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ABSTRACT

DETERMINATION OF SPOT WHEAT PRICES UNDER CLIMATE IMPACT
USING COPULA APPROACH

Kayapınar, İlayda

M.S., Department of Actuarial Sciences

Supervisor : Prof. Dr. A. Sevtap Kestel

Co-Supervisor : Dr. Bükre Yıldırım Külekci

July 2022, 52 pages

Climate components have a significant impact on the supply of agricultural goods in two
ways. Firstly, the climate condition influences the efficiency of agriculture and the volume
of the harvested product. Secondly, the farmers harvesting their products would prefer to
sell their goods in the season when the supply is limited at a higher price. Therefore, we
can say that climate conditions can determine the price of agricultural products. Modeling
the seasonal variables whose distributions are not the same and analyzing the dependence
between agricultural products have great interest and importance in agricultural markets and
risk theory.

The primary motivation is to forecast the spot wheat prices under the influence of the climate
component. For this purpose, we employ time series analysis for Konya’s monthly adjusted
weighted average prices of wheat transactions, whose clearing is conducted together with
Istanbul Settlement and Custody Bank Inc., and climate components. Afterward, the adjusted
spot prices against inflation is remodeled by using t-copula under the influence of climatic
parameters to improve the predictions. For this purpose, the best models are selected for the
temperature, relative humidity, and precipitation, and the residuals derived from those models
are used to determine the vine structure. Vine trees help us understand if there is a core climate
component with the dependence structure with other variables. Then, the adjusted spot wheat
prices against inflation are simulated with respect to the output of the vine copula structure.
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The simulated adjusted wheat prices with t-copula give us a more accurate estimation than
the predictions from the time-series analysis.

Keywords: ARIMA, SARIMA, Dependence, Vine copula
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ÖZ

COPULA YAKLAŞIMI İLE İKLİM ETKİSİ ALTINDA
SPOT BUĞDAY FİYATLARININ BELİRLENMESİ

Kayapınar, İlayda

Yüksek Lisans, Aktüerya Bilimleri Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Kestel

Ortak Tez Yöneticisi : Dr. Bükre Yıldırım Külekci

Temmuz 2022, 52 sayfa

İklim bileşenleri, tarımsal ürünlerin arzı üzerinde iki şekilde önemli bir etkiye sahiptir. İlk ola-
rak, iklim koşulu tarımın verimliliğini ve hasat edilen ürünün hacmini etkiler. İkinci olarak,
ürünlerini hasat eden çiftçiler, arzın sınırlı olduğu sezonda ürünlerini daha yüksek fiyattan sat-
mayı tercih edeceklerdir. Dolayısıyla iklim koşullarının tarım ürünlerinin fiyatını belirlediği
söylenebilir. Dağılımları aynı olmayan mevsimsel değişkenlerin modellenmesi ve tarımsal
ürünler arasındaki bağımlılığın analiz edilmesi, tarım piyasaları ve risk teorisinde büyük ilgi
ve öneme sahiptir.

Bu çalışmadaki ana motivasyon, iklim bileşeninin etkisi altında spot buğday fiyatlarını tahmin
etmektir. Bu amaçla, İstanbul Takas ve Saklama Bankası A.Ş. ile takası yapılan buğday işlem-
lerine ait Konya’nın aylık düzeltilmiş ağırlıklı ortalama fiyatları ve iklim bileşenleri için za-
man serisi analizi yapılmıştır. Daha sonra, tahminleri iyileştirmek için iklim parametrelerinin
etkisi altında t-copula kullanılarak enflasyona karşı düzeltilmiş spot fiyatlar yeniden şekillen-
dirilmektedir. Sıcaklık, bağıl nem ve yağış için en iyi modeller seçilir ve bu modellerden elde
edilen artıklar asma yapısını belirlemek için kullanılır. Asma ağaçları, diğer değişkenlerle ba-
ğımlılık yapısına sahip çekirdek bir iklim bileşeni olup olmadığını anlamamıza yardımcı olur.
Sonrasında, enflasyona karşı düzeltilmiş spot buğday fiyatları, asma yapısının çıktısına göre
simüle edilir. Sonuç olarak, t-kopula ile simüle edilmiş düzeltilmiş buğday fiyatlarının bize
zaman serisi analizindeki tahminlerden daha doğru bir tahmin verdiğini görüyoruz.
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CHAPTER 1

INTRODUCTION

Agricultural products are farmed livestock and harvested crops to provide food generally. The
future of agricultural products is one of the most critical and discussed topics of the 21st cen-
tury because of the increasing world population, recorded high inflation in several countries,
and severe climate change, which affects supply and demand relation and price formation of
agricultural commodities directly. Increased demand with limited supply causes an escalation
in prices or vice versa. Several reasons have an impact on the supply and demand structure
of agricultural commodities. Apart from the impact of changing population, political and
economic crises, and changing preferences and government regulations, agricultural product
prices are affected by climate-related factors, which influence supply.

Wheat is one of the most strategic products. It is used for the production of necessary goods
like bread. Since it is not a luxury good, people from different income segments are able to
consume it. While the supply reaches its highest point during the harvest season, wheat is
consumed in four seasons since it is a necessity good.

Agricultural products can also be converted into financial contracts and traded in financial
markets. These contracts are traded in the spot or futures markets in the world. For example,
many contracts in the Chicago Mercantile Exchange (CME) Group are traded in the futures
markets. In Türkiye, on the other hand, local exchanges, which are the institutions that pro-
vide intermediary services for buying and selling electronic receipts whose underlying assets
are agricultural commodities, were operating until the foundation of the Turkish Mercantile
Exchange. The Electronic Warehouse Receipts (EWR) are the financial contracts in which un-
derlying assets are the products stored in the licensed warehouses that the Ministry of Trade
in Türkiye regulates. EWR recorded to Central Registry System stands for the standardized
commodities with the same quantity, species, and subspecies. These features make EWR a
financial contract. Like any agricultural contract, any factor that increases the cost or price of
the agricultural product can directly affect the contract’s price. For example, with the conflict
between Ukraine and Russia, the prices of American Wheat Futures Contracts have reached
their highest level since mid-2008 because these two countries are the leaders in wheat ex-
ports. According to the Food and Agriculture Organization (FAO) report, if the conflicts
continue, prices will increase due to the global supply gap [5] [4].
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Seasonality is one of the critical factors for the price formation of agricultural commodities.
During the harvest season, an increase in supply causes a decrease in prices, whereas, during
the non-harvest season, the prices increase. Thus, a farmer who harvests the products from
the soil can store their product to sell it in a non-harvest season at a higher price to benefit
from the low supply.

Price formation is also affected by storage conditions. The supply cannot last long without
advanced storage techniques if the product is not durable. For this reason, supply cannot
be accessible for all seasons, and volatility in supply cause volatility in commodity prices.
On the other hand, if one agricultural commodity can be stored for long periods, supply
can be distributed all seasons. Storage can help reduce the impact of seasonality in pricing
agricultural commodities. As wheat is a storable product, the pricing formation cannot be the
same as other necessity products, which are unstorable.

In Türkiye, there are regulations for price formation similar to other countries. In the case of a
sudden price increase, Turkish Grain Board (TGB) takes action by selling or buying products
from the market to balance the prices. TGB takes similar action to what Central Banks do
to control inflation. For instance, in the case of a bullish environment for a specific product,
TGB announces to sell its stock to the market. This action increases the supply of the product
in the market, so prices decrease. The buyers of the product sold by TGB cannot resell the
product to the market to profit. Hence, this mechanism controls the prices. For instance, on
the 26th of March, 2022, TGB announced that the local purchasing price for bread wheat is
between 216.45-224.21 USD (3.210-3.325 TL) per ton, while the weighted average price is
between 323.66-451.11 USD (4.800-6.690 TL), according to the bulletin of Konya Mercantile
Exchange [1] [2].

1.1 Literature Survey

The models in literature taking time effect into account in climate variables are numerous.
The composition of time series models in line with capturing the dependence structure using
copula to forecast wheat spot prices in Türkiye is not countable. The remarkable literature
supporting the choice of the models and implementation of the proposed is summarized in
two aspects: time series and copula modeling.

Jain and Mallick [27] compare the performance of ARIMA and Exponential Smoothing (ETS)
model, and forecast weather parameters such as rainfall, relative humidity, wind speed, and
air temperature. Their method consists of two main steps. After understanding the outliers,
they select the best model with respect to Akaike information Criteria (AIC) and Bayesian
Information Criterion (BIC) to forecast the future values.

Tektaş [38] works on wind speed, average temperature, and air pressure datasets to forecast
the weather of Göztepe, Istanbul. He employs ARIMA and Adaptive Network-Based Fuzzy
Inference System (ANFIS) and compares the performance of these two models. According to
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his results, the ANFIS model is the best model for MAE, RMSE, and R2 criteria.

In another study by Sarraf et al., monthly temperature and relative humidity datasets are
used for time series analysis [32]. As a result of their research, ARIMA(0,0,1)(0,1,1) and
ARIMA(0,0,1)(2,1,2) are selected as best models for monthly temperature and relative hu-
midity datasets.

On the other hand, in the literature, there are many studies for forecasting production and the
prices of agricultural commodities. Iqbal et al.[26] work on forecasting wheat cultivated area
and the production amount for up to 2022 in Pakistan. They use the Box-Jenkins methodol-
ogy for forecasting and conclude that ARIMA(1,1,1) and ARIMA(2,1,2) are the best models
for forecasting wheat area and production amount, respectively. The estimated production
amount is found as 29.774,8 thousand tons in 2022.

