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ABSTRACT

MACHINE LEARNING OVER ENCRYPTED DATA WITH FULLY
HOMOMORPHIC ENCRYPTION

Kahya, Ayşegül

M.S., Department of Cryptography

Supervisor : Prof. Dr. Murat Cenk

August 2022, 40 pages

When machine learning algorithms train on a large data set, the result will be more
realistic. Big data, distribution of big data, and the study of learning algorithms on
distributed data are popular research topics of today. Encryption is a basic need,
especially when storing data with a high degree of confidentiality, such as medical
data. Classical encryption methods cannot meet this need because when texts en-
crypted with classical encryption methods are distributed, and the distributed data set
is decrypted using the same key, the result is corrupted. Homomorphic encryption
methods are suitable for this job because they allow polynomial operations on the
ciphertext. The encryption key distribution to all these devices is a problem here, and
the reliability of these devices’ access to highly confidential plain text needs to be
evaluated. Since homomorphic encryption allows polynomial operations and some
machine learning algorithms are polynomial-based, training machine learning algo-
rithms directly on the ciphertext could be a solution. Logistic regression is one of the
polynomial-based machine learning algorithms. In this thesis, a logistic regression
algorithm is trained on a data set containing various patient information. It was seen
that the algorithm predicted with a 77.2 percent success rate whether people would
be diagnosed with diabetes within five years or not. Afterward, the data set was
encrypted using the CKKS fully homomorphic encryption method. While working
logistic regression over the encrypted dataset, it is needed to use some approximations

vii



on the algorithm. We wanted to see the results of the applied approximation without
any encryption first. And the learning algorithm was run again on the encrypted data
set. And the successful prediction rate was 76.8. After the encryption, the algorithm
predicted whether people would be diagnosed with diabetes in five years, and the
correct prediction rate was 76.8 percent again. This showed us that machine learn-
ing with approximated logistic regression method could be run directly on a data set
encrypted using the homomorphic encryption method.

Keywords: homomorphic encryption, fully homomorphic encryption, CKKS, ma-
chine learning, logistic regression.
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ÖZ

HOMOMORFİK ŞİFRELEME İLE ŞİFRELENMİŞ VERİ ÜZERİNDE MAKİNE
ÖĞRENMESİ UYGULAMALARI

Kahya, Ayşegül

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Murat Cenk

Ağustos 2022, 40 sayfa

Makine öğrenmesi algoritmaları ne kadar büyük bir veri seti üzerinden öğrenme sağ-
larsa alınan sonuçlar o kadar gerçekçi olur. Büyük veri, büyük verinin dağıtılması
ve dağıtılan verinin üzerinde öğrenme algoritmalarının çalışması günümüzün popüler
araştırma konularındandır. Özellikle sağlık verileri gibi gizlilik derecesi yüksek veri-
leri saklarken şifreleme temel bir ihtiyaçtır. Klasik şifreleme yöntemleri bu ihtiyacı
giderememektedir çünkü klasik şifreleme yöntemleri ile şifrelenmiş metinler dağıtıl-
dığında ve dağıtılan veri seti aynı anahtar kullanılarak deşifre edildiğinde anlamlı bir
sonuç elde edilemez. Homomorfik şifreleme yöntemleri bu iş uygundur çünkü şifreli
metin üzerinde polinomsal işlemlerin yapılmasına izin verir. Bir sonraki adımda kar-
şılaşılan sorunsa dağıtık veriyi işleyecek olan her bir cihazın şifreleme anahtarına eri-
şiminin olması gerekmesidir. Hem şifreleme anahtarının tüm bu cihazlara dağıtımının
nasıl olacağı bir sorundur hem de bu cihazların gizlikik derecesi yüksek açık veriye
erişiminin güvenilirliğinin değerlendirilmesi gerekir. Homomorfik şifreleme polinom
işlemlerine izin verdiği için ve bazı makine öğrenme algoritmaları polinom tabanlı
olduğu için şifreli metin üzerinde doğrudan makine öğrenme algoritmalarının çalıştı-
rılması buna bir çözüm olabilir. Lojistik regresyon polinom tabanlı makine öğrenme
algoritmalarından biridir. Bu tezde öncelikle hasta bilgileri içeren bir veri setinde lo-
jistik regresyon algoritması kullanılarak öğrenme sağlayan yazılımın yüzde 77.2 ba-
şarı oranıyla kişilerin beş sene içerisinde diyabet tanısı alıp almayacağını doğru tah-
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min ettiği görüldü. Sonrasında veri seti CKKS homomorfik şifreleme yöntemiyle şif-
relendi. Şifrelenmiş veri seti üzerinde lojistik regresyon yapılırken algoritma üzerinde
bazı yaklaşımların kullanılması gerekmektedir. Önce herhangi bir şifreleme olmadan
uygulanan yaklaşımın sonuçlarını görmek istedik. Öğrenme algoritması, şifrelenmiş
veri seti üzerinde tekrar çalıştırıldı. Başarılı tahmin oranının 76.8 olduğu görüldü.
Şifrelemeden sonra algoritmanın doğru tahmin oranı yine yüzde 76.8 oldu. Bu bize,
yaklaşık lojistik regresyon yöntemiyle makine öğrenmesinin, homomorfik şifreleme
yöntemi kullanılarak şifrelenmiş bir veri seti üzerinde doğrudan çalıştırılabileceğini
gösterdi.

