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ABSTRACT

L2 EXTENSION THEOREMS AND THEIR APPLICATIONS IN SEVERAL
COMPLEX VARIABLES

Çoğalmış, Aylin

M.S., Department of Mathematics

Supervisor: Assist. Prof. Dr. Özcan Yazıcı

August 2022, 65 pages

In this thesis we will survey existence of the solutions of ∂- equation with L2 esti-

mates. The main part of the thesis involves the Ohsawa-Takegoshi Extension Theo-

rem and its applications to the well-known problems so called Openness Conjecture

and Suita Conjecture. In the last part, we consider some questions posed by Ohsawa

and related answers to these questions.

Keywords: ∂- Solution with L2 Estimates, Ohsawa-Takegoshi Extension, Openness

Conjecture, Suita Conjecture
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ÖZ

L2 GENİŞLETME TEOREMLERİ VE ÇOK DEĞİŞKENLİ KOMPLEKS
ANALİZE UYGULAMALARI

Çoğalmış, Aylin

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Özcan Yazıcı

Ağustos 2022 , 65 sayfa

Bu tezde ∂- denkleminin L2 yaklaşımını sağlayan çözümleri üzerine çalışılmıştır. Bu

tezin ana kısmında Ohsawa-Takegoshi Genişletme Teoremi ve bu teoremin Açıklık

Sanısı ve Suita Sanısı olarak bilinen problemlere uygulamaları ele alınmıştır. Tezin

son kısmında, Ohsawa tarafından önerilen bazı sorular ve bunlarla ilgili cevaplar üze-

rinde durulmuştur.

Anahtar Kelimeler: ∂- denklemi, Ohsawa-Takegoshi Genişletme Teoremi, Açıklık

Sanısı, Suita Sanısı
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CHAPTER 1

INTRODUCTION

For a domain Ω ⊆ Cn and a form α =
∑n

j=1 αjdzj on the domain, the equation

∂̄u = α has many more alterations once n > 1. A necessary condition to solve this

equation is that ∂α = 0. The equation for n > 1, also indicates how cumbersome it

is to prove existence theorems and form the applications. In fact, the solution for the

∂-problem is affected by the boundary of the domain. After great numbers of studies

on the question, it turned out that the domain’s being pseudo-convex plays a funda-

mental role for solving it. At the beginning, mathematicians studied ∂-problem only

on the products of polydiscs. Later, these results were extended for general domains.

However, this time, due to the restrictions on the type of the differential equation

systems, only for Cauchy-Riemann equations for an analytic function of several com-

plex variables, one started to study more effective ways that can be applied to solve

the general over determined systems for extension purposes.

D.C. Spencer and Garabedian [9] introduced such a way, on the other hand, this new

treatment of the ∂-problem for overdetermined systems brought some problematic

results. Later, in 1958, Morrey [20] came up with a crucial idea that L2 estimates are

required for solving the problem. The method submitted by Morrey, then, improved

and simplified by Kohn [17] and Ash [1]. In 1965, Lars Hörmander [16] simplified

further what Kohn and Ash were working on by using basic consequences of "exten-

sions of differential operators" and characterized the open sets for which estimates of

Morrey-Kohn type are consistent. Then, to provide a valid proof for existence theo-

rems and approximation theorems, L2 estimates with density factor was introduced

in the paper. Hörmander presented one of most vital results for solving ∂-problem,

regarding extension as well, which now we know as Hörmander’s Estimate. Then,

in 1987, Ohsawa presented the L2-extension of holomorphic functions and following
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this, many other versions and proofs of the Ohsawa-Takegoshi Extension Theorem

were obtained. In the light of these developments in the L2 extension theory, in 1972,

Suita [25] conjectured that for any bounded domain D in C one has c2D ≤ πKD ,

where cD is the logarithmic capacity of C \ D with respect to z ∈ D and KD is

the Bergman kernel on the diagonal. Using elliptic functions and different domains,

Suita obtained important results. Similarly, in 2001, Demailly and Kollár [8] pro-

posed so called Openness Conjecture, which was proved by Guan and Zhou [12],

using Ohsawa-Takegoshi Extension Theorem. Later, Berndtsson [3] gave a different

proof in a more elementary way.

In this Masters thesis, in Chapter 2, in the first part, we provide some useful results

from functional analysis revolving around the first order differential operators which

are required for proving existence theorems, and the estimates we will use for the

next section. In the second part, we will recall some important definitions, theorems

on pseudo-convex domains in Cn and finish this chapter with Hörmander’s Estimate.

Chapter 3 is focused on the Ohsawa-Takegoshi Extension Theorem for domains in

Cn, which is of interest to solve extension problem with L2 estimates of holomor-

phic functions. Being one of the most efficient results in several complex variables

and complex geometry, the theorem has been proven in many different ways. Upon

proving, we consider the methods used by Berndtsson mostly. Then, Chapter 4 is

devoted to some applications of Ohsawa-Takegoshi Extension Theorem. Indeed, we

will be working on Openness Conjecture and Suita Conjecture, which can be viewed

as consequences of the theorem. Finally, in Chapter 5, we will consider a question

posed by Ohsawa and see some answers to this question.
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CHAPTER 2

PRELIMINARIES

2.1 Some Tools in Hilbert Space Theory

Let D ⊂ Cn be domain, u be a function defined in D and α be a L2− form on D.

The equation ∂u = α can be solvable provided that

∂α = 0.

Therefore, the so called ∂−problem is only about giving a solution to the equation

∂u = α where ∂α = 0.

The ∂− problem becomes more complicated in higher dimensions because unlike

one-dimensional case, we lack of the compatibility condition ∂α = 0 in higher di-

mensions. At this point, by considering the weighted Hilbert Spaces L2(D,φ) where

φ will be a special type of function we will define in the next section, we can also

solve the problem in higher dimensions. However, to do so, we need some basic tools

in Hilbert Space Theory.

Given Hilbert spaces H1 and H2, and T : H1 → H2 a linear, closed, densely defined

operator which satisfies the property ⟨Tf, g⟩2 = ⟨f, T ∗g⟩1 for all f ∈ H1 and g ∈ H2.

Define T ∗: H2 → H1 satisfying the same properties such that T ∗∗ = T holds. By the

definition of the adjoint operator, the orthogonal complement of the range RanT of

T is the null space NullT ∗ of T ∗ .

Theorem 2.1.1. Let T be a linear, closed, densely defined operator with domain

DomT. Then the following are equivalent:

(i) RanT is closed.
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(ii)There exists some constant C such that ∥f∥1 ≤ C∥Tf∥2 for all f ∈ DomT ∩
RanT ∗.

(iii)RanT ∗ is closed.

(iv)There exists some constant C such that ∥g∥2 ≤ C∥T ∗g∥1 for all g ∈ DomT ∗ ∩
RanT.

Proof. (i) ⇒ (ii) Note that T is closed, in other words, T has a closed graph, so T

is continuous by Closed Graph Theorem. Suppose that RanT is closed. Since the or-

thogonal complement of RanT ∗ is equal to NullT, we have T |DomT∩RanT ∗ is a closed

linear map onto the subspace RanT of H2. Also on RanT ∗, T is one to one, so the

inverse of T exists.

Observe that the graph of T−1 is closed. To see this, assume that (gn, T−1gn) con-

verges to (g, f) in norm. Then gn → g and T−1gn → f in norm. Then, TT−1gn →
Tf , or equivalently, gn → Tf , and since the limit is unique, we have g = Tf . So

f = T−1g and f is an element of the graph of T−1. Thus, the graph of T−1 is closed.

By Closed Graph Theorem, T−1 is continuous. Hence, ∥T−1f∥1 ≤ C∥f∥2, applying

the linear operator T to inside of each side of the inequality, we prove (ii).

(ii) ⇒ (i) Suppose (ii) holds. Considering f as a vector, since T is a linear operator

and Tf = 0 implies f = 0, NullT = {0}. The orthogonal complement of RanT,

denoted by RanT⊥, is equal to NullT ∗. Then by Hilbert Space Theory, NullT ∗⊥ =

(RanT⊥)⊥= RanT.

Thus, we must show RanT =RanT. By assumption of (ii),

T : DomT ∩ RanT ∗ → RanT

is one-to-one (since RanT ∗ = NullT⊥, the functions on RanT ∗ are one-to-one), onto

and closed, so by Closed Graph Theorem T is continuous. Then, T |DomT∩RanT ∗ is an

isomorphism. Thus, DomT ∩ RanT ∗ ∼= RanT and DomT ∩ RanT ∗ is closed subset

of DomT . Since T is closed, RanT is closed.

(iii) ⇒ (iv) Assume that RanT ∗ is closed. The orthogonal complement of RanT

4



is NullT ∗, then, T ∗|DomT ∗∩RanT is closed, one-to-one linear map onto the subspace

RanT ∗ of H1. Hence, the inverse of T ∗ is a continuous map and this proves (iv).

(iv) ⇒ (iii) Assume that there is a constant C such that ∥g∥2 ≤ C∥T ∗g∥1 for all

g ∈ DomT ∗ ∩ RanT. Since T ∗ is a linear operator and T ∗g = 0 implies g = 0,

NullT ∗={0}. The orthogonal complement of RanT ∗⊥ equals to NullT , by Hilbert

Space Theory,

NullT⊥ = (RanT ∗⊥)⊥ = RanT ∗.

Thus, we must show RanT ∗ = RanT ∗.

By assumption of (iv), T ∗ : DomT ∗∩RanT → RanT ∗ is one-to-one, onto and since

the graph of T ∗ is closed, T ∗ is closed. Then by Closed Graph Theorem, T ∗ is con-

tinuous and thus T ∗|DomT ∗∩RanT is an isomorphism. Thus, DomT ∗ ∩RanT ∼= RanT ∗

andDomT ∗∩RanT is closed subset ofDomT ∗. Since T ∗ is closed,RanT ∗ is closed.

(ii) ⇒ (iv) Assume that (ii) holds. Consider for g ∈ DomT ∗ ∩ RanT,

|(g, Tf)2| = |(T ∗g, f)1| ≤ ||T ∗g||1||f ||1 < C||T ∗g||1||Tf ||2.
Hence, |(g, h)2| ≤ ||T ∗g||1||h||2 for g ∈ DomT ∗ and h ∈ RanT which implies (iv).

Given a Hilbert SpaceH3 and a closed, densely defined linear operator S : H2 → H3,

from now on we will assume that ST = 0. The space RanT is contained in space

NullS.

Theorem 2.1.2. A necessary and sufficient condition for RanT and RanS to be

closed is that ||g||22 ≤ C2(||T ∗g||21 + ||Sg||23) where g ∈ DomT ∗ ∩ DomS and g ⊥
N = NullT ∗ ∩NullS.

Proof. Note that ST = 0 implies that RanT ⊥ RanS∗. To see this, let Tf ∈ RanT

and S∗g ∈ RanS∗, then ⟨Tf, S∗g⟩ = ⟨STf, g⟩ = 0 for all such f and g, so RanT ⊥
RanS∗.

By the fact that RanT ⊥ RanS∗ and N is perpendicular to this set, we have that

H2 = RanT ⊕N ⊕RanS∗. Now by Theorem 2.1.1(ii), RanT is closed if and only
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if ||g||2 ≤ C||T ∗g||1 where g ∈ DomT ∗ ∩ RanT and by Theorem 2.1.1(iv), RanS

is closed if and only if ||g||1 ≤ C||Sg||2 where g ∈ DomS ∩RanS∗.

Observe that since g ∈ RanT and g ∈ RanS∗ and that ST = 0 implies that S

vanishes on RanT , T ∗ vanishes on RanS∗, we have that

||g||2 ≤ C||T ∗g||1, ||g||2 ≤ C||Sg||3.

Then, this shows that there exists g ∈ H2 such that g = g1 ⊕ g2, where g1 ∈
RanT , g2 ∈ RanS∗. Therefore, RanT and RanS are closed if and only if

||g||22 ≤ ||g1||22 + ||g2||22 ≤ C2

(
||T ∗g||21 + C||Sg||23

)
where g ∈ DomT ∗ ∩DomS and g ⊥ N. This finishes the proof.

Note that, dimN = dim(NullS) − dim(RanT). This gives a strong possibility that

in the applications, N shall be of finite dimension.

The inequality in 2.1.2 is a result which makes it easier to study than Theorem

2.1.1(ii) or (iv). A sufficient condition for 2.1.2 follows from compactness argu-

ment:

Theorem 2.1.3. Suppose from any sequence gk ∈ DomT ∗∩DomS of bounded linear

operators with ||gk||2 bounded and T ∗gk → 0 in H1, Sgk → 0 in H3, a strongly

convergent subsequence can be chosen. Then,

||g||22 ≤ C2(||T ∗g||21 + ||Sg||23) (2.1.1)

holds and N = NullT ∗ ∩NullS is finite dimensional.

Proof. Note that the null space is always closed. So S−1({0}) = NullS and

(T ∗)−1({0}) = NullT ∗ are closed. Then, N = NullT ∗ ∩ NullS is a closed subset

of the H2. Hence, N is a Hilbert Space. Since the unit sphere in N , say B1(0), is

closed and bounded, N is of finite dimension.

Now assume that the inequality (2.1.3) does not hold. Then, we could find a sequence

gk ⊥ N ⊆ DomT ∗ ∩ DomS with ||gk||2 = 1 in H1 and T ∗gk = 0, and Sgk = 0 in

H3.

Hence, there is a strongly convergent subsequence of gk. Let g be the strong limit

6



of gk. Then, ||g||2 = 1 and g ⊥ N , but T ∗g = Sg = 0 so that g ∈ N . Thus,

g ∈ N and g = 0, but this is a contradiction to ||g||2 = 1. Therefore, the inequality

||g||22 ≤ C2(||T ∗g||21 + ||Sg||23) holds.

Theorem 2.1.4. Assume that A is a densely defined, linear operator in H2, which is

closed and F is a closed subspace of H2 containing RanT as a subset. Suppose

||Af ||22 ≤ ||T ∗f ||21 + ||Sf ||23 (2.1.2)

where f ∈ DomT ∗ ∩DomS ∩ F . Then, we have RanA∗ ∩NullS ∩ F ⊂ RanT ;

if g = A∗h, h ∈ DomA∗ and g ∈ NullS ∩ F , we can find u ∈ DomT so that

Tu = g and ||u||1 ≤ ||h||2.

