure 4.2: Distribution of MeanRT for Subject-6 (randomly selected)

The rest of the MeanRT plots of all subjects can be examined at https://github.

com/statserenay/Subjects_MeanRT_Plots. As 0-back condition is con-

sidered as a control state for detecting whether the subject is dealing with the task,

Accuracy results corresponding to only 2- and 3- back conditions are illustrated in

Table A.1 in Appendix. According to this table, the accuracy is higher in 2-back

condition compared to 3-back for most of the subjects.

Further, the distribution of the response variable indicating mean HbO measures is

obtained for each subject in the data. The resulted plot is shown in Figure 4.3. Ac-

cording to this plot, there are some differences in the distribution of response variable

for distinct subjects. To illustrate, while the distribution has a symmetric shape for

subject-7, it exhibits a right-skewed shape for subject-3.
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Figure 4.3: Distribution of Mean HbO Values for each Subject

In Figure 4.4, a 3-dimensional scatter plot is shown to examine how the response

variable is associated with MeanRT and Accuracy together. This graph indicates that

the mean HbO values differ for each subject and fluctuations between observations.

Up to now, exploratory data analysis results on variables for randomly selected sub-

ject or all subjects in the data are covered. In addition to these findings, the rela-

tions between quantitative independent variables and response are examined for each

different indices. The relation between response with Accuracy and MeanRT vari-

ables taken from different locations (i.e., the location of optode) within all the sub-

jects are obtained, and can be found at https://github.com/statserenay/

SubjectsRTandAccuracyvsY. We only illustrated the resulted plots for a ran-

domly selected subject in Figure 4.5 and Figure 4.6. The different characteristics

from these plots are observed. This first information kept from the graphs pointed out

that the nested structures of the locations within the individuals should be added to

the model, and the intra-observational dependency structures should be included in

the analysis. In addition, the apparent differences observed in the graphs according

to the n-back labels are a sign that this variable may also have significant effects on

the analysis results.
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Figure 4.4: Relation between MeanRT, Accuracy and Mean HbO Values

4.2 Implementation of the Methods

As mentioned before, the n-back task includes three distinct types of activity. In

0-back condition, the experimenters must only press a specific button without con-

sidering previously seen numbers. This condition is considered to detect whether

the subject is dealing with a task or not. In this data set, all experimenters seem to

engage with the task as their accuracy measures are 100% whenever they are in the

0-back condition. Hence, we conduct our analyses without considering the observa-

tions corresponding to this condition. The data used in the statistical analysis steps

are obtained after taking mean HbO values coming from the same n-back conditions

in each session. In this data, there are 5616 observations in which each subject has an

equal number of data points.

The two distinct models in which one only includes random effect with subject vari-

able while the other takes the nested structure of subject within indices are considered

for the analyses. The implementation of statistical modeling approaches and hybrid

methods are mentioned in the following sections. After implementing the algorithms

on data, we examine three goodness of fit measures which are MSE, RMSE, and

MAE. Then we summarized their results of to compare the fitting performances of
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Figure 4.5: Relation between Accuracy and Mean HbO Values for Indices within

Subject-6 (randomly selected)

different methods.

4.2.1 Linear Mixed Modeling HbO

In the modeling part, we follow a step-by-step approach which is illustrated in Figure

4.7. All steps and model selections are explained in detail throughout this section.

In Figure 4.8, differences in HbO values between subjects are obvious and so adding

a random effect associated with the intercept for each subject is planned to capture the

between-subject variation in modeling. Also, measurements are collected from sev-

eral channels which are nested within each subject. As a result, a full model including

all fixed effects is constructed, considering the subject variable as a random effect

with the nested structure of indices corresponding to the location of fNIRS channels

(Step 1). LRT approaches are applied to identify significant fixed and random effects

in the model. Then, variance inflation factor (VIF) values are calculated to check

the high correlation between independent variables, so-called multicollinearity. As

a result of these calculations, it is worked with independent variable groups with a

VIF value below 10 (Step 2). The model without the nested structure is tested and

decided to continue with the nested structure (Step 3). After deciding on the signifi-

cant random and fixed main effects, interaction terms are also added into the models

48



Figure 4.6: Relation between MeanRT and Mean HbO Values for Indices within

Subject-6 (randomly selected)

and the procedure is repeated to identify significant terms (Step 4). Furthermore, four

different covariance structures, which are Autoregressive process of order 1 (AR(1)),

Continuous AR(1), a general positive definite matrix and a compound-symmetric ma-

trix for the random effects are employed and these models are compared using Akaike

Information Criterion (AIC). The final decision is given based on the model having

the lowest AIC (Step 5). The model procedure is finalized with diagnostics.

Specifically, the variables nback, Session, Accuracy, MeanRT, Age and Gender are

included as fixed effects in a full model in which indices are nested within subjects.

The argument random = 1 | Subject/indices is specified into lme func-

tion to fit a model with nesting structure of the random effects. In this specification,

the random = 1 indicates that the random effects are associated with the intercept

term. The first term specified in the right side of the vertical bar is the random factor

at the highest level (i.e., Subject), while the variable given after a forward slash (i.e.,

indices) corresponds to a factor whose levels are nested within the levels of the first

one. The specification of the model formula (Eq. 4.1) is given as follows:
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Figure 4.7: Modeling scheme

valuesijk = β0 + β1 × nback3ijk + β2 × MeanRTijk+

β3 × Ageijk + β4 × Gendermaleijk + β5 × Session2ijk+

β6 × Session3ijk + β7 × Accuracyijk

+u0k + u0j|k + εijk,

(4.1)

where valuesijk represents the value of the dependent variable for observation i from

channel j nested within subject k; β0 represents the fixed intercept and β1 through β7

represent the fixed effects of the covariates which are nback3, MeanRT, Age, Gen-

dermale, Session2, Session3 and Accuracy; u0k is the random effect associated with

the intercept for subject k; u0j|k is the random effect associated with the intercept for

channel j within-subject k; and εijk represents the error term. The summary of the

full model is illustrated in Table 4.3. According to individual p-values, one can con-

clude that there is a significant difference in mean HbO values among 2- and 3- back

conditions when all the other variables are fixed at 5 % significance level. Further,

MeanRT contributes to the model significantly once we include all the demographi-

cal and experimental-related variables. When the significance of the dummy variables
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Figure 4.8: Plot of the MeanRT and HbO values for each subject according to differ-

ent indices

for the levels of Session variable is checked, we can conclude there is a statistically

significant difference between the first session and the second one, while the third

session does not have significant difference in mean HbO compared to the first ses-

sion.