Anahtar Kelimeler: homomorfik şifreleme, tamamen homomorfik şifreleme, CKKS,
makine öğrenmesi, lojistik regresyon.
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CHAPTER 1

INTRODUCTION

One of the main purposes of cryptography is to prevent the formation of patterns in

encrypted data to avoid statistical attacks. When a single element changes in plain

text or cryptographic key, a large change is expected in the ciphertext, which reduces

the possibility of pattern capture in the encrypted text. It was thought that machine

learning algorithms would not work in encrypted data sets because machine learning

algorithms tried to find patterns and cryptographic algorithms tried to avoid creating

patterns. However, studies have shown that machine learning algorithms trained in

the data set, which is encrypted with homomorphic encryption, can make correct

inferences for other data sets.

In order for the machine teaching algorithm to give successful results, it should work

on as large data sets as possible. This very large dataset is stored in the cloud. This

huge data set is divided into smaller datasets as a training set for clients to run their

learning algorithms. This large data set in the cloud is stored without encryption. If

they were kept encrypted, clients would have pieces of encrypted data. When a client

decrypts the encrypted piece, the client can’t find the piece of original data. And also,

key distribution is a problem here. All clients need to access the encryption key. There

are also privacy concerns when the predictive analytics service providers can access

the piece of data set without any encryption. Considering that using a standard cipher

to encrypt data would result be corrupted, homomorphic encryption allows us to do

it without disturbing the data, so homomorphic encryption is available for privacy-

preserving outsourced storage and computation. There are some future works about

storing encrypted data using fully homomorphic encryption. The storage is a serious
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problem here because even without any encryption, the data set is extremely large.

This thesis aims to compare the success of logistic regression algorithm in data sets

without any encryption and encrypted with homomorphic encryption algorithms. First

of all, the linear regression algorithm is trained on a data set containing various patient

information. It was seen that the algorithm predicted with a 77.2 percent success rate

whether people would be diagnosed with diabetes within five years or not. Afterward,

the data set was encrypted using the CKKS fully homomorphic encryption method.

While working logistic regression over the encrypted dataset, it is needed to use some

approximations on the algorithm. We wanted to see the results of the applied approx-

imation without any encryption first. The learning algorithm was run again on the

encrypted data set. The successful prediction rate was 76.8. After the encryption, the

algorithm predicted whether people would be diagnosed with diabetes in five years,

and the correct prediction rate was 76.8 percent again. This showed us that machine

learning with approximated logistic regression method could be run directly on a data

set encrypted using the homomorphic encryption method.

2



CHAPTER 2

PRELIMINARY TO THE SUBJECT

In this chapter, some of the basic primitives will be introduced to provide the reader

with sufficient theoretical background to provide the basics of cryptography and some

machine learning background. There are four main sections in this chapter. Firstly

some basics of cryptography will be summarized. Secondly, big data protocol will

be defined, and then cloud computing systems will be presented. The third section

will explain the necessary machine learning background due to its role in the next

chapters. In the last section, logistic regression, one of the most popular machine

learning algorithms, will be explained.

2.1 Basics of Cryptography

Cryptography is a field of study that focuses on writing secret messages with the in-

tention of keeping data secret. The word "crypto" means "secret" or "hidden", and the

suffix "graphy" means “writing”. When it comes to network security, cryptography is

essential.

Modern cryptography has four main concerns such as confidentiality, integrity, non-

repudiation, and authentication. First of all, confidentiality means that information is

just accessible to the person for whom it was intended, and no one else has access to

it. Secondly, integrity ensures the information cannot be altered while being stored or

being transported between the sender and the intended recipient. The creator/sender

cannot then refute that he or she intended to send data because of the non-repudiation

promise. The last one, authentication, ensures that both the sender and the recipient

3



are who they claim to be.

In cryptography, The operation of a secure cipher should have the properties con-

fusion and diffusion which are identified by Claude Shannon in his 1945 classified

report A Mathematical Theory of Cryptography [15].

Confusion means that each bit of the ciphertext must rely on many sections of the

key to complicate the relationships between them. The ciphertext-key connection is

hidden by the attribute of confusion. This aspect makes it hard to extract the key from

the ciphertext because any change to a single bit in a key will alter the calculation of

most or all of the bits in the ciphertext. Diffusion states that if one plaintext element

is altered, about half of the ciphertext should also change. In a similar vein, if one

ciphertext element is changed, approximately half of the plaintext bits should also

change. Hence a single element changes in plain text or cryptographic key, a large

change is expected in the ciphertext, which reduces ability of data distribution and the

possibility of pattern capture in the encrypted text. This prevents the encrypted data

distribution in cloud systems and also prevents learning algorithms from using the

encrypted data set as training data. There are three main categories of cryptography

such as private key cryptography, public key cryptography and hash functions.

2.1.1 Private Key Cryptography

It is also known as symmetric key cryptography. It entails the use of a single secret

key, as well as encryption and decryption methods, to secure the message’s contents

[19] .

The number of key bits determines the strength of symmetric key encryption. It is

relatively faster than public key cryptography. The key distribution problem occurs

because the key must be sent from the sender to the recipient over a secure channel.

4



Figure 2.1: Private Key Cryptography

2.1.2 Public Key Cryptography

Another name for it is asymmetric key cryptography. In this system, encryption and

decryption are performed using a pair of keys. The private key is used to decode

data, whereas the public key is used to encrypt data. There is a public key along with

secret key. Hence there is no the problem of key distribution here but it is very slow

compared to symmetric key cryptography [17].

Figure 2.2: Public Key Cryptography
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2.1.3 Hash Functions

Based on the plain text, a hash value with a fixed length is computed, rendering it

challenging to reverse engineer the plain text’s contents. Many operating systems

encrypt passwords with hash algorithms [22].