Furthermore, if v ∈ RanT , we can choose f ∈ DomA ∩DomT ∗ so that

T ∗f = v and ||Af ||2 ≤ ||v||1.

Proof. Let g = A∗h where h ∈ DomA∗ and g ∈ NullS ∩ F . We must find u ∈ H1

so that ||u||1 ≤ ||h||2 and Tu = g, or equivalently, ⟨u, T ∗f⟩1 = ⟨g, f⟩2 for all

f ∈ DomT ∗. On the other hand, by Hahn- Banach Theorem, this is equivalent to

proving |⟨g, f⟩2| ≤ ∥h∥2∥T ∗f∥1 where f ∈ DomT ∗. To clarify, observe that T ∗f ∈
RanT ∗ ⊆ H1, and let φ be defined so that φ(T ∗f) = ⟨g, f⟩2 for all f ∈ DomT ∗.

Then by |⟨g, f⟩2| ≤ ∥h∥2∥T ∗f∥1, we have

||φ|| = ||h||2.

Then by Hahn- Banach Theorem, φ extends to a linear functional on H1, say φ̃ such

that

||φ̃|| = ||h||2.

Then, bu Riesz’s Representation, φ̃(T ∗f) = ⟨g, f⟩2 = ⟨u, T ∗f⟩ for some u ∈ H1

with ||u||1 = ||φ̃|| = ||h||2. Therefore, using Hahn-Banach Theorem, it is sufficient

to prove that

|⟨g, f⟩2| ≤ ∥h∥2∥T ∗f∥1

where f ∈ DomT ∗.

If f ⊥ NullS ∩ F , then T ∗f = 0 because RanT ⊂ NullS ∩ F and so f ∈
(RanT )⊥ = NullT ∗. Since g ∈ Null ∩ F , it is enough to show that |⟨g, f⟩2| ≤

7



∥h∥2∥T ∗f∥1 where f ∈ DomT ∗ holds when f ∈ NullS ∩ F. Then the inequality

given in the theorem becomes ||Af ||22 ≤ ||T ∗f ||21 and this gives,

|⟨g, f⟩2| = |⟨A∗h, f⟩2| = |⟨h,Af⟩2| ≤ ∥h∥2∥Af∥2 ≤ ∥h∥2∥T ∗f∥1.

This finishes the first part of the proof.

For the second part, by the definition of RanT ∗, f ∈ NullS ∩ F ∩ DomT ∗ so that

T ∗f = v. But then, by |⟨g, f⟩2| ≤ ∥h∥2∥T ∗f∥1, f ∈ DomA and that

∥Af∥2 ≤ ∥v∥1 for v ∈ RanT ∗.

Recall that a differential form is said to be of type (p, q) if it can be represented in the

form

f =
∑

|I|=p,|J |=q,

fI,J .dz
I ∧ dzJ

where I = (i1, i2, .., ip) and J = (j1, j2, .., jq) are sequences of indices between 1 and

n, and the summation is only over strictly increasing multi-indices and we write,

dzI ∧ dzJ = dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzj1 ∧ dzj2 ∧ .. ∧ dzjq

The coefficients fI,J might be linear functionals defined on C∞(Ω),Ω ⊂ Cn, which

are also called distributions and should be defined for arbitrary I and J so that they

are antisymmetric both in the indices of I and of J . We also have the following

operation:

∂f =
∑
I,J

∂fI,J
∂zk

dzk ∧ dzI ∧ dzJ

which leads the form ∂f to be of type (p, q + 1) and that ∂∂f = 0.

For instance, let f ∈ L2
(0,1)(Ω) where Ω ⊂ C2. Then, the ∂ operator applied to f gives

the following

∂f =
∂f

∂z1
dz1 +

∂f

∂z2
dz2,

Hence, we have

∂∂f =
∂

∂z1

(
∂f

∂z1
dz1 +

∂f

∂z2
dz2

)
∧ dz1 +

∂

∂z2

(
∂f

∂z1
dz1 +

∂f

∂z2
dz2

)
∧ dz2

=
∂2f

∂z21
dz1 ∧ dz1 +

∂2f

∂z1∂z2
dz2 ∧ dz1 +

∂2f

∂z2∂z1
dz1 ∧ dz2 +

∂2f

∂z22
dz2 ∧ dz2

= 0

8



where the last equality follows from the property that dz1 ∧ dz2 = −dz2 ∧ dz1.

The value of a linear functional g on a function φ ∈ C∞ is denoted by ⟨g, φ⟩. Two

distributions g1 and g2 are said to be equal in their domain if ⟨g1, φ⟩ = ⟨g2, φ⟩ for all

φ ∈ C∞. A distribution is the sum of distributions g1 and g2 if ⟨g, φ⟩ = ⟨(g1+g2), φ⟩
for all φ ∈ C∞.

Let F be the space of distributions, consisting of (p, q) forms with coefficients in

F is denoted by F(p,q). In fact, we will use this notation with F = Ck(Ω) and

denote with Ck
0 (Ω) the elements of F which vanish outside a big sphere. For φ which

is measurable on Ω and locally bounded from above, we write the space of square

integrable functions with respect to the factor e−φ in Ω by L2
(p,q)(Ω, φ) and the norm

in L2
(p,q)(Ω, φ) is defined by

||f ||2φ =

∫
|f(z)|2e−φdV where f ∈ L2

(p,q)(Ω, φ)

and dV is the Lebesgue measure and

|f(z)|2 = ⟨f(z), f(z)⟩ =
∑

|fI,J(z)|2.

Finally, let L2(Ω, loc) denote the space of square integrable functions on all compact

subsets of Ω, in other words, for any compact set K,

L2(Ω, loc) = {f : f : K → C,
∫
K

|f(z)|2dz <∞}.

Note that, L2(Ω, loc) is a complete metric space with the inner product

⟨f, g⟩ =
∫
fgdz.

Thus, L2(Ω, loc) is a Hilbert space. If p, q are fixed where q > 0, we denote the

maximal (weak) differential operator ∂ from L2
(p,q−1)(Ω, φ) to L2

(p,q)(Ω, φ) by T , so a

form u ∈ L2
(p,q−1)(Ω, φ) is in DomT if and only if ∂u belongs to L2

(p,q)(Ω, φ).

Observe that if φ is continuous, then T is closed and densely defined. Likewise,

the operator ∂ defines a closed and densely defined operator S from L2
(p,q)(Ω, φ) to

L2
(p,q+1)(Ω, φ). Then, by ∂∂f = 0, we have ST = 0.

9



Then, all the theorems provided above are also available to be applied here, which

will help us to prove the following series of estimates. Before continuing with the

estimates, consider the following proposition.

Proposition 2.1.5. Let A be a linear operator as in Theorem 2.1.4. Let u be the

solution of Au = f with compact support. Then, there exists uv ∈ C∞
0 with uv → u

and ||Auv − Au|| → 0 as v → ∞.

For the proof, see the first section of [16].

Proposition 2.1.6. C1
(p,q)(Ω) ∩ DomT ∗ is dense in DomT ∗ ∩ DomS in the graph

norm f 7→ (||f ||2 + ||T ∗f ||2 + ||Sf ||2)1/2 if the boundary ∂Ω of Ω is of class C2 and

φ ∈ C1(Ω).

Further, C1
(p,q−1)(Ω) is dense in DomT in the graph norm f 7→ (||f ||2 + ||Tf ||2)1/2.

Proof. Let χ ∈ C∞(Ω) and f ∈ DomS, then χf ∈ DomS and

||S(χf)− χ(Sf)||φ = ||∂(χf)− χ∂f ||φ = ||χ∂f + (∂χ)f − χ∂f ||φ

= [

∫
|(∂χ)f |2e−φ]1/2

≤ C.sup|gradχ|.||f ||φ.

Similar result is valid for T ,

||T (χf)− χ(Tf)||φ ≤ C.sup|gradχ|.||f ||φ.

By the fact that

|⟨χf, Tu⟩φ − ⟨f, T (χu)⟩φ| =

∣∣∣∣ ∫ (χf∂u− f∂(χu))e−φ
∣∣∣∣

=

∣∣∣∣ ∫ (χf∂u− f(∂χ)u− f(∂u)χ)e−φ
∣∣∣∣

≤ C.sup|gradχ|.||u||φ.||f ||φ (2.1.3)

we have,

|⟨T ∗(χf), u⟩φ − ⟨χT ∗f, u⟩φ| ≤ C.sup|gradχ|.||u||φ.||f ||φ.

10



From (2.1.3), we also see that if f ∈ DomT ∗, then χf ∈ DomT ∗ and

||T ∗(χf)− χ(T ∗f)||φ ≤ C sup |gradχ|.||f ||φ.

Let χ ∈ C0
∞(Cn), so χ = 0 outside of compact set. Let χ satisfy the condition that

χ(0) = 1 and set χϵ(z) = χ(ϵz). If f ∈ DomT ∗ ∩ DomS, then χϵf ∈ DomT ∗ ∩
DomS and the following holds

χϵf 7→ f,

S(χϵf) 7→ Sf,

T ∗(χϵf) 7→ T ∗f

in the appropriate L2 spaces as ϵ → 0. Thus, this is enough to estimate for χϵf with

compact support. Note that the second item holds because ||S(χϵf) − χϵ(Sf)||φ ≤
C.ϵ.sup|gradχ|.||f ||φ → 0.

To clarify, the reason we take χϵf is that we want to change f and bring it into a

smooth function as ϵ → 0 because as ϵ → 0, χϵf → f . Moreover, χϵf ≡ 0 outside

compact sets.

Then, χϵf → f means that approximating χϵf is the same as approximating f . By

the smoothness of χϵf , we will be able to eliminate the ∂Ω− integral in the Green’s

Formula and use it for later.

Starting the proof, approximate the elements f ∈ DomT ∗ ∩ DomS which are 0

outside a sphere large enough. By definition of T ∗ and since the elements of DomT ∗

satisfy the Cauchy-Boundary Condition (in the weak sense), the proof will follow

from the Proposition 2.1.5.

Assume that the boundary ∂Ω of Ω satisfies C2 and let ϱ be a real valued function in

C2(Ω), that is 0 on the boundary of Ω, is negative on Ω and be such that |gradϱ| = 1

on ∂Ω. Then, gradϱ is the exterior unit normal on ∂Ω, so the Green’s Formula may

be written as, if v, w ∈ Int(C1(Ω)),

∫
Ω

∂v

∂xj
we−φdV = −

∫
Ω

v(
∂w

∂xj
− w

∂φ

∂xj
)e−φdV +

∫
∂Ω

∂ϱ

∂xj
vwe−φds

11



where dS is the Euclidean surface element on ∂Ω. To see this,

Let Ω = {ϱ < 0} and on ∂Ω, |gradϱ| = 1, so grad ϱ is the unit normal and let

v, w ∈ C1(Ω), that is, the first partial derivatives of v and w exist. Recall the Diver-

gence Formula: ∫
Ω

∇.F.dV =

∫
∂Ω

⟨F, n⃗⟩.ds

where ∇ is given by ( ∂
∂x1
, ∂
∂x2
, .., ∂

∂xn
) , F is a vector field and n⃗ is the gradient of ϱ.

Take F = (0, 0, .., vwe−φ, 0, .., 0) where vwe−φ is the jth- term.

Consider gradF = (0, 0, .., ∂
∂xj

(vwe−φ), 0, 0, .., 0) and gradϱ = ∂ϱ
∂xj

gradF = (0, 0, ..,
∂v

∂xj
we−φ + e−φv(

∂w

∂xj
− w

∂φ

∂xj
), 0, 0, .., 0)

Then, we have,

∫
Ω

∇.F.dV =

∫
Ω

∂

∂xj
(v.w.e−φ)dV =

∫
Ω

[
∂v

∂xj
we−φ + ve−φ(

∂w

∂xj
− w

∂φ

∂xj
)

]
dV

⇐⇒
∫
Ω

∇.F.dV =

∫
∂Ω

⟨F, n⃗⟩.ds

⇐⇒
∫
Ω

∂v

∂xj
we−φdV +

∫
Ω

ve−φ(
∂w

∂xj
− w

∂φ

∂xj
)dV

=

∫
∂Ω

vwe−φ
∂ϱ

∂xj
ds

⇐⇒
∫
Ω

∂v

∂xj
we−φdV =

∫
∂Ω

vwe−φ
∂ϱ

∂xj
ds−

∫
Ω

ve−φ(
∂w

∂xj
− w

∂φ

∂xj
)dV

Repeating the same procedure for yj-terms, we obtain the zj-terms:

δj =
∂w

∂zj
− w

∂φ

∂zj
= eφ

∂(we−φ)

∂zj
(2.1.4)

Then we obtain,
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∫
Ω

∂v

∂zj
we−φdV = −

∫
Ω

vδjwe
−φdV +

∫
∂Ω

∂ϱ

∂zj
vwe−φds (2.1.5)

Note that, for φ ∈ C2, we have commutation relations, in other words, consider the

following,

(
δk

∂

∂zj
− ∂

∂ zj
δk

)
w =

∂2w

∂zk∂zj
− ∂w∂φ

∂zj∂zk
− ∂2w

∂zj∂zk
+

∂

∂zj

(
w
∂φ

∂zk

)
=

∂2w

∂zk∂zj
− ∂w∂φ

∂zj∂zk
− ∂2w

∂zj∂zk
+
( ∂w
∂zj

∂φ

∂zk
+ w

∂2φ

∂zj∂zk

)
= w

∂2φ

∂zj∂zk

Thus we have, (
δk

∂

∂zj
− ∂

∂zj
δk

)
w = w

∂2w

∂zj∂zk
(2.1.6)

with w ∈ C2, which implies that

∫
Ω

δj(v)δk(w)e−φdV −
∫
Ω

∂v

∂zk

∂w

∂zj
e−φdV (2.1.7)

= −
∫
Ω

∂

∂zj
δk(w)ve

−φdV +

∫
∂Ω

∂ϱ

∂zj
δk(w)ve

−φds

+

∫
Ω

vδk(
∂w

∂zk
)e−φdV −

∫
∂Ω

∂ϱ

∂zk
v
∂w

∂zk
e−φds

=

∫
Ω

vw
∂2φ

∂zj∂zk
e−φdV +

∫
∂Ω

∂ϱ

∂zj
δk(w)ve

−φds

−
∫
∂Ω

∂ϱ

∂zk
v
∂w

∂zj
e−φds. (2.1.8)

Indeed, the last equality is a direct result of (2.1.5) and (2.1.6) if w ∈ Int(C2(Ω))

and it follows when w ∈ Int(C1(Ω)) because Int(C2(Ω)) is a dense subset. In other

words, working with C1 is enough.
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For convenience, we shall describe the space of Int(C1
(p,q)(Ω))∩DomT ∗ in the Propo-

sition 2.1.6. Consider the inner product defined below,

⟨∂u, f⟩φ =

∫
Ω

⟨∂u, f⟩e−φdV

where f ∈ Int(C1
(p,q)(Ω)) and u ∈ Int(C1

(p,q−1)(Ω)). Note that, the reason why we

take ⟨∂u, f⟩ with f ∈ C1
(p,q)(Ω) is to make sure the agreement in the number of wedge

products. Now, let us pass from the differentiations of u to the ones of f. Observe that

∂ = T so, ⟨Tu, f⟩ = ⟨u, T ∗f⟩ .

