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Computer Education and Instructional Technology, METU

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Prof. Dr. Tolga Can
Computer Engineering, METU

Prof. Dr. Hacer Karacan
Computer Engineering, Gazi University

Assist. Prof. Dr. Cemil Zalluhoğlu
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ABSTRACT

CONTEXT-AWARE PREDICTION OF USER PERFORMANCE PROBLEMS
CAUSED BY THE SITUATIONALLY-INDUCED IMPAIRMENTS AND

DISABILITIES

Akpınar, Mehmet Elgin

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

Co-Supervisor: Assoc. Prof. Dr. Yeliz Yeşilada

July 2022, 239 pages

When we interact with small screen devices, we can make errors due to our abili-

ties/disabilities, contextual factors that distract our attention, or problems related to

the interface. Predicting and learning these errors based on the previous user inter-

action and contextual factors and adapting the user interface to prevent these errors

can improve user performance and satisfaction. This thesis aims to understand how a

system can be developed that monitors user performance and contextual changes and

predicts performance problems based on context. In this thesis, we first conducted a

systematic review to understand the context and its effect on user performance. Then,

we conducted a user study in the wild to collect text entry interactions, sensor data,

and context labels. First, we used this data to measure user performance regarding

typing speed and error rate in an automated system without a predefined task model.

Moreover, we investigated how different context dimensions affect user performance.

Our findings showed that context affects users differently; therefore, user-specific

adaptations should be considered. We also investigated whether different context fac-

tors can be sensed using available sensors. Our experiments with machine learning
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algorithms using available smartphone sensors show that we can differentiate differ-

ent context factors, particularly mobility and environment. Moreover, we used sensor

and user performance data to predict performance problems. The regression model

to predict typing errors outperformed the random baseline. Finally, based on these

informative studies, we propose adaptation techniques and design guidelines for de-

velopers to support user interaction in different contexts.

Keywords: context, smartphones, text entry, user study
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ÖZ

DURUMSAL KAYNAKLI BOZUKLUKLARIN VE YETERSİZLİKLERİN
NEDEN OLDUĞU KULLANICI PERFORMANS SORUNLARININ

BAĞLAMA DUYARLI TAHMİNİ

Akpınar, Mehmet Elgin

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ortak Tez Yöneticisi: Doç. Dr. Yeliz Yeşilada

Temmuz 2022 , 239 sayfa

Küçük ekranlı cihazlarla etkileşime girdiğimizde yeteneklerimiz/engellerimiz, dik-

katimizi dağıtan bağlamsal faktörler veya arayüzle ilgili sorunlar nedeniyle hatalar

yapabiliriz. Bu hataları önceki kullanıcı etkileşimi ve bağlamsal faktörlere dayalı ola-

rak tahmin etmek, öğrenmek ve bu hataları önlemek için kullanıcı arayüzünü uyarla-

mak, kullanıcı performansını ve memnuniyetini artırabilir. Bu tez çalışması, kullanıcı

performansını ve bağlamsal değişiklikleri izleyen ve bağlama dayalı olarak perfor-

mans sorunlarını öngören bir sistemin nasıl geliştirilebileceğini araştırmaktadır. Bu

çalışma kapsamında, öncelikle bağlamı ve bunun kullanıcıların performansı üzerin-

deki etkisini anlamak için sistematik bir literatür taraması yapıldı. Ardından, metin

girişi etkileşimlerini, sensör verilerini ve kullanıcıların mevcut bağlam sınıflarını top-

lamak amacıyla, kullanıcıların kendi ortamlarında katıldıkları bir kullanıcı çalışması

gerçekleştirildi. İlk olarak, toplanan bu veriler, önceden tanımlanmış bir görev mo-

deli olmadan otomatik bir sistem aracılığıyla kullanıcı performansını yazma hızı ve

hata oranı bazında ölçmek için kullanıldı. Hesaplanan kullanıcı performansı verileri
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ve kullanıcıların bağlam atamaları kullanılarak, farklı bağlam boyutlarının kullanıcı

performansını nasıl etkilediği araştırıldı. Bulgularımız bağlamın kullanıcıları farklı

şekilde etkilediğini gösterdi; bu nedenle, kullanıcıya özel uyarlamalar dikkate alın-

malıdır. Mevcut sensörler kullanılarak farklı bağlam faktörlerinin algılanıp algılana-

mayacağı da araştırıldı. Ayrıca, performans sorunlarını tahmin etmek için sensör ve

kullanıcı performans verileri kullanıldı. Yazma hatalarını tahmin etmeye yönelik reg-

resyon modelinin, rastgele yapılan tahminlere göre daha iyi performans gösterdiği

görüldü. Son olarak, yapılan çalışmalara dayanarak, farklı bağlamlarda kullanıcının

etkileşimini desteklemek için uyarlama teknikleri araştırıldı, derlendi ve geliştiriciler

için tasarım önerileri olarak sunuldu.

Anahtar Kelimeler: bağlam, akıllı telefonlar, metin girişi, kullanıcı çalışması
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Over the last decade, smartphones started to play a significant role in our daily lives.

Their use reached almost 3.8 billion users in 2021 with a drastic increase [1]. An

average smartphone user checks their device 58 times and spends about three hours

with his/her smartphone daily [2]. They are essential in people’s lives so that people

can no longer leave their homes without having their smartphones with them [3].

Smartphones are no longer just used for communication but also to perform most of

the daily tasks [4]. With a few taps, we can read the news, watch a movie, chat with

friends, or spend time on social media [5]. Asynchronous communication has been

widespread recently [6], as a result, smartphones are widely used for text entry tasks,

such as writing text messages or emails [7].

The small screen sizes and portability of smartphones and recent advances in Inter-

net technologies enable smartphones to be used almost everywhere. Moreover, while

using smartphones, the users might be engaged with different and parallel tasks [8].

A user can check the news on his/her smartphone while having breakfast. Similarly,

a user can send the location of a restaurant to his/her friends while walking to that

restaurant. The user’s primary task with the smartphone, the parallel task user is en-

gaged with, the environment and the surroundings are different in these examples. As

a result, the context around smartphones includes more complex and diverse dimen-

sions than desktop computers [9].

There have been many attempts to define the term “context” [10]. In this thesis,

we refer to context as “any information that characterizes a situation related to the
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interaction between humans, applications, and the surrounding environment” [11]

(p. 106). Based on this definition, Greenberg [12] highlights the dynamic nature

of context and the challenges of determining the information required to identify a

contextual state.

Using a smartphone itself can cause performance problems similar to those experi-

enced by users with motor impairments due to its small screen [13]. Furthermore,

some factors related to the user’s current context can cause performance problems. In

the literature, temporary reductions in user performance due to context are referred to

as situationally-induced impairments and disabilities (SIIDs) [14]. This phenomenon

was defined as “difficulty accessing computers due to the context or situation one

is in, as opposed to a physical impairment” [15, 16]. Unfortunately, the application

designers and developers still do not consider these difficulties due to context and

SIIDs [9].

The effect of these situational impairments can be reduced with adaptive systems,

which change themselves for context or user behavior [14]. According to this ap-

proach, users do not adapt to a system; instead, the system adapts itself based on their

performance. For example, suppose a user has problems with clicking on a target. In

that case, the system may increase the target size or adjust the mouse settings to pre-

vent the error. For this purpose, a continuous approach to observing user performance

changes and contextual factors might be used.

The primary purpose of this thesis is to understand the effect of context on user per-

formance, implement a sensing mechanism to collect performance and context data

and predict user performance problems related to the context. Moreover, based on

these, this thesis also aims to propose techniques to adapt the system to realize an

ability-based system with the support of our prediction mechanism. The system can

suggest adaptations whenever a performance problem related to the context is pre-

dicted. Mobile operating systems or specific applications can adapt themselves to

the users to help them maintain their performance. As a result, these adaptations can

reduce the negative effect of SIIDs on users’ performance.

This thesis work started with a systematic review to understand the context and its

effect on users’ performance. In contrast with the broad definition of context, the
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research on the effect of context on users’ performance has been limited to a few

contextual factors, such as mobility. Our systematic review identified five contextual

dimensions: environment, mobility, social, multitasking, and distraction. Most exist-

ing studies have been based on experimental tasks conducted in controlled environ-

ments. Participants are typically asked to complete predefined tasks under different

contextual factors in controlled laboratory settings. This approach, of course, pro-

vides a consistent way of measuring speed and errors made. However, this approach

can also miss some difficulties in real-world usage [17]. Furthermore, in controlled

studies, users can only use specific interaction methods, and this restriction may also

jeopardize the validity of these studies [18].

Collecting data from actual users’ contexts where the users’ are not restricted to per-

forming a specific task can address these kinds of issues. This approach is referred to

as “in the wild” (or in-situ) studies. It aims to observe users’ behavior in their natu-

ral contexts [19]. However, collecting data unobtrusively also has some challenges.

Reproducibility is an issue [18]. Since the users’ intentions are not fully known, the

reliability of performance measurement can also be questioned [17]. Even though

these are essential issues to consider, the existing literature also shows that it is pos-

sible to conduct an in-situ user study without a specific task model and still detect

errors with a good accuracy [18].

After our systematic review, we conducted an in-situ remote user study to investigate

context’s effect on users’ text entry performance in real-world settings. Real-world

text entry data is collected from 48 participants during their everyday interactions.

During this study, we collected the participants’ text entry data, sensor data, and con-

text labels. To compare the user’s performance under different conditions, we needed

to interpret user performance in several metrics. One crucial metric was typing er-

rors to measure users’ performance. Several studies have identified typing errors in

the wild; however, these studies had some limitations. For instance, daily texting

language was not considered in these approaches. Therefore, we combined several

existing approaches to detect typing errors and distinguish between edits and cor-

rections using the text entry data. Finally, we investigated the effect of context on

user performance by combining text entry data and context labels in five dimensions:

environment, mobility, social, multitasking and distraction.
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Our user study collected data from available sensors in participants’ smartphones. We

asked them to label the current context in five dimensions. Using this sensor dataset

and context labels, we investigated which contextual factors can be identified using

available sensor data. For this purpose, we compared a set of classification models

with different parameters. This comparison helped us to identify relevant sensors to

distinguish contextual factors. Finally, combining the user performance and sensor

data, we investigated how we can predict user performance problems. In this part, we

applied regression models to individual user data.

1.2 Research Questions

This thesis focuses on the following research questions:

R1. “Which contextual factors have been examined in the literature for smartphone

interaction that can cause SIIDs?” – This question aims to identify and bring

together all the contextual factors that have been examined in the literature

centered around SIIDs. Context is one of the components defining interaction

along with user, task, and technology. This research question would enable

other researchers and us to see what kind of factors need to be considered or

the factors that have not been considered at all.

R2. “What are the most effective techniques to measure users’ typing performance

regarding speed and error rate?” – This question aims to develop a system that

automatically measures the typing speed and error rate using an input stream.

There are existing error detection approaches in the literature [17, 18]. How-

ever, these approaches do not consider some specific cases, such as using text-

speak. These approaches can be combined and extended with additional rules

to detect typing errors more accurately in daily settings. It would enable other

researchers and us to detect performance problems without manual investiga-

tion.

R3. “How do different contextual factors affect smartphone users’ performance?”

– This question aims to see the overall effect of the contextual factors on the
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users’ performance. Our literature review revealed that previous studies investi-

gating the SIIDs had been conducted in controlled settings and mainly focused

on mobility conditions. In this thesis, we collect data from users in their daily

settings. Moreover, we cover different dimensions of context. The findings of

this research question could be helpful for people who would like to conduct

usability studies or would like to develop intelligent applications to improve

users’ performance in a specific context.

R4. “Can we predict users’ performance problems caused by SIIDs using the avail-

able smartphone sensors?” – This question compares different regression mod-

els to predict user performance problems related to context. It would enable

other researchers and us to develop systems that can adapt themselves to users

to overcome the adverse effects of SIIDs.

R5. “What are the possible adaptation techniques based on context and automated

performance prediction?” – This question reviews and discusses possible adap-

tation techniques to reduce the adverse effects of SIIDs. A system can deploy

these adaptations using the available smartphone sensors and automatically pre-

dicted performance measures. It would help other researchers and us decide on

the adaptation approaches for specific application purposes.

1.3 Contributions and Novelties

This thesis contributes to the literature on several points:

• We conducted a systematic review on the effect of context on user performance.

In this review, we reported the different context factors investigated, how dif-

ferent context factors affect user performance, and possible research gaps in

the literature (R1). Although different contextual factors have been widely in-

vestigated in the literature, the corresponding studies have been conducted in

controlled environments, and the effect of context on users’ performance in

their daily settings had little attention.

• Recent approaches to detecting typing errors using free text have been based on

lookup approaches. We combined the approaches of Nicolau et al. [17], Evans
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and Wobbrock [18], and Torunoğlu and Eryiğit [20] to cover daily texting lan-

guage and detect typing errors in both English and Turkish (R2). Our perfor-

mance evaluation with the participants showed that the combined approach is

more successful, especially in detecting typing errors in the daily Turkish lan-

guage.

• Most of the text entry studies have been conducted in controlled laboratory en-

vironments. In this study, we collected text entry and sensor data in the wild.

We extended an existing framework to capture the participants’ keyboard inter-

actions, a set of sensor data, and context labels submitted by the participants

(R3).

• The effect of context on users’ text entry performance has been primarily inves-

tigated for different mobility conditions in the literature. This study considered

the context in five dimensions: environment, mobility, social, multitasking, and

distraction. According to our findings, being in an outdoor environment, being

mobile, the presence of other people, multitasking, and having distractions in-

crease error rate but have no effect on typing speed. This study provides the

first empirical evidence on the effect of context on users’ typing performance

in an in-situ study (R3).

• Human activity recognition has been widely studied with the advance in the

available sensor in smartphones. However, research to date has not yet con-

sidered predicting user performance using available smartphone sensors. This

study first investigates the sensors used to identify contextual factors. Then,

using these sensors and user performance metrics, this thesis shows how smart-

phone sensors can be used to predict user performance problems (R4).

• Previous studies proposed many adaptation techniques for both disabled users

and smartphone users under SIIDs. This study first reviews these adaptation

techniques and proposes a model by combining the findings of this study (R5).

1.4 Publications

The contributions of this thesis are published in the following publications:
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• Elgin Akpinar, Yeliz Yeşilada, and Selim Temizer. 2019. Ability and Context

Based Adaptive System: A Proposal for Machine Learning Approach. In Pro-

ceedings of the CHI’19 Workshop: Addressing the Challenges of Situationally-

Induced Impairments and Disabilities in Mobile Interaction, 8 pages. https:

//arxiv.org/abs/1904.06118

• Elgin Akpinar, Yeliz Yeşilada, and Selim Temizer. 2020. The Effect of Con-

text on Small Screen and Wearable Device Users’ Performance - A Systematic

Review. ACM Computing Surveys 53, 3, Article 52 (May 2021), 44 pages.

https://doi.org/10.1145/3386370

• Elgin Akpinar, Yeliz Yeşilada, and Pınar Karagöz. 2022. Effect of Context

on Smartphone Users’ Typing Performance in the Wild ACM Transactions on

Computer-Human Interaction, 43 pages. In submission (minor revision re-

ceived)

1.5 Online Repository

All the materials and data of this study (instructions and consent form of the user

study and individual performance comparisons) are available in our external online

repository at https://iam.ncc.metu.edu.tr/cabas/. Moreover, we col-

lected user performance measurements, context labels, and sensor data from available

smartphone sensors. We published our dataset in our public repository: https:

//github.com/melgin/cabas-dataset

1.6 The Outline of the Thesis

The rest of the thesis has been organized as follows:

Chapter 2: Literature review This chapter reviews the user studies that focused on

the effect of context on SIIDs. In particular, this review answers two research

questions. The first question investigates which contextual factors have been

examined in the literature that can cause SIIDs. The other question focuses on
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how different contextual factors affect small screen and wearable device users’

performance. In this chapter, 187 publications were systematically reviewed

under a framework with five factors for context analysis: physical, temporal,

social, task, and technical contexts.

Chapter 3: Sensing the context and user performance This chapter presents a re-

mote user study in the wild with 48 participants. In this study, we collected

smartphone keyboard interactions and context details. We first propose an ap-

proach for error detection by combining approaches introduced in the literature.

A follow-up study shows that the accuracy of error detection is improved.

Chapter 4: The effect of the context on user performance We investigate the ef-

fect of context on typing performance based on five dimensions: environment,

mobility, social, multitasking and distraction, and reveal that the context affects

participants’ error rate significantly but with individual differences.

Chapter 5: Modelling context and user performance This chapter explains all of

the steps in the classification pipeline, including sensor data collected during

the user study and features used in the literature. We validate the sensor data and

context labels with classification methods to identify the context. We compare

the performance of each method with different parameters. Then, we applied

regression models to smartphone sensors and user performance data. Finally,

we compared individual and overall regression results.

Chapter 6: Adaptation and discussion This chapter discusses the findings and im-

plications of this thesis work. We present strategies to overcome SIIDs and

adaptations employed to solve performance problems in the literature. Then,

we discuss two possible use cases of our findings for adaptation.

Chapter 7: Conclusion and future work Finally, in this chapter, we conclude the

thesis, explain the limitations of the study, and discuss our future work.
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CHAPTER 2

LITERATURE REVIEW

Small screen and wearable devices play a key role in most of our daily tasks and ac-

tivities. However, depending on the context, users can easily experience situationally-

induced impairments and disabilities (SIIDs). Previous studies have defined SIIDs as

a new type of impairment in which an able-bodied user’s behaviour is impaired by

the context including the characteristics of a device and the environment. This chap-

ter1 systematically reviews the empirical studies on the effect of context on SIIDs. A

significant amount of empirical studies have been conducted focusing on some fac-

tors such as mobility but there still are some factors such as social factors that need

to be further considered for SIIDs. Finally, some factors have shown to have signif-

icant impact on users’ performance such as multitasking but not all factors has been

empirically demonstrated to have an effect on users’ performance.