2.2 Big Data Protocol and Cloud Computing Systems

2.2.1 Big Data Protocol

Big data is defined as data with increased diversity, coming in larger volumes with

higher speed [24]. Basically, big data is the term used to describe larger, more intricate

data sets, especially those obtained from new data sources.

As the training data set expands in machine learning applications, the result obtained

from the application can be more realistic. Applications that work with larger data

sets give more accurate results. With the increase in the work in the field of machine

learning, more and more data has been produced and stored day by day.

Traditional data processing software is incapable of handling these massive data sets.

Instead of storing and processing such extensive data by a physical device, keeping

it in a cloud and distributing it to various devices when it is processed is one of the

famous research topics of today.

2.2.2 Cloud Computing Systems

Cloud computing is the use of internet-based hosted services such as data storage,

servers, databases, networking, and applications [23]. The data is kept on the physical

servers that a cloud service provider manages. Users can store data on the cloud

rather than on a storage device or hard drive. This method allows users to access files

wherever they have an internet connection.

The essential reason for cloud computing’s rapid growth is the numerous advantages it

provides. It reduces cost. It is only paid for cloud services used instead of expensive
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infrastructure. Cloud systems can enable businesses to be more flexible by scaling

their storage to meet their needs. This helps them to quickly grow their user base

from a few hundred to thousands. Employees can work from anywhere, at any time,

because cloud data can be accessed directly through the internet.

On the other hand, security concerns are the most massive concern with cloud com-

puting. There is always a risk while storing data in the cloud without any encryption,

but especially when classical encryption methods are used, it becomes almost impos-

sible to distribute data from the cloud. For this reason, data cannot be kept encrypted

form in the cloud with standard encryption methods. New encryption methods such

as homomorphic encryption may be employed in cloud systems, but there are still

several issues that need to be improved.

2.3 Machine Learning Background

Giving computers the ability to learn without being expressly instructed to do so is

the subject of the research of machine learning. Machine learning algorithms build

a model from sample data, often called "training data," to produce predictions or

judgments.

Figure 2.3: Machine Learning

Machine learning methods are basically of three types which are supervised learning,
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unsupervised learning and reinforcement learning [11]. In this part of the thesis, we

will give short definitions and subtitles of them.

2.3.1 Supervised Learning

In this machine learning method, sample inputs and expected results are given to the

algorithm. Here, learning a universal rule that connects inputs and outputs is the

algorithm’s aim. The model is trained repeatedly until it achieves the desired degree

of accuracy in the training set of data [11]. The two main techniques of supervised

learning are classification and regression.

Classification is the process of determining a function that divides a dataset into

classes depending on several parameters [11].

Regression is the process of developing a model or function for converting data into

continuous absolute values rather than using classes or discrete values.

2.3.2 Unsupervised Learning

The learning algorithm has no label to learn from and tries to find a structure in the

input on its own. The main purpose of unsupervised learning is to discover hidden

patterns in the sample data set. Clustering and dimensionality reduction are two main

techniques of unsupervised learning [11].

Clustering involves dividing a population or set of data points into different groups so

that the data points within a group are more similar to one another and different from

the data points within other groups.

Dimensionality reduction is the technique of decreasing the quantity of random vari-

ables under consideration by generating a set of primary variables. It is basically the

translation of converting data from a high-dimensional space to a low-dimensional

space while preserving some of the pertinent characteristics of the original data, ide-

ally close to its inherent dimension.
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2.3.3 Reinforcement Learning

A learning strategy called reinforcement learning relies on rewarding and punishing

principles. The program is trained according to the reward and punishment feedback

while navigating the dynamic problem environment. The algorithm tries to find the

best possible path in a particular situation to gain maximum reward.

2.4 Logistic Regression

Logistic regression is an instance of supervised learning. It estimates the probabil-

ity that a binary event will happen. When a dependent variable is dichotomous, the

proper regression analysis to use is logistic regression. One of the most crucial an-

alytical techniques in the social and natural sciences is logistic regression[14]. The

standard supervised machine learning approach for classification in natural language

processing is logistic regression, which also closely resembles neural networks.

2.4.1 The Logistic Function

A logistic function is a function that expands exponentially at first, then plateaus and

converges to its carrying capacity [14].

f(x) =
1

1 + e−k(x−x0)

x0 is the x value of curve’s midpoint.

L is the curve’s maximum value.

k is the logistic growth rate

9



Figure 2.4: The Logistic Function, when L = 1 k = 1 x0 = 0

When L = 1, k = 1, x0 = 0, it is obtained the standard logistic function which is

also called sigmoid or expit. The inverse of the logistic sigmoid function is the logit

function.

2.4.2 Classification with Logistic Regression

Sigmoid maps real numbers into the range [0, 1], and that is used for probability cal-

culation in logistic regression. It is taken the instance x, then calculate the probability

P (y = 1
x
) by sigmoid function.

decision(n) =

1 if P (y = 1
x
) > 0.5

0 otherwise

2.4.3 The Sigmoid Function

The sigmoid function is a mathematical function to map a real number into the range

[0,1]. It has a specific "S" shaped curve called "Sigmoid Curve".

Figure 2.5: The Sigmoid Function

A wide range of sigmoid functions, such as the logistic and hyperbolic tangent func-
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tions, have been employed in a wide variety of fields. The most known sigmoid

function type is the logistic function [21].

σ(x) =
1

1 + e−x
=

ex

1 + ex
= 1− σ(−x)

2.4.4 Learning in Logistic Regression

Logistic Model

A statistical model called the logistic model uses a logarithm of the event’s odds that is

a linear combination of one or more independent variables to represent the likelihood

that one event will occur [14].