Let u =
∑

|I|=p,|K|=q−1 uI,Kdz
I ∧ dzK , then,

∂u = (−1)p
∑
I,K

∑
j

∂uI,K
∂zj

dzI ∧ dzj ∧ dzK .

Plus, by Green’s Formula we have,

⟨∂u, f⟩φ = (−1)p
∫
Ω

∑
I,K

∑
j

∂uI,K
∂zj

fI,jKe
−φdV

= (−1)p−1

∫
Ω

∑
I,K

∑
j

uI,Kδj(fI,jK)e
−φdV + (−1)p

∫
∂Ω

∑
I,K

∑
j=1n

∂ϱ

∂zj
uI,Kf I,jKe

−φds

Also note that, since ⟨∂u, f⟩φ = ⟨u, T ∗f⟩φ and T ∗f = δj(fI,jK), we have that

∑
I,K

n∑
j=1

∂ϱ

∂zj
uI,Kf I,jKe

−φds =
∑
I,K

uI,K

n∑
j=1

fI,jK
∂ϱ

∂zj
e−φds.

Since Int(C1
(p,q−1)) is dense in DomT for the graph norm given in Proposition 2.1.6,

we conclude that for any u ∈ DomT ,∫
∂Ω

∑
I,K

uI,K

n∑
j=1

fI,jK
∂ϱ

∂zj
e−φds = 0.

Therefore, for all I,K and T ∗f = (−1)p−1
∑
I,K

n∑
j=1

δjfI,jKdz
I ∧ dzK with |I| =

14



p, |K| = q − 1, it holds that

f ∈ DomT ∗ if
n∑
j=1

fI,jK
∂ϱ

∂zj
= 0 on ∂Ω. (2.1.9)

If f ∈ C1
(p,q)(Ω) ∩DomT ∗, then

||T ∗f ||2φ + ||Sf ||2φ =
∑
I,K

n∑
j,k=1

∫
Ω

δjfI,jKδkfI,kKe
−φdV

+
∑
I,J,L

∑
i,l=1

∫
Ω

∂fI,J
∂zj

∂fI,L
∂zl

ϵiJlLe
−φdV (2.1.10)

where ϵiJlL = 0 if j ∈ J , in other words dzJ ∧ dzj with dzj = 0, l /∈ L and

{j} ∪ J = {l} ∪ L, in which case ϵiJlL is the sign of the permutation
(
jJ
lL

)
.

To clarify, consider the following illustration, if (1, 2, 3) ̸= (2, 3, 4), then fI,jJdzI ∧
dz1 ∧ dz2 ∧ dz3 ⇐⇒ 0.dzI ∧ dz1 ∧ dz2 ∧ dz3 in the inner product and otherwise,

ϵiJlL = 1.

We shall rearrange the terms in the last sum. We will consider two cases:

Assume that j = l, which implies that J = L and j /∈ J if ϵiJlL ̸= 0. Then the last sum

becomes:

∑
I,J

∑
j /∈J

∫
Ω

∣∣∣∣∂fIJ∂zj

∣∣∣∣2 e−φdV

Next, assume that j ̸= l. In this case, since {j}∪J = {l}∪L, this implies that j ∈ L,

l ∈ J and if ϵiJlL ̸= 0, we have L/{j} = J/{l} = K, or that, lK = J and jK = L.

Then, by ϵiJlL = ϵjJjlKϵ
jlK
ljKϵ

ljk
lL = −ϵJlKϵ

jK
L , the last sum becomes:

−
∑
I,K

∑
j ̸=l

∫
Ω

∂fI,lK
∂zj

∂fI,jk
∂zl

e−φdV.

Therefore, the equation (2.1.10) becomes the following:
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||T ∗f ||2φ + ||Sf ||2φ =
∑
I,K

∑
j,K

∫
Ω

δjfI,jKδkfI,kKe
−φdV −

∑
I,K

∑
j,k

∫
Ω

∂fI,jK
zk

∂fI,kK
∂zl

e−φdV

+
∑
I,J

∑
j

∫
Ω

∣∣∣∣∂fI,J∂zj

∣∣∣∣2 e−φdV.
After rearranging the terms in the last sum and hence in the whole equation, we now

turn our attention to integration by parts, and to moving all differentiations to the

right.

By using previous results, we obtain that,

||T ∗f ||2φ + ||Sf ||2φ =
∑
I,K

∑
j,k

∫
Ω

fI,jKfI,kK
∂2φ

∂zj∂zk
e−φdV +

∑
I,J

∑
j

∫
Ω

∣∣∣∣∂fI,J∂zj

∣∣∣∣2 e−φdV
−

∑
I,K

∑
j,k

∫
∂Ω

fI,jK
∂ϱ

∂zk

∂fI,kK
∂zj

e−φds.

Let g =
∑

k fI,kK
∂ϱ
∂zk

, and g ≡ 0 on ∂Ω, so, ∇g ∥ ∇ϱ, which also implies that

∇g ∥ ∇ϱ. Then, the jth term of ∇g is equal to∑
k

(∂fI,kK
∂zj

∂ϱ

∂zk
+ fI,kK

∂2ϱ

∂zj∂zk

)
= C

∂ϱ

∂zj
for some constant C.

Thus, for any point on the boundary, it holds that∑
k

(∂fI,kK
∂zj

∂ϱ

∂zk
+ fI,kK

∂2ϱ

∂zj∂zk

)
= C

∂ϱ

∂zj
for j = 1, 2, .., n.

Multiplying this equation with fI,jK we get,∑
j,k

(
fI,jK

∂fI,kK
∂zj

∂ϱ

∂zk
+ fI,jKfI,kK

∂2ϱ

∂zj∂zk

)
= 0 on ∂Ω,

by 2.1.9. Thus, we have proved the following:

Proposition 2.1.7. The following identity is valid when f ∈ Int(C1
(p,q)(Ω))∩DomT ∗ :

||T ∗f ||2φ + ||Sf ||2φ =
∑
I,K

∑
j,k

∫
Ω

fI,jKfI,kK
∂2φ

∂zj∂zk
e−φdV +

∑
I,J

∑
j

∫
Ω

∣∣∣∣∂fI,J∂zj

∣∣∣∣2 e−φdV
+

∑
I,K

∑
j,k

∫
∂Ω

fI,jKfI,kK
∂2ϱ

∂zj∂zk
e−φds.

16



Now consider the first sum of the last proposition,∑
I,K

∑
j,k

∫
Ω

fI,jKfI,kK
∂2φ

∂zj∂zk
e−φdV.

Being ascribed to the weight function e−φ, this term will be practical for the estimates

that we will do later, and will allow us to extend the work quoted that is defined for

the surface integral in the last proposition. However, to be able to continue, we need

to recall few definitions in pluripotential theory.

2.2 Hörmander’s Solution to the ∂ Problem

Definition 2.2.1. A function φ : Ω → C is said to be plurisubharmonic provided

that it is upper semi-continuous and locally integrable and

n∑
j,k=1

tjtk
∂2φ

∂zj∂zk
≥ 0

for any t = (t1, t2, . . . , tn) ∈ Cn, in the sense of distributions. That is,∫
Ω

φ(z)
∑
j,k

tjtk
∂2u

∂zj∂zk
dV ≥ 0

for all φ ∈ C∞
0 (Ω).

For χ ∈ C(Ω), eχ is a lower bound for plurisubharmonicity of φ if the difference

n∑
j,k=1

tjtk
∂2φ

∂zj∂zk
− eχ

n∑
1

|tj|2

is a positive measure for arbitrary complex numbers tj .

Definition 2.2.2. A set M ⊂ Rn is a Ck-smooth hypersurface if at each point p ∈M ,

there exists a k-times continuously differentiable function ϱ : V → R with non-

vanishing derivative, defined in a neighborhood V of p such that

M ∩ V = {x ∈ V : ϱ(x) = 0}.

The function ϱ is called the defining function of M at p.
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Adapting these definitions to what we have been working with, we have the following

definition.

Definition 2.2.3. Let Ω be open and ∂Ω is smooth. The boundary ∂Ω

is said to be pseudo-convex if at every point of ∂Ω,
n∑

j,k=1

tjtk
∂2ϱ

∂zj∂zk
≥ 0 whenever

n∑
j=1

tj
∂ϱ

∂zj
= 0,

where (t1, t2, ..., tn) ∈ Cn.

Remark 2.2.4. Recall that
∑n

j,k=1 tjtk
∂2ϱ

∂zj∂zk
is called the Hermitian form and if, in

this definition, the Hermitian form is strictly positive for all such t ̸= 0, then the

boundary ∂Ω is said to be strictly pseudo-convex.

Remark 2.2.5. Observe that the components tj, tk appearing in the definition corre-

spond to fI,jK , fI,kK of the Proposition 2.1.7, respectively.

If ∂Ω is pseudo-convex, it follows from
n∑
j=1

fI,jK
∂ϱ

∂zj
= 0 on ∂Ω, for all I,K

that the last sum of the Proposition 2.1.7,∑
I,K

∑
j,k

∫
∂Ω

fI,jKfI,kK
∂2ϱ

∂zj∂zk
e−φds

is non-negative. This gives us the following theorem:

Theorem 2.2.6. If ∂Ω is pseudo-convex, and f ∈ Int(C1
(p,q)(Ω)) ∩DomT ∗, then∫

Ω

∑
I,K

∑
j,k

fI,jKfI,kK
∂2φ

∂zj∂zk
e−φdV ≤ ||T ∗f ||2φ + ||Sf ||2φ

Note that, for future purposes, we shall choose φ so that the Hermitian form∑
j

∑
k

tjtk
∂2φ

∂zj∂zk

is strictly positive at every point of Ω. In other words, we shall choose φ strictly

plurisubharmonic.

Combination of all of the definitions given above, we have an extended definition.
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Definition 2.2.7. An open set Ω is pseudo-convex if there exists a plurisubharmonic

function φ ∈ Ω such that

Ωφ = {z : z ∈ Ω, φ(z) < c}

is relatively compact in Ω, for any real number c.

So far, we have just worked on the tools we need for dealing with extension problems.

Now, we will start considering existence theorems and provide their proofs.

Using Proposition 2.1.6, and Theorem 2.2.6 with a modified version of Theorem 2.1.3

by taking F = H2 provides the following.

Theorem 2.2.8. [16] Assume that Ω ⊆ Cn is domain with a C2-pseudo-convex

boundary. Let φ ∈ C2(Ω) be plurisubharmonic in Ω and let eχ with χ ∈ C(Ω)

be the lowest eigenvalue of the matrix
(

∂2φ
∂zj∂zk

)
. For every f ∈ L2

(p,q)(Ω, φ), q > 0,

such that ∂f = 0 and

∫
Ω

|f |2e−(φ+χ)dV <∞,

we can then find a form u ∈ L2
(p,q−1)(Ω, φ) such that ∂u = f and

q

∫
Ω

|u|2e−φdV ≤
∫
Ω

|f |2e−(φ+χ)dV.

Before continuing with the proof, we first try to understand the theorem. The theorem

simply states that for every f ∈ L2
(p,q)(Ω, φ) with the given properties, we can find a

(p, q − 1) form u such that ∂u = f, and the weighted norm of u is preserved with

respect to the weighted norm of f . Now to prove this theorem, observe that, in the

view of Theorem 2.2.6, Proposition 2.1.7 stated in last section infers as follows,∑
fI,jKf I,kK can be viewed as (fj)

( ∂2φ

∂zj∂zk

)
(fk) ≥ eχfjfk

where fj and fk are vectors. Then, the inequality in Theorem 2.2.6 becomes

||T ∗f ||2φ + ||Sf ||2φ ≥
∫
Ω

∑
I,K

∑
j,k

eχfI,jKfI,kKe
−φdV.

But why do we need ”eχfI,jKfI,kK" part in the first place? It is because we want to be
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able to apply Theorem 2.1.3 in which this term eχfI,jKfI,kK is equal to ||Af ||22 where

A : H2 → H2. Let us now move to the proof.

Proof. Putting what we are given in the theorem, we have,

L2
(p,q−1) (T = ∂)

−−−−−→
L2
(p,q) (S = ∂)

−−−−−→
L2
(p,q+1).

Let χ/2 be a real number and let A : L2
(p,q) → L2

(p,q) be defined by

A(f) = eχ/2f

so that the desired ||Af ||22 will be obtained as described above. Then, the adjoint

operator A∗ : L2
(p,q) → L2

(p,q) becomes

A∗(eχ/2f) = f.

Now consider the following,

⟨f, A∗g⟩ = ⟨Af, g⟩ = ⟨eχ/2f, g⟩ = ⟨f, eχ/2g⟩ ⇒ ⟨f, A∗g⟩ = ⟨f, g eχ/2⟩

⇐⇒ A∗g = eχ/2g ⇒ A∗ = A

Thus, A is a self adjoint operator.