2.1 Introduction

Small screen and wearable devices play a significant role in our daily lives. It is

expected that the number of small screen devices will increase from 1.9 billion to

5.6 billion between 2013 and 2019 [21]. Even though these predictions might not

be so accurate, they still show that the number of small screen devices will be quite

significant. Some studies also make predictions that with the evolution of Internet

of Things (IoT), these numbers can even become higher2. These devices are not

1 Elgin Akpinar, Yeliz Yeşilada, and Selim Temizer. 2020. The Effect of Context on Small Screen and
Wearable Device Users’ Performance - A Systematic Review. ACM Computing Surveys 53, 3, Article 52 (May
2021), 44 pages. https://doi.org/10.1145/3386370 Reprinted by editor’s permission

2 https://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-
iot-infographic.png, Last access: 02.11.2018
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used to communicate only anymore, but they are also used to perform most of our

daily tasks [4]. Small screen devices include tablets, smartphones, phablets3 and

wearable devices such as smart watches and glasses [22]. In this article, we refer to

all these devices as small screen devices. One of the common characteristics of these

devices is their small screen size relative to desktop computers. Although this feature

increases portability, it can also have significant impact on interaction, in particular

usability [23, 24].

Unlike desktop computers which are typically used in a fixed and stable environment

(e.g. a typical setting would be the user seated with no excessive light or weather

conditions, etc.) small screen devices can be used in different environments including

indoors, outdoors, noisy, quite, crowded, etc. Furthermore, while using small screen

devices, the users might be engaged with different and parallel tasks, for example

messaging while walking on a busy street [8]. In the literature, these types of tem-

porary reductions in user performance due to context are referred to as situationally-

induced impairments and disabilities (SIIDs) [14]. This phenomenon was defined as

“difficulty accessing computers due to the context or situation one is in, as opposed

to a physical impairment” [15, 16]. There can be many factors causing SIIDs and

the main observation is that both the environment and the current context can cause

SIIDs. In this article, we use context to refer to both environment, situation and con-

text which is defined as “any information that characterizes a situation related to the

interaction between humans, applications and the surrounding environment” [11].

In the literature, there has been many empirical studies on investigating the effect of

different contextual factors on SIIDs with varying findings. In this article, we aim

to provide a systematic review of the work that has been done and the impact they

showed on the user performance. In particular, we ask the following two research

questions: (1) “Which contextual factors have been examined in the literature for

small screen or wearable device interaction that can cause SIIDs?” and (2) “How

do different contextual factors affect small screen or wearable device users’ perfor-

mances?”. Answering these questions would enable us and other researchers to see

what has been investigated so far and what the factors that still need to be investigated

are. Knowing these would be useful for building smarter applications and would also

3 devices with capabilities of both tablet and smartphones
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be useful for conducting usability studies or user interaction pattern mining under

different contextual factors.

There are other systematic reviews in the field of mobile device interaction. First

of all, Jumisko-Pyykkö and Vainio [25] reviewed the literature surrounding mobile

contexts of use. They explained the characteristics of social, physical, technical,

temporal, task and transitions contexts. Although mobility and environmental con-

ditions were briefly mentioned in physical context, this study does not provide a deep

understanding of contextual factors and situational conditions which have been ex-

amined in the literature for SIIDs. Coursaris and Kim [26] focused on mobile us-

ability evaluation studies in the dimensions of user, task, technology, environment,

research methodology, usability dimensions and key findings. Although they covered

environment, task and technology dimensions, they only focused on usability studies

without focusing specifically on SIIDs. Motti et al. [27] reviewed touchscreen inter-

action techniques and input devices only with a specific group of older adults. Liu et

al. [28] applied keyword analysis on the papers published between 1999 and 2013 on

ubiquitous computing field. Rather than contextual factors, they focused on the eval-

uation of the field. In more recent reviews, Sarsenbayeva et al. [29] provided a brief

overview of the factors causing SIIDs as well as approaches to detect and overcome

them. In particular, they focused only on ambient temperature, mobility and encum-

brance. Finally, Wobbrock [10] discussed the definition of SIID and provided a list of

factors that can cause SIIDs. However, only three contextual factors were discussed

in detail: walking, cold temperature and divided attention/distraction. Unfortunately,

recent reviews on SIIDs have not covered all situational context.

Compared to these, in this article, we present a much broader systematic review of the

work that has been conducted to investigate the effect of contextual factors on SIIDs

(see Section 2.2). In order to present the contextual factors, we used the context

framework proposed by Jumisko-Pyykkö and Vainio [25] as the backbone of our

review. This article is organized into two main parts guided by the research questions

asked above: first part explains the contextual factors that have been considered to

have an effect on SIIDs and in the second part we present the findings of the studies

focusing on these contextual factors and their effect on the users’ performance. We

first present the metrics used in the performance assessment and then we present their
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findings.

This article systematically reviews 187 publications in Section 2.2 under the context

framework that has five factors: physical, temporal, social, task and technical context.

This review shows that some factors such as location and mobility as part of physical

context have been widely studied but some contextual factors such as interpersonal

interaction and culture as part of social context have not been widely studied (see

Section 2.3). Furthermore, in order to investigate the effect of context on SIIDs, this

review also shows in Section 2.4 that many performance metrics have been used in

the literature. Some of these metrics are very typical such as task completion time,

but quite a lot of context specific metrics have been introduced; for example, metrics

related to navigation or gait and posture related metrics (see Section 2.4.1). Finally,

this review also shows that there have been a relatively small set of studies investigat-

ing the effect of some contextual factors in user’s performance (see Section 2.4.2). In

addition, it also shows that for some popular metrics, existing studies have no con-

sensus on some contexts having significant impact on users’ performance. Therefore,

this article presents the existing work in detail and shows the gaps in the literature

where further studies can be conducted (see Section 2.6).

2.2 Research Method

We have conducted our systematic review by following the steps specified by Ghezzi-

Kopel [30] and this section provides a summary of those steps.

2.2.1 Research Questions

In our systematic review, we mainly asked the following two research questions:

1. “Which contextual factors have been examined in the literature for small screen

or wearable device interaction that can cause SIIDs?” – This question aims to

identify and bring together all the contextual factors that have been examined in

the literature centred around SIIDs. This would enable us and other researchers

to see what kind of factors need to be considered or the factors that have not

12



been considered at all.

2. “How do different contextual factors affect small screen or wearable device

users’ performance?” – This question aims to see the overall effect of the con-

textual factors on the users’ performance and how user performance was artic-

ulated in the literature. There are some standard performance measures such as

task completion time, error rate and workload, but this review will enable us to

see all the performance metrics used in the literature. Answering this research

question would again enable us and other researchers to see the kinds of effects

the contextual factors might have on the users’ performance and how they can

articulate the users’ performance. This could be useful for people who would

like to conduct usability studies or people who would like to develop smart

applications to improve users’ performance in a specific context.

2.2.2 Inclusion and Exclusion Criteria

In our systematic review, we mainly included papers which focus on interaction with

small screen devices or wearable devices under different contextual factors. We ex-

cluded desktop interaction, or large displays such as wall-mounted displays or table-

top displays. Furthermore, we excluded papers that focus on disabled users, for ex-

ample blind users. This is mainly because they have specific requirements such as

specific assistive technologies used due to their disabilities. We also excluded papers

if they are late-breaking results, work-in-progress, posters, student research competi-

tions or adjuncts. Finally, we only reviewed publications in English. We did not limit

the publications with time criteria.

2.2.3 Searching for Studies

We mainly searched three sources for relevant research: (1) online libraries and search

engines, (2) references and citations of the papers reviewed, (3) publication archives

of specific conferences and journals. We started our review with search queries on

the following online platforms: ACM Digital Library, METUnique Search, Google

Scholar, ScienceDirect and Scopus. We mainly used the following queries with their
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possible combinations: “mobile, context, walk, situational impairment, cell phone,

texting, typing, pointing, touchscreen, siid, eyes free, wearable, smartphone”. For

instance, we searched for “mobile and walking”, “mobile and context”, “situational

impairment and context”, etc. These keywords were chosen because they were com-

monly referred in the related systematic reviews [25,27] and they were the most rele-

vant keywords to our research questions explained above. From these online libraries

and search engines, we retrieved and reviewed 496 papers, and marked 89 papers as

relevant. Then, we reviewed references of these relevant papers as well as papers

that cite them. From references and citations, we reviewed 2285 papers and marked

52 papers as relevant. Finally, we manually reviewed all the volumes/issues between

2007 and 2019 of the following key Human-Computer Interaction (HCI) venues4:

• Computer Human Interaction (CHI) (5213 papers);

• ACM Conference on Pervasive and Ubiquitous Computing (UbiComp) (1152

papers);

• International Journal of Human-Computer Studies (949 papers);

• ACM Transactions on Computer-Human Interaction (TOCHI) (364 papers);

• Behaviour & Information Technology (932 papers);

• Conference on Designing Interactive Systems (807 papers);

• Mobile HCI (740 papers);

• International Journal of Human-Computer Interaction (827 papers);

• IEEE International Symposium on Mixed and Augmented Reality (525 papers);

• ACM Transactions on Interactive Intelligent Systems (TiiS) (217 papers);

• Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-

gies (471 papers);

From these HCI conferences and journals, we reviewed 12,197 papers in total and we

marked 46 as relevant. Therefore, from the three main sources ((1) online libraries and
4 dl.acm.org, www.journals.elsevier.com, www.tandfonline.com, ieeexplore.ieee.org
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search engines, (2) references and citations of the papers reviewed, (3) publication

archives of specific conferences and journals), we reviewed in total 14,978 paper and

marked 187 as relevant.

2.2.4 Data Extraction

In order to systematically review all the contextual factors, we used the framework

proposed by Jumisko-Pyykkö and Vainio [25] to identify contextual factors in the

literature surrounding situational disabilities and impairments of the small screen or

wearable device users. This framework has five main dimensions: physical, temporal,

social, task and technical context. The reviewed papers were analyzed based on these

dimensions. This allowed us to systematically review all the relevant papers.

2.2.5 Paper Selection

During our review process, we manually checked if the paper was relevant. We started

with title and abstract screening to label the papers which are clearly not related to our

topic as irrelevant. We also skimmed the full text and searched for specific keywords

based on our inclusion and exclusion criteria. We created a citation graph where

citation relations were visually represented. Based on this graph, we applied a breadth

first search approach to analyze papers or retrieve more candidates.

Among the 14978 publications reviewed, we selected 187 publications as relevant,

which focus on different mobility or contextual conditions as well as eyes-free in-

teraction. Figure 2.1 and Figure 2.2 illustrate the tag clouds for the keywords of the

papers published in two different periods. While walking and lighting were popular

conditions studied on mobile devices and PDAs between 2002 and 2009 (Figure 2.1);

the focus has been switched to other contextual factors such as eyes-free interaction,

encumbrance, stress, attention and distraction between 2010 and 2019 (Figure 2.2).

Similarly, Figure 2.3 illustrates the distribution of the relevant papers published. Al-

though this figure shows that the highest numbers of publications (18 papers) were in

2011 and 2017, it also shows that the topic is still very popular. In fact there were 17

papers published in 2018. Later in this paper, we will see that the focus is still SIIDs
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Figure 2.1: Tag cloud for papers between 2002 and 2009.

Figure 2.2: Tag cloud for papers between 2010 and 2019.
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In this section, we described our research methodology in conducting a systematic re-

view of the contextual factors causing situational impairments and disabilities studied

in the literature. This methodology can easily be applied to update the review pre-

sented here with the recently published papers. In the following sections, we present

the findings of our systematic review. We organized our findings under the two re-

search questions we asked (see Section 2.2.1).

2.3 Contextual Factors Explored for SIIDs

This section mainly investigates our first research question:

“Which contextual factors have been examined in the literature for small
screen or wearable device interaction that can cause situationally-induced
disabilities and impairments?”

In order to present the contextual factors studied in the literature which can cause situ-

ationally induced disabilities and impairments in a systematic way, we organized our

findings based on the dimensions given by Jumisko-Pyykkö and Vainio [25]. Before

we present each context review in detail, we first briefly summarise the participant

characteristics in the studies we reviewed.

2.3.1 Participant Characteristics

In 96 papers out of 187 reviewed, participants were recruited from graduate/under-

graduate students and university staff. Some authors recruited equal number of male

and female participants [31–52]. In general, participants were familiar with small

screen devices; however, in some studies, participants were not familiar with wear-

able devices. In experiments and interviews, 46 users participated on average (min-

imum: 4, maximum: 3338, standard deviation: 255.39)5. In observational studies,

number of people observed are relatively higher than experimental studies: 347 [55],

357 [56], 431 [57], 2668 [58] and 4129 [59]. Hiniker et al. [60] observed and inter-

5 Due to these two studies [53, 54], standard deviation is quite large as [53] has 1669 and [54] has 3338
participants in their studies which are not typical.
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viewed adult caregivers. Tigwell et al. [9] applied a questionnaire to mobile content

designers. Fitton et al. [61] conducted experiments with teenagers.

2.3.2 Physical Context

Physical context [25] is defined as:

“The apparent features of situation in which the human-mobile computer
interaction takes place, including spatial location, functional place and
space, sensed environmental attributes, movements and mobility, and ar-
tifacts present.”

Based on this definition, we grouped our physical context as location, mobility, ar-

tifacts, and sensed environmental attributes. Even though the definition above also

refers to functional place, in our review, we did not refer to that, since most ex-

periments have been conducted in a controlled environment with specific interaction

tasks where the function of the interaction (entertainment, work, etc.) was ignored.

Table 2.1 presents the physical context studied in the literature. As can be seen from

this table, location and mobility are more widely studied compared to other factors.

People can use their small screen devices and wearable devices in various locations

and in the literature we can see that different locations have been studied. The most

popular location for the experiments conducted related to SIIDs is the lab environ-

ment. One advantage of conducting experiments in the lab environment is that, par-

ticipants and experimental conditions can be easily isolated from the external fac-

tors, such as other people or weather conditions. However, in this case, the experi-

ments might not reflect realistic conditions. In order to address this problem, some

studies were conducted outside of the laboratory, especially in public indoor envi-

ronments. However, they still might not reflect the requirements of using the small

screen devices and wearable devices outdoors where some other external factors such

as weather conditions need to be considered. Therefore, some studies have also been

conducted in outdoor locations in the literature. Our literature review revealed that

there are several studies that aimed to compare lab environment to indoor or outdoor

public environments.
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Table 2.1: Physical contexts investigated in the literature

Context Types Papers

Location Lab environment [8, 62–66]

Indoor environment [8, 66]

Outdoor environment [62, 65]

Pedestrian street or public area [8, 63, 64]

Functional place Home, work, outdoors, public

transit, restaurant, other

[67]

Mobility Sitting [36, 61, 68–100]

Standing [33, 81, 88, 90, 91, 93, 101–118]

Walking on a route [33,41,61,68,69,74–76,78–81,84,86,89–

95, 98–109, 111–113, 115, 117, 119, 120]

Walking on a treadmill [41, 68,70, 72, 77, 78, 82, 83,87, 94–96, 99,

110, 114, 116, 118, 119, 121, 122]

Walking after a researcher [36, 88]

Walking on a straight path [92]

Walking through a street or pub-

lic area

[71]

Public transportation [97]

Walking [73, 85]

Sensed

Environmental

Attributes

Lighting levels (low and high) [75, 79, 80, 119]

Weather (cloudy, partly cloudy,

sunny)

[106]

Vibration [123]

Environmental noise [50, 123]

Temperature (cold, warm) [47, 48]
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Similar to location, mobility aspect has also been widely studied in the literature and

the effect of mobility was demonstrated in various ways. One way of simulating mo-

bility in the experiments is to walk on a treadmill or on a mini-stepper. In general,

when participants were walking on a treadmill, they were isolated from any other

factors if the experimental design did not include artificial distractors. This mobility

condition may be effective if the aim of the study is to observe the effect of walking

apart from any other factors; however, it does not reflect realistic scenarios. Alterna-

tively, many studies have examined mobility conditions where participants walked on

a straight path, walked on a predefined route and walked freely.

When we look at the sensed environmental attributes, there are very few studies that

focus on conducting experiments under different sensed environmental attributes.

Only a few studies observed contextual factors such as lighting levels [75,79,80,119],

temperature [47, 48], weather [106], vibration and noise levels [123]. Although they

are not related to environmental attributes, some authors used various motion sensors

in the experiment. These motion sensors consist of acceleration sensors, gyroscope,

magnetic field sensors, motion sensors and heart rate monitor.

There are other physical context factors that have been used as experimental condi-

tions rather than the main focus of the studies. Table A.1 in Appendix A.1 also gives

a broad overview of the physical contextual factors used in the studies. Several exam-

ples for public indoor environments include corridors [36, 66, 85, 102, 106, 124–126],

stairs [127, 128], university cafeteria [129], quiet hallways [89, 108, 130, 131], an

empty seminar room [93, 115], public areas [66, 71] and others [43, 86, 132]. Some

studies have also been conducted in outdoor locations in the literature: quiet roads and

paths [62, 65], pedestrian street [63, 64, 68, 133], both uncrowded and crowded areas

in pedestrian zone [134], sports field [44], city center [35, 135], city forest [136] and

others [33, 43, 55, 106, 137–140]. To consider the location differences, there are also

several studies that were conducted in multiple places, for example including busy

street, escalator, quiet street, bus, metro platform, metro car, railway station, cafete-

ria, laboratory [8], different parts of a building (entrance, lift, corridor, office, meeting

room, etc.) [42], train station, shopping center, university bus stop, business area and

market street [57]. Besides those, there are also some unique locations studied in the

literature including a warm and a cold room at an arctic medical facility [47], vehicle
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and public transportation [97, 123] and virtual environment [141, 142]. In the studies

presented so far, at least one experimenter was present during the experiments. This

experimenter was mainly monitoring or guiding people participating in the studies.