The logistic function P (x):

P (x) =
1

1 + e−(x−µ)/s

µ is a location parameter, whereP (µ) = 1/2

s is a scale parameter

y = β0 + β1x

P (x) =
1

1 + e−(β0+β1x)/s

β0 = −µ/s which is the vertical intercept

β1 = 1/s which is the inverse scale parameter

Hence, µ = −β0/β1

s = 1/β1

Model Fitting

When xk and yk are given, Pk is the possibility that the associated y will be 1 and

1− Pk is the possibility that it will be 0 by Bernoulli distribution [8].

pk = P (xk)
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It is aimed to find β0 and β1 for best fitting for the data set.

The log loss for the k’th point =

− ln pk if yk = 1

− ln(1− pk) yk = 0

The goal is minimizing the negative log-likelihood−ℓ to find the best candidate of β0

and β1.

ℓ =
∑

k:yk=1

ln(pk) +
∑

k:yk=0

ln(1− pk)

ℓ =
K∑
k=1

(yk ln(pk) + (1− yk) ln(1− pk))

So, the maximum likelihood estimation is:

L =
∏

k:yk=1

pk +
∏

k:yk=0

(1− pk)

Parameter Estimation

While ℓ is nonlinear in β0 and β1, it is needed to find numerical methods to determine

best values for β0 and β1 for best fitting for the data set.

In order to maximize ℓ, the derivatives of ℓ with respect to β0 and β1 should be zero.

Pk is the possibility that the associated y will be 1 and 1− Pk is the possibility that it

will be 0 by Bernoulli distribution [8].

0 =
∂ℓ

∂β0

=
K∑
k=1

(yk − pk)

0 =
∂ℓ

∂β1

=
K∑
k=1

(yk − pk)xk

Making Predictions

β0 and β1 coefficients are found at the parameter estimation section.

p is the probability for the value x.

t = β0 + β1x
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p =
1

1 + e−t

decision(n) =

1 if p > 0.5

0 otherwise
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CHAPTER 3

HOMOMORPHIC ENCRYPTION SCHEME

Definition 3.0.1. A map that respects the structure between two algebraic structures

of the same kind, such as two groups, two rings, or two vector spaces, is called a

homomorphism.

This means a map f : A → B, f : A → B between two sets A, B equipped with

the same structure such that

F (a.b) = F (a).F (b)

for every pair a, b of elements of A.

In homomorphic encryption, it is possible to think of the encryption and decryption

functions as homomorphisms between the plain text and cipher text spaces. The term

"homomorphic" alludes to homomorphism in algebra.

Homomorphic encryption is a type of encryption that allows users to work on en-

crypted data without having to decrypt it first [20].

Enc(a+ b) = Enc(a) + Enc(b)

Enc(a ∗ b) = Enc(a) ∗ Enc(b)

Homomorphic encryption can be utilized to protect privacy in outsourced storage

and computing. This makes it possible to encrypt data and send it to commercial

cloud computing environments for computation. Homomorphic encryption would
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be applied to enable innovative services in highly regulated areas like health care

by reducing privacy obstacles that prevent data sharing. Because of worries about

the privacy of medical data, using predictive analytics in the healthcare industry, for

example, can be challenging. However, if the predictive analytics service provider

can operate with encrypted data instead, these risks are reduced.

Homomorphic encryption schemes has both symmetric-key and public-key encryp-

tion algorithms. There are three main types of homomorphic encryption such as,

partially homomorphic, somewhat homomorphic and fully homomorphic encryption.

• Partially Homomorphic Encryption: On the encrypted message, only one type

of mathematical operation is permitted such as addition or multiplication, with

an arbitrary number of repetitions.

• Somewhat Homomorphic Encryption: On the encrypted message, both addition

and multiplication operations are permitted, but there is limit to use.

• Fully Homomorphic Encryption: On the encrypted message, it is possible to

use various types of evaluation operations on the encrypted message an arbi-

trary number of times.

There are four sections in this chapter. The preliminaries of homomorphic encryption

will be briefly summarized. Then a fully homomorphic encryption scheme Cheon-

Kim-Kim-Song (CKKS) will be explained.

3.1 The Preliminaries for Fully Homomorphic Encryption

Many partially homomorphic schemes could be created using LWE and its Ring vari-

ation. Therefore, unlimited addition and multiplication operations on encrypted data

are not permitted by such systems. The encrypted ciphertext contains "error" as a

result of each operation. After sufficient encrypted operations, especially multipli-

cation, this mistake ultimately becomes too enormous to decrypt correctly [10]. An

approach called bootstrapping could be used to fix this. Bootstrapping, on the other

hand, is highly costly and slow [5].
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3.1.1 Lattices

Definition 3.1.1. Let v1, ..., vn ∈ Rm be linearly independent set of vectors (m ≥ n).

The set of linear combinations of vi is called L generated by v1, ..., vn.

L =

{
n∑

i=1

aivi : ai ∈ Z

}

The vectors v1, ..., vn are the basis of the lattice. The lattice rank is n and the lattice

dimension is m. If n = m then L called full rank lattice.

3.1.2 Learning With Errors Problem

The Learning with Errors (LWE) problem provides an incredibly flexible foundation

for cryptographic constructs [20] [16]. Since all cryptographic constructs relying on

it are secure under the supposition that worst-case lattice problems are hard, it is as

hard as worst-case lattice problems.

The LWE problem tries to obtain the secret s ∈ Zq
n from a sequence of random linear

equations on s. Finding s would be relatively easy if the error didn’t exist. Gaussian

elimination allows us to retrieve s in polynomial time after about n equations. There

is a noticeable increase in difficulty of the problem after the error is introduced. The

Gaussian elimination algorithm uses linear combinations of n equations, amplifying

the error to uncontrollable levels and effectively removing any information from the

equations that result [12].

