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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2022





Approval of the thesis:

IMAGE COMPRESSION METHOD BASED ON LEARNED
LIFTING-BASED DWT AND LEARNED ZEROTREE-LIKE ENTROPY

MODEL
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ABSTRACT

IMAGE COMPRESSION METHOD BASED ON LEARNED
LIFTING-BASED DWT AND LEARNED ZEROTREE-LIKE ENTROPY

MODEL

Şahin, Uğur Berk

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Fatih Kamışlı

August 2022, 73 pages

The success of deep learning in computer vision has sparked great interest in inves-

tigating deep learning-based algorithms also in many image processing applications,

including image compression. The most popular end-to-end learned image compres-

sion approaches are based on auto-encoder architectures, where the image is mapped

via convolutional neural networks (CNNs) into a transform (latent) representation that

is quantized and processed again with CNNs to obtain the reconstructed image. The

quantized latent representation is entropy coded to obtain a compressed bitstream.

To have efficient entropy coding, the probability distribution of the quantized latent

representation is also modeled with CNNs. The entire system, including the auto-

encoder and the probability model of the latent representation, is trained jointly to

minimize the rate-distortion cost function.

A successful traditional image compression system is the Embedded Zerotree Wavelet

(EZW) coding algorithm, which is based on the Discrete Wavelet Transform (DWT)

and the Zerotrees (ZT) of wavelet coefficients. This thesis explores a similar learning-

based compression architecture. In particular, a learned lifting-based DWT and a
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learned ZT-like probability model of the transform coefficients are used. Several

variations of the ZT-like probability model are explored. The entire system is trained

end-to-end to minimize a rate-distortion cost function. The explored system is com-

pared with JPEG2000 and state-of-the-art learned image compression methods.

Keywords: Image Compression, Jpeg2000, Neural Network, EZWT, Lifting Struc-

ture, CNN
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ÖZ

ÖĞRENİLMİŞ KALDIRAÇ TABANLI DWT VE ÖĞRENİLMİŞ
ZEROTREE-BENZERİ ENTROPİ MODELİNE DAYALI GÖRÜNTÜ

SIKIŞTIRMA YÖNTEMİ

Şahin, Uğur Berk

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Fatih Kamışlı

Ağustos 2022 , 73 sayfa

Bilgisayarla görüde derin öğrenmenin başarısı, görüntü sıkıştırma da dahil olmak

üzere birçok görüntü işleme uygulamasında derin öğrenmeye dayalı algoritmaların

araştırılmasına büyük ilgi uyandırdı. En popüler uçtan uca öğrenilen görüntü sıkış-

tırma yaklaşımları, görüntünün evrişimli sinir ağları (CNN’ler) aracılığıyla nicelenen

ve CNN’ler ile tekrar işlenen bir dönüşüm (gizli) temsiline eşlendiği otomatik kod-

layıcı mimarilerine dayanmaktadır. Yeniden yapılandırılmış görüntü nicelendirilmiş

gizli temsil, sıkıştırılmış bir bit akışı elde etmek için entropi kodludur. Etkili ent-

ropi kodlamasına sahip olmak için, nicelenmiş gizli gösterimin olasılık dağılımı da

CNN’ler ile modellenmiştir. Otomatik kodlayıcı ve gizli gösterimin olasılık modeli

dahil tüm sistem, kod uzunluğu-görüntüdeki bozulma maliyet fonksiyonunu en aza

indirmek için ortaklaşa eğitilir.

Başarılı bir geleneksel görüntü sıkıştırma sistemi, Dalgacık katsayılarının Ayrık Dal-

gacık Dönüşümü (DWT) ve Zerotrees (ZT)’e dayanan Embedded Zerotree Wavelet

(EZW) kodlama algoritmasıdır. Bu tez, benzer bir öğrenme tabanlı sıkıştırma mimari-
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sini araştırmaktadır. Özellikle, dönüşüm katsayılarının öğrenilmiş bir kaldıraç tabanlı

DWT ve öğrenilmiş bir ZT benzeri olasılık modeli kullanılır. ZT benzeri olasılık mo-

delinin çeşitli varyasyonları araştırılmıştır. Tüm sistem, hız bozulma maliyet fonksi-

yonunu en aza indirmek için uçtan uca eğitilmiştir. Keşfedilen sistem, JPEG2000 ve

son teknoloji öğrenilmiş görüntü sıkıştırma yöntemleri ile karşılaştırılmıştır.

Anahtar Kelimeler: Görüntü Sıkıştırma, Jpeg2000, Yapay Sinir Ağları, EZWT, Kal-

dıraç yapısı, Evrişimsel Sinir Ağları
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CHAPTER 1

INTRODUCTION

1.1 Image Compression

Image compression is a set of algorithms to reduce the number of bits to store or

transmit an image for a given a quality level. Nowadays, every image we take with

our phones or we look at on our phones or computers are compressed in one way or

another, because even simple compression algorithms can achieve significant com-

pression ratios, which can save storage, bandwidths, latency and power. For example,

the most widely used and supported image compression algorithm JPEG[10], which

has a quite simple algorithm compared to other conventional methods, can achieve

compression by a factor of 5-10 without noticeable image quality degradation.

There are properties of images that make them compressible. Firstly, spatial and

spectral dependencies exist in images and by exploiting these dependencies, com-

pression is achieved. Secondly, the human perceptual system can not differentiate

images above a quality level and human perceptual system is more sensitive to low

frequency components of an image signal when compared with high frequency com-

ponents. For instance, there are significant amounts of high-frequency components

in image signals, human perception system can not differ the images after neglecting

some high-frequency components of these signals.

Transform coding, which is the most common image compression approach, has a

common structure, as shown in Figure 1.1. The transform block maps the input image

signal to a transform domain to represent the given signal in a more efficient way.

Applying a transformation decorrelates the signal, which makes scalar quantization

more compression efficient. The encoder block encodes the given representation into
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a bitstream, where one of the most popular methods is arithmetic coding or Huffman

coding[11].

Figure 1.1: Compression model

Image compression can be divided into two main branches, lossy image compression,

and lossless image compression. In lossless image compression, the original image

can be reconstructed without loss of information at the decoder by using the com-

pressed bitstream. On the other hand, in lossy image compression the original image

can not be reconstructed without any distortion, due to loss of information in the

quantization block. In general, different conventional methods also adopt the quan-

tization block for frequency components. By using a large quantization step at high

frequencies and small quantization step at low frequencies, the compression can be

done efficiently with small distortions which could not be understood by the human

perceptual system. Moreover, lossy image compression methods generally use the

benefit of limitation of human perceptual system.

There are important conventional methods such as JPEG[10], JPEG2000[12], HEVC[13],

and BPG which use Fourier, DCT[14], KLT methods which are linear transforms.

The power of conventional methods arises from their low computational complexity.

However, with the increasing popularity of neural networks, many image processing

problems have been revisited using neural network based algorithms such as image

denoising [15][16], image reconstruction [17], image super-resolution [18][19] and

image compression. In image compression, different from the classical approaches,

which have hand-derived coefficients and parameters, the blocks in Figure 1.1 are

replaced with neural network based structures whose parameters can be learned from

training sets of images.
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1.2 Motivation and Problem Definition

As mentioned in Section 1.1, an image compression systems consists of several parts,

which are given in Figure 1.1. Conventional methods are generally built by optimiz-

ing the block parameters in the given scheme separately and from simple statistical

models of image data to get the best result. However, with the introduction of neu-

ral networks, joint optimization of system blocks has become easier. There are deep

learning models which are better than conventional methods and these models are

mostly built using auto encoder networks, which will be given in detail in Section

3.3.3. However, these models are hard to explain by using mathematics because of

the nature of neural networks, and they do not depend on any classical method ap-

proach.

There are a few works that inspired by the classical methods and these methods re-

place some parts of classical methods with deep learning based methods [7][8].In [7],

the wavelet transform in JPEG2000 is replaced with a neural network based nonlin-

ear transform, which is built using the lifting scheme[3] in which the prediction and

update filters are constructured with convolutional neural networks[20]. The rest of

the JPEG2000 scheme is preserved while in [8] end-to-end neural network scheme

is proposed by replacing the lifting predict and update blocks by CNN blocks, and

extract the dependencies of wavelet coefficients by using LSTM[21] blocks to model

entropy efficiently, and post-processing blocks are used to decrease the distortions

introduced by quantization.

In this thesis, the JPEG2000 structure is mostly preserved, and an end-to-end neural

network-based model is proposed at Section 4 with slight modifications to JPEG2000

architecture. One of the main contribution different from the method in [8], the pro-

posed work tries to adapt EZWT[4] to extract the dependencies in between the sub-

bands at different wavelet levels. The results are better than the JPEG2000 approach

in terms of both rate and distortion at all compression levels.

In summary, this thesis work is inspired by JPEG2000 architecture and the works in

[7][8] mainly, where a trainable end-to-end image compression scheme is developed

and proposed. In addition, the results of the proposed method are comparable to BPG
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and other autoencoder-based network models.

1.3 Novelties in the Thesis

This section includes the novelties that are introduced in this thesis work. The novel-

ties can be summarized as follows:

1. A neural scaling network rather than a post-processing network as in [8]

2. Exploiting the probabilistic dependency of wavelet transform coefficients across

successive wavelet levels, inspired by Embedded Zerotree Wavelet coding (EZWT)

[4]

3. Using the probabilistic dependency of wavelet coefficients across successive

wavelet levels and in the spatial neighborhood of the same subband, where spa-

tial dependency is extracted using the causal spatial neighborhood of wavelet

coefficients (with two different methods) in the same subband

These proposals are investigated in details in this thesis report.