There are also studies that were conducted in the wild (in-situ studies) [54,143–146].

In these studies, participants completed the tasks in their daily routine without having

an experimenter observing their task completion.

In order to reflect realistic mobility, during the experiments in some studies, there

were also physical objects around participants which might have caused collisions

or attention switches. We grouped these under artifacts used. Some authors inten-

tionally placed obstacles with respect to their experimental design in the laboratory

environment, such as physical obstacles or furniture in the lab environment. In some

studies, on the other hand, other people or obstacles were present due to the nature of

outdoor or public environments. In the studies that were conducted in virtual environ-

ments, virtual obstacles and virtual vehicles were used. Researchers placed computer

moni-tors in front of participants to simulate pedestrian crossing behaviour while in-

teracting with mobile devices. With these experimental setups, they aimed to create

a sense of experiment in real-world and eliminate possible injury risks [141, 142].

Finally, a unicycling clown was used in Hyman et al. [55] to observe inattentional

blindness while talking on the phone in a natural environment.

2.3.2.1 Summary and Discussion

One of the most significant discussions in physical context has been on location.

Chamberlain and Kalawsky [101] states that, the environmental conditions for each

participant would be unique when the experiments were conducted outside; therefore,

the environment must be controlled to ensure a uniform set of experiences. Many

other researchers have conducted experiments in a controlled lab environment. On

the other hand, many researchers have drawn attention to the unrealistic environmen-

tal settings in the lab environments [66,147]. A lab environment might not reflect real

world cases due to lack of various lighting levels [61], complex obstacles or disrup-

tions [90,102,108,126,148–150], environmental noise [74], pedestrians [102] and any

factor that requires attentional resources for safety reasons [62]. Similarly, Stavrinos
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et al. [142] argued that using a real world setting might result differently than using

a virtual environment for the experiments. Kane et al. [106] highlighted the chal-

lenges of conducting experiments outside; such as weather conditions, unexpected

interruptions and distractions, and safety concerns; however, they stated that those

experiments conducted outside are more realistic. Suggested open research areas are

conducting experiments in dynamically changing paths [150], crossing roads [126]

and music concerts to observe the effect of vibration and noise levels [123].

Another debate in physical context has been on mobility. Barnard et al. [119] and Ng

et al. [41] stated that, using treadmill to simulate walking was simpler to control and

maintain walking speed. On the other hand, Ng et al. [41] highlighted the possible

input problems about treadmills with safety bars when conducting experiments with

encumbrance. Barnard et al. [119] indicates that, ground walking is more realistic

than using a treadmill. Crossan et al. [81] argued that resting, sitting, standing and

walking postures in a lab environment do not reflect real world cases such as walking

on a busy street. Kane et al. [106] suggested transitions between mobility conditions

as a research area, such as starting the experiment with standing and continuing with

walking.

2.3.3 Temporal Context

Temporal context [25] is defined as:

“The user’s interaction with the mobile computer in relation to time in
multiple ways such as duration, from time of day to years, the situation
before and after use, actions in relation to time, and synchronism.”

Table 2.2 presents the studies that investigated the effect of temporal context. As can

be seen from this table, only the effect of session and walking speed have been inves-

tigated in the experiments. The experiment session was used to observe performance

changes across different sessions. Moreover, some authors aimed to observe how

walking speed affected participants’ performance in walking conditions. Compared

to these though, synchronism aspect, different time of day to years and other action

relation to time aspects have not been so widely studied.
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Table 2.2: Temporal contexts investigated in the literature

Temporal Context Types Papers

Duration Multiple sessions on different days [37, 90, 153, 155]

Multiple experiments [156]

Actions’ relation to time Walking speed [41, 65, 157, 158]

Majority of temporal context factors have been used as experimental conditions. Ta-

ble A.2 in Appendix A.2 also summarizes the factors that have been used related to

temporal context. The length of the interaction session depends on the task to be

completed, number of sessions and experimental settings. Duration of the overall

experiments ranges from 15 minutes [45] to 90 minutes [47, 134, 151]. The length of

a single session also varies from three minutes [69, 89, 152] to 40 minutes [153] or

45 minutes [36]. On the other hand, Jongil et al. [154] limited the length of a single

trial to one minute. In some studies, multiple sessions were arranged with the par-

ticipants. For example, Banovic et al. [37] conducted 16 sessions which took around

40 minutes; whereas Clawson et al. [90] completed 15 sessions where each session

took 20 minutes. Conradi et al. [114] arranged four sessions in consecutive days.

Unlike others, Reyal et al. [144] conducted experiments for four weeks in the wild,

and asked participants to complete corresponding tasks 10 times in a day. The same

experimental settings may also take different amounts of time. For instance, indoor

sessions took around 30 minutes in [106]; while outdoor sessions took 90 minutes. On

the other hand, in [43], indoor sessions took 50 - 60 minutes where outdoor sessions

lasted in 20 minutes. Finally, experiments in stationary condition took 15 minutes

and walking condition in 90 minutes in [116]. These intervals give ideas about the

duration of the overall experiments. Task completion time for a single task, on the

other hand, has been used to compare performance of the participants within various

conditions or approaches.

For most of the studies, authors did not mention the time of day, week and year of

the experiments especially if they conducted the experiments in the lab environment.

This may be due to the fact that, the same experimental conditions may be repeated

regardless of the time. On the other hand, it may be challenging to conduct two
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experiments with similar parameters in outdoor environments since weather condi-

tions or number of people around the participants change. To address this challenge,

Pielot and Boll [35] repeated the experiments on Saturdays in May. Similarly, Kane

et al. [106] conducted experiments in the afternoons. On the other hand, Harper et

al. [57] conducted their observations at different hours of a day; so that they could

see the changes with respect to time. Finally, some authors aimed to prepare experi-

mental setups in which participants also deal with pedestrians on their route. For this

purpose, Wenig et al. [43] and Pielot et al. [134] conducted their experiments in sum-

mer, when many tourists visited the city. MacKay et al. [71] also set their experiment

time to busiest time of the day (11:00 a.m. to 4:00 p.m.).

In terms of events before or after the experiments, in [144], participants were sent

periodic notifications which asked them to complete text entry tasks. These notifica-

tions were sent 10 times in a day. Similarly, Aliannejadi et al. [146] sent search tasks

to participants based on a pre-defined schedule. There is no experimental setup in the

remaining studies if they were conducted in the wild.

Regarding the actions’ relation to time, along with multitasking, some studies aimed

to put more pressure on the participants during the experiments. These studies aimed

to simulate cases such that a user is late for a meeting and has to send a text message

to a colleague while he/she is walking to his/her office. In some studies, partici-

pants were asked to walk in different walking speeds [41,65,78,157–159]. Similarly,

Oulasvirta et al. [8] simulated hurrying, normal and waiting conditions in their ex-

periments. Finally, Conradi [157] changed presentation time in the experiments to

analyze minimum time for users to perceive short words on the phone screen.

Regarding the synchronism, generally, participants were asked to complete the tasks

individually and synchronously in existing studies in the literature. There are several

exceptions for this condition. In some experiments, participants talked on the phone

with an experimenter [142, 160]; while some experimental setup consisted of both

talking on the phone and texting with an experimenter [44,141,147]. Harper et al. [57]

observed people while they were texting and walking in the wild. Similarly, Hyman et

al. [55] checked whether people paid attention to their surroundings while they were

walking and talking on the phone. In synchronism context, talking on the phone is a
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synchronous task; while texting is asynchronous.

2.3.3.1 Summary and Discussion

As can be seen from Table A.2, durations widely studied can be considered short

given the amount of time people spend with their small screen and wearable devices

these days. Therefore, one criticism about temporal context is that, some interaction

techniques may require longer learning curves; however, in experiments participants

had limited time to learn and perform the tasks [161]. Therefore, some people argue

that such as Arif et al. [150] longitudinal studies should be conducted to give time to

participants to be familiar with the input device or interaction technique during the

experiments. Furthermore, in real world, people do have actions related to time and

also do use their devices in different times of the day and year. Even though there

are a few studies focusing on these, there can be still many more studies with varying

factors to better understand the effect of the temporal context.

2.3.4 Task Context

Task context is defined as follows [25] :

“The surrounding tasks in relation to user’s task of interacting with mo-
bile computer containing the sub-components of multitasking, interrup-
tions and task domain. Task context is related to the demands of the entire
situation upon one’s attention.”

Table 2.3 presents the studies that investigated the effect of task context. As can be

seen from this table, walking is the most widely studied multitasking aspect. Ta-

ble A.3 in Appendix A.3 provides a summary of the task context used in the literature

under three factors: multitasking, interruptions and task domain. According to this

table, navigation, reading, text entry and target selection are the most popular task

domains studied. However, as presented in this table, there are many other domains

which are not widely studied and of course there may be many others that can be

studied in the future.
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Table 2.3: Task contexts investigated in the literature

Context Types Papers

Multitasking Walking [33,36,41,61,68–96,98,101–117,119,121,

122]

Encumbrance [41, 111, 113, 115, 118, 151, 159]

Collision/hazard avoidance [162]

Distraction or cognitive tasks [52, 148]

Presence of dual task

while walking

[40,51,66,120,135,147,149,152,154,158,

162–165]

Presence of dual task

while crossing street

[53, 141, 142]

Interruptions Eyes-free interaction [166]

Stressor tasks [52]

Distraction tasks [121, 153]

Visual disruptions [167]

Incoming phone calls [39]

Multitasking has been considered as an effective way of fragmenting attentional or

cognitive resources during small screen and wearable device interaction. This is con-

sidered to be one of the major causes of SIIDs. In experimental studies, one of the

most common techniques used in the literature is to ask participants to walk while

completing a set of predefined tasks. Mobility conditions that have been used to

achieve this are presented in Section 2.3.2. In different mobility conditions, a user

needs to maintain her walking speed, check for route in order not to get lost and

watch for obstacles, vehicles and other pedestrians to avoid collisions. As a result

both mental and physical workload increase in such conditions. Another multitask-

ing condition is encumbrance. In the literature, participants were asked to hold an

object (box, bag, etc.) during some experiments [41, 111, 113, 151, 159]. Alterna-

tively, Oulasvirta and Bergstrom-Lehtovirta [168] simulated several conditions such

as use of non-prefered hand and occupation of whole or some parts of hand by ask-

ing participants to hold objects with different sizes (such as box, basketball, coffee

mug, tongs or scissors) while they were entering text on mobile devices. Moreover,

users’ attention to the possible risks while interacting with a small screen or wearable
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device was also examined. In these studies, different cases were simulated includ-

ing artificial hazard notifications [76, 169], injury risk in virtual environment [142]

and collision cases with obstacles and other pedestrians [129]. In such experiments,

participant safety is critical; as a result, such experiments were conducted in virtual

or controlled environments. Similarly, Conradi et al. [114] and Jongil et al. [154]

asked participants to watch for environmental changes while they were interacting

with small screen or wearable devices. Kjeldskov and Stage [68] asked participants

to play Jungle Book Groove Party game. Although talking on the phone has been used

as the main task in most studies, in [160] participants were asked to complete several

tasks such as numeric text entry or calendar checking while they were talking on the

phone and playing a driving game. This experimental condition illustrates the cases

in which users interact with a cell phone in an eyes-free fashion. Finally, cognitive

tasks such as note recalling [82], attention saturating tasks [148] and mathematical

calculations [40] have also been used in the literature.

Temporary interruptions that break users’ attention have been covered with different

methods in the literature. One of these methods is to place obstacles in the partici-

pants’ walking paths. Similarly, conducting the experiments in a public area in which

other people were presented causes interruptions in the interaction with small screen

and wearable device. In both cases, participants need to divide their attention between

completing current task and avoiding collisions. The studies designed to include ob-

stacles or other people in their experimental settings are provided in Section 2.3.2.

In [76] and [169], participants were asked to check for artificial hazard notifications.

Unlike a normal walking path, going up or down the stairs may also interrupt par-

ticipants [127, 128]. Using virtual objects such as vehicles is another technique to

interrupt participants [141,142]. Jain and Balakrishnan [153] used visual distractions

in forms of changing numbers, while Yang et al. [170] placed stop signs on the route

to interrupt participants’ attention on the tasks. We considered eyes-free interaction

in which participants complete a set of tasks without looking at the device screen

as an interruption condition. Such case of interaction was also covered in the litera-

ture [31, 37, 45, 46, 88, 136, 145, 156, 160, 166, 171–178].

A considerable amount of the studies in the literature aim to compare the performance

of the user under various task domains. As a result, majority of the tasks are highly
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goal oriented. In these tasks, participants were given instructions and asked to com-

plete the tasks by considering several performance metrics such as task completion

time or accuracy. One popular task domain is text entry. In this domain, participants

were presented a set of phrases and asked to type it as it is. As a result, in text entry

domain participants did not type free text or have conversation with another person.

Another popular task domain is target selection. The participants were shown sev-

eral targets and asked to select them by using different techniques or under different

conditions. Reading is another popular task domain. Along with reading, scrolling

and searching tasks were also used. In recent years, gesture based interaction and

navigation have been popular task domains. Some task domains consist of multiple

realistic tasks such as numeric text entry, recording phone number, checking calen-

dar [160] and reading messages, replying with message templates, answering calls,

sharing fitness information online [44]. Other goal oriented task domains are tapping

on buttons [62], visual acuity [65], visual search [112], web search [8, 94, 95, 140],

zooming [125], RSS reading [145], cognitive tasks [89], crossmodal icon identifi-

cation [77], dealing with incoming notifications [135], drag and drop tasks [130],

remembering symbols [179], responding to alerts [105], sliding [45], speech based

text entry [72, 169], sports tracking [137], menu navigation [177] and menu selec-

tion [132, 133]. Although the original framework categorizes mobile-gaming as an

action oriented task domain, we considered game playing tasks in [129] and [143]

as goal oriented since main purposes of both studies were to compare efficiency and

effectiveness of different approaches. As a result, performance and preference had

higher priority than entertainment in these studies. The studies reviewed so far in

this section took specified tasks as the main task domain and compared participants’

performance under different factors. There are also studies that investigated the effect

of small screen device usage on walking or posture. In these studies, the follow-

ing task domains have been used: talking on the phone [141, 142, 147, 149], tex-

ting [40, 141, 149, 152, 164], listening to music [141], reading [147, 165] and text

entry [66, 147, 154, 165]. It is important to note that, in text entry task domain, par-

ticipants retyped given phrases; while in texting task domain they had conversation

with experimenters by sending or receiving text messages. We consider these tasks

as goal oriented; since performance related metrics such as task completion time and

accuracy were still important during the experiments.
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2.3.4.1 Summary and Discussion

When we look at the literature, in the majority of the studies, participants have inter-

acted with experimental applications which were developed to simulate a particular

interaction method. However, these are much more simplistic than real world ap-

plications and tasks [70]. Realistic tasks that require continuous attention [8] or are

cognitively demanding [71] may reflect real world use cases. In text entry tasks, par-

ticipants have been asked to type predefined sets of phrases. In the majority of the

studies, the text phrases have been in English. The effect of other languages may be

examined in text entry task domain. Moreover, instead of typing standard text, Vadas

et al. [74] argued that user performance may be affected if they type content which

they are interested in, such as personal emails. Lucero and Vetek [135], on the other

hand, stated that, using participants’ online accounts may cause privacy concerns and

participants may have different experiences due to various content lengths. Finally,

people normally use their devices with autocorrect/autofill functions enabled. Plum-

mer et al. [66] stated that, the experimental setups that disable these functions may

not reflect real world usage.

2.3.5 Social Context

[25] defines social context as follows:

“The other persons present, their characteristics and roles, the interper-
sonal interactions and the surrounding culture that influence the user’s
interaction with a mobile computer.”

Based on this definition, we group the contextual factors under this dimension un-

der the following categories: persons present shows if there is another person during

the experiment, interpersonal interaction shows if there is an interpersonal interaction

during the experiment and culture shows if specific culture elements have been con-

sidered or not during the experiment. Table 2.4 presents the social factors considered

in the literature for causing SIIDs. Table A.4 in Appendix A.3 also provides a sum-

mary of the social factors used in the literature. As can be seen from this table, most

studies were conducted with individuals, and interpersonal communication aspects

29



Table 2.4: Social contexts investigated in the literature

Social Context Types Papers

Persons present Self [8, 55, 57, 67]

Accompanied [55, 57]

Other pedestrians [57]

Culture Users from UK and India [143]

were mainly considered one to one.

Our review shows that experiments were typically conducted individually in separate

sessions. Only Hoggan et al. [123] conducted an experiment in which all partici-

pants completed tasks together in the same environment. The reason for this was

to ensure that participants interacted with device under the same vibration and noise

levels. However, participants did not interact with each other. In two observational

studies, some observed people were in pairs or groups, while some of them were indi-

viduals [55, 57]. In order to simulate conditions that require interpersonal interaction

such as talking on the phone or texting with someone, the participants interacted with

an experimenter [44, 141, 142, 147, 152, 160]. On the other hand, Harper et al. [57]

suggested that, presence of the experimenter with the participants may affect their

behavior. Hyman et al. [55] used a unicycling clown in the experiments and ob-

served whether people could recognize him while they were talking on the phone and

walking. Finally, although there were no interaction, other people and pedestrians

were also present in the environmental settings of some studies conducted in public

areas [35, 57, 66, 106, 129, 134, 135].

