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ABSTRACT

Novel Optimization Models to Generalize Deep Metric Learning

Gürbüz, Yetı̇ Z.
Ph.D., Department of Electrical and Electronics Eng.

Supervisor: Prof. Dr. A. Aydın ALATAN

August 2022, 128 pages

Deep metric learning (DML) aims to fit a parametric embedding function to
data of semantic information (e.g. images) so that l2-distance between embedded
samples is low whenever they share similar semantic entities. An embedding
function of such behavior is attained by minimizing empirical expected pairwise
loss that penalizes inter-/intra-class proximity violations in embedding space.
Proxy-based methods which use a learnable embedding vector per class in their
loss formulation are state-of-the-art. We first address characterizing generalization
error of proxy-based methods. We reformulate DML as a chance-constrained
optimization problem and through careful theoretical analysis, we show that DML
with better generalization guarantees can be achieved by iteratively minimizing
a proxy-based loss and re-initializing proxies with embeddings of new samples.
Second, we consider critical desideratum for DML: generalization to unseen data.
We analyze global average pooling (GAP) which is an effective architectural
choice to aggregate information in DML. With theoretical and empirical supports,
we explain effectiveness of GAP by considering each feature vector as representing
a different semantic entity and GAP as a convex combination of them. Following
this perspective, we generalize GAP and propose a learnable generalized sum
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pooling method (GSP) improving GAP with two distinct abilities: i) the ability
to choose a subset of semantic entities, effectively learning to ignore nuisance
information, and ii) learning the weights corresponding to the importance of each
entity. We further propose a zero-shot loss to ease the learning of GSP. We show
the effectiveness of our contributions with extensive evaluations on 4 popular
DML benchmarks.

Keywords: metric learning, alternating projections, feature selection, zero-shot
loss
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ÖZ

DERİN METRİK ÖĞRENMEYİ GENELLEYEN YENİLİKÇİ
OPTİMİZASYON MODELLERİ

Gürbüz, Yetı̇ Z.
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın ALATAN

Ağustos 2022, 128 sayfa

Derin metrik öğrenme (DMÖ), imge gibi anlamsal bilgi içeren verilere para-
metrik bir fonksiyonun, fonksiyonun değerleri arasındaki l2-uzaklığı anlamsal
yakınlığı yansıtacak şekilde yakıştırılmasını amaçlar. Bu davranışa sahip fonk-
siyonlar görüntü uzayındaki ikişerli sınıf-içi/-dışı yakınlık kısıtlarının ihlalini
cezalandıran ampirik beklenen kayıp değerlerinin en-küçültülmesi ile hesapla-
nır. Kayıp formülasyonlarında her sınıf için öğrenilebilir görüntü vektörü içeren
vekil-tabanlı yaklaşımlar en iyilerdir. Bu çalışmada öncelikle vekil-tabanlı yak-
laşımların genelleştirme hatalarının karakterizasyonu incelenmiştir. DMÖ bir
şans-kısıtlı en-iyileme problemi olarak yeniden tanımlanmıştır. Özenli teorik
analiz ile yinelemeli olarak vekil-tabanlı kayıpların en-küçültülmesi ve vekillerin
yeni örnekler ile ilklendirilmesinin DMÖ için daha iyi genelleme sağlayabileceği
gösterilmiştir. İkincil olarak, DMÖ için elzem gereklilik olan eğitim-dışı sınıflar
üzerine genelleme çalışılmıştır. Sıkça kullanılan etkin bir bilgi ortaklama yön-
temi olan bütünsel ortalama (BO) incelenmiştir. Teorik ve deneysel bulgular
ile BO’nun etkinliği her bir öznitelik vektörünün anlamsal bir olguyu temsil
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etmesi ve BO’nun bu olguların dışbükey bileşimi olmasıyla açıklanmıştır. Bu
kapsamda BO, öğrenilebilir bir ortaklama yöntemi ile genelleştirilmiştir. Önerilen
yöntem BO’ya iki ayrık özellik kazandırmaktadır: i) istenmeyen bilgiyi atmayı
öğrenerek anlamsal olguların altkümesini seçebilme, ii) her olgunun önemini
gözeten ağırlıkları öğrenebilme. Ek olarak, önerilen yöntemin eğitim-dışı sınıflar
için genelleyebilmesine yönelik yenilikçi bir ceza fonksiyonu biçimlendirilmiştir.
Bu tez çalışması kapsamında sunulan katkıların etkinliği yaygın kullanılan 4 adet
referans veri-seti üzerinde yapılan kapsamlı deneysel çalışmalar ile gösterilmiştir.

Anahtar Kelimeler: metrik öğrenme, yinelemeli izdüşürme, öznitelik seçimi, sıfır-
yardımlı tahmin
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CHAPTER 1

INTRODUCTION

Typical approaches of many machine learning applications (e.g. visual object
tracking [2], image captioning [3], object detection [4], semantic segmentation [5]
etc.) implicitly or explicitly build on some notion of semantic similarity of
the input data. Distance metric learning is the problem of finding a proper
function that satisfies metric axioms and assesses the semantic dissimilarity of
the data samples from its domain. Being the core of many vision tasks, distance
metric learning for images is of ever-growing interest and has been extensively
studied [6, 7].

In modern approaches, image distance metric learning is generally realized by
learning the parameters of an embedding function so that the semantically similar
samples are embedded to the small vicinity in the representation space as the
dissimilar ones are placed relatively apart in the Euclidean sense (i.e.,l2 distance).
Such a task is termed deep metric learning (DML).

DML problem is attempted mostly by contrastive learning which is built on
tailoring a loss function penalizing/encouraging pairwise proximity based on l2
distance of the sample pairs. Contrastive learning can be supervised (i.e.,with
labeled data) or unsupervised. The labelling can be as weak as binary labels
indicating whether the pairs are of the same class. The unsupervised setting
is typically converted to self-supervised [8] via data augmentation where a
positive sample (i.e.,sample of the same class) is generated by applying some
transformations to the original sample. In supervised setting, the function
parameters are learned through minimizing the empirical expected loss with
pairs sampled from a class-labelled training dataset.
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Once we employ supervised training with class-labelled dataset, DML problem
seems to be reduced to a classification problem. With that being said, DML
is a more restrictive problem in which we do not only deal with categorizing
the images but also capturing the relative orderings of the images from the
same category. Moreover, one desired behavior for the embedding function is
generalization to unseen classes, namely, zero-shot performance. In that manner,
DML is well-suited for the tasks that are built on nearest-neighbour classification,
e.g. content based image retrieval. Therefore, if we solely solve a classification
problem to obtain the embedding function, then such a function will probably
be a sub-optimal one for DML-related tasks.

In this dissertation, we address DML in a supervised setting. Upon comprehensive
study of the literature, we focus on theoretically explaining how or why the
existing approaches succeed. In particular we employ mathematical modeling
(i.e.,optimization models) to formulate general frameworks whose corner cases
are the typical approaches in the literature. Accordingly, we try to discover
rooms for improvement for the generalization of DML methods. To this end,
we propose a mathematical programming for DML, as well as two methods for
the embedding function. In the following sections, we formally introduce DML
problem and motive our study upon a short review of state-of-the-art (SOTA)
approaches.

1.1 Problem Formulation

In this section, we formally define the problem of DML and set up the base
notation for the rest of the thesis.

In typical c-class supervised DML, we consider the data distribution pX xY over
X xY where X is the space of data points (e.g. images) and Y = [c] is the space of
labels with [n] := {1, . . . , n}. Given independent and identically distributed (iid.)
samples from pX xY as {(xi, yi)}, deep metric learning problem aims to find the
parameters θ of an embedding function e(·; θ): X → Rd such that the Euclidean
distance in the space of embeddings is consistent with the label information
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where d is the embedding dimension. More specifically, the parametric distance
∥xi 9xj∥eθ

:= ∥e(xi; θ) 9 e(xj ; θ)∥2 is small, whenever yi = yj , and large, if yi ̸= yj .
In order to enable learning, this requirement is represented via loss function
l((xi, yi), (xj, yj); θ) of pairwise distance (e.g. contrastive [9] l((xi, yi), (xj, yj); θ) =
max{0,1yi=yj

(∥xi 9 xj∥eθ
− β) + α} where 1A is an indicator function whose

components are equal to 1, whenever A is true, and equal to 91 otherwise).

The typical learning mechanism is gradient descent of an empirical risk function
defined over a batch of data points B ∼ pX xY . To simplify notation throughout
the writing, we will use b = {b(i) | xi, yi ∈ B}i to index the samples in a batch.
Then, the typical empirical risk function is defined as:

LDML(b; θ) := 1
|b|2

∑
i∈b

∑
j∈b

l((xi, yi), (xj, yj); θ) . (1.1.1)

In this thesis, we first consider improving the generalization performance in terms
of the expected loss:

LDML(θ) = EpX xY

[
ℓ((x, y), (x′, y′); θ)

]
. (1.1.2)

We then address unseen class generalization of the embedding function e(·; θ).

1.2 Evaluation of DML Methods

DML methods are typically evaluated on image retrieval task, where there are
the query and the reference images. A query is an image for which similar images
are to be retrieved, and the references are the images in the searchable database.
The well-accepted evaluation metrics are precision at 1 (P@1), precision at R
(P@R), and mean average precision (MAP@R) at R, where R is defined for each
query and is the total number of true references as the query. P@1 sometimes
referred as recall at 1 (R@1). We next define the aforementioned metrics.

P@1: We consider the nearest reference to the query. The score for that query is
1 if the reference is of the same class, 0 otherwise. Average over all queries gives
P@1 metric. Albeit used in common, P@1 is a rather greedy metric to assess
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the quality of the embedding space geometry, since it only considers the nearest
neighbour retrieval performance.

P@R: For a query, i, we find Ri nearest references to the query and let ri be the
number of true references in those Ri-neighbourhood. The score for that query is
P@Ri = ri/Ri. Average over all queries gives P@R metric, i.e.,P@R = 1

n

∑
i∈[n]

P@Ri,

where n is the number of queries.

MAP@R: For a query, i, we define MAP@Ri := 1
Ri

∑
i∈[Ri]

P (i), where P (i) =

P@Ri if ith retrieval is correct or 0 otherwise. Average over all queries gives
MAP@R metric, i.e.,MAP@R = 1

n

∑
i∈[n]

MAP@Ri, where n is the number of

queries. MAP@R is shown to better assess the clustering performance in the
embedding space [6]. Hence, it is recently considered as a less noisy evaluation
metric to evaluate the methods.

1.3 Summary of SOTA Approaches and Our Motivation

Primary thrusts in DML include i) tailoring pairwise loss terms [6] that penalize
the violations of the desired intra- and inter-class proximity constraints, ii) pair
mining [7] to deliberately select mini-batches for gradient updates, iii) generating
informative samples [10–13] to improve unseen class generalization, and iv)
augmenting the mini-batches with virtual embeddings, called proxies [14, 15]
to enhance the gradient updates with more holistic information. To improve
generalization; learning theoretic ideas [16,17], intra-batch feature aggregation [1]
and further regularization terms [18,19] are utilized. To go beyond of a single
model, ensemble [20–22] and multi-task based approaches [23,24] are also used.

Such advances report their improvements to previous SOTA with respect to R@1
metric. Recent independent studies [6, 7] reveal that the evaluation protocol
of the most methods might fail to reflect the true order of the improvements
due to both the experimental setting and the R@1 evaluation metric. Indeed,
reevaluation of the existing SOTA using P@R and MAP@R metrics showcase
that the relative improvements over the previous SOTA differ from the that of
R@1 and the ranking of the methods with respect to MAP@R metric changes.
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Proxy-based methods are observed to be SOTA especially in large-scale problems
(in terms of #classes).

We observe that the motivation of using proxies is mostly coming from intuition
and that intuition is exploiting more pairs in the computation of the empirical
loss for the gradient update. In other words, introduction of proxies is based on
engineered solutions and the motivation is seemingly lacking a proper theoretical
explanation. For instance, increasing the proxies [25] is also exploited and
shown to improve R@1 performance while later shown to degrade MAP@R [6].
Nevertheless, there lacks a theoretical answer to a critical question "How does
increasing proxies help?".

Our first motivation is attempting the question above and we find that charac-
terizing generalization performance of proxy-based DML can be a decisive step
towards theoretically addressing that question. To this end, we approach DML
differently by posing it as a feasibility problem of chance constraints. We then
propose a mathematical programming method that can be applied with variety
of existing DML losses.

Our formulations are based on test and training samples to be drawn from the
same distribution. However, the intended behaviour for a trained embedding
function is generalization to unseen classes (i.e.,zero-shot performance). We
empirically observe that the generalization in training domain indeed transfer
to the test domain. Then, another critical question we want to answer is
"How does embedding function transfer its training?" In that manner, we study
the implications of local feature aggregation which is a common component in
embedding functions of DML methods. Building on such implications, we propose
a learnable feature aggregation layer with a zero-shot prediction constraint. Again,
we propose a method that can be applied with existing DML methods.

1.4 Contributions

As the result of our study on characterizing the generalization performance of
proxy-based DML methods, our contributions are as follows:
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• We reformulate DML as a chance constrained feasibility problem.

• We expand on the discussions of the works on the generalization bounds
to characterize generalization of proxy-based DML as well as to formally
write the feasibility problem as a set intersection to be solved by iterative
projections.

• We show that solution of a proxy-based DML indeed corresponds to a
solution of some chance constraints and thus, we build a bridge between
proxy-based methods and the set intersection solution suggested by the
theory.

• We introduce a novel way to utilize arbitrary number of proxies per class.

As the result of our study on the implications of local feature aggregation on the
global embedding vectors, our contributions are as follows:

• We show that local feature aggregation with global average pooling (GAP)
corresponds to a convex combination of particular prototype vectors of
some semantic entity.

• We introduce a general formulation for weighted sum pooling.

• We formulate local feature selection as an optimization problem which
admits closed form gradient expression without matrix inversion.

• We propose a meta-learning based zero-shot regularization term to explicitly
impose unseen class generalization to the DML problem.

1.5 The Outline of the Thesis

We discuss the works that are most related to ours in Chapter 2 as well as how
we differ from them. We reformulate DML problem as a chance constrained
optimization in Chapter 3 and propose a mathematical programming method
to solve it. We provide the related empirical study to validate our claims and
compare with the SOTA within the chapter. Chapter 4 is devoted to interpreting
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the behavior of global average pooling and its role in unseen class generalization.
Building on the implications of Chapter 4, we formulate a learnable version of
weighted average pooling in Chapter 5 and propose an algorithm to learn it
with zero-shot prediction constraint. We also provide the related empirical study
to validate our claims and compare our method with the SOTA in Chapter 5.
Finally, we summarize our work in Ch. 6 and draw conclusions from the empirical
studies.
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CHAPTER 2

RELATED WORK

In this chapter we discuss the works that are related to ours. Briefly, we mostly
present deep metric learning literature and how we differ from the existing
approaches. We also discuss some literature from zero-shot and few-shot learning
owing to their relation to our work. Similarly, we recapitulate feature pooling
mechanisms from image retrieval domain and provide a short review for the
optimal transport based selection operators, since our feature aggregation method
shares similar concepts.

2.1 Metric Learning

We restrict ourselves to the distance metric learning problem which is posed
as learning the parameters, θ, of an embedding function, e(·; θ), so that the
parametric distance, ∥ · 9 · ∥eθ

, between the data samples reflects their semantic
dissimilarity. Pioneer metric learning methods consider e as a linear mapping
[26–28] that later inspire most of state-of-the-art (SOTA) frameworks in which e

is a nonlinear mapping realized by deep neural networks. Such methods that use
a deep neural network, in particular convolutional neural network (CNN), as the
feature extraction backbone are termed deep metric learning (DML) methods.
We cover the advances in supervised DML. Unsupervised DML [8] mostly inherits
the loss functions and feature extraction strategies from supervised DML. They
differ in that unsupervised (i.e.,self-supervised) DML exploit data augmentation
techniques to generate positive samples which are the transformed version of the
original sample. Thus, in the rest of the section, we focus on DML approaches
for supervised setting.
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2.1.1 Ranking Losses in DML

Learning a proper linear mapping for the parametric distance is initially formu-
lated as a convex optimization problem in [26]. The objective is minimizing the
parametric distances among the samples of the same classes. To prevent null
mappings, a constraint that enforces mapping of the samples from different classes
to be at least separated by some margin is added to the formulation. Moving
that constraint to the objective via hinge loss [29] results in the well-known
contrastive loss:

ℓcntrv((xi, yi), (xj, yj); θ) = max{0, yij ∥xi 9 xj∥eθ
}+ max{0, yij (∥xi 9 xj∥eθ

− ε)},
(2.1.1)

where we let yij ∈ {91, 1} denote 1yi=yj
and ε is the desired margin. Minimizing

the contrastive loss embeds the samples from the same class in a neighborhood as
small as possible. This approach ignores the intra-class variations of the classes
and results in internally diverse classes to be treated equally as internally similar
classes. Triplet loss introduced in [27] and popularized in deep metric learning
frameworks [30,31] alleviates this problem by constraining the distance to any
positive sample to be at least some margin smaller than the distance to any
negative sample for each sample. In particular, for a sample, xi, we denote its
positive sample as xj+ such that yi = yj+ and denote its negative sample as xj−

such that yi ̸= yj− . Then, we write the triplet loss as:

ℓtriplet((xi, xj+ , xj−); θ) = max{0, ∥xi 9 xj+∥eθ
− ∥xi 9 xj−∥eθ

+ ε}, (2.1.2)

Minimizing triplet loss entails deliberately selection of the triplets to have nonzero
loss terms. Thus, either large batch size or mining for exemplars violating the
triplet constraint is required [30]. Such an effort makes the computation of the
triplet loss is less attractive than of the contrastive loss. Margin-based loss is
introduced in [9] to provide the flexibility in the distribution of the classes in the
embedding space without using triplets as the exemplars. It expresses the margin
constraint of the triplet loss as separate loss terms of the distances between
positive and negative sample pairs by relaxing the constraint of the contrastive
loss on the positive pairs:

ℓmargin((xi, yi), (xj, yj); θ) = max{0, yij(∥xi 9 xj∥eθ
− β) + α}, (2.1.3)
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where α controls the separation margin and β is a trainable parameter for the
boundary between positive and negative pairs. For fixed β (i.e.,non-trainable),
the margin loss is indeed the generalized version of the original contrastive loss.

The contrastive, triplet and margin-based loss terms are the simplest forms of the
pairwise distance ranking based loses. In these losses, only 2 or 3 data samples
contribute to the loss terms. On the other hand, all negative samples within
the batch can also be integrated to a single triplet loss term in lifted structured
loss [32]. It reformulates the triplet loss with the triplets formed by hard negative
mining within the batch for each positive pair. Using log-sum-exp expression as
the approximation of max operator in the mining operation, the lifted structured
loss term for a positive pair gets the contribution of all the negative samples in
the batch. Similarly, proceeding approaches utilize smoothed versions of these
simple losses by replacing hinge loss with log-sum-exp [33] or soft-max [34,35]
expressions. Similarly, ranking among more samples via soft-batch-mining [34–37]
are addressed to exploit in-batch tuples with non-trivial settings.

In a different aspect, angular loss [38] that constraints the local geometry of
the samples in the embedding space is proposed to better exploit the relation
among triplets. Ranking in the quadruplets is also studied [39–42] to improve the
structure of the embedding space by considering relation among more samples.

The motivation of using the relations among more samples leads to softmax-
classifier-based losses [34, 43] and clustering-based losses [44–46]. For the latter,
optimization of the clustering-based losses deviates from the typical nonlinear
programming procedure of the deep metric learning frameworks. They involve ad-
ditional sophisticated computations which might be quite expensive. Differently,
softmax-classifier-based losses are bath based. N -pair loss [34] makes use of half
of the negative samples in the batch for a positive pair. The batch for the N -pair
loss is constructed by N samples from distinct classes and N corresponding
positive samples. Each positive sample is used as a negative sample for the
samples from the other classes. Such a batch construction together with the
N -pair loss formulation results in a sampled softmax-cross-entropy loss term for
a classifier in which the embedding of the positive samples are considered as

11



the sampled class vectors. Similar softmax-based loss is later formulated in [43]
within a meta-learning framework.

In our work, we do not consider crafting a loss term. We rather relate minimizing
the ranking losses to feasibility of some chance constraints on the probability of
observing pairs violating desired intra-/inter-class distances. Namely, the existing
loss terms follow a top-down approach to impose pairwise proximity constraints.
On the contrary, we use a bottom-up formulation using chance constraints that
ensure low probability of proximity violation among the samples and end up
with the similar loss forms to that of contrastive loss.

2.1.2 Pair Mining and Sample Generation in DML

Pair mining. Apart from the advances in the loss terms, efficient sampling
strategies to provide batch of exemplars to the learning algorithm also have a
key role in the success of the DML frameworks. The aim of exemplar mining
is to improve the speed of the convergence and the quality of the embeddings
by providing informative exemplars which are tuples with non-trivial settings in
general. Mining for such informative exemplars brings additional computational
burden since vast number of exemplars exist and all the samples should be mapped
to the embedding space prior to mining. To avoid such a computational burden,
some frameworks performs mining in batches for semi-hard negative [30, 36],
hard negative [47] and distance weighted sampling [9]. Similarly, a random
subset of the dataset for semi-hard negative mining is also considered [34]. For
global mining, hierarchical triplet loss framework [48] performs triplet mining
through tree representation of the dataset, and smart mining method [31] exploits
approximate nearest neighbor search. Class-level global mining is addressed
in [49]. Global mining is further exploited for contrastive learning in [50]. The
main problem with such global approaches is requirement of the mapping of the
entire dataset to the embedding space periodically, which prevents scalability to
the large datasets.
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Sample generation. Different from the search (i.e.,mining) based approaches
for the informative pairs, generation of synthetic hard negative samples through
adversarial [51, 52] and variational [53, 54] models is addressed. The motive is to
exploit a generative model to create samples such that high pairwise losses are
observed when paired with the original samples. Follow-up works [10–13] address
synthesizing samples from the convex combination of the embedding vectors of
the samples in the batch. Unlike generative models, such approaches explicitly
use the embedding space to generate synthetic samples. Mixing the samples with
several strategies and combining such strategies to generate synthetic samples
are studied in [13].