1.4 Outline of the Thesis

In Chapter 2, preliminary information is given related to this work. It includes topics

such as image compression, a review of essential points of neural networks, classical

approaches, standard blocks that are used in image compression and wavelet trans-

form. This chapter prepares the reader for the methods in the proposed in this thesis.

In Chapter 3, the literature review is done on the topic of image compression, mainly

the recent ones with the best results in terms of rate and distortion. The ones, which

provided inspiration for this work, are given in detail to prepare the reader for the

proposed method.

In Chapter 4, the proposed method is investigated firstly part by part and added up

step by step for an end-to-end image compression system.
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In Chapter 5, after the introduction of the proposed method, experiments and results

are shared to show the positive and negative sides of the proposed approach.

Finally, in the last chapter, Chapter 6, the conclusions are given, and potential future

works to improve the model are shared.
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CHAPTER 2

BACKGROUND

2.1 Neural Network

Artificial neural networks are studied within the fields of AI and computer science.

The main methodology is to model the human neuron systems using nodes, modules,

and algorithms. The reason they are called "neural" networks comes from the nature

of the human neural system. It tries to mimic the human brain and understand the

important points in a set of data. There are different kinds of neural networks:

• Artificial Neural Networks (ANN): Generally used for image classification,

loses spatial information [22]

• Recurrent Neural Networks (RNN): Generally used for time series data analysis

[23]

• Convolution Neural Networks (CNN): Generally used to extract spatial infor-

mation in data[24]

ANNs can not preserve most of the spatial information, while CNNs are mainly used

to extract spatial information, where the most vital part of RNNs is the capability

to preserve sequential information. Neural networks, are optimized using the loss

function, where the loss function inherits the neural network’s main purpose. In other

words, the main task of the neural network is defined by the loss function, and the

network tries to reduce the loss function to learn what it is asked for where loss

functions differ depending on the task. For example, in image compression, the loss

function mostly includes rate and distortion (mean squared error), while in image
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classification, the loss function consists of intersection over union. Moreover, the

power of neural networks comes from differentiability and non-linearity, which will

be investigated in the following sections.

2.1.1 Convolution Neural Networks(CNN)

Convolution neural networks(CNN) are mainly used to extract spatial information.

They are more flexible when compared with other classical filtering methods, where

CNN can be thought of as a family of filters with learnable weights, where these

weights can be modified in the optimization (training) step so that they can extract

the necessary information using the spatial dependency.

CNN can be used sequentially, by putting one CNN after another to increase the

capability of the model, and it can even be used with fully connected layers depending

on the structure. Lastly, the preprocessing for CNNs is generally less than other neural

network methods, because of their flexibility.

2.1.2 Nonlinearities

Convolutional filters or any weight parameters can result in a linear operation, while

in order to solve a problem that is not linear, non-linearity should be introduced,

where these non-linearities are also called activation functions in the neural network

literature. In other words, the solution’s complexity should be increased.

A neural network model can try to solve a problem as much as it can, up to its com-

plexity limitation. Thus, increasing the complexity up to a level decreases loss func-

tion unless other problems occur, such as overfitting. In other words, to see better

results, the complexity of a neural network model should be increased by introducing

non-linearities, while introducing a non-linearity means putting non-linearity func-

tions after neural networks layers which is mentioned in Section 2.1. It should be

noted that increasing the number of non-linearities can decrease performance after a

complexity level because of some reasons, such as:

• Overfitting problem: The problem when neural network has become biased
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to training data set, so test data set accuracy can decrease while training data

set accuracy increases. The capability of generalizability of neural network

decreases when this problem occurs.

• Vanishing gradient problem: In neural networks’ optimization, chain rule, which

will be mentioned in Section 2.1.4, is used for gradient flow. The multiplication

of values that are near to zero, results in smaller values in each multiplication

through chain rule procedure, which results in very small gradients at the final

stage, and these low gradients are inefficient to update the weights, where this

phenomenon is called vanishing gradient problem.

• Computational complexity problem: In neural networks, as complexity in-

creases or as the network gets deeper or wider, more parameters are used, which

results in heavier process on processing units and the process takes longer.

Non-linearities are used to increase the complexity of a neural network model, by

putting a non-linearity between layers, each level is forced to learn a different level of

information of the training data. In general, only one non-linearity is used in between

two layers, where the most popular non-linearities in literature are as follows:

• Relu

• LeakyRelu

• GDN

• Mish

• Sigmoid

• Swish

• Tanh

Formula for each activation function can be seen below in corresponding sections.
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2.1.2.1 Relu and Leaky Relu

Relu and LeakyRelu are the two most popular activation functions in literature. Equa-

tion 2.1 shows the Relu activation function. It is linear on the positive side of the axis

and zero valued on the negative side.

f(x) = max(x, 0) (2.1)

Equation 2.2 shows the mathematical expression for LeakyRelu, it is the same as

input on the positive side and has a different slope on the opposing side. The main

difference between Relu and LeakyRelu is that LeakyRelu has non-zero values on the

negative side of x-axis.

f(x) =

x, if x > 0

ax, otherwise
(2.2)

2.1.2.2 Mish

Mish is getting more popular recently because it is continuous at zero and is non-

linear at the negative side of x-axis, while it is bounded at the negative side.

f(x) = x ∗ tanh(softplus(x)) (2.3)

2.1.2.3 Sigmoid

Sigmoid function is one of the early activation functions.

f(x) =
1

(1 + e−x)
(2.4)
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2.1.2.4 Swish

Google Brain team discovered swish in 2017, a modified version of the sigmoid func-

tion. It should be noted that when β = 0, it becomes a linear function. Thus, it can

be used as a linear or non-linear activation function, depending on the β parameter.

f(x) = x ∗ σ(β ∗ x) (2.5)

2.1.2.5 Tanh

Tanh, called hyperbolic function, is one of the most used in image compression be-

cause after normalization of images around 0 mean, the range will be −0.5, 0.5 which

makes tanh efficient for image processing.

f(x) =
ex − e−x

e−x + ex
(2.6)

2.1.3 Data Set Selection

Data set selection is one of the most important part of neural network based models.

The reason is that neural networks tend to learn what they have been trained on. In

order to have a successful model, it should be trained using a diverse data set. Other-

wise, the learning capability of neural networks can not be used efficiently. Thus, a

network that is trained using a non-diverse dataset might give unexpected results and

may not show the capability of a model. In addition, to compare network models,

they should be tested using the same dataset. In this work, mainly the Vimeo Triplet

Dataset is used for training and the Kodak dataset is used for testing.

2.1.4 Optimization of Neural Networks and Back Propagation

In deep learning, the purpose of the model is defined using a function called the loss

function. The neural network model tries to minimize the loss function by using the

gradients flowing through the network. In mathematics, derivatives are used to find

minimum or maximum values of a function. Similarly, in neural networks, deriva-

tives are used to extract information about the sensitivity to change of a function
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concerning for the given argument.This information is used in optimizer algorithms

in neural networks, such as gradient descent[25]), to decrease the loss function for

better performance.

Back Propagation[26] is one of the fundamental algorithms that is used in neural

networks, which was introduced nearly 40 years ago to use a gradient descent type

algorithm for loss minimization. The chain rule method is the main idea because the

output of a neural network depends on many cascaded layers or operations. The main

aim of the network is to obtain the minimum cost value by updating weight and bias

parameters using gradient descent. As it can be observed in the same figure, the initial

weight parameters correspond to a point on the loss function, while at each update,

gradients and the learning rate are used to obtain the incremental step.

Thus, chain rule is used to obtain the gradients depending on different weight pa-

rameters. After calculation of derivatives, weights(w) and bias(b) parameters can be

updated using learning rate, shown by using ϵ parameter, the update procedure can

be observed in Equations (2.7) and (2.8), where learning rate is the step size in the

direction of derivative.

w = w − ϵ ∗ ∂Y

∂w
(2.7)

b = b− ϵ ∗ ∂Y

∂b
(2.8)

It should be noted that if the learning rate is much bigger than the desired value, the

cost value will oscillate between the hills of the cost function because the weight

parameter changes significantly. On the other hand, if learning rate is much lower

than the desired value, then cost function value will settle after a lot of iteration be-

cause weight values change slightly in each iteration, which is not time efficient.

Thus, the learning rate should be set to a reasonable value for an efficient learning

process.Those phenomenons can be observed the using the Equations (2.7), (2.8).

In order to use back propagation, all operations in the network should have well-

defined gradients. Moreover, there exist different gradient update algorithms, in
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addition to gradient descent, where the most popular ones are Stochastic Gradient

Descent[27] and ADAM optimizers.