Regarding the interpersonal interaction, in the majority of studies in the literature,

participants were given instructions to complete a set of tasks individually. This type

of interaction can be categorized in the framework as one-to-myself; since partici-

pants only interact with device. On the other hand, experimenters interacted with

participants in several studies that include tasks on talking on the phone or texting.

In these one-to-one interactions, conversation topic was predefined [44,141,142,147,

152, 160]. We have not encountered any work in the literature that examined one-to-

many or many-to-many interactions.
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Culture has not been one of the major social factors considered in studies that inves-

tigated the effect of SIIDs. Only Williamson et al. [143] conducted experiments with

two specific user groups from the UK and India. Moreover, other attitudes of culture,

such as work and organizational culture have been ignored in the research field.

2.3.5.1 Summary and Discussion

Research around the social context has been mostly restricted to single participants

interacting with a small screen or wearable device, and only a few studies consisted

of interpersonal interaction or other people around the interaction. In our literature

review, we identified three open research areas related with social context. First, some

task domains require interpersonal interaction due to their asynchronous nature such

as talking on the phone or texting. Stavrinos et al. [142] argued that, they could have

different results if participants had interacted with someone who they are familiar with

instead of researchers during the experiments. Chen et al. [53] also suggested that,

participants may ignore messages or phone calls from strangers; as a result, they asked

participants to bring a friend to the experiments. They could conduct experiments

that reflect real world interactions if they had not restricted the conversation topic.

Moreover, the studies that aim to observe user interaction in public areas or in the wild

may ask participants to take videos during interaction. However, McMillan et al. [67]

stated that, ethical concerns may arise from this since permission from those people

around the experimenter is not taken. Although they asked participants to turn off

video recording in inappropriate situations; a more effective solution may be proposed

to prevent such cases from affecting experiment. The final open research area related

with the social context is social acceptance [68, 109, 143], especially for gesture-

based interaction [81] and kick-based interaction [180, 181]. Any unusual device or

interaction technique during experiments may engage other people’s attention, and as

a result, participants’ performances may be affected [135].

2.3.6 Technical Context

Technical context is defined as [25]:
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Table 2.5: Technical contexts investigated in the literature

Context Types Papers

Device Smartphone with touchscreen [35, 49, 94, 95, 179]

Tablet [94, 95]

Wearable device [32, 101, 182]

Smartwatch [179]

Smartphone with physical keyboard [76]

Smartphone with touchscreen and physical keyboard [168]

UMPC [74]

Twiddler, trackball, gyroscopic mouse and touchpad [130]

Head mounted display, e-book reader [74]

“Relation of other relevant systems and services including devices, ap-
plications and networks, their interoperability, informational artifacts or
access, and mixed reality to the user’s interaction with the mobile com-
puter.”

Table 2.5 presents the studies that are conducted addressing SIIDs related to this con-

text. Table A.5 in Appendix A.5 also provides a broad overview of the technical

factors used in the studies that addressed SIIDs. Based on the definition given by

Jumisko-Pyykkö and Vainio [25], we group the technical factors in four categories:

devices used, information artifacts, interoperability, and mixed reality systems. As

can be seen from this table, based on the maturity of the devices, there are more

studies around them. For example, there are quite a lot of studies centred around

smartphones with touchscreen but not many studies around wristband/smart bracelet.

Other factors compared to devices are less explored in the field. A variety of de-

vice types have been examined in the literature including Personal Digital Assistants

(PDA), Ultra-Mobile PCs (UMPC), wearable devices, smartphones, smartwatches,

media devices, tablets and head mounted displays. These device types have different

characteristics and modalities. For example, some smartphones have either a touch-

screen or a physical keyboard whereas some of them have both. Figure 2.4 shows

the devices used in the literature with respect to years. Although PDAs had been

used widely in early studies; smartphones, smartwatches and tablets have been very

popular recently.
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Smartwatch

Smartphone with touchscreen

Tablet

Smartphone with keyboard & touchscreen

Wearable deviceTouchscr. media device

UMPC
PDA

Smartphone with keyboard

Wearable device

2018 2019

Figure 2.4: Distribution over the years of the surveyed papers according to the device

type used

Interoperability between devices has been used for two main purposes. One of the

reasons is to provide participants a user interface during the interaction. For example,

when participants interact with a wearable device which does not have a user inter-

face, another connected device for representing tasks and feedback is required. For

this purpose, wearable devices have been connected with PDA [132], laptop com-

puter [87], desktop computer [91] and Google Glass [93]. In some studies, on the

other hand, interoperability helped to represent tasks and feedback if experimental

design required eyes-free interaction. Such kind of interoperability was achieved

with different devices, including PDA/Twiddler and desktop computer [31], smart-

phone and laptop computer [88, 171, 172], smartphone and headphone [173], wear-

able device/smartphone and external monitor [166]. All interoperability cases in the

literature are between unequal resources. As an example for interoperability between

applications, Zhang and Rau [44] asked participants to share their fitness information

on a social media platform. Accessibility on different platforms has not been studied

in the context of SIIDs.

We haven’t encountered any work in the literature which used multiple devices ac-

cessing to the same content. However, in some studies, some informational artifacts

have been used to represent tasks, including projection screen [69,72], computer dis-

play [91, 168], external monitor [37, 166], LCD display [89], wall display [40, 91]

and tablet [45]. In one study by Bragdon et al. [148], a large monitor was used for

distraction tasks.

In order to simulate the experiment scenarios in which participants had injury risks,

virtual reality systems have been used [141, 142]. Crease et al. [76] and Lums-

den and Drost [169], on the other hand, used projection screens to indicate hazards.

33



Conradi et al. [114] also used virtual reality to examine participants’ attention to dis-

tractors in the virtual environment. Similarly, Jongil et al. [154] aimed to simulate

environmental changes by using a projection floor and a monitor.

2.3.6.1 Summary and Discussion

Our literature review revealed that, not only different types of devices, but also dif-

ferent models of these devices have been used in the experiments. As manufacturers

launched new small screen and wearable devices, researchers continued to experi-

ment with these devices. Technological advances also enabled researches to simulate

various use case scenarios by using different informational artifacts, interoperability

between devices and virtual systems. As a research challenge, Wiliamson et al. [145]

highlighted the importance of charging and correct placement of the wearable de-

vices for in-situ studies. Moreover, they stated that, some participants may require

customization on the devices and there is a trade-off between participant frustration

and equally prepared experimental conditions. They suggested that, an in-situ study

must be flexible to handle such kind of customization while the study continues. As

an open research area, Zhang and Rau [44] suggested to study attractiveness of wear-

able devices for different genders.

2.4 The Effect of Contextual Factors on Users’ Performance

This section investigates our second research question:

“How do different contextual factors affect small screen or wearable de-
vice users’ performance?”

In the literature, different metrics have been used to assess the users’ performance. In

order to explain the impact of the context, in this section we first present the metrics

used in the literature and then we explain how these metrics are used to show the

impact of context on users’ performance.

34



2.4.1 Performance Metrics

Majority of the studies reviewed in this document aim to observe the main effect of

an interaction technique or contextual factor on how users interact with the system

or how they behave. For this purpose, they used one or more evaluation metrics for

measuring users’ performance. Table 2.6 provides a summary of the performance

metrics used. As can be seen from this table, performance metrics in terms of task

completion time and error rate, and perceived workload in terms of NASA TLX [183]

have been widely used. For text entry tasks, another popular performance metric is

text entry speed in terms of words per minute [31, 36, 37, 63, 64, 86, 90, 92, 123, 144,

150, 153, 171, 175], characters per second [102, 155], characters per minute [88] or

number of codes entered [62].

Besides those metrics, some other metrics are also used that focus on the effects of

contextual factors on user behavior. These can be summarised as follows:

Gait and posture related metrics: spatio-temporal parameters, ankle and knee ki-

nematics [152], minimum margin of stability [40] velocity, lateral deviation,

linear distance [149], stride length [158, 163, 165], stride frequency, abs path

lateral direction, delta right foot position [165], maximum displacement, in-

terference duration, maximum deviation from normal movement during right

steps [179], synchronization of gait [203], toe clearance, toe velocity, step

length, foot position, foot contact [147], dynamic walking stability [154], walk-

ing deviations [106], average walking speed, total walking distance, total steps,

strides per minute [131], gait speed [51, 120, 158, 163], stride time [163], error

steps [89], head flexion angle [209].

Attention related metrics: accurate change detection, response time, detection rate

[167], attentional resources, attention switched, switch back duration [8], num-

ber of attention switches [57], noticing unicycling clown [55], field-of-regard

loss [154], number of glances [106], number of slow-downs and head-ups

[129], collisions [150], wrong turns [150], secondary task performance, du-

ration and subjective distraction [136], number of stop-signs missed and step-

outs, unnecessary stop-time [170], situational awareness [120].
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Table 2.6: Evaluation metrics

Metric Papers

Task completion time [32, 33, 35, 39, 41–43, 45–47, 50, 52, 61, 68, 70, 71, 73–76, 78–81, 83–85, 87, 89,

91,93,97,98,101,103,104,106–109,111–119,124–126,129–134,136–139,148,

151, 156, 159–161, 166, 170, 172, 176–178, 182, 184–194]

Error rate / accuracy [31, 33, 35–37, 41, 43, 46–48, 50, 52, 61, 63, 64, 66, 68, 69, 72–82, 82–90, 92, 93,

96–99, 101–116, 118–120, 122, 124–130, 132–134, 136, 137, 144, 148, 150, 151,

153–156, 159–162, 169–176, 178, 181, 185, 187–190, 192, 193, 195–197]

Workload [33–35,37,39,43,44,62,68,69,72,74–76,78–80,82,84,94,95,97,98,101,103,

112,119,121,125–128,131,132,134,155,161,169,170,177,179,184,189,192,

194]

Walking speed [32, 66, 89, 98, 102, 124, 126, 132–134, 150, 161, 164, 165, 165, 169, 194]

Text entry speed [31,36,37,52,62–64,66,82,86,88,90,92,102,120,123,127,128,144,150,153,

155, 171, 175]

Subjective evaluation [32,33,42,44,45,71,85,96,107,117,125,131,131,140,150,160,166,167,184,

186, 188, 192, 195, 198–201]

Interaction related metrics [45,67,79,79,80,80,96,97,105,123,131,133,134,140,145,147,170,171,175–

177, 193, 197, 202]

Gait & posture rel. met-

rics

[40, 51, 89, 106, 120, 131, 147, 147, 149, 152, 154, 158, 163, 165, 179, 203]

Navigation metrics [32, 34, 38, 54, 134, 136, 138, 139, 190, 200, 201, 204]

Usability metrics [43, 44, 61, 68, 71, 133, 136, 174, 182, 194]

Attention related metrics [8, 55, 57, 106, 129, 136, 150, 154, 167, 170]

Gesture related metrics [143, 186, 194, 196, 205]

Pedestrian variables [53, 55, 141, 142]

Others: reaction/response time [122, 154], point of subjective equality [65, 157], just noticeable dif-

ference [65], manual Multitasking Index [168], multimodal flexibility index [173], search related met-

rics [94, 95], cost of error correction [150], system performance [138, 139], heart rate classification accu-

racy [206], finger and battery temperature [49], reading speed [121], valence, energy, stress [197, 207], user

interviews [57, 60], social reactions [135, 145], gaze behaviour [208]
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Pedestrian variables: looks away, looks left and right [141], missed opportunities,

attention to traffic, hits/close calls [142], time left to spare [141, 142], head

turning frequency, unsafe crossing behavior [53], crossing time [53, 55].

Navigation metrics: number of references to route directions, number of self-posi-

tion references [204], traveled distance, time looking at the map, disorientation

events [32, 136], navigation performance [54], arrive time, position accuracy,

orientation accuracy [200], distance [191], walking time [201], step and time

differences [34], number and length of sessions [38], orientation loss, number

of targets found, orientation phases [134], stationary time, time and distance

for incorrect route, portion of time in which participants paid attention to the

display [138, 139], number of steps [190].

Interaction related metrics: number of swipes on menu [96], total time fingers we-

re in contact with touchscreen [45], time looking at the phone [202], amount

of interaction, time device was held in the hand, scanning, time the screen was

turned off [54], number and duration of fixations on the phone [147], inter-

action type (touch vs no touch), interaction time, application, length of in-

teraction [67], interactions per minute [145], list navigation time [193], tap

features [197], amount of interaction [134], number of operations [140], field

change error, incorrect field error, drawing time [131], scrolls [79, 80], num-

ber of commands [176], number of pages viewed [170], average swiping time

[177], answer time, access time, pocket time [105], reading time [79, 80],

reading speed and text comprehension [100], number of breakdowns when

participants take device out of their pockets [133], keystrokes per character

[97, 123, 171, 175].

Gesture related metrics: number of incorrect nods, accuracy of gestures, number of

gestures aborted [194], gesture mode and technique [143], character recogni-

tion rate [205], distribution of pseudo impulse [196], articulation time, gesture

size, aperture, corner shape distance, angular difference, shape distance [186].

Usability metrics: ability to answer questions [182], usability problems identified

[68], ease of use [44, 71], usefulness [44], efficiency [61], System Usability

Scale [43], subjective usability [133], pleasantness [174], difficulty [174], com-
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fort [194], confidence [136].

This section has reviewed a comprehensive set of evaluation metrics surrounding SI-

IDs. The following section will focus on how contextual factors given in Section 2.3

affect these evaluation metrics.

2.4.2 The Effect of Contextual Factors on Users’ Performance

In order to present the effects in a systematic way we again use the five contextual

factors as the backbone for our discussion. In Sections 2.4.2.1–2.4.2.5, we presented

quantitative results of the papers which give the significance of the results explicitly

(either significant or insignificant) or provide a p-value for the statistical tests pre-

sented. Then, in Section 2.4.2.6, we outlined qualitative findings.

2.4.2.1 Physical Context

Table 2.7 and Table 2.8 present the effect of physical factors on the performance

metrics discussed above. Environment has been used to compare indoor and out-

door environments or public and private places in terms of user performance and

attentional metrics. While Brewster [62] showed main effect of indoor and outdoor

environment on text entry performance in terms of speed and error rate, a more recent

study by Plummer et al. [66] did not reveal significant difference in terms of texting

speed and accuracy between private and public environments. The effect of different

mobility conditions on user performance has been widely investigated for different

task models. Although the literature agrees on influence of the mobility on perceived

workload; there are contradicting results on task completion time and error rate. In

traveling condition, on the other hand, Hoggan et al. [97] compared sitting conditions

in laboratory environment and subway train; and showed that mobility condition af-

fected task completion time; however, it had no main effect on either error rate or

workload.

When it comes to sensed environmental variables, there are relatively few studies in

the literature which investigate their effects on user performance. According to Kane
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Table 2.7: The effect of mobility (SD: Significant diff., ID: Insignificant diff.)

Physical Context Task Domain Evaluation Metric SD ID

Mobility (stationary, Target sel. Task completion time [83, 114, 116] [70, 87]

walking on a treadmill Error rate / accuracy [83, 87, 110, 114, 116]

Other tasks Task completion time [118]

Error rate / accuracy [72, 82, 96, 118] [77, 122]

Workload [82, 121]

Mobility (stationary, Target sel. Task time & err. rate [78]

walking on a treadmill, Text entry Task time & err. rate [68]

walking on a route) Workload [68]

Read./search. Workload [94, 95]

Searching Hits per query/errors [99]

Mobility (sitting in lab, Text entry Task completion time [97]

sitting in subway train) Error rate, workload [97]

Mobility (stationary,

walking on a route)

Target sel. Task completion time [71,81,84,91,93,101,

103,109,111,113,115]

[104, 106, 107]

[73, 108]

Error rate / accuracy [73, 84, 93, 103, 115]

[81,104,107,109,111]

[101, 106, 108]

Workload [84, 101, 103]

Text entry Task completion time [61, 76]

Error rate / accuracy [36, 61, 86, 120]

[76, 102]

[88, 90, 92]

Text entry speed [36, 90, 92, 120] [86, 88, 102]

Workload [69, 76]

Reading Task completion time [33, 75, 117] [74, 79, 80, 98]

Error rate / accuracy [74, 75, 79, 80] [33, 98]

Workload [33, 74, 75, 79, 80]

Reading speed [100]

Other tasks Task completion time [33, 75, 89, 112]

Error rate / accuracy [33, 75, 85, 89] [105, 112]

Workload [33, 75, 112]

et al. [106], weather condition has no effect on target selection time. Sarsenbayeva

et al. [50] clearly indicated that different types of ambient noise influenced target

selection, visual search and text entry time. Similarly, Sarsenbayeva et al. [47] and

Goncalves et al. [48] showed the effect of environmental temperature and finger tem-
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Table 2.8: The effect of environment and sensed environmental attributes (SD: Sig-

nificant difference, ID: Insignificant difference)

Physical Context Task Domain Evaluation Metric SD ID

Environment Visual acuity Psychophysical metrics [65]

(indoor, outdoor) Tap. on buttons Workload [62]

Text entry Error rate, text ent. speed [63, 64]

Environment (lab.,in- Text entry Gait speed [66]

door real-world) Texting speed & accuracy [66]

Environment (indoor, Web search Attention metrics [8]

outdoor, transport.) Switch-back duration [8]

Functional place Smartwatch use Length of interaction [67]

Ambient Noise (mu-

sic: fast, slow, silence)

Target acq. Task comp. time, err. rate [50]

Visual search Task completion time [50]

Ambient Noise

(urban noise: indoor,

outdoor)

Target selection Task completion time [50]

Visual search Task comp. time, err. rate [50]

Text entry Task completion time [50]

Error rate [50]

Ambient Noise (speech:

meaningful/meaningless)

Target sel., vis.

search, text ent.