Our contributions in this thesis are orthogonal to such sample mining and sample
generation based approaches. Hence, our methods can be applied with such
methods. That being said, our empirical study show that we can achieve SOTA
performance without sample mining or augmentation, implying that our methods
seemingly alleviates the need for such enhancements.

2.1.3 Proxy-based DML

Proxy-based methods consider augmenting the mini-batch with more samples
for less noisy estimate of the expected loss and circumvent the costly embedding
computation to include more samples in the mini-batches. In order to approxi-
mately increase the contribution of the negative samples for a positive pair to the
global extent, proxies for classes are re-introduced in [55] after its linear metric
learning counterpart [28]. Proxies can be considered as the representative vectors
for the set of points in the embedding space. Thus, using proxies in the loss terms
implicitly takes multiple data samples into account. Learning a proxy vector per
class within the deep metric learning framework is quite similar to learning the
class vectors of a softmax classifier with the sampled softmax-cross-entropy loss.
The slight difference in [55] is the absence of the positive pair similarity term in
the normalization of softmax computation. Many later approaches consider the
proxies as vectors representing embeddings of the class centers [15,37,56,57] and
are trained along with the embedding function parameters.
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Non-trainable proxies are also exploited in [14] to gradually augment mini-batch
with previously computed embeddings. In proxy-based DML, the pairwise
distances are computed between the proxies and the mini-batch samples. Thus,
pseudo-global dataset geometry is considered during loss computation. To better
represent global geometry, multiple proxies per class are considered in [25,58,59]
where the former two build on improving P@11 by fine-grained clustering of class
samples to overlook intra-class variances.

In our analysis, we also align with increasing the proxies. Our work differs in that
i) we build on reducing the probability of proximity violations (i.e.,improving
MAP@R 1) and ii) we progressively increase the proxies by relating the proxy-
based DML instances. To this end, considering recently computed embeddings
[14] within the batch memory can be considered as a fuzzy version of our method
as we will discuss in the related part.

2.1.4 Enhancing the Embedding Vectors

Ensemble methods. To enhance the diversity of the semantic information
embedded to the vector representations, ensemble techniques are also combined
with deep metric learning framework [20–22,60–62]. The general idea is simply
concatenating the vectors from multiple embedding functions whose parameters
are learned by considering different local features of the samples. Hence, better
embedding space can be obtained by integrating the vectors that are specialized
to different aspects of the samples.

Enhancing the loss gradient. Several works address augmenting the primary
DML loss with the losses corresponding to either some regularization terms
[18,19] or sub-tasks to regularize the learning towards better embedding learning.
Implications of l2 normalization in gradient updates are studied in [18] and a
regularization term bounding the vector magnitudes is proposed to enable better
learning. A distance ranking based regularization term is introduced in [19] to
augment binary similarity based loss with some auxiliary labels to harden the

1 P@1 (immediate neighbourhood) and MAP@R (global geometry) are explained in § 1.2
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learning. In words, each pairwise distance is assigned to a label according to their
magnitude and the distances are regularized to keep their initial value after the
gradient update. Similarly, multi-task based approaches [23,24] augments the
primary DML loss with the losses corresponding to sub-tasks to regularize and
harden the learning towards better embedding vectors. Different from proposing
a loss term, a feature aggregation method is proposed in [1] to enable richer
representations to be used in distance computing. In particular, each feature is
represented as the convex combination of the other similar features within the
batch.

All of the aforementioned approaches build on the global image features extracted
by the global average pooling (GAP) layer. Different to them, we propose a
learnable pooling method for the global feature extraction generalizing GAP, a
shared component of all of the mentioned works. Hence, our work is orthogonal
to all of these and can be used jointly with any of them.

2.1.5 Disentangling Features

Several methods consider that the samples used in embedding learning share
some semantic entity which are not class-discriminative and thus, put particular
effort on disentangling class-discriminative and class-shared features [54, 63].
In [54], global feature is decomposed into sum of class-discriminative and intra-
class variant parts where the latter is modelled by a variational auto-encoder.
Similarly, in [63], global feature is a concatenation of class-discriminative and
class-shared features where the latter is learned through auxiliary labels obtained
by clustering of the embedding space. Those methods operate on global image
representation level and their effect on local features are rather explicit.

In our feature aggregation method, we also consider overlooking shared features
among the classes. Different from us, the aforementioned methods design loss
functions and algorithms regularizing global representations. We instead focus
on interface between local and global representations. Hence, our method is
orthogonal and can be combined with them.
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In this sense, the methods that exploit local features explicitly through distri-
bution matching [64, 65] are quite related to our feature aggregation method
as well. Local feature matching with moments of several orders are used as a
regularization in [64] and optimal transport distance [66] to match local features
is used as the distance metric instead of l2 distance in [65].

Our formulation of feature selection resembles optimal transport formulation.
Our method differs in that we stick to l2 as the distance metric and do not
introduce costly optimal transport computation during retrieval.

2.1.6 Characterizing Generalization Bounds

Notion of robustness in learning algorithms is studied in [67] and generalization
error bounds of several techniques are derived accordingly. This study is extended
to metric learning setting in [68]. These works study the deviation between the
expected loss and the empricial loss over the whole dataset. Differently in [69],
deviation between two empirical losses, core-set loss, is studied and generalization
error is characterized by the core-set loss to formulate an optimization objective
for their active learning method. Core-set loss typically measures how much
is lost when a subset of the training data is exploited. Generalization bound
for metric learning is further studied in [16,17] to analyze and suggest training
strategies.

Our work expands on the theories in the aforementioned works to characterize
and improve generalization bound for proxy-based DML.

2.2 Other Related Work

2.2.1 Feature Pooling Techniques

One closely related task to metric learning is query based image retrieval. The
de-facto standard to address image retrieval problem has been the bag-of-visual-
words (BOVW) [70] until unprecedented success of deep learning methods. The
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idea is extracting local feature representations of the image and aggregating such
features to obtain a global representation vector that is to be used in matching
the similarity of the images.

Before deep learning, hand-crafted feature extractor are employed and popular
pooling techniques include max pooling, average pooling, Fisher vectors [71],
vector of locally aggregated descriptors (VLAD) [72], and structural match
kernels (SMK) [73], where VLAD and Fisher can be considered as first and second
order moment extension of average pooling BOVW. Later, fully convolutional
backbone part of CNNs pretrained on image classification task has replaced
the handcrafted features and the follow-up works have focused on transferring
the BOVW aggregation techniques to such CNN-based features [74]. Next,
task specific fine tuning of CNN backbones is addressed to improve the feature
extraction process and SOTA approaches employ pooling layers enabling end-to-
end learning.

Global pooling layers. Global average pooling and global max pooling are
the simplest parameter-free forms of feature aggregation enabling end-to-end
learning. Global average pooling accumulates information of all the local features
yet suffers from burstiness problem, i.e.,repeated semantic entities dominate
the salient ones. Although max pooling on the other hand is more robust to
burstiness, it is prone to prevent useful gradient updates from propagating to
feature extractor backbone. To facilitate such a weakness of max pooling, fusion
of k-max and k-min pooling is proposed in [75]. Compromising between average
and max, generalized mean pooling is introduced in [76]. Similarly, generalized
max pooling and democratic pooling are proposed in [77] to address contribution
of more features in max pooling without suffering from burstiness.

Fisher vectors [71] equipped with correlations among the local features have
been a predominant pooling method owing to its highly discriminating power.
However, Fisher vectors are not suitable for end-to-end learning. To this end,
trainable bilinear pooling [78] is introduced and shortly after, its generalized
version compromising between bilinear pooling and mean pooling is developed
in [79]. Following the attention era, enhancing the local features with inter-feature
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relations are as well addressed with attention mechanism in [80]. Such methods
consider local feature correlations in the aggregated (pooled) image representation
and hence, the resultant global representation equips richer information on
the distribution of the local features. That being said, prototype learning
based methods [81, 82] also aim to encode local feature distribution to global
representation vector. NetVLAD [81] is such an extension of VLAD [72] pooling
in trainable form. Similarly, optimal transport is adopted for feature aggregation
in [82] to form ensemble of pooled features corresponding to learned prototype
vectors.

Foreground-aware pooling. Although bilinear pooling methods [79] implicitly
perform salient matching, they are not explicitly tailored to ignore nuisance infor-
mation. Namely, all the features in the bag constitutes to global feature vector.
Excluding the features corresponding to background in pooling is addressed by
detection based [83, 84] and attention based [85–89] approaches. The former
class builds on training with bounding box annotations and region based pooling
representation [90] of the detected region. Resolving bounding box annotations,
attention based methods [85–89] build on learning to mask non-discriminative fea-
tures via class-label annotations. Among those, CroW [86], Trainable-SMK [88]
, and CBAM [85] build on feature magnitude based saliency, assuming that
the backbone functions must be able to zero-out nuisance information. Yet,
such a requirement is restrictive for the parameter space and annihilation of the
non-discriminative information might not be feasible in some problems. Similarly,
attention-based weighting methods DeLF [87], GSoP [89] do not have explicit
control on feature selection behavior and might result in poor models when
jointly trained with the feature extractor [87].

Our work is mostly related the prototype based methods [81,82] and the meth-
ods [77,83–89] that reweights the CNN features before pooling. Existing prototype
methods have no feature selection mechanism and thus, all features are somehow
included in the image representation. Briefly, such methods map a set of features
to another set of features without discarding any. Such a representation is useful
for distribution matching. On the contrary, our pooling machine effectively
enables learning to select discriminative features and maps a set of features to a
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single feature that is distilled from nuisance information. Moreover, our method
unifies attention-based feature masking practices (e.g. convolution, correlation,
normalization) with an efficient-to-solve optimization framework and lets us do
away with engineered heuristics in obtaining the masking weights (e.g. normaliza-
tion, sigmoid, soft-plus) without restricting the solution space unlike magnitude
based methods [85,86,88].

2.2.2 Optimal Transport Based Operators

Our feature selection and aggregation formulation has close relation to optimal
transport [66] based top-k [91], ranking [92] and aggregation [82] operators. In
aggregation [82], optimal transport formulation is used to select local features to
be pooled according to their similarity to some anchor features. Hence, to each
anchor, a vector of aggregated local features are obtained, forming ensemble of
representations similar to [62].

In our work, we also perform feature selection according to similarities to some
anchor features and then aggregate the features accordingly to obtain single
global representation. What makes our method different is the unique way we
formulate the feature selection problem. Our formulation allows computationally
appealing matrix inversion free gradient computation of the selection operator
unlike optimal transport plan based counterparts [93].

2.2.3 Zero-shot and Few-shot Learning

Our zero-shot regularization for local features draws inspirations from attribute
based zero-shot learning (ZSL) [94–96] and meta-learning based few-shot learning
[97,98] approaches. Attribute based zero-shot learning approaches express class
embeddings as the convex combination of attribute vectors which are either
available from text domain [94,96] or learned within classification framework [95].
The approaches in [95, 96] can provide attribute localization and share a similar
spirit with our feature aggregation method which also enables approximate
localization. However, attribute annotations must be provided for those methods
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whereas we exploit only class labels to extract attribute-like features.

Our method can be considered as attribute-unsupervised version of these methods.
We learn class embedding and attribute vectors with a meta-learning framework
similar to the differentiable convex optimization based approaches [97, 98] for
few-shot learning. In meta-learning based few-shot learning, the framework
learns to learn predictors that are useful for few-shot prediction. In words,
fitting a predictor to a set of data is formulated as a differentiable layer through
formulating it as a strict convex optimization problem [97,98] (e.g. regression).
Then, such a regression operation as a layer is augmented to the feature extraction
framework, enabling learning to learn how to regress.

In this thesis, we also propose a similar meta-learning approach to enable
transferring the behavior of our feature selection layer to unseen classes. Instead
of few-shot setting, we propose meta-learning for zero-shot setting thanks to our
feature selection formulation. In short, our feature selection formulation together
with meta-learning setting enables us to introduce attribute based zero-shot
predictions without explicit attribute annotations.
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CHAPTER 3

CHANCE CONSTRAINED PROGRAMMING FOR DEEP

METRIC LEARNING

Deep metric learning (DML) poses distance metric problem as learning the
parameters of an embedding function so that the semantically similar samples
are embedded to the small vicinity in the representation space as the dissimilar
ones are placed relatively apart in the Euclidean sense. The typical embedding
function is implemented as convolutional neural networks (CNN) for visual
tasks and the parameters are learned through minimizing the empirical expected
loss with possibly deliberately selected mini-batch gradient updates [6, 7]. The
loss terms in the empirical loss penalize violations of the desired intra- and
inter-class proximity constrains. Large-scale problems (in terms of #classes)
suffer from the noisy estimation of the expected loss with mini-batches [6, 14, 30].
Recently, augmenting the mini-batches with virtual embeddings called proxies is
shown to better approximate empirical loss in large-scale problems [6, 14] owing
to pseudo-global consideration of the dataset during loss computation. These
advances raise a critical question: "How does increasing proxies help?" which is
partially addressed empirically with the methods exploiting multiple proxies per
class [14, 25,59].

Characterizing generalization performance of proxy-based DML can be a decisive
step towards theoretically addressing that question. To this end, we approach
DML differently by posing it as a feasibility problem. In particular, we consider
a chance constraint for desired embedding function and relate it to the typical
expected loss of DML. Using such a relation, we provide an upper bound to the
generalization error of proxy-based DML. Aligned with the literature, the form
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of the bound suggests possible room for the improvement on the generalization
performance if more and diverse proxies are considered per class. However,
straightforward increase of the proxies may not help; since, i) proxies of the same
class tend to merge [25] and ii) memory is prohibitive to arbitrarily increase the
proxies.

To alleviate these limitations, we relate minimizer of the proxy-based DML to
a feasible point of some chance constraints, and reformulate DML as finding
a point at the intersection of the sets that the proxies imply. We provide a
scalable algorithm using iterative projections to the individual sets to solve the
problem. Each projection corresponds to a regularized proxy-based DML. Hence,
we inherently increase the number of diverse proxies included in the problem. We
empirically study the implications of our formulation. Evaluation of our method
on image retrieval shows state-of-the-art (SOTA) performance in improving the
baselines.

3.1 Preliminaries

In this section, we formally define the generalization performance of DML and
extend the base notation that we set up in § 1.1.

In typical DML, we consider the set Z = X ×Y with elements z = (x ∈ X , y ∈ Y)
where X is a compact space and Y = [c] (i.e.,{1, . . . , c}) is a finite label set.
We will use x (or y) to denote data (or label) component of z. We have pZ , an
unknown probability distribution over Z. Indicator of the two samples, z and z′,
belonging to the same class is denoted as ιy,y′ ∈ {91, 1} where ιy,y′ = 1 if y = y′.
For indexed dataset samples, zi and zj, we will simply use yij in place of ιyi,yj

We are interested in finding the parameters, θ, of an embedding function,
f(·; θ): X−→Rd1, so that the parametric distance, ∥x9x′∥fθ

:= ∥f(x; θ)9f(x′; θ)∥2,
between two samples, (x, x′) ∼ pX , reflects their semantic dissimilarity. For any
pair, (z, z′) ∼ pZ and embedding function, f(·; θ), we associate a loss, ℓ(z, z′; θ),

1 Different from the notation throughout the thesis, we use f to denote the embedding function
instead of e.
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penalizing proximity violations in the embedding image. We omit f dependency
in the ℓ notation for simplicity. We are to consider minimization of the expected
loss:

θ∗ = arg min
θ

Ez,z′∼pZ

[
ℓ(z, z′; θ)

]
(3.1.1)

In practice, we are given a dataset of n instances sampled i.i.d. from Z as
{zi}i∈[n] ∼ pZ where [n] = {1, . . . , n}, and an algorithm, As1xs2 , which outputs
parameters, θ, minimizing empirical expected loss with a training error, e(As1xs2),
for a given set of pairs, {(zi, zj)}i,j∈s1xs2 , from the dataset, where sk = {sk(l) ∈
[n]}l∈[nk] ⊆ [n] is a pool of indexes chosen from the dataset, [n]. i.e.,

As1xs2 := arg min
θ

1
n1 n2

∑
i∈[n1]

∑
j∈[n2]

ℓ(zs1(i), zs2(j); θ) , (3.1.2)

and we formally define DML as A[n]x[n], i.e.,minimizing empirical expected loss
with all possible pairs. We consider improving the generalization error of As1xs2

which is:
L(As1xs2) = Ez,z′∼pZ

[
ℓ(z, z′;As1xs2)

]
. (3.1.3)

3.2 Method

We will iteratively solve multiple proxy-based DML problems. At each problem,
we re-initialize the class proxies by samples from the dataset. We relate the
problems by regularizing the learned parameters to be in the close vicinity of
the previous ones. In the following sections, we provide theoretical foundation
behind the motivation of our method. We defer all the proofs to appendix.

We start with reformulating DML with a chance constraint. We will introduce two
propositions that allow us to decompose the chance constraint into finite chance
constraints. We also show minimizer of proxy-based DML satisfies some chance
constraints. Hence, we link DML to finding a point in the intersection of finite
sets, which we solve using iterative projections that correspond to regularized
proxy-based DML problem instances.

In the formulations throughout the chapter, we rely on Lipschitz continuity of
the loss function for which we refer to Lemma 3.2.1. Our method builds on
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improving the generalization performance on training domain. Granted that the
desired behavior is generalization to unseen classes, as we will discuss in Ch. 4,
the embedding vector of DML models is typically obtained by global average
pooling of local CNN features. In that manner, local features can be considered
as visual words. Thus, if we consider better generalization in training domain,
the semantics captured by the visual words can be transferred to represent the
samples from an unseen domain. Besides, our empirical studies support that the
implications suggested by the formulations are quite effective.

Figure 3.1: Simple illustration of our chance constrained DML formulation over
two sets where each set’s elements are the embedding function parameters, i.e.,θ,
that yield an embedding space in which the distances to anchor samples assess the
semantic dissimilarity with high probability (i.e.,satisfying chance constraints).
We consider the parameters of the desired embedding function, i.e.,f(·; θ∗), to lie
in the intersection of such sets. We show that to each such set, there corresponds
a proxy-based DML solution. Hence, we solve DML as a set intersection problem
via solving multiple proxy-based DML problems.

3.2.1 Chance Constrained Formulation of Metric Learning

We consider the solution of the following chance constrained feasibility problem:

min
θ

0⊺θ s. to pz,z′∼pZ (ιy,y′(∥x 9 x′∥fθ
− β) ⩾ 0) ⩽ ε , (3.2.1)

with some small ε. Namely, we want the probability of observing two sam-
ples of the same (different) class being apart (close) more than β in the em-
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bedding space being low. We write that probability as expected violation,
Ez,z′∼pZ

[
1ιy,y′ (∥x9x′∥fθ

−β)⩾0
]

where 1(·) being indicator function, and bound it for
β ⩾ α > 0 as:

pz,z′∼pZ (ιy,y′(∥x 9 x′∥fθ
− β) ⩾ 0)

⩽ 1/αEz,z′∼pZ

[
(ιy,y′(∥x 9 x′∥fθ

− β) + α)+
]

,
(3.2.2)

using Markov’s inequality where (u)+ = max{0, u}. Note that to each value
of the expectation, e(θ), there corresponds an ε = e(θ)/α which the chance
constraint satisfies. Hence, we use the expectation as the surrogate of the penalty
term for the chance constraint and can redefine the aforementioned feasibility
problem as the expected loss minimization in Eq. (3.1.1) with ℓ(z, z′; θ) =
(ιy,y′(∥x 9 x′∥fθ

− β) + α)+. In particular, we end up with minimization of the
expected generalized contrastive loss [9].

We now consider the relaxed feasibility problem in which we consider m chance
constraints conditioned on given m samples S={zi}i∈[m] ∼ pZ , say anchor
samples. In other words, we want to find θ ∈ CS where:

CS = {θ | pz∼pZ (ιyi,y(∥xi9x∥fθ
−β)⩾0) ⩽ ε, ∀i∈[m]} (3.2.3)

Using expectation bounds as in Eq. (3.2.2), the unconstrained problem becomes:

θ∗ = arg min
θ

1
m

∑
i∈[m]

Ez∼pZ

[
ℓ(zi, z; θ)

]
. (3.2.4)

We are particularly interested in the problem of the form in Eq. (3.2.4) owing to
its relation to proxy-based methods to characterize their generalization. Prior
to delving into such a relation, we first bound the deviation from the actual
expectation in Eq. (3.1.1) when we solve Eq. (3.2.4) instead.

Proposition 3.2.1 Given S={zi}i∈[m]
i.i.d.∼ pZ such that ∀k∈Y {xi|yi=k} is δS-

cover2 of X , ℓ(z, z′; θ) is ζ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by
L; then with probability at least 1− γ,∣∣∣∣∣∣Ez,z′∼pZ

[
ℓ(z, z′; θ)

]
− 1

m

∑
i∈[m]

Ez∼pZ

[
ℓ(zi, z; θ)

] ∣∣∣∣∣∣
⩽ O(ζ δS) +O(L

√
log 1

γ/m).
2 S ⊂ S ′ is δS-cover of S ′ if ∀z′ ∈ S ′, ∃z ∈ S : ∥z − z′∥2 ⩽ δS .
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Proposition 3.2.1 gives an upper bound which is controlled by the diversity of the
anchor samples defining the relaxed problem. Theoretically, such a controlled
bound allows DML to be formulated as a feasibility problem of finite sets for some
accepted error tolerance. In practice, the best we can do is using all the samples in
the dataset as the anchor samples when defining CS in Eq. (3.2.3). Granted that
the minimization of the empirical loss of Eq. (3.2.4) boils down to the classical
DML in Eq. (3.1.2), it has different stochastic optimization procedure. The
relaxed problem suggests sampling batch of instances rather than pairs, which
yields less noisy gradient estimates with the same batch budget3. This intuitively
explains the superior performance of the methods using batches augmented by
class proxies, past embeddings or more samples (i.e.,larger batches), especially
in large-scale problems.