2.1.5 Residual Networks

As it is mentioned in the previous section, the gradient flow is one of the most im-

portant properties of neural network optimization. However, as the network becomes

deeper, derivatives get lower, because according to the chain rule, as it is mentioned,

the final gradient value is calculated by multiplying partial derivatives and multipli-

cation of low values in between [−1, 1] results in lower values in magnitude. In other

words, as deep learning models get deeper, the gradient gets smaller, which results in

the problem of "vanishing gradients"[28]. In order to get rid of this problem, Residual

Networks[1] are proposed. Advantages of residual networks are as follows:

• Preserving gradients through deep networks

• Faster to train

• Increases the performance when compared without using residual connections

The schematic of a simple residual network can be seen in Figure 2.1. The shortcut

connection of x is the main branch to preserve gradients because the information and

the gradients will be carried through. By using this method, gradients can be pre-

served for even much deeper networks. In addition, shortcut connections do not add

new parameters or increase complexity while preserving gradients and information.
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Figure 2.1: Residual block (redrawn from [1])

2.2 Data Compression

Data compression or source coding is the method that aims to represent data by using

as few bits as possible for a given reconstruction fidelity or quality. Same approach

is valid for the images because images have their data or information in their pixel

values. Image compression can be divided into two main categories, similar to data

compression.

• Lossy Image Compression: Reconstructed image from the bitstream is not the

same as the original image; information loss occurs.

• Lossless Image Compression: Image can be reconstructed from the bitstream

without loss of any information.

The main steps in image compression can be summarized as follows:

1. Image pixel values are represented as x ∈ R.
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2. Encoder transforms the pixel values to another domain (ga, can be called anal-

ysis), called forward mapping.

3. The transform domain representation is quantized (with scalar quantization)

and the quantized variables are entropy coded

4. The decoder decodes the coded information and reconstructs the image, called

inverse mapping.

2.2.1 Quantization

Quantization[29] is a mapping from a continuous domain (or discrete domain with

larger dynamic range) to a discrete domain, and the difference between the original

value and quantized value is called quantization error. This quantization error is the

reason for the loss in lossy image compression. Rounding or truncation to the nearest

integer are two basic examples of quantization. After quantization, since the origi-

nal information is lost, reconstruction can not be equal to the original signal before

quantization.

As quantization intervals get larger, the number of necessary bits decreases, but quan-

tization noise increases, which will be mentioned in detail in Section 2.2.3.

One of the important quantization methods in compression is Dead Zone[30] quanti-

zation, whose name comes from the region around zero quantized value. Depending

on the application, the Dead Zone region can be set to any width. In compression

since the main purpose is to preserve the important features while eliminating the

less necessary ones, efficient use of dead zone region improves the performance by

mapping insignificant features to zero where JPEG2000[12], one of the most pop-

ular classical method, uses Dead Zone for quantization. As mentioned before, the

dead zone region can be modified using the width parameter in dead zone quantiza-

tion. The formula for dead zone quantization can be seen in Equation (2.9). The w

parameter can be changed for different dead zone region widths[31].

[h]y = sgn(x) ∗max(0, ⌊( |x| − w/2

δ
+ 1)⌋) (2.9)
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2.2.2 Entropy Coding

Entropy coding is one of the essential parts of image compression. Information can be

mapped to another domain called symbols to represent the information efficiently in

memory. Entropy can be considered the average of self-information, the mathematical

expression for entropy can be seen in Equation (2.9) where p(xi) is the probability

of each symbol and I(xi), given in Equation (2.10), is the self-information of each

symbol. There are different methods for entropy coding, and the following sections

will give information about one of the most popular methods, arithmetic coding[11].

I(xi) =
1

log(p(xi))
(2.10)

H(x) =
n∑

n=1

p(xi)

log(p(xi))
(2.11)

2.2.2.1 Arithmetic Coding

Arithmetic coding is a reversible coding method. In arithmetic coding, the informa-

tion is distributed in the range [0,1], and the shortest unique value is encoded into a

bit stream. The method is illustrated in Figure 2.2. First the letters b, r, k are split

in the range (0, 1) based on their probabilities. As it can be seen from the chart, the

probability of "a" is 0.3, so when "b" is coded the next interval will be 0 − 0.3, then

"r" is coded and lastly "k" is coded. After these steps, depending on the last code

word, the code will be revealed, so one bit-array corresponds to a codeword. After

the last information is coded, the range will be used to turn into the bit stream. For

example, assume the last coding word is "a" so the range will be in between 0.144

and 0.180 where 0.144 can be taken for minimum use of bits after omitting the 0.,

where 10010000 equals to 144.

Range coder is similar to arithmetic coding, except the range coding upper and lower

limit is not [1,0], respectively. The values are mapped to integer, so it can be consid-

ered an integer mapped limited type of arithmetic coding.
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Figure 2.2: Arithmetic coding scheme

2.2.3 Relation between Rate and Distortion

In lossy image compression, there exists a trade-off between the rate(R) and the dis-

tortion(D), as can be seen from Equation 2.12. The λ, Lagrangian parameter, is used

to find a solution for different rate values at different distortions or vice versa. The

given equation will be used in the proposed method with slight changes.

L = D + λ ∗R (2.12)

In classical methods, the best point for rate distortion is tried to be solved using it-

erative methods[32]. The reason for this is if a small quantization step size is used,

less information will be lost at the quantization step of the compression algorithm

because of high resolution of quantization, but this will increase the rate results in a

longer bitstream. However, suppose big quantization step size is used. In that case,

less information will be preserved, and the reconstructed image has fewer details

when compared with the previous case, but rate will be smaller because of obtaining
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a shorter codeword. The red curve shows the optimal points for each rate-distortion

pair, depending on the efficiency of quantization.

2.3 Wavelet Transform

Wavelet transform is a kind of transformation that extracts both local and temporal

information. Since Fourier Transform[33] captures global frequency information, it

is not efficient at capturing local information sparsely. However, wavelet transforma-

tion can investigate different sets of intervals of frequencies where the advantages of

wavelet transform as follows:

• Extract spatial information at the same time,

• Different kinds of wavelet transforms exist to choose from depending on the

aim of the transform

In 2D wavelet transform, such as image transform, each level can be represented with

three different sub-bands and the last wavelet level is represented as four different

sub-bands. The extra sub-band in the last level is the LL band, which represents the

low-frequency information in the image. Wavelet steps are as follows:

1. For the first level wavelet, decompose the image into four sub-bands LL, HL,

LH, and HH.

2. Other than the first level, decompose the LL component into four sub-bands to

obtain the next levels in wavelet transform.

LL of each level has the significant (low frequency) information while the other sub-

bands have details, high-frequency components, like edges and corners. Specifically,

HL has horizontal details, LH has vertical details and HH has diagonal details.

As it can be seen from Figure 2.3, each level’s width and height are halved to obtain

the next level sub-bands. Thus, in the wavelet, the next level has filtered informa-

tion of the previous layer’s LL sub-band, which can be used for entropy coding and

modeling.
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Figure 2.3: 2 level wavelet transforms (redrawn from [2])

2.3.1 Lifting Scheme

Lifting scheme[34] is a method that can be used to construct a wavelet transform. The

main difference from the classical construction is that it does not rely on the Fourier

Transform. The basic idea behind the lifting scheme is to use the correlation in the

data to remove redundancy. The lifting scheme has three main steps called as follows:

1. Split: In this step, the input array (image) separated into odd and even elements

2. Predict: Predict block is used to approximate the dataset and difference between

predicted values from even samples is the high frequency(H) output

3. Update: In update phase, an update filter is used on the high-frequency out-

put samples so that missing details are added to even elements, giving the low

frequency(L) output

In Figures 2.4, 2.5, predict first forward and inverse lifting transform architecture can

be seen, respectively.

Figure 2.4: Classical lifting scheme (Forward) (redrawn from [3])

Lifting architecture can be used for lossless transforms because the lifting scheme can

be inverted lossless. In the inverse lifting scheme, the lifting steps are performed in
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reverse order and the addition and the subtraction operations are swapped. In other

words, first, update filter is used to obtain even elements, then predict filter is used to

obtain original odd elements, and finally, merge is used to have the original image,

which is split in forward lifting transform (see Figure 2.5).

Figure 2.5: Classical lifting scheme (inverse) (redrawn from [3])

2.3.2 Embedded Zero Wavelet Tree(EZWT)

Classical methods are primarily good at high bit-rate values, while for low bit-rate,

they are not efficient as expected because insignificant information for low bit-rate

could not be eliminated correctly. Embedded Zero Tree is a method that is proposed

in [4] to entropy code the quantized wavelet coefficients more efficient. It is a method

to generate bit streams according to their order of importance. The embedded zero

tree algorithm depends on wavelet transform because it needs a hierarchical sub-

band decomposition to use ancestor and descendants. In Figure 2.6 ancestors and

descendant relation can be observed. As it is mentioned before, wavelet transforms

decomposes their input into four different sub-bands with halved spatial resolution

(both width and height), where In Embedded Zero Tree, this is used as a dependency

in between each level of transform. As it can be seen from Figure 2.6, the higher

level sub-bands are actually a mapping of 2x2 region of previous layers of the same

sub-band. In other words, a pixel value of HL3 is obtained using the 2x2 region of

HL2, or a pixel in HH3 is a mapping from 2x2 region of HH2; the same is valid

for LH sub-band and for the other wavelet transform levels. After understanding this

dependency, EZWT algorithm suggests putting a threshold(T), and the pixel values

under that T value are named as insignificant pixels [4]. A pixel in a wavelet level can

be called a zero tree root if all its descendants are lower than the T value. Zero tree
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root and its descendants are put as insignificant pixels into a Significance Map used

in coding.

Figure 2.6: EZWT ancestor and descendant relation (redrawn from [4])
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CHAPTER 3

RELATED WORK

3.1 Overview

This chapter will investigate methods and ideas that are recently popular in lossy

image compression, especially the neural-networks-based ones, will be investigated.