Hence, we have thatA is self-adjoint , closed and densely defined operator. Moreover,

by construction,

||Af ||22 = ||eχ/2f ||22 ≤ ||T ∗f ||21 + ||Sf ||23.

Thus, if f = A∗g where g ∈ DomA∗, then by Theorem 2.1.3, there exists a form

u ∈ DomT = L2
(p,q−1) such that Tu = f , or ∂u = f , and

||u||1 = ||g||2 ,

or equivalently, ∫
Ω

|u|2e−φdV ≤
∫
Ω

∣∣e−χ/2f ∣∣2 e−φdV.
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Since restricting the boundary is a little cumbersome for extension problem, our next

purpose is to remove the condition of smoothness on the boundary ∂Ω of Ω in the

previous theorem. That is why we modified the definitions and extended them to

the Definition 2.2.3, because, then, for a domain Ω with boundary ∂Ω ⊂ C2, the

boundary is already pseudo-convex by Definition 2.2.3 if and only if Ω is pseudo-

convex as in Definition 2.2.7. With restrictions being removed, we state the previous

theorem below.

Theorem 2.2.9. [16]Let Ω be a pseudo-convex open set in Cn, φ be a plurisubhar-

monic function in Ω and eχ with χ ∈ C2(Ω) be a lower bound for plurisubharmonicity

of φ. Then, for every f ∈ L2
(p,q)(Ω, loc), q > 0 such that ∂f = 0 and∫

Ω

|f |2e−(φ+χ)dV <∞,

one can find a form u ∈ L2
(p,q−1)(Ω, φ) such that ∂u = f and

q

∫
Ω

|u|2e−φdV ≤
∫
Ω

|f |2e−(φ+χ)dV.

Note that, a proof for above theorem is given in [16]. We now give some consequences

of Theorem 2.2.8.

Theorem 2.2.10. [16] Assume that Ω is a pseudo-convex, bounded domain in Cn and

let δ = supz,w∈Ω|z−w| be the diameter of Ω and φ be plurisubharmonic on Ω. Then,

for any f ∈ L2
(p,q)(Ω, φ), q > 0 with ∂f = 0, we can find a form u ∈ L2

(p,q−1)(Ω, φ)

such that ∂u = f and

q

∫
Ω

|u|2e−φdV ≤ e δ2
∫
Ω

|f |2e−φdV.

Proof. Let a be a positive real number. Then, φ(z) + a|z|2 is strictly plurisubhar-

monic. We can apply Theorem 2.2.9 because there is no restriction on the boundary.

Assume that 0 ∈ Ω, then |z| ≤ δ when z ∈ Ω. Choose a = eχ, applying the above

theorem, for every f ∈ L2
(p,q)(Ω, φ), q > 0 with ∂f = 0, we have

q

∫
Ω

|u|2e−φdV ≤
∫
Ω

|f |2e−(φ+χ)dV.
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Now replacing φ by φ+ a|z|2, we get,

q

∫
Ω

|u|2e−(φ(z)+a|z|2)dV = q

∫
Ω

|u|2e−φ(z)e−a|z|2dV

≤ q

∫
Ω

|u|2e−(φ(z)+aδ2)dV

≤
∫
Ω

|f |2e−(φ+χ)e−aδ
2

dV

=

∫
Ω

|f |2e−φe−χe−aδ2

=

∫
Ω

|f |2e−φa−1e−aδ
2

dV

≤ a−1e−aδ
2

∫
Ω

|f |2e−φdV.

Letting a = δ−2, the right hand side reaches its minimum with respect to a and the

proof is finished.

Now for future purposes, we will give a modified version of the Hörmander’s esti-

mates. This version will be used to prove the Ohsawa-Takegoshi Extension Theorem.

Theorem 2.2.11. (Hörmander’s Estimate) Let Ω be a pseudo-convex domain in Cn

andφ be aC2-strongly plurisubharmonic function in Ω. Then, for every f ∈ L2
loc,(0,1)(Ω)

with ∂f = 0, there exists a form u ∈ L2
loc(Ω) solving ∂u = f and such that∫

Ω

|u|2e−φdλ ≤
∫
Ω

|f |2
i∂∂φ

e−φdλ

where |f |2
i∂∂φ

=
∑

j,k φ
jkf jfk and φjk is the inverse of the Hessian matrix.

Proof. Let A be a linear operator given such that

A2 =

[
∂2φ

∂zj∂zj

]
which is the Hessian matrix. Note that, since A = A∗, A is unitary and Hermitian, it

is likely to get that A2 is the Hessian. To see that A is Hermitian, consider

A =
∂2φ

∂zj∂zk
=

∂

∂zj

∂φ

∂zk
=

∂

∂zj

∂φ

∂zk
= AT ,

which implies that A = AT , so A is Hermitian.

Let f be a form in C1
(0,1)(Ω), then since Ω is pseudo-convex, by Theorem 2.2.6 we
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must have, ∫
Ω

∑
I,k

∑
j,k

fI,jkf I,kKA
2e−φdV ≤ ||T ∗f ||2φ + ||Sf ||2φ.

Indeed, considering ||Af ||2φ = ⟨Af,Af⟩φ, we see

||Af ||2φ = ⟨f, A2f⟩φ = ⟨f, ∂∂φf⟩φ =

∫
Ω

∑
I,k

∑
j,k

fI,jkf I,kKA
2e−φdV.

Hence,we have the following inequality

||Af ||2φ ≤ ||T ∗f ||2φ + ||Sf ||2φ.

We define h by f = A∗h = Ah, then applying Theorem 2.1.4, we see that,

A is a closed, densely defined linear operator in L2
(p,q+1)(Ω) and we take the closed

subspace F of L2
(p,q+1)(Ω) as the big space itself in the theorem. Since it holds that

for f ∈ DomA∗,

||Af ||22 ≤ ||T ∗f ||21 + ||Sf ||23.

Then, for g = A∗h where h ∈ DomA∗, there exists a form u ∈ L2
(p,q)(Ω) such that

∂u = f satisfying that ||u||1 ≤ ||h||2.

Now, ⟨f, f⟩ = ⟨Ah,Ah⟩ = ⟨h,A2h⟩ = ⟨h, ∂∂φh⟩ =
∑
hihj

∂2φ
∂zi∂zj

. This implies that

||h||2 =
∑

fif jφ
ij := |f |2

∂∂φ

where φij is the inverse of ∂2φ
∂zi∂zj

. This finishes the proof.
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CHAPTER 3

OHSAWA-TAKEGOSHI EXTENSION THEOREM

For U is a complex submanifold of Cn, and W is its regular, closed subspace, it has

been studied for a long time that any holomorphic function f on W can be holo-

morphically extended to a function F on U. However, it is important to note that,

the holomorphic extension of bounded functions is remarkably more difficult than

other types, that is why instead of working with bounded functions, it was preferred

to work with L2 holomorphic functions. Later, the studies started to evolve around

holomorphic extensions with growth conditions in U = Cn. Then, in 1987, Oh-

sawa and Takegoshi [23] presented their study considering the extension problem of

L2 holomorphic functions with that U is a bounded domain in Cn. We will survey

the Ohsawa-Takegoshi Extension Theorem and give a proof of the theorem with the

similar method provided in [4].

Theorem 3.0.1. Let Ω be a bounded pseudo-convex domain in Cn and φ an arbitrary

plurisubharmonic function in Ω. Assume that H is a complex linear subspace of Cn

and denote Ω∗ := Ω ∩H .

Then, for every holomorphic function f on Ω∗, there exists a holomorphic function F

in Ω such that F = f on Ω∗ and∫
Ω

|F |2e−φdλ ≤ CΩ

∫
Ω∗

|f |2e−φdλ∗,

where CΩ is a constant depending only on n and on an upper bound for the diameter

of Ω.

Proof. Without loss of generality, assume that H = {z1 = 0} and Ω ⊂ {|z1| < 1}.

Let us first explain why it is enough to take H as a hyperplane. For simplicity, let

n = 4 and Ω ⊂ C4, and let H = {z1 = z2 = z3 = 0}, which is a complex line, then
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H ⊆ C. Now consider,

(i) Ω∗ = Ω ∩H ⊂ Ω̃ := Ω ∩ {z2 = z3 = 0} ⊂ C2

and H ⊂ Ω̃. Then, f ∈ O(Ω∗) which implies that there is a function F ∈ O(Ω̃)

such that F = f on Ω̃ and∫
Ω̃

|F |2e−φdλ ≤ CΩ̃

∫
Ω∗

|f |2e−φdλ∗.

Thus, we levelled up one dimension.

Continuing for the next level-up, consider,

(ii) ˜̃Ω = Ω ∩ {z3 = 0} ⊂ C3

and Ω̃ ⊂ ˜̃Ω. Then, F ∈ O(Ω̃), which implies that there is a function F̃ ∈ O( ˜̃Ω)

such that F̃ = F on Ω̃ and the norm condition holds. Moreover, ˜̃Ω ⊂ C3, and
˜̃Ω ⊂ Ω ⊂ C4.

By this process, we obtain an extension on Ω with the required norm. Also note

that, we may assume that Ω ⊂ {|z1| < 1} because Ω is a bounded domain, so it is

contained in an M − ball, that is

Ω ⊂ {|z1| < M} ⇒ Ω ⊂ {| z1
M

| < 1},

with change of coordinates Ω ⊂ {|z1| < 1}.
Now by approximating Ω from inside (taking an increasing sequence of strongly

pseudo-convex domains Ωn, and letting Ωn → ∪n∈NΩn gives Ω as n → ∞), and

approximating φ from above, (taking a decreasing sequence of smooth plurisubhar-

monic functions φn and letting φn → φ as n → ∞), we may assume that Ω is

strongly pseudo-convex domain with a smooth boundary, φ is plurisubharmonic func-

tion which is smooth up to boundary, and f is defined in a neighborhood of Ω
∗

in H.

Let α = ∂(χ(z1)f(z
∗)), where z∗ represents the remaining (n− 1)-variables, χ = 1

near 0, {|z1| < ϵ} is the support of α, and ∂α = 0. Observe that, since f is defined

on Ω ∩H , f is a function of (n− 1)-variables. Let φ = 2 log |z1|.

Then, by Hörmander’s Estimate, we already have that, there exists u ∈ L2
loc(Ω) such

that ∂u = α, and the following holds∫
Ω

|u|2e−φdλ ≤
∫
Ω

|α|2
i∂∂φ

e−φdλ.
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Now consider the following function,

f̃(z1, z
∗) = χ(z1)f(z

∗)− u(z1, z
∗).

We will examine if this function f̃ might be an analytic extension for f . Let us start

with checking the analyticity first and follow this with checking if it is an extension.

Observe that ∂f̃ = ∂(χ(z1)f(z
∗)− u(z1, z

∗)) = α− α = 0. Thus, f̃ is analytic.

For checking the extension property, consider the following,

on H, z1 = 0 which implies that χ(z1) = 1 because χ = 1 near 0.

Also, observe that, on z1 = 0, f̃(0, z∗) = f(z∗)− u(0, z∗), indicating that f̃ does not

seem like an extension near z1 = 0. Hence, for f̃ to be an extension-like, u ≡ 0 near

z1 = 0. Then, we must check if u(0, z∗) ≡ 0. Observe that,∫
Ω

|u|2 1

|z1|2
dλ ≤

∫
Ω∩{|z1|<ϵ}

|α|2 1

|z1|2
dλ <∞.

Assume that u ̸= 0 on H , so |u| > M for some M . Then, there is a neighborhood V

around c ∈ H so that u ̸= 0 in V , but then, we would have,∫
Ω

|u|2 1

|z1|2
dλ >

∫
V

M2 1

|z1|2
dλ ⇒

∫
Ω∩H

|u|2 1

|z1|2
dλ >

∫
V ∩H

M2 1

|z1|2
dλ.

Since, ∫
V ∩H

M2 1

|z1|2
dλ ≈

∫
D

dz

|z1|2
= ∞,

we have that u ≡ 0 on H , which shows that f̃ is an analytic extension of f .

Let F ∈ A2(Ω, e−φ) := O(Ω) ∩ L2(Ω, e−φ) be the function satisfying F = f on H

with the minimal norm in L2(Ω, e−φ), in other words, suppose that

||F ||2φ =

∫
Ω

|F |2e−φdV is minimal in L2(Ω, e−φ).

A2
H(Ω, e

−φ) = {f ∈ A2(Ω, e−φ) : f = 0 on H} is a closed subset of A2(Ω, e−φ),
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where H = {z1 = 0} ∼= Cn−1. Then,

A2(Ω, e−φ) = A2
H(Ω, e

−φ)⊕
[
A2
H(Ω, e

−φ)
]⊥
.

Since F ∈ A2(Ω, e−φ), we can express F as follows,

F = F ′ + F ′′ where F ′ ∈ A2
H , F

′′ ∈
[
A2
H

]⊥
.

Let F ′ = 0 so that F has the minimal norm. Then, F = F ′′, F ∈ [A2
H ]

⊥ and so F is

perpendicular to the space z1A2(Ω, e−φ).

To see this, let g ∈ A2
H(Ω, e

−φ). For simplicity, choose g to be a functional in two

variables, z1, z2 only. Then, the power series of g will be of the following form

g(z) = a0 + a1z1 + a2z2 + a3z
2
1 + a4z1z2 + a5z

2
2 + . . . .

Since g ∈ A2
H(Ω, e

−φ), g = 0 on H. Thus,

g(z) = a0 + a2z2 + a5z
2
2 + . . .

which implies that for g to be 0 on H , we must have a0 = a2 = a5 = · · · = 0, and so

g consists of terms containing z1. That is,

g(z) = a1z1 + a3z
2
1 + a4z1z2 + . . . .

Or equivalently,

g(z) = z1g̃ where g̃ ∈ A2(Ω, e−φ).

Hence, for g ∈ A2
H(Ω, e

−φ),

⟨F, g⟩ = ⟨F, z1g̃⟩ = 0.

Therefore, F is perpendicular to the space z1A2(Ω, e−φ). Note that, this also means

that z1F is perpendicular to A2(Ω, e−φ).