3.2.2 Reducing Chance Constraints

The loss terms conditioned on anchor samples in Eq. (3.2.4) are computationally
prohibitive in large-scale problems. Thus, we are interested in reducing the
chance constraints, i.e.,anchor samples. To this end, proxy-based methods are
quite related in that a proxy-based DML constitutes a superset of the feasible
region of the primary DML problem in Eq. (3.2.1) as we will show shortly.

Proxy-based methods use parametric vectors, {ρi}i∈[c], to represent embedding
of the class centers and minimize the pair losses with respect to those centers.
Formally, given a dataset {zi}i∈[n] ∼ pZ , proxy-based methods consider the
following problem:

min
θ,ρ

1
n c

∑
i∈[c]

∑
j∈[n]

ℓ̂(ρi, zj; θ) (3.2.5)

where ℓ̂(ρi, zj; θ) is a loss term in which the pairwise distance is computed as
∥ρi − f(xj; θ)∥2. We can associate an algorithm, Asx[n] defined in Eq. (3.1.2), to
the minimizer of Eq. (3.2.5) with e(Asx[n]) training error where s = {s(i) ∈ [n] |
f(xs(i);Asx[n]) = ρi}i∈[c]. In other words, to each proxy, we associate a sample
whose embedding matches that proxy, assuming such sample exists. Hence, the
minimizer of the proxy-based methods can be reformulated as the following

3 Besides intiution, implied by Thm. 3 in [67] and Thm. 1 in [68].
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feasibility problem with the abuse of notation pz = pz∼pZ :

min
θ

0⊺θ s. to pz(ιi,y(∥xs(i)9x∥fθ
−β)⩾0) ⩽ ε, ∀i∈[c] (3.2.6)

where ε = 1
α
L(Asx[n]) from Eq. (3.2.2) and L(Asx[n]) defined in Eq. (3.1.3) is

shown to be bounded in [68]. Reformulation of proxy-based DML defines the
feasibility problem in Eq. (3.2.3) with one sample per class.

We now consider more general case where we use m samples per class from
the dataset, {zi}i∈[n]∼pZ , to define the feasibility problem. We have m-many
disjoint 1-per-class sets, s = ∪k∈[m]sk, where sk = {sk(i)∈[n] | ysk(i)=i}i∈[c] with
∩k∈[m]sk = ∅. We define the problem as:

min
θ∈∩kCsk

0⊺θ where Csk
= {θ | ∀i ∈ [c],

pz∼pZ (ιi,y∥xsk(i) 9 x∥fθ
− β) ⩾ 0) ⩽ ε}

(3.2.7)

Solving the problem by minimizing the empirical expectation bounds in Eq. (3.2.4),
we end up with an algorithm Asx[n] in which we are minimizing expected loss
over a subset of all possible pairs. We want to characterize the generalization
performance of the algorithm Asx[n]. We consider the following bound from [69]
for the generalization error:

Ez,z′∼pZ

[
ℓ(z, z′;Asx[n])

]
⩽

∣∣∣∣∣∣ 1
|s| n

∑
i,j∈sx[n]

ℓ(zi, zj;Asx[n])

∣∣∣∣∣∣
(L1)

+

∣∣∣∣∣∣Ez,z′∼pZ

[
ℓ(z, z′;Asx[n])

]
− 1

n2
∑

i,j∈[n]x[n]
ℓ(zi, zj;Asx[n])

∣∣∣∣∣∣
(L2)

+

∣∣∣∣∣∣ 1
n2

∑
i,j∈[n]x[n]

ℓ(zi, zj;Asx[n])− 1
|s| n

∑
i,j∈sx[n]

ℓ(zi, zj;Asx[n])

∣∣∣∣∣∣
(L3)

(3.2.8)

where the bound is controlled by (L1) training loss (i.e.,e(Asx[n])), (L2) the
deviation between expected loss and empirical loss over all possible pairs, and
(L3) the deviation between empirical loss over all possible pairs and empirical
loss over the subset of pairs defining the algorithm, Asx[n]. It is widely observed
that high capacity CNNs can reach very small training error. Moreover, L2 is
proved to be bounded in [68] and is independent of A. Thus, L3 characterizes
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the generalization performance of using the subset of pairs over exploiting all
possible pairs.

Proposition 3.2.2 Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n]. If s = ∪ks′

k with
s′

k is the δs-cover of {i ∈ [n] | yi = k} ( i.e.,the samples in class k ), ℓ(z, z′; θ) is
ζ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by L, e(Asx[n]) training error;
then with probability at least 1− γ we have:∣∣∣∣∣∣ 1

n2
∑

i,j∈[n]x[n]
ℓ(zi, zj;Asx[n])− 1

|s| n

∑
i,j∈sx[n]

ℓ(zi, zj;Asx[n])

∣∣∣∣∣∣
⩽ O(ζ δs) +O(e(Asx[n])) +O(L

√
log 1/γ

n
)

Corollary 3.2.2.1 Generalization of the proxy-based methods can be limited
by the maximum of distances between the proxies and the corresponding class
samples in the dataset.

Proposition 3.2.2 implies that increasing the number of chance constraints with
more anchor samples in the feasible point problem formulation of DML improves
the generalization error bound as long as the included samples improve the
covering radius of the dataset. In other words, including more anchor samples
do not improve the bound unless the covering radius is decreased. Similarly,
Corollary 3.2.2.1 informally suggests possible improvement on the generalization
error bound of the proxy-based methods if we manage to introduce more proxies
which are spread over the dataset once trained. In practice introducing more
proxies generally does not help the performance; since, they eventually coalesce
into a single point [25]. Besides, the computation resource limits the number of
proxies to be included in the formulation. In the next section, we develop an
approach to alleviate these problems.

3.2.3 Solving the Feasibility Problem

We now introduce our chance constrained programming (CCP) method, outlined
in Algorithm 1, exploiting proxy-based training together with satisfying arbitrarily
increased chance constraints. In short, we repeatedly solve a proxy-DML and
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improve the solution by re-initializing the proxies with the new samples reducing
the covering radius.

Algorithm 1 CCP DML
initialize θ∗ randomly, given {zi}i∈[n]∼pZ dataset
initialize ρ∗ with random samples, set budget b

repeat

ρ← GreedyKCenterProxy(ρ∗, b, f(·; θ∗))
repeat

sample {j(i) ∈ [n]}i∈[m]∼[n] a batch
gθ←λ (θ∗−θ)+∇θ

1
m|ρ|

∑
ρx[m] ℓ(ρi, zj; θ)

gρ←∇ρ
1

m|ρ|
∑

ρx[m] ℓ(ρi, zj; θ)
(θ, ρ)←ApplyGradient(θ, ρ, gθ, gρ)

until convergence
θ∗←θ, ρ∗←ρ

until convergence

We consider the problem in Eq. (3.2.7) as finding a point in the intersection of the
sets. In particular, given dataset {zi}i∈[n] ∼ pZ , we have m many 1-per-class sets,
sk = {sk(i) ∈ [n] | ysk(i) = i}i∈[C], to define the constraint set as Cs = ∩k∈[m]Csk

.
If the sets were closed and convex, the problem would be solvable by iterative
projection methods [99, 100]. Nevertheless, it is not uncommon to perform
iterative projection methods to non-convex set intersection problems [101,102].
Hence, we propose to solve the problem approximately by performing iterative
projections onto the feasible sets, Csk

, defined by sk. At each iteration, k, we
solve the following projection problem given θ(k91):

θ(k) = arg min
θ∈Csk

1
2∥θ

(k91) − θ∥2
2 (3.2.9)

where Csk
is defined in Eq. (3.2.7). Using expectation bounds as the surrogate

of the penalty terms for the chance constraints as we do in § 3.2.1, we have:

θ(k) =arg min
θ

λ
2∥θ

(k91) 9 θ∥2
2 + 1

c

∑
i∈[c]

Ez∼pZ

[
ℓ(zsk(i), z; θ)

]
(3.2.10)
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where λ is a hyperparameter for the projection regularization. We can minimize
the resultant loss by using batch stochastic gradient approaches. However, the
batch should be augmented by c many anchor samples to compute the loss, which
becomes prohibitive for large-scale problems. To alleviate costly embedding
computation of c many samples, we propose to use proxies, ρi, in place of the
embedding of the samples, zsk(i). Namely, at each iteration k, we initialize
ρi = f(zsk(i); θ(k91)) and solve:

θ(k), ρ∗=arg min
θ,ρ

λ
2∥θ

(k91) 9 θ∥2
2 + 1

c

∑
i∈[c]

Ez∼pZ

[
ℓ(ρi, z; θ)

]
(3.2.11)

where the resultant problem we solve at each iteration corresponds to a proxy-
based DML. Any pairwise distance based loss can replace ℓ(·) with anchor
samples being class proxies. Namely, we repurpose existing objectives with a
regularization term in an iterative manner. Although we set up the formulation
using single proxy per class, multiple proxy extension is straightforward.

Theoretically, we should cycle through the sets until convergence to solve θ∈∩k∈[m]

Csk
. Thus, we must pick anchor samples for each set to initialize proxies. The

updates of the proxies are not guaranteed to mimic the actual updates of
the corresponding anchor samples. With that being said, we will still have a
solution, as Eq. (3.2.6) suggests, to feasibility of some chance constraints as
long as the converged proxies, ρ∗, are diverse. We empirically observe that the
proxies initialized with diverse samples converge to embedding of distinct samples
(Fig. 3.2). Hence, on one hand, we have solutions to different constraint sets as
long as we re-initialize the proxies with new samples and solve proxy-based DML
problems. On the other hand, Proposition 3.2.2 implies that generalization is
improved as long as we end up with converged proxies reducing the covering
radius. Therefore, the theory suggests a set intersection mechanism to reduce
the covering radius yet allows a greedy algorithm via iterative projections to
select (i.e.,initialize) the next proxies on the fly instead of explicitly defining
the sets we will iterate on. Such a result is useful especially for the cases where
the dataset is stochastically extended with random data augmentations which
obstruct explicit set forming.

Proxy selection. We can simply use random sampling for anchor samples to
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Algorithm 2 Greedy K-Center Proxy
input: proxy set ρ, sampling budget b and f(·; θ)
repeat for each class c

sc ← {xi | yi = c}i∈[b], b-sample-per-class
initialize rc ← {}, p← f(sc; θ)
repeat

q ← arg maxu∈p\rc
minv∈ρc∪rc ∥u− v∥2

rc ← {q} ∪ rc

until |rc| = |ρc|

return ∪crc

initialize proxies since we eventually observe informative samples reducing the
covering radius through the iterations. We can as well explicitly mine samples
that possibly help with reducing the covering radius. Thus, we also exploit clever
selection of proxies as outlined in Algorithm 2. Given a budget, b, we sample b

many instances per class and compute their embeddings to form a pool. We then
select the samples that reduce the covering radius most once added to proxy
set. This selection is equivalent to k-Center problem as formulated in [69]. Such
a selection of proxies helps converged proxies to be diverse. b = 1 reduces to
random sampling. In both, we inherently increase the number of anchor samples
defining the problem and hence reducing the covering radius.

Relation to cross-batch-memory (XBM) [14]. XBM stores past embeddings
in a queue based memory which dequeues the oldest ones at each iteration to
enqueue the latest batch. If the memory is much larger than the batch size and
slow drift [14] is assumed, the loss terms are conditioned to particular proxies
until they are updated. To this end, XBM can be seen as solving alternating
problems of proxy-based DML with fuzzy boundaries and λ = 0.

Relation to exponential moving average (EMA) of weights. θ′ denoting
θ(k91), we can express the stochastic gradient descent update corresponding to
Eq. (3.2.11) as θ ← (19λ)(θ 9∇θ) +λθ′ + ε where the error term ε can be made 0
with a proper learning rate. If we perform only 1 step per projection problem, then
the form of this update imposes the EMA weight regularization, akin to weight
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decay. Sharing similar spirit with our method, such EMA update of the weights
is employed in aggregating the ensemble of neural networks-produced during the
training- to a target neural network [103,104]. In that setting, an online network
gets the θ 9∇θ update, and a separate target network updates its parameters θ′

using EMA of online network parameters. We encounter such a mechanism in
self-supervised training [103] and self-teacher-student networks [104].

3.2.4 Implementation Details

Embedding function. For the embedding function, f(·; θ), we use CNNs with
ReLU activation, max- and average-pooling. In particular, we use ResNetV2-
20 [105] for MNIST [106] experiments, and ImageNet [107] pretrained BN-
Inception [108] for the rest. We exploit architectures until the output of the
global average pooling layer. We add a fully connected layer to the output
of the global average pooling layer to obtain the embedding vectors of size 2
(ResNetV2-20) and 128 (BN-Inception). We state the following lemma to prove
our loss is Lipschitz continuous:

Lemma 3.2.1 Generalized contrastive loss defined as

ℓ(z, z′; θ) := (ιy,y′(∥x 9 x′∥fθ
− β) + α)+

is
√

2ωL-Lipschitz in x and x′ for all y, y′, θ for the embedding function f(·; θ)
being L-layer CNN (with ReLU, max-pool, average-pool) with a fully connected
layer at the end, where ω is the maximum sum of the input weights per neuron.

ω can be made arbitrarily small by using weight regularization, which is commonly
used. SOTA methods widely use l2 normalization on the embeddings. For
normalization, we apply v̂ = v/∥v∥2 if ∥v∥2 ⩾ 1 or no normalization otherwise
(i.e.,v̂ = v if ∥v∥2 ⩽ 1). Unlike l2 normalization, such a transform is Lipschitz
continuous, hence so are our loss.

Solving projections. Performing a projection defined in (3.2.11) involves a
minimization problem. We monitor MAP@R validation accuracy and use early
stopping patience of 3 to pass the next projection.
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3.3 Experimental Work

We start our empirical study with proof of the concept tests validating the role
of proxy-based approaches in learning and the impact of alternating proxies on
the feature geometry. We further perform ablation studies for the implications
of our formulation as well as the effects of the hyperparameters. We examine the
effectiveness of the proposed proxy-based DML framework for the image retrieval
task. We use our own framework implemented in Tensorflow [109] library in the
experiments. Throughout the section, we use CCP to refer our framework.

3.3.1 Proof of the Concept

Figure 3.2: Illustration of our method (CCP) and the geometry of the embedding
space before, (a), and after, (b), our method (through iterations 1-4), where
boxes are the converged proxies and the circles are the next proxies as the result
of k-Center. In proxy-based DML, proxies are coalesced into one whereas with
CCP, we have diverse proxies, resulting reduced covering radius.

We evaluate our method on MNIST dataset with 2-D embeddings to show the
implications of our formulation. In Fig. 3.2, we provide the distribution of the
samples in the embedding space. We use 4 proxies per class and pool size b=16.
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We observe that when single proxy-based method is converged (Fig. 3.2-(a)), the
class proxies collapse to a single point. Once we continue training with proposed
approach (Fig. 3.2-(b)), the covering radius decreases, leading to performance
improvement. It can also be observed that diverse samples results in diverse
proxies. We also experiment the case where we use samples instead of proxies.
Though it is not practically applicable to large-scale problems, it is important to
see whether our intuitions about alternating proxies in place of samples hold. We
obtain 98.06% MAP@R performance with sample-based training against 97.21%
MAP@R performance of proxy-based training. This empirical result supports
our motivation on using the proxies in place of samples. With that being said, it
is important to show how such efforts in the training domain are reflected in the
test domain.

Figure 3.3: The geometry of the embedding space before, (a), and after, (b),
our method (through iterations 1-3), relating how the generalization efforts in
training domain transfer to the geometry of test domain on CUB dataset with
Contrastive+CCP. We use 2-D TSNE embeddings of the validation data in the
visualization, in which we report MAP@R, average covering radius and average
inter-class pairwise distances.
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We further provide the visualization of the validation data in CUB dataset in
Fig. 3.3. We compute covering radii for 1 to n sample case in k-Center. Namely,
we take k samples with minimum cover for k ∈ [n] where n is the number
of samples per class. We then take the average of these radii to compute a
representative metric for the covering radius. We observe that solving single
proxy-based DML results in relatively poor generalization in the test domain. On
the contrary, solving the problem as the set intersection problem with alternating
projections improves the embedding geometry (reduced radius with increased
inter-class pairwise distances).

3.3.2 Deep Metric Learning Experiments

3.3.2.1 Setup

Independent works [6, 7, 110] reveal that conventional training and evaluation
procedures in DML may fail to properly assess the true order of performance
that the methods bring. The consensus for unbiased comparability is evaluation
of the methods with their best version under the same experimental settings
unless the compared methods demand any particular architecture or experimental
setup. Our empirical study is completely aligned with the literature’s claims for
unbiased evaluation of our method.

We mostly follow the procedures proposed in [6] to provide fair and unbiased
evaluation of our method as well as comparisons with the other methods. We
provide full detail of our experimental setup for the sake of complete transparency
and reproducibility.

Datasets

We perform our experiments on 4 widely-used benchmark datasets: Stanford
Online Products (SOP) [32], In-shop [111], Cars196 [112] and, CUB-200-2011
(CUB) [113].

SOP has 22,634 classes with 120,053 product images. The first 11,318 classes
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(59,551 images) are split for training and the other 11,316 (60,502 images) classes
are used for testing.

In-shop has 7,986 classes with 72,712 images. We use 3,997 classes with 25,882
images as the training set. For the evaluation, we use 14,218 images of 3,985
classes as the query and 12,612 images of 3,985 classes as the gallery set.

Cars196 contains 196 classes with 16,185 images. The first 98 classes (8,054
images) are used for training and remaining 98 classes (8,131 images) are reserved
for testing.

CUB-200-2011 dataset consists of 200 classes with 11,788 images. The first
100 classes (5,864 images) are split for training, the rest of 100 classes (5,924
images) are used for testing.

Data augmentation follows [6]. During training, we resize each image so that
its shorter side has length 256, then make a random crop between 40 and 256, and
aspect ratio between 3/4 and 4/3. We resize the resultant image to 227x227 and
apply random horizontal flip with 50% probability. During evaluation, images
are resized to 256 and then center cropped to 227x227.

Training Splits

Fair evaluation. We split datasets into disjoint training, validation and test
sets according to [6]. In particular, we partition 50%/50% for training and test,
and further split training data to 4 partitions where 4 models are to be trained
by exploiting 1/4 as validation while training on 3/4.

Conventional evaluation. Following relatively old-fashioned conventional
evaluation [32], we use the whole train split of the dataset for training and we use
the test split for evaluation as well as monitoring the training for early stopping.

Ablation studies. For the additional experiments related to the effect of
hyperparameters, we split training set into 3 splits and train a single model on
the 2/3 of the set while using 1/3 for the validation.
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Evaluation Metrics

We consider precision at 1 (P@1) and mean average precision (MAP@R) at R
where R is defined for each query and is the total number of true references as
the query. Among those, MAP@R performance metric is shown to better reflect
the geometry of the embedding space and to be less noisy as the evaluation
metric [6]. Thus, we use MAP@R to monitor training in our experiments except
for conventional evaluation setting where we monitor P@1. We explain the
metrics in § 1.2.

Training Procedure

Fair evaluation. We use Adam [114] optimizer with constant 1095 learning
rate, 1094 weight decay, and default moment parameters, β1=.9 and β2=.99. We
use batch size of 32 (4 samples per class). We evaluate validation MAP@R
for every 25 steps of training in CUB and Cars196, for 250 steps in SOP and
In-shop. We stop training if no improvement is observed for 60 steps. We recover
the parameters with the best validation performance. Following [6], we train 4
models for each 3/4 partition of the train set.

Conventional evaluation. We use Adam [114] optimizer with default moment
parameters, β1=.9 and β2=.99. Following recent works [37], we use reduce on
plateau learning rate scheduler with patience 4. The initial learning rate is 1095

for CUB, and 1094 for Cars, SOP and In-shop. We use 1094 weight decay for
BNInception backbone and 4 1094 wight decay for ResNet50 backbone. We use
batch size of 128 (4 samples per class) for BNInception backbone and 112 (4
samples per class) for ResNet backbone (following [7]). We evaluate validation
P@1 for every 25 steps of training in CUB and Cars196, for 250 steps in SOP
and In-shop. We stop training if no improvement is observed for 15 steps in
CUB and Cars196, and 10 steps in SOP and In-shop. We recover the parameters
with the best validation performance.

Ablation studies. We use Adam [114] optimizer with constant 1095 learning
rate, 1094 weight decay, and default moment parameters, β1=.9 and β2=.99. We
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use batch size of 32 (4 samples per class). We evaluate validation MAP@R for
every 25 steps of training in CUB and Cars196, for 250 steps in SOP and In-shop.
We stop training if no improvement is observed for 40 steps. We recover the
parameters with the best validation performance. We train a single model on
the 2/3 of the training set while using 1/3 for the validation.

Embedding vectors

Fair evaluation. Embedding dimension is fixed to 128. During training and
evaluation, the embedding vectors are l2 normalized. We follow the evaluation
method proposed in [6] and produce two results: i) Average performance (128
dimensional) of 4-fold models and ii) Ensemble performance (concatenated
512 dimensional) of 4-fold models where the embedding vector is obtained by
concatenated 128D vectors of the individual models before retrieval.