The reduced model given in Equation 4.2 is constructed after removing the fixed

effects having p-values higher than the predetermined significance level, 0.05. In this

stage of the analysis, Session, Accuracy, Age and Gender are removed from the full

model and there is concluded that the reduced model performs as well as the full

model according to LRT (χ2
5 = 9.45, p−value = 0.093).

valuesijk = β0 + β1 × nback3ijk + β2 × MeanRTijk+

+u0k + u0j|k + εijk,
(4.2)
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Table 4.3: The summary table for the full model

Term Value Standard Error t value p value

(Intercept) −1.05× 10−3 6.58× 10−4 −1.59 0.11

nback3 8.60× 10−5 2.77× 10−5 3.11 0.002*

Session2 6.46× 10−5 2.70× 10−5 2.40 0.02*

Session3 5.77× 10−6 2.92× 10−5 0.20 0.84

Accuracy −1.81× 10−6 2.33× 10−6 −0.78 0.44

MeanRT 7.70× 10−4 1.18× 10−4 6.52 0.00*

Age 2.02× 10−5 2.29× 10−5 0.88 0.39

Gendermale 8.64× 10−5 1.71× 10−4 0.51 0.62

∗p < 0.05

After deciding on the significant fixed effects for this model, the model with only a

random intercept for each subject (Eq. 4.3) is constructed.

valuesij = β0 + β1 × nback3ij + β2 × MeanRTij+

+u0j + εij,
(4.3)

Then, LRT is applied for comparing the model with and without nested structure in

random effects. The result indicated that the model including indices nested within

the subject levels performs better compared to the model without nested structure

(χ2
1 = 29.12, p−value < 0.0001). Then, the significance of Subject term is con-

cluded after comparing the models with only fixed effect with the one including only

random intercept for each subject (χ2
1 = 1035.5, p−value < 0.0001). The interac-

tion between n-back and MeanRT is added to the model in Equation 4.2 and the new

model given in Equation 4.4 is constructed. However, this term was not significant

according to the result of LRT. Hence, the model including n-back and MeanRT in

which indices are nested within subjects is reached.

valuesijk = β0 + β1 × nback3ijk + β2 × MeanRTijk+

+β2 × nback3ijk × MeanRTijk

+u0k + u0j|k + εijk,

(4.4)
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The models obtained are fitted under the assumption of no within-group correlations.

Considering that the response values obtained from the same fNIRS channels, which

are nested within-subjects, may exhibit dependency among distinct subjects, the mod-

els are constructed under the assumption that HbO values from the same channels of

different subjects have a specific correlation structure. For instance, HbO concentra-

tions taking similar values from Subject15 and Subject22 on the channel coded as

AF7 can be detected from Figure 4.8. So, it seems better to look for a model which

takes the within-group correlation into account. These models are compared accord-

ing to their AIC values and the one with the lowest AIC is preferred over the others.

To this end, first, the correlation argument is added in the lme function correspond-

ing to the within-group correlation structure. As is stated before, as a default, the

lme function fits a model including no within-group correlations. We fit the models

changing this correlation structure and select the final model comparing their AIC val-

ues. The results indicating that the argument used in the lme function to change the

correlation structure and obtained AIC values are summarized in Table 4.4. The AIC

of the model assuming no within-group correlation is −64177.27, while the model

assuming a general positive definite matrix is −64714.36. The final decision is the

model having a general positive definite matrix.

Table 4.4: AIC values with different correlation structures

Correlation Structure Argument AIC

No within-group correlation Default −64177.27

Autoregressive process of order 1 (AR(1)) corAR1() −64251.95

Continuous AR(1) corCAR1() −64251.95

A general positive definite matrix corSymm() −64714.36

A compound-symmetric matrix corCompSymm() −64175.27

To sum up, the results of the selected model (Eq. 4.4) fitted with a correlation structure

of a general positive definite matrix are summarized in Table 4.5.

From Table 4.5, the intercept is interpreted as the mean of oxyhemoglobin concentra-

tion when all the predictors have a zero value. In other words, the estimated intercept

term, −5.7 × 10−4 is the mean HbO value for a 2-back condition in which MeanRT
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Table 4.5: The summary table for the selected model

Term Value Standard Error t value p value

(Intercept) −5.7× 10−4 1.05× 10−4 −5.37 0.00*

nback3 1.95× 10−4 5.59× 10−5 7.51 0.00*

MeanRT 6.08× 10−4 8.76× 10−5 6.94 0.00*

∗p < 0.05

is zero. However, as there is no case having a MeanRT as zero, interpreting the

estimated intercept term can cause an extrapolation problem for our case. N-back

conditions are statistically significant in the model (p-value=0.00). The estimated

coefficient of the n-back condition in this model indicates that the mean HbO concen-

tration is 1.95× 10−4 unit higher for 3-back condition compared to 2-back condition

for a fixed MeanRT. In addition, the mean HbO values tend to increase by 6.08×10−4

corresponding to each one-unit increase in MeanRT for a fixed n-back condition.