Task completion time [50]

Error rate [50]

Weather (cloudy, sunny) Target selection Task completion time [106]

Vibration level /

Noise level

Text entry Text entry speed [123]

Keystrokes per char. [123]

Temperature

(cold, warm)

Target selection Task completion time [47]

Error rate [47]

Thumb finger temp. Target selection Movement time, err. rate [48]

Index finger temp. Target selection Movement time [48]

Error rate [48]

Lighting level

(low, high)

Reading Task time, workload [75,79,80,119]

Error rate
[75, 79, 119]

[80]

Searching

words

Task completion time [75, 119]

Error rate [75, 119]

Workload [119] [75]
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Table 2.9: The effect of temporal context (SD: Significant difference, ID: Insignificant

difference)

Temp. Cont. Task Domain Evaluation Metric SD ID

Task length Speech based text entry Error rate [72]

Session Text entry Text entry speed [37, 90, 153, 155]

Error rate / Accuracy [90, 153, 155] [37]

Workload [37]

Sight-free text entry Text ent. speed, accuracy, workload [37]

Target selection Task comp. time & error rate [156]

Walking

speed

Reading/Visual acuity Point of subjective equality [157] [65]

Just noticeable difference [65]

Texting, talking on phone Gait parameters [158]

Target selection Error rate [41, 110]

Task comp. time & accuracy [41]

perature on target selection time. The studies comparing low and high lighting levels

for reading and searching tasks have indicated that there is a main effect of lighting

level on task completion time and workload but not on error rate.

2.4.2.2 Temporal Context

Table 2.9 presents the effect of temporal factors on the performance metrics dis-

cussed before. There is a relatively small body of literature that investigated the

effect of session or temporal tensions on user performance. Session was used to

observe the changes in user performance through overall experimental process if

it contains multiple sessions. So far, a number of studies have reported that error

rate, task completion time and perceived workload decrease as the experiment pro-

gresses [37, 90, 153, 155, 156]. Different levels of walking speed have also been used

to simulate temporal tensions like hurrying. Several lines of evidence suggest that

users make more errors when they walk at a higher speed [41, 110]. Taken together,

these studies support the main effect of session and walking speed on user perfor-

mance. Unfortunately, we encountered no studies that compared different times of

day, week and year or synchronism conditions.
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2.4.2.3 Task Context

Table 2.10 summarizes the effect of task context on the performance metrics. The

effect of walking as a multitask was given in Section 2.4.2.1. Böhmer et al. [39]

reported that task completion time increased in case of phone call interruptions dur-

ing question answering tasks. Similarly, Mariakakis et al. [121] suggested that per-

ceived workload increased with the presence of distraction tasks. Jain and Balakrish-

nan [153] conducted experiments with three levels of distraction including no distrac-

tion, low distraction and high distraction. They reported that there was a significant

difference in terms of text entry speed between no distraction, low distraction and

high distraction. Moreover, highest text entry speed was observed in high distrac-

tion condition. They commented that, text entry speed increased due to the attention

demand of high distraction condition. Sarsenbayeva et al. [52] showed that, stress

decreased target selection time and increased touch offset size; however, it did not

have effect on text entry in terms of texting speed and error rate.

Table 2.10: The effect of task context (SD: Significant diff., ID: Insignificant diff.)

Task Context Task Domain Evaluation Metric SD ID

Multitasking

(encumbrance)

Target selection Accuracy [41, 111, 113]

[159]

Speed [113]

Task completion time [41, 159] [111]

Gestures based int.† Task comp. time, error rate
[118, 151]

[115]

[151]

[115]

Presence of interruption Question answering Task completion time [39]

Presence of vis. disruption Target detection Accurate change detection [167]

Presence of distraction Reading Workload [121]

Text entry Text entry speed [153]

Accuracy [153]

Pres. of motor act. & dist. Gesture based int. Task comp. time & accuracy [148]

Object negotiation Texting Game score [162]

Continued on next page
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Table 2.10 – Continued from previous page

Task Context Task Domain Evaluation Metric SD ID

Sightedness (sight./blind.) Target searching Task completion time [166]

Presence of dual

task while walking

Texting Spatio-temporal parameters [152]

Ankle and knee kinematics [152]

Gait parameters [40, 164]

[51, 66, 162]

[120, 149]

Talking on phone
Velocity [149]

Lateral dev. & linear dist. [149]

Texting, visual task Resp. rate, field of reg. loss [154]

Dyn. walk. stab., resp. time [154]

Texting,

talking on phone

Time & fixations [147]

Gait parameters [147, 158]

Texting & reading Walking speed [165]

Dealing with notif. Time [135]

Other Gait parameters [163]

Presence of dual

task while crossing

street

Texting Time, head turning freq. [53]

Talking on phone Attention parameters [142]

Texting, talking on

phone, listening to

music

Looks away [141]

Time to spare, looks left-

right

[141]

Presence of stress task Target selection Task comp. time & accuracy [52]

Visual search
Time to memorise item [52]

Time to find item [52]

Text entry Texting speed, error rate [52]

Task type (working memory

tasks, vigilance task)
Cognitive tasks

Task comp. time,

walking speed, error steps
[89]

† [151] found significant differences in terms of error rate for all gestures. They also found significant difference

in terms of task completion times for tapping and dragging gestures but not for spreading, pinching or rotating

gestures. [115] found significant differences in terms of task completion time and error rate for tapping and wrist

flicking gestures but not for swiping gesture.

According to Gustafson et al. [166], task completion time increased when partici-

pants were blindfolded. Unfortunately, there is not a consensus among scientists on

the effect of encumbrance on user performance. Finally, it is now well established
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Table 2.11: The effect of social context (SD: Significant difference, ID: Insignificant

difference)

Social Context Task Domain Evaluation Metric SD ID

Persons present Text entry Number of attention switches [57]

Talking on the phone Time to cross [55]

Smartwatch usage Interaction type & length [67]

Web search Duration of continuous attention to the phone [8]

Culture Playing a game Gesture mode [143]

from a variety of studies that interacting with a small device or wearable device has

a main effect on gait and attention metrics. Overall, these studies highlight that such

dual tasks reduce walking speed [55, 66, 147, 149, 163–165] and cause divided atten-

tion [149] or inattentional blindness [55]. As a result, they introduce pedestrian safety

problems [53, 141, 142, 149].

2.4.2.4 Social Context

Table 2.11 presents the effect of social factors on the performance metrics. Similar

to temporal context, there are relatively few studies in the literature which investigate

the effect of social context on attentional metrics and interaction techniques. Overall,

there seems to be some evidence to indicate that presence of others has a main effect

on how people interact with smartwatches. On the other hand, one study by Harper

et al. [57] indicated that other people do not affect the number of attention switches;

while Oulasvirta et al. [8] showed that users attended to the environment significantly

more when the environment was crowded. Culture was only used to compare gesture

mode preferences of users from UK and India; according to Williamson et al. [143],

it does not have a main effect on user interaction.

2.4.2.5 Technical Context

In previous studies which included factors related to technical context, either the ef-

fect of using various device types or use of a wearable device has been compared on
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Table 2.12: The effect of technical context (SD: Significant difference, ID: Insignifi-

cant difference)

Technical Context Task Domain Evaluation Metric SD ID

Wearable, smartphone Cognitive task Workload & gait parameters [179]

Head-mounted display,

e-book reader, UMPC

Reading Task comp. time & workload [74]

Error rate [74]

Trackball, mouse, touchpad Drag and drop Task comp. time & error rate [130]

Different smartphone types Target selection Battery temperature [49]

Text entry Manual Multitasking Index [168]

Task comp. time & workload [76]

Accuracy [76]

Wearable device Information

retrieval

Task completion time [182]

Ability to answer questions [182]

Target selection Task time, err. rate, workload [101]

Navigation Task comp. time & subj. eval. [32]

Walk. speed & navigation param. [32]

Personal navigation device,

wearable device, smartphone

Navigation Task comp. time & workload [35]

Navigation errors [35]

Tablet, smartphone Web searching Workload [94, 95]

Number of hits per query [94, 95]

user performance. Table 2.12 presents the effect of technical context on evaluation

metrics. The majority of the studies indicate that user performance is influenced by

device; however, several lines of evidence suggest that device has no significant effect

on some of the user performance metrics. Using a wearable device improves user per-

formance in terms of task completion time for information retrieval [182] and target

selection [101] tasks; but does not have a main effect for navigation task [32,35]. On

the other hand, it increases target selection errors [101] and navigation errors [35].

Pielot et al. [32] reported that, using a wearable device for navigation purpose de-

creased traveled distance, walking speed and distraction compared to using only a

map.

Finally, Table 2.13 represents the interactions between contextual factors. As can be
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Table 2.13: Interactions between contextual factors (SD: Significant difference, ID:

Insignificant difference)

Interaction Task Domain
Time / Speed Error / Accuracy Workload

SD ID SD ID SD ID

Mob. x Light Reading
[75, 119]

[79, 80]

[75, 119]

[79, 80]

[75, 79]

[80]

Mob. x Light Word search [75, 119] [75, 119] [75]

Mob. x Device Target selection [101] [101] [101]

Mob. x Encumb. Tapping [115] [115]

Mob. x Encumb. Target selection [113] [113]

Mob. x Task Cognitive tasks [89] [89]

Mob. x Task Reading [121]

Env. x Task Text entry [66] [66]

seen in the table, there are both significant and insignificant interactions on perfor-

mance metrics depending on the task domain.

2.4.2.6 Qualitative Results

One third of the studies conducted subjective evaluations to investigate participants’

preference on their proposed interaction mechanism over existing methods. Lucero

and Vetek [135], Williamson et al. [143] and McMillan et al. [67] focused on the so-

cial acceptibility of gesture based interactions. According to Lucero and Vetek [135]

participants had problems with gesture and speech based interactions while using

smartglasses in public. Similarly, Williamson et al. [143] reported that some partic-

ipants felt uncomfortable due to social reactions while they were playing a game on

their mobile phone with gestures. McMillan et al. [67] gave examples about how

smartwatch notifications affect social context when users are in conversations with

others. Sarsenbayeva et al. [52] stated that presence of a stress task psychologically

and physically affected participants’ perceived task performance. Oulasvirta et al. [8]

observed participants’ strategies to reduce fragmented attentional resources. Ranas-

inghe et al. [210] questioned users’ trust on GPS based navigation apps while they are

having GPS problems. Participants indicated a distrust for such cases and provided
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strategies to overcome the problem. Ioannidou et al. [208] reported that, although a

considerable number of participants had at least one fall from stairs, majority of them

continue to use their phone while walking down or up stairs. Most of the participants

commented that light conditions affected mobility. Applying a questionnaire, Piazza

et al. [211] investigated the intentions of participants to cross a street while using a

mobile phone. Hiniker et al. [60] observed and interviewed adult caregivers. They

investigated the apps caregivers used while they were parenting and strategies to re-

duce phone absorption. Although some caregivers thought that it is acceptable to use

a mobile phone while parenting if the children are safe; others thought that mobile

phone use should be minimised. However, most caregivers agreed that using a mo-

bile phone makes it more difficult to pay attention to the children. Tigwell et al. [9]

interviewed mobile content designers and reported that majority of them did not con-

sider situational visual impairments in their designs due to several reasons including

limited resources, restricted design scope or unawareness on situational impairments.

Finally, Mäntyjärvi and Seppänen [199] stated that, adaptive behaviour is acceptable

for participants; however, participants highlighted the importance of accuracy and

control over adaptations.

A few studies aimed to investigate the effect of context on attentional and gait walking

behaviour by using observational data. Hyman et al. [55] placed a unicycling clown

on a pedestrian walking path to illustrate inattentional blindness and observed that

cell phone users were less likely to see the clown. Similarly, Chen and Pai [58]

evaluated situational blindness, situational deafness and situational awareness with

a clown walking at the opposite direction with the pedestrians and playing national

anthem. They concluded that pedestrians who were using their smartphones for the

tasks such as playing a game or listening to music failed to see the clown or hear

the anthem more than non-smartphone users. Harper et al. [57] observed that, small

device users who were standing or sitting had less attention switches than walking

small device users. Alsaleh et al. [56] suggested that pedestrians who were distracted

with smartphones had slower walking speed than non-distracted pedestrians. Finally,

Horberry et al. [59] observed pedestrians crossing streets and revealed that pedestrian

smartphone users had higher risk of colliding with another pedestrian or vehicle, and

crossing at the wrong time or place than non-smartphone users.
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2.4.3 Summary and Discussion

Mobility has been a popular contextual factor in the literature and there are two re-

search trends on mobility. One group of researchers consider interacting with a small

screen device or a wearable device as the main task and walking as a secondary

task that may affect user performance. These researchers have asked participants to

complete goal-oriented tasks under various mobility conditions. The others consider

walking as the main task and interacting with a small screen device or a wearable

device as a dual task that may affect gait or distract users. These researchers asked

participants to walk on a treadmill or cross a street in virtual environment while ei-

ther completing action-oriented tasks or without using a device. Previous research

findings on the effect of walking on user performance have been inconsistent and

contradictory. On the other hand, there is a consensus among scientists that inter-

acting with a small screen device or a wearable device affects how we walk or pay

attention to our surroundings.

Most of the previous research on the effect of contextual factors on SIIDs have fo-

cused on mobility conditions, while a relatively small body of literature has covered

other contextual factors. This may be explained by the fact that, different mobility

conditions can be easily simulated by ensuring identical experimental settings across

all sessions. On the other hand, other contextual factors such as lighting level, tem-

perature, ambient noise or people around interaction are hard to control and they can

easily differ between sessions. However, a more comprehensive study would include

all the contextual factors that may cause SIIDs.

There are several in-situ studies that have been conducted in users’ own environ-

ment. However, such studies remain narrow in focus dealing only with interaction

techniques. Unfortunately, our systematic review did not reveal any studies that have

collected context and performance data in the wild and had drawn some implications

on the interaction between context and user performance.

The researchers have faced several problems with automatic data collection mecha-

nisms. Yatani and Truong [127] argued that, additional sensors such as accelerom-

eters to observe physical workload might cause disruption during the experiments.
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Agostini et al. [152] suggested that, recording eye movements might give insights

about when participants looked at screen or path in walking experiments. Kjeldskov

and Stage [68] highlighted the difficulty of screen capturing while participants are

walking. Finally, Reyal et al. [144] stated that, collecting data from participants’

devices outside of experiment scope might cause privacy concerns.

2.5 Discussion

Our systematic review shows that there are significant research on investigating the

contextual factors for SIIDs and also investigating the effect of contextual factors on

users’ performance. In our systematic review, we investigated 14978 publications and

we identified as 187 relevant. Our review also revealed that SIIDs are first started to

be discussed in the literature around 2000 and after almost 20 years there are still sig-

nificant number of publications around this phenomenon. In fact, our review shows

that the devices and interaction styles studied changes over time but we still do not

have a good understanding of SIID itself and contextual factors (see Figure 2.3). Our

review has also shown that early studies tend to focus on walking and the effect of

light conditions, but the recent studies do focus on larger contextual factors as dis-

cussed in our paper. In fact, in Figure 2.1 and Figure 2.2, we show two different

tag clouds for papers published in 2000s and 2010s which clearly show the trends

in the papers we reviewed. Our review also shows that most of the user studies are

conducted with students at universities and staff, and also they are mainly done in

controlled, mainly indoor, lab environments. It is quite understandable that finding

participants for studies is not easy therefore it is quite normal that participants are

chosen from close proximity. However, more studies can be conducted with users

from different backgrounds. Furthermore, our review also shows that more studies

can be conducted in the wild to better reflect the context and cause of SIIDs. With

the recent developments in sensors and small screen devices and their capabilities, we

expect that more studies will be conducted in the wild.

When we look at contextual factors, our review shows that mobility and location are

the key contextual factors that are studied as the physical context dimensions. How-

ever, there are less studies considering functional place and also the sensed environ-
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mental attributes such as lighting levels, vibration levels, temperature, etc. Therefore,

in the future more studies can focus on these contextual dimensions. Regarding tem-

poral context, our review also shows that studies designed in the literature tend to be

shorter studies and longitudinal studies are rare. This can easily be explained that it

is much easier to control shorter studies. However, with the new technological ad-

vances, we are hoping that more longitudinal studies can be conducted to investigate

SIIDs. Furthermore, our review also reveals that synchronisation aspect, time of the

day or year aspects are not so widely investigated. In the literature the focus so far has

been on the walking speed and multitasking. In fact, as a task context, multitasking is

widely studied. However, interruptions of users including stressor tasks, etc. are not

investigated much. Further studies can be conducted to better understand the impact

of such task-based contextual factors on SIIDs. Our review also shows that much of

the studies investigating contextual factors were conducted in very much controlled

environments with simplified tasks. Therefore, in the future more studies can be con-

ducted in the wild with more complex tasks which will of course require different

systematic methods for collecting and analysing data. Compared to physical, task

and temporal contexts, our review shows that social context is the least studied con-

text in the literature. Most of the studies focus on investigating SIIDs when people

are alone. However, further studies can be conducted to investigate the SIIDs experi-

enced when people are in different social environments. Of course such studies would

require better merging and combination of social science methods and technical user

studies.

Our systematic review reveals that many metrics are used to investigate SIIDs. These

metrics range from very-well known ones such as task completion time to very cus-

tom metrics such as metrics to assess stress-level. When we look at effect of the

context on SIIDs, we can see that in the literature we have studies confirming the

findings and studies that contradict each other. For example, the effect of walking on

user performance has been inconsistent. However, it is consistently shown in the lit-

erature that presence of dual task while walking is an important cause of SIIDs. Our

review fully shows all the effects presented in the literature which are summarised in

Tables 2.7–2.12.