Conventional evaluation. Embedding dimension is 512 in both BNInception
and ResNet50 experiments.

Ablation studies. Embedding dimension is fixed to 128.

Losses with CCP

We evaluate our method with C1+CCP : Contrastive [29], C2+CCP : Contrastive
with positive margin [9], MS+CCP: Multi-similarity (MS) [33], Triplet+CCP:
Triplet [30].

Regarding the other popular losses, ProxyAnchor [37] is indeed proxy-based MS
loss except for missing a margin term. Similarly, ProxyNCA [15] is logΣexp-
approximation of proxy-based Triplet with hard-mining and for single proxy case
SoftTriple [25] is equivalent to ProxyNCA. Therefore, we should note that our
experiments cover wide range of the DML losses.
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Hyperparameters

For the hyperparameter selection, we exploit the recent work [6] that has per-
formed parameter search via Bayesian optimization on variety of losses. We
further experiment the suggested parameters from the original papers and official
implementations. We pick the best performing parameters. We perform no
further parameter tuning for the loss parameters when applied to our method to
purely examine the effectiveness of our method.

C1: We adopted XBM’s official implementation for fair comparison. We use 0.5
margin for all datasets.

C2: C2 has two parameters, (m+, m−): positive margin, m+, and negative margin.
We set (m+, m−) to (0, 0.3841), (0.2652, 0.5409), (0.2858, 0.5130), (0.2858, 0.5130)
for CUB, Cars196, In-shop and SOP, respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451, 0.0451 for CUB, Cars196,
In-shop and SOP, respectively.

MS: MS has three parameters (α, β, λ). We set (α, β, λ) to (2, 40, 0.5),
(14.35, 75.83, 0.66), (8.49, 57.38, 0.41), (2, 40, 0.5) for CUB, Cars196, In-shop and
SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to (0.1, 32) for all datasets. We
use 1 sample per class in batch setting (i.e.,32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding layer, and we apply
learning rate multiplier of 100 for the proxies during training.

ProxyNCA++: We set its temperature parameter to 0.1 for all datasets. We
use 1 sample per class in batch setting (i.e.,32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding layer, and we apply
learning rate multiplier of 100 for the proxies during training.

SoftTriple: SoftTriple has 4 parameters (λ, γ, τ, δ). We set (λ, γ, τ, δ) to
(20, 0.1, 0.2, 0.01), (17.69, 19.18, 0.0669, 0.3588), (20, 0.1, 0.2, 0.01),
(100, 47.9, 0.2, 0.3145) for CUB, Cars196, In-shop and SOP, respectively. We use

39



1 sample per class in batch setting (i.e.,32 classes with 1 samples per batch), we
perform 1 epoch warm-up training of the embedding layer, and we apply learning
rate multiplier of 100 for the proxies during training.

XBM: We evaluate XBM with C1 and C2; since, in the original paper, contrastive
loss is reported to be the best performing baseline with XBM. We set the memory
size of XBM to the total number of proxies (i.e.,proxy_per_class×#classes)
to compare the methodology by disentangling the effect of proxy number. With
that being said, we also evaluate XBM with the memory sizes suggested in
the original paper. In this manner we use two memory sizes for XBM for each
dataset: (S, L) where S and L denote the number of batches in the memory. For
CUB and Cars196, CCP uses 1(8) proxies per class for S(L) . Thus, we set (S, L)
to (3, 25) for CUB and Cars196. For In-shop and SOP, CCP uses 1(4) proxies
per class for S(L). Thus, we set (S, L) to (100, 400), (400, 1400) for In-shop and
SOP, respectively. We perform 1K steps of training with the baseline loss prior
to integrate XBM loss in order to ensure slow drift [14] assumption.

CCP: For the hyperparameters of our method, we use 8 proxies per class and
λ=2 1094 for CUB and Cars datasets, as the result of the parameter search; and
use pool size, b=12, for greedy k-Center method. We select pool size based
on our empirical studies on the effect pool size and number of proxies. Due
to computation limitations, we use 4 proxy per class, λ=2 1094 and b= 7 for
SOP and In-shop dataset. We perform no warm-up or do not use learning rate
multiplier for the proxies.

Compared Methods and Fairness

Compared methods. We compare our method against proxy-based SoftTriple
[25], ProxyAnchor [37] and ProxyNCA++ [15] methods as well as XBM [14].

Fairness. We note that like the compared methods (i.e.,loss functions, proxy-
based methods), our method’s improvement claims do not demand any particular
architecture or experimental setup. Therefore, to evaluate the improvements
purely coming from the proposed ideas, we implemented the best version of
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the compared methods in our framework and evaluate on the same architecture
and experimental settings. In this manner, we stick to BN-Inception with
global average pooling architecture to directly compare our method with the
benchmarked losses in [6]. To eliminate any framework related performance
differences, we re-implemented the methods within our framework and produce
the consistent results with [6].

Our experimental setting is fair and unbiased; since,

• The compared methods are either invented loss functions or proxy-based ap-
proaches, which do not demand a particular setting to show the effectiveness
of the proposed ideas.

• We use the same experimental setting for each method (e.g. image size,
architecture, embedding size, batch size, data augmentation).

• We implement and re-evaluate all the compared methods on our framework.

• We reproduce consistent results reported in [6] to eliminate any framework
related performance bias.

• We use the same train and test split as the conventional methods, but we
do not exploit test data during training.

3.3.2.2 Results

Fair Evaluation

We provide quantitative results in Tab. 3.1 for the evaluation of the methods
under the same experimental settings (i.e.,fair evaluation). We summarize
the results in Fig. 3.4 through average 128D and concatenated 512D MAP@R
performance of 4-fold models on In-shop and SOP. We use Method-S/L naming
convention to denote memory size in XBM, and the proxy per class in SoftTriple
and CCP where S denotes 1, and L denotes 4(10) for SoftTriple and 4(8) for
CCP in In-shop, SOP (CUB, Cars196). For a fair comparison, we match XBM
memory size and the number of proxies in CCP.
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Figure 3.4: Summary of relative improvements

We observe that CCP consistently outperforms the associated baseline methods
on each dataset. Contrastive loss’ great performance with CCP is important
to support the implications of our formulation. Furthermore, performance
improvements on the loss functions which does not directly fit in our formulation
show the broader applicability of our method to the pairwise distance based loss
functions.

Additionally, the proposed CCP framework outperforms not only the related
proxy-based methods but also every single benchmarked approaches in [6]. When
compared with SoftTriple and XBM (i.e.,multiple proxy methods), our method
outperforms by large margin especially in the cases where less number of proxies
are used (i.e.,method-S comparisons in Fig. 3.4). We observe especially in large-
scale datasets (SOP & In-shop) that even single proxy per class brings substantial
performance improvement with our CCP.

Conventional Evaluation

We additionally follow the relatively old-fashioned conventional procedure [32]
for the evaluation of our method. We provide R@1 results in Tabs. 3.2a and 3.2b
for the comparison with SOTA.
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Table 3.2: Comparison with the existing methods for the retrieval task in
conventional experimental settings with BN-Inception and ResNet50 backbones
where superscripts denote embedding size. Red: the best. Blue: the second best.
Bold: previous SOTA. †Results obtained from [1].

(a)

Backbone → BN-Inception-512D

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

SoftTriple-L [25] 65.40 84.50 78.60 -
C1+XBM-L [14] 65.80 82.00 79.50 89.90
ProxyAnchor [37] 68.40 86.10 79.10 91.50

DiVA [23] 66.80 84.10 78.10 -
ProxyFewer [59] 66.60 85.50 78.00 -

Margin-S2SD [24] 68.50 87.30 79.30 -

C1+CCP-L 67.74 83.74 79.86 90.98
C2+CCP-L 69.87 83.90 80.01 91.72

MS+CCP-L 69.09 86.01 79.75 91.84

(b)

Backbone → ResNet50

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1+XBM128 [14] - - 80.60 91.30
ProxyAnchor512 [37] 69.70 87.70 80.00† 92.10†

DiVA512 [23] 69.20 87.60 79.60 -

ProxyNCA++512 [15] 66.30 85.40 80.20 88.60
Margin-S2SD512 [24] 69.00 89.50 81.20 -

LIBC512 [1] 70.30 88.10 81.40 92.80

ProxyAnchor-DIML128 [65] 66.46 86.13 79.22 -

C1+CCP-L512 69.87 87.12 82.77 92.07
C2+CCP-L512 71.04 85.93 82.34 92.46
MS+CCP-L512 70.37 89.02 82.27 92.71

We observe that our method outperforms SOTA in most cases and performs
on par with or slightly worse in a few. We should recapitulate that R@1
is a myopic metric to assess the quality of the embedding space geometry
and hence, pushing R@1 does not necessarily reflect the true order of the
improvements that the methods bring. As we observe from Tab. 3.1 that the
methods sharing similar R@1 (i.e.,P@1) performances can differ in MAP@R
performance relatively more significantly. In that manner, we firmly believe that
comparing MAP@R performances instead of R@1 technically sounds more in
showing the improvements of our method.

3.3.2.3 Ablations

Effect of Proxy per Class and Projection Regularization

We perform Bayesian search on the λ-#proxy space to see the effect of two in
CUB with C2-CCP. We provide the results in Fig. 3.5. We observe that absence of
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Figure 3.5: Bayesian search on λ-#proxy space

λ degrades the performance. Similarly, large values of λ causes over-regularization.
We obtain interval of [1091, 1095] that works well for λ. For the number of proxies,
we observe increasing the proxy per class improves performance. On the other
hand, the increase saturates as it can also be observed from Fig. 3.6. As the
result of Bayesian parameter search, we take λ=2 1094 and #proxy=8 with pool
size b=12 in our evaluations against other methods for CUB and Cars. For SOP
and In-shop, we reduce #proxy=4 and b=7 owing to relatively less number of
samples per class in the dataset.

Effect of Proxy Selection

We perform ablation study with C2-CCP to see the relation between the number of
proxies and the pool size used for the proxy selection. We give the corresponding
results in Fig. 3.6. We observe that both increasing the number of proxies
and the pool size for proxy selection helps performance. We interestingly see
that for single proxy case, increasing the pool size gives no better results than
random selection. Owing to our greedy proxy selection, we do consider the past
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Figure 3.6: Analysis of the relation between the number of proxies and the pool
size used for the proxy selection on CUB (left) and Cars (right) dataset with
C2-CCP.

geometry no earlier than single step. Thus, in the single proxy case, we are
prune to oscillate between similar samples for proxy selection. On the other
hand, selecting the samples that reduce the covering radius most brings better
generalization over random selection. With that being said, random sampling in
proxy selection (i.e.,pool size = #proxy) still works well; since, random sampling
indeed can provide diversity in the samples as well. Such a result supports that
the key to our method is alternating the proxies with new samples. As long as
we re-initialize the proxies with new samples, we will have some diverse proxies
through the iterations. To this end, we use Greedy K-Center to pick the samples
in a clever way to reduce the covering radius as much as we can (analogous to
mining in batch construction).

Effect of Alternating Problems

We provide results on MNIST in Fig. 3.2 to show the effect of solving alternat-
ing problems instead of single proxy-based DML. We additionally evaluate the
baseline losses through solving only a single proxy-DML (Loss-Proxy) to show
(Fig. 3.7-(a)) that our performance increase is not solely coming from augmenta-
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tion of proxies in the problem. We clearly observe that alternating proxies helps
performance as our formulation suggests. Moreover, we also provide a typical
distribution of the steps per proxy-based projection problem in Fig. 3.7-(b) to
show that we are not greedy on alternating the proxies just to provide more
examples. We do have some steps that are relatively low, implying the selected
proxies are not informative enough to change the embedding space geometry.

(a) (b)

Figure 3.7: Impact of alternating proxies (a) and typical distribution of the steps
per projection problem (b).

Effect of Batch Size

Batch size plays important role in DML methods to perform well. Therefore, we
analyze the robustness to the batch size especially for the cases where increasing
the batch size is prohibitive. We train baseline contrastive loss and CCP con-
trastive loss for the batch sizes of 16, 32, 64 and 128. The training setup is the
same as in the fair evaluation (§ 3.3.2.1). In each batch we use 4 samples per
class. We provide the results in Fig. 3.8. We observe that baseline contrastive
loss has increasing performance as the batch size increases whereas our method’s
performance with small batch size is on par with the large batch size. Thus, our
method has reduced batch size complexity.
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Figure 3.8: Analysis of batch size dependence of the performance on CUB (left)
and Cars (right) dataset with C2-CCP.

Computational analysis

Proposed method outlined in Algorithm 1 puts little computation and memory
overhead on top of the traditional approaches.

Table 3.3: Total steps of training in SOP and In-shop

Method SOP In-shop

C2 62K 114K
C2+XBM 81K 93K
C2+CCP 69K 127K

MS 67K 98K
MS+CCP 91K 131K

Triplet 93K 73K
Triplet+CCP 124K 115K
ProxyAnchor 54K 87K

ProxyNCA++ 88K 103K
SoftTriple 48K 82K

For the computation, we have proxy initialization and weight update steps at the
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beginning of the each problem instance. In overall, in our system with RTX 2080
Ti GPU and i7 CPU, that additional computation adds on the average 5-10 ms
per step (batch update). In particular, for batch size of 32, we typically have rate
of 105 ms/batch with Contrastive-CCP whereas vanilla has 97 ms/batch rate.
In In-shop and SOP dataset, we have the same rates however for CCP, we have
200 to 400 ms computation overhead due to sampling for proxy initialization.
We do not have such overhead in Cars and CUB owing to the much less number
of classes. With that being said, we have such 400 ms overhead in In-shop and
SOP only at the beginning of new problem instance, which has no significant
effect in long run. Due to alternating problems, our method takes more steps to
converge than their baseline counterparts. We provide the optimization steps per
proxy-based problem instance for several losses in Fig. 4(b) (main paper) from
which relative convergence can be compared owing to each problem instance
being a proxy-based method. Nevertheless, we also provide Tab. 3.3 to compare
the convergence of the methods for SOP and In-shop datasets. The reported
numbers are the rounded averages of the 4 models. We observe 10%-35% increase
in the optimization steps for the pairwise losses.

For the memory, we store the weighs of the previously converged model in the
memory as well as the variables for proxies. For the model, approximately 40-45
mb additional GPU memory is used and for the proxies 16.6 MB and 5.9 MB
memory is used in SOP and In-shop dataset (75 kb in CUB and Cars).

In summary, increasing the number of proxies results in ≈ 8% increase in back-
propagation computation time and only ≈ 60 MB increase in memory for the
largest model. Proxy re-initialization happens rather infrequently; thus, has no
significant effect in the long run. Our method takes 10% 9 35% more steps to
converge than their baseline counterparts due to alternating problems. With
that being said, our method with small batch size performs on par with the large
batch size owing to alternating proxies. In this manner, marginal increase in
computation is seemingly a fair trade-off in improving the performance along
with robustness to batch size.
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CHAPTER 4

IMPLICATIONS OF GLOBAL AVERAGE POOLING

Recapitulating, distance metric learning (DML) is the problem of finding suitable
parameters for an embedding function so that the semantically similar samples
are embedded to the small vicinity in the representation space as the dissimilar
ones are placed relatively apart in the Euclidean sense. The typical embedding
function for visual tasks is implemented as a convolutional neural network
(CNN) followed by a global pooling layer. In supervised setting, the function
parameters are learned through minimizing the empirical expected pairwise loss
with pairs sampled from a class-labelled training dataset. As we discuss in detail
at Ch. 2, the efforts to improve the performance includes i) tailoring pairwise loss
terms [6] that penalize the violations of the desired intra- and inter-class proximity
constraints, ii) pair mining [7], iv) augmenting the mini-batches with virtual
embeddings called proxies [14,15], and iv) suggesting training strategies upon
characterization of the generalization bounds [16,17,115]. While such approaches
are based on test and training samples to be drawn from the same distribution,
the intended behaviour for a trained embedding function is generalization to
unseen classes (i.e.,zero-shot performance) which is commonly achieved by early-
stopping regularization with validation performance monitoring. That being said,
it is widely observed that the generalization in training domain indeed transfer
to the test domain. Then a critical question is "How does embedding function
transfer its training?"

In this chapter, we aim to address that question for the embedding functions
having global average pooling (GAP) as the global pooling layer. In other words,
we are to discuss the particular family of the embedding functions that yield
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a single vector for an input image by aggregating the local features extracted
by CNN. The findings we present in this chapter are the foundations of our
motivation for the method we develop in Ch. 5.

4.1 Preliminaries

In this section we set up the notation that we use throughout the chapter and
give some background of which we make use while analyzing the behavior of
global average pooling.

We use capital letters (e.g. X) to represent the matrices, X = (xij)ij ∈ Rnxm.
The vectors, x = (xi)i ∈ Rn, or scalars, α ∈ R, are represented by lowercase
letters. We express an m by n matrix, X, with its column vectors, xi ∈ Rd, as
X = [xi]i∈[n] where [n] = {1, . . . , n}.

The simplex in Rn is denoted as

Σn := {p ∈ Rn
⩾0 |

∑
i pi = 1}. (4.1.1)

We use 2-tuple, (p, X) ∈ Σn × Rd×n, to denote a probability mass distribution
with masses, p ∈ Σn, and d-dimensional support, X = [xi]i∈[n] ∈ Rdxn.

Definition 4.1.1 (Optimal Transport Distance) The optimal transport (OT)
distance between two probability mass distributions, (p, X) and (q, Y ), is:

∥(p, X) 9 (q, Y )∥OT = min
π⩾0

Σiπij=qj

Σjπij=pi

∑
ij cijπij (4.1.2)

where cij = ∥xi 9 yj∥2.

Optimal transport distance is a meta distance which is the optimal value of a
transportation problem [116]. Optimal transport distance measures the minimum
amount of cost to move masses from one support to another to match the masses.
Hence, it can measure the dissimilarity between two mass functions.
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Definition 4.1.2 (Maximum Mean Discrepancy) Maximum mean discrep-
ancy (MMD) between two probability mass distributions, (p, X) and (q, Y ), is:

∥(p, X) 9 (q, Y )∥MMD = max
f∈C(X,Y )

∑
i pif(xi)−

∑
j qjf(yj) (4.1.3)

where C(X, Y ) is the set of continuous and bounded functions defined on a set
covering the column vectors of X and Y .

Similar to OT, MMD is a metric to measure the dissimilarity of two mass
functions. OT is indeed an MMD-based metric. Such a relation is more explicit
once we write the Lagrangian dual of the OT distance.

Definition 4.1.3 (Optimal Transport Distance Dual) The Lagrangian dual
of the optimal transport distance defined in Definition 4.1.1 reads:

∥(p, X) 9 (q, Y )∥OT = max
fi+gj⩽cij

∑
i pifi + ∑

j qjgj (4.1.4)

with the dual variables λ = {f, g}.

Note that xi = yj implies fi = −gj and from the fact that cij = cji, we can
express the problem in Eq. (4.1.4) as:

∥(p, X) 9 (q, Y )∥OT = max
f∈L1

∑
i pif(xi)−

∑
j qjf(xj) (4.1.5)

where L1 = {f | sup
x,y

|f(x)−f(y)|
∥x−y∥2

⩽ 1} is the set of 1-Lipschitz functions.

In the next section, we use OT and MMD to show that global average pooling
maps the collection of local features to a point which lies in a convex of hull
and that the vertices of such a convex hull are the prototype vectors of some
semantic entities.

4.2 Analysis of Global Average Pooling

Given n-many convolutional features, {xi}i∈[n], of an image, global average
pooling computes the global representation, xg, of the image as:

xg = ∑
i

1
n
xi (4.2.1)
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4.2.1 Classification Problem

We first consider a typical classification task where xg is passed through a
classification layer, i.e.,a linear transformation followed by soft-max operation.
Specifically, for a c-class problem, we have c-many vectors, [ν∈Rd]i∈[c] correspond-
ing to class representatives (or equivalently class means or class proxies). We
obtain similarity to each class as,

ai = ν⊺
i xg (4.2.2)

and then apply soft-max normalization on a to obtain predicted class probabilities,

p̂(classi | xg) = exp(ai)∑
j exp(aj)

. (4.2.3)

The critical desiderata for p̂(classi | xg) is to have a peak at the index corre-
sponding to the true label and to have a low entropy (i.e.,only the true class
index has the peak). To achieve such behavior, cross-entropy loss is typically
used to optimize the feature extractor parameters. We now investigate how
global average pooling shapes the learning process.

Obtaining class similarities ai = ν⊺
i xg is a linear operation and so is global average

pooling. We can interchange the order of the global average pooling and linear
transformation. Namely, we can represent ai as:

ai = ∑
j

1
n
ν⊺

i xj. (4.2.4)

From Eq. (4.2.4), we observe that the local features of an image must be aligned
with the direction of the corresponding class feature. In other words, to have
large ai for an image from class i, the dot products with the features, ν⊺

i xj , must
be high and such a condition must hold for as much as local features as possible
to have a large sum ∑

j
1
n
ν⊺

i xj. On the other hand, the local features must give
low similarity values with the class features of the other classes (i.e.,ν⊺

i′xj must
be small for i′ ̸= i). Therefore, using global representations obtained by global
average pooling results in local features that are concentrated around a particular
vector and that particular vector represents the class semantic.

Such a behavior of the global average pooling is empirically studied in [117].
The results support that local features represent semantic entities corresponding
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to their classes. Nevertheless, the implications on how the learning with global
average pooling can transfer to the domain of unseen classes are unclear. We
now extend our discussions to pairwise loss based metric learning setting and
expand on the empirical studies performed in [117] to provide a more general
explanation to success of global average pooling in transferring the learning to
unseen classes.