Definition 3.1.2. Let q be a prime number, χ is a probability distribution which out-

puts. It is said that LWE(q, χ, n) is a set of pairs of the form

{(ai, < ai, s > +ei) |s← Zq
n, ei ← χ, ai ← Zq

n}
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3.1.3 Ring Learning With Errors Problem

Typically, key sizes for cryptographic techniques based on the LWE concerns must

be on the order of n2 [20, 16, 18]. This is due to the fact that key sizes of order n2

are often required for cryptographic applications, which normally require at least n

vectors a1, ..., an ∈ Zq
n . This is due to the requirement that at least n vectors leading

to keys of order n2 be provided for cryptographic applications. In addition to being

highly desirable from a practical standpoint, as we shall see below, reducing this to

almost linear dimensions may also result in intriguing theoretical advancements.

3.1.4 Bootstrapping

It is possible to reduce the error. Bootstrapping is a method that uses the encrypted

secret key and homomorphically executes the decryption process without disclosing

the message [5]. Decryption is achieved using a sequence of XOR and AND gates or

additions and multiplications. Binary messages serve as the homomorphic encryption

scheme’s input. It is necessary to have an ordered collection of encryptions of its

bits in order to obtain the encryption of the secret key. With these two components,

homomorphic decryption can be completed while minimizing the noise left over from

earlier processes.

3.2 Public Key Encryption Scheme Based on LWE

The message space is {0, 1}. Let q be a prime, n,m ∈ Z, and χ be a noise distribution

where for any e← χ. It is highly possible that ||e|| ≤ q/4m.

Key Generation:

The security parameter is n and A← Zq
nm , e← χm.

The secret key sk = s← Zq
n.

The public key pk =
(
A, sTA+ eT

)
.

Encryption:
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The public key pk is
(
A, bT

)
.

The message x ∈ {0, 1}.

r is random bit string r ← {0, 1}m.

Enc(pk, x) = (Ar, bT + x.⌈q/2⌉)

Decryption:

The secret key is s and the cipher text is (u, v).

Dec(sk, (u, v)) =

0 if ||v − sTu|| < q/4

1 otherwise

Correctness:

The cipher text is (u, v).

v − sTu = bT r + x.⌈q/2⌉ − sTAr

= eT r + x.⌈q/2⌉

If x is 1 the output is 1 obviously, else if x is 0 then by the requirement for χ,

||eT r|| ≤ m.
q

4m
=

q

4
with high probability.

Hence the output will be 0 with a high probability [7].
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CHAPTER 4

CKKS SCHEME

4.1 Cheon-Kim-Kim-Song (CKKS) Scheme

The homomorphic encryption scheme known as CKKS was designed by Cheon, Kim,
Kim, and Song. CKKS is a RLWE based fully homomorphic public key cryptosys-
tem.

Figure 4.1: CKKS Fully Homomorphic Public Key Cryptosystem

Up until CKKS, homomorphic calculations could only be performed on integers.

Now it is possible to use homomorphic computations on real/complex numbers. With

the previous techniques, homomorphic calculations perform only integer-based en-
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crypted inputs. Using real numbers for approximate arithmetic creation was not pos-

sible. Every existing scheme shares the characteristic that while encrypting data, a

small amount of "noise" is added. These noises will increase when ciphertexts are

computed homomorphically, eventually growing so huge that decryption is impos-

sible. The noise in a ciphertext can then be reduced using Gentry’s bootstrapping

method to a set level that depends on the complexity of the decryption circuit. One

of the biggest challenges in creating effective schemes has been the noise growth

brought on by homomorphic multiplication. In the first generation of schemes, the

sounds themselves multiplied with each homomorphic multiplication, which caused

the depth of the circuit to increase at a doubly exponential rate. A naive method is

scaling using a huge integer to multiply the input and produce a real number, doing

homomorphic calculations with the scaled number’s floor, and then dividing the re-

sult by the large integer. The issue, though, is that after encrypted multiplications,

the scaling factor itself grows exponentially. CKKS provides a solution and gives a

method to achieve homomorphically rescale.

4.1.1 CKKS Encoding and Decoding Procedure

The fact that the encryption, decryption, and other methods rely on polynomial rings

requires the encoder-decoder step. Therefore there is a requirement for the method

to convert our vectors of real values into polynomials. First of all, it is required to

develop an encoder and a decoder to transform complex vectors into polynomials.

The encoder takes the input z ∈ CN and transforms it into the polynomial m(X).

m(X) ∈ Z[X]/(XN + 1)

The polynomial degree modulus is denoted by N , while N is power of 2.

let M = 2N

ΦM(X) = XN + 1

The plain text space is the polynomial ring R = Z[X]/(XN+1), and ξM is M’th root of unity.

ξM = e2iπ/M
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z ∈ CN will be transformed into m(X) ∈ Z[X]/(XN +1) To encode and decode the

vectors the canonical embedding will be used.

σ(R) ⊆ H = z ∈ CN

σ : R = Z[x]/[XN + 1]→ σ(R) ⊆ H

σ : C[X]/(XN + 1)→ CN

The N roots of cyclotomic polynomial ΦM(X) = XN + 1 are ξ1, ξ3, ..., ξ2N−1

σ(m) = (m(ξ),m(ξ3), ...,m(ξ2N−1)) ∈ CN

σ describe an isomorphism, in other words it is a bijective homomorphism. Hence,

every vector will have a unique encoded representation in the related polynomial, and

vice versa.

