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ABSTRACT

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF
RADIAL-RADIAL SWIRLERS UNDER DIFFERENT CONFINEMENT

CONDITIONS

K�y�c�, F�rat

M.S., Department of Aerospace Engineering

Supervisor: Dr. Mustafa Perçin

July 2022, 115 pages

In modern gas turbine combustors, �ame stabilization is achieved by use of swirlers

which introduce swirl component to the �ow �eld. Swirlers are inherently sensitive

to �ow and environmental conditions, and even a minor geometrical modi�cation

can change the �ow �eld remarkably. One of the critical parameters that affect the

performance of the swirler is the channel orientation of the swirler channels. In the

literature, the channel orientation has been mostly investigated at constant con�ne-

ment ratio levels, and results showed that the performance of the co-rotating (CO)

and counter-rotating (CR) swirlers are different in a number of aspects. In this study,

the sense of the swirler channel rotation is investigated under different con�nement

ratio levels at a �xed total swirl number of 1.2 by using a 2D2C PIV system in isother-

mal conditions. The experimental results show that the con�nement affects the CO

and CR swirlers oppositely. As the con�nement ratio increases, the radial expansion

of the swirling jet decreases in the CR swirler while it increases in the CO swirler

for the con�ned cases. For all levels of con�nement, a higher degree of radial expan-

sion is observed in the CO swirler. In addition, steady-state RANS simulations are

performed to support the experimental �ndings, which are in good agreement with ex-
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perimental data except for the uncon�ned condition. On the other hand, Large Eddy

Simulations (LES) provide results that are in a better agreement with the experimen-

tal data in the uncon�ned con�guration. Furthermore, a spectral proper orthogonal

(S-POD) analysis is conducted to understand the effect of the con�nement ratio on

the dynamics of coherent �ow structures. The S-POD results exhibit a single helical

structure with a frequency of 1.2 kHz observed for both CO and CR swirlers under

all con�nement ratio levels. The S-POD mode shapes reveal that the con�nement can

suppress low-frequency global instability modes or higher frequency mode structures.

Finally, changing the number of channels does not change the frequency of the PVC

when the swirl number is kept identical.

Keywords: Swirler, Coherent Structures, Computational Fluid Dynamics, Particle

Image Velocimetry, Con�nement Ratio
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ÖZ

RADYAL-RADYAL T �IP�INDEK �I DÖNDÜRÜCÜLER �IN FARKLI
HAPSETME ORANLARI ALTINDA DENEYSEL VE NÜMER �IK

�INCELENMES �I

K�y�c�, F�rat

Yüksek Lisans, Havac�l�k ve Uzay Mühendisli�gi Bölümü

Tez Yöneticisi: Dr. Mustafa Perçin

Temmuz 2022 , 115 sayfa

Modern gaz türbin motorlar�nda, alev kararl�l��g� s�kl�kla ak�ş alan�na döndürücü va-

s�tas�yla dönen bir hava momentumu verilerek sa�glanmaktad�r. Döndürücüler do�gas�

gere�gi ak�ş ve çevresel koşullara duyarl�d�r ve geometride yap�lacak en ufak bir de�gi-

şiklik ak�ş alan�nda ciddi de�gişiklikler meydana getirmektedir. Döndürücü kanallar�-

n�n dönüş yönü dönürücü performans�n� etkileyen parametrelerin baş�nda gelmekte-

dir. Literatürde döndürücü kanallar�n�n dönüş yönü genellikle sabit hapsetme oranla-

r�nda incelenmiştir ve sonuçlar eş- ve ters- dönüşlü döndürücülerin performanslar�n�n

birçok aç�dan farkl� oldu�gu görülmüştür. Bu çal�şmada, döndürücü kanallar�n�n dönüş

yönü farkl� hapsetme oranlar�nda ve 1.2 sabit toplam dönüş say�s�nda 2 boyutlu-2 h�z

komponentli Parçac�k Görüntülemeli H�z Ölçme Tekni�gi ile izotermal koşulda ince-

lenmiştir. Deneysel sonuçlara göre eş- ve ters- dönüşlü döndürücülerin performans�

hapsetme oran�ndan ters şekilde etkilenmektedir. Hapsetme oran� artt�kça dönen jetin

radyal aç�lmas� ters- dönüşlü döndürücüde azal�rken eş-dönüşlü döndürücüde ise art-

m�şt�r. Bütün hapsetme oran� seviyelerinde eş-dçnüşlü döndürücüde daha fazla radyal
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aç�lma gözlemlenmiştir. Buna ek olarak, Reynolds-Ortalamal� Navier Stokes analiz-

leri de deneysel sonuçlar� desteklemek için gerçekleştirilmiştir ve hapsetme duvar�

olan durumdaki deneylerle tutarl� sonuçlar elde edilmiştir. Hapsetme duvar� olmayan

koşullarda ise Büyük Burgaç Simülasyonu gerçekleştirilmiştir ve deneyle uyumlu so-

nuçlar elde edilmiştir. Ayr�ca, Spektral-POD analizleri gerçekleştirilerek hapsetme

oran�n�n koherent ak�ş yap�lar�n�n dinamik karakteristi�gi üzerindeki etkisi incelenmiş-

tir. Spektral-POD sonuçlar� 1.2 kHz'deki tekli bir helisel yap�n�n eş- ve ters-dönüşlü

döndürücü için bütün hapsetme oranlar�nda görüldü�günü ortaya ç�kartm�şt�r. Ayr�ca,

Spektral-POD mod şekilleri hapsetme oran�n�n düşük frekanstaki evrensel karars�z-

l�k modlar�n� ya da yüksek frekanstaki mod yap�lar�n� bast�rabildi�gini göstermiştir.

Son olarak, dönüş say�s� ayn� tutulacak şekilde kanal say�s�n� de�giştirmenin devinen

girdap çekirde�gi frekans�na bir etkisi olmad��g� gözlemlenmiştir.

Anahtar Kelimeler: Döndürücü, Koherent Yap�lar, Hesaplamal� Ak�şkanlar Dinami�gi,

Parçac�k Görüntülemeli H�z Ölçme Tekni�gi, Hapsetme Oran�
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CHAPTER 1

INTRODUCTION

One of the revolutionary inventions of humanity is gas turbines. They have been

used in various ways, including power generation and civil and military �ights. The

working principle of the gas turbine engines depends on the Brayton cycle, and a

simple gas turbine cycle includes compressors, combustion chambers, and turbines,

as shown in Fig. 1.1. For power generation, a pressurized �uid is necessary to rotate

the turbine blades, and pressurized air is obtained through compression by compres-

sors. However, suppose the compressor directly connects with the turbine under the

assumption of an isentropic process. In that case, the turbine's extracted power will

equal the required power by compressors and eventually stop the whole system. If

any energy is added to the system after the compressor, the extracted power by the

turbine increases, and the system maintains itself until the energy source is removed.

Figure 1.1: Schematic of a simple gas turbine architecture [1]

The required energy is added to the system due to the combustion process inside

the combustors. The combustion is a chemical reaction chain between the fuel and
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oxidizer which offers a high amount of energy to any system. Thus, high-temperature

pressurized air is introduced to the turbine, and the turbine releases the energy by

expanding the volume of the gaseous through the turbine stages. The released energy

is converted to shaft work to drive the compressor and other systems.

Designing a combustor or combustion chamber is a highly compelling process due

to the interaction of several phenomena such as �uid mechanics (turbulence, swirling

�ow, spray, and atomization), heat transfer, chemistry, and mechanical design. A

schematic of the combustor is shown in Fig. 1.2. First, the diffuser reduces the veloc-

ity of the incoming air. Then the �ow is divided into snout, inner and outer annulus

sections. Inside the snout, a swirler and injector are located. The role of the injector

is to introduce the fuel particles with smaller diameters for easier ignition and con-

tinuous combustion. Swirlers are used to generate a recirculation zone to anchor the

�ame and prevent the blow-off. Primary jets con�nes the recirculation zone to create

stagnation points. Also, primary jets are used to create a perfectly stirred reaction

zone in the primary zone [2]. The secondary jets introduce the fresh air to complete

the combustion, and dilution jets provide desirable exit pro�les for long-life turbines.