4.2.2 Metric Learning Problem

We see in § 4.2.1 that we should have local features concentrated around some
prototype vectors that correspond to class semantics if we are to use global
average pooling in a classification problem. Such a behaviour is shaped by the
cross-entropy loss serving the classification objective. We now extend our analysis
to metric learning setting.

In metric learning, we want the distance between two samples to reflect the
semantic dissimilarity. Namely, given two representations, xg and x′

g, we want
∥xg 9x′

g∥2 to be low whenever xg and x′
g are of the same class and high otherwise.

To achieve this, metric learning methods [6] use pairwise distance bases losses
(e.g. contrastive Eq. (2.1.1)). We want to find out whether we can explain the
mapping of the global average pooling in terms of some semantic vectors.

Prior to moving forward, we introduce an operator to compose a histogram
representation from the collection of features.

Definition 4.2.1 (Histogram Operator) Given n-many d-dimensional fea-
tures, X = [xi∈Rd]i∈[n], and m-many prototype features of the same dimension,
V = [νi∈Rd]i∈[m], the histogram of X on V is denoted as p∗ which is computed
as the minimizer of the following problem:

(p∗, π∗) = arg min
Σiπij=1/n

Σjπij=pi

p∈Σm,π⩾0

∑
ij cijπij (4.2.5)

where cij = ∥νi 9 xj∥2.
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Claim 4.2.1 The solution of the problem in Eq. (4.2.5) reads:

π∗
ij = 1/n1(i = arg min

k
{ckj}) (4.2.6)

where 1(A) is 1 whenever A is true and 0 otherwise.

Proof: We prove our claim by contradiction. For any j, we express a solution
as π∗

ij = ϵi with ϵi ⩾ 0 and ∑
i ϵi = 1/n. Let i∗ = arg mink{ckj}. We can write

π∗
i∗j = 1/n −∑

i|i ̸=i∗ ϵi. Our claim states that ϵi = 0 for i ≠ i∗. We assume an
optimal solution, π′, with ϵi > 0 for some i ̸= i∗. Since π′ is optimal, we must
have ∑

ij π′
ijcij ⩽

∑
ij πijcij for any π. For the jth column we have,∑

i π′
ijcij = ( 1

n
− ∑

i′|i′ ̸=i∗
ϵi′)ci∗j + ∑

i′|i′ ̸=i∗
ϵi′ci′j

= 1
n
ci∗j + ∑

i′|i′ ̸=i∗
ϵi′(ci′j − ci∗j)

(a)
>

∑
i π∗

ijcij

where in (a) we use the fact that (ci′j − ci∗j) > 0 and ϵi′ > 0 for some i′ by
the assumption. Hence, ∑

ij π′
ijcij >

∑
ij π∗

ijcij poses a contradiction. Therefore,
ϵi′ = 0 must hold for all i′ ̸= i∗. ■

In words, histogram operator basically assign each feature to their nearest
prototype and accumulates 1/n mass for each assigned feature. Thus, p∗ is a
probability mass distribution which masses are proportional to the number of
features assigned to the corresponding prototypes.

We now consider a set of prototypes in the feature space where the convolutional
features, xi, lie. We consider m-many prototype features, V = {νi}i∈[m], so that
the set V is δ-cover of the feature space, X . Namely, for any x ∈ X , we have a
prototype νx such that ∥x 9 νx∥2 ⩽ δ.

Given n-many convolutional features, X = [xi]i∈[n], and m-many prototype
features of the same dimension, V = [νi]i∈[m], we compute the histogram of X on
V (i.e.,p∗) using Eq. (4.2.5). Hence, we obtain a probability mass distribution with
(p∗, V ). We also consider our feature collection X = [xi]i∈[n] as a uniform mass
distribution with (q, X) where qi = 1/n for all i. Note that global average pooling
performs ∑

i qixi. We show that such an operation is approximately equivalent
to ∑

i p∗
i νi, i.e.,convex combination of prototypes. To show such equivalence, we

consider the error between the two representations: ∥∑
i p∗

i νi 9
∑

j qjxj∥2
2.
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Proposition 4.2.1 Given n-many convolutional features, X = [xi∈X ]i∈[n], and
m-many prototype features, V = [νi]i∈[m], with {νi}i∈[m] being δ-cover of X . If p∗

is the histogram of X on V , defined in Eq. (4.2.5), then we have:

∥ ∑
i∈[m]

p∗
i νi 9

∑
j∈[n]

1
n
xj∥2

2 ⩽ δ

Proof: We can express

∥ ∑
i∈[m]

p∗
i νi 9

∑
j∈[n]

1
n
xj∥2

2 = ∑
i∈[m]

p∗
i f(νi) 9

∑
j∈[n]

qjf(xj)

where f(x) = x⊺(∑
i p∗

i νi9
∑

j
1
n
xj). Note that f is a continuous bounded operator

for X = {x | ∥x∥2 ⩽ 1} (We can always map the features inside unit sphere
without loosing the relative distances). Moreover, the operator norm of f ,
i.e.,∥f∥, which is ∥∑

i p∗
i νi 9

∑
j

1
n
xj∥2 is less than or equal to 1. Thus, f lie in

the unit sphere of the continuous bounded functions set. Using the definition of
MMD distance, we can bound the error as:

∑
i∈[m]

p∗
i f(νi) 9

∑
j∈[n]

qjf(xj) ⩽ ∥(p∗, V ) 9 (q, X)∥MMD

where qi = 1/n for all i. For the continuous and bounded functions of the operator
norm less than 1, MMD is lower bound for OT [118]. Namely,

∑
i∈[m]

p∗
i f(νi) 9

∑
j∈[n]

qjf(xj) ⩽ ∥(p∗, V ) 9 (q, X)∥MMD ⩽ ∥(p∗, V ) 9 (q, X)∥OT .

Since columns of V is δ-cover of the set X , the optimal transport distance between
the two distributions are bounded by δ, i.e.,∥(p∗, V ) 9 (q, X)∥OT ⩽ δ. Thus, we
finally have:

∥ ∑
i∈[m]

p∗
i νi 9

∑
j∈[n]

1
n
xj∥2

2 ⩽ δ.

■

We visualize the result of Proposition 4.2.1 in Fig. 4.1. Proposition 4.2.1 implies
that the representation space defined via output of global average pooling is
a convex combination of the prototype features that form a δ-cover of the
representation space. Hence, each image is mapped in a convex hull where the
vertices are the prototype features. What we desire in class-level metric learning
is non-overlapping class convex hulls. Once trained with a metric learning loss,
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clearly, such prototypes are to correspond to some semantic entity corresponding
to classes since CNN assign an embedding vector to a pixel according to the
semantic meaning of the spatial extent that the corresponding pixel represents.
In the next section, we validate our claims with empirical studies and then bring
an explanation on how the representations obtained by global average pooling is
transferred to unseen classes.

Figure 4.1: Visualization of Proposition 4.2.1: equivalence of global average
pooling to convex combination of prototype vectors corresponding to semantic
entities. Once local patches are embedded to a vector space according to the
semantic meaning, collection of local patches captures the latent semantic repre-
sentation of the image.
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Figure 4.2: Empirical illustration of the local feature distribution and feature
prototypes of Cifar10 dataset on the 2D embedding space. We observe that
prototypes correspond to some semantic entities.
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4.3 Empirical Validation

We perform a metric learning training on Cifar10 [119] dataset using ResNet20
[105] architecture. We use 2D feature embeddings for direct visualization. Namely,
the local features of the image is mapped to 2D space and accordingly, so is the
global representation obtained by average pooling.

We scale the features so that the magnitude of the features are less than 1. We
sample 64 images from each class and obtain the local features as well as the
global features. We compute 48-many prototypes among the local features using
the greedy k-center algorithm outlined in Algorithm 2. We plot the set partition
and the prototypes in Fig. 4.2. We also provide the covering radius (i.e.,δ in
δ-cover) of the prototype set. We observe that prototypes correspond to some
semantic entities.

Figure 4.3: Illustration of class convex hulls where the vertices are the active
prototypes for the corresponding class. Points are colored with respect to class
labels. We observe overlapping class convex hulls, meaning that the samples of
different classes are likely to be mapped close.
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Figure 4.4: GAP and PCC embedding of an image from car class.

Figure 4.4 (cont’d): GAP and PCC embedding of an image from dog class.
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Figure 4.4 (cont’d): GAP and PCC embedding of an image from car class. For
sample images of several classes (dog, car, horse), we plot their GAP embedding
as well as the PCC embedding where each local feature is assigned to its closest
prototype and convex combination of the prototypes yields the global embedding
vector. Combination coefficients are proportional to the amount of local features
assigned to the prototypes. Empirically validating our claims on the behavior of
GAP, the distance between the two representations are bounded by the covering
radius of the prototypes.

To validate our claims on convex combination of the prototypes, we compare the
global average pooling (GAP) embeddings and prototype convex combination
embeddings (PCC) in Fig. 4.4. In PCC, each local feature is assigned to its
closes prototype and the prototype histogram is computed as in Eq. (4.2.5).
Then, histogram weights are used as the combination weights. We observe that
the error between the two distributions are always smaller than the covering
radius, validating the result of Proposition 4.2.1. We also observe that different
prototypes are active for different classes while some prototypes are shared among
the classes.
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We also plot the class convex hulls in Fig. 4.3 to show that each class has its own
convex hull. We determine the set of active prototypes for each class and then
obtain the convex hull of those prototypes. We observe that the class convex
hulls overlaps due to the shared prototypes among the classes. To this end,
learning to discriminate local semantics to have non-overlapping class convex
hulls can be a decisive step towards improving the generalization of DML.

4.4 Discussion

Figure 4.5: The big picture showcasing our analysis on the behavior of GAP. A
method that is able to control the learning of the prototypes as well as their convex
combination weights can yield non-overlapping class convex hulls, meaning that
the samples of different classes are mapped apart as desired.

We show that the representation space defined via output of GAP is a convex
combination of semantically independent representations defined by each pixel
in the feature map. Such behaviour of GAP forces CNN to assign an embedding
vector to a pixel according to the semantic meaning of the spatial extent that
the corresponding pixel represents.

According to our analysis, collection of CNN’s output features corresponds to
a histogram of some visual vocabulary once the features inherit the semantic
meaning of the local regions. Namely, if the local features are mapped in close
vicinity of their corresponding prototype features of some semantic meanings (e.g.
all "tire" patches in a "car" image are mapped very close), then CNN feature map
corresponds to a histogram of the prototypes. Averaging the local features can be
seen as convex combination of prototypes, where the weights are proportional to
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the occurrence frequency of the corresponding semantic feature vectors. Hence,
each image is mapped in a convex hull where the vertices are the prototype
features.

Using our analysis on local feature geometry shaped by GAP, we can explain the
effectiveness of GAP in transferring the learning to unseen classes. As long as the
local semantics of the training and test samples follow the same distribution, the
embedding function can transfer its training. In other words, a metric learning
algorithm can generalize to unseen classes if such classes share the same local
semantics. As we also empirically observe, the class samples are mapped to a
convex hull. Hence, if a new class can be expressed by the learned prototypes,
then that class will also have its convex hull.

In our analysis, we conclude that the class convex hulls are shaped by two factors:
prototype features and the combination weights. Illustrated in Fig. 4.5, GAP
equally considers each prototype and such a behavior results in overlapping convex
hulls due to shared prototypes among the classes. To have non-overlapping class
convex hulls, we must only use class discriminative features as our prototypes.
Nevertheless, such an operation requires local-level label annotations which does
not exist in class-supervised metric learning setting. Therefore, with the current
DML approaches, none of prototypes nor combination weights is explicitly learned.
In the next chapter, we present a learnable and generalized version of GAP which
improves GAP with two distinct abilities: i) the ability to choose a subset of
semantic entities, effectively learning to ignore nuisance information, and ii)
learning the weights corresponding to the importance of each entity.
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CHAPTER 5

GENERALIZED SUM POOLING FOR DEEP METRIC LEARNING

Figure 5.1: Effect of global pooling of the feature map and our method.

Distance metric learning (DML) addresses the problem of finding an embedding
function such that the semantically similar samples are embedded close to each
other while the dissimilar ones are placed relatively apart in the Euclidean sense.
We an extensive review of DML literature in Ch. 2. Although the prolific and
diverse literature of DML includes various architectural designs [54, 62], loss
functions [6], and data-augmentation techniques [7, 13], many of these methods
have a shared component: a convolutional neural network (CNN) followed by a
global pooling layer, mostly global average pooling (GAP) [6,7].

As we discuss in Ch. 4, the effectiveness of GAP can be explained by considering
each pixel of the CNN feature map as corresponding to a separate semantic
entity. For example, spatial extent of one pixel can correspond to a "tire" object
making the resulting feature a representation for "tireness" of the image. If this
explanation is correct, the representation space defined via output of GAP is
a convex combination of semantically independent representations defined by
each pixel in the feature map. Although this folklore is later empirically studied
in [117] and further verified for classification in [120], its algorithmic implications
are not clear. If each feature is truly representing a different semantic entity,
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should we really average over all of them? Surely, some classes belong to the
background and should be discarded as nuisance variables. Moreover, is uniform
average of them the best choice? Aren’t some classes more important than others?
In this chapter, we try to answer these questions within the context of metric
learning. We propose a learnable and generalized version of GAP which learns to
choose the subset of the semantic entities to utilize as well as weights to assign
them while averaging.

In order to generalize the GAP operator to be learnable, we re-define it as a
solution of an optimization problem. We let the solution space to include 0-
weight effectively enabling us to choose subset of the features as well as carefully
regularize it to discourage degenerate solution of using all the features. Crucially,
we rigorously show that the original GAP is a specific case of our proposed
optimization problem for a certain realization. Our proposed optimization
problem closely follows optimal transport based top-k operators [92] and we
utilize its literature to solve it. Moreover, we present an algorithm for an efficient
computation of the gradients over this optimization problem enabling learning.
A critical desiderata of such an operator is choosing subset of features which
are discrimantive and ignoring the background classes corresponding to nuisance
variables. Although supervised metric learning losses provide guidance for seen
classes, they carry no such information to generalize the behavior to unseen
classes. To enable such a behavior, we adopt a zero-shot prediction loss as a
regularization term which builds on expressing the class label embeddings as a
convex combination of attribute embeddings [94–96].

In order to validate the theoretical claims, we design a synthetic empirical study.
The results confirm that our pooling method chooses better subsets and improve
generalization ability. Moreover, our method can be applied with any DML loss
as GAP is a shared component of them. We applied our method on 6 DML
losses and test on 4 datasets. Results show consistent improvements with respect
to direct application of GAP.
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5.1 Preliminaries

In this section, we recapitulate the DML formulation and the related notation
that we set up in § 1.1 for the sake of self-completeness of the chapter. We as well
extend the base notation to avoid convoluted notation throughout the chapter.

Consider the data distribution pX ×Y over X × Y where X is the space of data
points and Y is the space of labels. Given iid. samples from pX ×Y as {(xi, yi)},
distance metric learning problem aims to find the parameters θ of an embedding
function e(·; θ): X → Rd such that the Euclidean distance in the space of
embeddings is consistent with the label information where d is the embedding
dimension. More specifically, ∥e(xi; θ)− e(xj ; θ)∥2 is small whenever yi = yj , and
large whenever yi ̸= yj . In order to enable learning, this requirement is represented
via loss function l((xi, yi), (xj, yj); θ) (e.g. contrastive [9] l((xi, yi), (xj, yj); θ) =
max{0,1yi=yj

(∥e(xi; θ)− e(xj; θ)∥2 − β) + α} where 1A is an indicator function
which is 1 whenever A is true and 91 otherwise).

The typical learning mechanism is gradient descent of an empirical risk function
defined over a batch of data points B. To simplify notation throughout the
paper, we will use b = {b(i) | xi, yi ∈ B}i to index the samples in a batch. Then,
the typical empirical risk function is defined as:

LDML(b; θ) := 1
|b|2

∑
i∈b

∑
j∈b

l((xi, yi), (xj, yj); θ) . (5.1.1)

We are interested specific class of embedding functions where a global average
pooling is used. Specifically, consider the composite function family e = g◦f such
that g is pooling and f is feature computation. We assume a further structure
over the functions g and f . The feature function f maps the input space X into
Rwxhxd where w and h are spatial dimensions. Moreover, g performs averaging
as;

g(f(x; θ)) = 1
w · h

∑
i∈[w·h]

fi , (5.1.2)

67



where [n] = 1, . . . , n and we let fi∈Rd denote ith spatial feature of f(x; θ) to
avoid convoluted notation. In the rest of the chapter, we generalize the pooling
function g into a learnable form and propose an algorithm to learn it.

5.2 Method

Consider the pooling operation in Eq. (5.1.2), it is a simple averaging over
pixel-level feature maps (fi). As we discuss in Ch. 4, one explanation for the
effectiveness of this operation is considering each fi as corresponding to a different
semantic entity corresponding to the spatial extend of the pixel, and the averaging
as convex combination over these semantic classes. Our method is based on
generalizing this averaging such that a specific subset of pixels (correspondingly
subset of semantic entities) are selected and their weights are adjusted according
to their importance.

We generalize Eq. (5.1.2) in § 5.2.1 by formulating a feature selection problem in
which we prioritize a subset of the features that are closest to some trainable
prototypes. If a feature is to be selected, its weight will be high. We then
formulate our pooling operation as a differentiable layer so that the prototypes
can be learned along with the rest of the embedding function parameters in
§ 5.2.2. We learn the prototypes with class-level supervision, however in metric
learning, learned representations should generalize to unseen classes. Thus, we
introduce a zero-shot prediction loss to regularize prototype training for zero-shot
setting in § 5.2.3.

5.2.1 Generalized Sum Pooling as a Linear Program

Consider the pooling function, g, with adjustable weights as g(f(x; θ); ω) =∑
i∈[n] pifi where n = w h. Note that, pi = 1/n corresponds to average pooling.

Informally, we want to control the weights to ease the metric learning problem.
Specifically, we want the weights corresponding to background classes to be 0
and the ones corresponding to discriminative features to be high.
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If we were given representations of discrimantive semantic entities, we could
simply compare them with the features (fi) and choose the ones with high
similarity. Our proposed method is simply learning these representations and
using them for weight computations. We first discuss the weight computation
part before discussing learning the representations of prototypes.

Assume that there are m discrimantive semantic entities which we call prototypes
with latent representations ω = {ωi}i∈[m] of appropriate dimensions (same as fi).
Since we know that not all features ({fi}i∈[n]) are relevant, we need to choose a
subset of {fi}i∈[n]. We perform this top-k selection process by converting it into
an optimal transport (OT) problem.

Consider a cost map cij = ∥ω̄i 9 f̄j∥2 which is an m (number of prototypes)
by n (number of features) matrix representing the closeness of prototypes ωi

and features fj after some normalization ū = u/max{1,∥u∥2}. We would like to
find a transport map π which re-distributes the uniform mass from features to
prototypes. Since we do not have any prior information over features, we also
consider its marginal distribution (importance of each feature to begin with) to
be uniform. As we need to choose a subset, we set µ∈[0, 1] ratio of mass to be
transported. The resulting OT problem is:

ρ∗, π∗ =arg min
ρ,π⩾0

ρj+Σiπij=1/n

Σijπij=µ

∑
ij cijπij. (P1)

Different to typical OT literature, we introduce decision variables, ρ, to represent
residual weights to be discarded. Specifically modelling discarded weight instead
of enforcing another marginalization constraint is beneficial beyond stylistic
choices as it allows us to very efficient compute gradients. When the introduced
transport problem is solved, we perform weighting using residual weights as:

g(f(x; θ); ω) = ∑
i pifi = ∑

i

1/n−ρ∗
i

µ
fi (5.2.1)

Given set of prototypes {ωi}i∈[m], solving the problem in (P1) is a strict general-
ization of GAP since setting µ = 1 recovers the original GAP. We formalize this
equivalence in the following claim.
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Claim 5.2.1 If µ = 1, the operation in Eq. (5.2.1) reduces to global average
pooling in Eq. (5.1.2).

We defer the proof to Appendix. Having generalized GAP to a learnable form,
we introduce a method to learn the prototypes {ωi}i∈[m] in the next section.

5.2.2 Generalized Sum Pooling as a Differentiable Layer

Consider the generalized form of pooling, defined as solution of (P1), as a layer
of a neural network. The input is the feature vectors {fi}i∈[n], the learnable
parameters are prototype representations {ωi}i∈[m], and the output is residual
weights ρ∗. To enable learning, we need partial derivatives of ρ∗ with respect to
{ωi}i∈[m]. However, this function is not smooth. More importantly it requires
the µ parameter to be known a priori.

Figure 5.2: 10x10x3 feature map (top-left) with 5x5 reddish and bluish features
to be pooled and the resultant pooling weights (higher the darker) of different
problems with red (1, 0, 0) and blue (0, 0, 1) prototypes, ω.

We use a toy example to set the stage for rest of the formulation. Consider a
feature map of dimension 10x10x3 visualized as RGB-image and corresponding
two prototypes with representations (1, 0, 0) (red) and (0, 0, 1) (blue). The true
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µ = 0.5 since the half of the image corresponds to red and blue, and other half is
background class of green. Consider an under-estimation of µ = 0.2, the global
solution (shown as linear programming) is explicitly ignoring informative pixels
(part of red and blue region). To solve this issue, we use entropy smoothing
which is first introduced in [66] to enable fast computation of optimal transport.
Consider the entropy smoothed version of the original problem in (P1) as:

ρ(ε), π(ε) = arg min
ρ,π⩾0

ρj+Σiπij=1/n

Σijπij=µ

∑
ij cijπij + 1

ε
(∑

ij πij log πij + ∑
j ρj log ρj), (P2)

and obtain pooling weights by replacing ρ∗ with ρ(ε) in Eq. (5.2.1). When
smoothing is high (ε→0), the resulting solution is uniform over features similar
to GAP. When it is low, the result is similar to top-k like behavior. For us, ε

controls the trade-off between picking µ portion of the features that are closest
to the prototypes and including as much features as possible for weight transfer.

