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Prof. Dr. İlkay Ulusoy
Supervisor, Electrical and Electronics Eng., METU

Dr. Dylan Richard Muir
Co-supervisor, SynSense AG

Examining Committee Members:

Prof. Dr. Uğur Halıcı
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ABSTRACT

DYNAPSIM: A FAST, OPTIMIZABLE, AND MISMATCH AWARE
MIXED-SIGNAL NEUROMORPHIC CHIP SIMULATOR

Çakal, Uğurcan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

Co-Supervisor: Dr. Dylan Richard Muir

August 2022, 132 pages

Mixed-signal neuromorphic processors utilize analog signal processing and digital

asynchronous communication, inspired by biological nervous systems’ operation prin-

ciples. Although these architectures provide an enormous power efficiency advantage

over existing neural network inference systems, the difficulties in the configuration

are one of the most fundamental obstacles in front of developing applications. Lim-

ited controllability over the analog hardware parameters, unintended variations inher-

ent to a device’s hardware makeup, and linearly inseparable bias space makes this

hard to deliver an application that works as intended. It usually requires months of

manual calibration effort of highly qualified researchers. Filling the gap, this study

presents a software toolchain that allows an offline optimization of a hardware con-

figuration that reflects a spiking neural network implementation. The results show

how an abstract spiking neural network accurately and reliably translates into VLSI

neuron and synapse configuration in a noisy environment. Proposed methods can be

tailored to any mixed-signal neuromorphic processor architecture.
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ÖZ

DYNAPSIM: HIZLI, OPTİMİZE EDİLEBİLİR VE UYUŞMAZLIK
DUYARLI KARMA SİNYALLİ NÖROMORFİK ÇİP SİMÜLATÖRÜ

Çakal, Uğurcan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Ortak Tez Yöneticisi: Dr. Dylan Richard Muir

Ağustos 2022 , 132 sayfa

Karma sinyalli nöromorfik işlemciler, biyolojik sinir sistemlerinin çalışma prensiple-

rinden esinlenerek analog sinyal işleme ve dijital asenkron iletişimi kullanır. Bu mi-

mariler, mevcut sinir ağı çıkarım sistemlerine göre muazzam bir güç verimliliği avan-

tajı sağlasa da, yapılandırma zorlukları uygulama geliştirmenin önündeki en temel

engellerden biridir. Analog donanım parametreleri üzerinde sınırlı kontrol imkanı, ci-

hazın donanım yapısına özgü istenmeyen varyasyonlar ve doğrusal olarak ayrılamaz

parametre uzayı, amaçlandığı gibi çalışan bir uygulama sunmayı zorlaştırır. Bu du-

rum genellikle yüksek nitelikli araştırmacıların aylarca elle kalibrasyon çabasını ge-

rektirir. Boşluğu dolduran bu çalışma, uyarımlı bir sinir ağı uygulamasını yansıtan bir

donanım konfigürasyonunun çevrimdışı optimizasyonuna izin veren bir yazılım araç

zinciri sunmaktadır. Sonuçlar, soyut bir uyarımlı sinir ağının, gürültülü bir ortamda

tümdevre nöron ve sinaps konfigürasyonuna nasıl doğru ve güvenilir bir şekilde çev-

rildiğini göstermektedir. Önerilen yöntemler, herhangi bir karma sinyalli nöromorfik

işlemci mimarisine uyarlanabilir.
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CHAPTER 1

BACKGROUND

Despite having more than eighty years of history, the interest in artificial neural net-

works (ANN) has snowballed in the last decade. Especially GPU utilization has made

parameter optimization much more feasible, leading to one of the most significant

leaps in the field. Following this, deep learning algorithms used in ANN parameter

optimization have overtaken the state of the art in various engineering tasks. How-

ever, growing attention neither provided the utilization of the brain’s power efficiency

nor solved the mystery of neural computation. It evolved into a race to beat the perfor-

mance of another model by consuming more and more power. Consequently, the fact

that the increasing power demand is not a good sign for the planet earth has motivated

many researchers to look for alternative solutions.

One of the emerging approaches which address excessive power usage is to change

the structure of neural networks and the underlying hardware together, getting in-

spiration from biology. Namely, neuromorphic computing is one of the most serious

solutions for next-generation green, secure, and efficient AI inference. Neuromorphic

computing -or biologically inspired computing in a broader sense- not only reduces

power consumption dramatically but also endows the temporal sensing capabilities

in artificial neurons. Schuman presented a detailed review in 2017 comprising the

history and the future of neuromorphic [82].

Carver Mead coined the term "neuromorphic" in late eighties [61] mainly referring to

analog sub-threshold circuits mimicking brain dynamics. Nonetheless, contemporary

practices are not limited to analog sub-threshold computational units; regular above-

threshold analog circuits, and even digital simplifications maintain a vivid place in

the field. The subject of the thesis, Dynap-SE, is one of the few processors which
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closely chase the neuromorphic computing paradigm that Mead first coined. Dynap-

SE embodies analog sub-threshold circuits to emulate neuron [54] and synapse [5]

behavior and utilizes a digital routing mechanism [65] to transmit events between

neurons. This mechanism makes the processor a great workspace to run biologically

plausible neural networks. However, Dynap-SE is not a general-purpose processor,

and configuring a network such that it executes the operations that a human user

request is not a straightforward task.

For example, a general-purpose processor, a Central Processing Unit (CPU), has an

instruction set that allows users to execute a set of operations sequentially. Dynap-

SE does not operate like a general-purpose computer, and running any algorithm is

not as straightforward as executing an algorithm with a CPU. In principle, Dynap-SE

is a custom configurable spiking neural network emulator. Configuring a network

on Dynap-SE means setting several bias currents to change a group of neurons’ pa-

rameters like time constants, synaptic weight strengths, and refractory periods, then

connecting the neurons to each other. The structure of the network exposes the func-

tion.

The naive approach to finding the right set of hardware parameters is more or less

"try&fail." One should have a deep understanding of the task, the number of neurons

should be small, and the person needs to find a sweet spot so that the network ex-

presses the expected behavior by tweaking the parameters. This thesis aims to bring

a missing simulation functionality to the neuromorphic processor family, Dynap-SE,

making it usable for a broader audience. Having a simulator makes a way to imple-

ment better parameter search approaches than brute force human-oriented search.

1.1 Motivation

Understanding and explaining how the brain computes mathematically has attracted

many people over the last centuries. One of the first computer programmers, Ada

Lovelace, quoted in 1844, "I hope to bequeath to future generations a calculus of the

nervous system [64]. Although she has not been able to bequeath "the calculus of the

nervous system" to us, she has pioneered a way undoubtedly. From then on, people
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put in a great deal of effort to build and exploit the mathematical models of the brain,

and the research has come a long way in nearly 180 years. Inspired by many others,

this study aims to bring the research one tiny step further and contribute to the path

with simulation software support for a family of brain-inspired computers.

1.1.1 Historical Perspective

One of the first computational neuroscientists, Louis Lapique, developed an integrate

and fire (IF) neuron model [52] in 1907, long before neuron dynamics were known

[2]. IF model both led to the development of more biologically plausible models in

time and also proposed a simple solution that is still widely used in many spiking neu-

ral network applications today. In 1943, McCulloh and Pitts came up with a simple

but highly influential neuron model [59]. The idea behind McCulloh&Pitts neuron

model was that weighted inputs of the neurons pass through a threshold function to

produce a digital output. Substituting the threshold function with continuous func-

tions to produce continuous outputs, the successors of the McCulloh&Pitts models

have become the ones running behind the mainstream artificial neural networks ap-

plications today. In 1958, Rosenblatt proposed the perception learning algorithm to

learn a weight matrix for a network given a set of input signals and a set of desired out-

put signals [75]. Even though Rosenblatt has shown that it’s possible to teach a neural

network to behave in a certain way, the big breakthrough came with the backpropa-

gation algorithm [77]. The importance of backpropagation is that it provides a way to

train more powerful, multiple layers of a neural network at the same time. However,

for nearly 30 years, Artificial Neural Networks (ANN) could not outstretch conven-

tional optimization, recognition, or classification methods due to the algorithms’ rela-

tively high computational resource demands. As a result of consistent improvements

in both computer science and ANN research, in 2011, a convolutional neural network

trained using backpropagation on GPUs achieved the first super-human performance

in a traffic sign classification contest [27], [26]. Heretofore, ANNs performed better

every day and attracted growing attention from both academia and industry.

However, growing attention was neither in the direction of utilizing the brain’s com-

putational efficiency nor solving the mystery of neural computation. Although neural
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networks were first invented to explore and exploit the principles of neural computa-

tion, the study has evolved into a race to surpass the performance of another model

on a benchmark dataset over the course of time. "The Benchmark Analysis of Rep-

resentative Deep Neural Network Architectures" study [12] pointed out that there is

a strong tendency to increase the number of parameters to make a network perform

better in a standard benchmark dataset in terms of accuracy. As an example, one of

the largest state-of-the-art artificial neural network models, GPT-3, was introduced

with 175-billion parameters in 2020, requiring several thousands of petaflop/s-days

for training [17]. Eight years earlier, one of the older phenomenal neural networks,

AlexNet [49], which owes to its reputation for outperforming its competitors in "Ima-

geNet Large Scale Visual Recognition Challenge 2012" [79] on error margin by more

than ten percent, was using around 600-million parameters. Before AlexNet showed

that the way to achieve better performance was to train deeper networks, the number

of parameters used was a lot less. This might not be considered a problem if the

incredible parameter increase did not cost a giant amount of electric consumption.

However, increasing the number of parameters costs a lot in terms of power.

1.1.2 Power Demand

In order to put a figure on the power demands of the state-of-the-art neural network

models, the amount of electrical power that GPT-3 burnt in training is roughly esti-

mated using the hints from the paper that GPT-3 is introduced. The GPT-3 reference

paper [17] points out that several thousands of petaflops/s-days are required to train

the GPT-3, using NVIDIA Volta 100 GPUs. The GPU’s datasheet [69] states that the

mixed-precision tensor performance is 125 TFLOPS with 300W maximum power

consumption. Assume that several petaflops/s-days refers to 5000 petaflops/s-days.

Using the number of operations that the network executes in training and the energy

consumed by the hardware, the electricity consumed per hour is estimated as follows.

5000× 1015 × 24

125× 1012
× 300 ≈ 300 MWh

This amount of power, 300 mWh, is comparable to the daily power demand of a rela-
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tively small city. According to the Turkish Statistical Institute’s records, Turkey’s net

power consumption was 261192.78 GWh [42] and the population was 83.61 million

[43] in 2020. So, the daily energy consumption per capita is computed as:

261192.783× 109

365× 83.61× 106
≈ 8.6 kWh

Thus, the population of the city giving up using the electricity to support GPT-3 train-

ing is computed as:

300× 106

8.6× 103
≈ 35, 000

In words, the power consumption of GPT-3 is comparable to the daily electric con-

sumption of a city of 35 thousand people in Turkey. Please note that GPT-3 is a 2020

network, and from then on, there has been a great effort to build "better" networks.

Better referring that better in power efficiency, better in performance, better in infer-

ence, etc. On one side, people are working on reducing the number of computations

by changing the network architectures, training algorithms, or hardware. On another

side, people have been developing deeper networks, increasing the number of oper-

ations, and trying to achieve better results. Given that a 2-year-old network already

costs a lot and there is a tendency to use more and more parameters, it can be inferred

that the networks to be invented would cost a lot more. Assuming that the hardware

is the same and the number of operations per parameter is fixed, what a human brain

size network may cost can be estimated.

A human brain contains around 1014 - 1015 synaptic connections, as stated in one of

the main neuroscience reference books "the Principles of Neural Science" [47]. Thus,

linearly scaling the power consumption of GPT-3 to a brain size of GPT-3 the power

demand is found as:

1015

1.75× 1011
× 300 MWh ≈ 1700 GWh

1700 GWh is a number that is almost equal to 2.5 days of power consumption in

Turkey. In comparison, the human brain does not require that much power to run
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even though it’s capable of doing many complex tasks simultaneously like audio-

visual processing, pattern recognition, context matching, language processing, etc. In

fact, it operates under 20W, the electrical power required to operate a single lightbulb.

GPT-3 is obviously not the only artificial neural network that overuses the planet’s

resources, and training is not the only stage that these power-hungry machines unload

the power plants. These networks run every day to power AI applications executing

face-detection, language translation, navigation, and so on. Therefore, in the next

couple of decades, people should not worry about AI taking over the world but they

should worry about AI will burn the planet.

To conclude, current paradigms and approaches used in machine learning are incred-

ibly power-hungry, and the tendency to increase the number of model parameters

for better performance will worsen the situation. "The Internet of Things Innovation

Landscape Brief" study [44] by International Renewable Energy Agency (IRENA)

has shown that at this pace, the Information and Communications Technology (ICT)

industry is estimated to consume 20% of the world’s electricity by 2025. The hu-

man brain’s low power performance indicates that there should be a better way of

modeling and exploiting the principles of neural computation. The following section

investigates the biological foundations of this vision.

1.2 Biological Foundations

Taking one step back and questioning the way that existing neural network appli-

cations work gave birth to spiking neural networks and neuromorphic computing.

Many people considered these two concentric studies to be vital in getting close to

human-level power efficiency in computation. The motivation was that mimicking

the behavioral dynamics of computational units of the brain would make it possible

to receive the benefits of the brain over conventional computing. Although the pecu-

liarities of biological systems are almost unlimited to get inspired, primarily synapses

and neurons were imitated in hardware as elementary computation units. This part

investigates the biological foundations that guide the silicon imitations.

Biological neurons vary in structure, function, and shape depending on their task and
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location. Zeng and Sane provided an overview of neuron cell-type classification in

2017 [92]. Some neurons have a single output channel and multiple input channels to

form neural networks. Some neurons have a single input and a single output channel

to transmit sensory information. Some neurons have multiple outputs to inhibit the

other neurons’ activities. Considering there are millions of species with a nervous

system, the structures of neurons are not limited to what could be mentioned here. The

physiological classification is beyond the scope of this thesis. However, the important

thing to notice is that the structure of the neuron imposes its function.

On the other hand, modern computers are built upon the idea of abstraction, and ide-

ally, the structure is independent of function. The foundations of modern computers

date back to 1936 when Alan Turing introduced an abstract model for computation in

the article "On Computable Numbers, with an Application to the Entscheidungsprob-

lem" [89], which is later named Turing Machine. A Turing machine is an abstract

machine capable of solving any possible algorithm that could be coded in a certain

way. A Turing machine does not intervene with the algorithm, it just follows the

instructions given in order to compute it, just like today’s CPUs. Accordingly, the

structure of a CPU does not create the function. The structure only constitutes an

infrastructure that actualizes a function.

In a nutshell, the "structure is the function" is a common notion used in brain-inspired

computing paradigms. Interpreting the structure leads the silicon and software imple-

mentations. The following parts analyze the common characteristics of nerves that

significantly affect the computation.

1.2.1 Neuron

The conceptualization of neurons dates back to the 19th century, when a series of

observations of the human nervous system led to the establishment of the famous

"neuron doctrine". According to the neuron doctrine, individual neurons are the ele-

mentary building blocks, and they are signaling elements of the nervous system [47].

Figure 1.1 illustrates a simplified neuron structure.

The neuron body, or soma, is covered with a cell membrane and has a nucleus similar
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Figure 1.1: Structure of a Neuron

to a regular biological cell. Somatic extensions called axons and dendrites shape the

unique characteristics of the neuron. Axons and dendrites build connection channels

between neurons. While dendrites collect signals from external sources, axons con-

vey the signal produced by the neuron to its terminals. Ramifications of axons and

dendrites help connect with other neurons’ somatic extensions. At the places where

axon terminals of a neuron and dendrites of another neuron are close enough to con-

duct, synapses are formed. Information exchange between neurons takes place via

synapses.

1.2.2 Synapse

Charles Sherrington used the term "synapse" in 1897 for the first time and also de-

veloped and advocated its physiological concept [87]. Synapse describes the unique

structure in which neurons build connections among themselves. Figure 1.2 illustrates

a simplified structure.

Information transmission between neurons includes both chemical and electrical sig-
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Figure 1.2: Structure of a Synapse

naling. In both cases, transmission requires two parties: one transmitting side and

one receiving side. In the figure, the pre-synaptic node identifies the transmitter side,

and the post-synaptic node identifies the receiver side. During transmission, the pre-

synaptic edge releases distinctive chemicals called "neurotransmitters". These neu-

rotransmitters bind to selective receptors on the post-synaptic end, causing a release

in ion channels. Depending on the receptor type, positive or negatively charged ions

start flowing through the membrane inwards or outwards.

There are various neurotransmitter-receptor couples controlling the ion current’s di-

rection and charge. While some synapses eject ions from the membrane, some others

inject ions from the extracellular space. As a result, the membrane potential at the

post-synaptic side changes continuously under the control of synaptic connections. If

the cumulative effect of multiple dendrites changes the membrane potential positively,

leading to the potential surpassing the firing threshold, the neuron fires. Neuron firing

means creating an action potential that flows through the axons.

1.2.3 Neuronal Signalling: Action Potential

The action potential is an electrical signal flowing through an axon and causing neuro-

transmitter release at the axon terminals. In this way, the neuron informs its terminals

that it has received enough stimulation, which saturated the membrane potential. Fig-

ure 1.3 demonstrates a typical action potential generation procedure

Fundamentally, the action potential is a local depolarization of the cell membrane,

which can be propagated over long axon lines. In 1952, Hodgkin and Huxley discov-

ered the action potential generation mechanism and delivered a mathematical model
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Figure 1.3: Action Potential Generation

of it [39]. This study brought them the Nobel Prize in Physiology nine years later in

1961, and today it’s still one of the most accurate models of neural computation.

According to the model, if a net influx of positive charges overtakes the net influx of

negative charges, the membrane potential of the neuron increases. This phase is called

depolarization because the membrane’s electrical potential is above the resting state

potential. Increasing membrane potential causes the opening of new ion channels

pushing even more positive ions into the cell, promoting depolarization. Thereby, the

membrane potential increase accelerates until a certain point that it saturates.

The saturation point is the point at which an action potential is generated. At that

moment, the action potential starts racing through the axon, and the membrane starts

expelling positive ions inside out. This phase is called repolarization.

At the repolarization, the membrane potential drops to a level below the resting po-

tential. This voltage level puts the neuron in the refractory period. The refractory

period keeps the neuron from being stimulated again in a short amount of time and
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buys the membrane some time to recover itself. During the refractory period, the

neuron recuperates the ion balance and brings itself back to the resting state.

Both the mainstream artificial neural network implementations and more biologically

plausible approaches utilize principles of neural computation to some degree. While

ANNs do only take the network-level behaviors into account, SNNs consider the time-

dependent cell dynamics in various levels of detail. The following section presents

spiking neural networks and their differences from mainstream approaches.

1.3 Spiking Neural Networks

In 1996, Wolfgang Maas classified the network of spiking neurons as "the third gen-

eration of neural network models" [55]. According to Maas’ categorization, the first

generation is McCulloh&Pits’ threshold neurons producing digital outputs, and the

second generation is the neurons with continuous activation functions producing ana-

log outputs. The spiking neurons, on the other hand, produce digital outputs but

compute time-dependent neuronal dynamics in an analog fashion.

The biological inspiration of first-generation neurons is limited in that neurons get

inputs from the other neurons and produce digital outputs. Without considering the

action potential generation dynamics, the biological neurons’ status are interpreted as

a logical decision. That is, if there is enough stimulus accumulated, the output is 1

representing that the neuron produced an action potential, if there is not, the output

is 0. A weighted sum of the inputs models the dendritic ion integration. Figure 1.4

illustrates that artificial input ingregration operation.

Not only do the first-generation artificial neurons utilize a weighted sum, but all three

generations use the weighted sum operation to deal with the inputs. The operations

succeeding the input integration specify the neurons’ characteristics. McCulloh&Pits’

neurons apply a threshold to the output value and deliver a boolean logical value: True

or False.

Instead of thresholding, the second-generation neurons apply a continuous activation

function to the weighted sum of the inputs and yield a continuous-valued output.
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Figure 1.4: Artificial Neurons’ Input Integration

Among many others, some widely used activation functions are sigmoid, rectified

linear unit(ReLU) [67], and leaky ReLU. Figure 1.5 depicts a subset of common

activation functions.

Figure 1.5: Common Activation Functions of Second Generation Neurons

In the second generation of neurons, the output is not analogous to the firing decision

of the neuron but the firing rate. From a biological point of view, the output value of

the activation function can be regarded as a neuron’s firing rate. This approach takes

the biological imitation a step further and increases the computational capacity of a

neural network. However, this approach does not consider any temporal aspect of bio-

logical computation. The units here are stateless deterministic input-output machines

that would produce the same output given the same input each time, independent of

the previous activity. Moreover, the second generation of neurons prioritize the com-

putational efficiency by conventional means and also the trainability. Therefore, this

approach is highly counterintuitive from a biological perspective.

12



The third generation neurons accommodate some computational components of both

the first and the second generation models and also take the temporal dynamics into

account. First at the input side, neurons process discrete time series in the form of

spike trains. Similar to the previous generations, inputs are integrated via a weighted

sum upon arrival, but this time the integration output is considered as an injection cur-

rent. The activation block usually solves a couple of ordinary differential equations in

time domain, computing membrane dynamics changing upon current injection. Here

the activation output is regarded as the membrane state. Then, a thresholding opera-

tion applies to the membrane state and the neuron produce an event if the activation of

the neuron surpasses a certain level. A diagram explaining a third generation neuron’s

operational principles is given in Figure 1.6.