Firstly, comparison between classic and neural-network-based methods in terms of

advantages and disadvantages will be given. Then, neural-network-based methods

will be investigated. In each subsection, part of the general structure will be reviewed

by giving the main ideas and benefits of the literature. After investigating the neces-

sary literature works, the baseline for the proposed method will be given. The algo-

rithm that is proposed in this thesis work is mainly inspired by the proposed methods

in [8] and [35] which are mentioned in Section 3.3.4. The details of the proposed

algorithm will be given in Section 4.

3.2 Classical and Neural Network Based Methods

The most popular classic image compression methods are JPEG, JPEG2000, H264

and H265. These methods are handcrafted, based on mathematics, signal processing,

and optimization.

On the other hand, with the increased demand and knowledge in deep learning, es-

pecially convolutional neural networks(CNN) [20], image compression has become a

field to use deep learning. General information about neural networks and how they

work is given in Section 2, and information more closely related to compression will

be investigated in this section. Table 3.1 gives a brief comparison of learning-based
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and classical methods.

Table 3.1: Comparison of Classic and Learning Based Methods

Methods Advantage Disadvantage

Classic Methods

No need to train with data

Easier to explain, depends on signal processing

Powerful hardware not necessary

Less computational requirements

Problem can be optimized up to a level

Strong mathematical background necessary

Learning Methods

Higher level optimization

No need to derive mathematical expressions

Open to improvement

Needs different data to train to be comprehensive

Hard to explain

Complexity should be carefully arranged to avoid overfitting

3.3 Lossy End to End Image Compression

Image compression is divided mainly into lossy image compression and lossless im-

age compression. In lossless image compression, the image can be decompressed

without any loss of information. In other words, all the information in the image is

preserved in this compression scheme. On the other hand, in lossy image compres-

sion, the image can not be reconstructed without loss of information because some

information is discarded to achieve higher compression ratios. In this thesis, since

the main focus is lossy image compression, lossless image compression will not be

discussed further.

In learning-based image compression models, there are different groups of algo-

rithms. These algorithms can be divided into two primary groups, called end-to-end

image compression methods and partial methods. End-to-end compression methods

use learning methods throughout the entire compression scheme. In other words,

they are differentiable from the beginning to the end so that gradients can be used to

optimize all network parameters jointly. Partial methods mainly optimize parts of a

classical compression system separately. For example, in some works, classic meth-

ods are preserved, and post-processing networks are added at the end of the decoder

as in [36] to increase the reconstructed image’s quality. These will be investigated in

detail in the following sections.
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3.3.1 Non-Linear Transform Coding

Non-linear transform coding is one of the most powerful ideas in learning-based im-

age compression algorithms. Although linear transforms are used for their simplicity

in traditional compression systems, they decrease compression performance because

of their inferior capability to compactly represent real-world image data. In order

to get rid of this problem, Ballé et al. proposed the non-linear transform coding

framework[5]. In Figure 3.1, the general structure of non-linear transform coding is

summarized. The model is generally optimized using both rate and distortion.

Figure 3.1: Non-Linear Transform Coding Scheme (redrawn from [5])

In Figure 3.1, z stands for perceptual space while x stands for data domain and y

stands for code space. The functions ga and gs stand for analysis (encoding) and

synthesis (decoding) transforms in image compression. In other words y = ga(x, ϕ),

where y stands for code vector (latent space), while x′ = gs(y
′, θ) where y′ stands for

quantized code vector, ϕ and θ stands for the parameters of transforms. Encoding and

decoding schemes try to optimize both rate and distortion, depending on the given

equation for optimization function.

In Figure 3.1, R stands for rate and D stands for distortion. It can be observed that R

(rate) is calculated using the quantized code space, while D (distortion) is calculated

using the reconstructed image and input image. To summarize, non-linear transform

coding uses non-linear analysis and synthesis transforms composed of neural net-

works to make compression more efficient and accurate in terms of distortion and
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rate.

loss = λ ∗D +R (3.1)

The rate-distortion loss functions given in Eq.3.1 is used to optimize the parame-

ters of the system. The λ parameter stands for the weight of distortion with respect

to rate. As λ increases, the importance of distortion increases, meaning the recon-

structed image’s perceptual quality should increase, i.e. distortion decreases, while

the importance of rate decreases, i.e. the rate increases. That means, if high quality

reconstructed images are desired, λ should be increased. The following Equation 3.2

shows the loss function with expected value notation, where the expectations can be

considered over x, i.e. images in the training set.

L[ga, gs, Pq] = E[log(Pq)] + λ ∗ E[d(z, ẑ)] (3.2)

3.3.2 Density Modeling and General Divisive Normalization

Density modeling is one of the main aspects of image processing. It is used in differ-

ent areas such as image denoising, image compression, and image generation. There

are different methods to achieve efficient results in density modeling. Since this thesis

is based on neural networks, one important property that a density model should have

is differentiability of the output w.r.t the input.

Image transform methods are generally designed by analyzing a large and diverse set

of data to handle the large variations in the probability distributions of images. At the

same time, there are some methods that can convert image data into a Gaussian Distri-

bution. General Divisive Normalization is introduced by Ballé et al. [37] which was

inspired from different divisive normalization methods. The name "general" comes

from the ability to model different divisive normalization methods in the literature

by changing parameters which were released before, like the one proposed in [38], to

model local probability of natural images with a continuous and parametric approach.
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z = Hx (3.3)

yi =
zi

(Bi +
∑

j γij|zj|αij)ϵi
(3.4)

A linear transform is applied on the image data(x) as in Eq.(3.4), followed by the

GDN operation in Eq.(3.3) can make the distribution of the output(yi) Gaussian if

such multiple operations (linear transform + GDN) are cascaded [37].

The parameters H, β, γ, in equations 3.4, 3.3, are optimized to have an efficient

non-linear transform in GDN algorithm. GDN can be used as a nonlinearity, like

the ones defined in Section 2.1.2, and as a normalization method instead of batch

normalization [39] because batch normalization is not an adaptive method at inference

while GDN is adaptive in inference, which increases performance.

3.3.3 Autoencoder Based Models

Autoencoder networks are suitable for image compression, as mentioned in Section

2. These networks map the input image, to a different space, called latent space. In

compression, the main goal is to preserve most of the information while using the

minimum bitrate for the coding of the latent space representation. There are different

autoencoder based methods for compression, while the most popular ones are [5], [6],

[40].

In classical methods, three components of transform coding methods, which are trans-

former, quantizer, and entropy coder, are separately optimized, using simple statisti-

cal models of data. To handle the compression problem as a whole, deep learning-

based end-to-end compression scheme is proposed by Ballé et al. at [5] where GDN

blocks are used as normalization nonlinearity. Analysis (encoder) and synthesis (de-

coder) part of the proposed network trained simultaneously using stochastic gradient

descent. Since the quantization operation, performed in the latent space, has zero

derivative almost everywhere, it is replaced by additive uniform noise during training.

Rate distortion loss is used as a loss function. It should be noted that the Lagrangian
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parameter can be used in front of rate or distortion since it is a scaling term to move

on the Rate-Distortion curve as it is mentioned in Section 2.2.3. They suggest that

artifacts in the proposed method in [5] is less than the artifacts in JPEG2000 and

JPEG, because local features are represented using localized linear basis functions in

these classical methods, and independent scalar quantization of the transform coeffi-

cients causes an imbalance in these combinations which result in visually disturbing

patterns.

Balle et al. proposed an end-to-end trainable variational auto encoder [6] model for

image compression, different from other autoencoder based image compression net-

works. They defined a hyperprior, a concept universal to virtually all modern image

codecs, using ANNs [6]. In this work, noise is modeled using i.i.d uniform noise

that is proposed in [5], rather than substituting the gradient of quantizer[41] because

when i.i.d. noise is used to simulate quantization in the training phase, Kullback-

Leibler divergence formula simplifies to rate-distortion problem. Different methods,

called hyperprior and factorized prior, are proposed by using a similar architecture,

which can be seen in Figure 3.2. AE and AD stand for arithmetic encoder and arith-

metic decoder, respectively. The blocks ga and gs stand for encoder and decoder parts

of the autoencoder network, that are used to map image domain into the latent domain

and map the latent space to image domain respectively. The notation "a" is used for

"analysis" while "s" stands for synthesis. ha and hs stand for the hyperprior analysis

and synthesis parts of the hyperprior network, while the factorized model uses the

same model shown in the figure except the entropy model networks on the right are

different.

Figure 3.2: Hyperprior model architecture (redrawn from [6])
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3.3.4 Lifting Wavelet Based Models

These are the methods that are the baselines for the proposed method in this the-

sis work. The main purpose is to have a similar architecture like JPEG2000 while

surpassing its performance in terms of bit rate and PSNR.

3.3.4.1 iWave

Iwave is the name of the learned non-linear wavelet transform based compression

architecture in [7]. JPEG2000 architecture is taken as baseline for the given method.