We further visualize the solution of the entropy smoothed problem in Fig. 5.2
showing desirable behavior even with underestimated µ.

Beyond alleviating the under-estimation of µ problem, entropy smoothing also
makes the problem strictly convex and smooth. Thus, the solution of the problem
enables differentiation and in fact, admits closed-form gradient expression. We
state the solution of (P2) and their corresponding gradients in the following
propositions and defer their proofs to Appendix.

Proposition 5.2.1 Given initialization t(0) = 1, consider the following iteration:

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91, t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

where exp and (·)91 are element-wise and 1m is m-dimensional vector of ones.
Then, (ρ(k), t(k)) converges to the solution of (P2) defining transport map via
π(k) = t(k) exp(9εc)Diag(ρ(k)).

Proposition 5.2.2 Given gradients ∂L
∂ρ(ε) and ∂L

∂π(ε) , with q = ρ(ε)⊙ ∂L
∂ρ(ε) +(π(ε)⊙
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∂L
∂π(ε) )⊺1n and η = (ρ(ε) ⊙ ∂L

∂ρ(ε) )⊺1n 9 n q⊺ρ(ε), the gradient with respect to c reads:

∂L
∂c

= 9γ

π(ε)⊙ ∂L
∂π(ε) − nπ(ε)Diag

(
q 9 η(1− µ− nρ(ε)⊺ρ(ε))91

)
ρ(ε)

 , (5.2.2)

where ⊙ denotes element-wise multiplication.

Proposition 5.2.1 and 5.2.2 suggest that our feature selective pooling can be
implemented as a differentiable layer. Moreover, Proposition 5.2.2 gives a matrix
inversion free computation of the gradient with respect to the costs unlike optimal
transport based operators [93]. Thus, the prototypes, ω, can be jointly learned
with the feature extraction efficiently.

5.2.3 Cross-batch Zero-shot Regularization

Our feature selection layer should learn discriminative feature prototypes, ω, using
top-down label information. Consider two randomly selected batches, (b1, b2),
of data sampled from the distribution. If the prototypes are corresponding to
discrimantive entities, the weights transferred to them (i.e.,marginal distribution
of prototypes) should be useful in predicting the classes and such behavior should
be consistent between batches for zero-shot prediction. Formally, if one class in
b2 does not exist in b1, a predictor on class labels based on marginal distribution
of prototypes for each class of b1 should still be useful for b2. Unfortunately, DML
losses do not carry such information. We thus formulate a zero-shot prediction
loss to enforce such zero-shot transfer.

We consider that we are given a semantic embedding vector for each of c-many
class labels, Υ = [υi]i∈[c]. We are to predict such embeddings from the marginal
distribution of the prototypes. In particular, we use linear predictor, A, to predict
label embeddings as υ̂ = A z where z is the normalized distribution of the weighs
on the prototypes;

z = 1
µ

∑
i π

(ε)
i where π(ε) = [π(ε)

i ]i∈[n] . (5.2.3)

If we consider the prototypes as semantic vectors of some auxiliary labels such as
attributes commonly used in ZSL [94], then we can interpret z as pseudo-attribute
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predictions. Given pseudo-attribute predictions, {zi}i∈b, and corresponding class
embeddings for a batch, b, we fit the predictor as;

Ab = arg min
A=[ai]i∈[m]

∑
i∈b ∥A zi 9 υyi

∥2
2 + ϵ

∑
i∈[m] ∥ai∥2

2 . (P3)

which admits a closed form expression enabling back propagation Ab = Υb (Z⊺
b Zb+

ϵI)−1Z⊺
b where Υb = [υyi

]i∈b, Zb = [zi]i∈b. In practice, we are not provided with
the label embeddings, Υ = [υi]i∈[c]. Nevertheless, having a closed-form expression
for Ab enables us to exploit a meta-learning scheme like [97] to formulate a
zero-shot prediction loss to learn them jointly with the rest of the parameters.

Specifically, we split a batch, b, into two as b1 and b2 such that classes are disjoint.
We then estimate attribute embeddings using one set and use that estimate to
predict the label embeddings of the other set to form zero-shot prediction loss.
Formally, our loss becomes:

LZS(b; θ) = 1
|b2|

∑
i∈b2

log
(

1 + ∑
j∈[c]

e(υj9υyi )⊺A1 zi

)
+ 1

|b1|
∑

i∈b1
log

(
1 + ∑

j∈[c]
e(υj9υyi )⊺A2 zi

)
(5.2.4)

i.e.,rearranged soft-max cross-entropy where Ak=Abk
with the abuse of notation,

and θ = {θf , ω, Υ} (i.e.,CNN parameters, prototype vectors, label embeddings).

We learn attribute embeddings (i.e.,columns of A) as sub-task and can define
such learning as a differentiable operation. Thus, our cross-batch zero-shot
prediction loss, LZS, is to achieve learning to learn attribute embeddings for
zero-shot prediction. Intuitively, such a regularization should be useful in better
generalization of our pooling operation to unseen classes since pseudo-attribute
predictions are connected to prototypes and the local features. We combine this
loss with the metric learning loss using λ mixing (i.e.,(19λ)LDML + λLZS) and
jointly optimize. Then, our final batch loss becomes:

L(b; θ) = (1 9 λ)LDML(b; θ) + λLZS(b; θ) (5.2.5)

where LDML(b; θ) defined in Eq. (5.1.1) can be any pair- or proxy-based DML
loss.
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5.2.4 Implementation Details

Embedding function. For the embedding function, f(·; θ), we use ResNet20
[105] for Cifar [119] experiments, and ImageNet [107] pretrained BN-Inception
[108] for the rest. We exploit architectures until the output before the global
average pooling layer. We add a per-pixel linear transform (i.e.,1x1 convolution),
to the output to obtain the local embedding vectors of size 128.

Pooling layer. For baseline methods, we use global average pooling. For our
method, we perform parameter search and set the hyperparameters accordingly.
Specifically, we use 64- or 128-many prototypes depending on the dataset. We
use ε=0.5 for proxy-based losses and ε=5.0 for non-proxy losses. For the rest, we
set µ=0.3, ϵ=0.05, λ=0.1 and we iterate until k=100 in Proposition 5.2.1. The
embedding vectors upon global pooling are l2 normalized to have unit norm.

5.3 Experiments

We start our empirical study with a synthetic study validating the role of GAP
in learning and the impact of GSP on the feature geometry. We further examine
the effectiveness of our generalized sum pooling in metric learning for various
models and datasets. We further perform ablation studies for the implications of
our formulation as well as effects of the hyperparameters.

5.3.1 Synthetic Study

We design a synthetic empirical study to evaluate GSP in a fully controlled manner.
We consider 16-class problem such that classes are defined over trainable tokens.
In this setting, tokens correspond to semantic entities but we choose to give a
specific working to emphasize that they are trained as part of the learning. Each
class is defined with 4 distinct tokens and there are also 4 background tokens
shared by all classes. For example, a "car" class would have tokens like "tire"
and "window" as well as background tokens of "tree" and "road".
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Figure 5.4: GAP (a) vs GSP (b) in aggregating features, where tokens denote
learned embedding vectors and samples are obtained by aggregating them.

We sample class representations from both class specific and background tokens
according to a mixing ratio µ̃ ∼ N (0.5, 0.1). We sample a total of 50 tokens
and such a 50-many feature collection will correspond to a training sample
(i.e.,we are mimicking CNN’s output with trainable tokens). For instance,
given class tokens for class-c, ν(c) = {ν(c)

1 , ν
(c)
2 , ν

(c)
3 , ν

(c)
4 } and shared tokens,

ν(b) = {ν(b)
1 , ν

(b)
2 , ν

(b)
3 , ν

(b)
4 }; we first sample µ = 0.4 and then sample 20 tokens

from ν(c) with replacement, and 30 tokens from ν(b), forming a feature collection
for a class-c, i.e.,f (c) = {ν(c)

3 , ν
(c)
1 , ν

(c)
1 , ν

(c)
3 , . . . , ν

(b)
4 , ν

(b)
3 , ν

(b)
4 , ν

(b)
1 , . . .} We then

obtain global representations using GAP and GSP.

We do not apply l2 normalization on the global representations. We also constrain
the range of the token vectors to be in between [90.3, 0.3] to bound the magnitude
of the learned vectors. We use default Adam optimizer with 1094 learning rate
and perform early stopping with 30 epoch patience by monitoring MAP@R. In
each batch, we use 4 samples from 16 classes.

We visualize the geometry of the embedding space in Fig. 5.4. With GAP, we
observe overlapping class convex hulls hence classes are not well discriminated. In
other other hand, GSP gives well separated class convex hulls further validation
that it learns to ignore background tokens.
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5.3.2 Cifar Collage Experiments

(a) (b)

Figure 5.5: Visualizations for Cifar Collage dataset experiments: (a) Illustration
of a sample generation for Cifar Collage dataset. (b) Evaluation on Cifar Collage
dataset and on the right; sample train and test images with their attention
maps in terms of pooling weights. Distilled denotes baseline performance on
non-collage dataset (i.e.,excluding the shared classes).

We further extend the synthetic study (§ 5.3.1) to image domain. We consider
the 20 super-classes of Cifar100 dataset [119] where each has 5 sub-classes. For
each super-class, we split the sub-classes for train (2), validation (1), and test
(2). We consider 4 super-classes as the shared classes and compose 4x4-stitched
collage images for the rest 16 classes. In particular, we sample an image from
a class and then sample 3 images from shared classes. We illustrate a sample
formation process in § 5.3.2.

We should note that the classes exploited in training, validation and test are
disjoint. For instance, if a tree class is used as a shared class in training, then that
tree class does not exist in validation or test set as a shared feature. Namely, in
our problem setting, both the background and the foreground classes are disjoint
across training, validation and test sets. Such a setting is useful to analyze
zero-shot transfer capability of our method.

We use ResNet20 (i.e.,3 stages, 3 blocks) backbone pretrained on Cifar100
classification task and follow the implementation explained in § 5.2.4. We use l2
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normalization on global representations. We use default Adam optimizer with
initial 0.001 learning rate. We use reduce on plateau with 0.5 decay factor and 5
epochs patience. For GSP, we set m = 64, µ = 0.2, ε = 10, λ = 0.5. We use 4
samples from 16 classes in a batch.

We provide the evaluation results in § 5.3.2. GSP and the proposed zero shot
loss effectively increase MAP@R. We also provide sample train and test images
to showcase that our pooling can transfer well to unseen domain.

Figure 5.6: Comparing the distributions of the learned 8 prototypes across classes
of Cifar10 dataset with and without LZS. Pooling weights are coloured according
to the dominant prototype at that location.
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5.3.3 Evaluation of Zero-shot Prediction Loss

We also evaluate the zero-shot prediction performance of the pseudo-attribute
vectors. We train on Cifar10 [119] dataset with 8 prototypes using ProxyNCA++
[15] (PNCA) loss with and without LZS. We then use test set to compute
pseudo-attribute histograms for each class. Namely, we aggregate the marginal
transport plans of each sample in a class to obtain the histogram.

We visualize the class-attribute vectors in Fig. 5.6. We observe transferable
representations with LZS and we visually show in Fig. 5.6 that the semantic
entities represented by the prototypes transfer across classes.

We quantitatively evaluate such behavior by randomly splitting the classes into
half and apply cross-batch zero-shot prediction explained in § 5.2.3. For each
class, we compute the mean embedding vector (i.e.,we average embedding vectors
of the samples of a class). Our aim is to fit a linear predictor to map attribute
vectors to the mean embeddings. Namely, we fit A in (P3) for one subset and
use it to predict the class embeddings for the other set.

Specifically, we fit a linear predictor using 5 classes and then use that transfor-
mation to map the other 5 classes to their mean embeddings. We then compute
pairwise distance between the predicted means and the true means. We then
evaluate the nearest neighbour classification performance. We use both l2 dis-
tance and cosine distance while computing the pairwise distances. We repeat
the experiment 1000 times with different class splits. We observe in Fig. 5.6
that zero-shot performance of the prototypes learned with LZS is substantially
superior.

5.3.4 Deep Metric Learning Experiments

5.3.4.1 Setup

In order to minimize the confounding of factors other than our proposed method,
we keep the comparisons as fair as possible following the suggestions of recent work
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explicitly studying the fair evaluation strategies for metric learning [6, 7, 110].
Specifically, we mostly follow the procedures proposed in [6] to provide fair
and unbiased evaluation of our method as well as comparisons with the other
methods. We provide full detail of our experimental setup for the sake of complete
transparency and reproducibility.

Datasets

We perform our experiments on 4 widely-used benchmark datasets: Stanford
Online Products (SOP) [32], In-shop [111], Cars196 [112] and, CUB-200-2011
(CUB) [113].

SOP has 22,634 classes with 120,053 product images. The first 11,318 classes
(59,551 images) are split for training and the other 11,316 (60,502 images) classes
are used for testing.

In-shop has 7,986 classes with 72,712 images. We use 3,997 classes with 25,882
images as the training set. For the evaluation, we use 14,218 images of 3,985
classes as the query and 12,612 images of 3,985 classes as the gallery set.

Cars196 contains 196 classes with 16,185 images. The first 98 classes (8,054
images) are used for training and remaining 98 classes (8,131 images) are reserved
for testing.

CUB-200-2011 dataset consists of 200 classes with 11,788 images. The first
100 classes (5,864 images) are split for training, the rest of 100 classes (5,924
images) are used for testing.

Data augmentation follows [6]. During training, we resize each image so that
its shorter side has length 256, then make a random crop between 40 and 256, and
aspect ratio between 3/4 and 4/3. We resize the resultant image to 227x227 and
apply random horizontal flip with 50% probability. During evaluation, images
are resized to 256 and then center cropped to 227x227.
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Training Splits

Fair evaluation. We split datasets into disjoint training, validation and test
sets according to [6]. In particular, we partition 50%/50% for training and test,
and further split training data to 4 partitions where 4 models are to be trained
by exploiting 1/4 as validation while training on 3/4.

Conventional evaluation. Following relatively old-fashioned conventional
evaluation [32], we use the whole train split of the dataset for training and we use
the test split for evaluation as well as monitoring the training for early stopping.

Hyperparameter tuning. For the additional experiments related to the effect
of hyperparameters, we split training set into 5 splits and train a single model
on the 4/5 of the set while using 1/5 for the validation.

Evaluation Metrics

We consider precision at 1 (P@1) and mean average precision (MAP@R) at R
where R is defined for each query and is the total number of true references as
the query. Among those, MAP@R performance metric is shown to better reflect
the geometry of the embedding space and to be less noisy as the evaluation
metric [6]. Thus, we use MAP@R to monitor training in our experiments except
for conventional evaluation setting where we monitor P@1. We explain the
metrics in § 1.2.

Training Procedure

Fair evaluation. We use Adam [114] optimizer with constant 1095 learning
rate, 1094 weight decay, and default moment parameters, β1=.9 and β2=.99. We
use batch size of 32 (4 samples per class). We evaluate validation MAP@R for
every 100 steps of training in CUB and Cars196, for 1000 steps in SOP and
In-shop. We stop training if no improvement is observed for 15 steps in CUB
and Cars196, and 10 steps in SOP and In-shop. We recover the parameters with
the best validation performance. Following [6], we train 4 models for each 3/4
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partition of the train set. Each model is trained 3 times. Hence, we have 34 = 81
many realizations of 4-model collections. We present the average performance of
such 81 models as well as standard deviation (std) of 81 evaluations.

Conventional evaluation. We use Adam [114] optimizer with default moment
parameters, β1=.9 and β2=.99. Following recent works [37], we use reduce on
plateau learning rate scheduler with patience 4. The initial learning rate is 1095

for CUB, and 1094 for Cars, SOP and In-shop. We use 1094 weight decay for
BNInception backbone and 4 1094 wight decay for ResNet50 backbone. We use
batch size of 128 (4 samples per class) for BNInception backbone and 112 (4
samples per class) for ResNet backbone (following [7]). We evaluate validation
P@1 for every 25 steps of training in CUB and Cars196, for 250 steps in SOP
and In-shop. We stop training if no improvement is observed for 15 steps in
CUB and Cars196, and 10 steps in SOP and In-shop. We recover the parameters
with the best validation performance. We repeat each experiment 3 times and
report the best result.

Hyperparameter tuning. We use Adam [114] optimizer with constant 1095

learning rate, 1094 weight decay, and default moment parameters, β1=.9 and
β2=.99. We use batch size of 32 (4 samples per class). We evaluate validation
MAP@R for every 100 steps of training in CUB and Cars196, for 1000 steps in
SOP and In-shop. We stop training if no improvement is observed for 10 steps in
CUB and Cars196, and 7 steps in SOP and In-shop. We recover the parameters
with the best validation performance. We train a single model on the 4/5 of the
training set while using 1/5 for the validation. We repeat each experiment 3 times
and report the averaged result.

Embedding Vectors

Fair evaluation. Embedding dimension is fixed to 128. During training and
evaluation, the embedding vectors are l2 normalized. We follow the evaluation
method proposed in [6] and produce two results: i) Average performance (128
dimensional) of 4-fold models and ii) Ensemble performance (concatenated
512 dimensional) of 4-fold models where the embedding vector is obtained by
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concatenated 128D vectors of the individual models before retrieval.

Conventional evaluation. Embedding dimension is 512 in BNInception experi-
ments. For ResNet50, we both evaluate our method with 128 and 512 dimensional
embeddings.

Hyperparameter tuning. Embedding dimension is fixed to 128.

Baselines with GSP

We evaluate our method with C1+XBM+GSP : Cross-batch memory (XBM) [14]
with original Contrastive loss (C1) [29], C2+GSP : Contrastive loss with positive
margin [9], MS+GSP: Multi-similarity (MS) loss [33], Triplet+GSP: Triplet
loss [30], PNCA+GSP: ProxyNCA++ loss [15], PAnchor+GSP: ProxyAnchor
loss [37].

Hyperparameters

For the hyperparameter selection, we exploit the recent work [6] that has per-
formed parameter search via Bayesian optimization on variety of losses. We
further experiment the suggested parameters from the original papers and official
implementations. We pick the best performing parameters. We perform no
further parameter tuning for the baseline methods’ parameters when applied
with our method to purely examine the effectiveness of our method.

C1: We adopted XBM’s official implementation for fair comparison. We use 0.5
margin for all datasets.

C2: C2 has two parameters, (m+, m−): positive margin, m+, and negative margin.
We set (m+, m−) to (0, 0.3841), (0.2652, 0.5409), (0.2858, 0.5130), (0.2858, 0.5130)
for CUB, Cars196, In-shop and SOP, respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451, 0.0451 for CUB, Cars196,
In-shop and SOP, respectively.

MS: MS has three parameters (α, β, λ). We set (α, β, λ) to (2, 40, 0.5),
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(14.35, 75.83, 0.66), (8.49, 57.38, 0.41), (2, 40, 0.5) for CUB, Cars196, In-shop and
SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to (0.1, 32) for all datasets. We
use 1 sample per class in batch setting (i.e.,32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding layer, and we apply
learning rate multiplier of 100 for the proxies during training. For SOP dataset,
we use 5 1096 learning rate.

ProxyNCA++: We set its temperature parameter to 0.11 for all datasets. We
use 1 sample per class in batch setting (i.e.,32 classes with 1 samples per batch),
we perform 1 epoch warm-up training of the embedding layer, and we apply
learning rate multiplier of 100 for the proxies during training.

XBM: We evaluate XBM with C1 since in the original paper, contrastive loss is
reported to be the best performing baseline with XBM. We set the memory size
of XBM according to the dataset. For CUB and Cars196, we use memory size of
25 batches. For In-shop, we use 400 batches and for SOP we use 1400 batches.
We perform 1K steps of training with the baseline loss prior to integrate XBM
loss in order to ensure XBM’s slow drift assumption.

GSP: For the hyperparameters of our method, we perform parameters search,
details of which are provided in § 5.3.4.5. We use 64-many prototypes in CUB
and Cars, and 128-many prototypes in SOP and In-shop. We use ε=0.5 for
proxy-based losses and ε=5.0 for non-proxy losses. For the rest, we set µ=0.3,
ϵ=0.05, and we iterate until k=100 in Proposition 4.1. For zero-shot prediction
loss coefficient (i.e.,(19λ)LDML + λLZS), we set λ=0.1.

5.3.4.2 Results

Fair Evaluation

We compare GSP against direct application of GAP with 6 DML methods in 4
datasets. The results are provided in Tab. 5.1 and summarized in Fig. 5.7. We
observe consistent improvements upon direct application of GAP in all datasets.
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We achieve more improvement in MAP@R metric than R@1 which is shown to
be a noisy measure for DML evaluation [6]. On the average, we consistently
improve the baselines ≈1% points in MAP@R except for a single case (In-shop:
PNCA) where we perform on par. We improve state-of-the-art XBM method up
to 2% points, which is a good evidence that application of GSP is not limited to
loss terms but can be combined with different DML approaches. Moreover, GSP
also improves our CCP method. Again, a supporting result for wide applicability
of GSP method.

Figure 5.7: Summary of relative improvements recorded in Tab. 5.1.

Conventional Evaluation

We additionally follow the relatively old-fashioned conventional procedure [32]
for the evaluation of our method. We use BN-Inception [108] and ResNet50 [105]
architectures as the backbones. We obtain 128D (ResNet50) and 512D (BN-
Inception and ResNet50) embeddings through linear transformation after global
pooling layer. Aligned with the recent approaches [13–15,37], we use global max
pooling as well as global average pooling. The rest of the settings are disclosed
in § 5.3.4.1.