Figure 1.6: Spiking Neuron Operation

Here, input and output are being digital time-series resembles the first generation neu-

rons. The difference is that spiking neurons compute the time-dependent dynamics

holding internal state variables. In consequence, while the time that the input arrived

does not influence previous generations’ computations, the input timing changes the

computations and affects the output in spiking neural network applications. This

brings more computational power to the networks by making SNNs capable of hold-

ing and representing complex temporal dynamics. With all, SNNs model actual neu-

ral networks in a more biologically plausible way. Table 1.1 summarizes the differ-

ences and similarities between artificial neuron generations.

In order to help the grouping, the stage that measures the magnitude of neuronal ac-
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Table 1.1: Generations of Artificial Neurons

Gen Input Activation Transfer Output

1st x ∈ {0, 1} - 1 if x > Θ y ∈ {0, 1}

2nd x ∈ R f : R → [a, b] - y ∈ [a, b]

3rd
∑

i δ(t− ti)
dy(t)

dt
+ p(t)y(t) = q(t) 1 if y(tj) > Θ

∑
j δ(t− tj)

tivation depending on input strength is named as "activation". Additionally, the stage

that produce a boolean value is named as "transfer". According to this denomination,

the first generation of neurons are missing the first level of projection from the input

integration to membrane activation. The second generation of neurons are missing

the second level of projection from the input activation to event production decision.

The spiking neurons apply two levels of projections and compute both the membrane

activation and the spike production. There exist many computational neuron models

mimicking the biological neurons in different levels of details.

The Nobel-winning study of Hodgkin and Huxley [39] not only revealed the im-

pact of ion channels on action potential dynamics but also proposed one of the most

accurate computational neuron models ever. This model reflect the behavior of a neu-

ron by mathematically solving the inherent ion diffusion-drift balances in one of the

deepest possible level of detail. As a result, simulating Hodgkin & Huxley neurons

requires solving four-dimensional non-linear differential equations, which is compu-

tationally extremely costly. In spiking neural network applications, computationally

lightweight models are preferred over physiologically detailed models. Application-

specific requirements determine what level of detail enough is in most cases. Eugene

Izhikevich presented a detailed study on neuro-computational properties of biological

neurons in 2014 [45]. The same study compares the existing spiking neuron models

on their biological plausibility and computational efficiency.

From a computational point of view, the common feature of widely used neuron mod-
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els is that each one solves some ordinary differential equations to predict the next time

step. That is simply predicting the t = t0 + dt time-step state given the initial state

t = t0 via numerical analysis. Let’s take a look at one of the most famous and rela-

tively simple spiking neuron model, Leaky Integrate and Fire (LIF) neuron dynamics.

1.3.1 Leaky Integrate and Fire Neuron

Leaky integrate and fire neurons evaluate synapse and membrane dynamcis and pro-

duce a spike train as output. Different from the state-less second generation neurons,

they store a projection of the previous input-output activity inherently. In other words,

the output of the neuron depends both on the instantaneous and the previous inputs.

There are different interpretations of leaky integrate and fire neurons. This imple-

mentation computes both the synapse and the membrane dynamics. First of all, the

ordinary differential equation representing synapse behaviour is given in Equation 1.1

τsyn
dIsyn(t)

dt
+ Isyn(t) =

∑
i

∑
j

wiδ(t− tij) (1.1)

Here LIF integrates the discrete spiking input over time while the synaptic state is

leaking.
∑
j

δ(t − tij) stands for a spike train where the spikes are represented by

delta-dirac functions. wi is the corresponding weight value. The operational structure

is the same as a spiking neuron visualised in Figure 1.6. Analytical solution results

the Equation 1.2.

Isyn(t+ dt) = Isyn(t) · e
− dt

τsyn +
∑
i

∑
j

wiδ(t− tij) (1.2)

Here chosing a discrete time-step dt, the synaptic current evolution can numerically be

analysed. Figure 1.7 shows the synaptic response of the system to a random poisson

spike train with mean frequency 12 Hz. The results shown does not declare a properly

controlled experiment, rather visualize the synaptic current evolution given a random

spike train.

The synaptic current suddenly jumps at the time that a spike arrives, then start leaking.
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Figure 1.7: LIF Synaptic Current Response to a Poisson Spike Train

Thus, an input spike loses its impact on the state current in time. This time-dependent

synapse current is later used in the membrane potential computation. The ordinary

differential equation defining the membrane potential dynamics is provided in Equa-

tion 1.3

τmem
dVmem(t)

dt
+ Vmem(t) = Isyn(t) (1.3)

Similar to synaptic current, the membrane potential diminishes over time relatively

slowly in the case the potential is below the spiking threshold. However, different

from the synapse state, when membrane potential outreaches to the spiking threshold,

it drops down suddenly. In this specific LIF implementation, the membrane potential

is reduced by the threshold value. The discrete interpretation obtained via analytical

solution is given below in Equation 1.4.

Vmem(t+ 1) =

Vmem(t) · e−
dt

τmem + Isyn(t) if Vmem(t) < Vth

Vmem(t)− Vth if Vmem(t) ≥ Vth

(1.4)

Figure 1.8 shows the membrane response of the same system setup introduced for

Figure 1.7.

The membrane integrates the synaptic current input constantly increasing its potential
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Figure 1.8: LIF Membrane Dynamics and Output

difference. When the membrane potential surpasses a the firing threshold, it produces

a spike and drops down by the amount of the threshold potential.

Mathematically expressing the some custom dynamics and solving the ordinary dif-

ferential equations using modern computers is straightforward. However, it’s chal-

lenging to simulate large networks of spiking neurons computationally efficiently

even using simple models like LIF. In comparison with the second generation of neu-

ral networks, SNNs require more computational resources to compute and store the

time-dependent dynamics. Existing popular SNN simulators are introduced in the

following section.

1.3.2 Simulation

Until Maas advertised the computational neuron models to the neural networks field

with his famous paper "Networks of Spiking Neurons: The Third Generation of Neu-

ral Network Models" in 1996 [55], the computational neuron models mainly were

of interest to computational neuroscience. Therefore the first spiking neural network

simulators were implemented in the computational neuroscience domain with differ-

ent approaches and purposes. NEST [35] solves ODEs using a hybrid event-time-

driven manner, updating the synapses if and only if a spike arrives. Brian [36] carries

out a completely clock-driven approach, solving the ODEs at each time step no mat-

ter what the current status is. Nengo [8] provides a wide range of hardware support
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including CPUs, FPGAs, and digital neuromorphic processsors. PyNN [29] offers an

easy-to-use high-level interface supporting many simulator backends taking unifica-

tion as a goal. Computational neuroscience community delivered many simulators

over the years which are certainly not limited to what is listed above. A recent study

compared the performance of simulators from a computer science point of view [51].

In neuroscience perspective, these simulators are great to simulate large or small scale

neural networks. However, recent developments in the field created a need for mak-

ing machine learning tools available for spiking neural network simulation. Since

these simulators are not designed for taking derivatives, gradient based optimization

methods require custom implementations.

1.3.3 Optimization

Beside spiking neural networks are essentially artificial neural networks, they can also

be regarded as dynamical systems. The complexity of the dynamics and recurrent

connections makes it complicated to train them. In order to optimize SNNs feasibly,

both supervised and unsupervised methods are developed. The most prominent ones

are introduced in this part.

First of all, one of the most popular method is training an ANN and then converting

it to an SNN. Rueckauer showed the methodology to convert a conventional deep

neural networks to a power efficient spiking neural networks on image classification

taks [76]. ANN to SNN conversion works well if the activation function of the ANN

approximates the frequency-current (F-I) curve characteristics of the spiking neuron

model closely. That is, the performance of the conversion is depended on how well

the firing rate repsonse is modelled with the ANN. [73] covers categorization of SNN

training methods in a comparative way.

Secondly, there are biologically more plausbile optimization methods exist. Imple-

menting the Hebbian learning principle "Neuron fire together wire together" [37],

with spike-time dependent plasticity (STDP) [11], [85] is used in many applications.

The evolutionary optimization is also shown that it can be candidate to optimize the

spiking neural networks as nature optimized the living creatures [81]. Implement-
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ing local learning rules became quite popular recently. In 2020, DECOLLE [46] and

e-prop [9] are proposed being effective biologically plausible optimization strategies.

Lastly, there are methods that are not biologically plausible and make use of gradient-

based optimization tools in spiking neural network domain. One of the most influ-

encial one is the SLAYER algorithm [84], which applies a teporal credit assignment

policy for spiking neural networks. The other outstanding approach is the surrogate

gradient method [53], [68]. The hallmark of surrogate gradient method is that it makes

use of conventional backpropagation through time (BPTT) [90] in spiking neural net-

works with a simple hack. In this approach, the spiking neurons execute their flow

of operations in the forward propagation phase as usual. However, since the transfer

function that translates the membrane potential to discrete spikes is in-differentiable,

the classical error backpropagation approach cannot be directly used for credit as-

signment. A surrogate function approximates the in-differentiable threshold function

with a continuous function in the backward pass and obtains a smooth loss surface.

Figure 1.9 shows how surrogate gradient approach works in general.

Figure 1.9: Surrogate Gradient Approach

The recent insertion of gradient-based optimization methods in spiking neural net-

work research created a need for new software tools. In machine learning, there are

solid software frameworks implemented specifically for training and simulating deep
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neural networks. They keep track of derivative chains and handle automatic differ-

entiation. Some of the most famous ones are TensorFlow [1], PyTorch [70], Jax

[15]. These tools can also be used to simulate SNNs via custom implementations

of computational neural models. Implemented neuron models should solve ordinary

differential equations characterizing the neural dynamics in time.

Hereupon, in order to optimize SNNs and take advantage of existing machine learn-

ing pipelines, new frameworks have been developed like Rockpool [66]. Rockpool

accommodates both computational neuroscience backends like NEST and Brian to

simulate SNNs in conventional means and also machine learning backends like Py-

Torch and Jax to power SNN optimization with gradient-based optimization tools.

This study extends Rockpool API by adding simulation software support for Dynap-

SE family chips, including a hardware simulator and spiking neural network config-

uration tools.

Even though software implementations provide an opportunity to simulate and op-

timize spiking neural networks, they do not bring brain’s power efficieny. On the

contrary, they add more computational burden with regard to the conventional ANNs.

The existing simulator solutions introduced here are all solving ordinary differntial

equaitons characterizing the neuron models. Even though some of them use event-

driven approaches to determine what to update and what not to update, they all up-

date dynamical neural states in a clock-driven approach. That is, they predict the next

time-step by solving the equations each time the clock ticks. Mostly, the length of the

unit time step designates how accurately the computer simulates the model. The rule

of thumb is to set the resolution as 1 ms in general.

However, this synchronous clock-driven approach is completely against the nature

of the biological neurons. The actual neurons operate in an asynchronous event-

driven approach, they update their the state depending on the a pre-synaptic activity.

The membrane potential passively leaks when nothing happens and it increases when

an excitatory synapse is activated. The actual event-driven solutions require custom

hardware implementations, which are also known as neuromorphic processors. The

next section provides an overview of existing neuromorphic computing systems.
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1.3.4 Hardware

Carver Mead introduced the term ”neuromorphic” first in 1990 [61]. The idea behind

neuromorphic computing was to mimic the same organizing principle with biological

information processing systems by using analog electronics. The main objective was

neither building neural network accelerator hardware nor implementing the most ac-

curate emulation of neurons & synapses. The focus was on bringing the low-power

processing advantage of biology to the existing computing systems by using analog

electronics, especially for treating ill-conditioned data. Mead proposed that operating

transistors in the sub-threshold region would dramatically reduce power consump-

tion and help mimic brain dynamics. Mead and his Ph.D. student Misha Mahowald

showed the first applications by implementing and investigating silicon retina circuits

[62] [57]. In the following thirty years, several neuromorphic circuits, processors,

and sensors have been developed all over the world.

Although neuromorphic computing has its roots in analog subthreshold operation,

not only analog sub-threshold but also analog above-threshold, digital, and mixed-

signal solutions exist today. There are two distinguished processors that closely chase

Mead’s sub-threshold analog circuit design approach: Dynap-SE [65] from the Insti-

tute of Neuroinformatics Zurich and Neurogrid [10] from Standford University. Ana-

log subthreshold circuits have the advantage that they can emulate the neuron synapse

dynamics naturally, but the downside is that they heavily suffer from the device mis-

match effect [41], [71], [72]. The precision of analog circuits and their capability

to fulfill the theoretical expectations are mostly depending on identically designed

transistors. However, in practice, due to fabrication process variations and impurities,

the transistors, capacitors, resistor ratios, and many process-dependent layout com-

ponents do not exactly match with the intended values. Despite non-idealites does

not create a big problem in digital circuits, it’s a major matter that affects the circuit’s

dynamic behavior when transistors operate in the sub-threshold region. Nonetheless,

this does not need to be regarded as an issue, it can be exploited to obtain true random-

ness. Moreover, the noisy environment that analog neuromorphic circuits naturally

offer is highly analogous to the brain itself.

Analog circuits provide both power-efficiency and biologically plausible neuron imi-
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tation opportunities. However, routing the spikes between the neurons and storing the

circuit configuration is not straightforward. Digital solutions provide better reliability

when the operational pipeline requires logic and accounting. Therefore, Dynap-SE,

Neurogrid, and the analog mixed-signal processors in general, employ digital commu-

nication while they rely on analog computation for emulating time-dependent brain

dynamics. The conventional method to use in asynchronous neuromorphic communi-

cation is the Address-Event-Representation (AER) protocol [13]. In order to execute

this protocol, a digital circuit records the time that an analog neuron produced the

spike, detects its hardware address, and constructs a data package consisting of the

address and the time information. A router routes this data package to its destination,

counting on the architecture and the routing scheme used.

Existing neuromorphic systems are not limited to small-scale analog subthreshold im-

plementations. With some deviation from Mead’s initial idea, Human Brain Project

(HBP) maintains two large-scale neuromorphic computing systems. One of which

is a mixed-signal processor with analog above-threshold circuits: BrainScaleS (High

Input Count Analog Neural Network: HI-CANN [80]) at Heidelberg University. The

other one is a fully configurable digital system built upon millions of ARM proces-

sors: SpiNNaker [33] at Manchester University. Different from the Neurogrid and

Dynap-SE, BrainScales’ above-threshold circuits run 10 000 times biological speeds.

The SpiNNaker, on the other hand, provides a large-scale computing system that

employs system-level neuromorphic principles. At the low level, SpiNNaker uses

traditional CPUs to compute neuronal dynamics.

Alongside academic institutions, giant companies like Intel and IBM have established

their neuromorphic research labs and announced their chips in recent years. IBM

has established TrueNorth [63] brain-inspired computer chip having a digital custom

application-specific integrated circuit(ASIC) design. Intel released a digital neuro-

morphic chip Loihi [28] which has many novel features like on-chip learning, in 2018.

It’s also worth mentioning that, more and more neuromorphic startups are growing

worldwide, like Synsense, which supported this thesis work. Therefore, in the next

couple of years, it’s highly likely that widely used commercial neuromorphic appli-

cations will get involved in our lives. This thesis aims to take a step on this path and

provide mixed-signal processor simulation tools biased towards Dynap-SE circuits.
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CHAPTER 2

INTRODUCTION

Among a few other neuromorphic processors, the Dynamic Neuromorphic Asyn-

chronous Processor - scalable (Dynap-SE) developed at the Institute of Neuroinfor-

matics (INI) in Zurich [65] comes to the forefront with its unique structure. Fol-

lowing Carver Mead’s design principles [61] closely, it exposes a mixed-signal ar-

chitecture whose analog circuits operate in the ultra-low-power sub-threshold region.

The mixed-signal chip exploits current mode subthreshold analog circuits as the main

building blocks that can reproduce synaptic and neural temporal dynamics. First,

differential pair integrator [5] circuits drive Dynap-SE’s analog synaptic computa-

tions. Second, a Dynap-SE chip consists of four neural cores, each harboring 256

analog Adaptive-Exponential Integrate and Fire (AdExp-I&F) neurons [40], [54] per

core. Each neuron can process 64 incoming connections through one of four different

types of synapses and broadcast its activity to up to four chips with the help of digital

routers. Parameters of a neural core can be configured via bias generator circuits [30].

Figure 2.1 displays an abstract architecture diagram of the mixed signal chip.

In a broad perspective, Dynap-SE grants a hardware infrastructure to facilitate re-

configurable, general-purpose, real-time analog spiking neural network applications.

The novel event-routing technology of Dynap-SE makes it possible to develop ultra-

low-power and ultra-low latency solutions for edge computing applications. The next

section briefly explains the routing technology that the chip uses, nominatively the

digital part of the mixed signal architecture.

23



Figure 2.1: Dynap-SE Architecture

2.1 Mixed Signal Structure

The tag-based digital routing infrastructure provides direct communication from one

chip to 15×15 surrounding chips (seven steps west, seven steps north, seven steps east,

seven steps south), connecting up to 230k neurons. Digital FPGA circuit blocks not

shown in the figure sense the neurons’ events and form AER packages. These pack-

ages are then routed between neurons using a hierarchical mechanism. The routers

are roughly grouped into three: intra-core routers (R1), inter-core routers (R2), and

inter-chip routers(R3). In the Figure 2.1, only R1 and R2 are indicated; R3-level

routing requires multiple chips.
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Routers unroll the destination chip, the core mask, and the connection tag informa-

tion stored in the AER packages and convey the packages to corresponsing addresses.

The destination chip and core mask together uniquely address a local cluster, but the

connection tag does not resolve the exact neuron address. Since the connections are

not addressed globally uniquely, the event delivery system cannot map connections

of neurons one-to-one. Instead, the sending neuron broadcasts its AER package to

a cluster of neurons, and the receiving side decides to accept the package or not. A

neuron listens the activity of another neuron only if the tag that the sending neuron

stamped in the AER package matches a tag listed in receiving neurons’ CAMs. Each

neuron has 64 content addressable memory (CAM) holding listening connection tag

and synapse type information. Also, 4 SRAMs holding broadcasting destination in-

formation. Therefore, each AdExpIF neuron has a potential of 64 synapses to receive

events produced by its presynaptic neurons, and each neuron has the potential to reach

out to neurons inside 4 different chips.

From the router’s point of view, neural cores are local clusters of neurons. A user

provides the tags identifying each connection (axon) between neurons with a unique

label. The tag can be any number between 0-1024 in SE1 and 0-2048 in SE2. The

same tag can be reused in different clusters and also in the same cluster. Note that

using the same tag for different connections inside the same cluster is possible, but it

creates unintended connections. Section 4.2 investigates the event routing technology

in more detail and provides a way to replicate this in computer simulations.

Dynap-SE processors use digital signalling for communication and analog computa-

tion for predicting the dynamics. This mixed signal architecture requires both digital

to analog and analog to digital conversions where the digital and the analog compo-

nents interface. The analog to digital conversions take place at when action potentials

of the neurons are converted to boolean events. Since these do not affect the computa-

tional dynamics from the simulator’s point of view, it’s not examined in this thesis in

detail. However, digital to analog converters which converts the digital configuration

to analog current values occupy an important position from the computational point

of view.

Each neural core stores a parameter group setting the neuronal and synaptic param-
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eters for 256 neurons and their synapses. Parameters of the analog circuits are not

individually configurable; instead, the local clusters stores a single parameter set.

Therefore the neurons and synapses in the same neural core share the same parameter

values, including time constants, refractory periods, synaptic connection strengths,

etc. For example, it’s impossible to set a time constant of 10 ms for a neuron and

20 ms for another neuron in chip0 core0. In fact, it’s not even possible to set an ex-

act value of a parameter inside a neural core. Due to transistors’ non-idealities, the

parameters are experienced slightly differently by each neuron. Bias generators can

only set the mean value of a Gaussian distribution in practice.

Parameters inside a neural core are configured by digital to analog converters named

bias generators. Fundamentally a bias generator mirrors a current flowing through the

respective transistors. They allow one to set a digital configuration value to induce

an analog current inside a circuit. BG<x> notation abbreviates "Bias Generators"

in Figure 2.1. Section 4.1 investigates the digital to analog parameter conversion

operation in detail.

The neural computation unit denoted in Figure 2.1 is the main building block creating

the dynamics. Each neural core pieces together 256 analog neurons sharing the same

parameter set. CAM and SRAM are the digital memory blocks holding the trans-

mitting and receiving event configurations. Analog computation takes place in the

synapses and the neuron soma.

Four different synapses: AMPA, GABA, NMDA, and SHUNT, integrate the incom-

ing events and inject current into the membrane. While AMPA and NMDA pro-

duce excitatory post-synaptic potentiation, GABA and SHUNT synapses produce in-

hibitory post-synaptic potentiation. In other words, AMPA and NMDA activation

increase the chance that the neuron fires; GABA and SHUNT activation decrease the

firing probability. The listening event setting stored in the CAM refers to a synapse

type. Therefore, each of the 64 connections of a neuron can specify its synaptic pro-

cessing unit. The detailed analysis of synaptic circuits are provided in Section 3.1.