Begin with expand z ∈ CN by π−1, After that it is obtained π−1(z) ∈ H It is needed

to compute the inverse σ−1. The challenging part is to find a polynomail m(X) as

m(X) =
N−1∑
i=0

σiX
i ∈ C[x]/S(XN + 1)

given a vector z ∈ CN , such that:

σ(m) = (m(ξ),m(ξ3), ...,m(ξ2N−1)) = (Z1, ..., ZN)

Thus, It is obtained the following equation:
N−1∑
j=0

σj(ξ
2i−1) = zi, i = 1, 2, ..., N

This could be thought of as a linear equation Aσ = z, with A the Vandermonde

matrix of the (ξ2i−1)i=1,2,...,N where z is the encoded vector and σ is the polynomial

coefficients vector.

Therefore we get

σ = A−1z

σ−1(z) =
N−1∑
i=0

σiX
i ∈ C[x]/(XN + 1).

When the result is rounded, it could make changes on some significant numbers.

Because of that it is necessary to multiply by△while△ > 0 in the course of encoding

procedure and dividing by during decoding part. So, the order of encoding operations

is as follows:
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1. Expand the element z ∈ CN by π−1, while π−1(z) ∈ H .

2. Multiply by△ .

3. σ(R) : ⌊△.π−1(z)⌉σ(R) ∈ σ(R).

4. Encode σ : m(X) = σ−1(⌊△.π−1(z)⌉) ∈ R.

The decoding procedure is much more easier, it will be obtained z from the polyno-

mial m(X).

z = π.σ(△−1.m)

4.1.2 CKKS Encryption and Decryption Procedure

A secret key and a public key are generated in the CKKS public key encryption sys-

tem. The private key is required for decryption and must be kept secret, whereas the

public key is needed for encryption and can be shared. The security of CKKS and

many other homomorphic encryption schemes, is based on the Learning With Error

(LWE) problem. The form of LWE is (A,A.s + e) when s is the secret key s ∈ Zq
n

and e ∈ Zq
n are small noises. In the absence of the e, it could be solved the linear

system using Gaussian elimination, making the problem much simpler to solve.

The secret key s ∈ Zq
n.

The public key p = (A.s+ e, A).

When A ∈ Zq
nxn and e ∈ Zq

n by the RLWE problem it is hard to get secret s from p.

Encryption

The message is µ ∈ Zq
n.

Enc(µ, p) = c = (µ, 0) + p

c = (µ, 0) + p = (µ− A.s+ e, A)

c = (c0, c1)

Decryption
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Dec(c, s) = µ̃

c0 + c1.S = µ− A.s+ e+ A.s = µ+ e

µ+ e ≈ µ

because e is negligible.

4.1.3 Addition and Ciphertext-Plaintext Multiplication Procedure

With the use of addition and multiplication implementations, it is demonstrated that

it is possible to encrypt certain data and execute operations on it so that the outcome

is the same after decryption as it would have been had the actions taken with regard

to unencrypted data [7].

Addition Procedure

There are two messages µ and µ
′ . After encryption

Enc(µ) = c = (c0, c1)

Enc(µ
′
) = c

′
= (c0

′
, c1

′
)

Addition:

c+ c
′
= cadd = (c0

′
+ c0, c1

′
+ c1) = (cadd0 , cadd1)

When cadd = (cadd0 , cadd1) is decrypted, the result should be µ + µ
′ to cover homo-

morphic encryption properties.

Dec(cadd) = cadd0 + cadd1 .s = c0 + c0
′
+ (c1 + c2

′
).s

= µ+ µ
′
+ 2e ≈ µ+ µ

′

because e is negligible.

Ciphertext-Plaintext Multiplication Procedure

There is a message µ and a plaintext k.

Enc(µ) = c = (c0, c1)
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Multiplication:

k.c = cmult = (kc0, kc1))

When cmult = (cmult0 , cmult1) is decrypted, the result should be kµ to cover homo-

morphic encryption properties.

k.c0 + k.c1.s = k(c0 + c1.s)

= k(µ+ e)

= k.µ+ k.e

≈ µ.k

4.1.4 Ciphertext-Ciphertext Multiplication and Relinearization Procedure

Ciphertext-Ciphertext Multiplication Procedure:

There are two messages µ and µ
′ .

Enc(µ) = c = (c0, c1)

Enc(µ
′
) = c

′
= (c0

′
, c1

′
)

The multiplication of c0 and c
′ is cmult(c, c

′
), when cmult = (cmult0 , cmult1) is de-

crypted, the result should be µ.µ
′ to cover homomorphic encryption properties.

Dec(cmult, s) = Dec(c, s).Dec(c
′
, s)

Dec(c, s).Dec(c
′
, s) = (c0 + c1.s)(c0

′
+ c1

′
.s)

Dec(c, s).Dec(c
′
, s) = (c0.c0

′
+ (c0.c1

′
+ c1.c0

′
).s+ (c1.c1

′
).s2)

Let, d0 = c0.c0
′

d1 = c0.c1
′
+ c1.c0

′

d0 = c1.c1
′

Dec(cmult, s) = d0 + d1.s+ d2.s
2
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The problem here is that the size of the ciphertext increases exponentially after each

multiplication operation [7]. Relinearization is used for doing multiplication opera-

tion without increasing the ciphertext size at each step.