The wavelet transform is replaced by a neural network model which is based on the

lifting scheme, while the same quantization and entropy coding methods in JPEG2000

are used without change. The main reason behind this work is that used linear filters in

the wavelet transforms are not good enough at transforming natural images. Wavelet

transforms for two-dimensional images are usually performed by two steps of one-

dimensional transform along with the horizontal and vertical directions, respectively,

which causes inefficiency[7] because important features do not have to be vertical

or horizontal. Furthermore, directional features in images result in large magnitude

high-frequency coefficients, which decreases the compression performance. CNN’s

have some significant benefits over the classical approach, which are

• CNNs can extract information in spatial dimensions (width and height)

• Ensemble of different layers makes it possible to process different local features

simultaneously

• Large number of images are used to optimize the weights rather than designing

filters manually

In [7], different from the classical wavelet that is used in JPEG2000, CNNs are used

to model lifting filters, together with non-linear activation functions. Since the tradi-

tional wavelet transforms have coefficients that are handcrafted using the ideal dis-

tribution assumptions, they do not give expected results because raw images are not

ideal as they are assumed by the theory.

29



The lifting scheme is reviewed in Section 2.3.1, it can be separated as update first or

prediction first depending on the positions of update or predict filter. In [7], authors

use the update first scheme, which can be seen in Figure 3.3. Moreover, it is shown

that only addition, subtraction and division operations are done, so inverse lifting

transform is lossless. Using CNNs in the update and predict filters rather than using

the filters with hand derived coefficients, do not change lifting’s property because the

same CNN filters are used in forward and backward transform. In other words, an

image that is transformed using the lifting scheme can be reconstructed using inverse

lifting if quantization is not performed on the lifting output.

Figure 3.3: Update first lifting scheme, forward pass (redrawn from [7])

In Figure 3.3, split block is used to separate the image into odd and even rows and

columns, while update filter is a mean or averaging filter. Output of each lifting stage

gives xc, coarse features, and xd, detail features. Mathematical expressions for xc and

xd can be seen at equations 3.5 and 3.6 respectively.

xc = 0.5 ∗ (xe + xo) (3.5)

xd = predict(xc)− xo (3.6)

In this work [7], tanh is used as non-linearity rather than Relu because, according

to the observation in the paper, the discontinuity at zero decreases performance, and

the range of tanh is the best fit for the proposed method. In order to use the same

quantization methods and entropy coding models, each sub-band output is scaled to

fit into the JPEG2000 algorithm because the output of proposed lifting steps do not

fit into the JPEG2000 scheme without the use of these scaling factors where these

factors are found by experimenting and then setting the correct values.
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According to the given results, slightly better performance is observed in terms of

PSNR value, where iWave [7] showed a better energy compaction than JPEG2000

while it could not reach the performance of BPG and the other popular learning based

models.

3.3.4.2 End to End Lifting Based Image Compression

The proposal of [7] showed that using CNNs in wavelet transform in lifting architec-

ture has significant potential, but it is not an end-to-end approach. After the proposal

of iwave, the same researchers proposed an end-to-end lifting-based compression

scheme that surpasses, according to their results, even the best auto-encoder-based

network models in compression. The new approach is called "iwave++"[8] which is

an end-to-end image compression scheme with predict first lifting architecture. They

suggest that using iwave++ architecture, lossy and lossless image compression can be

done with the same logic by modifying the quantization method. Different from the

proposed methods in the previous sections, iwave++ has the following properties:

• Prediction first lifting scheme

• End to end network

• Rate-distortion loss: L = R + λ ∗D, where λ is a Lagrangian parameter

• Uniform Scaling

• Both lossless and lossy compression

• Introducing a post-processing network

The general architecture of "iWave++" can be seen in figure 3.4. Forward and inverse

transform use the same parameters in the update and predict filters. One important

thing is to notice the "DeQuantization" block. This block is called a post-processing

block to decrease distortion and increase the PSNR while preserving the same rate.

This block helps to increase the quality of the image at the same bit-rate.
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Figure 3.4: iWave++ architecture (redrawn from [8])

The lifting scheme in [8] is given in Figure 3.5. The letters and explanations are as

follows:

• "S" stands for split

• "P" stands for predict filter

• "U" stands for update filter

• xe and xo stand for even and odd index of images after split respectively

• li and hi stand for low and high frequency components after each lifting step

respectively

Figure 3.5: iWave++ lifting scheme (redrawn from [8])

32



The filters P and U are composed of CNNs, where their general structure can be seen

in Figure 3.6. Some important points of design are as follows:

• Tanh linearity used as activation function

• Residual connections are used to preserve gradient and increase performance

• Same P and U filters are used in forward and inverse lifting transform

Figure 3.6: Predict and update filters in iWave++ (redrawn from [8])

Figure 3.7 shows how to use CNNs for both row and column-wise transform. It should

be noted that there can be more than one lifting step in each lifting level. Figure 3.7
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shows only 1 level lifting transform. First-row wise split is done to even and odd

indices, then passed through N lifting steps, then resulting arrays are separated.

Figure 3.7: 1 level lifting forward transform (redrawn from [8])

Entropy modeling is complicated and heavy in [8]. LSTM network is used to model

the entropy using the previous layers, which are called a context model. This context

model outputs a set of entropy parameters for a probability model. For long-term

context, LSTM model is used while for causal information, masked convolution is

used. These models’ outputs are fused at the context fusion model. This general

structure will be similar in the proposed model to this model in the thesis work.

Lastly, the "dequantization" module, which is used for post-processing. The reason

of using the dequantization module is that the filters in forward and inverse lifting

transform are the same, and this constraint results in suboptimally reconstructed im-

ages [8]. B number of residual blocks are used in an internal network. This block

increases quality in a lossy compression scheme, where quantization noise results in

distortion.

Finally, they share that post-processing increases the performance significantly. The

model with post-processing Iwave++ is better than HyperPrior-Mean model proposed

in [40] while without post-processing, iwave++ is comparable with BPG-444.
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3.3.5 Post Processing Networks

In lossy image compression, the distortion due to quantization is called quantization

error or quantization noise. Quantization error is the main reason for distortion, which

decrease in PSNR value. There are different methods to reduce this error. It can be

split into two branches as follows:

• Post-processing isolated from rest of the compression system

• Post-processing in an end-to-end neural network scheme

Post-processing networks are generally used to increase the quality of the recon-

structed image. To understand the effect of post-processing networks, some examples

from the literature will be investigated.

One example for the post-processing network that is used for classical method HEVC

is that, in [42], the authors proposed a post-processing network to increase the perfor-

mance of the HEVC intra-coding scheme is proposed. HEVC is an adaptive block-

based compression method, where JPEG is a block-based too, but it is not designed

as an adaptive method. Different from the proposed networks for the JPEG post-

processing, in [42], there are concatenation modules to capture information from

different block sizes. It is suggested that using different sized CNN layers and con-

catenating them increases the performance, which boosts network’s performance for

different resolutions.

They observed around %4.6 better BD-rate[43](in luminance), where BD-rate allows

the measurement of the bitrate reduction offered by a codec or codec feature, while

maintaining the same quality as measured by objective metrics.

In addition, in [44], the authors investigated the use of residual networks for the incep-

tion networks. According to their observations, there should be a multiplication factor

that multiplies the main branch before two branches added, if residual networks have

a high number of feature maps (channels) because it results in unstable performance

in terms of gradients. Some observations are done in [45]. Thus, residual scaling with

a factor of 0.1 is used. The same strategy is used in [8], for post-processing blocks.
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In [36], the attention module, which has become very popular recently, is used for

post-processing at low bit rate by adding the post-processing block after the classical

compression schemes.

Attention module in this work uses both channel and spatial attention[46]. Channel

attention is responsible for selecting semantic attributes, while spatial attention is

responsible for finding important regions in the spatial domain. After both attention

modules are used, the outputs are multiplied with the input image and concatenated.

After concatenation CNNs and Relu blocks are used to improve performance, and

lastly, a skip connection is added to make it a residual type network block. Multiple

such blocks are cascaded.

According to [36], the proposed attention module for post-processing resulted in an

increase in performance which is about %1 increase at the same rate.

3.3.6 Conditional Probabilities

Conditional probability is the likelihood of an event occurring given another event

(conditional event) occurred. In image compression, the spatial dependency of pixel

values can be used with conditional probabilities via the chain rule of probability,

to obtain efficient compression results. One of the milestone contributions regarding

dependency between pixel values is "Pixel Recurrent Neural Networks", which is

proposed by Van Oord, Aaro and Kalchbrenner in their paper [9], while the paper

mainly focuses on image reconstruction. However, the methodology can be used in

image compression, too.

3.3.6.1 Probability Estimators: PixelRNN, PixelCNN and Gated PixelCNN

PixelRNN and PixelCNN are the methods proposed in [9], mainly for the image gen-

eration, using the dependency between pixel values. It depends on the idea of con-

ditional probability because the probability of an image pixel value can be evaluated

conditioned on known (obtained) previous pixels, which can be seen from Equation

3.7. In addition, the masked CNN approach can be observed in Figure 3.8. On the
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left side of the Figure 3.8, known causal pixels are marked with blue while the red

one, xi, is the current pixel for which the probability distribution is calculated, in the

middle of the Figure 3.8 an example for a multiscale context is given where pixels

can be conditioned on subsampled image pixels with using dilation, and at the right

of the dependency usage between different color channels can be observed where R

values depend on just R values, G values depend on G and R values, and finally, B

values depend on R, G, B values.