We evaluate our method with XBM. We provide R@1 results in Tab. 5.2 for
the comparison with SOTA. In our evaluations, we also provide MAP@R scores
in parenthesis under R@1 scores. We also provide baseline XBM evaluation in
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our framework. The results are mostly consistent with the ones reported in the
original paper [14] except for CUB and Cars datasets. In XBM [14], the authors
use proxy-based trainable memory for CUB and Cars datasets. On the other
hand, we use the official implementation provided by the authors, which does
not include such proxy-based extensions.

We observe that our method improves XBM and XBM+GSP reaches SOTA
performance in large scale datasets. With that being said, the improvement
margins are less substantial than the ones in fair evaluation. Such a result
is expected since training is terminated by early-stopping which is a common
practice to regularize the generalization of training [16, 17]. In conventional
evaluation, early-stopping is achieved by monitoring the test data performance,
enabling good generalization to test data. Therefore, observing less improvement
in generalization with GSP is something we expect owing to generalization boost
that test data based early-stopping already provides.

Table 5.2: Comparison with the existing methods for the retrieval task in
conventional experimental settings with BN-Inception and ResNet50 backbones
where superscripts denote embedding size. Red: the best. Blue: the second best.
Bold: previous SOTA. †Results obtained from [1].

(a)

Backbone → BN-Inception-512D

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1+XBM [14] 65.80 82.00 79.50 89.90
ProxyAnchor [37] 68.40 86.10 79.10 91.50

DiVA [23] 66.80 84.10 78.10 -
ProxyFewer [59] 66.60 85.50 78.00 -

Margin+S2SD [24] 68.50 87.30 79.30 -

C1+XBM 64.32
(23.59)

77.63
(21.67)

79.29
(52.59)

90.16
(61.39)

C1+XBM+GSP 64.99
(25.35)

79.07
(36.11)

79.59
(52.70)

90.92
(63.25)

(b)

Backbone → ResNet50

Dataset → CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1+XBM128 [14] - - 80.60 91.30
ProxyAnchor512 [37] 69.70 87.70 80.00† 92.10†

DiVA512 [23] 69.20 87.60 79.60 -
ProxyNCA++512 [15] 66.30 85.40 80.20 88.60
Margin+S2SD512 [24] 69.00 89.50 81.20 -

LIBC512 [1] 70.30 88.10 81.40 92.80

MS+Metrix512 [13] 71.40 89.60 81.00 92.20

PAnchor+DIML128 [65] 66.46
(25.58)

86.13
(28.11)

79.22
(43.04)

-

C1+XBM128 62.65
(23.70)

78.26
(22.95)

79.92
(53.45)

91.06
(62.64)

C1+XBM+GSP128 63.44
(24.04)

79.60
(23.87)

80.24
(53.81)

91.03
(62.74)

C1+XBM512 66.68
(25.38)

82.83
(25.34)

81.44
(55.66)

91.56
(64.00)

C1+XBM+GSP512 66.63
(25.51)

82.60
(25.76)

81.54
(55.91)

91.75
(64.43)
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We also observe that in a few cases, the R@1 performance of GSP is slightly worse
than the baseline. Nevertheless, once we compare the MAP@R performances,
GSP consistently brings improvement with no exception. We should recapitulate
that R@1 is a myopic metric to assess the quality of the embedding space
geometry [6] and hence, pushing R@1 does not necessarily reflect the true order
of the improvements that the methods bring. As we observe from MAP@R
comparisons, the methods sharing similar R@1 (i.e.,P@1) performances can differ
in MAP@R performance relatively more significantly. In that manner, we firmly
believe that comparing MAP@R performances instead of R@1 technically sounds
more in showing the improvements of our method.

5.3.4.3 Ablations

Effect of LZS

Table 5.3: Effects of the two components: Zero-shot prediction loss (ZSP) and
Generalized Sum Pooling (GSP)

Base Method: C2 MAP@R

Component SOP In-shop CUB Cars196

ZSP GSP 512D 128D 512D 128D 512D 128D 512D 128D

45.85 41.79 59.07 55.38 25.95 20.58 24.38 17.02
✓ 46.78 42.66 59.46 55.50 26.25 20.85 25.54 17.88

✓ 46.60 42.55 59.38 55.43 26.49 21.08 25.54 17.67
✓ ✓ 46.81 42.84 60.01 55.94 27.12 21.52 26.25 18.31

We empirically show the effect of LZS on learned representations in § 5.3.1. We
further examine the effect of LZS quantitatively by enabling/disabling it in 4
datasets. We also evaluate its effect without GSP by setting µ=1 where we use
GAP with pseudo-attribute vectors. The results are summarized in Tab. 5.3
showing that both components improves the baseline and their combination
brings the best improvement. We observe similar behavior in Cifar Collage
experiment (Fig. 5.4-(b)) where the effect of LZS is more substantial.
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Effect of µ

Figure 5.8: Effect of µ in CUB dataset with C2 loss. Shaded regions represent
∓std.

As we discuss in § 5.2.2, GSP is similar to top-k operator with an adaptive k

thanks to entropy smoothing. We empirically validate such behavior in CUB
dataset with C2 loss by sweeping µ parameter controlling top-k behavior. We plot
the performances in Fig. 5.8. Relatively lower values of µ performs similarly. As
we increase µ, the performance drops towards GAP due to possibly overestimating
the foreground ratio.

5.3.4.4 Computational Analysis

Forward and backward computation of proposed GSP method can be imple-
mented using only matrix-vector products. Moreover, having closed-form matrix-
inversion-free expression for the loss gradient enables memory efficient back
propagation since the output of each iteration must be stored otherwise.

We perform k iterations to obtain the pooling weights and at each iteration,
we only perform matrix-vector products. In this sense, the back propagation
can be achieved using automatic-differentiation. One problem with automatic
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differentiation is that the computation load increases with increasing k. On the
other hand, with closed-form gradient expression, we do not have such issue
and in fact we have constant back propagation complexity. Granted that the
closed-form expression demands exact solution of the problem (i.e.,k → ∞),
forward computation puts a little computation overhead and is memory efficient
since we discard the intermediate outputs. Moreover, our initial empirical study
show that our problems typically converges for k > 50 and we observe similar
performances with k ⩾ 25.

The choice of k is indeed problem dependent (i.e.,size of the feature map and
number of prototypes). Thus, it is important to see the effect of k on computation
load. We analyze the effect of k with automatic differentiation and with our
closed-form gradient expression. We provide the related plots in Fig. 5.9. We
observe that with closed-form gradients, our method puts a little computation
overhead and increasing k has marginal effect. On the contrary, with automatic
differentiation, the computational complexity substantially increases.

Figure 5.9: Comparing closed-form gradient with automatic differentiation
through analyzing the effect of k on computation in CUB dataset with C2
loss. Shaded regions represent ∓std.
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5.3.4.5 Hyperparameter Selection

We first perform a screening experiment to see the effect of the parameters. We
design a 2-level fractional factorial (i.e.,a subset of the all possible combinations)
experiment. We provide the results in Tab. 5.4. In our analysis, we find that
lower the better for λ and µ. Thus, we set µ = 0.3 and λ = 0.1. ε is observed to
have the most effect and number of prototypes, m, seems to have no significant
effect. Nevertheless, we jointly search for m and ε.

Table 5.4: Initial 2-level fractional factorial screening experiments for hyperpa-
rameter tuning (conducted in CUB).

Setting MAP@R

m µ ε λ C2 PNCA

16 0.3 0.5 0.1 40.63 40.59
16 0.7 0.5 0.5 40.41 40.34
128 0.3 0.5 0.5 40.22 40.35
128 0.7 0.5 0.1 40.07 40.85
16 0.3 20 0.5 36.11 40.51
16 0.7 20 0.1 39.11 39.88
128 0.3 20 0.1 39.61 39.12
128 0.7 20 0.5 35.36 39.92

Baseline 39.77 39.90

To this end, we perform grid search in CUB dataset with Contrastive (C2) and
Proxy NCA++ (PNCA) losses. We provide the results in Fig. 5.10. We see
that both losses have their best performance when m = 64. On the other hand,
ε = 5.0 works better for C2 while ε = 0.5 works better for PNCA. We additionally
perform a small experiment to see whether ε = 0.5 is the case for Proxy Anchor
loss as well and observe that ε = 0.5 is a better choice over ε = 5.0. As the
result of m-ε search, we set ε = 5.0 for non-proxy based losses and ε = 0.5 for
proxy-based losses.
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Figure 5.10: Searching m−ε space in CUB dataset for the parameters m: number
of prototoypes and ε: entropy smoothing coefficient. We fix µ = 0.3 and λ = 0.1.

Fixing µ = 0.3, λ = 0.1, ε = 0.5(or 5.0), we further experiment the effect of
number of prototypes, m, in large datasets (i.e.,SOP and In-shop). We provide
the corresponding performance plots in Fig. 5.11. Supporting our initial analysis,
m seemingly does not have a significant effect once it is not small (e.g. m ⩾ 64).
We observe that any choice of m ⩾ 64 provides performance improvement.
With that being said, increasing m does not bring substantial improvement
over relatively smaller values. Considering the results of the experiment, we set
m = 128 for SOP and In-shop datasets since both C2 and PNCA losses perform
slightly better with m = 128 than the other choices of m.

Figure 5.11: Effect of m in SOP and InShop datasets once we fix ε = 5 for
Contrastive (C2) and ε = 0.5 for Proxy NCA++ (PNCA).
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5.3.5 Comparison to Other Pooling Alternatives

Figure 5.12: Evaluation of the feature pooling methods on (a) Ciffar Collage and
(b) CUB dataset.

We evaluate 13 additional pooling alternatives on Ciffar Collage and CUB datasets
with contrastive (C2) and Proxy-NCA++ (PNCA) losses since they are the best
performing sample-based and proxy-based losses, respectively, across datasets.
We particularly consider Cifar Collage dataset since the images of different
classes share a considerable amount of semantic entities, enabling us to assess
the methods with respect to their ability to discard the nuisance information.

In addition to our method (GSP) and global average pooling (GAP), we consider:
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i) global max pooling (GMP), ii) GAP+GMP [37], iii CBAM [85], iv) CroW [86],
v) DeLF [87], vi) generalized max pooling (GeMax) [77], vii) generalized mean
pooling (GeMean) [76], viii) GSoP [89], ix) optimal transport based aggregation
(OTP) [82], x) SOLAR [80], xi) trainable SMK (T-SMK) [88], xii) NetVLAD
[81], and xiii) WELDON [75]. Among those, OTP and VLAD are ensemble
based methods and typically necessitate large embedding dimensions. Thus, we
both experimented their 128 dimensional version -(8x16) (8 prototypes of 16
dimensional vectors) and 8192 dimensional version -(64x128) (64 prototypes of
128 dimensional vectors). We also evaluate our method with GMP (GAP+GMP)
in CUB dataset to show that per channel selection is orthogonal to our approach
and thus, GMP can marginally improve our method as well.

For CUB dataset, the experimental setting follows § 5.3.4.1 and we report
MAP@R performance of the 4-model average at 128 dimensional embeddings
each. For Cifar Collage dataset, the experimental setting follows § 5.3.2 and
we report MAP@R performance. We provide the results in Fig. 5.12-(a) and
Fig. 5.12-(b) for evaluations on Cifar Collage and CUB, respectively.

Evaluations show that our method is superior to other pooling alternatives
including prototype based VLAD and OTP. Predominantly, for 128 dimensional
embeddings, our method outperforms prototype based methods by large margin.
In CUB dataset, the pooling methods either are inferior to or perform on par
with GAP. The performance improvements of the superior methods are less than
1%, implying that our improvements in the order of 1-2% reported in Tab. 5.1
is substantial. On the other hand, the methods that mask the feature map
outperform GAP by large margin in Cifar Collage dataset. That being said, our
method outperforms all the methods except for Contrastive+VLAD by large
margin in Cifar Collage dataset, yet another evidence for better feature selection
mechanism of our method. For instance in CUB dataset, DeLF and GeMean are
on par with our method which has slightly better performance. Yet, our method
outperforms both methods by large margin in Cifar Collage dataset.

Comparing to CroW , T-SMK and CBAM, our method outperforms those
methods by large margin. Those methods are the built on feature magnitude
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based saliency, assuming that the backbone functions must be able to zero-out
nuisance information. Yet, such a requirement is restrictive for the parameter
space and annihilation of the non-discriminative information might not be feasible
in some problems. We experimentally observe such a weakness of CroW , T-SMK
and CBAM in Cifar Collage dataset where the nuisance information cannot be
zeroed-out by the backbone. Our formulation do not have such a restrictive
assumption and thus substantially superior to those methods.

Similarly, attention-based weighting methods, DeLF and GSoP, do not have
explicit control on feature selection behavior and might result in poor models
when jointly trained with the feature extractor [87], which we also observe in
Cifar Collage experiments. On the contrary, we have explicit control on the
pooling behavior with µ parameter and the behavior of our method is stable and
consistent across datasets and with different loss functions.

Moreover, attention-based methods DeLF, GSoP, and SOLAR typically introduce
several convolution layers to compute the feature weights. We only introduce an
m-kernel 1x1 convolution layer (i.e.,m-many trainable prototypes) and obtain
better results. We should note that our pooling operation is as simple as per-
forming a convolution (i.e.,distance computation) and alternating normalization
of a vector and a scalar.

Other pooling methods, i.e.,GAP, GMP, GAP+GMP, GeMax, GeMean, WEL-
DON, VLAD, OTP, do not build on discriminative feature selection. Thus, our
method substantially outperforms those.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

This dissertation addresses the problem of deep metric learning (DML) with
particular focus on improving the generalization performance of the existing
efforts. Upon a comprehensive review of the existing work in the literature, we
attempt to provide theoretical insights into the success of the existing methods.
We then follow the mechanisms suggested by the theory to develop novel DML
methods. Accordingly, we propose three novel approaches as well as a theoretically
founded bridge explaining the mechanism to transfer the DML efforts to unseen
classes.

Our first approach brings a different perspective to DML formulation in terms
of chance constraints. Specifically, we formulate the deep metric problem as a
chance constrained optimization problem. The initial formulation gives no clear
algorithmic implications but the existing works. Thus, we rigorously convert the
initial problem formulation into another form enabling expressing the deep metric
problem as a set intersection problem. The theory suggests a set intersection
mechanism yet allows a greedy algorithm via iterative projections. To this
end, we also relate the solution of a proxy-based DML approach to one of the
supersets to be intersected to obtain the desired solution. Hence, we form the
sets to be intersected greedily through solving proxy-based DML problems on
the fly. In short, the mechanism suggested by the theory is realized by a simple,
yet effective, algorithm. We can summarize our key contribution as building a
bridge between what the theory suggests and the actual practice applied by the

97



method. In the end, we provide a mathematical programming to solve a chance
constrained problem defining DML through our derivations and the proposed
method. Notably, the proposed framework is applicable with the pairwise
distance based state-of-the-art (SOTA) DML loss functions without introducing
any additional computational cost. We support our claims with comprehensive
empirical studies. Extensive evaluations on the benchmark datasets show the
efficiency of our method.

Our next contribution is explaining the efficiency of global average pooling (GAP)
in zero-shot prediction. We show that averaging the collection of features in
the CNN feature map is equivalent to convex combination of latent prototype
vectors of some semantic entities corresponding to classes. Hence, we interpret
the representation space defined via output of GAP as a convex combination of
semantically independent representations defined by each pixel in the feature
map. We conclude that as long as the local semantic entities of the training and
test classes follow the same distribution, metric learning task can be generalized
to unseen classes. In that manner, we also show that class samples are mapped to
some convex hulls defined by certain prototypes active for the class. The critical
desiderata for metric learning is non-overlapping class convex hulls. With our
analysis, we show that such a desired metric learning behaviour can be achieved
by controlling the prototypes and the convex combination weights.

Building on perspective explaining the success of GAP, we propose a learnable
and generalized version. Our proposed generalization is a trainable pooling layer
that selects the feature subset and re-weight it during pooling. Formally, we
propose an entropy-smoothed optimal transport problem and show that it is
a strict generalization of GAP, i.e.,a specific realization of the problem gives
back GAP. We show that this optimization problem enjoys analytical gradients
enabling us to use it as a direct learnable replacement for GAP. To enable
effective learning of the proposed layer, we further propose a regularization loss
to improve zero-shot transfer. With extensive empirical studies, we validate the
effectiveness of the proposed pooling layer in various metric learning benchmarks.
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6.2 Conclusion

Existing evaluations on several benchmark datasets in the literature showed that
proxy-based methods are state-of-the art, especially in large scale problems in
terms of classes. We also observed from the results of such benchmarks that
increasing the number of proxies does not proportionally improve the performance.
To this end, we proposed a mathematical programming framework to arbitrarily
increase the number of proxies arbitrarily while improving the generalization
performance.

We theoretically showed that a contrastive loss based deep metric learning
objective is a surrogate for the chance constraints that read the probability of
proximity violations in the representation space is less than some small constant.
We then theoretically showed that chance constraints can be decomposed into
finite chance constraints conditioned on particular samples. We proved that the
discrepancy between such alternative decomposed formulation and the original
formulation is bounded above by the covering radius of the samples used to
define the problem. Equivalently, we showed that the generalization performance
is proportional to the covering radius of such samples. We also showed that the
solution of a proxy-based DML corresponds to a superset of the feasible region of
the primary DML problem and that solving multiple proxy-based problems can
be related to solving a DML problem with better generalization properties. As a
result, we formally developed a proxy-based method that inherently considers
arbitrary number of proxies for better generalization.

We empirically validated that as we initialize proxies with diverse samples
and solve proxy-based DML problems, we inherently increase the number of
samples used to define the problem and hence reducing the covering radius. Our
theoretical and empirical analysis showed that alternating the proxies is crucial
to improve the generalization rather than exploiting multiple proxies at once. In
particular, we observed more than 10% point MAP@R performance improvement
in SOP and In-shop datasets when we altered the proxies rather than fixing
them. Besides validating implications of our theoretical derivations, we showed
that our chance constrained programming based method is state-of-the-art. In
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fact, we beat the previous state-of-the-art proxy-based XBM method by at least
1% point MAP@R performance margin. We also showed that we consistently
increase the performance of the previous DML methods at least 1% and up to
11% points MAP@R with our method.

Moving forward, we theoretically analyzed how global average pooling shapes
the embeddings space and how the metric learning with particular classes can be
transferred to unseen classes. We showed that the learning can be transferred as
long as the seen and the unseen classes share the same local semantics. We showed
that global average pooling corresponds to convex combination of prototype
vectors and that vectors are of some semantic entities. We showed the equivalence
by bounding the error between the two representations. We validated our claims
with experiments showcasing that the representation space can be partitioned
using prototype vectors corresponding to semantic entities and that the covering
radius of the prototype set is an upper bound for the error between the prototype
convex combinations and the global average pooling representations.

Building on our theoretic analysis of GAP, we formulated a generalized sum
pooling and proved that GAP is a corner case. We empirically showed that
our pooling layer effectively selects discriminative features. We also developed
a meta-learning approach to generalize the behaviour of our pooling method
to unseen classes. Namely, we proposed a zero-shot prediction loss to enable
learning transfer to unseen classes. We empirically showed that the proposed zero-
shot prediction loss has more than 30% point MAP@R zero-shot generalization
performance capability than that of a regular learning without our loss. We
also showed in benchmark datasets that the standalone performance of our
pooling method can be boosted by zero-shot prediction loss by 0.5% to 1%
points MAP@R. With regard to discriminative feature selection capability of
our pooling method, we showed in controlled datasets that inclusion of our
pooling method improves the baseline performance by 70% points MAP@R in
synthetic dataset and by 17% points MAP@R in Cifar Collage dataset. We as well
showed in several benchmark datasets that our pooling method with zero-shot
prediction loss consistently improves the baseline methods including the state-
of-the-art XBM and CCP methods. In particular, we boosted the performance
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of XBM and CCP up to 2% and 0.5% points MAP@R, respectively. Finally,
the results of the empirical study to evaluate the proposed pooling method
validated our claims and theoretical findings introduced during the formulation
of the pooling approach. Specifically, proposed feature selection resulted in
non-overlapping convex hulls, the learned prototypes of the feature selection layer
were to correspond some semantic entities, and proposed zero-shot prediction
loss yielded learned prototypes that have superior generalization capability.

6.3 Future Directions

Among the methods we propose withing the scope of this dissertation, chance
constrained programming (CCP) framework demands relatively more frequent
computation of validation performance, which becomes displeasing in large scale
problems. One approach to control the computation load that the validation
performance computation brings can be selecting a representative subset of the
validation set. To select such a set, our findings on how global average pooling
shapes the local features as well as the on the generalization bounds can be
further studied to develop an algorithm to select a subset that possesses δ-cover
of the local features.

Our CCP approach aims to reduce the covering radius of the proxies that define
the chance constraints. We build on a set intersection formulation in our approach
to increase the number of diverse proxies. An alternative research direction to
reduce the covering radius can be transforming the embedding space to map each
sample to very close vicinity of their associated proxy. To this end, distances
between the proxies of the different classes can be considered as a measure for
label ordering and multi-dimensional scaling (MDS) can be used to map the
samples according to such orderings. An MDS based ordinal metric learning
approach has been already proposed in [121], yet the label orderings are essential
in that study. Expanding on [121] by replacing label orderings with the distances
among the proxies can be an interesting future direction.

Our generalized sum pooling enables localization of the discriminative content in
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the images. We only deal with the images containing singe objects within the
scope of the thesis. Exploiting such a localization byproduct of our pooling oper-
ation in object detection and instance segmentation tasks can be an interesting
future work direction.

Moreover, we learn feature prototypes with our pooling layer. Such feature
prototypes can be used to generate synthetic class samples. Specifically, an
optimal transport barycenter of some input images can be computed using the
prototypes as the support of the barycenter distribution. Current synthetic
sample generation approaches operate on global feature level or use local features
with simple weighted averaging. In this manner, extending such works using
optimal transport barycenters thanks to our learned prototypes efficiently can
be an interesting research direction.