Paul [8] compared the performance of GARCH and ARIMA models for forecasting spot
wheat prices of Gram in the Delhi Market in his work. According to his results, since the
ARIMA model could not capture the volatility in price, the GARCH model is suggested as
the best model.

In the study of Haofei [22], the food prices are forecasted for China using MSOA, ARIMA
and the BP models. According to their evaluation, the MSOA model is the best in terms of
accuracy.

Fattah et al. forecast a company’s food demand with Box-Jenkins methodology. They select
ARIMA(1, 0, 1) as the best model [17].

Copula models are used in many studies for understanding dependence relations between
random variables. Thanks to its flexibility in modeling multivariate distributions, copula is
used in either cross-sectional or time series analyses. Univariate marginals can be linked to
the multivariate distribution with the help of the copula model.

Sklar [35] introduced to copulas first to understand the dependence structure across random
variables at which n-univariate marginal distribution and n-dimensional copula can be gener-
ated by n-dimensional joint distribution.

Copulas are used in many areas to capture dependence structure. In Actuarial Science, the
implementation varies from non-life to life insurance problems such as estimating joint-life
mortality and competing risks-multiple decrement theory [18]. For instance, Evkaya et al.
[16] constructed an index-based insurance design for Türkiye. They model the weather yield
with weather index variables and calculate the premium and compensation using linear regres-
sion equations. Also, copula functions are used in many topics like bivariate option pricing,
risk evaluation techniques, and diversifying and hedging assets in finance [11], [19].

Patton [30] reviews and discusses the literature on time series copula models. In this study,
he recommends using copulas to catch the cross-sectional series dependent on the past. Also,
Smith et al. [36] use copulas for continuous-valued time series to model serial dependence.
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They use a D-vine copula for longitudinal data [37]. Also, they show that vine copula models
could be used in either cross-sectional or time-series datasets.

Silva et al. estimate the parameters of bivariate copula functions and three marginal distri-
butions with the Bayesian approach. After they compare the model selection criteria such
as AIC, BIC, EBIC and DIC, they show that the Deviance Information Criteria (DIC) is
useful[34].

Cong and Braddy [12] model the joint distribution of temperature and precipitation with cop-
ula. They compare the power of the different copula models. The conclusion is that student
t-copula is the best copula for determining the interdependence relationship between precip-
itation and rainfall for Scania, Sweden. In another study, spatial dependence is investigated
by using R-vine copula models for different locations. They use daily mean temperature data
for 54 different locations and develop an R-vine model. They also evaluate the model per-
formance between spatial R-vine copula and the Gaussian spatial model [15]. Also, copula
analysis is widely used in empirical finance. For instance, Gronwald [20] studies the inter-
dependence relationship between European carbon, commodity, and financial markets using
different copula models. They found that student t-copula performs better than alternative
copula models.

To the best of our knowledge, this thesis is the first study of estimating adjusted wheat spot
prices under climate impact using copula approach in the local area of Türkiye. We show
how the effect of the climatic conditions specific to each region or city affects the spot wheat
prices in that region. The residuals from the suggested models are used to investigate the in-
terdependence structure of the temperature, relative humidity, precipitation, and wheat prices.
Then, the parameters obtained from the copula analysis are used to estimate wheat prices.

1.2 Aim of the Study

The main goal of this work is to emphasize and show the impact of local climate components
on the local spot wheat prices. Konya is selected as a representative for this work due to its
importance in the production in the Turkish wheat market. Konya, one of the biggest cities
in terms of area with steppe climate conditions, is the leading city in terms of production
and wheat cultivation. Even though Konya holds tremendous importance, there is not enough
study investigating the impact of climate components on local spot wheat prices, so this study
can fill this gap in the literature.

This work contributes to the literature on the investigation of the impact of the interdepen-
dence structure of climate components on the forecast of local spot wheat prices for Türkiye.
Local agricultural production is directly dependent on the local climate factors, so the price
is as well. The prices used in this work are the prices of EWR, which are defined as the
standardized electronic receipts that are regulated by the clearing house of Türkiye. These
features of EWR make it a financial contract. Because these contracts cover the transaction
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within Konya, it is also a local contract that contains the impact of the local supply and de-
mand factors. Since the supply of agricultural goods is highly dependent on climatic factors,
in this thesis, we show the impact of local climatic factors on the financial contract whose
price structure depends on the local factors. At the beginning of this study, it is planned to
conduct spatial analysis for this work to understand the neighborhood impact. Due to the
difficulties in obtaining wheat price data sets for the neighboring cities, this implementation
did not come true.

The temperature, relative humidity, and precipitation are the main climate components that
affect wheat production, thus, its price. Extremely high temperatures and drought have signif-
icant impacts on the number of crops harvested. For these reasons, the leading three climate
components are used for the analyses.

In the first part of the thesis, suitable models such as ARIMA, SARIMA, and Triple Expo-
nential Smoothing (TES) are used to model temperature, relative humidity, precipitation, and
spot wheat prices to forecast their future realizations. Afterward, the differences between the
predicted and actual values, i.e., residuals for climate components, are drawn in vine struc-
ture in order to understand the dependence structure of these variables. In other words, vine
trees help us to understand if there is a core climate component that affects other climate
components or not. Then, bivariate t-copula is applied to the adjusted wheat prices and pre-
scribed climate component, and simulations are made for predictions based on the best fitting
copula density. Lastly, the predictions coming from the time series model and copula-based
model are compared with respect to the mean absolute error value to see if the copula-based
prediction, which contains the impact of climate component, optimized our predictions or not.

The implementation is made by temperature, rainfall, and relative humidity datasets obtained
from the Ministry of Agriculture-Turkish State Meteorological Service. These datasets consist
of monthly temperature values, Precipitation (m2), and Relative Humidity (%) realizations of
Konya. It covers the monthly average values between January 2007 and July 2021. Konya is
chosen as a representative for this analysis because it is at the first rank in all cities regarding
wheat production. In 2021, %9.4 percent of the total supply belonged to Konya [3]. Konya
region is the leading supplier of wheat.

Spot wheat for Bread Contract prices is obtained from the website of Konya Mercantile Ex-
change. The spot wheat price is the weighted average price of the transactions executed and
recorded by the Konya Mercantile Exchange, and it consists of monthly prices between 2007
and 2021. This dataset has monthly wheat prices in terms of the kilogram.

The outcomes of this study can be used for further studies on premium estimation of agricul-
tural insurance for several products and also for other regions in Türkiye.

This thesis is organized as follows: Chapter 2 presents the preliminaries on methods imple-
mented. In Chapter 3, we proceed with the time series analysis for climate components and
wheat prices, and then we demonstrate the copula analysis and its evaluation of performance.
Finally, Chapter 5 gives some concluding findings.
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CHAPTER 2

PRELIMINARIES

2.1 Univariate Time Series Process

A univariate time series is the series of observations of a specific component in time order.
The time series can show the increasing and decreasing trends and systematic fluctuation
called seasonality or outliers.

Stationary series are the series that have the constant mean, variance, and autocorrelation over
time. If the mean, variance, and autocorrelation of a series do not vary over time, the series is
defined as stationary series.

The autoregressive model of order p, AR(p), is the composed of the current value of a time
series depending on the previous values and the error term. AR(p) process is defined by:

Xt = a+

p∑
n=1

φiXt−i + ϵt (2.1)

where φ1, . . . , φp are the parameters, a is a constant number and ϵt is the white noise error
term which is independent and identically distributed.

In the Moving Average model of order q, MA(q), the dependent variable is affected by the
current and previous random shocks and is expressed as:

Xt = µ+

q∑
n=1

βiϵt−p + ϵt (2.2)

where µ is the mean of the series, β1, . . . , βp are the parameters of the model and ϵt is the
white noise error term.

ARMA(p,q) process can be defined as the combination of AR and MA models. In other
words, dependent variable is affected by either previous values or shocks.

Xt = a+

p∑
n=1

φiXt−i +

q∑
n=1

βiϵt−i + ϵt (2.3)

where φ1, . . . , φp, β1, . . . , βp are the parameters of the model, a is a constant number and ϵt

is the white noise error term.
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2.1.1 Non-Stationary Time Series Process

The existence of a trend creates non-stationarity in time series. In a data set, non-stationarity
can be observed in two ways: the mean or variance of random samples selected from the data
set is not stationary.

First, non-stationarity in the mean can be observed either deterministic, i.e., it has the explicit
function form, or stochastic trend, which is not predictable and has "random walk" movement.
Deterministic and stochastic non-stationary series can be detected with the KPSS test.

Second, non-stationarity can be observed due to variance instability. In this case, we can
apply variance stabilizing transformations if the dataset consists of positive values. The other
reason of the non-stationarity can be seasonality.

a. Autoregressive Integrated Moving Average Model

Autoregressive Integrated Moving Average, ARIMA(p,d,q), is used for analyzing the non-
stationary datasets [9]. It is defined as a combination of three statistical models: AR(p), I(d)
and MA(q). ARIMA models are distinguished from ARMA models due to integrated terms.

Box-Jenkins methodology for model selection requires a 4-step procedure. The first step
is to apply data processing to assure stationarity, and the second is the model identification
using ACF and PACF or software packages to find the best ARIMA model. The final model
selection is made with respect to performance indicators, minimum AIC or BIC values, whose
details are given below.

AIC is a measure of the goodness-of-fit for the fitted model and expressed as:

AIC = −2 log(L) + 2k (2.4)

where, L stands for the maximized value of the likelihood function for the estimated model
while k is the number of parameters in the statistical model. The component 2k is a penalty
for large number parameters in the model. The model whose AIC value is smaller is selected
as better model.