Essentially, all synapses are silicon synapse circuit implementations presented in [5].

Neuron soma integrates the injection currents and holds a temporal state. Charging

and discharging capacitors in configurable paths designates the temporal behavior. A
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secondary reading on the membrane capacitance, the membrane current, functions as

the temporal state variable. Upon membrane current reaching the firing threshold, the

neuron’s reset mechanism steps in and triggers the event sensing units. The event is

packaged in AER format and is broadcasted to indicated locations. In this way, the

neuron computes the dynamics using analog sub-threshold circuits but conveys the

resulting outputs using a digital routing mechanism. The detailed analysis of neuron

soma is provided in Section 3.2. Fundamentally the neuron circuit is an extended

version of the silicon neuron implementation introduced in [54].

Although solving the characteristic equations of the circuits makes it possible to pre-

dict the overall behavior of the processor, transistor non-idealities make it impossible

to provide a bit-precise simulation. All units having analog components: silicon neu-

rons, silicon synapses, and bias generators suffer from device mismatch [72], [88]. In

[19], it’s shown that the parameter mismatch on each device appears as frozen param-

eter noise, introducing 10-20% variance in neurons and synapses parameters: in time

constants, thresholds, and weight strength. Considering the limited number of neuron

and synapse resources and the device mismatch, controlling and configuring Dynap-

SE is not as easy as its digital counterparts. Therefore, most of the time, Dynap-SE

requires application-specific custom configuration to produce real-world solutions.

2.2 Applications

Despite the difficulty, Dynap-SE family members are used in several low-dimensional

signal processing applications. In [6], electrocardiogram (ECG) recordings are used

in real-time classification, distinguishing between healthy hearth beats and patholog-

ical rhythms. In [31] and [32], Electromyography (EMG) signals are used to distin-

guish the movements of skeleton muscles, specifically the hand gestures. In these

applications, the reservoir computing paradigm [56] is exploited. More precisely, a

semi-randomly initialized spiking recurrent neural network (SRNN) is deployed to

the Dynap-SE chip to integrate the temporal patterns hidden in signals. The spiking

activities of the hardware neurons are monitored and interpreted with a linear read-

out layer running on a conventional CPU. These applications showed that the RSNN

inference on the Dynap-SE chip operates in the sub-mW power range.
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The fact that the existing practices involving Dynap-SE inference tend to take advan-

tage of reservoir computing is not surprising. That’s because there is no straightfor-

ward way of finding the exact set of bias parameters that will express desired neuron

and synapse behavior. 256 neurons in the same core share the same bias set, but

each neuron observes a different outcome due to device mismatch. For example, set-

ting membrane time constant to 30 milliseconds means setting a bias current to a

value. Even though the bias current value is theoretically expected to assign all 256

membrane time constants to 30 milisecond, the setting establishes a histogram of the

membrane time constants in practice. Statistically it’s a gaussian distribution with a

mean value of 30 and subject to 10-20% variance. In other words, a Dynap-SE neu-

ral core maintains a reservoir of analog spiking neurons whose parameter setting is

statistically interpretable but individually random. It makes the chip a perfect match

for reservoir computing applications and application that requires stochasticity and

random noise injection.

2.3 Direction

The reservoir computing approach works well in some limited cases, yet gradient-

based network optimization would bring the chip one step forward and help unlock

its hidden potential. Gradient based optimization would enable an offline optimiza-

tion pipeline which reduce the susceptibility of networks to the parameter variations.

In order to address this situation, Buechel et al. [18] proposed introducing a regu-

larization term to be used in the training loop penalizing the sensitivity of a network

to weight perturbation. In [19] they proposed a method for robust deployment of

pre-trained networks on mixed-signal neuromorphic hardware without requiring per-

device training or calibration. During off-line training of an SNN, an adversarial noise

attack is carried out in the parameter space. This attack forces the network keeping

the optimized parameters at more stable levels. As a result, this attack makes the

network ready for parameter perturbations faced at the hardware inference phase.

Mismatch simulation with adversarial noise attack is shown to provide certain ad-

vantages in terms of network robustness. In order to use these methods for deploy-

ing SNNs to the Dynap-SE processor, an efficient, accurate, and optimizable device
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simulator is necessary. In [4], SpiNeMap is proposed as a toolchain for mapping

spiking neural networks to neuromorphic hardware, specifically for Dynap-SE. In

this toolchain, a spiking neural network is simulated using CARLSim [25]. Then a

clustering algorithm SpiNeCluster, partitions an SNN into clusters of synapses. Fol-

lowing this, SpiNePlacer finds the best placement of local and global synapses on the

hardware using a metaheuristic-based approach. In conjunction with the SpiNePlacer,

a modified version of the Noxim [22], Noxim++ is used to model and simulate the

device. However, this method requires making an exhaustive search on the parameter

space inefficiently and it also does not take the device mismatch into consideration.

Therefore, the simulated network and the emulated network work incompatibly. Also,

since there is no support to use gradient-based optimization, most of the state-of-the-

art optimization techniques are inapplicable. This thesis work address this missing

work and provides a software toolchain that eliminates the hand-tuning effort and

provides a decent optimizable simulation framework.

2.4 Structure of the Thesis

This thesis proposes an efficient spiking neural network deployment pipeline for the

asynchronous, mixed-signal Dynap-SE processor family. The product of the thesis,

DynapSim, is an abstract machine that provides an approximate Dynap-SE simulation

along with offline testing, optimization, and hardware configuration support. It can

be used for training SNNs, translating the optimized network to a hardware configu-

ration, and deploying this network to the latest member of the family, the Dynap-SE2

chip. The implementation details and results are explained throughout the manuscript.

Chapter 1 provides the necessary background to understand mixed-signal neuromor-

phic processing. There are obstacles in front of application development, some of

which the Dynap-SE inherited from the neuromorphic computing domain and some

of which are specific to the processor family. However, the reward of overcoming

these obstacles is ultra-low power, green, and secure AI inference. The chapter first

introduces the motivation that makes people work in the field from a historical per-

spective. Then it presents the bridge between biology and neuromorphic computing

applications.
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Chapter 2 introduces the Dynap-SE processor family and gives a lead for the next

steps.

Chapter 3 investigates the analog subthreshold computation units that bring the neu-

ral dynamics into the Dynap-SE chips. It provides an analytical overview of silicon

neuron and synapse circuits that the chip employs. The chapter presents the dynami-

cal equation solution methodology and shows the discretization of the circuit transfer

functions. It concludes with a simulation run and discusses the surrogate gradient

approach applied that makes it possible to optimize the simulator using backpropaga-

tion.

Chapter 4 investigates the digital communication and configuration strategy that ne-

cessitates naming the signal type as "mixed" instead of analog. First, the chapter

investigates the digital to analog converters, namely bias generators, which allow con-

figuring neural dynamics. Then, it presents Dynap-SE’s hierarchical routing mecha-

nism and shows how the simulator simulates this routing mechanism. Finally, it intro-

duces a novel autoencoder quantization mechanism that is highly tailored to Dynap-

SE2 weight quantization.

Chapter 5 presents the results of the experiments conducted to test the functionality of

the implementation. The first experiment, Synaptic Leakage, provides a qualitative

analysis observing the similarity between Dynap-SE2 and DynapSim. The second

experiment, Frozen Noise Classification, quantitatively evaluates the optimization ->

quantization -> deployment pipeline. The chapter generally shows that DynapSim is

functional and discusses the results.

Chapter 6 concludes the thesis by discussing the outcomes of the research and the

further directions.
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CHAPTER 3

ANALOG COMPUTATION UNITS

The elementary computation units in the brain are neurons and synapses. While

synapses serve as a selective communication medium, neurons function as integrat-

ing junctions. Synapses generate ion flows in the membrane upon arrival of action

potential produced by pre-synaptic neurons. This ion flow could not last long un-

less succeeding action potentials keep arriving from the same or the different sources.

The flow becomes less prominent over time. Depending on the synapse type, this cur-

rent may contribute to neuron membrane potential in an excitatory or an inhibitory

way. The more the synapses increase the membrane potential the greater the prob-

ability that the neuron fires. In the case that the synapses do not inject any current,

the neuron restores its membrane potential to the resting state in time. In this way,

both the synapses and the neurons hold the temporal state information. This means

that the previous activation, i.e., the input history affects the computations done at the

moment.

People have built silicon neurons and synapses to assemble artificial silicon brain em-

ulators. Silicon term here refers to electronic circuit implementations. Mahowald and

Douglas made one of the first attempts to invent a silicon neuron circuit in 1991[58].

In the advancing years, people have proposed some modifications in favor of perfor-

mance enhancement and power reduction. Indiveri et al. reviewed the journey of

silicon neuron circuit implementations in [41].

Dynap-SE employs one of the most advanced low-power analog VLSI implementa-

tions to emulate neuron and synapse behavior. The mixed signal chip employs the

silicon neuron [54], and silicon synapse [5] circuits. Figure 3.1 reveals where this

elementary analog computation units located inside the Dynap-SE architecture.
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Figure 3.1: Dynap-SE Analog Components

In this chapter, a behavioral investigation of silicon neuron [54] and silicon synapse

[5] circuits presented with analytical guidance of [24]. There are major aspects that

characterize the behavior of a neuron & synapse, such as the time constants setting

the leakage speed and the gain ratios setting the amplitude of the spike-dependent

jump. While one can adjust similar attributes mathematically by changing the hyper-

parameters in computational neuron models, it’s not applicable in actual VLSI im-

plementations. Silicon neuron and synapse implementations form a basis for the re-

alization of computational neural models through adjusting some bias voltages and

currents. The analysis presented in this chapter shows how the higher-level hyper-

parameters relate to low-level device voltages and currents. The simulator’s job is
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to translate the behavioral dynamics of a computational neural setting into the VLSI

parameters of the respective circuits. Figure 3.2 exemplifies what a translation means

in this reference frame.

Figure 3.2: Translation Between Behavior and Parameters

Although only the silicon neuron and synapse circuits are mentioned so far, the actual

chip layout contains more. In addition, real hardware implementations of these cir-

cuits slightly vary from the circuits shown here. One of the differences is that digital

latches allow some properties to switch on and off, adding additional circuitry on top

of the reference circuit. There are bias generator extensions that make the dynamical

behavior of the circuit configurable. There are optional circuits that increase the com-

putational capacity of the silicon neuron but are omitted for the sake of simplicity.

Some examples are homeostasis adaptation circuits, short-term plasticity blocks, al-

pha low-pass filters (double DPI), conductance dendrites, 1D/2D Resistive grids, and

so on. Nevertheless, the highly configurable nature of the system makes it possible to

operate in the same parameter space with different installations. Therefore, it’s possi-

ble to simulate a subset of the actual implementation and gain access to a subdivision

of the features provided by the chip. The analysis provided in this chapter lights the

way for simulating the fundamental behavior.
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3.1 Silicon Synapse

In general, biological synapses found in the brain constitute bridges between neu-

rons, allowing them to communicate with each other. Nonetheless, they do not sim-

ply propagate the action potentials without any processing but integrate the spikes

in time. In order to mimic integrating synaptic dynamics, Dynap-SE uses an analog

sub-threshold differential pair integrator circuit introduced in [5]. The circuit diagram

of differential pair integrator synapse is given in Figure 3.3.

Figure 3.3: Differential Pair Integrator Synapse, Adapted From [5]

In principle, the circuit functions as a first-order linear RC filter with configurable

exponential dynamics. Inspiring from biology, the input node is named "pre-synaptic"

and the output node is called "post-synaptic".
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In the idle state no current flows through the transistors and the capacitor stays fully

charged. If a step signal is applied to the pre-synaptic node Vpre, then Mpre switches

on allowing the Iw current to flow. Since Mpre is the transistor controlling the path

through ground, switching Mpre on results in discharging the capacitor Csyn given

that Iw > Iτ . In this case, voltage on the capacitor starts to decrease, Vsyn goes up,

it switches on the PFET Mpost. Non-linearly increasing current Isyn starts to flows

in the direction from VDD to Vpost, contributing to the membrane potential of the

post-synaptic neuron.

At the end of the ON state of the pulse applied, Mpre gets back to the OFF state

again. In this case, Iw drops down to zero, and the only path left for Iτ becomes the

path that is to charge the capacitor. Charging the capacitor increases the voltage on

the capacitor linearly (decreasing Vsyn) and decreases the current Isyn exponentially.

Hence, the DPI responds to step input with exponentially increasing and decreasing

output current dynamics, behaving like a proper RC filter. The mathematical analysis

of the dynamical behavior of the circuit is given in [24] provided in equation 3.1.

τ

(
1 +

Igain
Isyn

)
d

dt
Isyn + Isyn =

IgainIw
Iτ

− Igain (3.1)

The challange with this non-linear first order ODE is that it cannot be solved explic-

itly. Instead the behavior can be treated partially, depending on the ratio between

gain current Igain and state current Isyn. Igain makes the circuit expresses short-term

facilitation such that the pulses create less salient jumps in the output current Isyn

when Isyn is sufficiently smaller than Igain. However, this effect diminishes when

Isyn is much bigger than Igain, Isyn >> Igain, and circuit start acting as a proper RC

filter. With this simplification, the step response of the circuit having low-pass filter

equation 3.1 is expressed in [5] as follows

Isyn(t) =


IgainIw

Iτ

(
1− e−

(t−t−
i

)

τ

)
+ I−syne

−
(t−t−

i
)

τ charge

I+syn · e−
(t−t+

i
)

τ discharge
(3.2)

Note that here the charge and discharge terms label the synaptic current charging

instead of capacitor. The synaptic current decreases, or leaks, exponentially with the
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same amount both at the charging and the discharging phase. On the other hand,

the synaptic current suddenly increases in the charging phase depending on the ratio

between gain, synaptic weight, and leakage currents. If the step input controlling the

Iw path is long enough, Isyn reaches to its saturation point given in Equation 3.3.

Isyn∞ =
IgainIw

Iτ
(3.3)

So, increasing Igain or Iw results in increasing the amplitude of the post-synaptic

potential. Increasing Iτ results in decreasing amplitude. However, the Iτ does not

only takes part in the steady state current computation, but also sets the time constant.

The relation between leakage current Iτ and the time constant τ is given both [24]

and [5] as follows

τ =
CsynUT

κIτ
(3.4)

Here the κ stands for mean subthreshold factor (n-type, p-type) and the UT represents

the thermal voltage which is around 25 mV in room temperature. So, incresing Iτ re-

sults in decreasing time constant of the circuit. Therefore the condition that changing

Iτ changes both the time constant and the amplifier gain should be treated carefully.

All these are valid in the case that Isyn >> Igain, otherwise, circuit does not behave as

an RC filter. Assuming that Isyn << Igain, the equation 3.1 simplifies to the following

as denoted in [24].

τ
d

dt
Isyn +

I2syn
Igain

− Isyn

(
Iw
Iτ

+ 1

)
= 0 (3.5)

In this operation range, it’s seen that the more the synaptic state current is the bigger

jump it achieves. Therefore, the first few spikes do not have a big impact on the

synaptic state change. Increasing the synaptic current, the effect of spikes starts being

more prominent, similar to the short-term potentiation or synaptic enhancement [60],

[21], [7] concept in biology.

To recapitulate, the differential pair integrator synapse emulates the behavior of bi-
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ological synapses by integrating the events over time, increasing the post-synaptic

potential. The characteristic equation is not explicitly solvable, so it’s partially stud-

ied with respect to the ratio between a parametric current Igain, and the output state

current Isyn. The device has four types of synapse installation with slightly differ-

ent capacitor values and silicon neuron interface. Fast excitatory synapse AMPA,

slow excitatory synapse NMDA, slow inhibitory synapse GABA, and fast inhibitory

synapse SHUNT. The following sections introduce the differences briefly.

3.1.1 AMPA

Excitatory AMPA synapse gets its name from one of two main kinds of glutamate

receptors found in the mammalian brains: AMPA and NMDA. Even though they

have much more complex dynamics and structure, the inspiration get from biological

AMPA-type receptors [23] is that they can operate under weak stimulation and act

fast creating short-lasting excitatory post synaptic potentiation (EPSP). Therefore,

the silicon AMPA synapse uses the same common synapse circuitry with a slightly

smaller capacitance embedding. It contributes to the injection current in an additive

way in order to cause EPSP.

3.1.2 NMDA

Excitatory NMDA synapse gets its name from the other popular glutamate receptor

in biological synapses. Different from AMPA, the carbon NMDA synapse requires

more than just a weak stimulation. The NMDA-type glutamate receptors [34] can

start operating after AMPA receptors depolarized the membrane sufficiently. The

inspiration that silicon NMDA gets from biology is that it mimics the voltage gating

mechanism of the biological type. In Figure 3.4, NMDA gating mechanism extending

the common silicon synapse is provided.

Here the Isyn current depicted as a current source is the output state current Isyn

of a silicon synapse circuit shown in Figure 3.3. The comparator setting makes the

NMDA state current flow through the circuit only if the membrane potential of the

post-synaptic side is greater than the gating voltage Vpost > Vnmda. In the current
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Figure 3.4: NMDA Gating Mechanism, Adapted From [5]

domain, the behavoir can be explained in Equation 3.6.

Isyngated
=

Isyn

1 +
Iifnmda

Imem

(3.6)

Here the Imem represents the membrane state current which is explained in detail in

Section 3.2 Silicon Neuron. Equation 3.6 clarifies that the NMDA current can only

contribute to the injection current significantly if the membrane state current Imem is

much more greater then a configurable current value Iifnmda
.

Apart from the gating block, the silicon NMDA synapse uses the same common

synapse circuitry with a slightly higher capacitance embedding. Also, in the same

way as AMPA, it contributes to the injection current in an additive way in order to

cause EPSP.

3.1.3 GABA

Inhibitory GABA synapse gets its name from the inhibitory neurotransmitter GABA.

There are two types of GABA receptors, namely GABAa and GABAb. Even though

they both create the same inhibitory effect making the neuron membrane less likely
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to fire, their way of achieving this is different. The silicon GABA gets its inspiration

from the GABAb receptor [14]. The way GABAb works is that when enough GABA

binds, it releases the positive ions transported inside the membrane. In this way, it

reverts the excitatory synapses’ depolarization outcome and decreases the membrane

potential. Based on the same idea, the silicon counterpart does contribute to the leak-

age current, discharging the post-synaptic neuron’s membrane capacitor. Therefore,

it causes IPSP.

3.1.4 SHUNT

The last synapse type is the fast inhibitory SHUNT synapse and it mimics the other

GABA receptor GABAa [50]. GABAa does not cause the release of any positive ions

passed in the membrane, instead, it let more negative ions pass through the mem-

brane. In this way, GABAa represses the effect of depolarization resulting from the

increasing positive ion density. The silicon counterpart SHUNT is named as is be-

cause it creates a fast shunting effect. The SHUNT synapse subtractively contributes

to the injection current causing IPSP.

3.2 Silicon Neuron

Fundamentally, the function of neurons in the brain is to integrate the electrical sig-

nals coming from different sources and to convey their own state information. The

membrane potential of a neuron, holding the state information, increases via excita-

tory signals and decreases via inhibitory signals. If the membrane potential reaches

to a certain level, it emits a spike, and membrane potential suddenly drops down to

a level that is even below the idle state potential. In order to emulate this roughly

summarized electrophysiological behavior of real neurons, Dynap-SE uses analog

subthreshold differential pair integrator(DPI) neurons introduced in [54].

The DPI neuron [54] is a VLSI interpretation of the AdExpIF(Adaptive Exponen-

tial Integrate and Fire) computational neuron model proposed by Brette, Gerstner in

2005 [16]. This neuron model is capable of expressing complex temporal dynamics

of a real neuron faithfully, by reproducing leaky input integration, both the positive
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feedback and negative feedback effects, and the refractory period. Here, the silicon

neuron circuitry is investigated in four main building blocks: input DPI, positive feed-

back, reset, and afterhyperpolarization. The individual contributions of the building

blocks to neuronal computation are examined in detail in the following sections.

3.2.1 Input DPI Block

The input DPI block emulates the leak conductance of a real neuron with tunable dy-

namic conductances. It collects the pre-synaptic input currents coming from different

sources and integrates them by means of charging a capacitor. The circuit schematic

of the input DPI block is given in Figure 3.5. Note that in Figure 3.5, only the in-

put DPI part is drawn in detail, and the rest of the blocks are represented as current

sources for the sake of clarity.

Figure 3.5: Silicon Neuron, Input DPI Block Adapted From [54]

The input DPI block, that is composed of the transistors Mgain, Mmem, Mτ , and

the capacitor Cmem models a neuron’s leak conductance. Additionally, it provides

exponential subthreshold dynamics in response to constant input currents. Similar
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to the DPI synapse discussed in Section 3.1 Silicon Synapse earlier, Igain controls

the amplifier gain of the circuit. The other configurable parameter Iτ sets the base

leakage current, which discharges the capacitor.

The injection current provided as input to the circuit, is the sum of excitatory and fast

inhibitory pre-synaptic synapse currents, namely AMPA, SHUNT, NMDA; and the

constant DC current if applicable. The input current equation is given in Equation 3.7

Iin = Idc + Iampa + Inmda − Ishunt (3.7)

The GABA synapse does not directly contribute to the input current but contributes

to the leakage current in such a way that it decreases the time constant. Also, the

AHP block drains current from the capacitor in the same way that Iτ and Igaba do.