Now choose such α with the minimal norm. Then, α ⊥ Ker∂
∗
. To clarify,

Ker∂
∗
=
[
Ran∂

]⊥
and L2(Ω, e−φ) = Ker∂

∗ ⊕ Ran∂. Let α = α1 + α2 where

α1 ∈ Ran∂ and α2 ∈ Ker∂
∗
. Then,

∂
∗
α = ∂

∗
α1 + ∂

∗
α2 = ∂

∗
α1 = z1F.
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Note that, since α has the minimal norm, α = α1 ∈ Ran∂ =
[
Ker∂

∗
]⊥

. This implies

that there exists a sequence αn such that limn→∞ ∂αn = α, and ∂α = limn ∂∂αn = 0.

Thus, ∂α = 0.

Now we will check if α satisfies the ∂-Neumann Boundary Condition, that is,

∑
j

αjρj = 0 on ∂Ω, where ρ is a defining function for Ω.

Observe that, by [16], an element α ∈ Int(C1
(0,1)(Ω)) belongs to DomT ∗ if and only

if
n∑
j=1

αI,jK
∂ϱ

∂zj
= 0 on ∂Ω for all I,K, and ϱ is a defining function.

Now, in our case, α ∈ L2(Ω, e−φ) belongs to Dom∂
∗

because ∂
∗
α = z1F , but again

by [16],
n∑
j=1

αjρj = 0 on ∂Ω,

where αj are the coefficient functions and ρj are the partial derivatives of ρ.

Consider then,∫
Ω

|F |2e−φdλ =

∫
Ω

F (z)

z1
(∂

∗
α)e−φdλ (∂

∗
α = z1F )

=

〈
F

z1
, ∂

∗
α

〉
e−φ

=

〈
∂

(
F

z1

)
, α

〉
e−φ

=

〈 (
∂F

)
1

z1
+ F∂

(
1

z1

)
, α

〉
e−φ

=

〈
F ∂

(
1

z1

)
, α

〉
e−φ

(3.0.1)

where the last equality follows from the fact that F is an analytic extension of f and

∂F = 0.

Consider the function h : z 7→ z1 and that ∂( 1
h
) = π(∂h/|∂h|2)dV where V is the
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space on which h vanishes and dV is the surface measure. Thus,

∂(
1

z1
) = π

∂z1
|∂z1|2

dλ∗ = π∂z1dλ
∗.

Then, continuing with equation (3.0.1),

〈
F ∂

(
1

z1

)
, α

〉
e−φ

=

〈
Fπdz1, α

〉
e−φ

, since ∂
(

1

z1

)
has support on Ω∗ and 0 outside,

=

∫
Ω∗
fπαdz1e

−φdλ∗

= π

∫
Ω∗
f α dz1e

−φdλ∗

≤ π
(∫

Ω∗
|f |2e−φdλ∗

) 1
2
.
(∫

Ω∗
|α1|2e−φdλ∗

) 1
2

where the last inequality follows from Hölder’s Inequality.

Therefore, for the demanded inequality, we only need to estimate∫
Ω∗

|α1|2e−φdλ∗.

Consider the following equality,∑
(αjαke

−φ)jk =
∑ ∂2

∂zj∂zk
(αjαke

−φ)

= (−2 Re (∂∂
∗
α. α) + |∂∗α|2 +

∑
|αj,k|2 − |∂α|2 +

∑
φj,kαjαk)e

−φ.

From integrating by parts and continuing calculation for any function ω, and any α

with
∑

j αjρj = 0 on ∂Ω, we obtain,∫
Ω

∑
ωj,kαjαke

−φdλ −
∫
∂Ω

∑
ρjkαjαke

−φω
ds

|∂ρ|

=

∫
Ω

(
− 2Re (∂∂

∗
α. α) + |∂∗α|2

+
∑

|αj,k|2 − |∂α|2 +
∑

φj,kαjαk

)
e−φωdλ.

Since we have ∂α = 0 and ∂
∗
α = z1F , for ω is a negative function of variable z1, we

would have
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∫
Ω

ω11|α1|2e−φdλ −
∫
∂Ω

∑
ρjkαjαke

−φω
ds

|∂ρ|

=

∫
Ω

−2 Re (Fα1)ωe
−φdλ+

∫
Ω

ωe−φdλ

+

∫
Ω

|α1,1|2e−φdλ−
∫
Ω

ωe−φdλ+

∫
Ω

φ11|α1|2ωe−φdλ

= −2 Re

[∫
Ω

Fα1ωe
−φdλ

]
+

∫
Ω

|α1,1|2ωe−φdλ

+

∫
Ω

φ11|α1|2ωe−φdλ,

which then gives that,∫
Ω

ω11|α1|2e−φdλ = −2 Re

[∫
Ω

F α1ωe
−φdλ

]
+

∫
∂Ω

∑
ρjkαjαke

−φω
ds

|∂ρ|

+

∫
Ω

|α1,1|2ωe−φdλ+

∫
Ω

φ11|α1|2ωe−φdλ.

Hence we get, ∫
Ω

ω11|α1|2e−φdλ ≤ −2 Re

[∫
Ω

Fα1ωe
−φdλ

]
.

Now let ω := 2 log |z1|+ |z1|2δ − 1, where 0 < δ < 1. Then,

ω11 = πδ′0 + δ2|z1|2δ−2,

and for some t > 0,∫
Ω

(πδ′0 + δ2|z1|2δ−2)|α1|2e−φdλ

≤ −2Re

[∫
Ω

Fα1 log |z1|2e−φdλ+

∫
Ω

Fα1|z1|2δe−φdλ−
∫
Ω

Fα1e
−φdλ

]
⇐⇒ π

∫
Ω∗

|α1|2e−φdλ∗ + δ2
∫
Ω

|α1|2|z1|2δ−2e−φdλ

≤ t

∫
Ω

|F |2e−φdλ+
1

t

∫
Ω

|α1|2ω2e−φdλ.

Now observe that |a+b|2 = |a|2+|b|2+⟨a, b⟩+⟨a, b⟩ and ⟨a, b⟩+⟨a, b⟩ = 2 Re ⟨a, b⟩.
Thus, |a+ b|2 = |a|2 + |b|2 + 2 Re ⟨a, b⟩ and −2 Re ⟨a, b⟩ = |a|2 + |b|2 − |a+ b|2.
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Then, −2 Re ⟨a, b⟩ ≤ |a|2 + |b|2. Regarding this, consider,∫
Ω

Fα1ωe
−φdλ ≤

∫
Ω

⟨F, α1⟩ωe−φdλ,

−2 Re

[∫
Ω

Fα1ωe
−φdλ

]
= −2 Re

(
⟨F, α1⟩ωe−φ

)
= −2 Re

(
⟨tF, 1/t α1ω⟩e−φ

)
≤ t

∫
Ω

|F |2e−φdλ+
1

t

∫
Ω

|α1|2ω2e−φdλ.

Take t such that ω2 ≤ δ2t|z1|2δ−2 in {|z1| ≤ 1}, and with regard to∫
Ω

ω11|α1|2e−φdλ ≤ −2 Re

[∫
Ω

Fα1ωe
−φdλ

]
,

we get,

t

∫
Ω

|F |2e−φdλ+
1

t

∫
Ω

|α1|2ω2e−φdλ ≤ t

∫
Ω

|F |2e−φdλ+
1

t

∫
Ω

|α1|2δ2t|z1|2δ−2e−φdλ

≤ t

∫
Ω

|F |2e−φdλ+ δ2
∫
Ω

|α1|2|z1|2δ−2e−φdλ.

Thus,
1

t

∫
Ω

|α1|2ω2e−φdλ ≤ δ2
∫
Ω

|α1|2|z1|2δ−2e−φdλ.

However, we also have that

π

∫
Ω∗

|α1|2e−φdλ∗+δ2
∫
Ω

|α1|2|z1|2δ−2e−φdλ ≤ t

∫
Ω

|F |2e−φdλ+1

t

∫
Ω

|α1|2ω2e−φdλ.

Hence,

π

∫
Ω∗

|α1|2e−φdλ∗ +
1

t

∫
Ω

|α1|2ω2e−φdλ ≤ t

∫
Ω

|F |2e−φdλ+
1

t

∫
Ω

|α1|2ω2e−φdλ

⇒ π

∫
Ω∗

|α1|2e−φdλ∗ ≤ t

∫
Ω

|F |2e−φdλ.

which gives us,[∫
Ω

|F |2e−φdλ
]2

≤ π

[∫
Ω∗

|f |2e−φdλ∗
]
.

[
t2

π2

∫
Ω

|F |2e−φdλ
]
.
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Therefore, we obtain the norm condition∫
Ω

|F |2e−φdλ ≤ t2

π

∫
Ω∗

|f |2e−φdλ∗

33



34



CHAPTER 4

APPLICATIONS OF OHSAWA-TAKEGOSHI EXTENSION THEOREM

4.1 Openness Conjecture

Choose an open set U ⊆ C and x ∈ U . If we take a holomorphic function f on a

neighbourhood of x, say V , denote the germ of f at x by fx (equivalently, fx denotes

the equivalence class of function elements (f, V ), where two function elements are

equivalent at x if they agree on an open neighbourhood of x).

Let u be a plurisubharmonic function defined in a neighborhood of 0 ∈ Cn satisfying

that e−u is an element of L1.With this assumption, Demailly and Kollár [8] presented

the following result called Openness Conjecture,

There is a number p > 1 such that e−u is an element of Lp, provided that the neigh-

borhood is shrunk. The conjecture simply states that if |f |2e−u is locally integrable,

then there exists ϵ0 > 0 satisfying that |f |2e−(1+ϵ0)u is also locally integrable, or

equivalently, the set

{p ∈ R : |f |2e−pu is locally integrable}

is an open set. Now, define the multiplier ideal sheaf as follows (see [21]),

I(u) =

fx : f ∈ O(V ),

∫
V

|f |2e−u <∞, V ⊂ U open, x ∈ V

 .

We also define

I+(u) := ∪ϵ>0I((1 + ϵ)u).

With these sets being defined, the Openness Conjecture can also be written as follows,

For a subharmonic function u on X and I(u) is the germ of holomorphic functions

f ∈ OX . It holds that

I+(u) = I(u).
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In 2013, Berndtsson [3] gave a proof for above statement of the conjecture, which has

lead to a great progress in the view of proving the conjecture.

Theorem 4.1.1. [19] If u1 ≤ u2 ≤ . . . are plurisubharmonic functions on U and

u = lim
j
uj is locally bounded above on U , then I(u) = I(uj) for some j.

Observe that the theorem above implies that the Openness Conjecture is true, because

if we take u as follows

u ≤ 0,

then by taking uj as (1 + 1
j
)u in the Theorem 4.1.1, we see that

I+(u) = I((1 +
1

j
)u), and by limit condition, we get I+(u) = I(u).

Now, to be able to prove this theorem, we need some additional results. First we

consider these results.

Proposition 4.1.2. Let ∆ ⊂ C denote the unit disc. Given k ∈ N and a holomorphic

function F defined in a neighbourhood of ∆̄ and such that F ̸= 0 on ∆\{0}. Assume

that G ∈ O(∆) satisfies lim
z→0

G(z)
F (z)

= 0, and t ∈ ∆ \ {0}, for any k-th roots of unity w,

we have F (wt) = G(wt). Then,

sup
∆

|G| ≥ c1|t|−k, where c1 = min
|s|=1

|F (s)| > 0.

Proof. Let F (s) = spF1(s) with p is an element of N ∪ {0} and F1 ̸= 0 on ∆̄. By

eliminating F1, we may assume that F (s) = sp. We define an auxiliary function,

G1(s) =
1

k

∑
w

w−pG(ws).

Then, for w0 is a k-th root of unity and by F (ww0t) = (ww0t)
p, we have the follow-

ing,

G1(w0t) =
1

k

∑
w

w−pG(ww0t) =
1

k

∑
w

wp0t
p =

wp0
k

∑
w

tp =
wp0t

p

k
.k = wp0t

p

Hence, the function G1 is holomorphic on ∆ and limz→0
G1(z)
F (z)

= 0 because as s→ 0,

and z → 0, G1(z) = 1
k

∑
w w

−pG(wz) and G = o(F ) at 0. Moreover, for any
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t ∈ ∆ \ {0} and F (wt) = G1(wt).

Then, this function G1 satisfies what the function G satisfies in the proposition. Also,

its Taylor Series consists of monomials of the form sq where k divides q − p > 0. To

make it clear, we can give a simple example for this part with taking k = 2 and p = 3.

First consider the explicit formula of the Taylor Series for G1,

G1(s) =
1

k

∑
w

w−pG(ws) =
1

k

∑
w

w−p
[ ∞∑
n=1

an(ws)
n

]
=

1

2

[ ∞∑
n=1

ans
n

]
+

1

2
(−1)−p

[ ∞∑
n=1

ans
n(−1)n

]
,

then for k = 2 and p = 3, the last two summations become,

1

2

[ ∞∑
n=1

ans
n

]
+

1

2
(−1)

[ ∞∑
n=1

ans
n(−1)n

]
=

1

2

[ ∞∑
n=1

ans
n(1− (−1)n)

]

=

0 n = 2k∑∞
n=1 ans

n n = 2k + 1.

Then, the Taylor Series for G1 in the case of k = 2 and p = 3 consists only of

monomials sq for which q − 3 is divisible by k = 2. Coming back to the proof of the

proposition, in particular, q ≥ p + k and so G1(s)
sp+k is holomorphic on ∆. Hence, for

any t ∈ ∆ \ {0},

sup
s∈∆

|G1(s)| = sup
s∈∆

∣∣∣∣G1(s)

sp+k

∣∣∣∣ ≥ ∣∣∣∣G1(t)

tp+k

∣∣∣∣ = ∣∣∣∣ tptp+k
∣∣∣∣ = |t|−k

where the first equality follows from the fact that a holomorphic function takes its

maximum value on the boundary and since s ∈ ∆, on the boundary |s| = 1 and the

last two equations follows from the fact that G1(t) = F (t) = tp because 1 is a root of

unity, so F (wt) = G1(wt). Therefore, we get,

sup
s∈∆

|G1(s)| ≥ |s|−k,

sup
∆

|G| ≥ c1|t|−k, c1 = min
|s|=1

|F (s)| > 0.