For a more detailed investigation, the residual plots belonging to this model are il-

lustrated in Figure 4.9 and fitted versus actual response values plots for each subject

are shown in Figure 4.10. We observe the residuals around zero with several outlier

points in Figure 4.9. The plot of the estimated intercept terms for the random effect

of Subject is located in Figure 4.11.
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Figure 4.9: Box-plot of residuals for each subject

Figure 4.10: Plot of the fitted versus actual values for LMM
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Figure 4.11: Plot of the estimated random intercept terms for subject variable

Also, the estimated intercept terms corresponding to the random effect of the in-

dices nested within subjects for Subject-6 (randomly selected) is illustrated in Figure

4.12. The plots of random effect estimates for all subjects are available at https:

//github.com/statserenay/RandomEffectsNested.
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Figure 4.12: Plot of the estimated random intercepts for the indices nested within

subject-6

4.2.2 Robustified Linear Mixed Modeling with HbO

In many applications of statistical modeling on real data sets, it is almost inevitable to

observe some cases which behave differently compared to the rest of the data points.

This situation is also the case in many neural data set as there may exist data points

for irregular experimental units.

According to the residual plots given in Figure 4.10, some of the observations may

be outliers which can potentially affect the underlying assumptions for the LMM ap-

proach, such as normality. Hence, the robust LMMs with and without nested structure

are also constructed using rlmer function from robustlmm package in R [67]. The

robustified models include only nback and MeanRT which were significant accord-

ing to LMM to assess the effect of unusual observations. Further, considering that

we have chosen LMM with a specific correlation structure, the robust model is con-

structed taking k = 5.11 as well as with default covariance structure (i.e., k = 2.28)

of rlmer function in R. As log-likelihood and information criteria measures such as

AIC are not supported by this function, we use sigma values to compare the models
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with these two cases. The model constructed with default covariance parameters are

selected as it has lower sigma value (6.91× 10−4) compared to the model when k is

taken as 5.11 (7.26× 10−4).

The resulting residual plots obtained from the robust LMM with nested structure are

shown in Figure 4.13 and Figure 4.14.

Figure 4.13: Plot of the fitted values vs. residuals from robust LMM with weights

A darker color indicates the observations with a low robustness weight w. From

Figure 4.13, some of our observations seem to get low robustness weights com-

pared to the other observations. The fitted values versus the actual response values

plot in which the observations are colored according to their weights resulting from

the robust regression approach are also obtained for each subject and shown in Fig-

ure 4.15. According to this plot, for instance, while some of the individuals mostly

have weights closer to 1, the weights for the observations of some of those are ar-

ranged to decrease their effect on the estimated regression coefficients. We can again
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Figure 4.14: Normal Q-Q vs. residuals plot of robust LMM with weights

conclude that considering a robust model seems reasonable. The estimated fixed ef-

fects obtained from robust regression are almost the same as the ones obtained from

the LMM, which gives the weight of 1 to all data points. So, similar interpretations

concluded before according to the results of the fitted LMM can be made from the

estimated fixed effect coefficients of the robust model. Although similar estimations

were obtained from both models for the fixed effects, the robust model may be pre-

ferred as it would reduce the effect of outlier observations. In contrast, when the

performance metric results of LMM with its robustified version from Table (4.7) are

compared with each other, we can conclude a better fitting performance when LMM

is implemented to the data as it provides lower results. On the other hand, while we

conclude differences in two model versions including with and without nested struc-

ture when LMM fit is obtained, there is no difference in these two cases for robustified

model. When the output of robustified LMM is examined, the estimated variance of
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the intercept term corresponding to indices:Subject is almost 0. Hence, this model

concludes no significant contribution made by nested structure of data. This situation

can also be observed from Figure 4.13, as the plot does not demonstrate a random

pattern.

Figure 4.15: Plot of the fitted vs. actual values for each subject with weights

60



4.3 Hybrid Methods

Hybrid methods represent the models merging LMM with ML algorithms to improve

prediction accuracy. First, we have implemented GLMM tree method, both using

subjects as only random effects and indices nested within subjects. The resulted re-

gression trees are shown in Figure 4.16 and Figure 4.17, respectively. We first men-

tion the interpretation of the general tree structure and then use this terminology to

comment on the plotted GLMM tree for the model without and with the nested struc-

ture. In a tree data structure, the variables are represented as the nodes of a tree, and

these variables have a significant association with the response, mean HbO values. In

any tree structure, the variable in the origin of the splitting can be called a root node,

while the nodes at the end of this data structure are known as terminal nodes. Also,

each line connecting any two nodes is called an edge. At first, we use this terminology

to interpret the part of the GLMM tree shown in Figure 4.16.

This data representation shows that Accuracy, which corresponds to the ratio of cor-

rect answers to overall responses given by experimenters, is a root node as this vari-

able initializes the process. In other words, the most crucial variable to split the data

is Accuracy which is not significant according to LMM results. First, the algorithm

splits the tree with Accuracy at 98.147, forming two heterogeneous groups. Consid-

ering the first condition, we can conclude that if Accuracy is less than or higher than

a value shown in the edge, which is 98.147, the data can be partitioned accordingly.

Since the experimental design requires remembering the numbers in a short time, it

does not require a tremendous cognitive effort. So accuracy is significantly high.

The second split assigns observations in Session 1 and 2 to the left branch, and then

that group is further subdivided by MeanRT. Observations in Session 3 are assigned

to the right branch. That can be explained by the fact that there is no significant dif-

ference in mean HbO values among the first and second levels of the session variable,

while Session 3 differs from these two levels.

Following a similar strategy with the other variables: Age, MeanRT, Gender, and n-

back, the tree is finalized by the terminal nodes, which can be seen from the last line

of this tree in Figure 4.16. Overall, the tree stratifies or segments the observations
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into 19 regions of predictor space. From this part of the tree, the distribution of HbO

values is grouped into each of these terminal nodes. For instance, we can conclude a

right-skewed shape for the distribution of HbO values observed at Node 2, while the

observations in Node 7 exhibit a more symmetric distribution. Similar conclusions

can be drawn from the remaining partitions of data observed in other nodes. We

now compare GLMM trees with nested and without nested data structures. Similar

to the case seen without nested data structure in Figure 4.16, Accuracy is the most

crucial variable in determining HbO values, and the Session variable follows it in