Therefore, it’s logical to group those currents in a virtual leakage term. Thereby, the

effective time constant that the circuit experiences instantaneously can be computed.

The virtual dynamical leakage current is expressed as in Equation 3.8.

Ileak = Iτ + Iahp + Igaba (3.8)

In time constant computation, using the stateful leakage current in Equation 3.8 pro-

vides a time-dependent time constant computation instead of using Iτ directly, as

opposed to the calculation provided in [24]. With this modification, the time constant

can be computed as shown in 3.9, where

• the UT stands for thermal voltage, which is around 25 mV at room temperature.

• the κ stands for the mean subthreshold slope factor of the transistors.

τ =
CmemUT

κIleak
(3.9)

With this setup, assuming that the rest of the blocks are inactive, if the input current is

sufficiently strong (Iin > Iτ ), it starts charging the capacitor Cmem. Simultaneously,

the potential difference on the capacitor Vmem increases. If membrane potential Vmem
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surpasses a certain level, it activates the positive feedback circuitry. From this point

onwards, positive feedback circuitry starts to play the leading role in the dynamical

response of the neuron.

3.2.2 Positive Feedback Block

The positive feedback block emulates the sodium activation channels of a real neuron.

The benefit of embedding this block in the silicon neuron is that it keeps the currents

flowing in the circuit at low levels most of the time.

The silicon neuron is a current mode circuit, and the Imem current can be regarded

as the output current, which represents the membrane state. When the state current

Imem starts increasing, the positive feedback mechanism makes Imem hit the spiking

threshold in a short amount of time. Hitting the spiking threshold Ispkthr, the neuron

suddenly emits a spike; the voltage on the capacitor drops down to zero, and Imem is

grounded. This keeps the Imem low most of the time and leads to reducing the power

dissipation dramatically.

The circuit schematic of the positive feedback block is given in Figure 3.6. Note that

Figure 3.6, provides an overview of the silicon neuron circuit from the positive feed-

back block’s point of view by representing the rest of the blocks as current sources.

During a regular operation of the circuit, increasing Vmem activates the positive feed-

back circuitry shown in Figure 3.6. At some point, increasing Vmem reaches the

switching voltage of the inverting amplifier MI1 , MI2 , MI3 . It results in the current Ifb

flowing through transistors Mfb2 , Mfb3 in such a way that Ifb contributes to charging

the capacitor. Consequently, Vmem increases even more rapidly, which increases the

Ifb current strength more until Vmem reaches the critical point that the neuron would

fire at the end. In other words, after a certain point, the positive feedback mechanism

pulls the circuit to a nearly irreversible path which the neuron would fire in a short

notice.

The reason behind the path is nearly irreversible is that the membrane potential is

exponentially proportional to the feedback current. The relation between membrane

potential Vmem and the feedback current Ifb derived in [54] is given in Equation 3.10.
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Figure 3.6: Silicon Neuron, Positive Feedback Block Adapted From [54]

Ifb = I0e

(
κ2

κ+1
·Vmem

UT

)
(3.10)

While Vmem is rapidly increasing, the neuron gets ready to finalize this recurring

process of firing. At this stage, the reset mechanism gets involved to generate a spike

and restore the initial state of the neuron.

3.2.3 Reset Block

When Vmem is high enough to switch the inverting amplifier on, VfbO is grounded.

That results in spike generation by the reset block given in Figure 3.7. As in Figure

3.5, and Figure 3.6; in Figure 3.7 the silicon neuron circuit is depicted from the reset

block’s point of view by representing the rest of the blocks as current sources, and
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treating the Vmem node as the reference point.

Figure 3.7: Silicon Neuron, Reset Block Adapted From [54]

As depicted in the previous section, when Vmem switches on the positive feedback

block, VfbO becomes grounded. Grounding VfbO results in switching off the starved

inverter inside the reset block MS1 , MS2 , MS3 . Correspondingly, a sawtooth wave-

form with a vertical rise and slow negative ramp is observed at Vspike output. The

slew rate of the wave can be controlled by setting the Vref potential accordingly.

The Vspike output of the silicon neuron triggers the digital router mechanism to trans-

late a voltage jump into a proper AER package. The mechanism is introduced in

Section 4.2.

During the period when Vspike is powerful enough to switch Mref ON, it provides a

short circuit path to Imem. Hence, for a controllable period after spike emission, Imem
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is forced to flow through the ground. Therefore, neither the Cmem can be charged,

nor the positive feedback circuitry can be activated. In other words, the reset block

implements an absolute refractory period mechanism. The duration of the refractory

period can roughly be estimated using the formulation in Equation 3.11, where Vth

stands for cut-off voltage of transistor Mref .

tref =
VthCref

Iref
(3.11)

The production of a spike concludes the firing procedure but it causes some side

effects that can be observed for some time after it happens. There is a famous analogy

in the reservoir computing domain that throwing pebbles into water creates waves.

For some time after throwing the pebble, the pebble is not seen, but the waves indicate

that it happened. The waves lose their power in time and become invisible at the end.

Similarly, if a silicon neuron fires, the afterhyperpolarization block catches the spike

and changes its state. The state change is observed in a way that the constantly leaking

AHP state current suddenly jumps.

3.2.4 Afterhyperpolarization Block

The afterhyperpolarization (AHP) block essentially is a recurrent inhibitory synapse,

and the circuit schematic is similar to a silicon synapse circuit given in Figure 3.3.

AHP block uses the spike output of the silicon neuron as input and produce a synap-

tic current to suppress the activity of the neuron. The more the neuron fires, the higher

the AHP synaptic current. AHP current Iahp take charge in discharging the capacitor

alongwith the leakage current Iτ . Therefore, it affects the effective time constant that

is experinced by the circuit in practice. The higher the Iahp current is, the lower the

time constant of the circuit become. Therefore, it has a potential to help expressing

the transient oscillatory dynamics of a real neuron by changing the time constant dy-

namically. In other words, this self-driven block emulates the calcium conductance of

a real neuron and increases the negative feedback current whenever the neuron fires.

The detailed investigation of the silicon synapse circuit operation, comprehending the

AHP block operation as well, is presented in Section 3.1 Silicon Synapse.
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3.2.5 The Subthreshold Behavior

The building blocks of the silicon neuron circuit works in harmony and emulate the

biological neural dynamics in subthreshold operation range. In [24], the complete

equation that describes this behavior in time domain is derived applying current mode

analysis. The equation is given in 3.12.

(
1 +

Igain
Imem

)
τ
d

dt
Imem + Imem

(
1 +

Iahp
Iτ

)
= Imem∞ + f(Imem) (3.12)

Here Igain and Iτ currents can be adjusted externally via base voltages. Increasing

Iτ leads to decreasing the base time constant of the circuit. Since the GABA and the

AHP synapses also have a role in determining the actual time constant dynamically, Iτ

can only set the idle state time constant, which is subject to change. On the other hand,

Igain current has a role in which it controls the amplifier gain of the input DPI block,

similar to silicon synapse. Additionally, it should be noted that Iahp is a synaptic state

current that has its own first-order ordinary differential equation solution given in 3.1.

The components of the equation 3.12 is summarized in Table 3.1.

In short, silicon neuron integrates pre-synaptic input currents on the membrane ca-

pacitor. Increasing potential triggers a positive feedback loop and neuron reaches to

saturation point that it emits a spike in a short period. Following a spike generation,

neuron restores its idle state by passing through a short absolute refractory period in

which its incapable of processing input. The spike generation also results in going

into a soft relative refractory period via a recurrent inhibitory synaptic connection.

The first order ordinary differential equation 3.12 points out the adaptive exponential

integrate and fire dynamics that the silicon neuron exhibits in a mathematical way.

3.3 Simulation

There are multiple levels of analyzing a circuit and simulating it without using the

actual circuit. First, it’s possible to model the circuit at the transistor level and run it

on a general-purpose computer using SPICE software. Since the purpose of SPICE

is to predict the electronic dynamics at best accuracy, it takes infeasibly long to run
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Table 3.1: Components of Equation 3.12

Component Formula Remark

τ
CmemUT

κIleak
Membrane time-constant

Ileak Iτ + Iahp + Igaba Effective leakage current

Imem∞

Igain
Iτ

(Iin − Ileak) Steady state membrane current

f(Imem)
Ifb
Iτ

(Imem + Igain) Positive feedback effect

Ifb I0e

(
κ2

κ+1
·Vmem

UT

)
Positivie feedback current

Vmem
UT

κ
· ln

(
Imem

I0

)
Membrane potential

I0 - Dark current

a neural network using it at the back-end. On the other side, it’s also possible to

find the circuit’s transfer function in the time domain by doing circuit analysis. The

transfer function then can be used to simulate the input-output dynamics of the cir-

cuit via solving equations with respect to their initial values. This would work a lot

faster than SPICE by sacrifying electronic level accuracy. In this trade-off, a circuit

designer would be interested in investigating the transistor behaviors. However, in

order to develop an application using the existing circuits, solving equaitons would

be sufficient. Therefore, Dynap-SE simulator uses the Forward-Euler method[20],

which is one of the oldest and simplest algorithms to solve first-order ordinary differ-

ential equations given an initial value. In this method, the following approximation

to the first derivative term is applied.

dy(t)

dt
=

yn+1 − yn
∆t

(3.13)

That makes the problem solvable in discrete-time and feasible for computers. The
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trade-off here is to choose the time step wisely, in order not to accumulate the error

such that it’s misguiding a user. One should note that here the time-step should be

chosen in such a way that any time constant is greater than 10 ∆t.

τ > 10∆t (3.14)

From the numerical point of view, there is no difference between ∆t and dt. Therefore

throughout this manuscript, they are used interchangeably. In this application, the

analytic solutions of the ordinary differential equations are combined with the forward

Euler update method, aiming for the most efficient solution. The discretization of

synapse and neuron circuit solutions are examined in following sections separately.

With the discretization strategies explained, the solutions degrade to simple arith-

metics. Therefore, time simulation requires nothing but a for loop implementa-

tion. Considering the optimization requirements together, high-performance machine

learning framework Jax [15] is used as a backend to ODEs. The advantage of Jax

is that it supports just-in-time compilation, automatic differentiation, and matrix op-

erations at the same time. Moreover, it has deployment support for CPU, GPU, and

TPU. Thus, it allows the circuit simulator to be optimized using conventional machine

learning tools.

3.3.1 Discretization of DPI Circuit Dynamics

The DPI circuit powering the silicon synapses and some parts of the silicon neuron

implementation takes a digital step input and produces synaptic current as output.

Therefore, examining the step response of the circuit would be the first step in simu-

lating the behavior. The challenge in DPI simulation is that the non-linear differential

equation that reveals the circuit characteristic is not explicitly solvable. Instead, the

operation regions can be investigated separately. The mathematical analysis in Sec-

tion 3.1 shows that the circuit expresses short-term potentiation when the synaptic

current is relatively low and behaves as an RC filter when the synaptic current is

higher. It requires partial disquisition of the circuit’s behavior and applying interpo-

lation for the regions where the exact solution is infeasible. In order to simulate the
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behavior reliably, a mixture of analytic solution and forward Euler approximation is

used. At first, the analytical approach for the linear RC response region is discussed.

3.3.1.1 Linear RC Response

Previously in Equation 3.2, the step response of the circuit assuming that Isyn >>

Igain is provided as follows:

Isyn(t) =


IgainIw

Iτ

(
1− e−

(t−t−
i

)

τ

)
+ I−syne

−
(t−t−

i
)

τ charge

I+syn · e−
(t−t+

i
)

τ discharge
(3.2 revisited)

Equation 3.2 could have been directly solved using the forward Euler method if the

pulse widths were strictly greater than the simulation time step (tpulse > 10∆t). How-

ever, while the nominal value for a pulse width is in the order of microseconds, a

feasible simulation timestep should be in the order of milliseconds. Thence, using a

forward Euler update with dt = 1ms means that the simulator assumes that the smallest

time reference a change could occur is 1 ms. As a consequence, it automatically as-

sumes that the smallest pulse width is 1ms, which is two orders of magnitude greater

than a nominal pulse width. On the hand, using a forward Euler update with dt =

1µs adds up a thousand times more computational workload. As a solution, a sin-

gle timestep response should be analyzed a step further in order for a forward Euler

update to be applied properly. In Figure 3.8, the phases inside a single time step,

assuming that the pulse width is smaller than the time step, are visualized.

Figure 3.8: Charge and Discharge Phases Within One Time Step

Depending on the timing of the arriving asynchronous pulse, there will be a discharg-
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ing phase, a charging phase, and a second discharging phase. In order to ease the

computational burden a step further, it can be assumed that the pulse will start at the

beginning of the timestep, and there will be a continuous discharge. With respect to

equation 3.2, and assuming the schedule explained above, the synaptic current Isyn

get two types of updates at each time step.

1. Unconditional Discharge. The current leaks exponentially at each time step.

Isyn(t+∆t) = Isyn(t) · e−
(∆t)
τ (3.15)

2. Conditional Charge. The current jumps only if a pulse arrives at that time step.

Isyn(t+∆t) = Isyn(t) +
IgainIw

Iτ
· (1− e−

tpulse
τ ) (3.16)

Note that this two-step analytical update holds only if Isyn >> Igain. Otherwise,

circuit does not behave as a proper RC filter, instead it express short term potentiation

(STP) dynamics. In the next section, the discretization of STP dynamics and the

combination method of two edge scenarios are discussed.

3.3.1.2 Short Term Potentiation

For the first few spikes, or in general, in the case that Isyn << Igain the RC assump-

tion is not valid. The discharge cycle does not affect much by this but the amount

of jump is significantly affected. Therefore, the short-term potentiation dynamics

shown in Equation 3.5 should be used together with RC dynamics considering the

ratio between Isyn and Igain.

τ
d

dt
Isyn +

I2syn
Igain

− Isyn

(
Iw
Iτ

+ 1

)
= 0 (3.5 revisited)

Here the application of the forward Euler update to 3.5 yields that:

∆Isyn =
Isyn
τ

((
Iw
Iτ

+ 1

)
− Isyn

Igain

)
(3.17)

Isyn(t+∆t) = Isyn(t) + ∆Isyn(t) ·∆t (3.18)
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The issue is that both the Isyn >> Igain, and Isyn << Igain are solved, but the region

where Isyn is comparable to Igain is left unsolved. Since there is no explicit solution

for the region where the current values are not far away from each other, the linear

interpolation method is used to estimate the behavior.

Defining short term potentiation (STP) ratio as:

rstp =
Igain

Isyn + Igain
(3.19)

Equation 3.20 provides a solution covering the full operation range.

Isyn(t+∆t) = Isyn(t)+rstp ·∆Isyn ·tpulse+(1−rstp) ·
IgainIw

Iτ
·(1−e−

tpulse
τ ) (3.20)

It concludes the DPI synapse equations solutions. The Equation 3.20 can directly be

used to estimate the step response in the charging phase, and Equation 3.15 can be

used to estimate the response in the discharging phase. In the next section, a proper

simulation of the DPI circuit is executed and discussed.

3.3.1.3 Simulated Response

The synapses: AMPA, GABA, NMDA, SHUNT, and the AHP block use the same

solution since they are built on top of the same DPI circuitry. Their capacitance values

are different, and only the output spikes can operate the AHP block. Also, their

outputs affect the membrane potential in different ways. A simulated DPI synapse

response to a random Poisson spike train with a mean frequency of 20 Hz is provided

in Figure 3.9.

At first glance, the response is similar to the response of the LIF synapse presented

in Figure 1.7. Indeed, with small disparities, they are pretty close to each other. In

both cases, the synaptic current instantly increases when a spike arrives and leaks

consistently. One significant difference in DPI response is the short-term facilitation;

the jump amount depends on the synaptic state. If the current value Isyn is sufficienlty

greater than Igain, the jump is more prominent, and else it’s depressed.
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Figure 3.9: DPI Synapse Response to a Random Poisson Spike Train

For this execution, the layout parameters: capacitance, thermal voltage, and sub-

threshold slope factor have been chosen to represent the chip layout. The simulation

parameters, the leakage current, weight current and gain current, and pulse width have

been chosen considering the operation range of the circuit. The full list of parameters

are given in Table 3.2.

Table 3.2: Parameters Values of DPI Synapse Simulation

Component Value

Csyn 24.5 pF

UT 25 mV

κ 0.705

Iτ 87 pA

Igain 348 pA

Iw 10 nA

τ 10ms

tpulse 10 µs

dt 1 ms

The values denoted in the table represents the default values for the fast excitatory

AMPA synapse. Using the table, the time constant can be computed as follows:
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τ =
CsynUT

κIτ
(3.4 revisited)

τ =
24.5 · 25 · 10−15

0.705 · 87 · 10−12

τ ≈ 10ms

The higher-level behavioral parameters are translated using similar conversions to

lower-level hardware configuration parameters. This bi-directional operation makes

it possible to configure the circuit behavior using comprehensible parameters without

sacrificing the hardware level accuracy. Although the conversions are prone to error

considering the mismatch-induced deviations at each layer, it provides a fair heuristic

reference point in optimization. The conversions and translations are studied in more

detail in Chapter 4.

3.3.2 Discretization of Silicon Neuron Behavior

Silicon neuron includes four sub-building blocks as presented in Section 3.2 Silicon

Neuron, namely input DPI, positive feedback, reset, and AHP. The input DPI block

integrates the injection currents in a leaky manner, the positive feedback block ac-

celerates the climbing of potential, reset produces the output, and AHP functions as

a recurrent inhibitory synapse. Despite its multi-modal complexity, discretization of

neurons is simpler than silicon synapses. Since there is no particular time scaling

differences as experienced in DPI pulse interaction, the characteristic equations can

directly be solved using a forward Euler update. The following section present the

dynamical response of the silicon neuron circuitry provided a synaptic current.

3.3.2.1 Dynamical Response

The Equation 3.12 is declared as the characteristic equation disclosing the subthresh-

old behavior of the silicon neuron circuitry.
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(
1 +

Igain
Imem

)
τ
d

dt
Imem + Imem

(
1 +

Iahp
Iτ

)
= Imem∞ + f(Imem) (3.12 revisited)

Direct application of forward Euler method to Equation 3.12 results in that:

∆Imem =
1

τ
· Imem

(Imem + Igain)
·
(
Imem∞ + f(Imem)− Imem

(
1 +

Iahp
Iτ

))
(3.21)

Imem(t+∆t) = Imem(t) + ∆Imem(t) ·∆t (3.22)

The explicit forms of formulated components τ , Imem∞ and f(Imem) are given in

Table 3.1. Here f(Imem) encapsulates the accelerant effect that the positive feedback

block induces. Imem∞ stands for the steady state current that Imem could reach if reset

block does not interfere the injection current integration with firing. The scaling factor
Imem

Imem+Igain
makes the update more significant with increasing Imem. The discrete step

solution of Equation 3.22 is used to simulate the dynamical reponse of the circuit. In

the next section, the synapse response obtained in Section 3.3.1 is used to stimulate

the membrane, and simulate the response.

3.3.2.2 Simulated Response

With this discretization method, the membrane response has been simulated as shown

in Figure 3.10. Even though the Imem current is the state variable used in the deci-

sion and the calculations, Imem-depended membrane potential Vmem is chosen to be

plotted. The reason is that the positive feedback mechanism Imem increases and de-

creases suddenly, making this hard to observe the state evolution. Since Vmem is in

an exponential relation with Imem, it’s easier to visualize the response choosing Vmem

over Imem.

In this simulation, the synaptic current response recorded in Figure 3.9 is used for

current injection. The red colored current waveform shown below represents the in-

jection current input, and the blue colored voltage waveform shown on top repre-

sents the membrane potential. For the sake of simplicity, among 5 synapses (AMPA,

GABA, NMDA, SHUNT, AHP), only the AMPA channels are activated and the rest
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Figure 3.10: Silicon Membrane Response to Synapstic Current in Figure 3.9

is de-activated. In other words, the synaptic current Isyn annotated in Figure 3.10 is

the AMPA state.

In harmony with the expectations, the membrane potential increases with the current

injection, and after a certain point, the increment triggers the irrepressible positive

feedback loop. From that point on, even if the synaptic current injection stops, the

voltage level continues its exponential rise. When the membrane potential hits the

spiking threshold, the neuron fires a spike and the neuron breaks into the refratory

period. The layout and current parameters used in the simulation are the default

values used in membrane simulation, as denoted in Table 3.3.

Compared to the synapse parameter listed in Table 3.2, the most significant differ-

ence is that the membrane capacitance is smaller. This situation leads to choosing

smaller leakage currents to obtain longer time constants. Although theoretically one

can choose any current that the bias generator can generate, setting a current close to

a dark current should not be the first choice. The reason is that when current values

get smaller, they become more susceptible to inherent noise. The time constant cal-

culation is the same as the silicon synapse time constant computation; therefore, it is

not repeated here. The output generation logic is discussed in the next section.
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Table 3.3: Parameter Values of Silicon Neuron Simulation

Component Value

Cmem 3 pF

I0 0.5 pA

UT 25 mV

κ 0.705

Iτ 5 pA

Igain 21 pA

τ 20ms

dt 1 ms

3.3.3 Spike Generation Logic

In Section 1.3.1 a simple leaky integrate and fire (LIF) neuron model is introduced and

compared with main-stream artificial neuron implementations. Unlike that LIF im-

plementation, the neuron model implemented here is not just a computational neuron

model but also a circuit simulation. It expresses complex dynamics that a LIF neu-

ron is incapable of dealing with, like the positive feedback mechanism. The model

complexity and having roots in the physical domain brings extra challenges in almost

every aspect, including but not limited to the spike generation procedure.