To sum, our theoretical insights can inspire many future works that somehow
exploit a metric learning task. Examples of such works include but not lim-
ited to synthetic data generation, feature selection, object detection, instance
segmentation, subset selection, many-to-one feature mapping.
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Appendix A

PROOFS FOR CHAPTER 3

A.1 Proof for Lemma 3.2.1

Lemma 3.2.1 Generalized contrastive loss defined as

ℓ(z, z′; θ) := (ιy,y′(∥x 9 x′∥fθ
− β) + α)+

is
√

2ωL-Lipschitz in x and x′ for all y, y′, θ for the embedding function f(·; θ)
being L-layer CNN (with ReLU, max-pool, average-pool) with a fully connected
layer at the end, where ω is the maximum sum of the input weights per neuron.

Proof: We first show that f(x; θ) is Lipschitz continuous.

We consider x∈Rd as an input to a layer and x̂∈Rd′ as the corresponding output.
We express ith component of x̂ as x̂i = ∑

j wi,jxsi(j) where si = {si(j) ∈ [d]} is
the set of components contributing to x̂i and wi,j∈θ is the layer weights. For
instance, for a fully connected layer si(j) = j; for a 3x3 convolutional layer, si

corresponds to 3x3 window of depth #channels centered at i. We now consider
two inputs x, x′ and their outputs x̂, x̂′. We write:

∥x̂− x̂′∥2
2

∥x− x′∥2
2

=
∑

i∈[d′] |x̂i − x̂′
i|2

∥x− x′∥2
2

=
∑

i∈[d′] |
∑

j wi,jxsi(j) −
∑

j wi,jx
′
si(j)|2

∥x− x′∥2
2

⩽

∑
i∈[d′]

∑
j |wi,j|2|xsi(j) − x′

si(j)|2

∥x− x′∥2
2

Rearranging terms, we express:

∑
i∈[d′]

∑
j |wi,j|2|xsi(j) − x′

si(j)|2 = ∑
k∈[d]

∑
i,j:si(j)=k

|wi,j|2|xk − x′
k|2
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If ∑
i,j:si(j)=k

|wi,j| ⩽ ω for all k and for all layers, i.e.,the absolute sum of the input

weights per neuron is bounded by ω, we can write ∑
k∈[d]

∑
i,j:si(j)=k

|wi,j|2|xk − x′
k|2 ⩽

ω2 ∑
k∈[d]
|xk − x′

k|2 ⩽ ω2∥x− x′∥2
2, hence,

∥x̂− x̂′∥2

∥x− x′∥2
⩽ ω.

For max-pooling and average-pooling layers, the inequality holds with ω = 1;
since, we can express max-pooling as a convolution where only one weight is 1
and the rest is 0; and similarly, we can express average-pooling as a convolution
where the weights sum up to 1.

For ReLU activation, we consider the fact that |max{0, u}−max{0, v}| ⩽ |u−v|
to write:

∥ReLU(x)−ReLU(x′)∥2

∥x− x′∥2
⩽ 1.

Therefore, L-layer CNN f(x; θ) is ωL-Lipschitz.

We now consider ℓ(z, z′; θ) = max{0, ιy,y′(∥f(x; θ) − f(x′; θ)∥2 − β) + α} as
g(h(f(x; θ), f(x′; θ))) where g(h) = max{0, ιy,y′(h− β) + α} is 1-Lipschitz, and
h(f, f ′) = ∥f − f ′∥2 is

√
2-Lipschitz and 1-Lipschitz in f for fixed f ′. Thus, for

y, y′, θ fixed, ℓ(z, z′; θ) := (ιy,y′(df (x, x′; θ)− β) + α)+ is ωL-Lipschitz in x and in
x′; and

√
2ωL-Lipschitz in both, for all y, y′, θ. ■

Note that it is easy to show that the normalization proposed in Section 4.4:

v̂ =


v for ∥v∥2 ⩽ 1

v/∥v∥2 for ∥v∥2 ⩾ 1

is 2-Lipschitz. Therefore, our loss is still Lipschitz continuous with normalized
embeddings in our framework.

A.2 Proof for Proposition 3.2.1

Proposition 3.2.1 Given S={zi}i∈[m]
i.i.d.∼ pZ such that ∀k∈Y {xi|yi=k} is δS-

cover1 of X , ℓ(z, z′; θ) is ζ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by
1 S ⊂ S ′ is δS-cover of S ′ if ∀z′ ∈ S ′, ∃z ∈ S such that ∥z − z′∥2 ⩽ δS .
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L; then with probability at least 1− γ,∣∣∣∣∣∣Ez,z′∼pZ

[
ℓ(z, z′; θ)

]
− 1

m

∑
i∈[m]

Ez∼pZ

[
ℓ(zi, z; θ)

] ∣∣∣∣∣∣
⩽ O(ζ δS) +O(L

√
log 1

γ/m).

Proof: We start with defining L̂(z; θ) := Ez′∼pZ

[
ℓ(z, z′; θ)

]
. Note that

∥L̂(z1; θ)− L̂(z2; θ)∥2 = |Ez′∼pZ

[
ℓ(z1, z′; θ)

]
− Ez′∼pZ

[
ℓ(z2, z′; θ)

]
|

⩽ Ez′∼pZ

[
|ℓ(z1, z′; θ)− ℓ(z2, z′; θ)|

]
.

Therefore, ℓ(z, z′; θ) being ζ-Lipschitz in x for fixed x′, y, y′ and θ, and bounded
by L implies L̂(z; θ) is also ζ-Lipschitz in x for all y, θ and bounded by L. Hence,
we have

|L̂(zi; θ)− L̂(z; θ)| ⩽ ζ δS ∀zi, z:zi ∈ S, z ∈ Z, ∥zi − z∥2 ⩽ δS

From Theorem 14 of [67], we can partitionZ into K = mint{|t|:t is δS
2 -cover of Z}

disjoint sets, denoted as {Ri}i∈[K], such that ∀i:zi ∈ δS ; both zi, z being ∈ Ri

implies |L̂(zi; θ)−L̂(z; θ)| ⩽ ζ δS . Hence, from Theorem 3 of [67], with probability
at least 1− γ, we have:∣∣∣∣∣∣Ez,z′∼pZ

[
ℓ(z, z′; θ)

]
− 1

m

∑
i∈[m]

Ez∼pZ

[
ℓ(zi, z; θ)

] ∣∣∣∣∣∣ =
∣∣∣∣∣∣Ez∼pZ

[
L̂(z; θ)

]
− 1

m

∑
i∈[m]
L̂(zi; θ)

∣∣∣∣∣∣ ⩽ ζ δS + L

√
2 K log 2 + 2 log 1/γ

m

Note that K is dependent on δs and satisfies lim
m→∞

K
m
→ 0 ensuring that the right

hand side goes to zero as more samples are exploited and the covering radius is
improved. Thus, asymptotically the following holds:

Ez,z′∼pZ

[
ℓ(z, z′; θ∗)

]
⩽ O(δs) +O(

√
log 1

γ/m) with probability at least 1− γ .

■

A.3 Proof for Proposition 3.2.2

Proposition 3.2.2 Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n]. If s = ∪ks′

k with
s′

k is the δs-cover of {i ∈ [n] | yi = k} ( i.e.,the samples in class k ), ℓ(z, z′; θ) is
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ζ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by L, e(Asx[n]) training error;
then with probability at least 1− γ we have:∣∣∣∣∣∣ 1

n2
∑

i,j∈[n]x[n]
ℓ(zi, zj;Asx[n])− 1

|s| n

∑
i,j∈sx[n]

ℓ(zi, zj;Asx[n])

∣∣∣∣∣∣
⩽ O(ζ δs) +O(e(Asx[n])) +O(L

√
log 1

γ/n)

Proof:

We are given a condition on s that we can partition Z into m = |s| disjoint sets
such that any sample from the dataset (xi, c), i ∈ [n], has a corresponding sample
from s, (x′

j, c), j ∈ s within δs ball. Thus, we start with partitioning Z into s

disjoint sets as Z = ∪iSi with Si ∩ Sj = ∅, ∀i ̸= j.

We define ℓ[n](z) = 1
n

∑
i∈[n]

ℓ(z, zi,Asx[n]) and ℓs(z) = 1
m

∑
i∈s

ℓ(z, zi,Asx[n]) for the

sake of clarity. Hence, we are interested in bounding | 1
n

∑
[n] ℓ[n](zi)− 1

m

∑
s ℓ[n](zi)|.

We proceed with using triangle inequality to write:∣∣∣∣∣∣ 1
n

∑
i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ 1
n

∑
i∈[n]

ℓ[n](zi)−
∑
i∈s

ni

n
ℓ[n](zi)

∣∣∣∣∣∣
(T 1)

+

∣∣∣∣∣∣ ∑
i∈s

ni

n
ℓ[n](zi)− 1

m

∑
i∈s

ℓ[n](zi)

∣∣∣∣∣∣
(T 2)

For term (T1) we write:

(T1) ⩽ 1
n

∑
i∈[m]

∑
zj∈Si

|ℓ[n](zs(i))− ℓ[n](zj)|
(1)
⩽ ζ δs

where in (1), we use ζ-Lipschitz of the loss function and the condition |zs(i)−zj| ⩽
δs, ∀zj ∈ Si.

Using triangle inequality, we bound term (T2) as:
∣∣∣∣∣∣ ∑

i∈s

ni

n
ℓ[n](zi)− 1

m

∑
i∈s

ℓ[n](zi)

∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣Ez∼pZ

[
ℓs(z)

]
− Ez∼pZ

[
ℓ[n](z)

] ∣∣∣∣∣∣
(T 2.1)

+

∣∣∣∣∣∣Ez∼pZ

[
ℓ[n](z)

]
− ∑

i∈s

ni

n
ℓ[n](zi)

∣∣∣∣∣∣
(T 2.2)

+

∣∣∣∣∣∣Ez∼pZ

[
ℓs(z)

]
− 1

n

∑
i∈[n]

ℓs(zi)

∣∣∣∣∣∣
(T 2.3)

where we use 1
m

∑
s ℓ[n](zi) = 1

n

∑
[n] ℓs(zi) in (T2.3).
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For (T2.1) we have:

(T2.1) ⩽

∣∣∣∣∣∣Ez∼pZ

 1
m

∑
i∈s

ℓ(zi, z)− 1
n

∑
i∈[n]

ℓ(zi, z)
 ∣∣∣∣∣∣

where we abuse the notation for the sake of clarity and drop parameter, Asx[n],
dependency from the loss. Rearranging the terms, we have:

(T2.1) ⩽∣∣∣∣∣∣Ez∼pZ

 1
m

∑
i∈[m]

n−m ni

n
ℓ(zs(i), z)

 ∣∣∣∣∣∣ +

∣∣∣∣∣∣Ez∼pZ

 1
n

∑
i∈[m]

∑
j∈Si

ℓ(zs(i), z)− ℓ(zj, z)
 ∣∣∣∣∣∣

where similar to (T1), the second summand is upper bounded by ζ δs. Using
triangle inequality for the first summand, we write:∣∣∣∣∣∣Ez∼pZ

 1
m

∑
i∈[m]

n−m ni

n
ℓ(zs(i), z)

 ∣∣∣∣∣∣ ⩽ (T2.3) + e(Asx[n])

Hence, we have:
(T2.1) ⩽ ζ δs + (T2.3) + e(Asx[n])

where from Hoeffding’s Bound, (T2.3) ⩽ L
√

log 1
γ/2n with probability at least

1− γ:

Finally, we express (T2.2) as:

(T2.2) =

∣∣∣∣∣∣ ∑
i∈[m]

Ez∼pZ

[
ℓ[n](z) | z ∈ Si

]
p(z ∈ Si)−

∑
i∈s

ni

n
ℓ[n](zi)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ ∑
i∈[m]

Ez∼pZ

[
ℓ[n](z) | z ∈ Si

]
ni

n
− ∑

i∈s

ni

n
ℓ[n](zi)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
i∈[m]

Ez∼pZ

[
ℓ[n](z) | z ∈ Si

]
p(z ∈ Si)−

∑
i∈[m]

Ez∼pZ

[
ℓ[n](z) | z ∈ Si

]
ni

n

∣∣∣∣∣∣
Rearranging the terms we have:

(T2.2) ⩽ ∑
i∈[m]

ni

n
maxz∈Si

|ℓ[n](z)−ℓ[n](zs(i))|+maxz∈Z |ℓ[n](z)| ∑
i∈[m]

∣∣∣∣∣∣ni

n
−p(z ∈ Si)

∣∣∣∣∣∣
where the first summand is bounded above by ζ (δs + ε(n)) owing to loss being
ζ-Lipschitz. Here, we denote ε(n) as the covering radius of Z, i.e.,the dataset,
{xi, yi}[n] is ε(n)-cover of X xY. We note that (ni)i∈[m] is an i.i.d. multino-
mial random variable with parameters n and (pZ(z ∈ Si))i∈[m]. Thus, by the
Breteganolle-Huber-Carol inequality (Proposition A6.6 of [122]), we have :

(T2.2) ⩽ ζ (δs + ε(n)) + L
√

2m log 2+2 log 1/γ

n
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Finally, with probability at least 1− γ, we end up with:∣∣∣∣∣∣ 1
n

∑
i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)

∣∣∣∣∣∣
⩽ ζ (3 δs + ε(n)) + e(Asx[n]) + L (

√
log 1

γ/2n +
√

2m log 2+2 log 1/γ

n
)

■

Corollary 3.2.2.1 Generalization performance of the proxy-based methods can
be limited by the maximum of distances between the proxies and the corresponding
class samples in the dataset.

Proof: The covering radius for each class subset is the maximum distance between
the corresponding class samples and the class proxy. We at least know that the
generalization error is bounded above with a term proportional to that distance.
■
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Appendix B

PROOFS FOR CHAPTER 5

B.1 Proof for Claim 5.2.1

Proof: ρ∗ is obtained as the solution of the following optimal transport problem:

ρ∗, π∗ = arg min
ρ,π⩾0

ρj+Σiπij=1/n

Σijπij=µ

∑
ij cijπij.

Given solutions (ρ∗, π∗), for µ=1, from the 3rd constraint, we have Σijπ
∗
ij=1.

Then, using the 2nd constraint, we write:

∑
j ρ∗

j + ∑
j

∑
i π∗

ij = ∑
j

1
n

where j∈[n] for n-many convolutional features. Hence, we have ∑
j ρ∗ = 0

which implies ρ∗=0 owing to non-negativity constraint. Finally, pooling weights
becomes pi = 1/n−��ρ

∗
i

µ
=1

= 1/n.

■

B.2 Proof for Proposition 5.2.1

Before starting our proof, we first derive an iterative approach for the solution of
(P2). We then prove that the iterations in Proposition 4.1 can be used to obtain
the solution.
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We can write (P2) equivalently as:

ρ(ε), π(ε) = arg min
ρ,π⩾0

ρj+Σiπij=1/n

Σijπij=µ

∑
ij cijπij + 1

ε
(∑

ij πij log πij + ∑
j ρj log ρj)

+ ∑
j 0ρj −

∑
ij πij −

∑
j ρj + ∑

ij e9εcij + ∑
j e9ε0

Rearranging the terms we get:

ρ(ε), π(ε) = arg min
ρ,π⩾0

ρj+Σiπij=1/n

Σijπij=µ

∑
ij πij log πij

e9εcij + ∑
j ρj log ρj

e9ε0

−∑
ij πij −

∑
j ρj + ∑

ij e9εcij + ∑
j e9ε0

which is generalized Kullback–Leibler divergence (KLD) between (ρ, π) and
(exp (9ε0), exp (9εc)). Hence, we reformulate the problem as a KLD prjoection
onto a convex set, which can be solved by Bregman Projections (i.e.,alternating
projections onto constraint sets) [99, 100]. Defining C1 := {(ρ, π) | ρj + ∑

ij πij =
1/n ∀j} and C2 := {(ρ, π) | ∑

ij πij = µ}, and omitting constants, we can write
the problem as:

ρ(ε), π(ε) = arg min
ρ,π⩾0

(ρ,π)∈C1∩C2

∑
ij πij(log πij

e9εcij 9 1) + ∑
j ρj(log ρj

e9ε0 9 1) (P2′)

Given, (ρ(k), π(k))), at iteration k, KLD projection onto C1, i.e.,(ρ(k+1), π(k+1)) :=
PKL

C1 (ρ(k), π(k)), reads:

ρ
(k+1)
j = 1/n(ρ(k)

j + ∑
i π

(k)
ij )91ρ

(k)
j ,

π(k+1) = 1/n(ρ(k)
j + ∑

i π
(k)
ij )91π

(k)
ij

where the results follow from method of Lagrange multipliers. Similarly, for
PKL

C2 (ρ(k), π(k)), we have:

ρ(k+1) = ρ(k) , π(k+1) = µ∑
ij π

(k)
ij

π(k) .

Given initialization, (ρ(0), π(0)) = (1n, exp(9εc)), we obtain the pairs (ρ(k), π(k))
for k = 0, 1, 2, . . . as:

ρ(k+1) = 1/n(ρ(k) + π(k)⊺1m)91 ⊙ ρ(k) , π(k+1) = µ(1⊺
mπ̂1n)91π̂

where π̂ = π(k)Diag
(

1/n(ρ(k) + π(k)⊺1m)91
) (B.2.1)
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Proof: We will prove by induction. From Proposition 4.1, we have

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91, t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

and π(k) = t(k) exp(9εc)Diag(ρ(k)). It is easy to show that the expressions hold for
the pair (ρ(1), π(1)). Now, assuming that the expressions also holds for arbitrary
(ρ(k′), π(k′)). We have

ρ(k′+1) = 1/n(ρ(k′) + π(k′)⊺1m)91 ⊙ ρ(k′)

Replacing π(k′) = t(k′) exp(9εc)Diag(ρ(k′)) we get:

ρ(k′+1) = 1/n(ρ(k′) + Diag(ρ(k′))t(k′) exp(9εc)⊺1m)91 ⊙ ρ(k′)

where ρ(k′) terms cancel out, resulting in:

ρ(k′+1) = 1/n(1 + t(k′) exp(9εc)⊺1m)91.

Similarly, we express π̂ as:

π̂ = t(k′) exp(9εc)Diag(ρk′)Diag(1/n(ρ(k′) + Diag(ρ(k′))t(k′) exp(9εc)⊺1m)91)

again ρ(k′) terms cancel out, resulting in:

π̂ = t(k′) exp(9εc)Diag(1/n(1 + t(k′) exp(9εc)⊺1m)91) = t(k′) exp(9εc)Diag(ρ(k′+1)).

Hence, π(k′+1) becomes:

π(k′+1) = µ(1⊺
mt(k′) exp(9εc)Diag(ρ(k′+1))1n)91t(k′) exp(9εc)Diag(ρ(k′+1))

= 1
t(k′) µ(1⊺

m exp(9εc)ρ(k′+1))91︸ ︷︷ ︸
=t(k′+1)

t(k′) exp(9εc)Diag(ρ(k′+1))

= t(k′+1) exp(9εc)Diag(ρ(k′+1)),

meaning that the expressions also hold for the pair (ρ(k′+1), π(k′+1)). ■

B.3 Proof for Proposition 5.2.2

Proof: We start our proof by expressing (P2′) in a compact form as:

x(ε) = arg min
x⩾0

Ax=b

c̄⊺x + 1
ε
x⊺(log x− 1(m+1)n)

125



where x denotes the vector formed by stacking ρ and the row vectors of π, c̄

denotes the vector formed by stacking n-dimensional zero vector and the row
vectors of c, and A and b are such that Ax = b imposes transport constraints as:

A =

Inxn

m︷ ︸︸ ︷
Inxn · · · Inxn

0⊺
n 1⊺

m n

 , b = [1/n1⊺
n µ]

From Lagrangian dual, we have:

x(ε) = exp(9ε(c̄+A⊺λ∗))

where λ∗ is the optimal dual Lagrangian satisfying:

A exp(9ε(c̄+A⊺λ∗)) = b

Defining [∂x
∂c

]ij := ∂xj

∂ci
, we have;

∂x(ε)

∂c
= −εĪ(I + ∂λ∗

∂c̄
A)Diag(x(ε))

where Ī := [0(mn)xn I(mn)x((m+1)n)]. Similarly, for the dual variable, we have:

−ε(I + ∂λ∗

∂c̄
A)Diag(x(ε))A⊺ = 0⇒ ∂λ∗

∂c̄
= Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91.

Putting back the expression for ∂λ∗

∂c̄
in ∂x(ε)

∂c
, we obtain:

∂x(ε)

∂c
= −εĪ

(
Diag(x(ε))−Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91ADiag(x(ε))

)
,

which includes (m+1) by n matrix inversion, H := ADiag(x(ε))A⊺. We now show
that H91 can be obtained without explicit matrix inversion.

H can be expressed as:

H =

 1/nI 1/n− ρ

1/n− ρ⊺ µ


H is Hermitian and positive definite. Using block matrix inversion formula for
such matrices (Corrolary 4.1 of [123]), we obtain the inverse as;

H91 =

nI + k91ρ̂ρ̂⊺ −k91ρ̂

−k91ρ̂⊺ k91


where k = 1− µ− nρ(ε)⊺ρ(ε) and ρ̂ = 1− nρ(ε).

Given ∂L
∂x(ε) , i.e.,( ∂L

∂ρ(ε) ,
∂L

∂π(ε) ), the rest of the proof to obtain ∂L
∂c

follows from right
multiplying the Jacobian, i.e.,∂L

∂c
= ∂x(ε)

∂c
∂L

∂x(ε) and rearranging the terms. ■
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