Figure 4.17, represents with nested structure results. In both plots, Session 1 and 2

are in one branch while Session 3 is in another branch. This can be resulted from

decreases in cognitive efforts of participants in Session 3 compared to the first two

sessions. Unlike the pattern without the nested data structure, the fourth split occurs

with the Gender variable rather than MeanRT. Following a similar strategy to interpret

the GLMM tree, it is possible to compare the splitting variables and edge values

for the rest of the GLMM tree given in Figure 4.17 with the corresponding parts of

Figure 4.16.
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As a second hybrid method, RE-EM tree is constructed with the help of REEMtree

function from REEMtree package in R. After estimating RE-EM tree, unbiased

RE-EM tree is constructed through REEMctree function from party package in

R [77]. The codes for REEMctree function are available at https://pages.

stern.nyu.edu/~jsimonof/unbiasedREEM/REEMctree.r. The func-

tions to construct the RE-EM tree and its unbiased version provide to implement

the methods incorporating different correlation structures. The results for the RE-

EM tree are summarized in Table B.1 and Table B.2 in Appendix. When AIC values

are compared for the trees with different correlation structures, AR(1) is selected for

the model without a nested structure, while compound symmetry is preferred for the

nested model. After deciding on the models with the lowest AIC values, performance

measures are summarized in Table B.5 to compare the models with the default cor-

relation structure in the REEMtree function in R. The same procedure is repeated

for the Unbiased RE-EM tree, but log-likelihood values are compared since AIC is

not available in the R function. The results are displayed in Table B.3 and Table B.4.

According to these tables, log-likelihood is highest when compound symmetry is as-

sumed for the model without nested structure, while AR(1) provides better results for

the model with nested structure. Hence, the performance metrics are obtained for the

Unbiased RE-EM tree with these correlation structures, and the results are presented

in Table B.6. As seen in Tables B.5 and B.6, there are no big differences among

the performance measures of the methods with different correlation structures for the

RE-EM tree and its unbiased version compared to the cases using the default corre-

lation structure. Hence, the results for hybrid methods are provided with a default

correlation structure in the next section.

In the next step, we have implemented the LongCART algorithm. The function in R

requires the partitioning variables, which are not changing over time. Only age and

gender variables satisfy this condition. After specifying all possible combinations of

these two variables, the algorithm converged when only gender was used as a parti-

tioning variable. However, the resulting model indicated no split, and performance

measures of LongCART are not calculated.

We have finalized the analyses with GPBoost algorithm using the gpboost package

in R [87]. The GPBoost algorithm is constructed with different optimizer algorithms,
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Table 4.6: GPBoost with different optimizers

GD WLS NM BFGS

Without nested structure

RMSE 7.91× 10−4 7.90× 10−4 7.98× 10−4 7.98× 10−4

MSE 6.24× 10−7 6.24× 10−7 6.37× 10−7 6.37× 10−7

MAE 5.80× 10−4 5.80× 10−4 5.80× 10−4 5.80× 10−4

Number of iterations

until convergence 150 4 2 3

System time 0.06 0.00 0.01 0.02

Negative log-likelihood -32079.7 -32084.6 -32017.1 -32026.8

With nested structure

RMSE 7.72× 10−4 7.71× 10−4 7.80× 10−4 7.80× 10−4

MSE 5.96× 10−7 5.95× 10−7 6.08× 10−7 6.08× 10−7

MAE 5.68× 10−4 5.68× 10−4 5.70× 10−4 5.70× 10−4

Number of iterations

until convergence 127 6 2 2

System time 0.14 0.10 0.07 0.01

Negative log-likelihood -32161.6 -32166.4 -32060.6 -32060.6

which are Gradient Descent (GD), Weighted Least Squares (WLS), Nelder Mead

(NM), and Broyden–Fletcher–Goldfarb–Shanno (BFGS). The performance metrics

calculated from the GPBoost algorithm with different optimizer functions are illus-

trated in Table 4.6. According to these results, although each technique provides close

results, the one with the lowest RMSE is WLS, the default optimizer for the Gaussian

data.
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4.4 Results of all methods

After obtaining model fits and implementing hybrid algorithms on the data, it is in-

tended to compare their prediction performances. However, as LongCART algorithm

shows no partition of data, the results for the performance measures of the methods

except LongCART are depicted in Table (4.7).
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Table 4.7: Results for all methods

Method RMSE MSE MAE System Time

LMM

without nested structure 7.9× 10−4 6.2× 10−7 5.8× 10−4 0.11

LMM

with nested structure 7.6× 10−4 5.7× 10−7 5.5× 10−4 0.95

Robustified LMM

without nested structure 7.9× 10−4 6.3× 10−7 5.8× 10−4 284.98

Robustified LMM

with nested structure 7.9× 10−4 6.3× 10−7 5.8× 10−4 591.08

GLMM tree

without nested structure 6.1× 10−4 3.8× 10−7 4.3× 10−4 230.67

GLMM tree

with nested structure 5.1× 10−4 2.6× 10−7 3.5× 10−4 105.63

RE-EM tree

without nested structure 6.3× 10−4 4.0× 10−7 4.5× 10−4 5.18

RE-EM tree

with nested structure 5.4× 10−4 2.9× 10−7 3.7× 10−4 8.32

Unbiased RE-EM tree

without nested structure 6.5× 10−4 4.2× 10−7 4.6× 10−4 4.11

Unbiased RE-EM tree

with nested structure 6.0× 10−4 3.6× 10−7 4.4× 10−4 16.89

GPBoost

without nested structure 7.9× 10−4 6.2× 10−7 5.8× 10−4 0.00

GPBoost

with nested structure 7.7× 10−4 5.9× 10−7 5.7× 10−4 0.10
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According to Table (4.7), GLMM tree with nested structure outperforms other meth-

ods demonstrated in terms of all three model performance metrics as it leads to the

lowest RMSE, MSE, and MAE values. On the other hand, the time required for

convergence of the GLMM tree algorithm is highest compared to the other methods.

It is also better to examine how the fitted and actual values are related. To this end, the

fitted versus actual values plots are constructed for each of these methods according

to with and without nested data structure to check how these values are close. First,

we obtain the plots for LMMs with and without nested structure, and they are illus-

trated in Figure 4.18. By looking at Figure 4.18, the performance of LMM can be

examined. We conclude that most of the data points are not scattered homogeneously

around the fitted line especially in the case of model without nested data structure.