For the final required result to prove the theorem, consider the following construction.

Given a measure g : W → C, let ||g|| ∈ [0,∞] be defined such that

||g||2 = inf
j

∫
W

|g|2e−uj .
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Lemma 4.1.3. Let f ∈ O(U). The germ of f at x, is an element of J =
⋃
j

I(uj) if and

only if for arbitrary small neighbourhood V ⊂ U around x and for any hyperplane

P0 ⊆ Cm,

lim inf dist(x, P )||f |V ∩P || = 0

as P is parallel to P0 and dist(x, P ) converges to 0.

Before continuing with the proof, assume that V is polydisc around 0 and P0 denote

the set of all points whose first coordinate is 0. Then, the lemma states the following:∫
V

|f |2e−u <∞ if and only if lim inf
s→0

|s|2.
[ ∫
V ∩{z1=s}

|f |2e−u
]
= 0.

Since
∫
V

|f |2e−u =
∫
C

( ∫
V ∩{z1=s}

|f |2e−u
)
dλ2(s), the lemma provides the conver-

gence of the following integral ∫
{|s|<r}

φ(s)dλ2(s)

if and only if lim infs→0 |s|2φ(s) = 0, where φ(s) =
∫
V ∩{z1=s} |f |

2e−u.

Proof. Suppose that x = 0.

(⇒) Let f0 ∈ J , pick j and a neighbourhood V around 0 such that
∫
V

|f |2e−uj < ∞.

For a hyperplane P0, changing the necessary coordinates one can obtain that P0||{z ∈
Cm : z1 = 0}. Then, using Fubini’s Theorem, one gets the following:

∞ >

∫
V

|f |2e−uj =
∫
C

 ∫
V ∩{z1=r}

|f |2e−uj

 dλ2(r).
Since

∫
|r|2dλ2(r) is divergent on an arbitrary neighbourhood of 0 ∈ C, the above

inequality implies that

lim inf
r→0

|r|2.

 ∫
V ∩{z1=r}

|f |2e−uj

 = 0.

Indeed, assume that φ(r) =
∫
V ∩{z1=r} |f |

2e−uj , if we have

lim inf dist(x, P ).

 ∫
V ∩{z1=r}

|f |2e−uj

 ̸= 0,
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then there is some nonzero c such that as r → 0,

lim inf dist(x, P ).

 ∫
V ∩{z1=r}

|f |2e−uj

 = c.

This implies that

φ(r) ≥ c

|r|2
.

Thus, the integral ∫
C
φ(r)

diverges. This would be a contradiction to assumption of φ(r) <∞. Thus,we obtain

the demanded result as r → 0,

lim inf dist(x, P ).

 ∫
V ∩{z1=r}

|f |2e−uj

 = 0.

(⇐) Suppose on the contrary that f0 /∈ J . Let V be pseudo-convex. Given a holo-

morphic function α : ∆ → U , and α(0) = 0, use J ◦ α to denote the pullback

A = {g ◦ α : g ∈ J} ⊂ O(C,0).

Then, by the assumption there exists a non-zero α so that f0 ◦ α /∈ O(C,0)(J ◦ α).
We choose a hyperplane P0 through 0 ∈ Cm which does not include α(∆). Take

P0 = {z1 = 0} as the chosen hyperplane. Let α = (α1, α2, . . . , αm) be a holo-

morphic function in a neighbourhood of ∆̄ such that F = f0 ◦ α ̸= 0 on ∆̄ \ {0}.

Take α1(s) = sk, where s ∈ ∆ and α(∆̄) ⊂ V . Hence, there exists c2, c′2 ∈ C, for

g ∈ O(V ), and for any j,

max
α(∆̄)

|g|2 ≤ c′2

∫
V

|g|2 ≤ c22

∫
V

|g|2e−u ≤ c22

∫
V

|g|2e−uj (4.1.1)

where the first inequality is a result of subharmonicity and the middle inequality fol-

lows from u < 0. Pr = {z ∈ Cm : z1 = r}. We must find a bound for ||f |V ∩Pr ||
from below. Let r ∈ ∆ \ {0}, and assume that ||f |V ∩Pr || <∞. Then, using Ohsawa-

Takegoshi Extension Theorem, we can find a function g ∈ O(V ) which is equal to f

on V ∩ Pr and for sufficiently large j such that,∫
V

|g|2e−uj ≤ c23||f |V ∩Pr ||2 (4.1.2)
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where c3 is independent of j and r. Note that, this inequality holds because if j is large

enough, ||f |V ∩Pr ||2 ≤ ||f |V ∩Pr ||+ ϵ. In other words, for all ϵ > 0, we can find some

sufficiently large j such that taking e−uj as the weight factor in Ohsawa-Takegoshi

Extension Theorem, we can extend the function f . With some j, the following holds∫
V ∩Pr

|f |2e−uj ≤ 2||f |V ∩P ||2

and if we take u as uj in the Ohsawa-Takegoshi Extension Theorem, we get the ex-

tension function g.

Let G = g ◦ α, with that its germ at 0 is an element of J ◦ α. Since F = f0 /∈
O(C,0)(J ◦ α), the following must hold

lim
z→0

G(z)

F (z)
= 0,

because if not, using Comparison Test, F and G have the same convergence and that

f0 ◦ α /∈ J ◦ α implies that F /∈ J , which means that
∫
|F |2e−u = ∞. However,

G ∈ J , so
∫
|G|2e−u < ∞. This gives a contradiction, and thus, we must have

G = o(F ) at 0.

Further, for any choice of k-th root k
√
r, we have F ( k

√
r) = G( k

√
r), because α1(s) =

sk, s ∈ ∆ holds. Hence, by Proposition 4.1.2,with taking k = 1, we have

max
α(∆̄)

|g| = max
∆̄

|G| ≥ c1
|r|
. (4.1.3)

Putting the inequalities 4.1.1, 4.1.2 and 4.1.3 together, we have,

||f |V ∩Pr || ≥
c1

c2c3|r|
, r ∈ ∆ \ {0}. (4.1.4)

Then,

lim inf dist(0, Pr)||f |V ∩Pr || ≥
c1
c2c3

,

which contradicts to the assumption.

Now we prove Theorem 4.1.1.

Proof. Let J =
⋃
j

I(uj), which consists of germs of uj at x. Suppose P ⊂ Cm is a

complex hyperplane and let W be a relatively open subset of P .

40



Then, by Dominated Convergence Theorem, we have,

||g||2 =


∞ or

lim
j

∫
W

|g|2e−uj =
∫
W

|g|2e−u

Let dist(x, P ) denote the Euclidean distance between x and P . Consider for m > 1,

since J is a subset of I(u) and I(u) is finitely generated, it only remains to show that

fx ∈ I(u) ⇒ fx ∈ J , which will be done by induction on the dimension m.

1. For dimension one,

fx ∈ J ⇐⇒ lim inf dist(x, P ).||f |V ∩P || = 0

⇐⇒ lim inf
z0→x

dist(x, z0). inf

∫
V ∩{z0}

|f |2e−uj = 0

⇐⇒ lim
z0→x

|z0 − x|. inf |f(z0)|2e−uj(z0) = 0

⇐⇒ lim
z0→x

|z0 − x|.|f(z0)|2e−u(z0) = 0,

⇐⇒ fx ∈ I(u).

The last equivalence follows from Lemma 4.1.3 with uj = u for all j.

2. Assume that it holds for m − 1. Let fx ∈ I(u), then
∫
|f |2e−u < ∞, but then

by induction hypothesis,∫
V ∩Pr

|f |2e−u <∞ implies that there exists some j such that
∫
V ∩Pr

|f |2e−uj <∞.

Then, by taking uj as u, and I(u) as J in Lemma 4.1.3,

lim inf dist(x, Pr)
2

∫
V ∩Pr

|f |2e−u = 0,

and thus,

lim inf dist(x, Pr)

∫
V ∩Pr

|f |2e−u = 0.

Now, note that ||f |V ∩Pr || = inf
∫
V ∩Pr

|f |2e−uj and as uj goes to u, when j goes

to infinity, since
∫
V ∩Pr

|f |2e−uj <∞,

inf

∫
V ∩Pr

|f |2e−uj =
∫
V ∩P0

|f |2e−u

by Dominated Convergence Theorem. Then, fx ∈ J.
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4.2 Suita Conjecture

Suita [25] conjectured that for a bounded domain D ⊂ C, one has

c2D ≤ πKD (4.2.1)

where cD(z) = e
lim
w→z

(GD(w,z)−log |w−z|) is the logarithmic capacity of the complement

of D with respect to z ∈ D, GD(w, z) is the (negative) Green’s function for D with

pole at z and KD(z) = sup{|f(z)|2 : f ∈ O(D), ||f ||2 ≤ 1} is the Bergman kernel

on the diagonal. Note that cD|dz| is an invariant metric, called the Suita metric, and

its curvature is given by

CurvcD|dz| = −∂
2 log(cD)

∂z∂z

1

c2D
.

On the other hand, Suita also observed that

∂2 log(cD)

∂z∂z
= πKD

which gives us the result that (4.2.1) is actually equivalent to that

CurvcD|dz| ≤ −1.

It was also concluded that if D is simple connected, CurvcD|dz| = −1, so (4.2.1)

becomes c2D = πKD on ∂D if D is a domain with smooth boundary.

In 1995, Ohsawa [24] observed that Suita Conjecture can be viewed as an extension

problem, for z0 ∈ D, there is a function f ∈ O(D) such that f(z0) = 1 and∫
D

|f |2dλ ≤ π

c2D(z0)
.

He, then, proved that

c2D ≤ C0πKD,

where C0 = 750. Later, in 2007, Błocki [7] developed this constant to C0 = 2,, and

in 2011, (See [13]), it was improved further to C0 = 1.95388 . . . . Finally, Błocki

[5] concluded the result for the optimal constant C0 = 1, mainly using Hörmander’s

solution to ∂ equation using L2 estimate.

Theorem 4.2.1. [5] Assume that Ω ⊂ Cn−1 ×D is pseudo-convex with 0 ∈ D ⊆ C

and is bounded. Then, given a function f which is holomorphic in Ω′ := Ω∩{zn = 0}
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and a plurisubharmonic function φ in Ω, there exists a holomorphic extension F of f

on Ω with

||F ||2φ ≤ π

(cD(0))2
||f ||2φ.

Proof. Recall that Hörmander’s Estimate [4] states that for a pseudo-convex domain

Ω in Cn and α =
∑
j

αjdzj ∈ L2
loc(0,1)(Ω) such that ∂α = 0, for any plurisubharmonic

φ in Ω, we can find u ∈ L2
loc(Ω) such that ∂u = α and∫
Ω

|u|2e−φdλ ≤
∫
Ω

|α|2
i∂∂φ

e−φdλ,

noting that |α|2
i∂∂φ

=
∑
j,k

φikαjαk. With a little alteration, we can use the following

theorem for the proof.

Theorem 4.2.2. Let α ∈ L2
loc,(0,1)(Ω) be a ∂-closed form in a pseudo-convex domain

Ω in Cn. Assume that φ is plurisubharmonic in Ω, ψ ∈ W 1,2
loc (Ω) is locally bounded

from above and they satisfy |∂ψ|2
i∂∂φ

≤ H < 1 in Ω for some H ∈ L∞
loc(Ω).

Then, there is u ∈ L2
loc(Ω) solving ∂u = α and such that for every b > 0∫

Ω

|u|2(1−H)e2ψ−φdλ ≤ (1 +
1

b
)

∫
Ω

|α|2
i∂∂φ

1 + bH

1−H
e2ψ−φdλ.

Here W 1,2
loc (Ω) is the Sobolev space.

Proof. Assume that φ is plurisubharmonic, smooth and ψ is bounded in Ω. Set u to

be the minimal solution to ∂u = α in L2(Ω, eψ−φ). This implies that u ⊥ ker ∂ in the

set.

Then, v := ueψ is perpendicular to ker ∂ in L2(Ω, e−φ) because

∂v = ∂(ueψ) = (∂u)eψ + u∂(eψ)

= eψ∂u+ u(∂ψ)eψ

= αeψ + ueψ∂ψ.

Hence, it is the minimal solution to ∂v = β where β = eψ(α + u∂ψ) ∈ L2
loc,(0,1)(Ω).
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Then, using Hörmander’s Estimate, we get,
∫
Ω

|v|2e−φdλ ≤
∫
Ω

|β|2
i∂∂φ

e−φdλ , or equiv-

alently, ∫
Ω

|u|2e2ψ−φdλ ≤
∫
Ω

|α + u∂ψ|2
i∂∂φ

e2ψ−φdλ

≤
∫
Ω

(|α|2
i∂∂φ

+ 2|u|
√
H|α|i∂∂φ + |u|2H)e2ψ−φdλ.

To see this,∫
Ω

|v|2e−φdλ =

∫
Ω

|u|2e2ψe−φdλ =

∫
Ω

|u|2e2ψ−φdλ

≤
∫
Ω

|β|2
i∂∂φ

e−φdλ =

∫
Ω

e2ψ(α + u∂ψ)2e−φdλ

=

∫
Ω

|α + u∂ψ|2e2ψ−φdλ ≤
∫
Ω

(|α|2 + 2|α||u∂ψ|+ |u|2|∂ψ|2)e2ψ−φdλ

≤
∫
Ω

(|α|2 + 2|α||u|
√
H + |u|2H)e2ψ−φdλ,

where the very last inequality is a result of |∂ψ|2
i∂∂φ

≤ H.

Assume now that t > 0, then consider

0 ≤
(

|α|
√
H√

t(1−H)
− |u|

√
t(1−H)

)2

,

2|α||u|
√
H ≤ |α|2H

t(1−H)
+ |u|2t(1−H).

Thus, we have for t > 0,∫
Ω

|u|2(1−H)e2ψ−φdλ ≤
∫
Ω

[
|α|2

i∂∂φ
+ |α|2

i∂∂φ

H

t(1−H)
+ t|u|2 − t|u|2H

]
e2ψ−φdλ.