Remember that in Section 1.3, the common feature of every spiking neuron is de-

clared as that they hold the temporal state information and produce a spike when the

state threshold constraints are satisfied. As a spiking neuron, the Dynap-SE neuron

synapse block stores the temporal state in Imem current and compare the Imem current

with spike threshold current Ispkthr to produce a spike. However, the straightforward

implementation of this conditional logic makes it troublesome to optimize a spik-

ing neural network using conventional techniques. Instead, a Heaviside-step function

with custom gradient rules is implemented to decide on spike generation at each time

step. The function is plotted in Figure 3.11.

The x axis represents the membrane current and the y axis represents the number of
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Figure 3.11: DynapSim Spike Generation Function

spikes produced. The actual circuit produces a spike comparing the membrane poten-

tial Vmem and the spike threshold parameter set Vspkthr. So, although it’s physically

not possible, if Vmem doubles the Vspkthr then two spikes at the same time would have

to be produced. In the simulation, there is no harm to go beyond the physical lim-

itations knowing that it would be impossible to deploy. Easing off the restrictions

makes a broader parameter space visible. The physical reality could be compelled

using regularization techniques when necessary.

In the subthreshold operation region, the relation between current values and respec-

tive base voltages is exponential. Therefore, doubling the potential corresponds to

squaring the current. Respecting this, the step-function that is implemented requires

that the current should be one order of magnitude higher than the spike threshold

current in order for multi-spike production. Accordingly, the waveform provided in

Figure 3.11 resembles a linear staircase in the log-scaling. The exact equation pro-

ducing this thresholding mechanism is given in Equation 3.23.

num_spikes =
⌈
ln

(
Imem

Ispkthr

)⌉
(3.23)

The number of spikes produced is determined by the natural logarithm of the ratio

between membrane current and the spike threshold current. The value is converted
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to an integer by applying a ceiling mask. According to this, if the membrane state

current Imem is slightly higher than the spike threshold current Ispkthr, then a spike is

delivered at that time step. After spike generation, the refractory mechanism steps in

and blocks the membrane update for some time period which can be set externally.

Although the functionality introduced up to this point is sufficient to build and execute

spiking neural networks using the Dynap-SE neuron model, it’s not enough to opti-

mize a network efficiently. In order to run a gradient-based optimization algorithm,

this neuron model requires a surrogate function. The surrogate gradient implementa-

tion is explained in the next section.

3.3.4 Surrogate Gradient

The surrogate gradient method is brought into the literature and popularized by [53],

and [68]. It addresses the problem that the spiking neurons deliver discrete outputs

using an indifferentiable threshold function, which makes it impossible to backprop-

agate the error. In the conventional backpropagation approach [77], the chain rule is

applied for error credit assignment. That is, the network parameters are updated pro-

portionally to their contribution to the error. Here the error is something task specific

and it can be a deviation from the expected value, a misclassification cost, or anything

else. Roughly the error backpropagation in multi-layer networks can be expressed as

in Equation 3.24.

∂E(out, target)
∂input

=
∂E(out, target)

∂lnout

· ∂lnout

∂lnin

. . .
∂l1out
∂l1in

· ∂l0out
∂input

(3.24)

Aiming for finding the error with respect to the input, a chain of derivatives is applied.

Each layer can propagate one step backward in the direction from the output to the

input. In-layer operations can vary depending on the activation functions and may

require multiple steps depending on the neuron architecture. In spiking neurons, the

output is a spike train and backpropagating the error to previous layer requires taking

the derivative of the threshold function. In Dynap-SE neuron implementation, taking

the derivative of the output spike train with respect to a parameter that specify the

membrane current dynamics looks like the following.
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∂Sout(t)

∂P
=

∂Θ(Imem, Ispkthr)

∂Imem

· ∂Imem

∂P
(3.25)

In Equation 3.25, the Θ stands for the Heaviside step function, and the parameter P

can be anything that changes the membrane dynamics like a leakage current, or a gain

current, and etc. In order to find how a small fraction of change in the parameter P

affects the output spike train, the Θ function should be differentiable. However, the

derivative of the spike generation function is almost always zero since the surface is

mostly flat. When the derivative is not zero, it’s infinite because of the sudden jumps.

As a solution, an approximate continuous function that is able to substitute the exact

spike generation function is used as a surrogate in the backward pass. The surrogate

function that replacing the transfer function in the backward pass is plotted in Figure

3.12.

Figure 3.12: DynapSim Surrogate Function

In the surrogate counterpart, again the x axis represents the membrane current, but the

y axis here is not the number of spikes. Instead, the waveform seen can be regarded as

a smoothed out version of the staircase outlook of the actual function. Also, in order

to ensure that the membrane current is differentiable in the full operation range, the

cut-off value is drawn back from Ispkthr to Ireset. In this form, the surrogate funciton

resembles the famous ReLU [67] function in the linear scaling.
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In ordinary spiking neuron surrogate function implementations, the surrogate function

and the actual transfer function usually map to the same range. However, this would

break the Dynap-SE optimization pipeline because the gradients would be too high.

The expected range of currents is from 10−12 to 10−6. Thus, a directly matching

surrogate function would create at least six order of magnitude discordant gradients.

Instead, the surrogate function is scaled with (Ispkthr − Ireset) value and expressed as

follows:

fsurrogate(Imem) = (Ispkthr − Ireset) · Imem (3.26)

Here the Ispkthr and Ireset are the constants and Imem is the parameter. The surrogate

gradient is plotted in Figure 3.13.

Figure 3.13: DynapSim Surrogate Gradient

The gradient value is equal to Ispkthr − Ireset provided that the Imem is greater than

Ireset value. With this properly scaled gradient, backpropagation or any other gradient

based method can be applied to spiking Dynap-SE neurons. To sum up, the function

in the Figure 3.11 is used in the forward pass and the function in Figure 3.12 is used

in the backward pass. In this way, both the spiking behavior can be simulated and the

backpropagation can be exploited in optimization.
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CHAPTER 4

DIGITAL COMMUNICATION AND CONFIGURATION

Biological nervous systems leverage electrical signals and ion accumulation to com-

pute time-dependent dynamics. Even though this analog computation regime brings

the nervous system great computing power with low energy consumption, it’s not

ideal for communication. Neurons use discrete events for external communication.

When a neuron accumulates a number of ions that exceed its holding capacity, the

membrane emits an action potential which rapidly runs towards the other connected

cells. Here the amplitude of the action potential is insignificant, but the existence

is important. An action potential reaching a synaptic terminal initiates a chain of

reactions that changes the post-synaptic neuron state.

Inspired by this behavior, mixed-signal neuromorphic computers, including Dynap-

SE, use analog signals to compute and use digital communication to convey informa-

tion. The conventional protocol used in neuromorphic processors and the sensors is

Address Event Representation(AER) [13]. This protocol conveys information over

small data packages called AER events. An AER event package encapsulates the

time when the event occurred and the destination where the event will arrive. On-chip

routers are utilized to manage AER communication between computational units.

The digital organization of the chip is not limited by on-chip routers. Network con-

figuration requires digital counterparts as well. Even though analog currents adjust

neurons and synapse dynamics, the observable parameter space is a discrete configu-

ration frame to a user. Special digital to analog converters named bias generators use

a digital configuration and induce analog currents flowing inside the circuits. In this

sense, they can be classified under the digital contexture. Figure 4.1 highlights the

building blocks that belong to the digital organization of the mixed-signal chip.
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Figure 4.1: Dynap-SE Digital Components

The figure highlights the bias generators (BG) configuring the neural core parameters,

level 1-2 routers (R1-2), and distributed digital memory units SRAMs and CAMs.

These are the main building blocks that are responsible for digital processing.

This chapter discusses the operation of the bias generators and the routers; then

presents the way that DynapSim simulates their function. The circuit-level analy-

sis that would provide a low-level perspective to bias generators is omitted since their

transistor-level dynamics does not change the simulator’s computation. Instead, the

high-level operation is introduced from a practical perspective. The routing mech-

anism that Dynap-SE uses is investigated in a level of detail that will provide the

background to simulate the behavior, utilizing dense weight matrices.
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4.1 Bias Generator

Dynap-SE computes the neuron and synapse dynamics using silicon neuron and sil-

icon synapse circuits. The parameters affecting those circuits’ behavioral dynamics,

including the amplifier gains, time constants, and weighted current strengths, can be

adjusted externally. The fact that the Igain, Iτ and Iw currents can be adjusted via base

voltages of respective transistors provides some control over dynamics.

A peripheral circuitry, namely the bias generator, which is first introduced in [30], is

used to set currents flowing through transistors. Instead of configuring each neuron’s

parameters individually, bias generators configure the common parameter set that

neurons inside a neural core share. There are 256 neurons inside a neural core, but

they are not independently configurable.

Moreover, setting a parameter asserts only the mean value of a Gaussian distribu-

tion. Due to device mismatch and process non-idealities, each neuron experience a

slightly different parameter setting. For example, a user can set Iτ = 5 nA, but some

neurons could receive a τ current of 1 nA, and some would receive 10 nA. The distri-

bution statistics have actively been investigated by reserachers at INI, and the issue is

discussed in [19].

Since the simulator implemented does not simulate the internal dynamics of the bias

generator circuit, the detailed investigation of the circuit operation is avoided in this

section. Instead, the high-level operation is examined, and the way to adjust a param-

eter is discussed. The block diagram of the bias generator is given in Figure 4.2.

Figure 4.2: Bias Generator High Level Operation

Fundamentally, a bias generator is responsible for generating a bias current. In

Dynap-SE2, it takes a coarse value between 0 and 5 choosing the base current, and

a fine value between 0 and 255 scaling the base current. The coarse value chooses
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a base current and fine value nearly linearly scales it. Theoretically, the bias current

value can be obtained using Equation 4.1.

Ibias = Icoarsemax ×
f

255
(4.1)

However, in practice, the resulting bias currents flowing through the actual circuit

cannot be accurately predicted using Equation 4.1. Especially when the bias generator

circuit interfere with the actively running silicon neuron and synapse circuits, the

theoretical values deviates by a certain factor. Considering the current scaling issue,

the simulation uses lookup tables to predict the resulting bias current given a coarse

and a fine value instead of an analytical inference. In Figure 4.3, all available Dynap-

SE2 coarse base currents are plotted assuming that the scaling factor was 1 and the

bias generating transistor is N-type.

Figure 4.3: Coarse Base Currents in Log Scale

The bias generator can express a relatively high range of current values from pico

amperes to a few microamperes as illustrated in Figure 4.3. In this range, the silicon

neuron and synapse circuits can operate at the sub-threshold region, and their dynam-

ics can be tuned externally in a broad spectrum. The following sections present the

simulated currents that the bias generator could control.
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4.1.1 Time Constants

In a simple resistor-capacitor (RC) circuit, the time constant refers to the time required

to charge the capacitor through the resistor from the ground to (1 − e−1) times the

applied voltage. Equivalently, the time required to discharge the capacitor from the

saturation voltage to e−1 times the saturation voltage. Previously, in Equation 3.4,

how the leakage current Iτ translates to the time constant is demonstrated. Likewise,

in Table 3.1, the membrane time constant is shown to have a similar translation.

τ =
CsynUT

κIτ
(3.4 revisited)

Even though the bias generator is incapable of setting a time constant in seconds, it’s

capable of setting the leakage currents of synapses, the AHP block, and the input DPI

block of the neuron. Therefore, it provides control over the temporal characteristics

of the neuron and synapse emulation. In Table 4.1, the hardware parameters setting

the leakage currents and their correspondents are listed.

Table 4.1: Time Constant Setting Parameters

Parameter Current Main Effect

SOAD_TAU_P Iτahp AHP block time constant τahp

DEAM_ETAU_P Iτampa Excitatory AMPA synapse time constant τampa

DEGA_ITAU_P Iτgaba Inhibitory GABA synapse time constant τgaba

DENM_ETAU_P Iτnmda
Excitatory NMDA synapse time constant τnmda

DESC_ITAU_P Iτshunt
Inhibitory SHUNT synapse time constant τshunt

SOIF_LEAK_N Iτmem Neuron membrane time constant τmem

4.1.2 Time Window

In Section 3.2.3 Reset Block, the operation of the adjustable slew rate of the starved

inverters are introduced. According to this, the duration of the refractory period is

calculated as in 3.11.
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tref =
VthCref

Iref
(3.11 revisited)

The pulse extender circuits [74] are not investigated here in detail because their in-

ternal dynamics do not affect the stateful computation of neuron&synapse dynamics.

However, they are responsible for generating a digital pulse conditioned on detection

of a spike. The current to pulse width translation is the same as expressed in 3.11.

Table 4.2, presents the hardware parameters setting the AHP pulse width, regular

synaptic input pulse width, and the refractory period.

Table 4.2: Time Window Setting Parameters

Parameter Current Main Effect

SOAD_PWTAU_N Ipulseahp AHP block pulse width tpulseahp

SYPD_EXT_N Ipulse Any synaptic input pulse width tpulse

SOIF_REFR_N Iref Neuron membrane refractory period tref

4.1.3 Gain

The amplifier gain is simply the ratio between the output and the input. Since the

analog circuits used in Dynap-SE are all current-mode circuits, the gain in this con-

text refers to Iout/Iin. Both the silicon synapse circuit and the silicon neuron circuit

contain DPI blocks that provide control over the gain. The way to control the gain is

simply to alternate the gain current flowing through the circuit.

In Table 3.1, the maximum value of the membrane current that the Imem can reach at

infinity has given as shown in Equation 4.2

Imem∞ =
Igain
Iτ

(Iin − Ileak) (4.2)

Here the Igain current in shown in the neuron membrane input DPI circuit 3.5 affects

the steady-state current linearly proportionally.

In 3.1 Silicon Synapse, a similar steady state current is derived for synapse as well.
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Isyn∞ =
IgainIw

Iτ
(3.3 revisited)

In Equation 3.3, it’s seen that Igain affecting the on-state steady-state current Isyn∞

linearly proportionally. The bias generator is capable of setting the Igain currents

for all synaptic compartments and the neuron membrane. Therefore, it makes this

possible to adjust the gain of the DPI amplifiers. In Table 4.3, hardware parameters

setting the gain currents and their simulation reciprocals are listed.

Table 4.3: Amplifier Gain Setting Parameters

Parameter Current Main Effect

SOAD_GAIN_P Igainahp
AHP block gain

DEAM_EGAIN_P Igainampa Excitatory AMPA synapse gain

DEGA_IGAIN_P Igaingaba
Inhibitory GABA synapse gain

DENM_EGAIN_P Igainnmda
Excitatory NMDA synapse gain

DESC_IGAIN_P Igainshunt
Inhibitory SHUNT synapse gain

SOIF_GAIN_N Igainmem Neuron membrane gain

4.1.4 Weight

The synaptic weight current Iw shown in Figure 3.3 is responsible for discharging the

synaptic capacitor given a step input signal (charging the output current Isyn). It’s for-

mulated in Equation 3.3 that Iw affects the synaptic current at infinity in the same way

that Igain affects. Although the end effects are similar, the difference between Igain

and Iw is that Iw directly weights the external input, but Igain controls the amplifier

gain.

The weight current management for AHP block is similar to bias management ex-

plained for leak currents and gain currents. However, the weight currents manage-

ment for regular synapses (AMPA, GABA, NMDA, SHUNT) is not the same as the

management of other biases in Dynap-SE2. In order to provide a bit more flexibil-

ity for synapses, the The Iw current flowing on in Mw is designed such that it can
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be a sum of a combination of different weight bit currents. In Table 4.4, available

hardware parameters for weight management is shown.

Table 4.4: Weight Setting Parameters

Parameter Current Main Effect

SYAM_W0_P Iw0 weight bit 0

SYAM_W1_P Iw1 weight bit 1

SYAM_W2_P Iw2 weight bit 2

SYAM_W3_P Iw3 weight bit 3

SOAD_W_N Iwahp
AHP block weight current

Since there are 4 weight bit currents, there are 24 = 16 possible choices for a weight

bias that a synapse can select. The bias generator is only responsible for adjusting

the weight bit currents depending on the coarse and fine value setting. The synaptic

weight combination procedure is detailed in Section 4.2 Router.

4.1.5 Miscellaneous

The parameters disclosed in previous sections are the ones that can be subgrouped

depending on similarity among some other parameters. However, there are unique

parameters that can not be easily grouped with the others but have significant impor-

tance in the computations. The first one is DC current injection mentioned at Section

3.2. Using Idc current one can apply a constant current injection into the neuron

membrane. The input current equation is given in 3.7.

Iin = Idc + Iampa + Inmda − Ishunt (3.7 revisited)

The second eccentric parameter is the one that sets the NMDA gating threshold. This

mechanism provides a level of control over excitatory synaptic current injection con-

ditioned on membrane state. The mechanism is explained in Equation 3.6.
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Isyngated
=

Isyn

1 +
Iifnmda

Imem

(3.6 revisited)

The last one is the spike threshold parameter. The primary duty of a neuron is to

integrate the synaptic currents and produce a spike upon reaching a certain level of

stimulation. The spiking threshold current sets the rule for the decision-making mech-

anism deciding if a neuron fires or not. Equation 4.3 expresses an abstraction on spike

generation. In Section 4.2 the procedure is detailed.

out =

0 if Imem > Ispkthr

1 else
(4.3)

Table 4.5 lists available hardware parameters for the parameter introduced in this

section.

Table 4.5: Miscellaneous Parameters

Parameter Current Main Effect

SOIF_DC_P Idc Constant DC current injected as input

DENM_NMREV_N Iifnmda
NMDA gate soft cut-off current

SOIF_SPKTHR_P Ispkthr spiking threshold current

4.2 Router

Dynap-SE uses a hierarchical grid-based routing scheme introduced in [65]. In a

similar vein to all other neuromorphic processors and sensors, the routing mechanism

is designed to form a basis for the utilization of AER protocol [13].

When a neuron’s membrane state reaches the firing threshold, it produces a digital

pulse that triggers the event sensing mechanism. An out-chip FPGA circuit senses

the pulse produced by the silicon neuron and converts this to an AER data package.

An AER package consists of the destination address and the timestamp at when the
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spiking event occurred. Thus, an AER package is practically a 64-bit data pack-

age which encapsulates a 32-bit unsigned integer timestamp, and a 32-bit memory

address. To stamp the event’s time, the FPGA runs a digital real-time clock in mi-

croseconds resolution. Figure 4.4 shows an AER data package structure.

Figure 4.4: An AER Data Package

Each neuron has reserved memory spaces to label and select the events with the in-

dicated adresses properly. However, the address mentioned here does not refer to

a static memory address, instead it refers to a connection tag. The details of this

tag-based connection regime is discussed in the next section.

4.2.1 Neuron to Neuron Communication

The routing journey of an event starts from a neuron that has fired. Each neuron has

four SRAM blocks reserved to label the output event with a connection tag. The tag

here is an integer identifier that does not address the connection between the neurons

uniquely. Instead, the tag is just a number that can be reused in different parts of the

network.

Each neuron broadcast its activity to a subset of all tags, and each neuron listens to

the activity of a subset of tags. The tags to listen are listed in the content addressable

memory (CAM) blocks and the tags to attach to the emitted AER packages are listed

in the SRAM blocks. In other words, neuron synapse pairs are not uniquely addressed

but there are abstract links that a neuron can join. Figure 4.5 demonstrates the stages

and components involved in the tag-based connection regime.

On the receiving side, neurons select the AER packages to process using the infor-

mation written in their content addressable memory. If the AER tag matches one

of the tags listed in CAMs, then neurons process that one. Upon the arrival of the
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Figure 4.5: Dynap-SE Spike Transmission

AER package, a voltage pulse is generated and fed to the input node of the respective

synaptic gate. The synaptic gate assigned to process the event is also indicated in

the CAM content. Each neuron has 64 CAM cells reserved; therefore, each neuron

can have at most 64 incoming connections. Hence the content stored in the digital

memory plays a vital role in conveying AER packages between neurons.

4.2.2 Digital Memory

For connection specification, the routing mechanism uses globally multiplexed lo-

cally unique tags. In other words, the tags uniquely identify the neuron address in

local clusters of neurons; however, the they can be reused safely in different chips

installed in the same network. In this reference frame, the neural cores are regarded

as local clusters (N/C). In Dynap-SE1 series, 10-bits are reserved in the address space

for tagging, letting the tags have values between 0-1023. In Dynap-SE2 series, there

are 11 bits reserved, flexing the tag range from 0-1023 to 0-2047. There is no hard

restriction to utilize the same tag in the same cluster. However, it should be noted that

using the same tags in the same cluster would cause side-effect like aliasing connec-

tions.

Dynap-SE uses CAM blocks to distinguish the events to listen and SRAM to label

the events broadcasted. In the following sections, the content stored in those memory

units are examined in detail. For consistency, the Dynap-SE2 memory structure is

explored.
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4.2.2.1 SRAM

SRAM blocks contain the necessary information to label the AER events with a tag

and direct the inter-chip routing. In the Dynap-SE routing system, the events are

broadcasted to neural cores, and neurons having the same tag listed in their CAMs

receives an input pulse. Accordingly, SRAM content carry three critical information;

the destination coordinate in the grid space, the neural cores to broadcast, and the tag.