On the other hand, the performance of LMM is better when we include indices nested

within the levels of subject seen on the left in Figure 4.18.

(a) LMM with nested data structure (b) LMM without nested data structure

Figure 4.18: Fitted vs. Actual Values for LMM

As a different way of modeling relation between quantitative response and covariates,

we used robust LMM as there exist observations which deviate from the rest of the

data. The resulted fitted versus actual values plots are included in Figure 4.19 for with

and without nested cases. It is observed that there is no apparent difference between

these two plots. It was also concluded in the previous section, we obtained the same
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model performance metrics. Hence, there is no improvement in this robustified model

including nested structure unlike the other implemented methods.

(a) Robust LMM with nested data structure (b) Robust LMM without nested data structure

Figure 4.19: Fitted vs. Actual Values for Robust LMM

The plots for the GLMM tree, which has the best predictive performance, with and

without nested structure, are illustrated in Figure 4.20. The scatter plot on the left

at Figure 4.20 is the output of the model with the indices nested within-subjects,

while the right one is the output of the model without nested structure. The predicted

values are clustered around specific values in the latter. As expected from an accurate

model, the actual and predicted values are spread around a linear line on the left. We

conclude that the performance of the GLMM tree is better when we include indices

nested within the levels of the subject.

The plot of the RE-EM tree with nested structure (part (a) in Figure 4.21) is also

promising in terms of prediction accuracy. The model performance criterion for this

model is also close to the chosen model (GLMM tree with nested structure) with a

much lower computation time.

The resulted fitted values versus actual response plots of Unbiased RE-EM tree for

two cases are given in Figure 4.22. The similar conclusions made for the previously

mentioned algorithms can be concluded for the comparison of fitting performances of
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(a) GLMM tree with nested data structure (b) GLMM tree without nested data structure

Figure 4.20: Fitted vs. Actual Values for GLMM tree

models including nested and without nested structures. Also, as there is a connection

between RE-EM tree and Unbiased RE-EM tree, it is better to compare plots for these

two methods. The plots for the models without nested structure obtained from RE-EM

tree and its unbiased version (part (b) in Figure 4.21 and Figure 4.22, respectively)

exhibits almost the same pattern through different fitted values. When the plots for

the models including nested structure are compared, we can make conclusion in a

similar way.
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(a) RE-EM tree with nested data structure (b) RE-EM tree without nested data structure

Figure 4.21: Fitted vs. Actual Values for RE-EM tree

As a next algorithm, the performance of GPBoost is assessed. We provide the results

for the GPBoost in Figure 4.23. When part (a) of Figure 4.23 is examined for the

fitting performance of the algorithm constructed with nested structure, one can con-

clude that the spread of the points around the fitted line are wider similar to the case

obtained from LMM and shown in part (a) of Figure 4.18.
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(a) Unbiased RE-EM tree with nested data struc-

ture

(b) Unbiased RE-EM tree without nested data

structure

Figure 4.22: Fitted vs. Actual Values for Unbiased RE-EM tree

In addition to the plots indicating fitted versus actual values through all subjects, we

partition the plots according to distinct subjects in data for the case without nested

data structure (Figure 4.24).
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(a) GPBoost with nested data structure (b) GPBoost without nested data structure

Figure 4.23: Fitted vs. Actual Values for GPBoost

Figure 4.24: Fitted versus Actual Values Plot of GLMM tree for each Subject
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Figure 4.25: Fitted versus Actual Values Plot of GLMM tree for Indices Nested within

Subject-7 (randomly selected)

Considering the nested data structure, we randomly select one subject and obtain

the plot of fitted versus actual response values for each indices (i.e., the location of

optode) (Figure 4.25). We added only the GLMM tree plot to illustrate the model

performance according to each subject in Figure 4.24. Also, the performance of this

method for Subject-7 concerning different indices is shown in Figure 4.25 in this part.

When Figure 4.24 is examined to have an idea about the predictive performance of

the GLMM tree, it is concluded that the observations for each subject mostly deviate

from the line indicating the predictions. Hence, the method does not perform well

in terms of providing close predicted values to actual response cases. On the other

hand, according to Figure 4.25, most of the points scatter closer to the line for the

randomly selected subject. In comparison to the model without a nested structure, it

is concluded that the model performs better in making predictions closest to the ob-

served response values when we introduce a term for indices nested within the levels

of the subject. The rest of the lattice plots for the first five subjects can be found at

https://github.com/statserenay/FittedvsActualSubject1-5.
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4.5 Comparison of different algorithms

In this section, we explain the differences among the implemented methods. First,

we focus on pure prediction algorithms, ML’s, and LMM’s pros and cons. The aim

of the studies comparing the performances of different ML algorithms is under which

conditions a specific algorithm significantly outperforms on a given problem instead

of deciding whether an algorithm is best compared to others [88]. In this study, our

aim is not to determine which algorithm is superior to others, as their results can

be examined under different circumstances. Instead, we focus on the differences

between the LMM and pure prediction algorithms and examine their performances

based on the data from cognitive research. As in many studies comparing different

ML algorithms’ performance metrics and theoretical settings, we also explain the

potential advantages and disadvantages of the applied methods for this data set. First,

we present the main differences between the LMM and ML algorithms, then compare

the algorithms built from a similar theoretical framework.

Before going into detail, it would be useful to make a little reminder about the data.

The cognitive data set was not used as a tool in algorithm comparisons in this study;

on the contrary, this data set was preferred intentionally because it was not analyzed

with appropriate methods in the literature before. These data structures, which can

reveal many unknowns in neuroscience, were analyzed very primitively, and even the

dependency structure between repeated observations, for example, was ignored.