In brief, our systematic review shows that SIID is an important phenomenon with
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a significant number of publications surrounding the context and the effect of con-

text. Overall, this review shows that ability-based design could be a good approach

to design applications for small screen and wearable devices that take into account

users’ context better and could cause less SIIDs. Ability-based design is described

as identifying and exploiting users’ abilities rather than their disabilities to enhance

interaction by using available resources. It recommends systems to sense context that

may affect users’ abilities [14]. Further research is needed to show what would be the

actual effect of ability-based designed applications to the users’ performance.

2.6 Conclusion

In this article, we conducted a systematic review of the literature on investigating the

effect of different contextual factors on SIIDs. For this purpose, we reviewed a wide

range of articles from online platforms, popular HCI conferences and journals.

Our first research question targeted the contextual factors that have been examined in

the literature for small screen or wearable device interaction that may cause SIIDs.

We classified the factors used in the literature under the context framework that has

five main dimensions: physical, temporal, social, task and technical context. Our

review has shown that, physical context has been widely studied to observe the effect

of mobility or location. On the other hand, further studies regarding the effect of

social or temporal factors would be worthwhile.

The other research question was related to the effect of contextual factors on small

screen or wearable device users’ performance. For this purpose, we first identified

the evaluation metrics which helped researchers compare different contextual factors.

Then, we reviewed the literature to see whether contextual factors have significantly

affected corresponding evaluation metrics. Our results have shown that, there is no

consensus among the scientist that have worked on popular contextual factors such as

mobility or encumbrance. On the other hand, there are relatively few studies consid-

ering each of the other contextual factors. Further experiments using a broader range

of contextual factors, could help us understand how we interact with small screen

or wearable devices under SIIDs. Technological advances in these devices enable
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collecting more precise and functional data with the help of available sensors.

Small screen and wearable devices have an important role in our everyday lives. As

they transform into new forms and provide new functionalities, we start to use them

for new purposes in different environments. Our study has not only shown that re-

searchers have made great progress in understanding SIIDs and the factors that may

cause them, it has also shown that we have yet a lot to learn on the effect of context

on users’ performance.
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CHAPTER 3

SENSING THE CONTEXT AND USER PERFORMANCE

Our literature review showed that most of the studies had focused on specific contex-

tual factors, such as mobility, and the experiments had been conducted in controlled

environments. This chapter investigates the effect of context on users’ typing perfor-

mance in their everyday settings. For this purpose, we conduct a remote user study

in the wild with 48 participants. We collect smartphone keyboard interactions and

context details in this user study. Using the dataset collected, we implement an error

detection mechanism.

Section 3.1 starts with a summary of literature around text entry metrics, the effect

of context on user performance in the text entry task domain, and text entry studies

conducted in the wild. Section 3.2 explains our user study’s material, decisions and

procedure. Finally, Section 3.3 presents our automatic error detection approach that

combines several approaches in the literature.

3.1 Literature Summary

The main aim of this study is to investigate the effect of context on users’ typing

performance. We start our literature review by identifying the metrics to measure

typing performance. We continue our review to identify the typing errors and typing

behaviour in daily life. Then, we review the literature surrounding how context affects

these performance metrics in the text entry task domain. The studies reviewed have

been conducted in controlled settings, and a systematic understanding of how context

affects users’ typing performance in their daily life is still lacking. Finally, we review

the studies that automatically measure typing performance in the wild.
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3.1.1 Text Entry Metrics

Several metrics are used to measure typing performance. In terms of typing speed,

words per minute (WPM) and keystrokes per second (KSPS) are the most popular

metrics. WPM considers only the length of transcribed text and how long it takes

to produce it. It considers a word every five characters entered and measures the

number of words entered in a minute [212]. KSPS is used to measure the number

of keystrokes made in a second. It is useful when taking error corrections into ac-

count [212]. Keystroke per character (KSPC) and error rate (ER) are widely used

for accuracy. KSPC is the ratio of the total entered character count to the length of

the transcribed string [213]. ER is the ratio of incorrect characters to all characters

entered [213]. Minimum string distance between intended and transcribed text can

also be used for ER [212]. Error rates can be assessed in several ways especially for

the studies conducted in the wild without a predefined task model.

3.1.1.1 Unintentional Errors

Text entry errors can be classified into unintentional and intentional typing errors. For

unintentional errors, Durham et al. [214] identified four types of word-level text errors

as follows: transposition, the wrong letter, extra letter, and missing letter. According

to Chen et al. [215], mobile device users experience character ambiguity, missing

or additional character, bounce (repeating characters), long-press, and transposition

errors. Greene et al. [216] also reported extra or missing character, incorrect shifting,

wrong character, adjacent character, transposition, and misplaced character errors. A

word in a text can contain many errors, and the number of errors even can exceed the

number of correct characters [217].

3.1.1.2 Intentional Errors

The intentional typing errors are referred to as “text-speak" [218] and consists of in-

tentional corruptions on the words [219] for several reasons such as mirroring positive

and negative emotions [220], increasing perceived playfulness [221], typing faster

to reduce latency in a synchronized way of communication [219, 222], or common
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words in communication slang [223, 224]. Using text-speak, users compress the text

by employing abbreviations, phonetic substitutions, and character strategies [222].

Table B.1 in Appendix B illustrates common text-speak techniques in daily texting

use and examples for these techniques. Since the users are intentionally typing in this

way, they should not be associated with a performance problem.

3.1.1.3 Corrected/Uncorrected Errors

Wobbrock and Myers [225] classified errors into insertions, omissions, and substitu-

tions and considered whether these errors were corrected or uncorrected. The cor-

rected errors do not appear in the transcribed text; however, they can be traced using

the input stream and can help measure the text entry performance better. There might

also be cases when a user did not make an error but somehow thought that he/she did

and deleted the corresponding text to rewrite it (corrected no-errors). Uncorrected

errors are the errors that remain in the final transcribed text. The total ER is then can

be calculated by the sum of the corrected ER and uncorrected ER [225].

3.1.2 The Effect of Context on Users’ Text Entry Performance

Table 3.1 presents a summary of the research on the effect of contextual factors on

text entry performance. Instead of a character level entry rate, Hoggan et al. [97]

used time to enter phrases. They showed that sitting in a subway train decreased

the entry time than sitting in the laboratory. Similarly, Crease et al. [76] used task

completion time and showed that walking and avoiding hazards together decreased

the task completion time.

Most of the previous research has focused on mobility conditions, while a relatively

small body of literature has covered other contextual factors. The popularity of mo-

bility conditions may be explained by the fact that different mobility conditions can

be easily simulated by ensuring identical experimental settings across all sessions.

On the other hand, other contextual factors such as lighting level, temperature, am-

bient noise, or social context are hard to control, and they can easily differ between

sessions.
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Table 3.1: Literature summary (↓: decreased, ↑: increased, ⊘: no significant effect, -:

NA)

WPM: Words per minute, KSPS: Keystrokes per second, KSPC: Keystroke per char-

acter, ER: Error rate

Ref. Context Factor WPM KSPS KSPC ER

[66] Environment (lab/indoor real-world) Being in a public place - ⊘† - ⊘
[102] Mobility (stable/mobile) Walking - ⊘ - ↑
[97] Mobility (stable/mobile) Being in a subway train - - ⊘ ⊘
[82] Mobility (stable/mobile) Walking ⊘ - - ↑
[36] Mobility (stable/mobile) Walking ⊘ - - ↑
[86] Mobility (stable/mobile) Walking ⊘ - - ↑
[61] Mobility (stable/mobile) Walking - - - ↑
[90] Mobility (stable/mobile) Walking ↓ - - ⊘
[92] Mobility (stable/mobile) Walking ↓ - - ⊘
[66] Mobility (stable/mobile) Walking - ↓† - ↑
[120] Mobility (stable/mobile) Walking ↓ - - ↑
[50] Urban noise (indoor/outdoor) Outdoor noise - ↓∗ - -

[50] Speech (meaningful/meaningless) Meaningful noise - ↓∗ - -

[226] Ambient light Dimmed light or sunglasses - ⊘∗ - ⊘
[52] Multitasking Presence of stress task - ⊘∗ - ⊘
[76] Multitasking Avoiding hazards - - - ↑
[153] Distractions Presence of distraction ↑ - ↓ ↓

The metrics used in corresponding studies were (∗) time per character entry, and (†) character per

minute which can be interpreted as KSPS.

Although mobility has been a popular contextual factor, there have been inconsistent

findings on its effect on typing speed and error rate. Several studies have shown that

environment [66], ambient light [226], and multitasking [52] did not affect typing

speed and error rate. Jain and Balakrishnan [153] demonstrated that the presence of

distraction increased typing speed. They commented that the increase in typing speed

might be related to higher attention caused by higher distraction.

Table 3.1 only encloses the most relevant studies to text entry. However, there is

considerable research on the effect of different contextual factors on the other task
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domains. Sarsenbayeva et al. [47] and Goncalves et al. [48] showed the effect of

ambient temperature on target selection time. Barnard et al. [75, 119] compared low

and high lighting levels for reading and searching tasks and indicated that there is a

main effect of lighting level on task completion time and workload but not on error

rate. Encumbrance also has a main effect on target selection accuracy and time [41,

111,113,159]. Further detailed review on the effect of context on users’ performance

can be found in our systematic review in Chapter 2.

3.1.3 Text Entry Studies in the Wild

Several methods are used to detect texting errors in the wild which include the fol-

lowing:

Using Transcribed Text

Palin et al. [7] conducted a study with considerably large number of participants.

However, instead of allowing participants to enter free text during their daily activi-

ties, they presented texts for participants to transcribe. Similarly, Reyal et al. [144]

compared two different keyboard methods in the wild. Although participants used

their own devices during their daily activities, they performed transcription tasks.

Schlögl et al. [227] and Wimmer et al. [228] used game-based approaches to measure

a large number of text entry metrics for different soft keyboards.

Using an Offline Lexicon

Evans and Wobbrock [18] aimed to measure desktop text entry performance in the

wild. They used WPM, uncorrected, and corrected error rates. To detect errors and

distinguish between corrections and edits, they used an offline lexicon (English Lex-

icon Project). If a word was in the lexicon, it was considered correct. Nicolau et

al. [17] conducted a study with blind users to observe their everyday typing behaviour

on mobile devices. They used the Hunspell lexicon for error detection.
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Using a Spell-Checker

Komninos et al. [229] observed typing error and correction behaviour in the wild.

They used a spell-checker to classify errors as slight and severe concerning the sug-

gestions for entered text. Wong et al. [230] used Aspell for spelling error detection in

chat records.

Using an Online Query Service

Evans and Wobbrock [18] used Bing API in addition to the offline lexicon. The API

returned suggestions if the word is incorrect. They considered these suggestions the

intended words. Wong et al. [230] used an online resource to expand abbreviations.

Varnhagen et al. [224] used NetLingo and UrbanDictionary as helper services.

Manual Analysis

Battestini et al. [231] conducted an in-situ study to analyze text message topics. They

analyzed whom the participants texted with, why they sent text messages and their

thoughts on text messaging. They manually categorized topics of conversation. Nico-

lau et al [17] also manually analyzed words that do not appear in the offline lexicon

to detect text entry errors.

Rodrigues et al. [6] compared transcription, composition, and passive sensing ap-

proaches in terms of the effort of the participants, the effect on the typing behavior,

and the participants’ perception of privacy by conducting a study in the wild. They

observed that the amount of effort put on the participants was the least for passive

sensing and the most for composition tasks. Moreover, they ensured a policy that no

raw data was collected during the study and provided a mechanism to pause capturing

data. These helped to create a perception of privacy and trust among the participants.

On the other hand, the composition task, in which participants were asked to com-

pose a text describing their daily activities, caused more cognitive effort and privacy

issues.

Using transcribed text in a controlled environment may increase the consistency of
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a study; however, these studies fail to cover real-world cases. On the other hand,

detecting users’ intention when there is no task model, and users enter free text in

daily settings is challenging [17]. Evans and Wobbrock [18], and Nicolau et al. [17]

used offline lexicons to detect typing errors along with other resources such as an

online search API or manual analysis. However, this method may not be practi-

cal due to many out-of-vocabulary words for morphologically rich languages, such

as Turkish [20]. Using offline lexicons fail when the text contains words changed

with text-speak for daily language. Torunoğlu and Eryiğit [20] carried out a study to

normalize Turkish text on social media. The transformations they applied on out-of-

vocabulary tokens include letter case transformation, removal of character repetitions,

transformations on emo style writing, proper noun detection, Deasciification, vowel

restoration, and accent normalization.

According to Evans and Wobbrock [18], if a participant deletes some characters and

enters text again, there are two possibilities: participant either corrects an error or

changes his/her mind to enter a new word. They used a straightforward approach. If

an online query returned suggestions for removed words and reentered words matched

with one of these suggestions, it was identified as an error correction. Otherwise, it

was considered an edit. Nicolau et al. [17] noted that blind users tend to correct er-

rors as soon as possible. As a result, they needed to check incomplete words with

final words to distinguish between errors and edits. First, they checked whether re-

moved and reentered characters were adjacent. If all characters were adjacent, it was

considered an error correction. Then, they used Hunspell to retrieve spelling sugges-

tions for the removed text. It was considered an error correction if the final text was

in the spelling suggestions. Finally, if the minimum string distance between deleted

and final word was more than half of the words’ length, they considered it an edit.

Otherwise, it was considered an error correction.

In summary, our literature review showed that the effect of the context on users’

typing performance had been investigated mainly in controlled settings. Conducting

studies in the wild is essential to collect more realistic data on the tasks users do

in their daily lives. Processing the text entries in daily lives requires a mechanism

to measure typing performance automatically. There have been several attempts to

achieve this; however, such studies remain narrow in focus dealing only with formal
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writing. Morphologically rich languages and daily texting language should also be

considered.

3.2 User Study – in the Wild

We conducted a user study in which we aimed to collect user performance data and

corresponding context factors in the wild. In general, we adopted the Experience

Sampling Method (ESM) [232] for context labels and automated collecting perfor-

mance data. This section explains the methodology of our study in full detail.

3.2.1 Data Collection Framework

We used the AWARE Framework for data collection [233]. AWARE is a framework

that provides logging mechanisms for various available sensors in Android devices. It

also enables data collection using ESM. One of the significant advantages of AWARE

is that it is an open-source framework so that anyone can extend it for specific pur-

poses. Moreover, it provides mechanisms to register and unregister to studies, pause

and resume the data collection, disable data synchronization when the battery level is

low or the smartphone is not connected to Wi-Fi, and monitor the studies.

AWARE is a general-purpose framework and did not have certain features required

within our study. Therefore, we implemented several features on the AWARE frame-

work for our study. First, we embedded the informed consent form in the app and

made it the opening page after installation (see “Online Repository” Section on page

7). The participants could participate in the study only if they read and accepted the

informed consent form. We also created a demographics form (see Section 3.2.6 for

the questions and available options). After participants registered in the study, we

asked them to complete this form once. The app retrieved sensor configurations in

JSON format from a web service and configured the study automatically. Since we

were interested in sensor data only when participants entered text, the app disabled all

sensors and stopped recording when the screen was off or locked. When the screen

was on or unlocked, it again enabled sensors. This optimization helped us reduce

bandwidth use and storage required for overall study data. We also ignored the sen-
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sor data for the sessions that participants did not enter text. If a participant entered

text longer than five characters, the app asked the participant to answer five questions

about the context. To not interrupt the participants during a task, the app showed

these questions when the participants returned to the home screen. We removed all

unnecessary permission requests by disabling irrelevant modules, such as cameras or

contacts.

During the study, the app collected data from the following sensors: accelerometer,

applications, barometer, battery, communication, gravity, gyroscope, light, linear ac-

celerometer, locations, magnetometer, proximity, rotation, screen, significant motion,

telephony, and Wi-Fi. Moreover, after each keystroke, the text before and after the

keystroke was recorded. The app did not take pictures, capture videos or audio, col-

lect passwords, or collect screen content. It also did not send messages on behalf of

the participants.

We deployed the AWARE server application on METU NCC servers. The interaction

between the app and the server was handled with the HTTPS protocol. We used this

application for monitoring and data collection purposes. Finally, we created a web

page for the study 1.

3.2.2 Methodological Decisions

In general, we followed the guidelines provided by van Berkel et al. [234] and fo-

cused on having an unobtrusive study as much as possible. We aimed to minimize

participants’ burden; therefore, we presented a set of options for each context dimen-

sion (details are given in the following section) and asked participants to select only

one option for each question. With this approach, we avoided free text entry inputs.

Each notification was triggered after a text entry event. If participants did not respond

to questionnaires, they expired in 30 seconds and were removed from the notification

panel. This notification timeout aimed to ensure that the participants answered the

questions within the context of the text entry. We put at least 15 minutes between

two questionnaires to not overload participants, and participants received these ques-

tionnaires at most eight times a day. We asked participants to keep the app installed
1 https://iam.ncc.metu.edu.tr/cabas-user-study/, last access: 21.01.2022
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for at least one week to capture context data during different daily activities. Finally,

participants were informed that they could pause data collection any time they felt

uncomfortable sharing their private data.