Relinearization Procedure

Dec(cmult, s) = d0 + d1.s+ d2.s
2

= Dec(c, s).Dec(c
′
, s)

If it is found the couple of polynomials (d0
′
, d1

′
) such that:

Dec((d0
′
, d1

′
), s) = Dec(c, s).Dec(c

′
, s)

Dec((d0
′
, d1

′
), s) = d0

′
+ d1

′
.s

= d0 + d1.s+ d2.s
2

So relinearization function is used for finding the polynomials (d0
′
, d1

′
) such that:

(d0
′
, d1

′
) = (d0, d1 + P ) while Dec(P, s) = d2.s

2

To compute P it is needed a evaluation key:

evk = (−a0.s+ e0 + s2, a0)

Let e0 is a very small randomly chosen polynomial and a0 is an uniformly sampled

polynomial on Rq .

Dec(evk, s) = e0 + s2 ≈ s2

The evaluation key evk can be publicly exposed, by the RLWE problem it is very

hard to find the secret from it.

P = d2.evk = (d2.(−a0 + e0 + s2), d2, a0)

Dec(P, s) = d2.s
2 + d2.e0

d2.s
2 + d2.e0 ≈ d2.s

2

It is known that e0 is very small, but it is not sure d2 is small or not. The problem here

can be solved by changing evaluation key a little bit.

While p is big integer and a0 is an uniformly sampled polynomial on Rp.q, let the

evaluation key:

evk = (−a0.s+ e0 + p.s2, a0)( mod p.q)
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P = ⌊p−1.d2.evk⌉( mod q)

Hence, relinearize function is

Rel((d0, d1, d2), evk) = (d0, d1) + ⌊p−1.d2.evk⌉.

While the messages are µ and µ
′ , the multiplication of them is µmult and the corre-

sponding cipher texts are (c, c′),the multiplication of them is cmult [7]. If one or more

multiplication operations are to be performed on cipher text, the order of operations

is as follows:

1. Multiplication cmult(c, c
′
) = (d0, d1, d2)

2. Relinearize Rel((d0, d1, d2), evl = crel)

3. Decryption Dec(crel, s) ≈ µmult

As a result, after multiplying two ciphertexts, their size is kept constant by relineariza-

tion procedure.

4.1.5 Rescaling Procedure

Only integer-based encrypted inputs can be used for homomorphic calculations using

the prior methods. It was impossible to perform approximation arithmetic using real

numbers. A simple technique for scaling a real number involves multiplying the input

by a big integer, using the floor of the resulting scaled number to perform homomor-

phic operations, and then dividing the outcome by the large integer. Unfortunately,

after encrypted multiplications, the scaling factor itself expands exponentially [7, 20].

A solution and a mechanism to achieve homomorphically rescaling are provided by

CKKS. In the encoding part there is a multiplication by △ to keep some level of

precision. When c and c
′ are multiplied, the result covers z.z′

.△2 The square of the

scale includes at each multiplication, because the scale could increase exponentially,

which could cause overflow after a few multiplications. As a result, keeping the scale

constant is the aim of the rescaling operation. First of all it is necessary to define the

parameter q while the polynomial ring

Rq = Zq[X]/XN + 1.
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If there are L multiplications, with a scale△,while q0 ≥ △

q = △L.q0

Let ql is the modulo for given l to do L multiplication operation. The rescaling oper-

ation from level l to (l − 1) as:

Resl→l−1(c) = ⌊
ql − 1

ql
.c⌉ mod (ql − 1)

⌊△−1.c⌉ mod (ql − 1)

because of ql = △l.q0.
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CHAPTER 5

APPLICATIONS AND TOOLS

As mentioned in Chapter 3, homomorphic encryption allows the addition and multi-

plication of the ciphertext. This means that polynomial operations can be performed

on ciphertexts with homomorphic encryption applied. In this thesis, it was aimed

to run a logistic regression algorithm on the ciphertext. Since homomorphic cryp-

tography only allows polynomial operations, approximate polynomial functions had

to be used instead of logistic regression operations. In the first part, it will explain

the approximation method we used and the approximating sigmoid function. The

second part will introduce the data model we used. Microsoft SEAL Homomorphic

Encryption Library [13] is used to encrypt the data set. It is given brief information

about Microsoft SEAL in the third part. And lastly, it will be summarized the results

obtained.

5.1 Approximating The Sigmoid Function

Multiple techniques can be used for obtaining an approximate polynomial for a given

function [6, 9]. We used the same approach as [4], called minimax approximation.

For the interval [ 5, 5] and degrees 1 and 3, the algorithm gives following results:

σ1(x) = 0.5 + 0.125x

σ3(x) = 0.5 + 0.197x− 0.004x3
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Figure 5.1: σ1(x) = 0.5 + 0.125x

Figure 5.2: σ3(x) = 0.5 + 0.197x− 0.004x3

5.2 The Data Model

Pima Indians Diabetes Database The National Institute of Diabetes and Digestive and

Kidney Diseases is the original source of this dataset [3, 2]. The condition known as

diabetes mellitus occurs when the body is unable to create, utilize, or store glucose.

Blood glucose, sometimes known as "sugar," rises too high as glucose builds up in the

bloodstream. A variety of long-term consequences, including heart attacks, strokes,

blindness, kidney failure, and blood vessel damage, can result from poorly controlled

diabetes. Based on specific diagnostic metrics present in the dataset, the dataset’s

goal is to diagnostically forecast whether a patient has diabetes or not in 5 years.

Remarkably, all patients at this facility are Pima Indian women at least 21 years old.

There are 768 cases present in PIDD with nine attributes such as DPF, the number

of times pregnancy, the DBP (mm Hg), PGC of two hours in an OGTT, TSFT (mm),

two hours of serum insulin (mu U/ml), age (years), BMI, and the class variable (0 or

1).
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5.3 Simple Encrypted Arithmetic Library

The Microsoft Cryptography and Privacy Research Group designed Microsoft SEAL,

an intuitive open-source homomorphic encryption library with an MIT license [13, 1].