Efron [89] explained the differences between the traditional regression models with

the pure prediction algorithms in terms of the assumptions that are needed, the scien-

tific philosophy behind these methods, and their objectives. As Efron [89] expressed,

the first difference can result from the assumptions which should be satisfied for the

implementation of the methods. ML algorithms are non-parametric ways of data

analysis; they are flexible against the assumptions required to implement LMM, a

parametric approach. For instance, the adequate LMM should exhibit normally dis-

tributed residuals while there is no such requirement for applying any ML algorithms.

The second difference occurs because model parsimony is carried out by the re-

searcher for traditional regression models as the variable selection can be conducted
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through the significance testing procedures. On the other hand, the pure prediction

algorithms decide on the predictors without considering the scientific fact, resulting

in uncontrolled variable selection. To illustrate, we obtain the parsimonious LMM

after implementing LRTs, whereas we include all the variables in the data while con-

ducting ML algorithms.

Third, generalization of the results is possible for only LMM once the sample repre-

sents the population. However, the form of the pure prediction algorithms can change

according to the data set in the particular study as these methods learn from the train-

ing data set.

We mainly mentioned the differences between LMM and ML algorithms from ad-

vantages and disadvantages perspectives. We now focus on the similarities and dis-

similarities of these methods based on their theoretical background. As we have

mentioned, LMM is most widely used to analyze data with a clustered structure for

which the random part of LMM can account. However, the fixed effects part may

not fit data well in some cases. Hence, the fixed effect terms may also be needed

to take into account to partition data. GLMM tree depends on such a strategy as it

utilizes MOB. That is to say, while LMM fits a parametric model on data, the MOB

algorithm is used to construct a GLMM tree, first fitting a parametric model and then

partitioning the data concerning splitting variables that have p-values lower than the

significance level α with the help of parameter stability tests.

Because the assumption of a parametric form for the relation among the fixed effect

terms and response may not be the best choice, Sela and Simonoff [72] suggest a

method called RE-EM tree which can handle other types of functions for expressing

such relations. In addition to being able to handle variables changing over time,

observations from the same unit can be partitioned into different terminal nodes in

the RE-EM tree approach [90]. However, unlike the GLMM tree approach, the RE-

EM tree utilizes a mixed-effects model to handle random effects while modeling fixed

effects using a CART approach. Then, Fu and Simonoff [76] proposed an unbiased

version of the RE-EM tree after changing the CART algorithm into the RE-EM tree.

The motivation of their method is to overcome the problems such as overfitting and

variable selection bias of the CART algorithm using the conditional inference tree
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instead of CART for the partition of the fixed effects. According to our findings, both

the RE-EM tree and unbiased RE-EM tree provide close results for the cases of data

with and without the nested structure. The reason behind such a conclusion might be

that the categorical variables in our data, n-back, gender, and session, have a similar

number of levels. So, adapting conditional inference instead of CART in variable

selection does not make a difference in model performance metrics for the analysis

of our data set.

As another ML approach that can be used to analyze longitudinal data, LongCART

is considered. However, we observe that the function in R for the implementation

of this algorithm requires baseline regressors as partitioning variables that are not

changing over time. When the algorithm is constructed accordingly, we cannot reach

a solution for a complete set of variables. That can be resulted from the restriction on

the selection of partitioning variables as only age and gender, which may not provide

any further split, are appropriate to construct this algorithm.

As one of the latest approaches for analyzing clustered or longitudinal data, GPBoost

combining Gaussian process and mixed-effects regression model with boosting is also

considered. Similar to the RE-EM tree approach, any functional form to represent the

relation between fixed effect terms and response can be assumed in this approach.

Further, unlike LMM, this method does not require any assumptions regarding the

model adequacy.

In terms of goodness of fit measures to evaluate the predictive capability of algo-

rithms, the GLMM tree, including indices nested within subject variable, outperforms

all the other mentioned methods since it has the lowest RMSE, MSE, and MAE. The

interpretation of the resulted tree is also not that difficult. As a result, considering

the simplicity of interpretation and model performance metrics, we recommend using

the GLMM tree to analyze such a cognitive data setting. On the other hand, we rec-

ommend using LMM if the aim is to make inferences on the model parameters since

the GLMM tree approach does not provide inferences on the model parameters while

LMM has such a property.
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CHAPTER 5

CONCLUSION AND DISCUSSION

The data used for this study has a block design that exposes repeated blocks of dif-

ferent experimental conditions (such as n-back) besides some demographics. So,

defining the change in the values, or other words, defining the active times of the

brain in different conditions is crucial to locate when/where the brain is more active

in neuroscience studies. Analyses carried out in this thesis mainly aimed to explore

the changes in mean HbO values through different models by using data obtained via

fNIRS brain imaging technology.

If one aims to check how different subjects exhibit differences in the oxygenated

hemoglobin values, conducting classical regression analysis with a 25 dummy vari-

ables approach may be the first option. However, this model setting generates many

parameters to be estimated. Hence, the linear regression model does not seem to con-

sider the differences among distinct subjects efficiently. Also, another limitation of

the classical linear regression approach is that it can allow one to examine the differ-

ence between each subject and Subject1 as this category is considered as a reference

level decided by lm() function in R. Therefore, one of the assumptions of this kind

of model is based on the independence of the observations in data. However, it is

not appropriate for our cases because the data sets include measures from the same

subjects. As a result, the classical linear regression model approach is not suitable for

examining the changes in HbO values with the given set of explanatory variables in

data. Also, one of the most used analysis types for data obtained from neuroscience

studies is ANOVA which also not suitable because of the dependency structure be-

tween repeated measures of subjects.

LMM approach is taken into account, considering the challenges above. In fNIRS
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analysis, the LMM estimates HbO values as a linear combination of several compo-

nents such as Gender, Age, n-back, Sessions, Accuracy and MeanRT while taking

the subject and channel-specific differences into account with specifying channels

nested within subject as a random effect. The model selection procedure is achieved

through selecting possible significant fixed effects after constructing full model and

eliminating insignificant variables from the model through LRT. And all these fixed-

effect components and their interactions are tested whether any of them is linked to

the change in response, but the selected model was based on only the main effects.