3.2.3 Context Labeling Questions

In our systematic review in Chapter 2, we investigated the effect of the context un-

der five dimensions: physical, temporal, social, task, and technical contexts. We

also reviewed the relevant ESM-based research and collected the contextual factors

used. Then, we combined our findings with our systematic review. In this study, we

investigated the effect of context based on the following dimensions: environment

(physical context), mobility (physical context), social, multitasking (task context),

and distraction (task context). We used the following questions to collect context

labels in participants’ perspectives:

• Which one of these best describes your current location? (environment)

• Which one of these best describes your mobility condition? (mobility)

• Which one of these best describes people around you? (social)

• Did you handle any other task along with text entry? (multitasking)

• Is there anything that interrupted/distracted your interaction with your mobile

device? (distractions)

We provided a set of options for each question and asked participants to select only

one option at a time. For instance, the options for the environment consisted of in-

doors, outdoors, stairs, in a vehicle, crosswalk, and others. These options are created

based on our findings from the systematic review in Chapter 2 and previously con-

ducted ESM-based research studies. Overall options available for these questions are

listed in Appendix C.
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(a) Sending a text mes-

sage

(b) Composing an email (c) Posting on social

media

(d) Sample ESM ques-

tion

Figure 3.1: Sample text entry activities captured and ESM question

3.2.4 Procedure

The participants were provided with a set of instructions for installing the app and

registering for the study. These instructions were published online on the user study

page 2. The participants had to confirm that they read the consent form and voluntarily

signed up for the study. Then, they were asked to fill a demographics form. After they

completed this step, the app was activated to collect data. There was no specific task

model; the participants interacted with their smartphones like they usually do. The

app captured any text entered by the participants, such as while sending a text mes-

sage (i.e., Samsung Messages, Figure 3.1a), composing an email (i.e., Gmail, Figure

3.1b), or posting comments on social media (i.e., Instagram, Figure 3.1c). During

their interactions, the app asked them to answer a set of questions regarding the cur-

rent context (Figure 3.1d). The data synchronization process was fully automated;

background services posted the data to the server after the interaction was completed.

To quit the study, participants removed the app from their smartphones. The partici-

pants were rewarded with $10/70TL worth of a gift card from Amazon or a preferred

2 https://iam.ncc.metu.edu.tr/cabas-user-study-instructions/, last access: 21.01.2022
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local shopping site if they completed the study for at least a week.

3.2.5 Administration

This study was approved by the METU Applied Ethics Research Center with 516

ODTU 2019 protocol number3. In the consent form, it was clearly stated that the

participation was voluntary. Moreover, we also stated that we would not collect the

content of the password fields and share or publish the textual content collected during

the study. We indicated that the data would be evaluated with an automated process

for academic purposes only. We ensured that the questions used during the study

would not include questions that would cause personal discomfort. We stated that any

participant could leave the study for any reason by just removing the app. Finally, we

explained how to pause and resume data collection if the participants had any privacy

concerns.

We adopted the Snowball Sampling technique and started our user experiment with

personal contacts on July 27th, 2020. Then we announced the study on social media

including Facebook, Instagram and LinkedIn, and via various email groups. The

study was designed to be conducted fully remotely. We instructed participants if

they had problems with the setup and warned them if there was a problem with the

data flow. We also notified them when one week period of the study was over. The

study was conducted and administered for 58 days and completed on September 22nd,

2020.

3.2.6 Participation and Demographics

Overall, 55 participants downloaded and installed our app on their devices. Seven

participants either had a technical problem or decided not to participate in the study;

thus, they uninstalled the app within the same day of installation. Other 48 partici-

pants kept the app installed from three days to 10 days (mean is 7.3 days and median

is 7 days). In our data analysis, we did not exclude any of these 48 participants’ data.

Figure 3.2 shows the demographics of the participants. Among 48 participants, 29
3 http://ueam.metu.edu.tr/, last access: 20.12.2021
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were male, and 19 were female. 23 participants were aged between 25-34, 19 partici-

pants were 18-24, five participants were 35-54, and one participant was over 55. The

majority of the participants (40) used their right hands as their dominant hands. 29

participants had Bachelor’s Degree, nine had a Master’s Degree, six completed high-

/secondary school, and four had a Doctorate. 43 participants have been using mobile

devices for more than four years.

Reported occupations included student (20), software engineer (7), teacher (5), bi-

ologist (2), architect (2), data analytics manager (2), pilot (1), QA (1), business an-

alyst (1), network admin (1), communications manager (1), machine engineer (1),

game designer (1), doctor (1), researcher (1), DB admin (1). The majority of the

participants (37) reported Turkish as their native language. Other native languages

were Turkmen (3), Arabic (2), Persian (1), Urdu (1), Korean (1), English (1), Hindi

(1), Dutch (1). Finally, participants sent data from different countries, including the

United States, Senegal, Mauritania, Germany, Netherlands, Belgium, Greece, Russia,

Turkmenistan, India, Pakistan, Kyrgyzstan, Kazakhstan.

All participants were smartphone users. The device sizes ranged between 5.1 and

6.67 inches (mean: 5.9, median: 6.0). None of the participants was excluded due

to the device size. The diversity of the device types was unexpectedly high. Par-

ticipants used 37 different models of eight brands and five different SDK versions.

The keyboard apps used by the participants were Samsung Keyboard (18), Gboard

– the Google Keyboard (17), and Microsoft SwiftKey Keyboard (12). Table D.1 in

Appendix D provides a summary of participants’ devices.

We asked our participants to ignore all of the context labeling questions whenever

they felt that paying attention to the questions would cause safety problems, such

as while driving. The overall compliance rate to the context labeling questions is

55.32%. Minimum and maximum compliance rates among 48 participants are 2.34%

and 100.00%, respectively, and the mean compliance rate among the participants is

58.68% (standard deviation is 27.56%, and median is 65.22%). Figure 3.3 illustrates

the histogram for participants’ context labels.
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1Figure 3.2: Demographic data
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Figure 1: Histogram for participants’ context labels
1Figure 3.3: Histogram for participants’ context labels

3.2.7 Participants’ Self Evaluation on Typing Errors

After context labelling questions, we asked participants who had deleted any text

during the current session whether they had made a typing error. Table 3.2 presents

the participants’ responses to this question. According to this table, the majority of

text removals were not caused by a typing error.

If the participants selected yes or maybe options, we asked a further question regard-

ing the cause of this typing error. Table 3.3 illustrates the participants’ responses

to this question. Surprisingly, the participants indicated that there was no particular

reason for their typing error in the majority of the cases.

3.3 User Performance Modelling: Detection and Correction

As can be seen from the previous section, instead of transcribing the given text, in

our study, participants entered text to complete their daily tasks without having a

predefined task model. This section explains the techniques employed to process user

data, and evaluate the users’ performance and in particular, the techniques used to

assess the users’ typing errors and corrections.
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Table 3.2: Participants’ responses to whether they made a typing error in the current

session

Participants’ response Count Percent (%)

No 787 76.93

Yes 158 15.44

Maybe 78 7.62

Table 3.3: Responses to typing error causes

Cause of Typing Error Count Percent (%)

No particular reason 142 60.17

Something that interrupts me 16 6.78

Other task I am busy with 15 6.36

My current mobility situation 15 6.36

People around me 11 4.66

My current location 10 4.24

Multiple of these 5 2.12

Other 18 7.63

No response 4 1.69

3.3.1 Data Model

The AWARE Framework logs the keyboard events at the character level and adopts

the transcription sequence paradigm by capturing the entire transcription after every

keyboard action [235]. A keyboard log is recorded for every keyboard interaction

that either inserts or removes a character. Figure 3.4 illustrates the table columns for

the keyboard logs and sample data for single character insertion (Figure 3.4a), single

character deletion (Figure 3.4b), multiple character insertion (auto-completion, Fig-

ure 3.4c), and substitution (auto-correction, Figure 3.4d). The columns include the

timestamp of the keyboard event, an ID for interacting users, and the package name

of the app used during the keyboard event. Moreover, the text just before the key-

board event and the text just after the keyboard event are also logged in two separate

columns. A boolean field indicates if the field that the text entered is a password field.
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Action User enters “t" character

Timestamp 1595852196097

Device ID b297f8e-2086-11ec-9621-0242a

Package name com.whatsapp

Before text Con

Current text Cont

Is deleted 0

Is password 0

(a) Insertion example (single character)

Action User removes “y" character

Timestamp 1595852197213

Device ID b297f8e-2086-11ec-9621-0242a

Package name com.whatsapp

Before text Cony

Current text Con

Is deleted 1

Is password 0

(b) Deletion example

Action User completes to “Context"

Timestamp 1595852198123

Device ID b297f8e-2086-11ec-9621-0242a

Package name com.whatsapp

Before text Con

Current text Context

Is deleted 0

Is password 0

(c) Insertion example (multiple characters)

Action Keyboard corrects to “Context"

Timestamp 15958521998712

Device ID b297f8e-2086-11ec-9621-0242a

Package name com.whatsapp

Before text Contwxt

Current text Context

Is deleted 0

Is password 0

(d) Substitution example

Figure 3.4: Sample actions and corresponding data model

The AWARE Framework masks the text entered into password fields; therefore, it

does not collect the password phrases. We used this field to ignore such phrases in

the overall process. Finally, we added a boolean field to indicate if the user is entering

or deleting text. Using this data model, it is possible to generate the input stream and

distinguish between the type of actions by comparing two consecutive transactions.

If the simultaneous actions edit discontiguous parts of the text, they are considered as
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substitution [235].

3.3.2 Trial Identification and Tokenization

Evans and Wobbrock [18] and Nicolau et al. [17] refer to the set of keyboard inter-

actions when participants complete a single task as trials, as in the laboratory experi-

ments. To analyze data systematically, we have also applied several steps to segment

overall keyboard data into trials. First, the overall text input stream was grouped

by the participants, and then the timestamp values sorted the keyboard data list of

each participant in ascending order. Then, iterating over the keyboard data lists, we

compared two consecutive keyboard data to check if a new trial had started. If the

participant switched to another app, we considered a new trial. Finally, we compared

before text and current text values of two consecutive keyboard data. For instance, if

a non-empty current text was followed by an empty before text, it indicated that the

user either submitted or cleared the text just entered, and a new trial started. Unlike

Evans and Wobbrock [18], and Nicolau et al. [17], we did not use screen events for

starting a new trial since they may indicate an interception due to context. However,

we adopted Evans and Wobbrock [18] and Nicolau et al. [17]’s approach to detect

pauses. In summary, we calculated the mean time interval between keyboard events

and added three standard deviations to obtain a threshold. Using the dataset obtained

from 48 participants, we calculated that the mean difference between two successive

non-backspaces or backspaces was 285 ms, a non-backspace following a backspace

was 742 ms, and a backspace following a non-backspace was 899 ms. After adding

three standard deviations to each mean value, we had 2,346 ms, 9,867 ms, and 23,189

ms, respectively, as the pause segmentation times. Overall, we segmented 938,431

keyboard interaction data into 42,018 trials.

3.3.2.1 Trial Validation

We excluded the trials if they only included a URL, a numeric value, a password,

or a text with less than five characters. Moreover, since our participants entered text

in any language they like, we also applied language criteria. We used Apache Tika
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tika-langdetect package4 and language-detector library5 for language detection. We

ignored the trials other than Turkish and English. The text language was used later

to determine the proper resource to check if a token was correct or a typing error.

Details are given below. Overall, we excluded 9,497 (22.6%) trials.

3.3.2.2 Tokenization and Token Selection

We tokenized the trials by using the whitespaces. We did not use punctuation charac-

ters in tokenization to detect typing errors caused by unintentional punctuation char-

acters between the tokens. However, we removed punctuation characters and emojis

at the end of the tokens. Some types of tokens serve a particular purpose in the text;

however, they are out-of-vocabulary due to their structural appearance. They are very

prevalent, especially in social media, and can be listed as follows [236]:

• URLs

• Email addresses

• Mentions (i.e., @mention)

• Hashtags (i.e., #hashtag)

• Emojis (i.e., :D)

• Vocatives (i.e., hahaha6)

In addition to these, we recognized serial numbers (one or two upper case letters fol-

lowed by a set of numeric characters), websites or domain names (i.e., metu.edu.tr),

and file names with extensions (i.e., sample.pdf). We used regular expressions to

check if a token matched with one of these cases. When our implementation found

a match, it excluded the token from the dataset, similar to Han and Baldwin [237].

We excluded 4,574 tokens and had 135,254 valid tokens overall with 38,768 distinct

tokens. Table 3.4 illustrates an overview of the dataset in terms of trials and actions

after trial and token validations.
4 https://tika.apache.org/, last access: 29.09.2021
5 https://github.com/optimaize/language-detector, last access: 29.09.2021
6 Turkish word equivalent to lol in English.
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Table 3.4: Overview of the dataset in terms of trials and actions

Size Min Max Mean Median Std. Dev Overall

Keystrokes in trials 32,301 5 325 23.56 18.00 20.40 760,980

Characters entered in trials 32,301 5 302 24.31 19.00 19.34 785,383

Participants’ daily trials 384 1 1,220 84.12 38.00 121.05 32,301

Participants’ overall trials 48 46 3,307 672.94 369.50 776.84 32,301

Insertions 48 800 68,018 14,508.79 9,305.00 16,548.20 696,422

Deletions 48 55 4,830 1,151.21 652.50 1,328.65 55,258

Substitutions 48 0 761 108.23 28.00 173.46 5,195

Auto completions 48 0 952 73.60 27.00 162.18 3,533

3.3.3 Error Detection

The previous section explained how we segmented the input stream into trials and

tokenized each trial. The next step was to process these tokens to calculate the per-

formance metrics. First, we needed to identify if a token has a typing error. Then,

we had to distinguish between typing error corrections and edits when participants

removed some characters and reentered new text. When participants realized typing

errors and corrected them, the total interaction time corresponded to the final output.

On the other hand, when the participants changed their minds and decided to write

something else, the total interaction time corresponded to the overall text that the

participants intentionally wrote. Therefore, to better measure the metrics related to

typing speed, we had to distinguish between these two cases.

Algorithm 1 represents the pseudocode to validate a token. To check if a token has a

typing error, we used several resources. First, we used Hunspell spellchecker [238] as

it has been widely used in similar studies and supports multiple languages, including

Turkish. Moreover, we checked if a token appeared in METU Turkish Corpus [239],

a collection of 2 million words of Turkish text. Finally, we used the spellchecker

implementation of the Zemberek project [240]. We only used METU Turkish Corpus

and spellchecker of Zemberek if the participant’s native language or text language

was Turkish. If a token was identified as correct in one of these tools, it was accepted

as a correct word without any typing error. In addition to these, we used several

resources for lookup purposes. These resources include location names and coun-
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Algorithm 1 Algorithm to validate a token
Require: token ̸= “”

1: procedure ISVALID (token, lang)

2: hunspellInstance← Hunspell.instance(lang)

3: if hunspellInstance.isV alid(token) then return TRUE

4: end if

5: if lang = “tr” then

6: if zemberek.isV alid(token) then return TRUE

7: else if metuCorpus.isV alid(token) then return TRUE

8: else if addressLookup.contains(token) then return TRUE

9: else if abbreviationLookup.contains(token) then return TRUE

10: else if textSpeakLookup.contains(token) then return TRUE

11: end if

12: else if lang = “en” then

13: if textSpeakLookup.contains(token) then return TRUE

14: end if

15: end if

16: if Bing.query(token, options = ”spellcheck : true”) ̸= EMPTY then return TRUE

17: else if Bing.query(token, options = ”site : tureng.com”) ̸= EMPTY then return TRUE

18: else if Bing.query(token, options = ”site : urbandictionary.com”) ̸= EMPTY then

return TRUE

19: end if

return FALSE

20: end procedure

try codes [241], Turkish abbreviations7, and a set of Turkish slang and text speak

words [236]. Finally, we used Hunspell and Zemberek suggestions for vowel restora-

tion.

Daily conversations or social media posts may also include some out-of-vocabulary

but valid words, such as brand names, social media accounts, or technical terms. Even

if a user intends to type such words, offline resources fail to identify these words as

correct. Therefore, we used Bing Spell Check and Search APIs, similar to [18]. To

reduce the number of calls to these APIs, we only sent requests for tokens that offline

tools could not recognize. Moreover, we did not send the overall text content of the

7 https://tdk.gov.tr/wp-content/uploads/2019/01/K%c4%b1saltmalar_Dizini.pdf, last access: 02.10.2021
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trial for the spell checking; we only sent a single token at a time. Finally, we used

additional query options such as filtering results for Urban Dictionary8 and Tureng

Multilingual Dictionary9 sites to retrieve specific search results. Urban Dictionary is

a crowdsourced resource and can be used to check the words in English slang and

daily language [242]. Tureng Dictionary is a Turkish and English dictionary [243],

and it makes use of resources in many different fields, such as engineering, law, and

medicine.

Table 3.5: Token validation rules

Rule Description Algorithm Examples

Case

alternatives

Tokens that become va-

lid after converting to lo-

wer, upper, and proper

noun cases

1. return isV alid(toLower(token))

or isV alid(toUpper(token))

or isV alid(toProper(token))

en.

tr.

en.

usa→ USA

ankara→ Ankara

COME→ come

Dialectical

or

accent use

Tokens that are writ-

ten in informal forms

in text speak and be-

come valid after ap-

plying dialectical and

accent transitions

1. dSet← {dialectSet}

2. tSet← {transitionSet}

3. for i = 0; i < dSet.length; i++ do

4. ... if token.contains(dSet[i]) then

5. ...... token.replace(dSet[i], tSet[i])

6. ...... if isV alid(token) then

7. ......... return true

8. return false

tr. yapcaz→ yapaca-

ğız (we will do)

tr. yapıyom→ yapı-

yorum (I am doing)

tr. yapmicam→ yapma-

yacağım (I won’t do)

en. goin→ going

Repeating

characters

Tokens that become va-

lid after removing repet-

itive characters, that are

generally used for ex-

pressing emotions

1. for i = 1; i < token.length; i++ do

2. ... if token[i] = token[i− 1] then

3. ...... n← token.remove(i)

4. ...... if isV alid(n) then return true

5. return false

tr. evettttt→ evet

(yes)

en. hiiiii→ hi

Removing

vowels

Tokens constructed by

removing vowels from

a valid token

1. suggests← suggestions(token)

2. for s in suggests do

3. ... if token = s.removeV owels()

4. ...... then return true

5. return false

tr. tmm→ tamam (OK)

tr. slm→ selam (hi)

en. msg→ message

Continued on next page

8 https://www.urbandictionary.com/, last access: 14.01.2022
9 https://tureng.com/, last access: 14.01.2022
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Table 3.5 – Continued from previous page

Rule Description Algorithm Examples

English

& French

words

English and French

words in a non-English

or non-French text

1. return isV alid(token, ”en”)

or isV alid(token, ”fr”)

en. playlist

en. data

fr. voilà

Deascii-

fication

Tokens that become va-

lid after applying deasci-

ification, to detect use of

“i", “o", “u", “c", “g",

and “s" instead of “ı",

“ö", “ü", “ç", “ğ", and

“ş" characters

1. ascii← {i, o, u, c, g, s}

2. tr ← {ı, ö, ü, ç, ğ, ş}

3. for i = 0; i < ascii.length; i++ do

4. ... d← token.replace(ascii[i], tr[i])

5. ... if isV alid(d) then return true

6. return false

tr.

tr.