BIC is a criterion for model selection among a class of parametric models. It is given as

BIC = −2 log(L) + k log(n) (2.5)

where, k is the number of the parameters in the model, n is the sample size. The model whose
BIC value is smaller are selected as better model.

After the model selection, diagnostic checks should be completed. To do so, the validity
of Gauss Markov assumptions is checked for the selected model. In other words, residuals
should have zero mean, and there should not be any autocorrelation across residuals. Also, if
the residual of the selected model is white noise, forecasts can be obtained.
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b. Seasonal Time Series Models

The time series repeating a regular pattern, usually within a one-year period, is called a sea-
sonal time series model. Seasonal series are observed primarily in economics because of the
business cycle. Climate-related variables such as temperature follow a seasonal process. The
temperature is high in the summer seasons, while the temperature is low in the winter. Ac-
cording to Hylleberg [24], there are three types of seasonality in time series. Time series can
show deterministic and stochastic seasonality. The series, which have deterministic seasonal-
ity, can be analyzed with seasonal dummies, while those following stochastic seasonality can
be analyzed with SARIMA models.

Deterministic seasonality can be analyzed with seasonal dummy variable regression or trigono-
metric series and is defined as:

Xt =

s∑
n=1

θnDnt + ut (2.6)

where, Dnt indicates the dummy variable for nth observation in s observation and Dit = 1 if
the observation at time t is in nth observation and 0 otherwise. θ’s are the seasonal factors.

On the other hand, the stochastic seasonality can be analyzed with the SARIMA models.
Models have seasonal and non-seasonal parts. That is, ARIMA(p, d, q)(P,D,Q)s has the
non-seasonal part with p, d, q parameters and the seasonal part with P , D, Q where s stands
for the number of observation within a year. For instance, for monthly data sets, s is taken as
12.

The best model is selected by measuring forecasting accuracy using the measures such as
Mean Error (ME) and MAE.

2.2 Exponential Smoothing

As a widely-used and simple forecasting method, exponential smoothing is suitable for dis-
crete time-series data. It is a powerful forecasting technique, even though it has simplicity
in terms of computational efficiency. The idea of exponential smoothing is that forecasted
values are the weighted averages of past observations.

Exponential Smoothing is developed by Brown [10], Holt [23] and Winters [39] in 1950s.
Brown [10] works on the Simple Exponential Smoothing (SES) for the time series with no
trend and seasonality. In their work, the forecasts depend on the weighted average of previous
observations, and earlier observations have less weight and less impact on future forecasting.
In other words, weights decline exponentially as the observations get older [25].

In SES, the forecast ŷt+1 is the weighted average combination of most recent observation yt
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with weight α, and the most recent forecast yt with a weight of (1− α). It is expressed as:

ŷt+1 = αyt + (1− α)ŷt (2.7)

where, α is the smoothing parameter between 0 and 1, yt is the observation at time t, ŷt is the
forecast value for time period t and ŷt+1 is the forecast value for t+ 1.

To include the impact of the trend to the simple exponential smoothing, equation 2.7 is ex-
tended to Double Exponential Smoothing (DES). This method consists of smoothing param-
eter (α) and trend coefficient, such that

Ŷt(h) = St + hTt (2.8)

where, St is the current level and T is the trend while h is the coefficient of trend at which:

St = αYt + (1− α)(St−1 + Tt−1)

Tt = β(St − St−1) + (1− β)Tt−1

(2.9)

where, α and β are smoothing parameter and trend coefficients, respectively.

Equation 2.9 shows that St is the weighted average combination of the value of Yt and the
sum of the last smoothed value and the trend of the previous period Tt−1. The second line
in Equation 2.9 updates the trend as a weighted average of the difference between the current
level and one-step ahead level and the estimated trend term of one-step ahead.

Furthermore, Holt-Winters exponential smoothing technique is used to analyze time series
that have both trend and seasonal irregularities. To do so, three smoothing parameters α, β,
and γ are needed for level, trend, and seasonal variations, respectively. These equations are
shown below:

St = α
Yt−1

It−s
+ (1− α)(St−1 + Tt−1)

Tt = β(St − St−1) + (1− β)Tt−1

It = γ
Yt
St

+ (1− γ)It−s

(2.10)

where, S is the smoothed observation, T is the trend factor, I is seasonal index, t denotes
time period, α,β,γ values are determined by using minimized mean square error (MSE) value.
Based on these three equations, k-step ahead forecast is expressed as:

Ŷt(k) = (St + hTt)It+k−s (2.11)

2.3 Correlation Coefficients and Copulas

Pearson’s correlation coefficient is a measure of linear correlation between two variables. X1

and X2 is represented as:

ρ(X1, X2) =
Cov(X1, X2)

σx1 .σx2

(2.12)
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where Cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2))], σxi is the standard deviation of xi
for i = 1, 2, and −1 < ρ(X1, X2) < 1.

Correlation coefficients 1 and −1 correspond to perfect positive and negative linear correla-
tion, respectively, while 0 implies the independence of these two variables [31].

When the random variables are correlated with each other, copula is a beneficial tool to model
interdependence. According to Pfaff, [31], the linear correlation coefficient gives us the cor-
rect measure if and only if these variables are jointly elliptically distributed. Moreover, the
definition of the linear correlation coefficient is valid for pairs of variables with finite vari-
ance. Thus, different measures such as the copula should be used to measure the dependence
relationship between random variables.

A copula is the distribution function in the d-dimensional space of a d-element random vector
with standard uniformly distributed marginal functions. With the copula functions, random
variables whose distributions are different from each other can be employed, and the depen-
dence structure of these distributions can be detected. In the literature, there are many copula
families. With the help of the copula, the closed form of the joint probability distribution
function can be obtained. For instance, Gaussian copula, one of the copula families, is used
when the components are normally distributed. Another copula family, Archimedean cop-
ulas, consists of the copulas like Clayton, Gumbel, and Joe. Archimedean copulas provide
high-dimensional modeling with one parameter. T-copula, however, is used to model extreme
circumstances, namely tail dependency, due to its flexibility.

The joint cumulative distribution function of two continuous random variables can be shown
as [35]

T (X,Y ) = C[F (X), H(Y )] (2.13)

where, F (X) is the marginal distribution of X = x1, . . . , xd and H(Y ) is the marginal
distribution of Y = y1, ..., yd. In this equation, C stands for the copula function, built over
uniform marginals. Thus, the cumulative distribution function of two random variables can be
found by determining the dependence structure C and the marginal distributions of random
variables. This equation can be extended for the d-element random vector [31].

For bivariate case, the copula function can be expressed as the combination of two density
functions:

C(x) = P (X1 ≤ x1, X2 ≤ x2) =

∫ x1

0

∫ x2

0
c(x)dx (2.14)

C(x) =
f(F−1

1 (x1), F
−1
2 (x2))

f1(F
−1
1 (x1))f2(F

−1
2 (x2))

, (2.15)

or equivalently,

c(F1(x1), F2(x2)) =
f(x1, x2)

f1(x1)f2(x2)
. (2.16)
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In general,

F (x1, ..., xd) = P [F1(x1), F2(x2), ..., Fd(xd)] = C(F1(x1), ..., F1(x1)) (2.17)

C(Fd(xd), ..., Fd(xd)) =
f(x1, ..., xd)

f1(x1)...fd(xd)
. (2.18)

In the multivariate case, it is advantageous to model bivariate forms connected to each other by
specific copula formations called Vine-copulas. When we use vine copula high dimensional
probability distributions, instead of multi-dimensional copula, we use bivariate copulas as
building blocks in order to create multivariate copulas [13]. To do so, conditional probability
functions are obtained from the probability density functions with d-variables first, and then
bivariate copulas are created from such conditional probabilities. For example, assuming that
two variables case, the representation is as follows:

f(x1, x2) = f1|2(x1|x2).f(x2) = f2|1(x2|x1).f(x1) (2.19)

f(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2). (2.20)

Thus, f1|2(x1|x2) can be shown as:

f1|2(x1|x2) = c1,2(F1(x1), F2(x2)f1(x1). (2.21)

For 3-dimensional space, probability density function with three variables can be shown as
bivariate copula and marginal probability distribution function:

f(x1, x2, x3) = f1|2,3(x1|x2, x3).f2|3(x2|x3).f3(x3) (2.22)

Equation 2.22 leads to the following Equations 2.23 and 2.24:

f2|3(x2|x3) = c2,3(F2(x2), F3(x3)f2(x2) (2.23)

f1|2,3(x1|x2, x3) = c1,2|3(F1|3(x1|x3), (F2|3(x2|x3))f1|3(x1|x3) (2.24)

Also, we can write f1|3(x1|x3) as

f1|3(x1|x3) = c1,3(F1(x1), F3(x3)f1(x1). (2.25)

Finally, we can express the PDF with three random variables as the PDF of each random
variable and copula functions as pairs. The pairs which are expressed as

f(x1, x2, x3) = f(x1)f(x2)f(x3)c2,3(F2(x2), F3(x3))c1,3(F1(x1), F3(x3))

c1,2|3(F1|3(x1|x3)(F2|3(x2|x3))). (2.26)
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Such kind of pair copula constructions can be extended to d-random variables. The factor-
ization is visualized as regular vine trees. The parameters of the above equations are either
two-dimensional or conditional two-dimensional. These kinds of vines are called regular
vines. For d = 4, there are three layers of tree representation.

Allen [7] proposes regular vines (R-Vines) as generalized treed as the flexible tools in high
dimensional modelling. Figure 2.1 shows two examples of vine structures which is published
in the work of Allen [7].

In Figure 2.1, regular and non-regular vine trees on four nodes are shown, respectively. We
see that the edges in the first tree is the node of the second tree for the regular vine and each
edge in the first tree has only one node for the second tree. On the other hand, we see that one
edge has two nodes for the non-regular vine.