[h]p(x) =
N∏
i=1

p(xi|xi−1, ..., x1, h) (3.7)

Figure 3.8: Masked CNN, the green ones for Mask CNN A, and when blue one is

included it becomes Mask CNN B (redrawn from [9])

PixelRNN uses both LSTM modules[21] and masked convolutions to get the proba-

bilistic information, while PixelCNN uses masked convolutions. PixelRNN is much

slower than PixelCNN because it needs to process the pixel values individually, while

PixelCNN can process pixel values in parallel. However, the PixelRNN can preserve

all the spatial information along with the image, while PixelCNN preserves the re-

gional information. However, in PixelCNN a problem called "blind spot" occurs, and

the solution is proposed in [47]. In order to get rid of the "blind spot" problem, they

proposed a method to carry the information along with the spatial domain while us-

ing CNN, called "Gated PixelCNN". They used different convolution blocks, one of

them called "vertical block" and the other one called "horizontal block" and by us-

ing these blocks the information on previous rows and columns can be carried out

using PixelCNN. All these methods are used to extract the probabilistic information

of each pixel value, where this information can be used for different purposes. The

masked CNN idea is an inspiring technique for the proposed thesis work, which will

be mentioned in Section 4.
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CHAPTER 4

PROPOSED METHOD

4.1 Overview

Compression methods are generally based on a structure given in Figure 1.1 that is

given in Section 1.1 at the beginning of the thesis report. In this thesis, an end-

to-end compression scheme is proposed, and it can be observed from Figure 4.1,

the blocks in conventional image compression are replaced with neural networks.

These blocks are investigated in detail in Figure 4.2 where 4 level neural wavelet

transform and proposed architectures are shown. Different learning based methods

are investigated for different parts of the proposed scheme, in this chapter, the one

with the best performance is given.

Figure 4.1: General structure of proposed scheme

39



Figure 4.2: Detailed general structure of the proposed scheme
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Short review of each block in Figure 4.1 is as follows:

• Deep Encoder/Decoder Blocks: CNN blocks inspired from lifting scheme are

used in deep encoder and decoder.

• Preprocess Network Block: A deep CNN layer is used to obtain the accurate

scales because output encoder and input of decoder scale must be accurate for

efficient performance.

• Deep Context Extractor: Same and different level spatial dependencies are ex-

tracted and fused in this block with the help of mask CNN and EZWT structure

by modeling neural networks.

• Entropy Coder: During training, i.i.d. noise, is used to model quantization,

which is explained in [5], while in the test phase, rounding to the nearest integer

is used. In addition, arithmetic coder is used as entropy coder during inference.

Moreover, to model entropy, a Gaussian Conditional probability distribution is

used.

Neural network models for all blocks will be given in the forthcoming sections, and

all the proposed networks in the next sections, can be put in the blocks in the Figure

4.1 to obtain the final end-to-end neural network.

4.2 Architecture

4.2.1 Predict and Update Blocks

The lifting scheme, as it is mentioned in Section 2.3.1, is a method to perform wavelet

transform. In Figure 4.3, a detailed structure of predict and update block is given. It

should be noted that the general structure of predict and update block in[8] is pre-

served with the change of filter size. The given model is used as a block to replace

the prediction and update blocks in the lifting scheme.
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Figure 4.3: Predict and Update block scheme

4.2.2 Encoder and Decoder Blocks

In the proposed network, lifting steps are obtained by adding or subtracting prediction

of update results, the complete lifting transform is invertible. In other words, original

input can be reconstructed by going in reverse direction and addition with subtraction

and vice versa. In Figure 4.4 1 level lifting wavelet transform consisting of 2 predict

and update blocks can be seen. Since the operation consists of two stages, two differ-

ent P and U networks are used and added serially, where these networks are used in

the inverse transform (decoder) block, too.

Figure 4.4: 2 stage lifting Transform 1 Level Wavelet
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4.2.3 Scaling Network

Wavelet transform extracts different frequency components in each level, and the

range of subbands in each level is different. In other words, the pixel value range of

first-level wavelet subbands(LL1, HL1, LH1, HH1) differ from second-level wavelet

subbands(LL2, HL2, LH2, HH2). In the proposed thesis work, quantization noise is

modeled by using i.i.d uniform noise, where the pixel value ranges should be scaled

in order to obtain the similar ranges in quantization. Otherwise, the i.i.d uniform

noise can not model the quantization in rounding, so the model can not be trained to

have good performance at the test phase. In Figure 4.5, the network architecture for

"preprocessing" blocks can be observed. Both "a)" and "b)" are tested, as it can be

observed that "a)" is a classic CNN while "b)" is a scalar CNN where group param-

eters of CNN is set to channel number of input, so each subband is scaled with the

corresponding 1x1 filter value. It is observed that choosing "b)" has less complexity

when compared with "a)" while "a)" increases performance, so the structure "a)" is

used in the proposed scheme. The CNNs, in right-hand side of the given Figure 4.4,

are modeled using separable convolution along channel and spatial dimensions by

setting the groups parameter in pytorch implemented convolution layers. The designs

of scaling blocks are conducted using a trial and error approach. Non-linearity is in-

troduced to increase the complexity of the network, while 3x3 filters are selected to

use the minimum number of parameters in each convolution block.

The scaling network is used in both encoder and decoder part. The scaling network is

used in the encoder part in order to fine-tune the neural wavelet outputs. In addition,

the scaling network in decoder part is used in order to reduce the quantization noise

which is introduced by quantization block. The quantization noise comes from the

uniform noise in training and rounding in inference phase.

4.2.4 Deep Context Extractor

A deep context extractor is a block that consists of two different deep learning blocks

that can be seen in Figure 4.6. The first block is responsible for extracting causal

dependencies, while the second block is a levelwise dependency extractor that ex-
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Figure 4.5: Preprocessing Blocks, a) Traditional CNNs, b) 1x1 scaling CNNs

tracts the dependency of same subbands in different levels of the wavelet trans-

form, this structure is inspired from the classical method called Embedded Zero Tree,

Wavelet(EZWT) coding[4]. Similar works are generally focused on more compli-

cated methods such as RNN, or hyperprior. In the proposed scheme, an idea that

is used in conventional methods, JPEG2000, is tried to be modeled using the deep

learning methods in order to increase the efficiency compared to the conventional

method.

Figure 4.6: Deep context extractor block

4.2.4.1 Causal Dependency Extractor

In this block, mask CNN approach is used which can be observed in Figure 4.7, which

is mentioned in details in Section 3.3.6.1 where the reason for using mask CNN is to

carry the dependency of the neighbors to current pixel by using a CNN with a masked
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approach, where its name comes from. In the proposed work, both "Mask A" and

"Mask B" are used to obtain causal dependencies in spatial and channel domains, and

the output is used as an input to the "Parameter Estimator" block. The main reason of

using Mask CNN blocks rather than CNN is that in compression at the decoder side

the pixel values should be decoded without using the values of unknown pixels, (i.e.

in a causal order) so Mask CNN preserves causality.

Figure 4.7: Mask CNN approach

The proposed network for "Causal Dependency Extractor" block can be seen in Fig-

ure 4.8. The reason of using first "Mask A" then using "Mask B" is because "Mask

A" does not take the information of current pixel and in a compression scheme the

probability of the current pixel should be obtained by using the previous pixels. After

"Mask A", "Mask B" can be used because at the next layer, the value at the current

pixel is not the actual value, it is the value obtained by the "Mask A" by using the

neighbors which is showed in Figure 4.7, with a filter size of 5. The channel num-

ber depends on the desired network model, and can be chosen based on the desired

complexity and success trade-off. In addition, the proposed design, using one Mask

Conv A and four Mask Conv B can be changed according to expected performance

and network depth. A few experiments are conducted to find an optimum solution.

First Mask Conv A block is used to avoid the current pixel information, and after that

non-linearity is used for better data fitting. Then, Mask Conv B filter is put to increase

the order of the proposed architecture. When the Mask Conv B layers are removed, it

is observed that performance is decreased by approximately %2.

Causal dependency extracting process can be defined as in equation 4.1, where θ

represents the weights of the filters proposed in Figure 4.8.

y′ = fc(ỹ; θ) (4.1)
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Figure 4.8: Spatial dependency extractor

4.2.4.2 Levelwise Dependency Extractor

It is mentioned that there is a dependency between the subbands at different levels

in wavelet transform because wavelet transforms iteratively processes LL subbands

which inherit properties of previous level. Levelwise Dependency Block is designed

with inspiration from EZWT[4], mentioned in Section 2.3.2, where the dependency

between ancestors and descendants is used in probability modeling to increase the

efficiency of entropy coding. The deep learning structure that is used in the Levelwise

Dependency Extractor block can be observed in Figure 4.9. First the pixel of next

wavelet level is up sampled to a 2x2 block by filling the block with same values which

can be observed in Figure 4.10, then two convolution blocks are used to extract the

necessary information using the up sampled levels. Lastly, non-linearity is added in

between convolution layers to extract nonlinear relations between different levels of

the same subbands. The usage of CNN filters and non-linearity in between them is

inspired by [4]. In [4], there is a threshold value and this threshold value introduces

non-linearity. Rather than using a threshold value, using CNN filters and using non-

linearity in between them is expected to behave similar. In addition, further CNN
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blocks may increase the performance, but in this design it is taken as minimal as

possible.

Figure 4.9: Levelwise dependency extractor

Figure 4.10: Example upsampling

This block can be represented as in Equation 4.2, where γ represents the parameters

in the levelwise dependency extractor network.

y′′ = fl(ỹ; γ) (4.2)
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4.2.4.3 Parameter Estimator

The previous two sections explain how the casual and levelwise dependencies are

extracted while these dependencies are merged in the "Parameter Estimator" block,

where the outputs of these blocks are fused to estimate mean and variance for each

pixel value, to model the distribution at "Probability Distribution" block. In Figure

4.11, the network is proposed. The reason to use 1x1 CNNs is again causality. Since

the input to this parameter estimation block comes from the causal dependency ex-

tractor block, causality is preserved using Type A Masked convolution block or 1x1

convolution blocks.