Then, upon taking t := 1
b+1

, we get the estimate given in the theorem.

Continuing the proof, for any ϵ > 0, define

α := ∂(f(z′)χ(−2 log |zn|)) =
−f(z′)χ′(−2 log |zn|)

zn
dzn

where z = (z′, zn) and χ ∈ C0,1(R) is non-decreasing and satisfies the condition that

χ = 0 on {t ≤ −2 log ϵ}, χ(∞) = 0 (which we will explicitly define later).
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Then, α is defined in Ω when ϵ is small enough, supp α ⊂ {|zn| ≤ ϵ} and for any

solution of ∂u = α, the following

F := f(z′)χ(−2 log |zn|)− u (4.2.2)

is a holomorphic extension of f given that u = 0 on Ω′. To make it clear, for

Ω′ = {zn = 0} ∩ Ω, and |zn| < ϵ, we see that −2 log |zn| ≥ −2 log ϵ. Now if χ = 0

on {t ≤ −2 log ϵ}, then fχ = 0 there. So f has a support on |zn| < ϵ. That is why F

can be the extension of f on Ω.

Since we want to apply the theorem above and we can find sufficient weights φ̃, ψ,

we have to choose the following functions on R+.

h(t) := − log(t+ e−t − 1)

g(t) := − log(t+ e−t − 1) + log(1− e−t)

These functions solve the ODE:(
1− (g′)2

h′′

)
e2g−h+t ≥ 1,

where g ∈ C0,1(R+), h ∈ C1,1(R+) such that h has a positive second derivative and

is nonincreasing and g + log t, h+ log t vanish at ∞.

We also see that, (
1− (g′)2

h′′

)
e2g−h+t = 1 (4.2.3)

lim
t→∞

(h(t)− 2g(t) + log(−h′(t)) = 0. (4.2.4)

Observe that, in fact we have g = log(−h′), the ODE (4.2.3) becomes

d2

dt2
(e−h) = e−t.

After this arrangement, solving the posed ODE is trivial.

Now denote G = GD(., 0), then for a harmonic function v which is bounded in D, we

can also express G as G = log |r|+ v. Then for some constants c, c′, we have that in

D, by the definition of Green’s Function,

|2G− 2 log |r|| ≤ c, and |2Gr −
1

r
| ≤ c′ near origin.
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Set N := −2 log ϵ− c and choose δ = N− 1
2 such that

lim
ϵ→0

δ(ϵ) = 0.

Then, we define the following functions,

ν(t) :=

h(t), t < N

−δ log(t−N + a) + b, t ≥ N

γ(t) :=

g(t), t < N

−δ log(t−N + a) + b̃, t ≥ N

where a, b, b̃ are chosen so that ν ∈ C1,1 and γ ∈ C0,1, so we determine a, b and b̃ as

follows,

a = a(ϵ) = − δ

h′(N)

b = b(ϵ) = h(N) + δ log a

b̃ = b̃(ϵ) = g(N) + δ log a.

Observe that, as ϵ→ 0, a(ϵ) → ∞.

After this set up, we define φ̃ and ψ explicitly as given below,

φ̃ := φ+ 2G+ ν(−2G), ψ := γ(−2G).

Note that, φ̃ is plurisubharmonic in Ω because Green’s Function is harmonic and φ is

plurisubharmonic on Ω. Also, note that, ψ is an element in the Sobolev space given

in the theorem and is bounded from above. Then,

|∂ψ|2
i∂∂φ̃

≤ |∂ψ|2
i∂∂ν(−2G)

=
(γ′(−2G))

ν ′′(−2G)
=

< 1 in Ω

= δ on suppα,

and suppα ⊂ {−2G ≥ N}.

Now to grasp a little better, recalling the functions γ and ν, γ is defined using g, then

γ′ has g′, and ν is defined using h, then ν ′′ has h′′. So the last equality we get will be

in similar to the ODE we mentioned earlier. Then(
1− (g′)2

h′′

)
< 1 ⇒ (g′)2

h′′
< 1.
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Continuing the proof, we also have that

α = ∂(f(z′)χ(−2 log |zn|)) =
−f(z′)χ′(−2 log |zn|)

zn
dzn.

Then,

|α|2
i∂∂φ̃

=
|f(z′)|2(χ′(−2 log |zn|))2

|zn|2
|dzn|2

where |dzn|2 = (1/(4|∂zn|2ν ′′(−2G)) by above theorem (see [5]). However, the

function

−δ log(t−N + a) + t

is non-decreasing function in the variable t. Then, it follows from 4.2.3,

(
1− (γ′)2

ν ′′

)
e2γ−ν+t =

= 1 on {t < N},

≥ (1− δ)e2g(N)−h(N)+N on {t ≥ N}.

Then, for ϵ is small enough, the above term is greater than or equal to 1 on R+ ∪ {0}.

Now, the above theorem provides a solution uϵ for ∂u = α so that∫
Ω

|u|2e−φdλ ≤
∫
Ω

|u|2(1− |∂ψ|2
i∂∂φ̃

)e2ψ−φ ≤ 1 +
√
δ

1−
√
δ
A(ϵ),

where

A(ϵ) :=

∫
Ω

|α|2
i∂∂(ν(−2G))

e2ψ−φdλ.

This gives us,

lim
ϵ→0

A(ϵ) ≤ lim
ϵ→0

B(ϵ)

∫
Ω′

|f |2e−φdλ′,

B(ϵ) :=

∫
|r|≤ϵ

|α|2
i∂∂(ν(−2G))

|f(z′)|2
e2ψ−ν(−2G)−2Gdλ(r).

This holds because α depends on ϵ, supp α ⊂ {|zn| ≤ ϵ} and u depends on ϵ.

By Fubini Theorem, we separate A(ϵ), noting that |zn| > ϵ, χ′ = 0. Then, for

|zn| ≤ ϵ, consider the integral A(ϵ),

A(ϵ) =

∫
z′

∫
zn

A(ϵ)insidedzndz
′ =

∫
z′

|f(z′)|2e−φdz′
∫
zn

|α|2
i∂∂(ν(−2G))

|f(z′)|2
e2ψ−ν(−2G)−2Gdzn
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Since G depends on 1-coordinate zn, (G = log |r|+ v = G(0, .)), we obtain,

A(ϵ) =

∫
z′

|f(z′)|2e−φdz′
∫

|r|≤ϵ

|α|2
i∂∂(ν(−2G))

|f(z′)|2
e2ψ−ν(−2G)−2G+2dzn.

We now want to replace G by log |r| in the above integral of B(ϵ). Note that,

lim
ϵ→0

sup
{|r|≤ϵ}

|r|2e−2G =
1

(cD(0))2

and near origin,

|2Gr −
1

r
| ≤ c′, or equivalently, (4.2.5)

|2Gr −
1

r
|2 = |4G2

r − 4Gr
1

r
+

1

r2
| ≤ (c′)2,

4|Gr|2|r|2 ≥ (1− c′|r|)2.

Plus, on {|r| ≤ ϵ} we have

2ψ − ν(−2G) ≤ 2γ(−2 log |r| − c)− ν(−2 log |r| − c)

≤ 2γ(−2 log |r|)− ν(−2 log |r|) + δ log(1 +
c

a
)

and

ν ′′(−2G) ≥ ν ′′(−2 log |r|+ c) ≥
(
a+ c

a+ 2c

)2

ν ′′(−2 log |r|)

Thus, by the conditions on δ and a, we get,

lim
ϵ→0

B(ϵ) ≤ 1

(cD(0))2
lim
ϵ→0

B̃(ϵ)

where B̃(ϵ) =

∫
{|r|≤ϵ}

(χ′(−2 log |r|))2

|r|2ν ′′(−2 log |r|)
e2γ(−2 log |r|)−ν(−2 log |r|)dλ(r) = π

∞∫
N+c

(χ′)2e2γ−ν

ν ′′
dt.

By Schwarz inequality, choosing χ such that it is increasing and χ(∞) =
∞∫

N+c

χ′dt =

1 holds, we see that

χ(t) :=


0 t < N + c

1
C

t∫
N+c

wds t ≥ N + c
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where w = ν ′′eν−2γ and C =
∞∫

N+c

wdt. Then,

B̃(ϵ) =
π

∞∫
N+c

ν ′′eν−2γdt

and
∞∫

N+c

ν ′′eν−2γdt = δeb−2b̃

∞∫
c

(t+ a)δ−2dt

=
1

1− δ

(
1 +

c

a

)δ−1

eh(N)e−2g(N)elog(−h
′(N)).

By lim
t→∞

(h(t) − 2g(t) + log(−h′(t))) = 0, and lim
ϵ→0

δ(ϵ) = 0, and lim
ϵ→0

a(ϵ) = ∞,we

have

lim
ϵ→0

B̃(ϵ) = π.

Thus, we obtain,

lim
ϵ→0

∫
Ω

|uϵ|2e−φdλ ≤ π

(cD(0))2

∫
Ω′

|f |2e−φdλ.

Considering the case that 0 < ϵ̃ ≤ ϵ,∫
{|r|≤ϵ̃}

(
1− (γ′(−2G))2

ν ′′(−2G)

)
e2ψ−ν(−2G)−2Gdλ(r) ≥ 1

C(ϵ)

∫
{|r|≤ϵ̃}

e2γ(−2 log |r|)−ν(−2 log |r|)

|r|2
dλ(r)

= π
e2b̃−b

C(ϵ)

∞∫
−2 log ϵ̃

(t−N + a)−δdt = ∞

and by the previous theorem, for u = uϵ of ∂u = α such that the inequality (4.2.5)

holds, we have u = 0 almost everywhere on Ω′. Therefore, the weak limit of F = Fϵ

is the required extension satisfying the norm condition.
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CHAPTER 5

OHSAWA’S QUESTION

The study of extending holomorphic functions with L2 estimates presented in many

different versions with various methods gave the most important results in several

complex analysis concerning about this topic. These studies include important Ohsawa-

Takegoshi Extension Theorem and other types of extension theorems provided by

different mathematicians. Recently, Guan and Zhou found the way to establish an

optimal form for the L2 extension theorem (see [11], [14], and [15]). Morever, many

other results have been obtained from these extension theorems related to Bergman

Kernel (see [11]). This provided the unavoidable connection between the L2 exten-

sion problem and Suita Conjecture. Related to this connection, many questions have

been proposed some of which are still unanswered. We are going to survey some of

these questions posed and some answers to them.

For example, Ohsawa proposed the following question in [22].

Given subharmonic functions φ and ψ on C satisfying∫
C
e−ψ <∞,

does there exist a holomorphic function f with f(0) = 1 and∫
C
|f |2e−(ψ+φ) ≤ e−φ(0)

∫
C
e−ψ ?

Observe that when ψ and φ do not depend on argz, the answer is positive. To see

this,

ψ(z) = ψ(|z|) and φ(z) = φ(|z|)
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Then, if we take f ≡ 1, we have

∫
C

e−φ(|z|)e−ψ(|z|) =

2π∫
0

∞∫
0

e−φ(r)−ψ(r)rdrdθ

≤
2π∫
0

∞∫
0

e−φ(0)e−ψ(r)rdrdθ

≤ e−φ(0)
2π∫
0

∞∫
0

e−ψ(r)rdrdθ

= e−φ(0)
∫
C

e−ψ(|z|).

Note that, the fact that φ is a subharmonic function which is independent of arg(z)

and et is a convex increasing function implies that eφ(t) is a subharmonic function.

Moreover, the function eφ(t) is a real-valued and increasing function. To clarify, ob-

serve that since φ is subharmonic, considering its Laplacian in polar coordinates we

see that rφr is an increasing function and so φr > 0 at any point in the domain be-

cause otherwise it would give a contradiction to rφr ≥ 0. Then, φ is increasing and

the inequality above follows.

On the other hand, if one of ψ or φ depends on arg(z), the question is that what

other conditions should be forced so that this inequality holds. In fact, in [11], Guan

and Zhou proved an extension theorem implying the following result concerning this

question.

Theorem 5.0.1. [26] Let ψ be subharmonic on C with the property that i∂∂̄ψ is

independent of arg(z) and satisfies the following:∫
C

e−ψ <∞.

Then for every φ subharmonic on C one can find a holomorphic function F on C with

F (0) = 1 and ∫
C

|F |2e−φ−ψ ≤ e−φ(0)
∫
C

e−ψ.

Let us now consider the extension theorem provided by Guan and Zhou, then using

their result, we will give a proof for the theorem above.
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Let fX be a non-negative function in C∞((−X,∞)) and X ∈ (−∞,∞] such that
∞∫

−X

fX(t)e
−tdt <∞ and,

 t∫
−X

fX(t1)e
−t1dt1

2

> fX(t)e
−t

t∫
−X

t2∫
−X

fX(t1)e
−t1dt1dt2 (5.0.1)

for any t ∈ (−X,∞), or equivalently,

F (t) = log

 t∫
−X

t2∫
−X

fX(t1)e
−t1dt1dt2

 is strictly concave for any t ∈ (−X,∞).

Remark 5.0.2. An important class of functions fX(t) satisfying the inequality (5.0.1)

contains the functions satisfying the following:

1. d
dt
fX(t)e

−t > 0, for t ∈ (−X, a)

2. d
dt
fX(t)e

−t ≤ 0, for t ∈ [a,∞)

3. d2

dt2
log(fX(t)e

−t) < 0, for t ∈ (−X, a)

where a ≥ −X is constant.

Theorem 5.0.3. Let D ⊆ Cn be pseudo-convex and l be an integer such that 1 ≤ l ≤
n. Let φ be a function which is plurisubharmonic on D, and let H = D ∩ {zn =

· · · = zn−l+1 = 0}. Then, given an arbitrary holomorphic function f on H such that∫
H

|f |2e−φdVH <∞

one can find a holomorphic extension F of f on D satisfying∫
D

fX(− log(|zn|2 + · · ·+ |zn−l+1|2)|F |2e−φdVD ≤ πl

l!