Microsoft SEAL is written in contemporary standard C++, making it simple to com-

pile and execute in a variety of environments. In order to enable computations to be

made directly on encrypted data, Microsoft SEAL provides a collection of encryption

libraries based on open-source homomorphic encryption technology. With the ad-

vent of end-to-end encryption, software developers may now offer compute and data

storage services without ever needing the customer to divulge their key.

Although homomorphic encryption has a strong theoretical foundation, its applica-

tion has long lagged behind. The situation has recently begun to improve thanks to

new implementations, data encoding methods, and applications, but much work still

needs to be done. The Simple Encrypted Arithmetic Library (SEAL) was developed

specifically to meet the need for a homomorphic encryption library that was well-

engineered, well-documented, free of external dependencies, and simple to use for

both experts and non-experts with little to no prior knowledge of cryptography. The

Simple Encrypted Arithmetic Library (SEAL) first version was released in 2015 [13].

We used Microsoft SEAL version 4.0 to encrypt our data set.

5.4 Results

In the data set we used, the total number of instances is 768. It aims to compare

the successful prediction rate of the logistic regression algorithm over the data set

without encryption, approximated logistic regression algorithm over data sets without

encryption, and encrypted with CKKS Scheme.

For the first case, without any encryption and approximation:

1. Correctly classified instances is 593.

2. Incorrectly classified instances is 175.
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So, without any encryption and approximation, the algorithm predicted with a 77.2

percent success rate whether people would be diagnosed with diabetes within five

years or not. Without any encryption, the size of the data set is 24 KB. It took 0.16

seconds to process the data with logistic regression.

For the second case, without any encryption, the results of degree-3 minimax approx-

imation over logistic regression are seen on the Pima Indians Diabetes Database.

1. Correctly classified instances is 590.

2. Incorrectly classified instances is 178.

So, without any encryption, while using degree-3 minimax approximation over lo-

gistic regression, the algorithm predicted with a 76.8 percent success rate whether

people would be diagnosed with diabetes within five years or not. Without any en-

cryption, the size of the data set is 24 KB. It took 0.14 seconds to process the data

with approximated logistic regression.

For the third case, After the CKKS encryption scheme is applied to the database, the

results of degree-3 minimax approximation over logistic regression are seen on the

Pima Indians Diabetes Database.

1. Correctly classified instances is 590.

2. Incorrectly classified instances is 178.

So, with fully homomorphic encryption, any encryption, and approximation, the al-

gorithm predicted with a 76.8 percent success again rate whether people would be

diagnosed with diabetes within five years or not. The size of the encrypted data set

is 6540 KB. It took 681,06 seconds to process the encrypted data with approximated

logistic regression.
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Table 5.1: Table of comparison for each step
Results

Without Approximation
Without Encryption

Approximation Encryption
Approximation

Total instance 768 768 768
Correctly classified 593 590 178
Incorrectly classified 175 590 178
Success rate 77.2 % 76.8 % 76.8 %
Data size 24 KB 24 KB 6540 KB
Process time 0.16 s 0.14 s 681.06 s

This demonstrated that a data set that has been encrypted using the fully homomor-

phic encryption approach might be directly used for machine learning utilizing the

approximation over logistic regression method. However, after encryption, the size

of the input data set has increased to 272.5 times, and the processing of the data

has increased to approximately 4865 times. Hence, working on encrypted data sets

severely reduces machine algorithms’ efficiency in terms of both memory usage and

time consumption.
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CHAPTER 6

CONCLUSION

Logistic regression is one of the most popular machine learning algorithms. While

working logistic regression over the encrypted dataset, it is needed to use some ap-

proximations on the algorithm. For this thesis, it is implemented logistic regression

and approximated logistic regression algorithms. Then we encrypted a data set with a

fully homomorphic encryption scheme CKKS by using Microsoft SEAL Homomor-

phic Encryption Library. As a result, it is compared the successful prediction rate

of the logistic regression algorithm over the data set without any encryption, approx-

imated logistic regression algorithm over the data sets without any encryption, and

encrypted with CKKS Scheme. Homomorphic encryption is available for privacy-

preserving outsourced storage and computation because it enables us to perform any

operations on data encrypted using a traditional cipher without causing the data to be-

come corrupted. Future research will focus on employing completely homomorphic

encryption to store encrypted data. Even without any encryption, the data collection

size presents a severe storage issue.

We used Pima Indians Diabetes Database to run the machine learning algorithms

and Microsoft Simple Encrypted Arithmetic Library to encrypt the data set. First, a

data set containing diverse patient data is used to train the linear regression method.

It was discovered that the algorithm correctly predicted whether or not participants

would receive a diabetes diagnosis within five years, with a success rate of 77.2. The

CKKS fully homomorphic encryption technique was used to encrypt the data set.

There are various estimates on the algorithm that must be used while running logistic

regression over the encrypted dataset. We wanted to see how the applied approxi-
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mation performed without any encryption. The percentage of correct predictions was

76.8. Following encryption, the system once again had a 76.8 accuracy rate when

predicting whether or not people would receive a diabetes diagnosis in the next five

years. However, after encryption, the size of the input data set has increased to 272.5

times, and the processing of the data has increased to approximately 4865 times. This

demonstrated to us that a data set encrypted using the homomorphic encryption ap-

proach might be directly used for machine learning with the approximated logistic

regression method. However, custom works are needed for machine learning models

to be adapted to the FHE environment. In addition, working on encrypted data sets

severely reduces machine algorithms’ efficiency in terms of both memory usage and

time consumption.
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