Figure 4.11: Parameter estimator block

Equation 4.3 shows the corresponding mathematical form of the proposed scheme for

parameter estimator, as it can be observed from the same equation, outputs of both

casual dependency extractor block(y’) and levelwise dependency extractor block(y”)

are used in parameter estimator block where the ρ represents the weight parameters

in the parameter estimator block, that is updated during training.

µ, σ = fp(y
′, y′′; ρ) (4.3)
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4.2.4.4 Probability Distribution

The output of the parameter estimator is µ, σ for each variable of the wavelet trans-

form subbands, which are used to model the probability distribution of each variable

with Gaussian distribution. A Gaussian distribution is represented as N (µ, σ2). The

distribution for each pixel is shown in Equation 4.5. The approach is shown in Equa-

tion 4.4 where xi represents the current wavelet transform variable and X is the vec-

tor of values that represents the wavelet transform variables which have information

about the current pixel value and are in the receptive field of the levelwise and spa-

tial dependency extractor blocks, the information comes from models that use these

dependencies.

p(xi) = f(xi|X) (4.4)

The function fcontext stands for the deep context extractor block, includes the learn-

able parameters, and the last partition of context extractor is a conditional Gaussian

normal distribution where final probability distribution obtained in this block shown

in Figure 4.5.

p(xi) = N (µi, σi) (4.5)

4.2.5 Quantization and Entropy Coding

In the proposed method, quantization is handled in 2 different ways. As it is men-

tioned in the Section 2.1.4, the power of neural networks comes from gradient descent

based learning, while rounding results in the loss of gradient flow. Thus, in training

i.i.d uniform noise in range [-0.5,0.5] is used while in test (inference) phase, rounding

is used for quantization. As an entropy coder, an arithmetic coder is responsible to

generate a bitstream.
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4.3 Post Processing

Post-processing is a method to increase the reconstructed image quality of the com-

pression methods because of the introduced error by quantization noise. There are

different methods to increase the quality of images after compression, which can be

called denoising networks. In thesis work different denoising networks were tried

in order to increase the performance of compression scheme such as [48], [8], [49].

However, it is observed that using a post-processing block helps significantly only

at low bit rates if it is trained end-to-end, which means they tend to behave like a

low pass filter. Thus, in the proposed scheme, post-processing units are not shown

because at high frequencies, it does not show the expected behavior and decreases the

proposed model performance at high bit-rate, PSNR values.
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CHAPTER 5

EXPERIMENTS AND RESULTS

This chapter gives information about different experiments and the results of the pro-

posed method.

As it is mentioned in the previous sections, the proposed method is mainly inspired

by the conventional zerotree-like wavelet transform method and neural network-based

implementation of a lifting wavelet transform[8]. One of the main contributions of the

proposed work is to use the dependencies of subband pixel values, which correspond

to wavelet coefficients, between different levels with the help of deep learning mod-

els, which are inspired by the conventional work of EZWT[4]. During thesis work,

different methods are tried to achieve a better rate-distortion loss, and these methods

are investigated in detail in the forthcoming sections. Firstly, different ideas of en-

tropy modeling methods and networks are investigated. Then, some post-processing

models are added to the end of the proposed algorithm to improve the performance

of the proposed scheme. Lastly, the comparison of the proposed methods with the

state-of-the-art methods in the literature is given in Section 5.2.

5.1 Ablation Study

In this section, different methods to improve the rate-distortion loss will be investi-

gated. Each proposed model is illustrated with the help of figures. The examples for

entropy modeling are given by using the LH1 and LH2 subbands, where LH2 stands

for the second level wavelet transform coefficients of LH subband while LH1 stands

for the first level wavelet transform coefficients of LH subband. All wavelet coeffi-

cients are used in the algorithm, but for the visualization of algorithm examples only
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LH1 and LH2 are used for simplification. Then, post-processing networks are added

at the end of the compression scheme to see the effect of post-processing. After the

methods are investigated, a comparison of the proposed methods in terms of PSNR

vs bpp is given.

5.1.1 Entropy Modeling Methods

In this section, different entropy modeling networks are investigated while preserving

the rest of the end-to-end model remains the same. In Table 5.1, the number of pa-

rameters of each proposed compression model with the specified entropy model and

number of parameters of state-of-the-art solutions can be observed. It should be noted

that because of the causal approach during the spatial dependency extractors, "block-

based" and "causal+ezwt" probability modeling approaches are slower than others. In

this thesis work, main purpose is to find a different way and propose a new system-

atic to literature, encoding and decoding steps can be compared with other algorithms

after computational optimizations are done.

Table 5.1: Number of parameters for proposed entropy models

Model Definition Parameter Number

Factorized* 9.41*10^6

Block-based EZWT* 11.01*10^6

Only EZWT* 14,94*10^6

Causal + EZWT** 16.94*10^6

mbt-2018_mean,D.Minnen et al. 2018[50] 6.70*10^6

bmshj2018-hyperprior[50] 4.84*10^6

5.1.1.1 Factorized Model

In the factorized entropy model, dependencies between pixel values are not used.

Each pixel is entropy coded using its own value. This method is called Factorized

Model.
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5.1.1.2 Neural EZWT Dependency

In neural EZWT dependency, deep learning models are used only to model the depen-

dency of the ancestors and descendants, as it is mentioned in Section 2.3.2. Different

from the model that is proposed in Section 5.1.1.3, the causal dependency (masked

CNNs) are not used to observe the effect of spatial (neighborhood) dependencies be-

tween the wavelet coefficients at the same subband. The last level wavelet coefficients

are used in a factorized entropy model as in the previous section, in other words de-

pendency for last level wavelet coefficients are not used. Only the EZWT kind of

dependency is used for the lower levels of wavelet coefficients.

Figure 5.1: Schematic of causal and EZWT dependency extractor for last level

wavelet-like coefficients

Except for the last level wavelet coefficients, since they do not have any descendants,

other coefficients at different levels are modeled using the method that is shown in

Figure 5.2. Only levelwise dependency, which EZWT inspires, is used to obtain the

correct mean and scale parameters for the corresponding wavelet coefficient.
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Figure 5.2: Schematic of causal and EZWT dependency extractor other than last level

wavelet coefficients

5.1.1.3 Causal and EZWT

This entropy model is the one that is proposed in Chapter 4. In this entropy model,

both EZWT kind subband dependency and spatial causal dependency between neigh-

bor wavelet coefficients are used to obtain the best probability model for efficient

entropy coding. This approach can be divided into two branches, as seen in Figure

5.3. In Figure 5.3, an example scheme is given to illustrate how the entropy model

works for a pair of subbands at different wavelet levels. Firstly, the ancestor pixel

(wavelet coefficient) is up sampled to a 2x2 block by filling the 2x2 block values

with the ancestor wavelet coefficient value, which can be observed in Figure 4.10,

where it is called nearest-neighbor interpolation in literature. All the wavelet coef-

ficients at that subband are up sampled by 2. Then neural network models are used

to extract levelwise dependency, which is given in Section 4.2.4. Secondly, neural

network models consist of mask CNNs are used to model the dependencies between

the current pixel and the neighboring pixel values. After those operations, the outputs

of the causal dependency branch and levelwise dependency branch are concatenated

subbandwise and given as an input to a parameter estimator network, whose output is

the mean and scale for the probability distribution for each pixel value.
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Figure 5.3: Schematic of causal and EZWT dependency extractor

5.1.1.4 Block-based EZWT and Causal Dependency

The previous method, uses both causal and EZWT dependencies and takes long pe-

riods to decode because of the dependencies of each wavelet coefficient to another

while using mask CNNs. In the decoding side, the process is not highly parallel,

which results in long time periods to decode. Thus, a method that makes the pro-

cess faster than the method given in Section 5.1.1.3 is implemented and proposed.