∞∫
−X

fX(t)e
−t
∫
H

|f |2e−φdVH

where fX(t) is a positive function in C∞((−X,∞)) such that

F (t) = log

 t∫
−X

t2∫
−X

fX(t1)e
−t1dt1dt2


is strictly concave for any t ∈ (−X,∞).
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Theorem 5.0.4. Let D ⊆ Cn be pseudo-convex, and l be an integer such that 1 ≤
l ≤ n. H = D ∩ {zn = · · · = zn−l+1 = 0} and,

ψ(z) = ρ

( n∑
j=n−l+1

|zj|2
)1/2


where ρ does not depend on arg(z), is subharmonic on C. Then, for any φ which is

subharmonic on D and any f holomorphic on H with

∫
H

|f |2e−φdVH <∞,

one can find a holomorphic extension F of f on D, satisfying

∫
D

|F |2e−φ−ψdVD ≤ 2
πl

l!

eX/2∫
0

e−ρ(t)tdt

∫
H

|f |2e−φdVH (5.0.2)

where X = sup
z∈D

(
l log

(
n∑

j=n−l+1

|zj|2
))

.

Note that ρ is independent of the variable arg(z), so we can regard ρ as a function

defined on R+ ∪ {0} and thus,

ρ

( n∑
j=n−l+1

|zj|2
)1/2

 and ρ(t) in the equation (5.0.2) is significant. Our aim is to

provide a proof of Theorem 5.0.4 and with the help of Theorem 5.0.3.

Proof. Assume that ρ is a smooth and strictly subharmonic function and

Ψ(z) = l. log

(
n∑

j=n−l+1

|zj|2
)

and fX(t) = e−ρ(e
−t/2).

54



Since ρ does not depend on arg(z), take the function ρ on R+ ∪ {0}. Observe that

fX(−Ψ(z)) = e
−ρ
(
e(

Ψ(z)
2 )

)

= e

−ρ

e
1
2 l. log

 n∑
j=n−l+1

|zj |
2



= e

−ρ

e
log

 n∑
j=n−l+1

|zj |
2

l/2


= e
−ρ

( n∑
j=n−l+1

|zj |2
)l/2



= e−ψ(z).

Set T = e−t/2, and we get, dT = −1
2
e−t/2 de−t/2,

∞∫
−X

fX(t)e
−tdt =

∞∫
−X

e−ρ(e
−t/2)e−tdt = −2

t=∞∫
t=−X

e−ρ(e
−t/2)e−t/2de−t/2

= 2

t=−X∫
t=∞

e−ρ(T )TdT = 2

e(X/2)∫
0

e−ρ(T )TdT.

However, fX(t) satisfies Remark (1), (2), (3). To see this, consider,

d

dt
(fX(t)e

−t) =
d

dT

(
e−ρ(e

−t/2)e−t
)
=

d

dT

(
e−ρ(T )T 2

) dT
dt
, where

dT

dt
=

−1

2
e−t/2

= (2Te−ρ(T ) − T 2ρ′(T )e−ρ(T ))(
−1

2
T )

=

(
−T 2

2

)
e−ρ(T )(2− Tρ′(T )).

Considering next,

log(fX(t)e
−t) = log(e−ρ(T )T 2) = log T 2 − ρ(T ),

taking derivative with respect to dt, we get,

d

dt
(log(fX(t)e

−t)) =
d

dt
(log T 2 − ρ(T )) =

2

T
− ρ′(T ).
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Finally, for the last property, consider,

d2

dt2
(log(fX(t)e

−t)) =
d

dt
(
d

dT
log(e−ρ(T )T 2))

dT

dt

=
d

dT

[
d

dT
log(e−ρ(T )T 2)

dT

dt

]
dT

dt

=
d

dT

d

dT
log(e−ρ(T )T 2)

(
dT

dt

)2

+
d

dT
log(e−ρ(T )T 2)

d2T

dt2

=

(
−2

T 2
− ρ′′(T )

)
1

4
T 2 +

(
2

T
− ρ′(T )

)
1

4
T

=
−1

4
T (ρ′(T ) + ρ′′(T )T ),

where the first equation is a result of fX(t)e−t = e−ρ(T )T 2.

Now observe that the term

ρ′(T ) + ρ′′(T )T =
d

dT
(Tρ′(T ))

is a positive number for a = {T : 2 − Tρ′(T ) = 0}, then Tρ′(T ) is an increasing

function there. Hence, Tρ′(T ) can be equal to 2 only once, then the derivative of

fx(t)e
−t can change sign only once. Since the value of Tρ′(T ) is smaller at the points

smaller than a, when T ∈ (−∞, a),

2− Tρ′(T ) > 0.

However, T and t are inversely related by construction. Thus, for t ∈ (−A, a), we

have

2− Tρ′(T ) < 0.

Hence, fx(t) satisfies Remark 5.0.2 (1) and (2). Moreover, since ρ′(T ) + ρ′′(T )T is

positive, by definition this shows that ρ is strictly plurisubharmonic on C. Then, again

by definition, it follows that

d2

dt2
(log(fX(t)e

−t)) < 0,

which shows that for t ∈ (−X, a) with a ≥ −X , the function fX(t) satisfies the third

property of the remark above. Therefore, fX(t) satisfies the conditions given in the

remark.

This also implies the sets of type d
dt
fX(t)e

−t > 0 or d
dt
fX(t)e

−t ≤ 0 are intervals.

Then, by Theorem 5.0.3:
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∫
D

fX(−l log(|zn|2 + · · ·+ |zn−l+1|2))|F |2e−φdVD

=

∫
D

e−ρ(e
−1
2 (−l. log(|zn|2+···+|zn−l+1|

2)))|F |2e−φdVD

=

∫
D

e−ρ(e
log(|zn|2+···+|zn−l+1|

2))
l
2 |F |2e−φdVD

=

∫
D

e
−ρ

( n∑
j=n−l+1

|zj |2
)l/2


|F |2e−adVD

=

∫
D

e−ψ|F |2e−φdVD

≤ πl

l!

0∫
−X

e−ρ(e
−t/2)e−tdt

∫
H

|f |2e−φdVH

=
πl

l!

eX/2∫
0

e−ρ(t)tdt

∫
H

|f |2e−φdVH .

After proving Theorem 5.0.4, we now ready to prove Theorem 5.0.1. In the previous

theorem, taking n = 1, we obtain this less strict, or more general, condition for which

Ohsawa’s question still has a positive answer.

Proof of Theorem 5.0.1. Given R > 0, define D(0, R) to be the disc centered at 0

with radius R. Then using Riesz’s Decomposition, we obtain

ψ(z) =
1

2π

∫
D(0,R)

log |z − ξ|i∂∂̄ψ(ξ) + h(z)

where h is a harmonic function on the given disc.

Let ψ1(z) = 1
2π

∫
D(0,R)

log |z − ξ|i∂∂̄ψ(ξ), then ψ1 is a radial subharmonic function,

in other words, ψ1 does not depend on arg(z). Then, by taking D = C, H = {0},

l = 1, φ as φ+ h and ψ1 as the radial function in Theorem 5.0.4, we can find for any

holomorphic function f on H with
∫
H

|f |2e−φdVH < ∞, and a holomorphic function

F on D such that F = f on H and,∫
D

|F |2e−φ−h−ψ1dVD ≤ 2
πl

l!

eX/2∫
0

e−ρ(t)tdt

∫
H

|f |2e−(φ+h)dVH .
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where ρ = ψ1 as ψ1 is radial in the theorem.

∫
D(0,R)

|F |2e−φ−h−ψ1dVD ≤ 2π

eX/2∫
0

e−ψ1(t)tdt

∫
H={0}

1.e−φ−hdVH

= 2π

 R∫
0

e−ψ1(r)rdr

 e(−φ−h)(0)

=

 ∫∫
D(0,R)

e−ψ1

 e(−φ−h)(0),

here the first equality comes from that X = sup{1. log |R|2} = 2 log |R|, and∫∫
D(0,R)

e−ψ1 =

2π∫
0

R∫
0

e−ψ1(r)rdrdθ =

∫∫
D(0,R)

e−ψ1(|z|)dA

.

Since h is a harmonic function, ex is a non-decreasing, convex function we have that

e−h is a subharmonic function. Thus, we see

e−h(0)
∫∫

D(0,R)

e−ψ1 ≤
∫∫

D(0,R)

e−ψ1−h =

∫∫
D(0,R)

e−ψ <∞.

Thus, ∫∫
D(0,R)

|F |2e−φ−ψ ≤ e−φ(0)
∫∫

D(0,R)

e−ψ ≤ e−φ(0)
∫∫
C

e−ψ <∞.

Observe, the condition of i∂∂ψ is radial cannot be dropped. In [26], a counter ex-

ample for the case of i∂∂ψ is not radial is provided. Assume that i∂∂̄ψ is a function

depending on arg(z).

Consider the functions of the Corollary 5.0.1 as φ = 2(1 − α) log |z + 1| and ψ =

2α log |z + 1| + h(|z + 1|2) where 0 < α < 1 is a constant. It is obvious that ψ and

φ are subharmonic functions. Let

h(x) =


R1 +

1
4

x < R1

(x−R1)
2 +R1 +

1
4

R1 ≤ x ≤ R1 +
1
2

x x > R1 +
1
2
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where R1 > 0 will be determined later. Observe that,

h′(x) =


0, x < R1

2(x−R1), R1 ≤ x ≤ R1 +
1
2

1, x > R1 +
1
2

So, h′ > 0, which shows that h is increasing; plus, h is convex because the domain of

h is (−∞, R1] ∪ [R1, R1 +
1
2
] ∪ [R1 +

1
2
,∞) and this set is convex.

Now, on R, h is convex and |z + 1|2 is subharmonic on C because on C, for

g(z) = |z + 1|2

both gxx and gyy are positive. Consider for K = {|z + 1|2 < R1 +
1
2
} and L =

{|z + 1|2 > R1 +
1
2
}

∫
C

e−ψ =

∫
K

e−(2α log |z+1|+h(|z+1|2)) +

∫
L

e−(2α log |z+1|+h(|z+1|2))

=

∫
K

1

|z + 1|2α
e−h(|z+1|2) +

∫
L

1

|z + 1|2α
e−h(|z+1|2) <∞,

where the first integral converges by p-test. With respect to φ + ψ = 2 log |z +

1| + h(|z + 1|2), square integrable holomorphic functions have an orthogonal basis

{|z + 1|k}, k ≥ 1. Therefore, minimal L2-norm element with f(0) = 1 is given as

f(z) = z + 1. Then,∫
|f |2e−φ−ψ = I1 :=

∫
C

|z + 1|2 1

|z + 1|2
e−h(|z+1|2) =

∫
C

e−h(|z+1|2)

=

∫
K

e−R1− 1
4dA+

∫
L

e−h(|z+1|2)dA

= πR1e
−(R1+

1
4
) +

∫
L

e−h(|z+1|2)dA.
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I2 := e−φ(0)
∫
C

e−ψ =

∫
C

1

|z + 1|2α
e−h(|z+1|2)

=

∫
K

1

|z + 1|2α
e−(R1+

1
4
) +

∫
L

1

|z + 1|2α
e−h(|z+1|2)

= e−(R1+
1
4
)

∫
K

1

|z + 1|2α
+

∫
L

1

|z + 1|2α
e−h(|z+1|2)

= e−R1− 1
4

(
π

1− α
R1−α

1

)
+

∫
L

1

|z + 1|2α
e−h(|z+1|2).

For R1 large enough,

I1 − I2 = e−R1− 1
4πR1 − e−R1− 1

4

(
π

1− α
R1−α

1

)
+

∫
L

e−h(|z+1|2)
(
1− 1

|z + 1|2α

)

= e−(R1+
1
4
)π

(
R1 −

R1−α
1

1− α

)
+

∫
L

e−h(|z+1|2)
(
1− 1

|z + 1|2α

)
> 0

So, I1 > I2. Then the minimal L2-extension with respect to φ+ψ such that f(0) = 1

exceeds e−φ(0)
∫
C
e−ψ. Then, the question posed by Ohsawa for this case fails.

We now consider another answer for Ohsawa’s question provided in [10].

Theorem 5.0.5. [10] There are subharmonic functions ψ and φ on C such that

1.
∫
C
e−ψ <∞

2. φ(0) ∈ (−∞,∞)

3. For any holomorphic function f on C such that f(0) = 1,
∫
C
|f |2e−φ−ψ = ∞

holds.

Proof. Let ψ = 2max{c1 log |z−1|, c2 log |z−1|} and φ = (1−c1)(log |z−1|)2, c1 ∈
(1
2
, 1), c2 ∈ (1, 3

2
). Assume not. There is a holomorphic function f on C such that

f(0) = 1 and
∫
C
|f |2e−φ−ψ < ∞. Also, observe that (ψ + φ)||z−1|<1 = 2 log |z − 1|,

and, for |z − 1| < 1,

ψ = 2c1 log |z − 1| and φ = (1− c1) log |z − 1|2.
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Consider, ψ + φ = 2 log |z − 1|, then e−φ−ψ = e( log |z − 1|)2 = 1
|z−1|2 . Therefore, it

holds that ∫
C

|f |2| 1

|z − 1|2
<∞

because p-test holds if and only if |f |2 = 0 at z = 1, as z = 1 is a singularity.

Then, for some number M,

ψ + φ− 2(1− c1 + c2) log |z| = 2c2 log |z − 1|+ 2(1− c1) log |z − 1| − 2(1− c1 + c2) log |z|

= 2(1− c1 + c2)(log |z − 1| − log |z|)

= 2(1− c1 + c2) log
|z − 1|
|z|

< M.

∞ >

∫
C

|f |2e−(φ+ψ) >

∫
C

|f |2e−M−2(log |z|)(1−c1+c2), letting e−M = c̃,

>

∫
C

|f |2c̃|z|−2(1−c1+c2)

= c̃

∫
C

|f |2

|z|2(1−c1+c2)

Now, f is holomorphic then its Taylor Series will be in the form of
∑
anz

n, but then,

|f |2 will be of the form |z|2, so the inside of the last integral will be 1
|z|k and for

k < 1, the integral diverges, which is a contradiction. Thus, the degree of f must be

0, and so f is constant. However, now we have f(0) = 1 and f(1) = 0. This is a

contradiction.
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