Figure 2.1: Regular and Non-regular Vines

2.3.1 Regular Vine (R-Vine)

Kurowicka and Cook [7] states that a regular vine V on n elements with E(V ) = E1 ∪ · · · ∪
En−1 corresponding to the set of edges of V if it follows the properties below:

i. There should be N-1 edges for N nodes: V = T1, . . . , Tn−1

ii. T1 is a connected tree with nodes N1 = 1, . . . , n, plus edges E1; for i =2,. . . ,n-1, Ti is a
tree with nodes Ni = Ei−1,

iii. Proximity condition: Every edge has an impact on the next layer’s joint density.

Regular Vines are divided as Canonical Vine (C-Vine) or Drawable Vine (D-Vine), including
star trees and line trees [14]. In the C-Vine, if there is a central impact in each layer, it is
visualized with a star schema.

If each tree of a regular vine has a unique node of degree n − 1, then it is called a C-Vine,
while if all nodes in any tree have degrees no more than 2, it is called a D-vine [6].
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Figure 2.2: D-Vine

Figure 2.3: C-Vine

Since star schema is used to model dependence structure across variables, C-Vine is useful
when one factor is regarded as the vital factor. On the other hand, when no central factor
influences the dependency, D-copula is beneficial.

There are two methods to determine the unknown parameters of the copula [31]. The first
method, which is a parametric procedure, is to use two-step estimation, which is proposed by
Joe [28] and Xu [40] and Shih and Louis [33]. In this way, firstly, unknown parameters for
the models of the marginal distributions are estimated. Then, pseudo-uniform variables are
extracted from the inverse distribution functions. The likelihood maximization is applied by
using these variables. In the second method, the semi-parametric procedure, empirical distri-
bution functions are used to obtain the pseudo-uniform variables, and then these variables are
used for maximizing the pseudo-likelihood. Tools of numerical optimization techniques are
used to determine the parameters of copula [29].
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CHAPTER 3

TIME SERIES ANALYSES

In line with the proposed approach, the climate variables affecting the spot wheat prices are
firstly analyzed using time series models explained in Chapter 2. After presenting the data
descriptions, each variable is analyzed separately to find the best model representing their
future forecast.

3.1 Data and Descriptives

The data set contains Konya’s monthly average temperature (Celsius), rainfall (m2), and rela-
tive humidity (percent) from January 2007 to July 2021. Since Konya alone produces 9.9% of
all wheat production in Türkiye and ranks first in Türkiye with 9.1% of wheat planting area,
the climate data is collected specifically to this region.

Figure 3.1 from the Ministry of Agriculture [3] shows that wheat planting and production
information as of 2021. Figures 3.1a and 3.1b show that Konya is the leading city in wheat
planting and production, followed by Ankara and Diyarbakır, respectively.

(a) Wheat planting. (b) Wheat production.

Figure 3.1: Wheat mapping of Türkiye.

Table 3.1 illustrates that among 175 monthly periods, the average rainfall is 28.05mm2, and
the median is 19.80mm2, while these values are closer to the temperature and relative humid-
ity datasets. Table 3.1 temperature and relative humidity distribution are more symmetrical
than the rainfall dataset. Coefficient of variation (CV) shows that level of dispersion around
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the mean is the highest for precipitation and lowest for adjusted wheat prices. For wheat
prices, we see that spot wheat prices are between 0.4394 and 4.2831, with a mean value of
1.0305. Since the price increase is dramatically high, especially in 2021, we see a high max-
imum value. After adjusting the price, we see the mean and median in adjusted wheat prices
become closer.

The correlation matrix in Table 3.2 shows a negative correlation between relative humidity
and temperature. The reason for the negativity is the increase in temperature which leads to a
decrease in relative humidity (%). Therefore, the air becomes drier or vice versa. Also, in the
Konya region, we see the existence of steppe climate conditions. This means that the temper-
ature is higher in the summer period with drought. Since Konya’s precipitation is almost zero
in summer, there is a negative correlation between temperature and precipitation. Table 3.2
shows a strong negative linear correlation between temperature and relative humidity.

Jarque Bera (JB) test is applied to understand whether the time series is normally distributed
or not. The results show that none of the variables is normally distributed (p < 0.01).

Table 3.1: Descriptive statistics for all climate components and wheat prices
Temperature C◦ Precipitation (mm2) Rel Humidity (%) Spot Wheat (TL) Adjusted Wheat (TL)

Mean 12.59 28.06 59.52 1.03 2.19
Median 12.80 19.80 59.50 0.89 2.16
Minimum -4.80 0.00 29.20 0.44 1.78
Maximum 27.70 116.80 95.80 4.28 4.28
Stddev 8.71 25.80 17.27 0.59 0.28
C.V. 0.69 0.92 0.29 0.57 0.13
Skewness -0.03 1.04 0.09 2.11 3.17
Ex. Kurtosis -1.26 0.63 -1.14 5.86 17.61
Interquartile range 15.5 37.20 30.20 0.48 0.28
JB test statistics 11.67 34.66 9.77 80.93 54.50
JB p-values 0.0029 0.0030 0.0076 0.0024 0.0014

Table 3.2: Correlation matrices for climate components and wheat prices
Temperature C◦ Precipitation (mm2) Relative Humidity (%) Wheat Price (TL) Adj. Wheat Price (TL)

Temperature 1 -0.3836 -0.9054 0.0079 -0.1658
Precipitation 1 0.5202 -0.0658 0.1009
Rel. Humidity 1 -0.0928 0.1727
Wheat Price 1 0.6378
Adj. Wheat Price 1

The time series modeling of each variable is performed as the next. The observations, au-
tocorrelation function (ACF) and partial Autocorrelation functions (PACF) are plotted to see
the influential components in the dataset. Software packages in RSTUDIO are used to find
candidate models after the dataset is divided into train and test sets.
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3.2 Temperature

The dataset shows the monthly temperature of Konya between 2007-2021. The time series
plot, ACF and PACF are utilized to see the serial dependence.

Firstly, the time series plots and the result of the KPSS test show that the temperature vari-
able is stationary. Furthermore, the same time series plot of the variable displays the regular
pattern. This fluctuation indicates the existence of seasonality as can be seen in Figure 3.2.
Figure 3.2, ACF and PACF functions of temperature clearly show the seasonal variation.
While the temperature is low in the winter period between December and February, it is high
in the summer period. The wheat product is harvested in the spring, especially in May.

Figure 3.2: Time series of monthly average temperature

Figure 3.3, shows that in the ACF plot of the monthly temperatures are correlated among
themselves in the summer and winter seasons.

Figure 3.3: ACF and PACF plots of temperature

Time series plots show a constant mean and variance of the pattern using KPSS test and
Hansen Canova tests. The results of the KPSS test show that the temperature variable is sta-
tionary with a p-value equal to 0.10. So it is validating that the series has constant mean and
variance. A variable can follow a seasonal pattern because of two main reasons: determin-
istic seasonal or stochastic seasonal patterns. Hansen-Canova test, which its null hypothesis
assumes a deterministic seasonality, is applied to the temperature dataset. Table 3.3 exposes
the test statistic which assures the deterministic seasonality where p-values for all dummy
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variables exceed 5%.

Table 3.3: Canova-Hansen test of seasonal stability for temperature
Statistic p-value Season

L1 = 0.0641 0.86846 1
L2 = 0.1950 0.31442 2
L3 = 0.0636 0.87116 3
L4 = 0.0505 0.94285 4
L5 = 0.1483 0.45026 5
L6 = 0.2866 0.16151 6
L7 = 0.0870 0.73287 7
L8 = 0.0889 0.72167 8
L9 = 0.1268 0.53254 9
L10 = 0.2595 0.19561 10
L11 = 0.0391 0.98470 11
L12 = 0.0814 0.76498 12

Table 3.4: Model output of ARIMA(1,0,0)(0,0,1)[12] for temperature
Coefficient Standart Error z p-value

Const 1.91983 0.2832 6.777 0.0000
ϕ1 0.3481 0.0776 4.485 0.0000
Θ1 −0.4813 0.1194 −4.030 0.0001
dm1 −1.65533 0.3220 −5.140 0.0000
dm2 0.5379 0.3785 1.421 0.1553
dm3 4.9646 0.3971 12.50 0.0000
dm4 9.7500 0.3990 24.43 0.0000
dm5 14.2591 0.4012 35.53 0.0000
dm6 19.0691 0.4016 47.47 0.0000
dm7 22.9992 0.4005 57.42 0.0000
dm8 22.7679 0.3990 57.06 0.0000
dm10 11.3494 0.3771 30.09 0.0000
dm11 4.9558 0.3250 15.25 0.0000

Mean dependent var 12.48 S.D. dependent var 8.82
Mean of innovations 0.00 S.D. of innovations 1.63
R2 0.96 Adjusted R2 0.96
Log-likelihood −279.08 Akaike criterion 588.17
Schwarz criterion 632.82 Hannan–Quinn 606.32

In the analyses, the data set is divided into train and test sets with 80%-20% partitions result-
ing in 140 observations in the training set. Then, the model selections are made using the train
set, and the performance of the selected model is tested on the test set. The time series with
deterministic seasonality can be analyzed with seasonal dummy variables or Fourier terms.
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For this purpose, we include 11 seasonal dummy variables as independent variables for the
analyses.