Table 4.6 explains the critical entries in SRAM content.

Table 4.6: SRAM Content

Component Value Impact

core mask 0110 destination core mask

xhop 1 number of chip hops in the x axis between [-7,7]

yhop 2 number of chip hops in the y axis between [-7,7]

tag 2022 connection identifier event tags

Core mask selects the destination cores which will receive the AER events. For ex-

ample, 0110 means that the second and the third core would be broadcasted. xhop

and yhop indicates the relative position of the target chip. For example, if xhop = 1,

and yhop = 2, then the event will be routed to 1 step east and 2 steps to the north.

Here step refers to the number of chips that will be jumped over. Lastly the tag is the

label that identifies the connection.

4.2.2.2 CAM

CAM blocks specify the synaptic operation parameters on the post-synaptic side. In

the Dynap-SE, each CAM entry correspods to an incoming connection to a neuron.

Table 4.7 explains the CAM content.

Dendrite specify the synaptic circuit which will process the incoming event. Tag

is the label that identifies the connection. The neuron process the event only if the

incoming event’s tag matches the tag written in the CAM. The weight parameter is a

binary encoded bit mask just like the core mask introduced in the previous section.
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Table 4.7: CAM Content

Component Value Impact

dendrite AMPA synaptic gate {AMPA, GABA, NMDA, SHUNT}

weight 1011 weight bit selection

tag 2019 connection identifier event tags

Weight parameter provides 4-bit freedom to compose a weight current using the

weight bit currents reported in 4.1.4. The important aspect is that it enables a bias

parameter to be adjusted per connection.

4.2.3 Weight Matrix Representation

Weights define the connection strengths between nodes or neurons. A zero weight

means that the connection does not exist at all, and having a non-zero weight states

that the neurons have a communication medium. DynapSim uses dense weight ma-

trices to store neural connectivity information in one place and to be able to operate

like a regular SNN.

In Dynap-SE, having a connection means one neuron broadcasts with a specific tag,

and some other neuron listens to that tag. The synaptic weight current determines the

connection strength. If neuron A is listening to a tag, and neuron B is broadcasting an

event with tag B, then that’s a connection. Neuron B can broadcast with another tag;

in this situation, neuron, A does not process the event. If neuron C broadcasts with

the tag B was broadcasting, neuron A listens to C as well because the source of the

event does not make a difference. Figure 4.6 visualize the scenario.

Figure 4.6: Neuron Input Source Insensitivity
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There can be multiple connections with different characteristics between two neu-

rons. Moreover, a link can be used by many neurons at the same time. In order to

immitate the reality, the weight matrix indices do not directly stand for neurons. The

first dimension of the matrix represent the tags; and the second dimension represent

the neruons. The values of the matrix is calculated using the weight masks of the

connections and the weight bit biases together. The first step of creating a a weight

matrix is to form a weight mask matrix. In Figure 4.7, a weight mask matrix is given

as an example.

Figure 4.7: A DynapSim Weight Mask Matrix

In this matrix, three rows holding active tags (7, 19, 22) and four columns allocated

for neurons (N0, N1, N2, N3) are seen. Tag 7 is used by N0 and N2 with different

weightings. Assuming that both the N0 and N1 are being broadcasted with tag 7, they

would process that AER event at the same time.

The integer values of the matrix encode the bitmasks of the connection. The binary

representation of the integer values is the exact weight masks written to CAMs. For

instance, N0 listens events having tag 7, by using only the weight bit 0 since 1 =

4’b0001. On the other hand, N2 adds up all four weight bit biases because the 15 =

4’b1111. Assuming weight bits are : Iw0 = 1 · 10−9, Iw1 = 2 · 10−9, Iw2 = 4 · 10−9,

and Iw3 = 8 · 10−9, the weight matrix is given in Figure 4.8.

Figure 4.8: A DynapSim Weight Matrix
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The weight matrix elements are current values in Amperes flowing through transis-

tors of synapse circuits. However, configuring any current value is impossible. Only

the values in the inner product space of base weight currents and the 4-bit weight

masks are legal, accounting for 16 values in total. However, restricting an offline

optimization pipeline to 16 values prevents the loss from converging to a global min-

imum. Therefore, during training, DynapSim weights are not restricted by hardware

constraints. As a result, the values obtained via training a DynapSim SNN cannot

be projected to hardware directly. An unsupervised weight quantization procedure is

used to solve this problem.

4.2.4 Weight Matrix Quantization

During an offline optimization procedure, a DynapSim weight matrix can get any

value. This allows the optimization pipeline to perform a search in a bigger parameter

space and converge to a better weight matrix. However, Dynap-SE chips do not pro-

vide a floating-point weight matrix configuration support. In fact, Dynap-SE1 does

only provide neural core wide synapse type specific weight current assignment. In

this way, connection-specific weight assignment is impossible. In Dynap-SE2, there

is a restricted 4-bit weight matrix configuration support. Therefore, this optimization

pipeline targets a Dynap-SE2 hardware configuration; for SE1, it’s not applicable.

The fact that the hardware does not support the floating point weight configuration

obliges a post-process after training. This is a common problem faced when the

underlying hardware does not support the numerical resolution that the application

requires. In this case, the weight resolution must be decreased to 4-bits.

The quantization means converting the weight matrix values to values that can be

applied in hardware. In Dynap-SE2, the weight values are configured by setting four

base weight bits and choosing a combination of those base weights via bit masks

specified CAMs. Therefore, each connection between neurons can select the weight

current that their synaptic unit would use in 4-bit resolution. If the trained weight

matrix consists of values that can be expressed within a 4-bit inner product space,

then a lossless conversion would be possible. Figure 4.9 demonstrates such a lossless

conversion scenario.
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Figure 4.9: Lossless Weight Matrix Reconstruction

Here, the initial 3x4 weight matrix can be expressed by 4 base weight currents and a

3x4 bitmask matrix. The elements of the bitmask indicate the elements of the inter-

mediate base weight matrix to be added. However, in practice, weight matrices are

bigger and lossless conversion in 4-bit inner product space is not a realistic scenario.

Instead, weight matrices consisting of 32-bit floating point values can be quantized

aiming for the minimum dissimilarity between the quantized version and the original

one. DynapSim uses a classical unsupervised machine learning approach to find an

efficient coding of the weight matrix, namely AutoEncoder.

4.2.4.1 AutoEncoder

In machine learning, autoencoders learn efficient representations to compress data.

It’s one of the oldest techniques leveraging artificial neural networks. The book chap-

ter that Rumelhart and Hinton wrote in 1987 following the invention of the error

backpropagation technique indirectly refers to the autoencoder structure [78]. Figure

4.10 visualizes the structure.

In this structure, encoder and decoder definitions indicate the different parts of the

network. The encoder compresses the input to a smaller representation, ideally pre-

serving the information. The decoder side decompresses the intermediate code and

reconstructs the input. The encoder and decoder matrices are learned via training,

and the pipeline provides a compressing-decompressing system. The training target

is generally to achieve the least dissimilarity at the reconstruction.

In the DynapSim weight quantization stage, a simple AutoEncoder structure with a

single layer encoder and decoder is used. The code is constrained to be positive using
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Figure 4.10: AutoEncoder Structure

ReLU activation to make sure that the intermediate code representation can represent

real current values. In this way, the code can be converted to a coarse and fine value

setting to configure the base weight currents. The decoder is forced to have binary

values so that it would represent a memory configuration. The decoder matrix values

are structured to indicate 4-bit bit masks combining the weight currents. Thus, the

decoder and the code together quantize a weight matrix.

4.2.4.2 Training

The AutoEncoder training object is not to obtain a general quantization machine but

to obtain application-specific base weight parameters and a memory configuration.

Therefore only the optimized weight matrix is provided in training as a single train-

ing sample. Mean square error (MSE) loss is used to measure the dissimilarity be-

tween the quantized and the original weight matrices. MSE computes the difference

between absolute values of the matrices. It takes the squares of differences of each

cell and returns the mean value. The formula is given in Equation 4.4.

fMSE(WQ,W ) =
1

N ·M

N∑
i=0

M∑
j=0

∥WQ[i, j]−W [i, j]∥2 (4.4)

The unsupervised training objective for this autoencoder is to reduce the MSE loss

77



as much as possible. However, solely backpropagating the mean square error is not

enough to obtain a hardware configuration. A strict regularization mechanism en-

sures that the decoder matrix represents a valid memory configuration. Figure 4.11

visualizes the idea.

Figure 4.11: Decoder Weight Regularization

Here the black-and-white coloring represents the binary values, and colorful rounded

squares stand for floating point values. In this denomination, decoder weights are

thresholded and appear as binary values at the forward pass. The floating point de-

coder weight matrix is first converted to a probability matrix using sigmoid activation,

and then the probabilities are thresholded at 0.5 to obtain binary values. At the back-

ward pass, the sigmoid activation is used without thresholding to compute gradients.

The reason to apply this approximation is that the binary values break the error back-

propagation mechanism injecting discontinuities in the computation.

Fundamentally, it’s a surrogate gradient application which is discussed in detail in

Section 1.3.3 for SNNs. The procedure is applied and the results are discussed in

frozen noise classification experiments, in Section 5.2.8.
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CHAPTER 5

EXPERIMENTS AND RESULTS

Dynap-SE neuromorphic processor family has a unique mixed-signal architecture. It

leverages analog sub-threshold electronic circuits and uses digital communication to

mimic biological brains. However, the complexity of the architecture obstructs easy

and reliable application delivery. Aiming to bring a solution to this problem, this

thesis provides an offline simulation and optimization toolchain. Figure 5.1 presents

the overview of the software toolchain, the output of this thesis.

Figure 5.1: DynapSim Toolchain

DynapSim extends a modern spiking neural network library, Rockpool, and provides
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a simulation solution for the device. The solution provided solves characteristic equa-

tions of the analog circuits and does not offer a circuit level accurate simulation.

Instead, DynapSim provides an approximate simulation, which could be optimized

and translated to a device configuration. The simulator uses the state of the art high

performance machine learning library JAX at backend, for a fast execution.

This chapter presents the results of two experiments conducted to explore the limits

and the functionality of the toolchain proposed. The first one is a qualitative ex-

periment designed to observe the behavioral similarity of the device and the simula-

tion. In the first experiment, the synaptic leakage current parameters are changed in a

controlled manner, and the reaction of device emulation and computer simulation is

compared.

The second experiment quantitavely tests the full pipeline. The objective is to train a

DynapSim network to classify two synthetically generated frozen noise sample, and

to deploy the application to a Dynap-SE2 chip. The experiment uses most of the

features provided by the DynapSim toolchain by designing an SNN with DynapSim

layers, simulating and optimizing the parameters and obtaining a device configura-

tion. It analyzes the results of simulation, optimization, quantization, and emulation.

Most importantly, the frozen noise classification experiment shows that the toolchain

is capable of running an offline gradient based optimization and deploying the net-

work to chip preserving the optimized behavior.

5.1 Synaptic Leakage

Synaptic leakage is not a quantitative experiment but rather a qualitative waveform

observation. The aim is to show that the simulator reacts similarly the way the chip

reacts when configured by the same bias parameter settings. In this task, the simulator

is not expected to act precisely the same as the device. The precise simulation requires

much more computational power, which leads to a simulator implementation that is

infeasible to optimize.

Instead, this thesis provides a toolchain that performs an approximate but fast simula-

tion, which makes it possible to run offline analog spiking neural network simulations
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and optimizations. Therefore, in principle, the device and the simulator do not need

to react the same, but there should be a significant similarity. To test the similar-

ity, this experiment visually compares an actual Dynap-SE2 chip and the simulator’s

response to a single input event. The characteristics equations of the analog compu-

tational units guide the search for a causal relation in the behavior. Overall it shows

that the reaction of DynapSim and Dynap-SE to the single event is compatible.

5.1.1 Task

This task has emerged from the device vs. simulation behavior reviews conducted in

collaboration with the Institute of Neuroinformatics, Zurich. The Dynap-SE2 record-

ings originally belong to the synaptic time constant measurement tests performed by

Chenxi Wu [91]. A subset of these measurements was used as a reference point in the

development of simulation tools. Therefore, in this task, the actual chip emulation is

not reproduced; instead, the existing experimental results in a similar domain are re-

interpreted and compared against the output of the simulator. The pictures are printed

with the permission of Chenxi Wu.

The observation target is the membrane’s response to excitatory or inhibitory synap-

tic current injection. To observe the scaling, five different bias settings configuring

the synaptic leakage current are applied to the chip and the simulator separately. The

simulation and the emulation responses are then compared with respect to the math-

ematical derivations provided in Chapter 3. Table 5.1 shows the base bias parameters

configuring the hardware and their current translations that configures the simulator.

For detailed explanations of the bias parameters, please refer to Section 4.1.

Table 5.1: Synaptic Leakage Experiment Common Bias Setting

Parameter Coarse, Fine Current Value

SYPD_EXT_N 4,80 Ipulse 8.5 · 10−8 A

SYAM_W0_P 5,255 Iw0 4.9 · 10−7 A

SOIF_SPKTHR_P 5,255 Ispkthr 8.5 · 10−7 A

SOIF_LEAK_N 1,50 Iτmem 7.1 · 10−11 A
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The reasoning behind parameter selection is explained in [91] as follows.

1. The input pulse width kept at a minimum to be able to neglect the rising time

of the synaptic current.

2. The synaptic weights kept at maximum in order to:

• Compensate the short charging time resulting from the narrow pulse.

• Allow one single event to have a visible effect on the state current.

3. The spike threshold kept at maximum to prevent neurons from firing.

The table shows only the most significant parameters altered in the experiment in-

stead of listing 23 default parameter values. It’s important to notice that even though

the weight parameter (2nd row) and the spike threshold parameter (3rd row) are con-

figured with the same coarse and fine value, the resulting current reading is different.

The reason is that their bias generator scaling factors is different. The simulator con-

siders every parameter’s scaling individually. In the current setting, the pulse width

(1st row) could not take a lower value because then the single event’s response be-

comes invisible. The membrane leakage SOIF_LEAK_N is kept low to allow the

membrane state to persist longer.

The following sections present the results obtained sweeping the synaptic leakage

currents. First, the excitatory and then the inhibitory postsynaptic potential cases are

analyzed.

5.1.2 Excitatory Post Synaptic Potential

The excitatory postsynaptic potential, or EPSP in short, is a generic term express-

ing the synaptic inputs resulting in depolarization of the postsynaptic neuron. In the

Dynap-SE processor family, two types of synapses create this effect: AMPA and

NMDA. AMPA synapses have a relatively simple structure and hosted this experi-

ment. The synaptic leakage current of the AMPA block is increased in exponential

steps, and the responses are recorded accordingly. Table 5.2 shows operation range

and incremental steps.
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Table 5.2: EPSP Observation Parameter Setup

Parameter Coarse, Fine Current Value

DEAM_ETAU_P

1,48

Iτampa

2.1 · 10−11 A

1,60 2.6 · 10−11 A

1,80 3.4 · 10−11 A

1,120 5.1 · 10−11 A

1,240 1.0 · 10−10 A

The only independent variable in the EPSP test is the AMPA leakage current. The

coarse base 1 is swept in the fine range [48 - 240]. The corresponding currents are

in between tens of picoamperes to hundreds of picoamperes. These low leakage cur-

rents ensure that the capacitor discharging would take long enough to observe the

membrane state on the screen. The chip emulation and computer simulation results

are presented in the following parts.

5.1.2.1 Chip Response

Figure 5.2 shows the chip emulation results provided by Chenxi Wu [91]. The wave-

forms seen represent the membrane potential recordings obtained by sweeping the

values listed in Table 5.2. The highest bump is a result of the lowest Iτampa and the

lowest bump is a result of the highest Iτampa .

In order to guide the analysis, let’s remember the synaptic current characteristics.

In Section 3.3 Equation 3.2, the linear RC response of the silicon synapse circuit is

provided as follows:

Isyn(t) =


IgainIw

Iτ

(
1− e−

(t−t−
i

)

τ

)
+ I−syne

−
(t−t−

i
)

τ charge

I+syn · e−
(t−t+

i
)

τ discharge
(3.2 revisited)

In the equation, Iτ and τ are dependent variables. The relation between them is as

follows.
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Figure 5.2: Emulated AMPA Leakage Response [91]

τ =
CsynUT

κIτ
(3.4 revisited)

The time constants and leakage currents are inversely proportional. If leakage current

decreases, then the time constant increases and vice versa.

Recall that the synaptic current suddenly jumps upon receiving an event, and a small

portion of it leaks at each time step. The leakage current determines the amount that

leaks from the synaptic current at each time step. The synaptic current can preserve

its state longer with a smaller leakage current (longer time constant). Therefore, the

smaller the leakage current is, the longer duration the synapse injects current into

the membrane, and the more charge pile up on the membrane capacitors. It’s the

reason that the highest bump is observed with the lowest Iτampa , and the lowest bump

observed with the highest Iτampa .
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5.1.2.2 Simulation Response

The simulation has an advantage over the chip since it provides the opportunity to

reveal every intermediate state. Therefore, the exact synaptic injection current can

be observed alongside the membrane state. On-chip, only the membrane potential

reading is possible. Taking this advantage, Figure 5.3 shows the synaptic current and

membrane current change together through time.

Figure 5.3: Simulated AMPA Leakage Response

The plot on top illustrates leakage current change dependent synaptic current change.

The legend shows the coarse fine value setting of the respective current. The figure

on the bottom reveals the resulting membrane state changes. In the simulated AMPA

response, waveforms are similar in shape to the emulated chip response.
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The arrival of an event results in a synaptic current jump at the 100th millisecond.

The currents are big enough to inject an observable amount of charge into the mem-

brane capacitor. Thus, while the membrane capacitor is being charged, the membrane

current starts increasing suddenly. This is the rising edge of the bumps observed.

At a point where the synaptic injection could not battle with the membrane leakage,

the membrane capacitor starts to discharge the accumulated charges. The synaptic

state restores itself in time, depending on the synaptic leakage current level. That

creates the falling edges of the bumps seen on the figure. The falling phase takes

longer than the rising phase because the synaptic current injection reduces the effect

of membrane leakage.

5.1.3 Inhibitory Post Synaptic Potential

The inhibitory postsynaptic potential (IPSP) term stands for the synaptic inputs result-

ing in a polarization of the postsynaptic neuron. In the Dynap-SE processor family,

two types of synapses lead to this effect: GABA and SHUNT. In this experiment,

the GABA synapse types are utilized to observe membrane inhibition. Similar to the

EPSP run, the synaptic leakage current of the GABA block is increased in exponential

steps, and the responses are recorded accordingly. Table 5.3 shows operation range

and incremental steps.

Table 5.3: IPSP Observation Parameter Setup

Parameter Coarse, Fine Current Value

SOIF_DC_P 2,50 Idc 3.32 · 10−10 A

DEGA_ITAU_P

1,48

Iτampa

2.1 · 10−11 A

1,60 2.6 · 10−11 A

1,80 3.4 · 10−11 A

1,120 5.1 · 10−11 A

1,240 1.0 · 10−10 A

For the sake of convenience, the same bias settings are used to sweep the synaptic

leakage current. However, a constant injection current has to be configured in this
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case, different from the EPSP run. In order to observe the effect of inhibitory current

injection, the membrane state should stay at a high level at the idle position. DC

injection ensures that the membrane state above the ground idly. The emulation and

simulation results are presented in the following parts.

5.1.3.1 Chip Response

Figure 5.4 shows the chip emulation results provided by Chenxi Wu [91]. The wave-

forms seen represent the membrane potential recordings obtained by sweeping the

values listed in Table 5.3. Different from the EPSP case, here the membrane leakage

current is also an independent variable, and a spike train is provided instead of pro-

viding a single spike. Different membrane leakage values are provided at each spike

arrival and different synaptic leakage currents are set for different neurons. In this

sense, the experiment procedure resembles operating a nested loop.

Figure 5.4: Emulated GABA Leakage Response [91]

Within the scope of this experiment, only the response to the first spike is examined.

In the figure, the deepest pit is a result of the lowest Iτgaba and the shallowest pit is

a result of the highest Iτgaba . The relation between the synaptic time constants and

the leakage currents for GABA is the same as it’s in the AMPA case. Therefore,
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for the effect of time constant discussion please refer to the previous EPSP hardware

response discussion in Section 5.1.2.1.

Different from the EPSP, there are two synaptic currents used in the IPSP case. A

constant current to keep the membrane potential high, and a GABA current to lower

the state down. In the case that there is no charge accumulated on the membrane ca-

pacitor, the GABA synapse is effectless. Therefore, to observe the inhibitory effect,

an excitatory current injection alongside GABA is required. Constant current injec-

tion provides a steady balance in the voltage level and makes it possible to observe the

effect of processing an event via a GABA synapse. Equation 3.8 shows how neurons

receive the injection current.

Iin = Idc + Iampa + Inmda − Ishunt (3.7 revisited)

Note that here Igaba current is missing. The reason is that GABA does not directly

inject current into the membrane, instead, it ejects charges. Equation 3.8 shows how

GABA synapses are involved in the computation.