We find that 2- and 3- back conditions and MeanRT play statistically significant roles

in modeling HbO values after adjusting the model with random channel effect nested

within subjects. This is the first attempt in the literature, taking into account many

variables in the same model, including dependency structure, randomness and nested

structures. So, it naturally reduces the type-I error, which may be arisen when multi-

ple models are used instead of a comprehensive model such as LMM.

The correlation among random effects is also explored by fitting the models under

different correlation structures, and comparing them according to their AIC values.

As the model with the lowest AIC indicates a better fit, we have found that the model

including a positive definite matrix structure performs better. According to the LRT

results, the significant main effects are n-back and MeanRT for a model consider-

ing random effects as indices nested within subjects. It is also found that the model

including nested structure performs better than the model including only random ef-

fects of subject. Furthermore, the estimated coefficient of the n-back condition in

this model indicates that the mean HbO concentration is 1.95 × 10−4 unit higher for

3-back condition compared to 2-back condition for a fixed MeanRT. We have also

found that the mean HbO values tend to increase by 6.08 × 10−4 for each one-unit

increase in MeanRT given that the n-back condition is fixed.

After deciding on the model formula, model diagnostics are checked from the resid-

ual plots. As some data points were deviating from the rest of the observations, a

robust linear mixed model approach, based on down weighting the observations hav-

ing larger residuals, is also conducted with the smoothed Huber function. The robust

regression model is preferable as the assumptions affected by unusual observations

are controlled. The resulting model gave the same estimated fixed effect coefficients
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as those obtained from an ordinary linear mixed model approach which assumes equal

effect of each observation on the model fit.

In addition to statistical modeling approaches, hybrid methods merging mixed models

and ML appropriate to analyze longitudinal data are also constructed. The paramet-

ric models are based on some assumptions, which are mostly difficult to be verified.

However, ML algorithms can be implemented to derive insight from data without a

priori assumptions as opposed to these parametric models. After we implement the

methods covered in the study, we compare their performances in terms of both perfor-

mance metrics and advantage-disadvantage perspective. Our findings on performance

metrics of different algorithms conclude that the one with the lowest resulted RMSE,

MSE, and MAE is the GLMM tree, including random terms as indices nested within

the Subject variable. It was also observed that different models suggest different

significant variables. For instance, LMM suggested that nback and MeanRT are sig-

nificant while Accuracy is the most significant variable according to RE-EM tree. On

the other hand, if the researcher aims to make inferences on the model parameters, we

recommend using LMM over the other mentioned methods. Mainly, we offer to use

LMM and robust LMM to investigate the independent variables and demographics on

HbO values. In this model, while determining the factors associated with the HbO

values, the model is also controlled for the indices within-subjects and eliminated

the homogeneity of variance assumption. Additionally, robust LMM provides more

flexibility to reduce the effects of outlier observations. However, when the model

performance metrics are compared for the robustified model with and without nested

structure, there are no differences in our findings. Also, fitted versus actual values

plots exhibit the same pattern for these two cases. Hence, we think that robust LMM

does not take nested structure appropriately.

Further, there are more ML algorithms for longitudinal data such as Mixed-Effect

Regression Tree (MERT) [91], Mixed-Effect Random Forest (MERF) [92], Random

Effect Expectation Maximization Forest (REEMforest) [93], Historical Tree Ensem-

bles for Longitudinal Data [94] in the literature. However, one limitation of our study

is that there is no time variable in data unlike many experimental cognitive data sets

possessing longitudinal structure. Hence, we could not use them in R programming

language as the construction of these algorithms required time variable.
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In the future studies, we plan to focus on the following aspects to improve this the-

sis study. At first sight, we plan to implement clustering algorithms for longitudinal

data structure on our data set. For example, we constructed the models and different

algorithms by including nested structure of all indices. In the future, we try to group

these different locations after implementing clustering algorithms. Then, the model

fits will be examined with these grouped indices. Moreover, we included all the data

for the methods as one of our aim is to examine whether robustified mixed model per-

forms better than the ordinary LMM. In some of the similar studies, analyses include

a step for eliminating the data for channels or subjects with excessive motion artifacts

by using signal to noise ratio approach based on pre-specified criteria. Our another

further study will be based on comparing the results of the algorithms implemented

on data obtained after removing such cases. Lastly, the performance measures of the

robustified model with and without nested structure are the same as the model includ-

ing random intercept for indices nested within subjects is 0. It contradicts with the

other model results as we have found improvements in these metrics when the nested

structure is incorporated into the model. Thus, we also plan to extend this study by

incorporating different robustness structures such as heavy-tailed distributions into

the model for fNIRS data structures.
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Appendix A

ACCURACY MEASURES

Table A.1: Accuracy measures for each subject

Subject ID Session N-back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

1 S1
2

3

0

0

1

1

98.15

98.04

S2
2

3

0

0

0

0

100

100

S3
2

3

0

0

0

0

100

100

2 S1
2

3

0

0

3

11

94.44

78.43

S2
2

3

0

0

0

8

100

84.32

S3
2

3

0

0

5

10

90.74

80.39

3 S1
2

3

0

0

9

10

83.33

80.39

S2
2

3

0

0

9

12

83.33

76.47

S3
2

3

0

0

11

10

79.63

80.39

Continued on next page
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Table A.1 – Continued from previous page

Subject ID Session n-Back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

4 S1
2

3

0

0

1

3

98.15

94.12

S2
2

3

0

0

1

2

98.04

96.08

S3
2

3

0

0

0

0

100

100

5 S1
2

3

0

0

11

10

79.63

80.39

S2
2

3

0

0

7

12

86.71

76.47

S3
2

3

1

0

9

9

84.86

82.35

6 S1
2

3

0

0

12

10

77.78

80.39

S2
2

3

0

0

4

17

92.59

67.54

S3
2

3

0

1

11

10

79.63

79.66

7 S1
2

3

1

5

2

5

96.19

89.13

S2
2

3

0

0

0

1

100

98.04

S3
2

3

2

0

0

0

96.30

100

8 S1
2

3

0

3

6

15

88.89

64.71

S2
2

3

0

1

5

13

90.74

72.55

Continued on next page
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Table A.1 – Continued from previous page