Since the seasonal dummies are significant, the temperature data set is analyzed with ARIMA
model with 11 seasonal dummies. Among all plausible models, ARIMA(1,0,0)(2,0,0)[12]
(with seasonal dummies), ARIMA(1,0,0)(0,0,1)[12] (with seasonal dummies), and ARIMA
(1,0,1)(1,1,1)[12] (without seasonal dummies) are selected as a candidate models based on
AIC, AICc and BIC. In order to check the significance of the models, we look at the last esti-
mated parameters of each component. Which reduced the choice to ARIMA(1,0,0)(2,0,0)[12]
and ARIMA(1,0,0)(0,0,1)[12] whose parameters are significant. Also, R2 values are almost
the same. However, ARIMA(1,0,0)(0,0,1)[12] has the lower AIC value than the ARIMA
(1,0,0)(2,0,0)[12]. On the other hand, the parameters of ARIMA(1,0,1)(1,1,1)[12] are not sig-
nificant. The output of each candidate models are shown in the Appendix A.1 and Appendix
A.2. Finally, ARIMA(1,0,0)(0,0,1)[12] with seasonal dummies is the best model since AIC
value is lower and the parameters are significant whose summary is given in the table 3.4. Ac-
cording to the results, the p-values of all parameters are less than 0.05 except for the dummy
variable for February.

Forecasting results show that ARIMA(1,0,0)(0,0,1)[12] fits well with the test data as it gives
the lowest AIC value. Figure 3.4 shows that forecast results and test datasets follow the same
movement across seasons. After every peak in the summer season, forecasts and the actual
temperature decreased around zero each winter. The forecast evaluation of the temperature
dataset shows that the mean error of the model is 0.4170.

Figure 3.4: ARIMA(1,0,0)(0,0,1)[12] with seasonal dummies

We can use either visual ways or tests to check the normality of residuals. For a visual
perspective, residuals are normally distributed since points are clustered in the reference line
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Table 3.5: Autocorrelation and normality tests for ARIMA(1,0,0)(0,0,1)[12]
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1.92
Prob(Q): 0.80 Prob(JB) 0.38

in the QQ plot of Figure 3.5. Also, Jarque-Bera test results show that the null hypothesis
is accepted with p = 0.91, so the residuals are normally distributed as well. Moreover, the
Ljung-Box test is on the residuals to test if the residuals are white noise or not. The results in
Table 3.5 show that the null hypothesis is accepted with a p-value of 0.80, so we can conclude
that the residuals are white noise and follow the normal distribution. This resulting variable
is implemented as input to the copula analyses.

The evaluation results of the selected model is presented Table 3.6. Root mean squared error,
which expresses the square root of variances of the errors, is found as 1.80. On the other hand,
the Mean Absolute Percentage Error (MAPE) value is calculated as 22.30 since the residuals,
which are close to zero, increase the MAPE. Therefore, we can say that the forecasts are
successfully captured.

Table 3.6: Forecast evaluation results of ARIMA(1,0,0)(0,0,1)[12] for temperature
Mean Error 0.4170
Root Mean Squared Error 1.80
Mean Absolute Error 1.35
Mean Percentage Error 2.05
Mean Absolute Percentage Error 22.30

(a) QQ Plot

(b) Time series of residuals

(c) Histogram of temperature

(d) ACF of residuals

Figure 3.5: Diagnostic check of ARIMA(1,0,0)(0,0,1)[12]
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3.3 Relative Humidity

Monthly average relative humidity follows a seasonal pattern around a constant mean. KPSS
test is applied to this dataset and validated that the series is stationary with a p-value of 0.10.
Also, a seasonal pattern is detected in Figures 3.6 and 3.7. The relative humidity increases
in the winter period and decreases in the summer. Table 3.7 shows that the time series has
stochastic seasonality similar to the temperature data set.

Figure 3.6: Time series of monthly relative humidity (%)

Autocorrelation function of relative humidity in the Figure 3.7 shows that the series is station-
ary and seasonal. KPSS test result shows that that the series is stationary.

Table 3.7: Canova-Hansen test for seasonal stability for relative humidity
Statistic p-value Month

L1 = 0.7787 0.00362 *** 1
L2 = 0.8804 0.00138 *** 2
L3 = 0.4746 0.04205 ** 3
L4 = 0.5026 0.03418 ** 4
L5 = 0.4274 0.05946 * 5
L6 = 0.0895 0.71842 6
L7 = 0.2640 0.18948 7
L8 = 0.0974 0.67481 8
L9 = 0.2978 0.14922 9

L10 = 0.5421 0.02541 ** 10
L11 = 0.4951 0.03614 ** 11
L12 = 0.4781 0.04097 ** 12
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Figure 3.7: ACF and PACF functions

As a result, we select ARIMA(1,0,1)(1,1,1)[12] and ARIMA(0,1,1)(0,1,1)[12] as candidate
models based on AIC. However, the model results of ARIMA(1,0,1)(1,1,1)[12] in the Table
A.3 show that Φ1 parameter is insignificant since the p-value of the relevant parameter is
greater than 0.50. Thus, this model cannot be one of the candidate models.

Table 3.8: Model output of ARIMA(0,1,1)(0,1,1)[12] for relative humidity
Coefficient Standart Error z p-value

Const 0.0166 0.0603 0.2756 0.8260
θ1 −0.7298 0.0725 −10.06 0.0000
Θ1 −0.7731 0.0756 −10.23 0.0000

Mean dependent var −0.0889 S.D. dependent var 11.38845
Mean of innovations −0.1176 S.D. of innovations 6.9436
R2 0.8485 Adjusted R2 0.847296
Log-likelihood −432.1568 Akaike criterion 872.3135
Schwarz criterion 883.6903 Hannan–Quinn 876.7390

Since ARIMA(0,1,1)(0,1,1)[12] has lowest AIC value among other candidate model, it is
selected as the best model. The model description of alternative models is in the Appendix
part.

Figure 3.8 shows the actual and forecasts of the selected model. It is clear that the relative
humidity decreases from the winter to the summer seasons. The estimated values and actual
values move in the same direction. Table 3.10 indicates that on average, the sum of absolute
errors is 4,62 mm2 and %9 for relative humidity.
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Figure 3.8: Forecasting relative humidity

Also, the Ljung-Box and Jarque-Bera tests are applied to the best model for the diagnostic
checks. The results shown in Table 3.9 indicate that the residuals are white noise and normally
distributed.

Table 3.9: Diagnostic checks for ARIMA(0,1,1)(0,1,1)[12]
Ljung-Box (L1) (Q): 6.0759 Jarque-Bera (JB): 1.6062
Prob(Q): 0.6387 Prob(JB): 0.4479

Table 3.10: Forecast evaluation of relative humidity for ARIMA(0,1,1)(0,1,1)[12]
Mean Error −0.4696
Mean Squared Error 5.8313
Mean Absolute Error 4.6186
Mean Percentage Error −1.4118
Mean Absolute Percentage Error 9.0014

3.4 Precipitation

Unlike the other two sections, TES is applied to the precipitation dataset in addition to time
series models in this section. Since the candidate ARIMA models could not catch the pre-
dictions well and the R2 of the candidate ARIMA models are low, we employ the Triple
Exponential Smoothing as an alternative model to the time series models for only the precip-
itation.
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The time series plot shows that the precipitation amount is lower for the summer season than in
winter. For 175 observations, the minimum precipitation amount is 0, while the maximum is
116.8. KPSS test is applied to the data set, and it is validated that the time series is stationary.
In Figure 3.10, there is no indication of non-stationarity.

Figure 3.9: Time series of precipitation

Figure 3.10: ACF and PACF of precipitation

Firstly, Holt-Winters is applied to the precipitation dataset as it detects the impact of season-
ality and trend. Since default smoothing level, trend, and seasonality parameters are not give
reliable results; hyperparametric optimization is applied to the dataset. According to the re-
sults of the optimization best mean absolute error value is equal to 19.79 with the 0.1, 0.5, 0.1
best alpha, best beta and best gamma values, respectively. Then, the final Triple Exponential
Smoothing model is conducted with the best parameters. The forecast results are shown in
Figure A in Appendix. The predictions, test set values and model results are shown in the
Figure 3.11 and in the Appendix part. Also, the JB test is applied to the residuals obtained
from precipitation set. The results show that the errors are not normally distributed.

Secondly, candidate models are identified using the ACF, PACF, and software packages so that
the ARIMA model’s parameters are determined. As a result, ARIMA(1,0,1), SARIMA(0,0,1)
(0,1,1)[12], SARIMA(0,0,0)(0,1,1)[12], SARIMA(1,1,1)(1,1,1)[12], SARIMA(0,1,1)(0,1,1)
[12] models are selected as candidate models.

The parameters of SARIMA(0,1,1)(0,1,1)[12] model are significant. The model has 16.5%
R2 value with 1177.009 AIC value. The parameters of SARIMA(0,0,0)(0,1,1)[12] are also
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Figure 3.11: Triple exponential smoothing

Table 3.11: Triple exponential smoothing model results
Dependent Variable Precipitation No. of Observations 140
Model Exponential Smoothing SSE 88267.98
Optimized True AIC 923.601
Trend Additive BIC 970.437
Seasonal Additive AICc 929.349
Seasonal Periods 12
Box-Cox False
Box-Cox Coefficient None

significant. It has the 17.5% R2 value with 1176.407 AIC value. On the other hand, ARIMA
(1,0,1), SARIMA(0,0,1)(0,1,1)[12] and SARIMA(1,1,1)(1,1,1)[12], we see that θ1 and Φ1

parameter are insignificant so these models cannot be candidate models.

Among these models, ARIMA(0,0,0)(0,1,1)[12] is selected as best model because its AIC
value is lower than the AIC value of SARIMA(0,1,1)(0,1,1)[12]. The details of the candidate
models are shown in the Appendix part.