Ileak = Iτ + Iahp + Igaba (3.8 revisited)

GABA synapses contribute to the leakage current in a way that strengthens the mem-

brane capacitor discharging path. Thus, when a GABA synapse receives an input

event, the membrane leakage current increases suddenly and it shifts the balance to-

wards the ground. In other words, the stronger the GABA synapse is the more charge

it can drain from the membrane capacitor. The strength of the GABA synapse current

is inversely proportional to Iτgaba current as it’s explained in the previous EPSP test

in Section 5.1.2.1. That’s the reason the deepest pit is a result of the lowest Iτgaba and

the shallowest pit is a result of the highest Iτgaba .

5.1.3.2 Simulation Response

Tracing the individual effects of states and variables is a lot easier in simulation. The

synapse and membrane current changes over time are given in Figure 5.5.
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Figure 5.5: Simulated GABA Leakage Response

The synaptic current evolution is plotted on top, and the membrane state change is

plotted on the bottom. Different from the emulation, only one event is produced, and

only the synaptic leakage currents are altered. In the simulated version, the wave-

forms are similar in shape to the emulated chip responses.

The synapse response is similar to the EPSP case, the arrival of an event leads to a

current jump at the 100th millisecond. The currents are big enough to compete with

the constant current injection and make the leakage dominate the charging for a short

period of time. While the membrane capacitor is being discharged, the membrane

state looses its position and suddenly decreases. This forms the fast falling edges of

the pits observed.
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Since no other input events follow the first one, the synaptic jump diminishes over

time. While it diminishes, nothing changes on the constant current injection side. The

proportion of DC over leakage increases over time, and the capacitor is re-charged to

its previous state. The charging speed is directly proportional to the synaptic leakage

current. If the synaptic leakage current is low, the GABA current keeps its prominence

for a longer duration, then the membrane restores its previous state slowly. The rising

phase takes longer than the falling phase because the GABA current reduces gradually

after the event-triggered jump.

5.1.4 Discussion

Hereby in this experiment, the emulation behavior of the Dynap-SE2 chip and the

simulation behavior of the DynapSim is compared. Their responses to synaptic leak-

age change are interpreted using the characteristics equations of the analog compu-

tational units of the chip. It’s shown that, in principle, the responses are consistent.

In this task, the actual chip emulation is not reproduced; instead, the existing exper-

imental results in a similar domain [91] are re-interpreted and compared against the

output of the simulator.

In the imported results, neither the amplitudes and nor timescales are annotated. Us-

ing a modern oscilloscope, it’s possible to reproduce results and do the measurements;

however, it’s not considered necessary. On the contrary, these measurements would

substantially be misleading.

Remember that the leakage currents are chosen in the picoampere (10−12) range. This

current level is considered negligible noise for most analog circuits. At this operation

range, small temperature changes or small fluctuations in the noise level affect the

amplitudes and implicitly the time scales significantly. Also, because each chip has

a unique device mismatch profile, the measurements would lack the generalization

ability.

Therefore, DynapSim should not rely on values; instead, it should focus on operating

in the same parameter space as the chip. The chip’s and simulator’s projection should

be similar and compatible. This way, it would have a generalization ability instead of
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overfitting to an exact chip layout.

On the other hand, making the simulator represent the exact or similar numbers re-

quires too much effort, yet this does not mean producing a better simulator. The best

simulator in the context of this thesis is the one that could generalize Dynap-SE chips

and provides an offline optimization pipeline. An over-parametrized realistic simula-

tion could express a specific chip’s behavior in more detail; however, it would not be

useful in producing industrial applications or use cases. Therefore, the simulator is

expected to mimic the waveform, not the amplitude.

This experiment shows that the simulator is qualified to behave the same way that the

chip behaves in one scenario. In this scenario, the chip and the simulator are stressed

with a low leakage current sweep, and the simulator is observed to produce similar

waveforms. Extensive testing is required to prove the generalization ability; however,

single spike response similarity is considered as a strong indicator of success. The

next experiment focuses on the network behavior and shows that the optimization

pipeline functions properly.

5.2 Frozen Noise Classification

The frozen noise classification experiment is designed to expose the learning capabili-

ties of the simulator implemented. This experiment aims to train a Dynapsim network

to classify two randomly generated frozen noise patterns. The network includes two

analog neurons with recurrent connections and 60 external input connections. The

target behavior is that when the network receive the first frozen noise, the first neuron

will fire at a significantly higher rate. Accordingly, receiving the second frozen noise,

the second neuron should fire at a significantly higher rate. A diagram depicting the

main idea is given in Figure 5.6.

The network consists of two layers. First, the LinearJax layer applies a linear transfor-

mation to the input spikes, simulating the spike weighting. Second, DynapSim layer

simulates the time-dependent analog silicon neuron and synapse dynamics. Each

neuron in this layer produces a spike train as output.
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Figure 5.6: Frozen Noise Classification Task

In a weak analogy, this setup is similar to using a ReLU activation layer succeeding

a fully connected layer in classical machine learning applications. The difference is

that DynapSim layer computes and holds a time-depended state instead of a state-

less activation. The output of the DynapSim neurons does not only depend on the

instantaneous inputs but also on the past inputs via the internal state variables. The

state evolves continuously over time, regardless of when the neuron receives spikes

on its input. Also, the DynapSim layer encapsulates a recurrent connection matrix

that is one of the targets of the optimizer. Lastly, the layer corresponds to a custom

analog hardware configuration. This special layer solves characteristic equations of

the analog circuits and is subject to hardware limitations to some extent.

In order to limit the complexity of the task, only the weight parameters are trained,

and the rest of the neuron and synapse parameters are fixed to their simulation de-

faults. Thus, mathematically two 2D weight matrices: the 60x2 input weight matrix

stored inside LinearJax, and the 2x2 recurrent weight matrix stored inside DynapSim

is subject to optimization. Then the optimized network is translated to a hardware

configuration and deployed to Dynap-SE2. The details of the procedure and results

are presented in the following parts. First of all, the next part presents the synthetic

data generation in detail.

5.2.1 Synthetic Data Generation

In computational neuroscience, random poisson process is frequently used to replicate

a realistic neural recording artificially. Prof. David Heeger showed that it’s possible to

92



model spike generation using a random poisson process [38]. This discovery relies on

many previous studies’ statistical interpretation of raster plots of cortex recordings;

some of the most famous ones are [83], [3], [86]. In statistics, the coefficient of

variation measures the regularity of a process. In this spiking time series domain,

calculating the coefficient of variation (CV) of interspike intervals (ISI) quantifies the

spiking regularity. The CV is computed as dividing the standard deviation by mean

value. Equation 5.1 gives the formula.

CVISI =
σ(ISI)

µ(ISI)
(5.1)

Two extreme examples of the regularity are the clock and the poisson process. A

clock produces extremely regular events. Each interspike interval is equal to each

other, and CV=0. A poisson process produces highly irregular spike trains whose

interspike intervals are independent of each other; the CV=1. Since the cortical neu-

rons’ recordings were statistically observed much closer to CV=1, the poisson process

is heavily used to mimic realistic raster plots in computational neuroscience. Follow-

ing this trend, the frozen noise data is synthetically produced using a random poisson

process. The noise patterns used in training is given in Figure 5.7.

The frozen noise patterns have a mean frequency of 50 Hz in 500 ms duration. Each

sample has 60 channels, meaning each can be regarded as a composition of 60 discrete

time series. Feeding them to a network requires the input layer has 60 channels as

well. The input channel gets the inputs in a discrete manner and executes a weighted

sum over the channels at each time step. The discrete time-step length is 1 ms. Fol-

lowing this, the DynapSim layer simulates the neural response in time. The response

analysis methodology is examined in the next part.

5.2.2 Response Analysis

To record the untrained response of the network, the frozen noise patterns in Figure

5.7 are used in the simulation. The initial output of the neurons are given in 5.8.

Figure 5.8 shows that the network reacts similarly to given different noise patterns.
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Figure 5.7: Noise Patterns Used in Training

In order to put a figure on the network’s response, neurons mean firing rates in the

given duration are computed by summing up all the spikes generated and dividing by

the number of timesteps. Equation 5.2 shows the formula.

r =
1

dt ·N
·

N∑
i=0

S[i] (5.2)

On top of that, to compare the neurons’ capability to distinguish the frozen noise

patterns, the ratio between neurons’ mean firing rate is used. The firing rate ratio

(FRR) is the ratio between the superior and inferior mean firing rates read from the

decision neurons. FRR is calculated as in Equation 5.3.
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Figure 5.8: Initial Output of the Network to the Frozen Noise Patterns

FRR =
rsuperior

rinferior
(5.3)

In Figure 5.8, it’s seen that the outputs of the neurons are almost identical receiving

the frozen noise patterns of similar discrete time series of events. As a response to

frozen noise 1, neuron 1 fires at 106 Hz, and neuron 2 fires at 72 Hz; resulting in an

FRR of 1.47. For frozen noise 2, neuron 1 fires at 106 Hz, and Neuron 2 fires at 74

Hz; resulting in an FRR of 1.43. The numbers are pretty close to each others and to

1. This shows that the randomly initialized DynapSim network is insensitive to the

noise patterns. In order to teach the network sense the temporal nuances hidden in

these time series, a gradient-based optimization procedure is executed. The following
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sections present this procedure, starting from introducing the objective function.

5.2.3 Objective Function

The objective of the optimization is to make one of the neurons fire at a noticeably

higher rate upon receiving a specific frozen noise. For example, if frozen noise 1 is

dispatched to the device then neuron 1 should fire dominantly, and if frozen noise 2

is dispatched, neuron 2 firing should dominate the output reading. In order to achieve

this behavior, mean square error (MSE) loss is exploited.

The MSE loss is one of the most commonly used loss functions for regression tasks

in machine learning. In this domain, the loss is calculated by subtracting the ideal

spike train from the actual spiking output the network produced at each time step.

The mean value of the differences in time gives a scalar loss value to be used in the

error backpropagation. Equation 5.4 gives the mathematical formulation of the loss

function.

fMSE(yout, ytarget) =
1

N

N∑
i=0

(yout[i]− ytarget[i])
2 (5.4)

The target train is a uniform spike train that has an event at every time step. The MSE

loss calculation with spike trains is visualised in Figure 5.9.

Visually, the aim of the optimization is pulling down the blue dashed line which rep-

resents the mean square error. The actual neuron model is not capable of producing

exactly the same ideal spike train. The refractory periods and spike frequency adapta-

tion mechanism introduced in Section 3.2 prevent the neuron from firing incessantly.

Therefore, it’s impossible to get zero error in any case. The optimizer pushes the neu-

rons to do their best to converge to the ideal spiking regime. The expected training

behavior is that the error will start high and then gradually drop down to a level that

is definitely above zero. The next section explains this training procedure and shows

the results.
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Figure 5.9: Mean Square Error Loss Computation in Spiking Domain

5.2.4 Training

To update the weight matrices such that the network would achieve the least possi-

ble mean square error, a gradient-based optimization procedure is applied. In this

experiment, a popular gradient descent variation, Adaptive Moment Estimation or

Adam [48] is used. This method provides a first-order gradient-based optimization of

stochastic objective functions based on adaptive estimates of lower-order moments.

Each training step, or epoch, includes a forward and a backward pass. The forward

pass simulates the neural dynamics in time and produces the spike trains. The back-

ward pass backpropagates the error in time, assigning the credits to weight values.
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Since the forward computation introduces indifferentiable functions, a surrogate func-

tion approximation is used in the backward pass. The surrogate gradient computation

method is explained in Section 3.3.4. As a result, the weight values get small updates

in each time step fixing the behavior slightly in the approximate continuous space.

Figure 5.10 shows the training loss decrease over the epochs.

Figure 5.10: Loss Change with Epochs During Training

It’s seen in the figure that the loss decreased from 0.5 to 0.44 over one million epochs.

Even this much drop creates a huge difference in behavior, and the network obtains

the ability to classify two similar frozen noise samples. The results of the optimized

network are reserved for one step ahead, the next part discusses the time required to

train this network.

5.2.5 Performance

Gradient-based spiking neural network optimizations are famous for requiring long

training times. The reason is that spiking neurons solve complex dynamical equa-

tions in time, requiring many floating point operations. On top of it, applying the

bulky backpropagation through time algorithm in optimization adds an extra burden

on computational resources. However, recent advances in machine learning tools

provide great opportunities for performance improvements.

For example, DynapSim uses one of the latest high-performance machine learning
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tools JAX [15] to solve the dynamical equations and compute the surrogate gradients.

One of the greatest features of the JAX is that it provides just-in-time (JIT) compila-

tion support to functions written in a purely functional way. It’s an advanced feature

that translates the code written to a lower-level machine language in the first run and

traces the data flow in a specific way for better time performance. The simulator

is all designed to satisfy the JIT constraints. The reward is that the JIT reduces the

execution time by multiple orders of magnitude in the optimization loop.

To show the benefits, the training script is executed in two different environments.

The specifications of the environments and the performance results are presented

briefly in Table 5.4.

Table 5.4: Training Time Comparison

Attribute Machine 1 Machine 2

CPU 8 Core Apple M1 Pro Intel Core i7 - 7500

RAM 32 GB 16 GB

OS macOS Monteres 12.4 Ubuntu 20.04

Epoch/s
JAX 0.7 0.4

JAX-JIT 2600 1350

Training
JAX 15 days 28 days

JAX-JIT 6.5 minutes 12.5 minutes

With Machine 1, one single epoch takes 1.30 seconds on average. Just-in-time compi-

lation dramatically reduces the time required and makes the system run 2600 epochs

per second on average. Therefore, termination of the one million epochs takes 6.5

minutes instead of 15 days.

Using Machine 2, one single epoch takes 2.4 seconds on average. Just-in-time com-

pilation does its best and reduces this down to 1350 epochs/s on average. In this case,

the termination of the one million epochs takes 12.5 minutes instead of 28 days.

Thus, JIT reduces the computation time by 4 orders of magnitude. The incredible

performance enhancement that JIT brings is one of the breakthroughs that made this

optimization procedure feasible to run. JIT has made this possible to optimize an
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SNN structure employing a complex neuron model without requiring giant computer

clusters, without burning a lot of power, and without waiting weeks to see the results.

5.2.6 Results

As a result of training, the network must have learned to sense the difference between

frozen noise patterns in Figure 5.7. In order to observe the behavior of the network

and compare with the initial version, the optimized network is simulated. Execution

results are shown in Figure 5.11.

Figure 5.11: Optimized Output of the Network to the Frozen Noise Patterns

Figure 5.11 shows that if the first noise pattern is sent to the network, neuron 1 (N1)
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fires almost constantly, while neuron 2 (N2) is almost silent. If the second noise

pattern is given, N2 fires almost constantly; and, N1 figures out not to fire after 100

milliseconds. In numbers, frozen noise 1 makes N1 fire at 164 Hz and N2 at 14 Hz;

keeping the FRR at 11.71. Frozen noise 2 makes N1 fire at 24 Hz and N2 at 122

Hz; keeping the FRR at 5.08. In fact, since N1 could not figure out at the first 100

ms, it fires at 90 Hz during the first 100 ms and fires at 7.5 Hz afterwards. The fact

that the higher rate and the lower rate is being clearly visible shows that neurons are

capable of distinguishing the patterns. The training made the FRRs increased by at

least 350%.

This delayed decision of N2 indicates that the network relies on temporal information

hidden in the time series. Considering that the firing rates of the noise patterns are

the same, only the spike timing can lead the network to sense the temporal nuances.

The reason that N2 fires at a high rate at the beginning might be that the first 100 ms

sample is not enough to discern these nuances.

In order to complete the comparison with the initial response, let’s also investigate the

optimized membrane response. Figure 5.12 gives the internal optimized membrane

dynamics evolved over time.

Figure shows that membrane potential reaches the firing threshold much faster on the

ON side but takes longer to reach the threshold on the OFF side. In other words,

the neuron promoted to fire learns to reduce the initial inter-spike intervals, and the

neuron motivated not to fire learns to postpone the firing. Since time constants are

not the subject of training, it can be deduced that the inhibitory connections played

an essential role in suppressing the opposite side neuron firing.

If the training was successful and made the network selective to the specific frozen

noise patterns, then there should be a one-to-one matching between neural firing and

the input. That is, the decision neurons should classify the noise patterns introduced

previously and the network should not be responsive to unintroduced noise records.

The test procedure showing that the network is not responsive to introduced noises is

presented in the following section.
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Figure 5.12: Optimized Membrane Response Against the Frozen Noise Patterns

5.2.7 Test

Optimization results show that this tiny recurrent spiking neural network of two Dy-

napSE neurons can distinguish one frozen noise from another. If the optimization

requirements were satisfied, then the network should respond clearly to recognized

noises and react randomly to anything else. In other words, decision neurons should

fire together or stay silent upon receiving a non-recognized signal. If one of them

fires and the other one stays silent, then it shows that the network can be deceived and

the decisions are not reliable.
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In order to test this, 1000 frozen noise patterns with the same mean frequency and

length are generated using the same process introduced in Section 5.2.1. To prove

the rate ratio is dramatically changed only for recognized signals, the FRRs between

decision neurons are recorded. A histogram of ratios is given in Figure 5.13.

Figure 5.13: Histogram of Firing Rate Ratios Given Test Samples

It’s seen that in 500 millisecond runs, neither the first nor the second neuron quiets

down, and neurons fire at similar rates. At the marginal case, the superior neurons fire

1.5 times higher than the other. Remember that training samples make the neurons

fire at least 5.0 times more than the other without excluding the decision overhead.

Excluding the first 100 ms, the minimum FRR increases to 10. Based on this, it can be

concluded that the network is distinctive on the training samples and idle on the test

samples. The next section introduces preliminary steps for converting the optimized

network to a device configuration.

5.2.8 Quantization

The weight matrices stored inside the layers are allowed to get any value in the sim-

ulation. However, the hardware does not have a free-of-choice weight setting fea-

ture. Only a 4-bit restricted connection-specific weight assignment is possible. While

deploying a network to Dynap-SE2, weight matrices can be converted to a device

configuration through a quantization phase.
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For Dynap-SE2, network weight configuration is a two-fold process. 4 base weight

parameters define the basis of the inner product space. Connection-specific digital

memory cells store the 4-bit binary weight masks, producing the exact weight current

that the synapse uses. The details of the weight handling are given in Section 4.2.

The object of quantization is to find a base weight current vector and a binary bit-mask

matrix such that they together reconstruct the desired weight matrix with minimum

deviation. A popular unsupervised machine learning method, AutoEncoder structure,

is used for this. In this approach, intermediate code representation indicates the base

weight currents, and the decoder weight matrix gives binary bit-masks. The imple-

mentation details of the AutoEncoder quantization are given in Section 4.2.4. The

following part investigates the AutoEncoder training.

5.2.8.1 AutroEncoder Training

The objective of the unsupervised AutoEncoder training is to find a hardware con-

figuration that reproduces the target weight matrix with minimum deviation. Mean

square error approach is used to calculate the matrix reconstruction loss. The recon-

struction loss simply computes the difference between absolute values of the original

weight matrix and the reconstructed version. It takes the squares of differences of

each cell and returns the mean value. The formula is given in Equation 4.4.

fMSE(WQ,W ) =
1

N ·M

N∑
i=0

M∑
j=0

∥WQ[i, j]−W [i, j]∥2 (4.4 revisited)

An AutoEncoder is trained for 50000 epochs to quantize the optimized weights. The

reconstruction loss decrase over the the epochs is given in Figure 5.14.

The figure shows that the quantization procedure cannot find a perfect match for

the target weight matrix but converge to a small error margin. The loss decreases

from 5.1 · 103 to 7.2 · 10−3, six orders of magnitude. Considering that there is

only 4-bit freedom in reconstructing a floating point value, it’s acceptable. The base

weights and the bitmasks together can now infer a weight matrix whose values are
√
7.2 · 10−3 = 0.085 off the target values on average. The next part investigates
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Figure 5.14: Weight Reconstruction Loss Change Over Epochs

effect of this deviation on the weight matrix reconstruction.

5.2.8.2 Weight Matrix Reconstruction

The optimized AutoEncoder provides a bit mask matrix and 4-bit base weight current

vector. The product of the base weight current vector and the bit mask reconstruct

the optimized weight matrix within an error margin. The exact conversion of the

recurrent weight matrix is given in Figure 5.15 to exemplify the process.

The weight matrix shown on top is the optimized weight matrix exported from the

DynapSim layer. In the simulation, the matrix values are multiplied by a reference

current parameter prior to computations. This eases the gradient computations by

keeping the weight scaling of other layers and DynapSim layers close to each other.

The quantization procedure finds a bit mask matrix and four base weight currents

denoted as weight bits to regenerate the optimized weight matrix. The bit masks

choose the weight bit currents to combine and inject into the input synapse. With

the parameters that the AutoEncoder proposed, the reconstructed weight matrix is the

one annotated by the "Quantized Weights" label in Figure 5.15.

The initial observation is that quantization ignores small weights and tries to provide

better coverage for the ones having a bigger absolute value. Please note that 60x2
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Figure 5.15: Quantized Recurrent Weights

input weights are also included in the weight quantization but are not shown here.

That’s the reason behind the autoencoder did not propose four weight bits as the four

current values observed in the recurrent weight matrix. The bigger the weight matrix,

the more the exact values are expected to deviate from the original target. The next

section examines weight deviation in general and its importance on behavior.