Figure 1.2: Schematic of a gas turbine combustor[3]

The major problem of the combustion systems is the �ame being prone to blow-off,

meaning the physical departure of the �ame from the combustor [4]. The propagation
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speed of the �ame is lower than the �ow speed, and �ames can not sustain them-

selves under this condition. For example, for �xed fuel/air ratio levels, the �ame will

blow-off when the �ow's velocity magnitude increases. Similarly, if the fuel-air ra-

tio decreases at a constant velocity magnitude, the �ame will be blow-off again. The

blow-off can be described in terms of combustor loading which is a function of chem-

ical kinetic time scale (� che) and fuel-particles residence time (� res). The chemical time

scale de�nes the required time for complete combustion of a fuel particle, while the

residence time refers to the lifetime of a fuel particle in the reaction zone. If the fuel

particle residence time is far lower than the chemical time-scale, the �ame will blow

off [4]. To prevent the blow-off, we need faster combustion or a longer residence time

of fuel particles. This is called �ame-anchoring or �ame stabilization, which is part

of the static stability of the combustors.

Loading = � che=� res (1.1)

There are several ways to anchor the �ames, such as using a bluff-body, introduc-

ing swirling �ow, or using piloted �ames. The most common way of stabilizing the

�ame in modern gas turbine combustors is to introduce a swirling �ow. Swirlers are

used in gas turbine combustion chambers for �ame stabilization by introducing the

swirl velocity component to the �ame tube of combustors. When the introduced swirl

momentum is suf�ciently high, a reversed �ow region starts to develop, forming a

central toroidal recirculation zone (CTRZ) [5] as a result of the vortex-breakdown.

The CTRZ is a crucial element for �ame stabilization and more ef�cient combus-

tion. A schematic of the CTRZ is shown in Fig 1.3. In this �ow reversal zone, fresh

air mixes well with fuel while unburned fuel particles return to the reaction zone,

which increases the number of burned fuel particles compared to combustors operat-

ing without a CTRZ. The swirling �ow expands radially when it is introduced to the

�ow �eld. Thus, a corner recirculation zone (CRZ) may also be formed between the

combustor walls and CTRZ. A strong shear layer occurs between the CRZ and the

CTRZ, which increases the level of turbulent mixing and reduces the diameter of the

fuel spray particles.

The strength of the swirling momentum is generally quanti�ed by the swirl number
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(SN), which is the ratio of the axial �ux of the tangential momentum to the axial �ux

of the axial momentum. High swirl �ows are generally de�ned to have an SN of 0.6

or more due to the formation of a CTRZ at these swirl numbers [6]. However, these

characteristic �ow patterns such as vortex breakdown and CTRZ may also occur at

lower swirl number values [7], [8]. Even though the swirling �ow stabilizes the �ame,

increasing the degree of the swirling momentum would not be the best option, leading

to severe combustion instability and damaging the hardware of the combustors. This

is associated with the dynamic stability of the combustors [4].

Swirlers are named as how they introduce the swirling �ow to the combustors, and

the two most commonly used swirler types are radial and axial swirlers. The radial

swirlers introduce air radially inside the swirlers, and the radial momentum is con-

verted into tangential momentum. Whereas the axial swirler uses swirl blades (similar

to those used in turbomachinery applications) to obtain a swirling �ow. The swirler

types are shown in Fig. 1.4. Different types of swirler con�gurations are used in gas

turbine engines as listed in Table 1.1 [9].

Figure 1.3: Schematic of swirling �ow �eld [9]
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Figure 1.4: Axial and radial swirlers

Table 1.1: Swirler-Injector Con�gurations [9]

Combustor Injector Type Swirler Type

GE-DACRS Dual annular Counterswirl

LDI Single/Multi Helical

GE-TAPS Twin annular Cyclone

GE-CFM56 Single Dual-swirl radial

VESTA Multi Dual stage
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