Since ARIMA(0,0,0)(0,1,1)[12] has the lowest AIC value, this model is chosen as the best
model across the alternative SARIMA models. Summary statistics and the diagnostic checks
are shown in Table 4.13 and in Figure 3.13. Both plots and summary statistics show that the
fitted values are not normally distributed, and the model is autocorrelated. Formally, the JB
test is applied to the residuals of the SARIMA model, and the null hypothesis is rejected with
p = 0.01.
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Figure 3.12: SARIMA model

Table 3.12: Model output of SARIMA(0,0,0)(0,1,1)[12]

Coefficients Standart Error z p-value
Const 0.998855 0.634506 1.574 0.1154
Θ1 −0.869266 0.119568 −7.270 0.0000

Mean dependent var 1.484127 S.D. dependent var 32.09498
Mean of innovations 0.776751 S.D. of innovations 23.57986
R2 0.175042 Adjusted R2 0.175042
Log-likelihood −585.2034 Akaike criterion 1176.407
Schwarz criterion 1184.916 Hannan–Quinn 1179.864

(a) Time series of residuals

(b) Histogram of residuals

(c) QQ plot

(d) ACF of residuals

Figure 3.13: Diagnostic checks of SARIMA(0,0,0)(0,1,1)[12]
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Ultimately, we can say that all candidate models’ residuals are not normally distributed. But
AIC value of Triple Exponential Smoothing is the lowest. Also, we see that the mean absolute
error value (19.89) of the candidate SARIMA model is greater than the value of the TES
model (19.80), so the residuals obtained from Holt-Winters are used for the copula analyses.

3.5 Wheat Prices

In this part, monthly wheat prices are modeled and forecasted. This section has two parts.
In the first part, time series analyses are applied for the wheat prices, which are taken from
Konya Mercantile Exchange’s website. The second part involves the analysis of adjusted
prices against inflation.

The data set covers 2007-2021 and represents monthly wheat prices per ton in Turkish Lira for
Konya. The time series plots and ACF-PACF functions of spot wheat prices are also shown
to indicate the market’s price movement.

Spot wheat prices are highly sensitive to inflation. As shown in Figure 3.14a, it has an upward
trend. On the other hand, the second time series in Figure 3.14b shows the adjusted prices
against inflation. The change in Consumer Price Index data set is obtained from the Central
Bank of Türkiye’s website, and the prices are adjusted for the inflation rate. While the gradual
increase in prices is determined in 3.14a, prominent fluctuations exist until September 2021.
Descriptive statistics of spot wheat prices and adjusted wheat prices in Table 3.1 show that
after adjusting prices against inflation, the mean and median of wheat prices get closer, and the
standard deviation decreases. Also, after the adjustment, the coefficient of variation lowers,
which means there is a lower level of dispersion around the mean.

(a) Time series of wheat prices (TL) (b) Adjusted wheat prices

Figure 3.14: Time series

ACF plots for both spot price and adjusted price show slow decay which is the indication of
non-stationarity in the figures 3.15 and 3.16.
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Figure 3.15: ACF and PACF of wheat prices

Figure 3.16: ACF and PACF of adjusted wheat Prices

It is revealed that non-stationary data sets have a unit root problem. The KPSS test is applied
to test stationarity. The result shows that null hypothesis is rejected with a p-value of 0.01, so
the prices have a stochastic trend because of the unit root problem.

We take the first differences of the data set to eliminate the trend effect. Figure 3.17a shows
the differenced spot prices of wheat, while Figure 3.17b demonstrates the differences of the
adjusted prices against inflation. Then KPSS test is applied again for two time series. Ac-
cording to the results of the KPSS test, differenced spot prices has still unit root problem. On
the other hand, the results of the KPSS test indicate that the null hypothesis is not rejected so
adjusted prices become stationary.

(a) Differenced wheat prices (b) Differenced adjusted wheat prices

Figure 3.17: Wheat prices

By the help of ACF and PACF plots of the differenced dataset, ARIMA(2,1,2) can be sug-
gested as a candidate model.

The alternative model is found with the Box-Cox transformation. In order to stabilize the
variance of non-stationary time series, the variance transformation is applied to the dataset.
The type of transformation is determined with the lambda value. We use the BOXCOX()
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Figure 3.18: ACF and PACF plots of differenced adjusted wheat prices

function in PYTHON to find an optimal λ for Box-Cox transformation.

For the weighted average wheat price, the dataset lambda value is equal to −2.38. The new
data set consists of transformed prices for λ.

Figure 3.19: Time Series transformed adjusted wheat price

Figure 3.20: ACF and PACF of transformed adjusted wheat price

KPSS test is applied transformed dataset shows that the new data set is still non-stationary.
Also, there is no indication of seasonality since the ACF plot do not follow seasonal pattern.
As it is seen from the Table 3.20, ACF function has the decay as the number of lag increases.
This is the indication of non-stationarity in the dataset. Thus, the first difference is retaken.
After the differencing, the new data set became stationary. By looking the ACF and PACF
plots in the Figure 3.21, ARIMA(1,1,1) model can be suggested.

Also, ARIMA(2,1,2)(2,0,0) model is suggested by AUTO.ARIMA() function in RSTUDIO. Fi-
nally, ARIMA(2,1,2), ARIMA(1,1,1) and SARIMA(2,1,2)(2,0,0) are suggested as candidate
models.
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Figure 3.21: ACF and PACF of differenced transformed adjusted wheat price

Table 3.13 shows that the parameter of ARIMA(1,1,1) is insignificant. Thus, this model
cannot be one of the selected models.

Table 3.13: Model output for ARIMA(1,1,1) for adjusted wheat prices
Coefficients Standart Error z p-value

ϕ1 −0.108975 0.328109 −0.3321 0.7398
θ1 0.252479 0.311714 0.8100 0.4180

Mean dependent var −0.001682 S.D. dependent var 0.070182
Mean of innovations −0.001640 S.D. of innovations 0.069254
R2 0.768319 Adjusted R2 0.766603
Log-likelihood 171.3816 Akaike criterion −336.7633
Schwarz criterion −328.0034 Hannan–Quinn −333.2035

According to the results of ARIMA(2,1,2) model, the parameters are significant, so this model
whose results are shown in Table 3.14 is selected as one of the candidate models.

Table 3.14: Model output for ARIMA(2,1,2) for adjusted wheat prices
Coefficients Standart Error z p-value

ϕ1 0.522612 0.362034 1.444 0.1489
ϕ2 −0.606802 0.241240 −2.515 0.0119
θ1 −0.388903 0.401146 −0.9695 0.3323
θ2 0.451238 0.273916 1.647 0.0995

Mean dependent var −0.001682 S.D. dependent var 0.070182
Mean of innovations −0.001706 S.D. of innovations 0.068290
R2 0.770740 Adjusted R2 0.765569
Log-likelihood 173.2586 Akaike criterion −336.5171
Schwarz criterion −321.9172 Hannan–Quinn −330.5841

On the other hand, SARIMA(2,1,2)(2,0,0) model has the significant parameters with 79% of
R2 value.
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Table 3.15: Model output of SARIMA(2,1,2)(2,0,0) )
Coefficient Standart Error z p-value

ϕ1 0.399343 0.0321787 12.41 0.0000
ϕ2 −0.977285 0.0244760 −39.93 0.0000
Φ1 0.143734 0.0904944 1.588 0.1122
Φ2 0.204892 0.100506 2.039 0.0415
θ1 −0.342459 0.0385662 −8.880 0.0000
θ2 1.00000 0.0486651 20.55 0.0000

Mean dependent var −0.001682 S.D. dependent var 0.070182
Mean of innovations −0.002028 S.D. of innovations 0.064640
R2 0.793836 Adjusted R2 0.785967
Log-likelihood 177.9357 Akaike criterion −341.8714
Schwarz criterion −321.4315 Hannan–Quinn −333.5652

When the model results are compared, SARIMA(2,1,2)(2,0,0) has the lowest AIC value with
the highest R2 value. Also, Figure 3.22 shows there is no relationship between residuals’
current value and its past values. Also we see that standard residuals are white noise. Figure
3.23 shows the forecasts and actuals of test set between 2019 and 2021. The forecast results
show that in the summer season, adjusted prices decrease.

The forecast evaluation statistics for SARIMA(2,1,2)(2,0,0) are shown in Table 3.16. The
model has the 3.25% MAPE value. The residuals derived from this model are used in the next
Chapter for the copula analyses. Test values, predictions, and standard errors are shown in
Appendix A.10.

Table 3.16: Forecast evaluation statistics
Mean Error 0.0274
Root Mean Squared Error 0.1051
Mean Absolute Error 0.0713
Mean Percentage Error 1.1989
Mean Absolute Percentage Error (MAPE) 3.2511
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Figure 3.22: Diagnostic check of SARIMA(2,1,2)(2,0,0)

Figure 3.23: Actual and forecasting adjusted wheat prices (Static)
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CHAPTER 4

COPULA

In this Chapter, copula is used to model interdependence between the probability distribution
of temperature, rainfall, humidity, and adjusted wheat prices, whose models are determined
as ARIMA (1,0,0)(2,0,0)[12], ARIMA (0,1,1)(0,1,1)[12], Triple Exponential Smoothing and
ARIMA(2,1,2)(2,0,0) [12] for the prescribed variables respectively. The prescribed variables
are predicted for the test set, then the residuals in the test sets of each model are obtained for
further analyses.

The analyses are done using KDECOPULA and VINECOPULA libraries in RSTUDIO. With the
help of this library, Frank, Gumbel, Clayton, and student t-copulas can be applied to data sets,
and densities and random sets can be generated.