5.2.8.3 Weight Deviation

Quantized values should be close to the original values, but most importantly, the

general behavior of the network should be preserved. In order to understand how dif-

ferent the weight matrix is from the original, let’s define a measure of closeness that

considers the value’s significance in the computation. In this measure, the difference

between the target and the reconstructed matrix should be involved, and the ratio be-

tween the value and the absolute maximum weight value should scale the difference.

Equation 5.5, defines such a measure named as scaled percent difference.
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LSPD = 100 ·
Wquantized −Wtarget

Wtarget
·

∥Wtarget∥
max(∥Wglobal∥)

(5.5)

The first part finds the rate of change, and the second part weight this change ac-

cording to the weight’s global prominence. Wglobal term in the equation refers to a

combination of all weight matrices included in the quantization. Figure 5.16, gives

the scaled percent difference measurement on recurrent weight matrix cells.

Figure 5.16: Scaled Percent Difference Measurement on Recurrent Weights

The figure shows that even though the absolute differences between quantized and

target weights seem a lot, the absolute relative divergence is under 7.2 %. Indeed, the

recurrent weight matrix is only a portion of 3% of the input weight matrix. Investi-

gation of the input weight matrix provides better insight. Figure 5.17 demonstrates

a histogram of the distribution of scaled percent weight differences of quantized and

original input weights.

The histogram shows that most of the scaled percent difference values are in between

-10 and 10 percent. Remember that the device mismatch effect is expected to make

the parameter values deviate from the target values by 20%. Therefore, in theory,

the network should be robust to this much deviation, and the general behavior should

not be affected much. If the network can still preserve the behavior, the quantized

network is still serviceable. The following section explores the network’s response to

frozen noises with quantized weights.
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Figure 5.17: Scaled Percent Difference Measurement on Input Weights

5.2.8.4 Quantized Simulation

Previously, the optimized network has been shown to distinguish the recognized noise

patterns clearly. Then to be able to run the network on the chip, weight quantization

has been required, and it has resulted in a significant deviation from the optimized

values. Now, the simulator is reconstructed with quantized weights to observe how

the quantization affects the behavior, and a simulation is executed using the same

training samples. The response of the quantized network is given in Figure 5.18.

In Figure 5.18, it’s seen that since the quantization changes the optimized weights, the

network response also slightly deviates from the un-quantized version. Fortunately,

the network still preserves its classification capability. In this new position, the OFF

neuron fires at a low rate instead of being almost silent. The difference between on

and off state is observable and measurable. Here, in this case, frozen noise 1 (FN1)

makes N1 fire at 136 Hz and N2 at 58 Hz; keeping the FRR at 2.34. Frozen noise 2

(FN2) makes N1 fire at 58 Hz and N2 at 144 Hz; keeping the FRR at 2.48.

The quantization decreased the N1 firing rate from 164 to 136 Hz by 17 % and in-

creased the N2 firing rate from 14 to 58 Hz by 300 % on the FN1 classification. On

the other side, the N1 firing rate increased from 24 to 58 Hz by 140 %; and the N2

firing rate increased from 122 to 144 by 18 % on the FN2 classification. Although

quantization acted in a way that closed the gap between the ON and OFF state firing
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Figure 5.18: Quantized Network Output to the Frozen Noise Patterns

rates, the rate difference between states is still prominent. The minimum FRR is re-

duced by 53 %; however, neurons fire nearly 2.5 times more than their opponents in

the worst case.

To conclude that the network is still usable, the test samples should be controlled as

well. Remember that 1000 test samples are generated using the same process that

training samples are generated. Figure 5.19 provides an histogram of firing rate ratios

between decision neruons over 1000 test samples.

The histogram shows that the network’s decision mechanism was not completely bro-

ken by the quantization. The firing rate responses of the neurons are still similar to

each other when the test samples are used in the simulation. In the marginal case, the

superior neuron fires 1.6 times more than its opponent, and the mean FRR is 1.17.

109



Figure 5.19: Histogram of Firing Rate Ratios with Quantized Weights

Therefore, it can be concluded that the firing rate difference in simulation with a rec-

ognized noise pattern is still significant. In short, the network is still useable, and

weight quantization does not cause the behavior to go against the optimization re-

quirements. The next section explains how to deploy a network to a chip and presents

the recorded hardware emulation results.

5.2.9 Deployment

Deploying a network to the chip requires translating the neuron and synapse param-

eters and finding a network connectivity configuration. The parameter translation

means finding a bias generator setting that expresses the current values closely. The

current values used in the simulator are translated to coarse and fine values using bias

generator lookup tables. It requires finding the closest possible current value that the

bias generator could provide with available coarse and fine values. The neuron and

synapse parameters translation are discussed in detail in Section ??.

The optimized weight matrices refer to a connectivity configuration but could not be

applied to the chip directly. The quantization procedure finds the best possible base

weight currents and weight masks reconstructing the weight matrices. The weight

masks are dispatched to digital memory blocks embedded in individual neural units.

The base weights are translated to coarse-fine values similar to other bias parameters.
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The weight values are allowed to be negative or positive in the simulation. How-

ever, the sign does not correspond to an actual attribute in the hardware. The sign is

accepted to represent the synapse’s excitation or inhibition behavior and is used to de-

termine the synapse type. If the value is negative, the configuration pipeline chooses

the inhibitory GABA synapse; if the value is positive, it sets up an excitatory AMPA

synapse. In this way, the negative and positive weights produce the desired effect on

the post-synaptic membrane.

The network parameters and quantized weights are used to configure a hardware net-

work on the Dynap-SE2 chip. The frozen noise patterns are converted to real-time

AER sequences. Each event shown in the noise pattern is converted to a data pack-

age encapsulating the time and the address. In this way, the time series can drive a

real-time device emulation.

An on-board FPGA circuit converts AER events to digital pulses that stimulate the

synaptic input gates of the neurons. Analog neurons process the inputs and produce

spikes correspondingly. Whenever a neuron fires, digital circuits on FPGA senses the

event and encapsulate the timestamp and the source address as an AER event. These

output AER events are temporarily stored in buffers implemented inside FPGA, wait-

ing for real-time reading. The output of the emulation is recorded as AER event

sequences and visualized in a similar way that the other event sequences are visu-

alized. Figure 5.20 visualizes the response of the hardware emulation to the frozen

noise pattern 1.

In all the recordings, the AER events with tag 2021 are sourced from neuron 1 (N1),

and the AER events with tag 2022 are sourced from neuron 2 (N2). The tags of the

events are indicated in the channel axis in parenthesis.

The result shows that the network’s response is much slower than the simulation.

Instead of firing continuously, the ON neuron fires at around 18 Hz. On the behavioral

aspect, the OFF neuron just fires once, and the ON neuron fires at an apparently

distinguishable rate. It shows that the information is preserved, and neuron 1 can

classify frozen noise pattern 1. To show that the network preserves the information

required to recognize the frozen noise 2 as well, Figure 5.21 visualizes the response

of the hardware emulation to the frozen noise pattern 2.
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Figure 5.20: Emulated Network Output with Frozen Noise 1

In this case, the network responds well to the pattern, and N1 does not fire at all.

The firing rate is around 35 Hz. The rate is much slower than the simulation, yet the

network’s classification decision can clearly be identified.

Figure 5.20 and Figure 5.21 together shows that the quantization and device mismatch

together could not cause an information loss completely. The hidden temporal infor-

mation that the network has learned is still there, and the network can differentiate

between training samples.

Lastly, the response of the hardware emulation to one of the test samples is given in

Figure 5.22.
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Figure 5.21: Emulated Network Output with Frozen Noise 2

The test run shows that both neurons fire at the same rate given an unrecognized

signal. The reason is that the test sample lacks hidden temporal patterns which sup-

press one of the neurons. Altogether, the results prove that the optimized network

parameters are translated into a hardware configuration without losing the ability to

perceive hidden temporal relations. The results are observed to be compatible with

the simulation runs. The next section discusses the experiment’s outcomes and scope

of influence.
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Figure 5.22: Emulated Network Output with Frozen Noise 3

5.2.10 Discussion

The frozen noise classification is a relatively challenging task for Dynap-SE2. It’s not

because the task is hard, but because the environment is extremely noisy and the chip

constrains the parameters tightly. The noise mainly stems from the device mismatch

effect faced at almost every level. On top of the mismatch noise, operating the circuits

in the nano-pico ampere range cause the small variations to affect the overall behavior

prominently. Furthermore, the neuron model complexity makes it hard to simulate the

network offline and optimize it. This experiment shows that it’s possible to perform

a gradient based optimization using the simulator toolchain and deploy the optimized

network to the chip preserving the classification skills that learnt.
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5.2.10.1 Summary

The task instructs the network to recognize selected frozen noise patterns. The ex-

pected response from the network is that it would increase a neuron’s firing activity

while decreasing the other’s firing rate significantly. If the network receives an un-

recognized signal, then neurons should not indicate a decision. That is, none of the

neuron firing responses should come into prominence by being significantly higher

than the others. All decision neurons should fire at a similar rate.

The network consists of two neurons with 60 input and two recurrent connections per

neuron. In other words, neurons accept 60-channel external input and stretch their

synapses to themselves to include internal spikes to the process. The network takes a

discrete time series as input and produces a discrete time series as output. Therefore

the network performs a time simulation and computes the internal dynamics and state

evolutions at each time step.

To train the network, mean square error loss is used. The loss punishes each unfired

time step of the ON neuron and each event of the OFF neuron. In this way, it makes

one of the neurons increase its firing rate upon receiving a recognized noise and makes

the other decrease its firing rate dramatically.

Similar spiking neural network simulations take very long times to train. However,

it’s shown that with the help of just-in-time compilation support, the duration of one

forward-backward pass cycle is reduced from 2.40 seconds to 0.75 milliseconds. That

allows executing 1 million training epochs in 12.5 minutes instead of 28 days.

Training results showed that the neurons could clearly distinguish between the rec-

ognized frozen noises. In the simulation, one of them fires almost constantly, and

the other one fires hardly ever. However, even though training results are completely

satisfactory, the training is not sufficient to make this network run on the chip. First,

a weight quantization, then a parameter translation steps chase the optimization.

The weight quantization step searches for a digital memory configuration and four

base weight currents. The aim is to produce a similar effect as the optimized weight

matrix. The optimized weight matrix cannot be loaded to the chip because it only
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supports a 4-bit weight configuration. It’s shown that in the quantization step, the

network’s response slightly changes, but the overall behavior is preserved. Instead of

firing hardly ever, the OFF neurons fire at a lower rate, but the difference stays clearly

observable between the ON and OFF neurons.

The deployment step comes after the quantization. The neural parameters and weight

matrices are translated to a hardware configuration and loaded to the chip. The time

series are converted to AER data packages to emulate the network and sent to the

chip. FPGA circuits located on board converts the AER packages to voltage pulses

driving the analog silicon neuron circuits. Results show that despite the information

loss resulting from the quantization and the device mismatch, the network behaves in

the optimized way.

5.2.10.2 Analysis of Results

To measure the neurons’ capability to distinguish the frozen noise patterns, the firing

rate ratio (FRR) explained in Section 5.2.2 is used. If the FRR is significantly higher,

it shows that the neuron has a decision because one of the neurons fired considerably

less and one of them fired considerably high. Table 5.5 lists the firing responses

recorded from the simulated, quantized, and emulated networks upon sending frozen

noise 1 (FN1), frozen noise 2 (FN2), and the test samples.

Table 5.5: Firing Rate Response Comparison in Hz

Frozen Noise
Simulated Quantized Emulated

N1 N2 FRR N1 N2 FRR N1 N2 FRR

FN1 164 14 11.7 136 58 2.3 18 2 9.0

FN2 24 122 5.1 58 144 2.5 0 36 ∞

TEST (mean) 138 123 1.1 143 123 1.2 17 14 1.9

TEST (max FRR) 150 100 1.5 154 94 1.6 32 10 3.2

The first test row lists the mean values of attributes obtained running the simulation

with 1000 different samples. The second test row shows the marginal values pro-

ducing the maximum FRR. The emulation test results are obtained by 10 different
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samples instead of 1000, because executing 1000 tests in real-time is infeasible con-

sidering operation overheads.

The experiment results show that the quantization operation costs an information loss

converting an optimized network to a hardware configuration. However, the decision

mechanism stay functional despite the information loss resulted from the quantization

and the device mismatch. The emulated network is shown to be working as expected.

Let’s investigate FRR fluctuations over the operations. Note that a higher FRR is an

indicator of reliance on the decision. Ideally, it should be infinite for indicating a

decision and 1 for indicating that the pattern is not recognized. For the frozen noise

1 (FN1) decision, the firing rate ratio (FRR) diminish by 80%, degrading from 11.7

to 2.3. For the FN2 decision, the FRR diminish by 51%, degrading from 5.1 to 2.5.

The maximum FRR reading obtained over 1000 test samples is 1.5 in the optimized

network and 1.6 in the quantized network. Therefore, putting a threshold on the

FRR=2 level can provide a reliable decision in each case. The overall behavior of the

network can bypass the aliasing effect of quantization in this way.

The device emulation responds slower than the simulation. Since each device has

a unique hardware makeup, the device’s reaction is impossible to foresee without

preliminary statistical analysis. The uniqueness stems from many sources, includ-

ing the impurities caused by analog components’ manufacturing process, the device

mismatch effect, and environmental conditions. Since Dynap-SE consists of sub-

threshold analog computational units, the simulation and emulation results are not

expected to be the same. The aim is to deploy the same network to different chips,

each reacting to the input in their own way but keeping the overall behavior the same.

Therefore, the analog neurons firing less than the simulator should not be a problem.

For FN1 classificaiton, the firing rate of the N1 decreased by 89% falling down from

164 to 18 Hz. For FN2 classification the firing rate of N2 decreased by 70% falling

down from 122 to 36 Hz. The advantageous outcome is that the OFF state firing activ-

ity is almost silenced in both cases. In FN1, the OFF state neuron N2 just fires once,

and for FN2, the OFF state neuron N1 does not fire at all in 500 ms run. Therefore,

the behavior of the network is observed to converge the ideal case in emulation.
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For the test case, randomly picked test samples are introduced to the hardware and

the mean value of 10 tests are listed. Since working with hardware is a real time

operation, executing 1000 test runs are infeasible. Each execution requires at least

5 seconds of operation overhead including the time required to listen FPGA buffers,

making sure that hardware is at the idle state and recording the results. Also, when

the chip gets heated inevitably, the the processor’s behavior alters. Therefore, it’s not

feasible to execute 1000 execution tests by hand manually.

The hardware tests has shows that the neuron’s classification abilities are preserved

in the deployment phase as well. The maximum FRR recorded in the tests is 3.2 and

it’s only 1/3 of the minimum FRR recorded in the test cases. Therefore, the network’s

decision can clearly be identified.

5.2.10.3 Outcomes

Hereby this experiment proves that the novel methodology that DynapSim proposes

for offline training is successful. Some of the advantages that DynapSim offers are

fast offline training, unsupervised quantization, and automatic parameter translation.

The training pipeline is shown to run 1 million epochs in minutes instead of weeks

exploiting just-in-time compilation features of JAX in household computers. It’s a

huge step towards building larger applications.

The deployment strategy offers an unsupervised method for weight quantization, tak-

ing the human biasing out from the pipeline. Existing methods are highly depended

on human resources deciding the network parameters, which makes the deployment

a long and painful process. The AutoEncoder method that DynapSim uses, takes this

responsibility from the human users and finds the best possible connectivity config-

uration. The resulting quantized network’s parameters are translated to a hardware

configuration automatically. In this way, emulating an offline trained network be-

comes possible. This application is the first of its kind in terms that a network is

optimized offline using backpropagation and deployed to the Dynap-SE2 chip. Al-

though the task is relatively simple, it proposes a novel methodology for application

development targeting Dynap-SE2. The approach, metrics, and evaluation strategies

can easily be applied to more complex tasks.
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CHAPTER 6

CONCLUSION

Neuromorphic computing is an emerging technology that aims to bring brain-like pro-

cessing capabilities to the computational domain. Today, few processors and sensor

implementations exist in the market, varying in circuit technology and signal type.

Dynap-SE is one of the most advanced architectures. The distinction of the Dynap-

SE family is that it has an asynchronous mixed-signal structure whose analog compo-

nents operate in the subthreshold operation range. This makes the chip an ultra-low

power and ultra-low latency application delivery candidate. However, the difficulty of

use prevents this novel architecture from being a widely used spiking neural network

accelerator.

At the time being, delivering an end-to-end application working on the newest mem-

ber of the family, Dynap-SE2, requires a long process of hand-crafting. It requires

adjusting 70 analog circuit parameters per neural core and manually assigning the

connections between the neurons. Moreover, the analog device mismatch issue in-

creases the level of complexity. Setting an analog hardware parameter can only set

the mean value of a Gaussian distribution. In practice, each individual chip has a

unique frozen parameter noise and each neuron experiences the parameters slightly

differently. Therefore, networks running on this chip are subject to a certain level of

stochasticity.

If this stochasticity can be exploited properly, it turns into a feature rather than being

an issue. True randomness and unpredictability are one of the features that modern

computers miss. Nevertheless, each individual Dynap-SE2 chip has a slightly differ-

ent parameter projection which is also affected by current environmental conditions.

In order to exploit this randomness, an application software support is necessary.
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Lacking the software tools that would ease the application deployment is one of the

reasons behind this family of processors can only be the subject of high-end academic

and industrial research.

By hand-crafting the parameters, an application can run successfully on one unique

chip. However, it’s hard to assure that an hand-crafted application runs on a mil-

lion chips that came out of various production lines. This thesis targets this gap and

provides a useful software toolchain to bring a commercial application development

potential to Dynap-SE2. The toolchain provides the necessary mechanisms to per-

form an offline optimization on a spiking neural network that can run on different

chips preserving the behavior.

The output of this work, DynapSim, provides an abstract Dynap-SE machine that

operates in the same parameter space as Dynap-SE family processors. DynapSim

does not simulate the hardware numerically precisely but executes a fast and an ap-

proximate simulation. It uses forward Euler updates to predict the time-dependent

dynamics and solves the characteristic circuit transfer functions in time. In principle,

the device and the simulator do not react exactly the same to the same input. Since

two physical chips would not react the same as well, it should not create a problem

in application development. The networks to be deployed to a chip should be robust

against parameter variations. To be able to stress this more, DynapSim provides a

mismatch simulation feature that can alter the parameter projection.

Operating an approximate simulation that has the potential to generalize Dynap-SE

processors has advantages over a bulky realistic simulation. First, it runs a lot faster

than a transistor-level accurate simulator. It makes the optimization pipeline terminate

in feasible time windows. In Chapter 5, the frozen noise classification task is shown

to be optimized in minutes despite running over one million epochs.

Second, the DynapSim methodology does not rely on exact values; it focuses on

reproducing a behavior minimizing the dependence on values. The values here refer

to the exact timing of the spikes, the voltage & current amplitudes, and even the time

constants. This way, abstract machine would have a generalization capacity instead

of overfitting to a specific chip layout. Only a simulator with generalization capability

could bring neuromorphic mixed-signal applications to our daily lives.
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Experiments shown that with the methodology proposed, a network can be optimized

offline and deployed to a chip without losing the trained behavior. Almost each step

in the workflow, starting from designing a spiking neural network (SNN) to deploying

this to a chip, cause a significant information loss.

First, SNN training delivers a floating point weight matrix that does not fit to the hard-

ware. A device configuration infering the same weighted connectivity is found using

a novel unsupervised quantization strategy. The proposed strategy uses autoencoders

to find the base weight currents and 4-bit weight masks, reproducing the optimized

behavior. At this stage, 32-bit floating point resolution is reduced to 4-bit, causing a

significant information loss.

Right after the quantization, the network parameters are translated to bias generator

configurations. This stage provides a conversion that highly depends on experimen-

tally obtained harcoded values. As an example, a time constant is first translated to a

leakage current using a capacitor value in the femto-pico Farad range. Then this cur-

rent ranging from pico-amperes to micro-amperes is converted to a digital to analog

converter configuration. This translation stage does not provide reliable current or

voltage values because each step is highly susceptible to noise and device mismatch.

Currently, it’s possible to translate 23 parameters out of 70, in between the DynapSim

and Dynap-SE2. These 23 parameters comprise the main functionality of the proces-

sor and leave out the advanced features. Since this stage is incapable of providing a

reliable translation, it accumulates more information loss.

Despite the noisy environment of the chip, unreliable translations and 32 to 4-bit res-

olution reduction, it’s shown that an optimized network could survive. The frozen

noise task showed that the emulated network on device managed to classify the train-

ing samples and was not deceived by the test samples.

To conclude, this thesis work has produced DynapSim, an application software sup-

port toolchain for the Dynap-SE mixed signal neuromorphic processor family. At

this stage, it has shown its potential being an approximate simulation counterpart for

Dynap-SE2, which also supports optimization and the deployment pipeline. More-

over, it does not only provide optimization and the deployment support, but also offers

an offline testing environment which allows investigating each intermediate step in
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dynamical computations. DynapSim is young, yet it paves the way for building com-

mercial applications using mixed signal neuromorphic technologies. In the following

days, more time will be invested in increasing the simulation coverage, enhancing the

user experience and proposing more use cases.
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