In Block-based EZWT, both causal and EZWT dependencies are tried to be modeled

using a different method. The general scheme for block-based entropy model can be

seen in Figure 5.4.
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Figure 5.4: Schematic of block-based EZWT and causal dependency extractor

In this method, causal and EZWT dependencies are used differently that can be ob-

served in Figure 5.5. The steps are as follows:

• Firstly, the next level(LH2) wavelet coefficients are used as input to the depen-

dency extractor network, the output corresponds to the mean and scale of even

row and even column(ee) of the LH1

• Secondly, LH2 and LH1′s even row, and even column wavelet coefficients are

concatenated and are given to dependency extractor II for the mean and scale

of even rows and odd columns of LH1

• Thirdly, (LH2), LH1ee and LH1eo are concatenated and are given as input to

dependency extractor III to obtain the mean and scale of odd rows and even

columns of LH1

• Lastly, LH2, LH1ee, LH1eo and LH1oe are concatenated and are given as

input to dependency extractor IV to obtain the mean and scale of the odd rows

and odd columns of LH1
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Figure 5.5: Visualization of block-based EZWT and causal dependency extractor

As it can be seen from the above steps, rather than a sequential process, a more

parallel process is used in the block-based approach. In other words, the multiples of

mxn blocks are estimated at the same time for both mean and scale. Each dependency

extractor block consists of two different neural network models, mean estimator and

scale estimator, which can be seen in Figure 5.6. The output mean and scale for each

block (even/odd rows and even/odd columns) are merged to obtain the original size

of the image.
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Figure 5.6: Schematic of blockwise causal and EZWT dependency extractor

5.1.2 Post-processing Methods

The reason to use post-processing methods in an image compression scheme is given

in Section 3.3.5. During the thesis study, different post-processing networks are used

in order to reduce the noise, which results in an increase in PSNR values at the same

low bit-rate. Similar methods that are used in [8], [36], [48] are implemented for post-

processing model. These methods are tested for image compression performance, and

it is observed that using these methods results in similar results. Thus, the investiga-

tions in the forthcoming sections are done using a similar architecture which is used

in [8] and it can be seen in Figure 5.7.
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Figure 5.7: Proposed post-process block in [8]

In Figure 5.8, two different training strategies(a, b) are given. Both strategies are

investigated in the upcoming sections. According to the observations that are done in

this thesis study, using the below strategy(b) gives coherent results, where in literature

it is called "transfer learning". However, in experiments, it is observed that using the

scaling network that is given in Section 4.2.3 appropriately minimize the noise which

is introduced by quantization. Since, the post-processing methods do not increase the

performance significantly in the proposed compression scheme, they are not added to

the method.
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Figure 5.8: Different training strategies for post-processing networks

5.1.2.1 End-to-end Training with Post-processing Model

In Figure 5.8, the above one(a) shows an end-to-end compression scheme where the

post-processing network and the proposed compression scheme are trained and op-

timized using one primary loss function, which is the rate-distortion loss function

given in Equation3.1. The motivation for using end-to-end training is to optimize

the network by using one loss function. However, the results show that the transfer

learning strategy shows a better performance in the proposed compression structure.

The expectation is that the noise which is introduced by the convolutional layers,

activations and quantization can be minimized with the post-processing unit so that

the MSE decreases and PSNR increases. It is observed that at low bit-rate(0.13 bpp)

post-processing networks increase PSNR and decrease MSE. In comparison, at high

bit-rate(2 bpp), post-processing networks behave like low pass filters, which decrease

the PSNR and increase the MSE because at high bit-rate, the high-frequency compo-

nents are essential for the details of the image.

5.1.2.2 Separate Training with Post-processing Model

In Figure 5.8, the below one(b) shows a two-step training strategy, where the Model-

I represents the proposed compression scheme. It is trained and optimized using
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the rate-distortion loss function and after the training phase is completed the train-

able parameters of the Model-I are frozen, their gradients are cancelled. Then, the

post-processing model(Model-II) is trained and optimized by using the MSE as loss

function where the output of the proposed model (decompressed image, x’) and the

original input image(x) are used to calculate the MSE. This strategy is called "Trans-

fer Learning" in literature; basically, after a model is trained, the trainable parameters

of the trained model are frozen and fixed. Then another model is attached to the

trained model and this model is trained according to the given new loss function, in

this case MSE.

It is observed that using this strategy does not reduce the PSNR value at high bit-

rate(2 bpp) while increasing the PSNR value at low bit-rate. Rate does not change

during the optimization of the second model because in loss function II, the rate term

does not exist, so gradients are not used to optimize the rate term.

5.2 Results

5.2.1 Proposed Compression Scheme Method Results on Different Dataset

In compression literature, Kodak, Technic, and Clic datasets are generally used to test

performance of proposed methods’ performance. In this thesis work, training is done

using Vimeo Triplet dataset and testing is done using Kodak dataset. In the below

Figure 5.9, the results of 4 different variations of the proposed network with different

entropy models, which are given in Section 5.1.1 are compared with the methods that

are already proposed by different researchers in the literature and the source for these

results is [50]. As it can be observed, the best results in proposed methods belong to

the model that uses both causal and EZWT dependency. The factorized model is the

one that does not use any probabilistic dependency. It is the base method for entropy

modeling in the proposed architecture. All proposed entropy models show better than

Factorized Method’s performance in terms of PSNR vs bpp on Kodak Dataset. In

addition, Factorized Method shows similar performance with JPEG2000. It should

be noted that the causal EZWT method shows similar performance to BPG(4:4:4)

and the BMSHJ Hyperprior model, which are much better than JPEG2000 in terms
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of PSNR vs bpp. Thus, in this thesis work, the neural network model to model EZWT

architecture shows better performance in terms of PSNR vs bit-rate when compared

with the classical approach.

Figure 5.9: PSNR vs bpp, Kodak Dataset

5.2.2 Proposed Compression Scheme Method Visual Results

Two different images are selected from the Kodak image dataset to show the com-

pression results, which can be seen in Figure 5.10. Original Image 1 is an easier

example for compression when compared with Original Image 2 because it has less

high frequency components. In Original Image 2, there are a lot of edges. Thus, after

compression, the rate of Original Image 1 is higher for than Original Image 2 at the

same PSNR.
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Figure 5.10: Perceptual quality at different bit-rates

5.2.3 Proposed Compression Scheme Method Visual Results of Wavelet Coef-

ficients

In wavelet transform, as it is mentioned in Section 2.3, each level corresponds to 4

different subbands that represent different directional properties, and details of the

image. In the proposed method, a neural network model is used in a lifting scheme

to extract wavelet coefficients. In order to understand the efficiency of those filters,

visualization of the wavelet coefficients of a sample image from Kodak image dataset

using the trained weight of the proposed model is shown in Figure 5.11. The orig-

inal image, that is transformed to obtain wavelet coefficients, can be seen in Figure

5.13. Since this image has a lot of high-frequency components, such as edges, and
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corners, it is selected as a sample image to observe the meaning and idea of wavelet

coefficients in different wavelet levels.

In Figure 5.11, it can be seen that the wavelet coefficients in the upper left corner,

which are low-frequency coefficients of the image, have most of the main compo-

nents of the image while most of the details, high-frequency components are stored

in other subbands. In addition, it can be seen that the distribution of the wavelet co-

efficients changes at each level because wavelet transformation is an iterative method

to transform the image into multiple lower resolutions. When these coefficients are

used in an inverse lifting wavelet scheme, an image can be reconstructed without loss.

Moreover, in Figure 5.12, wavelet coefficients of the same image from Kodak image

dataset at low bit-rate is shown. The main difference between the high bit-rate and

low bit-rate wavelet coefficients is that the high frequency wavelet coefficients are

not significant for low bit-rate compression while for high bit-rate compression high

frequency wavelet coefficients are more prominent. Lastly, it can be seen that the

subbands show different features whose directions are different, as it is mentioned in

Section 2.3. Thus, using CNNs show similar behavior like classical wavelet trans-

form.

Figure 5.11: Wavelet coefficients that are obtained by the neural network model at

high bit-rate for Y channel(2bpp, 40PSNR)
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Figure 5.12: Wavelet coefficients that are obtained by the neural network model at

low bit-rate for Y channel(0.23bpp, 23.73PSNR)

Figure 5.13: The image which is used to illustrate the wavelet coefficients
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CHAPTER 6

CONCLUSION

In conclusion, in the thesis work, firstly, an introduction, in Chapter 1, of image

compression is given to the reader; secondly, preliminary knowledge, in Chapter 2,

about the methods and algorithms are shared. Thirdly, in Chapter 3, mostly state-

of-the-art algorithms and proposed works are investigated in detail. Fourthly, the

proposed method is investigated and shared in Chapter 4. Lastly, the ablation study

with the experiments and results are shared with the advantages and disadvantages of

the proposed method in Chapter 5.

The proposal and the contribution to the literature of thesis work is mainly design-

ing a neural network-based architecture that can fit the general architecture of EZWT

approach, which uses a lifting wavelet approach and levelwise subband dependency.

The proposed method shows significantly better results than JPEG2000 compared in

terms of rate and distortion. It reaches the performance of BPG 4:4:4. The limitations

and advantages of the proposed scheme are shared. Moreover, modeling the depen-

dency in between pixel values with the help of the neural EZWT increases the perfor-

mance when compared with factorized (without dependencies) approach. This means

there exists a meaningful levelwise dependency in between wavelet levels. Lastly,

this is the first use case of EZWT in compression using learning based methods. The

proposed architecture is unique in terms of entropy modeling.

The PSNR value of the proposed method is around %5 better than JPEG2000 at low

bit rates, while at high bit rates, this ratio goes up to %10 on Kodak Image Dataset.
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6.1 Future Works

Many methods are implemented and tested in order to obtain the proposed end-to-end

compression scheme. While some of them show poor performance, some of them

show promising performance, where one primary method which can be added to the

proposed scheme is an adequate post-processing network, which can reduce the quan-

tization noise which is introduced by the quantization block. However, implemented

methods only boost the performance at low bit rates, behaved like a low pass filter,

and performance decreases at high bit-rates because at high bit-rates high frequency

components are the important ones. In addition, the hyperprior methods show better

performance than factorized methods in the literature, so the hyperprior approach can

increase performance. Moreover, the causal dependency extractor block forces the

network to be sequential, so it takes time at decoding, better approaches can be inves-

tigated to decrease decoding time. Furthermore, as a future work, different metrics

such as SSIM and LPIPS can be used to test the performance of the proposed scheme.

Lastly, hyperparameter tuning can be done to increase the performance. It should be

noted that the proposed thesis work is a proposal of a method, by hyperparameter

tuning performance can be increased up to a level.
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