Residuals from suggested ARIMA and TES models are obtained, and then the JB test is
applied to understand whether the datasets are normally distributed or not. According to the
results, which are shown in Figure 4.1, all residuals are normally distributed except residuals
of the precipitation dataset.
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(d) Residuals of adjusted wheat price

Figure 4.1: Histogram of residuals
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The results of the KPSS test indicate that the residuals are stationary because the p-values are
greater than 0.05. The stationary time series are shown in Figure 4.2 at which the movements
of residuals, which are the differences between actual and fitted values for climate components
and adjusted wheat prices, can be followed visually. The plots show that the values fluctuate
around zero.
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Figure 4.2: Time series plot of residuals

The first step of the copula part is to measure the correlation between temperature, precipi-
tation, relative humidity, and adjusted wheat prices. First, Pearson, Spearman, and Kendall
coefficient values are found, and correlation matrices are obtained. Pearson correlation matrix
in the Figure 4.3 shows that correlation is the largest between the residuals of temperature and
relative humidity, even though it is less than 0.80. There is a moderate negative correlation
between temperature and relative humidity residuals. Also, there is a moderate positive cor-
relation between relative humidity and precipitation residuals. Furthermore, the correlation
between the residuals of precipitation and relative prices is weak.

A correlation coefficient of normal random variables is dependent on the marginal distribu-
tions. Even though perfect dependence is observed for two normal variates, the correlation
coefficient can have values lower than 1. As mentioned in the methodology, the linear correla-
tion coefficient gives us the correct measure if and only if these variables are jointly elliptically
distributed. Moreover, the definition of the linear correlation coefficient is valid for pairs of
variables with finite variance. Thus, the means of copula is used to distinguish the marginal
distributions from the dependence structure between the random variables.

In order to make the analyses with copula, the following steps are applied:

i. Pseudo-observations which create normalize ranked data is obtained through element-
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wise transformation that is applied to residual variables.

ii. Copula model, which is the joint density function of the transformed variables are pre-
dicted by using the matrix of pseudo-uniform variables.

iii. Generation of data sets for the pseudo-uniformly distributed variables for the relative
humidity and wheat prices

iv. Adjusted wheat prices are simulated.

v. The performance of ARIMA model and copula model is compared.

Figure 4.3: Pairs panel and copula structures of variables

For the copula analyses, parameters of the time series of climate components are estimated,
and the interdependence relation between the climate components is found. The parameters
and best models are shown in the previous chapter, and the residuals are obtained from these
models. As seen in the Figure 4.2, residuals are stationary.

Then, the pseudo-uniform variables of the residuals for temperature, relative humidity, and
precipitation are obtained by using the pobs function of Vine copula package of RSTUDIO. In
the next block of the statements, parameters for various families are estimated, and the best
family for each pair is selected with RVINESTRUCTURESELECT function.

As a result, the C-Vine copula is selected as the best copula family. The results of RVINE-
STRUCTURESELECT function are shown in Figure 4.4. Results in Figure 4.4 demonstrate that
Survival BB7 and Survival Gumbel are the most suitable copulas, which model dependence
structure for the pairs for relative humidity-temperature and relative humidity-precipitation,
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respectively. The upper tail dependence coefficient of a copula means the the lower tail de-
pendence of its survival [21]. Therefore, we can say that the survival BB7 copula (rotated
180 degrees), i.e, survival Clayton-Joe copula, enables us to model the dependence in both
the upper and the lower tail. Also, Survival Gumbel copula is useful while modeling lower
tail dependence. On the other hand, Joe (Survival Joe) copula is useful to model the upper
(lower) tails.

Figure 4.4: Copula family for climate components.

There are three trees for three variables constructed. These are the residuals of temperature,
rainfall, and relative humidity. The graphical representation of the classification, called vine,
is shown in the Figure 4.5. The vines are represented with k(k − 1)/2 pair-copulas with
k − 1 trees, where k represents the number of variables. Since we have three variables for
the copula analyses, three pair copulas and two trees are shown in the Figure 4.5. In Figure
4.4, the residuals of temperature, precipitation and relative humidity are represented with
numbers 1,2, and 3, respectively. Figure 4.5 demonstrates that Survival BB07 copula, is used
to model the dependence structure for temperature and relative humidity, and survival Gumbel
copula is used to model relative humidity and precipitation. Then, conditioned on residuals
of relative humidity, residuals of temperature and precipitation are modeled with survival Joe
in the Figure 4.6.

(a) First tree (b) Second tree

Figure 4.5: Copula trees

Residuals of relative humidity are at the core of the dependence modeling between the residu-
als of climate components. For this reason, we take the residuals of relative humidity as a core
component while modeling the dependency. Instead of adding these three variables into the
copula analyses, we can use only the residuals of relative humidity to improve wheat prices’
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Figure 4.6: Copula climate contour tree

predictions.

To find the best bivariate copula family function, BICOPSELECT() is used in RSTUDIO. This
function gives us the best copula family with its corresponding parameters obtained by maxi-
mum likelihood estimation. The results show that the dependence relation between the resid-
uals of the relative humidity and adjusted wheat prices are explained better with t-copula.
Figure 4.7 shows that the best rho parameter is 0.47 with with df 2.82.

Figure 4.7: Bivariate copula selection for relative humidity and adjusted Wheat Price

Therefore, to analyze the dependence relation between residuals of relative humidity and
wheat price, t-copula is used. Firstly, a random sample of 40 observations is generated based
on the size of the test set. The correlation of the random sample is shown in Figure 4.1, there
is a weak negative correlation between the actual values from student t-copula.

Table 4.1: Spearman correlation matrix for residuals
Relative Humidity Adjusted Price

Relative Humidity 1.00 -0.52
Adjusted Price -0.52 1.00

We observe a low correlation between the observations coming from t-copula. We can validate
it by looking at the random samples from the t-copula, which indicates that the residuals are
distributed independently.

After we sample from the t-copula, we transform the margins individually by using MVDC()
function RSTUDIO which enables us to generate random values for a multivariate distribution
via copula.
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Figure 4.8: The random samples from the copula

Figure 4.9: Visual comparison of residuals residuals and simulated values

We generate 100 samples for residuals, each has the size of the test set with t-copula, but
as seen in Figure 4.10, especially extreme points could not be fully captured, even though
the selected copula function is the best fitting one. The simulated observations are shown in
Figure A.10.

Figure 4.10: Time series of adjusted wheat prices with different models

Finally, we estimate the adjusted price from the residuals simulated by the t-copula. The time
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series of the adjusted wheat prices are shown in Figure 4.10.

The mean absolute error (MAE) of the residuals simulated with t-copula is found as 0.04,
while the MAE value from the ARIMA(2,1,2)(2,0,0) is equal to 0.07. Since the sum of
absolute residuals with the same sample size is lower while modeling with t-copula, it is
concluded that the copula approach gives more accurate results.
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CHAPTER 5

CONCLUSION

The future of agricultural products has become an increasingly considered topic in the world
as well as in Türkiye. Wars, economic crises, and epidemics have fueled these discussions. In
addition to being a food substance that feeds living things, agricultural commodities have also
been contracted in financial markets and subjected to transactions. For this reason, the factors
mentioned above affect all areas of life. In this study, the dependence relationship between
climatic parameters and agricultural products in the financial market is modeled together.

Within the scope of this study, Konya is selected as the representative city for Türkiye, and
the interdependence relationships between temperature, relative humidity, rainfall, and spot
adjusted wheat prices are modeled with the copula approach.

This thesis is one of the first ones in the literature that estimates the local adjusted spot wheat
prices under the impact of climate components in Türkiye. Each region has its own unique
climatic conditions. Therefore, when a price estimation study is made for the whole Türkiye,
the effect of local climatic conditions would be ignored. Through this study, we see how local
climatic factors shape the local spot price.

First of all, climatic factors are modeled using time series or exponential smoothing meth-
ods, and the best models are selected by estimating these models. Then, time series anal-
ysis is also conducted for spot-adjusted wheat prices, and it is found that the best model is
SARIMA(2,1,2)(2,0,0). The model results demonstrate that the forecasts are close to reality
with error without the impact of climate components. To minimize the errors, we have used
the copula approach. In the next step, instead of modeling all climate components and spot
prices together, we aim to find the residuals of which climate component explains the residu-
als of others under the dependence structure. Because the results imply that relative humidity
is the star variable among the other climate components, we modeled the residuals of the spot
wheat prices and the relative humidity with t-copula. This model has been used to predict the
spot-adjusted wheat prices with minimized errors. The obtained results show that, with the
copula analyses, the predictions are much closer to the actual values, with much lower error
rates.

The product whose price is estimated in this thesis is a financial asset. Therefore, the results
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show that the prices of financial assets whose underlying assets are agricultural products give
better results when the prices of products are modeled with the copula approach. These results
could be beneficial for the experts who are interested in investing in these instruments and the
policy-makers.

However, in this work, because the dataset size does not cover the entire 2021, we could
not consider the impact of drought observed, especially in the 2021 harvest season, in price
estimation. Thus, we could not see if the drought had a significant impact on pricing.