Subject ID Session n-Back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

S3
2

3

1

0

3

13

92.59

74.51

9 S1
2

3

1

1

4

10

90.74

78.43

S2
2

3

0

0

2

9

96.30

84.31

S3
2

3

0

0

4

7

92.59

86.27

10 S1
2

3

2

1

2

11

92.59

76.17

S2
2

3

0

3

1

2

98.15

90.20

S3
2

3

0

0

1

0

98.15

100

11 S1
2

3

0

0

2

9

96.30

82.35

S2
2

3

1

0

1

6

96.30

88.24

S3
2

3

0

1

0

6

100

86.03

12 S1
2

3

0

0

10

27

81.48

52.94

S2
2

3

0

1

26

27

51.85

52.94

S3
2

3

0

1

16

30

70.37

58.82

13 S1
2

3

1

2

7

10

85.19

76.47

Continued on next page
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Table A.1 – Continued from previous page

Subject ID Session n-Back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

S2
2

3

0

0

4

8

92.48

84.31

S3
2

3

0

0

4

4

92.59

92.16

14 S1
2

3

0

0

7

8

87.04

84.31

S2
2

3

0

0

3

10

94.44

80.39

S3
2

3

0

1

0

9

100

80.39

15 S1
2

3

1

3

0

3

98.15

88.24

S2
2

3

0

3

1

3

98.15

88.24

S3
2

3

0

0

5

4

90.63

92.16

16 S1
2

3

0

0

5

11

90.74

78.43

S2
2

3

1

0

2

4

94.44

92.16

S3
2

3

0

0

3

10

94.44

80.39

17 S1
2

3

1

0

3

6

92.59

88.24

S2
2

3

1

0

3

3

92.59

94.12

S3
2

3

0

1

1

3

98.15

92.16

Continued on next page
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Table A.1 – Continued from previous page

Subject ID Session n-Back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

18 S1
2

3

0

1

6

8

88.89

82.35

S2
2

3

1

6

4

9

90.74

70.59

S3
2

3

0

1

0

7

100

84.31

19 S1
2

3

2

1

10

13

77.78

72.55

S2
2

3

2

0

11

8

75.93

84.31

S3
2

3

0

1

6

17

88.89

64.71

20 S1
2

3

0

0

8

14

85.19

72.55

S2
2

3

0

0

2

5

96.30

90.20

S3
2

3

0

1

0

4

100

90.20

21 S1
2

3

0

0

1

6

98.15

88.24

S2
2

3

0

0

1

8

98.04

84.31

S3
2

3

0

0

0

4

100

92.16

22 S1
2

3

0

0

1

6

98.15

88.24

S2
2

3

0

0

3

5

94.44

90.20

Continued on next page
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Table A.1 – Continued from previous page

Subject ID Session n-Back
The number of

missed responses

The number of

wrong responses
Accuracy (%)

S3
2

3

0

0

0

7

100

86.27

23 S1
2

3

0

0

6

13

88.89

74.51

S2
2

3

0

0

7

12

87.04

76.47

S3
2

3

0

0

7

11

87.04

78.43

24 S1
2

3

0

1

6

12

88.89

74.51

S2
2

3

0

0

2

6

96.30

88.24

S3
2

3

0

2

4

8

92.59

80.39

25 S1
2

3

0

0

6

9

88.89

82.35

S2
2

3

0

0

4

6

92.59

88.24

S3
2

3

0

0

1

10

98.15

80.39

26 S1
2

3

0

1

2

11

96.30

76.47

S2
2

3

0

0

0

2

100

96.08

S3
2

3

0

0

0

0

100

100

100



Appendix B

CORRELATION STRUCTURES

Table B.1: AIC values with different correlation structures for RE-EM tree without

nested structure

Correlation Structure Argument AIC

No within-group correlation Default −65555.57

Autoregressive process of order 1 (AR(1)) corAR1() −65875.02

Continuous AR(1) corCAR1() −65861.01

A compound-symmetric matrix corCompSymm() −65592.47

Table B.2: AIC values with different correlation structures for RE-EM tree with

nested structure

Correlation Structure Argument AIC

No within-group correlation Default −65956.89

AR(1) corAR1() −66017.18

Continuous AR(1) corCAR1() −66002.16

A compound-symmetric matrix corCompSymm() −66065.96
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Table B.3: Log-likelihood values with different correlation structures for Unbiased

RE-EM tree without nested structure

Correlation Structure Argument Log-Likelihood

No within-group correlation Default 32771.34

AR(1) corAR1() 32669.06

Continuous AR(1) corCAR1() 32669.06

A compound-symmetric matrix corCompSymm() 32771.34

Table B.4: Log-likelihood values with different correlation structures for Unbiased

RE-EM tree with nested structure

Correlation Structure Argument Log-Likelihood

No within-group correlation Default 32663.85

AR(1) corAR1() 32932.03

Continuous AR(1) corCAR1() 32932.03

A compound-symmetric matrix corCompSymm() 32663.85
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Table B.5: Performance metrics for RE-EM tree with default and selected correlation

structures

RE-EM tree RMSE MSE MAE

Without nested structure

Default 6.3× 10−4 4.0× 10−7 4.5× 10−4

AR(1) 6.4× 10−4 4.1× 10−7 4.5× 10−4

With nested structure

Default 5.4× 10−4 2.9× 10−7 3.7× 10−4

Compound Symmetry 5.4× 10−4 2.9× 10−7 3.8× 10−4

Table B.6: Performance metrics for Unbiased RE-EM tree with default and selected

correlation structures

Unbiased RE-EM tree RMSE MSE MAE

Without nested structure

Default 6.5× 10−4 4.2× 10−7 4.6× 10−4

Compound Symmetry 6.5× 10−4 4.2× 10−7 4.6× 10−4

With nested structure

Default 6.0× 10−4 3.6× 10−7 4.4× 10−4

AR(1) 5.7× 10−4 3.3× 10−7 4.1× 10−4
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