Last but not least, in further studies, it can be fruitful to focus on premium estimation for
agricultural insurance contracts by using the commodity prices, which are influenced by the
climate component. Furthermore, the impact of climatic parameters can be modeled daily
for several cities for Türkiye and wider date intervals. Thanks to it, the result of the recent
drought on the spot wheat pricing can be considered.
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APPENDIX A

DETAILED OUTCOMES OF TIME SERIES MODELS AND
COPULA

A.1 Summaries of Alternative Models Climate Components

Table A.1: ARIMA(1,0,0)(2,0,0)[12] model for temperature
Coefficient Standart Error z p-value

const 1.91775 0.340836 5.627 0.0000
ϕ1 0.352448 0.0774340 4.552 0.0000
Φ1 −0.365462 0.0843782 −4.331 0.0000
Φ2 −0.188427 0.0884497 −2.130 0.0331
dm1 −1.69177 0.384673 −4.398 0.0000
dm2 0.528199 0.454136 1.163 0.2448
dm3 5.01402 0.473850 10.58 0.0000
dm4 9.76344 0.479742 20.35 0.0000
dm5 14.2818 0.481996 29.63 0.0000
dm6 19.0979 0.482370 39.59 0.0000
dm7 22.9979 0.481737 47.74 0.0000
dm8 22.7846 0.479443 47.52 0.0000
dm9 18.2434 0.472652 38.60 0.0000
dm10 11.3824 0.452304 25.17 0.0000
dm11 4.97393 0.389214 12.78 0.0000

Mean dependent var 12.48000 S.D. dependent var 8.821711
Mean of innovations 0.001800 S.D. of innovations 1.655336
R2 0.964556 Adjusted R2 0.961039
Log-likelihood −279.9228 Akaike criterion 591.8457
Schwarz criterion 639.4734 Hannan–Quinn 611.1984
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Table A.2: ARIMA(1,0,1)(1,1,1)[12] model for temperature

Coefficient Standart Error z p-value
const 0.00326722 0.0624555 0.05231 0.9583
ϕ1 0.418747 0.228014 1.836 0.0663
Φ1 -0.232467 0.102696 -2.264 0.0236
θ1 −0.0740056 0.250220 −0.2958 0.7674
Θ1 −0.990525 1.92537 −0.5145 0.6069

Mean dependent var 0.100000 S.D. dependent var 3.205595
Mean of innovations −0.016888 S.D. of innovations 1.819083
R2 0.956745 Adjusted R2 0.955681
Log-likelihood −270.9447 Akaike criterion 553.8894
Schwarz criterion 570.9071 Hannan–Quinn 560.8031

Table A.3: ARIMA(1,0,1)(1,1,1)[12] model for relative humidity
Coefficient Standart Error z p-value

const −1.05320 0.464444 −2.268 0.0302
ϕ1 0.820629 0.101540 8.082 0.0000
Φ1 −0.106636 0.117731 −0.9058 0.3651
θ1 −0.596685 0.133436 −4.472 0.0000
Θ1 −0.708780 0.0998111 −7.101 0.0000

Mean dependent var −0.871429 S.D. dependent var 9.652862
Mean of innovations −0.088862 S.D. of innovations 6.720879
R2 0.8587 Adjusted R2 0.852691
Log-likelihood −424.0019 Akaike criterion 860.0037
Schwarz criterion 877.0214 Hannan–Quinn 866.9175

Table A.4: ARIMA(1,0,1)(1,0,1)[12] model for relative humidity
Coefficient Standart Error z p-value

const 60.6095 10.2293 5.925 0.0000
ϕ1 0.804112 0.0963681 8.344 0.0000
Φ1 0.990238 0.00727383 136.1 0.0000
θ1 −0.479535 0.146654 −3.270 0.0011
Θ1 −0.726436 0.0774553 −9.379 0.0000

Mean dependent var 60.17029 S.D. dependent var 17.76185
Mean of innovations −0.956588 S.D. of innovations 6.883648
R2 0.851965 Adjusted R2 0.848651
Log-likelihood −475.1163 Akaike criterion 962.2327
Schwarz criterion 979.7962 Hannan–Quinn 969.3701
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Table A.5: Summary statistics of ARIMA(1,0,1) for precipitation

Coefficient Standart Error z p-value
const 30.1646 2.38665 12.64 0.0000
ϕ1 −0.0217495 0.483656 −0.04497 0.9641
θ1 0.136840 0.473874 0.2888 0.7728

Mean dependent var 30.14203 S.D. dependent var 25.47352
Mean of innovations 0.004787 S.D. of innovations 25.21437
R2 0.013092 Adjusted R2 0.005836
Log-likelihood −641.2034 Akaike criterion 1290.407
Schwarz criterion 1302.116 Hannan–Quinn 1295.165

Table A.6: Summary statistics of SARIMA(0,1,1)(0,1,1)[12] for precipitation
Coefficient Standart Error z p-value

const −0.0218715 0.0330799 −0.6612 0.5085
θ1 −1.00000 0.0558671 −17.90 0.0000
Θ1 −0.849916 0.110514 −7.691 0.0000

Mean dependent var 0.443200 S.D. dependent var 44.39604
Mean of innovations −1.360460 S.D. of innovations 23.76052
R2 0.165685 Adjusted R2 0.158902
Log-likelihood −584.5045 Akaike criterion 1177.009
Schwarz criterion 1188.322 Hannan–Quinn 1181.605

Table A.7: Summary statistics of SARIMA(1,1,1)(1,1,1)[12] for precipitation
Coefficients Standart Error z p-value

const −0.0218139 0.0309329 −0.7052 0.4807
ϕ1 −0.0290206 0.0925122 −0.3137 0.7538
Φ1 −0.0776133 0.119227 −0.6510 0.5151
θ1 −0.999999 0.0612930 −16.32 0.0000
Θ1 −0.806618 0.126990 −6.352 0.0000

Mean dependent var 0.443200 S.D. dependent var 44.39604
Mean of innovations −1.476286 S.D. of innovations 23.80595
R2 0.164577 Adjusted R2 0.143864
Log-likelihood −584.2549 Akaike criterion 1180.510
Schwarz criterion 1197.480 Hannan–Quinn 1187.404
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Table A.8: Summary statistics of SARIMA(0,0,1)(0,1,1)[12] for precipitation

Coefficients Standart Error z p-value
const 0.992575 0.600528 1.653 0.0984
θ1 −0.0390902 0.0974058 −0.4013 0.6882
Θ1 −0.880666 0.131438 −6.700 0.0000

Mean dependent var 1.484127 S.D. dependent var 32.09498
Mean of innovations 0.817707 S.D. of innovations 23.48579
R2 0.181346 Adjusted R2 0.174743
Log-likelihood −585.1235 Akaike criterion 1178.247
Schwarz criterion 1189.592 Hannan–Quinn 1182.856
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A.2 Residuals of Temperature, Relative Humidity, Precipitation and Adjusted
Wheat Prices

Table A.9: Residuals of temperature, relative humidity, precipitation and adjusted wheat
prices

Date Temperature Relative Humidity Precipitation Adjusted Wheat Prices
1.07.2018 -0.30 4.51 4.43 0.05
1.08.2018 0.20 0.49 -6.97 0.16
1.09.2018 -1.00 0.88 -13.65 0.24
1.10.2018 -0.20 2.70 12.06 -0.10
1.11.2018 -0.40 -3.11 -13.59 -0.03
1.12.2018 -0.40 -0.05 28.36 0.10
1.01.2019 0.50 1.23 17.45 0.02
1.02.2019 -2.90 -1.85 -5.54 0.03
1.03.2019 0.10 -3.01 -18.83 0.03
1.04.2019 1.40 9.01 -0.66 -0.02
1.05.2019 -2.40 -8.32 -40.55 0.06
1.06.2019 0.10 4.44 -4.15 -0.15
1.07.2019 2.20 6.01 5.38 -0.10
1.08.2019 0.70 6.56 -6.43 0.01
1.09.2019 -0.30 -0.97 -9.11 -0.02
1.10.2019 -2.90 -8.85 -27.00 0.08
1.11.2019 -0.70 1.36 1.55 0.01
1.12.2019 -0.80 2.95 70.90 0.05
1.01.2020 0.50 -5.73 -34.41 0.06
1.02.2020 -1.70 -1.78 -11.59 -0.02
1.03.2020 -0.10 4.84 -35.88 0.00
1.04.2020 1.60 2.34 -24.72 -0.03
1.05.2020 -1.20 -0.62 -42.01 0.01
1.06.2020 0.70 -0.35 -33.41 0.00
1.07.2020 0.20 -0.43 -4.68 0.06
1.08.2020 1.10 -4.37 -9.29 0.05
1.09.2020 -2.80 1.99 -19.36 0.00
1.10.2020 -4.40 -11.04 -34.25 0.27
1.11.2020 1.80 0.75 -25.10 0.04
1.12.2020 -3.40 -1.92 -45.16 -0.14
1.01.2021 -0.90 -3.24 -21.27 0.00
1.02.2021 -0.60 -5.54 -19.45 0.05
1.03.2021 2.30 5.91 23.66 -0.12
1.04.2021 -0.30 0.88 0.83 -0.09
1.05.2021 -3.60 -10.97 -46.47 0.07
1.06.2021 3.30 11.97 10.53 0.35
1.07.2021 -0.10 6.69 -3.74 0.03
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A.3 Simulation results from t-copula

Table A.10: Simulations of t-copula
Simulatations of Simulations of

Residual of Relative Humidity Residual of Adjusted Wheat Price
-8.83 0.03
1.13 0.02
2.02 0.00
-1.15 0.02
-1.79 -0.01
-3.39 0.00
-4.71 0.02
-0.90 -0.03
1.31 -0.09
-0.27 -0.06
9.94 -0.07
4.55 0.01
5.01 -0.08
-8.02 0.09
-5.40 0.17
2.79 0.13
2.56 0.03
-5.49 -0.04
-5.93 0.12
3.62 -0.04
2.24 0.01
-5.25 0.11
1.13 -0.08
9.07 -0.10
2.90 -0.05
-3.68 -0.04
3.53 -0.06
-2.69 -0.10
1.69 0.10
3.57 0.00
2.69 0.10
1.06 0.02
15.11 -0.22
-10.25 0.08
-4.62 0.00
-3.80 0.11
1.34 0.07
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