Turkce→ Türkçe

isik→ ışık (light)

Proper

nouns

Proper nouns with miss-

ing a-postrophes, gener-

ally ignored in text speak

1. for i = 1; i < token.length; i++ do

2. ... n← token.put(i, ”′”)

3. ... if isV alid(n) then return true

4. return false

tr. Elginin→ Elgin’in

tr. Ankaraya→ Anka-

ra’ya

en. Elgins→ Elgin’s

Phonetic

substitu-

tion

Tokens that are intenti-

onally corrupted by re-

placing some characters

with phonetically simi-

lar forms or nonalphabe-

tic characters

1. pSet← {phoneticRuleSet}

2. tSet← {transitionSet}

3. for i = 0; i < pSet.length; i++ do

4. ... if token.contains(pSet[i]) then

5. ...... token.replace(dSet[i], tSet[i])

6. ...... if isV alid(token) then

7. .........return true

8. return false

tr. kardeshim→ karde-

şim (my sister/brother)

tr. qanqa→ kanka (dude)

tr. $eker→ Şeker (Sugar)

tr. yawrum→ yavrum

(my little one)

en. c@→ cat

Misspelled

conjuncti-

on

Tokens that ends with

a frequently misspelled

conjunction

1. for c in conjunctionSet do

2. ... if token.endsWith(c) and

isV alid(token.remove(s), ”tr”)

3. ...... then return true

4. return false

tr. tamammı→ tamam mı

(is it OK)

tr. alırmısın? → alır mı-

sın?

(would you take?)

Frequents Frequent spelling mis-

takes

1. fmSet← {frequentMistakesSet}

2. return fmSet.contains(token)

tr. yalnış→ yanlış

(wrong)

en. succesful→ successful

Neologism Non-Turkish words fol-

lowed by a Turkish suf-

fix

1. for s in suffixSet do

2. ... if token.endsWith(s) and

isV alid(token.remove(s), ”en”)

3. ...... then return true

4. return false

tr. hack-lemek (hacking)

tr. item-ler (items)

tr. edit-lemek (editing)

tr. pick-leyip (picking)
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Overall, we combined the approaches of Evans and Wobbrock [18], Nicolau et al.

[17], and Torunoğlu and Eryiğit [20]. To check if a token is valid in the correspond-

ing language, we mainly followed the approaches of Evans and Wobbrock [18] and

Nicolau et al. [17], except for the manual analysis. To identify text-speak words, we

followed Torunoğlu and Eryiğit [20]. Moreover, we converted the words to lower,

upper and proper noun cases and checked if they were valid. We applied a set of tran-

sition rules on the tokens. For instance, we removed repeating characters and checked

if the resulting word was valid. Table 3.5 presents these rules with corresponding al-

gorithms and examples. If the transformed word was valid, then it was accepted as

correct.

We considered the following cases as typing errors:

• transposition errors (i.e., cont[xe]t),

• punctuation marks separating two words without any whitespace (i.e., con-

text[.]factor),

• invalid tokens becoming valid after changing some characters with adjacent

characters on the keyboard (i.e., cont[r]xt),

• tokens with missing or extra characters with respect to Hunspell and Zemberek

suggestions (i.e., cont[]xt, conte[r]xt),

• one of the adjacent characters to spacebar separating two words (i.e., con-

text[n]factor),

• two consecutive words as a token without any whitespace between them (i.e.,

context[]factor).

To distinguish between edits and error corrections, we first checked for adjacent char-

acter errors similar to Nicolau et al. [17]. For this purpose, we modified the minimum

string distance calculation to accept two characters as equal if they are adjacent on

the keyboard. If this new distance value is zero but removed and reentered texts are
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different, it is accepted as a correction of adjacent character error. In addition to the

method of Nicolau et al. [17], we also checked for transposition, missing and extra

character, bounce (repetition), and wrong character errors. We detected the differ-

ence between removed and reentered text. If the removed text segment is the reverse

of the reentered text segment, it is considered a correction of a transposition error. If

the removed text segment and reentered text segment have only one character, it is

considered missing, extra, or wrong character error. If the removed text segment is

a repetition of a single character, it is considered a bounce error correction. We ob-

served that unintentional space characters and punctuation were commonly corrected.

Finally, we applied suggestion checks similar to Nicolau et al. [17], and Evans and

Wobbrock [18].

According to Zhang et al. [244], using auto-correction could help to prevent typos;

while, it may also result in typos. Unfortunately, Nicolau et al. [17] and Evans and

Wobbrock [18] did not consider the effect of auto-correction on typing errors. If the

user removed an auto-corrected text, we considered it as an error correction. We also

checked if the removed text is valid. If so, we considered it as an edit. Finally, we

calculated the edit distance between removed and reentered text. If the edit distance

is more than half of the lengths of both texts, we considered it an edit. Otherwise,

it was classified as an error correction. According to Arif and Stuerzlinger [245]’s

experiments, half of the users correct typing errors immediately (character-level), and

the other half correct after a few keystrokes (word-level). The majority of the users

that apply word-level correction correct after two to five characters. For this reason,

we applied this method to both in-text and end-of-text replacements.

Algorithm 2 represents the pseudocode to distinguish between error corrections and

edits. The corresponding procedure accepts non-empty removed and reentered text

and a boolean value to indicate whether an auto-correction event occurred within the

removed text’s typing process. We compared the current text with the before text

value to check this. If the minimum string distance between the current text and

the before text is more than one, it indicates either an auto-complete or an auto-

correction. If the current text starts with the before text, it is an auto-complete event

(see Figure 3.4c); otherwise, it is an auto-correction event (see Figure 3.4d).
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Algorithm 2 Algorithm to distinguish between error corrections and edits
Require: removed ̸= “”, reentered ̸= “”

1: procedure ERRORCORRECTIONOREDIT (removed, reentered, autoCorrection)

2: msdadj ←MSDadj(removed, reentered) ▷ Adjacent characters are accepted as equal in MSD

3: if msdadj = 0 then return CORRECTION ▷ Adjacent character error

4: else if startsWith(removed, “z”) and startsWithUppercase(reentered)

and startsWith(toLowerCase(reentered), toLowerCase(removeF irst(removed))) then

return CORRECTION ▷ Failing to switch to uppercase error

5: end if

6: removeddiff ← getDifferenceremoved(removed, reentered) ▷ Consider only the difference

7: reentereddiff ← getDifferencereentered(removed, reentered)

8: if removeddiff = reverse(reentereddiff ) then

return CORRECTION ▷ Transposition error

9: else if removeSpaces(removeddiff ) = removeSpaces(reentereddiff ) then

return CORRECTION ▷ Missing space error

10: else if removeRepeatedChars(removeddiff ) = removeRepeatedChars(reentereddiff ) then

return CORRECTION ▷ Bounce error

11: else if length(removeddiff ) = 0 and length(reentereddiff ) = 1 then

return CORRECTION ▷ Missing character error

12: else if length(removeddiff ) = 1 and length(reentereddiff ) = 0 then

return CORRECTION ▷ Extra character error

13: else if length(removeddiff ) = 1 and length(reentereddiff ) = 1 then

return CORRECTION ▷ Wrong character error

14: else if getHunspellSuggestions(removed).contains(reentered) then

return CORRECTION

15: else if getZemberekNormalizations(removed).contains(reentered) then

return CORRECTION

16: else if autoCorrection and startsWith(reentered, beforeCorrection(removed)) then

return CORRECTION ▷ Auto-correction error

17: else if MSD(removed, reentered) > (length(removed) + length(reentered))/4 then

return EDIT ▷ Edit by distance

18: else if !autoCorrection and isV alid(removed) then

return EDIT ▷ Edit by removing a correct word

19: end if

return CORRECTION

20: end procedure
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Out of 21,683 text changes, we classified 18,192 (83.9%) error corrections and 3,491

(16.1%) edits. Participants corrected errors 379 times on average (standard deviation:

480.62, median: 204.5) and edited 72 times (standard deviation is 82.81, median is

46).

3.3.4 Evaluation

Before using our findings to investigate the effect of context on users’ typing perfor-

mance, we had to evaluate our error detection implementation. Due to our commit-

ments in the consent form (see Section 3.2.5), we conducted a follow-up study with

the same participants in our first user study and asked them to evaluate our implemen-

tation on the data they sent during the first experiment. As we have indicated in the

consent form, we only automatically processed their data.

3.3.4.1 Procedure

In this follow-up study, we automatically prepared Excel files that included user data

and our system’s classification typing error and correction. These files are used to

collect users’ feedback such that we could compare users’ feedback with the system’s

classification. This study mainly included the following three parts:

1. Invitation: We sent invitation emails to the participants who provided their

email addresses (46 participants). We briefly explained the purpose of the study

and asked the participants to reply if they agree to participate voluntarily in the

follow-up study. We did not offer compensation for this follow-up study. For

the analysis of this evaluation, the participants were asked to permit to process

the responses manually. They were free to leave the study anytime they wanted.

Moreover, we asked them to remove any text from the file without changing the

row order if they feel uncomfortable sharing it.

2. Uncorrected Error Detection Task: For the first section, we randomly selected

ten words that our system classified as correct and ten words that our system

classified as typing errors. These were automatically chosen. Next, we listed
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the overall text participant entered with the selected words and asked partici-

pants to enter ‘F’ if they think they made a typo and ‘T’ otherwise.

3. Edits & Error Correction Detection Task: In the second section, we selected ten

cases classified as edit and ten cases classified as error correction. These were

again automatically chosen. Next, we listed the overall text participant entered

with the removed and reentered texts and asked participants to enter ‘F’ if they

think they corrected an error and ‘T’ otherwise.

3.3.4.2 Material

For both sections, we only selected Turkish and English texts. To help participants to

remember the context, we provided the overall text participant entered. Moreover, we

selected the texts with at least three words. For the words and cases to be evaluated,

we selected the words with at least three characters. The Excel files were created

automatically and sent to participants without manual revision.

We did not provide the verdict of our system in the Excel file that we sent to par-

ticipants. Moreover, the words and cases were randomly listed in the Excel file so

that participants could not predict the system verdict. In a separate file, we saved

the system verdict in the same order in the Excel file. We asked participants not to

change the order of the words and cases to match the system verdict with the partic-

ipant response. We provided the instructions with relevant examples to better guide

the participants.

3.3.4.3 Study Duration and Participation

We sent the initial invitation on April 13rd, 2021. As of April 19th, 2021, we sent

the Excel files to all participants who responded positively. The overall evaluation

process was completed on May 15th, 2021. 30 of 46 participants agreed to participate

in the follow-up study. We had to eliminate one participant since there was not enough

text in Turkish and English. One participant changed their mind and decided not to

participate due to their busy schedule. Two participants did not respond after we sent

the Excel file. Overall, we received evaluation results from 26 participants.
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Table 3.6: Evaluation results of the Follow-Up Study

Proposed Approach Nicolau et al. [17] Evans and Wobbrock [18]

Error

Detection

Error Corr.

Detection

Error

Detection

Error Corr.

Detection

Error

Detection

Error Corr.

Detection

Accuracy 0.797 0.761 0.661 0.744 0.651 0.460

Sensitivity 0.818 0.726 0.979 0.671 0.839 0.234

Specificity 0.789 0.849 0.536 0.918 0.577 0.993

Precision 0.603 0.922 0.453 0.951 0.438 0.987

F1 Score 0.694 0.782 0.620 0.760 0.576 0.525

3.3.4.4 Results

We compared participants’ responses to the system verdict and calculated the system

accuracy. We also implemented the approaches proposed by Evans and Wobbrock

[18] and Nicolau et al. [17] to compare our results with the literature. Table 3.6

presents the evaluation results. According to these results, our system has higher

accuracy than Evans and Wobbrock [18], and Nicolau et al. [17]’s approaches. They

are more sensitive since they classify the words that do not appear in offline lexicon

and online query services. On the other hand, this results in lower specificity.

We created confusion matrixes to analyze the results of the evaluation. When deciding

on the error rule set, one of our assumptions was that there must be a space character

after punctuation characters. Our system classified 26 cases as typing errors in the

evaluation data set. However, participants labelled 21 of these cases as correctly

spelt text. Moreover, we used Hunspell suggestions and Tureng query results, which

resulted in 10 and 13 incorrect classifications, respectively.

We compared removed text with the reentered text of the same length to detect edits

and error corrections similar to Evans and Wobbrock [18], and Nicolau et al. [17].

However, this resulted in higher string distances in case of unintentional or missing

characters. Moreover, we assumed that if the removed text consists of valid words, it

was an edit. Unfortunately, participants labelled 29 of such cases as error correction.

Finally, we observed that auto-completed text replacement might not indicate an error

81



Table 3.7: Evaluation results of the revised system

Error Detection Error Correction Detection

Accuracy 0.913 0.871

Sensitivity 0.923 0.881

Specificity 0.909 0.849

Precision 0.800 0.935

F1 Score 0.857 0.813

correction in all cases.

Based on these observations, we updated the above rules to increase the system’s ac-

curacy. For error detection, we accepted commonly made mistakes as correct since

the participants may have written them intentionally (i.e., tommorow-tomorrow (En-

glish) or lavobo-lavabo (Turkish)). Moreover, we assumed that punctuations should

follow the last word without a space character, and a space character must be inserted

after the punctuation. However, some participants stated that they either put no space

character after the punctuation or intentionally put a space character before the punc-

tuation. Finally, we assumed that if a participant used any Turkish characters in a

trial, any deasciified character corresponds to a typing error. However, we observed

that some participants deasciified specific Turkish characters while using the others

without deasciification. Therefore, we relaxed this assumption. To distinguish be-

tween error detection and edits, we calculated the edit distance between the removed

text and the reentered text with the same length. However, this method failed with

the missing character problems. We moved forward in the reentered text as long as

the edit distance decreased. In some cases, the participants unintentionally tapped on

adjacent characters while switching to uppercase mode. We implemented a rule for

these cases. Finally, we assumed that it was an edit if both removed and reentered text

were correct words. However, the participant responses showed that it was not a valid

assumption. After these changes, we compared the new verdicts with the participant

responses. Table 3.7 presents the evaluation results of the modified system.
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3.4 Summary

This section began by describing our in-situ user study and how we collected text

entry interactions and corresponding context factors in the wild. Then, it described the

implemented mechanism to decide a given text contains typing errors automatically.

It went on to describe the process of the follow-up study to evaluate these mechanisms

and their results. The following chapter presents the statistical procedures and the

results obtained from them to investigate the effect of context on user performance by

using the data we collected in our main user study explained in Section 3.2.
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CHAPTER 4

THE EFFECT OF THE CONTEXT ON USER PERFORMANCE

After we completed error and edit/error correction detection mechanisms and evalu-

ated them, we investigated the effect of the context on user performance in text entry

tasks. This chapter explains the procedure and results of this investigation.

4.1 Design and Procedure

In Section 3.1.1, the metrics for typing performance were identified. We used those

four metrics in our investigation as dependent variables. We calculated the total

error rate for ER metric by summing up the corrected and uncorrected error rates.

Moreover, we accepted intentional errors due to text-speak as correct and did not in-

clude them in the ER calculation. For independent variables, we used participants’

responses to context labels in five dimensions: environment, mobility, social, multi-

tasking, and distraction. Table 4.1 shows the groups for the independent variables and

corresponding context labels. We excluded the participants’ data from the dataset of

the contexts if the participant’s context labels did not include samples for two groups.

For instance, if participants did not provide samples for both indoor and outdoor

groups, we excluded their data from all statistical calculations regarding environment

context. We calculated the performance metrics for each sample and associated them

with the contextual labels users have assigned.

Our study did not provide a predefined task. The participants have interacted with

their smartphones as in their daily lives. Some participants have spent more time with

their smartphones and entered text more than the others. Figure 4.1 illustrates the

histogram for the number of trials each participant made during the study. Moreover,
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Table 4.1: Independent variables and corresponding context labels

Context Groups Options

Environment Indoor Indoors, In vehicle

Outdoor Outdoors, Crosswalk

Mobility Stable Lying down, Sitting, Standing

Mobile Walking, Running

Social Alone Alone

Not Alone With 2-4 friends/ family members/colleagues, With a friend/ fam-

ily member/colleague, With more than 4 friends/family mem-

bers/colleagues, With strangers (crowded), With strangers (not

crowded)

Multitasking Nothing Nothing

Multitasking I am carrying a box/bag/other, I am doing home-activities (clean-

ing, cooking, etc), I am having a conversation with someone

around me, I am having breakfast/lunch/dinner, I am shopping,

I am trying to avoid collision while walking, I am working, Mul-

tiple of these

Distractions Nothing Nothing

Multitasking I am in a hurry, I am interrupted by someone, I am interrupted by

something unexpected, I need to check something from time to

time, There are obstacles/people/cars on walking path, Multiple

of these

a Kruskal-Wallis H test showed that there was a statistically significant difference

between the participants’ performances, in terms of WPM (χ2(47) = 6923.066, p <

0.0001), KSPS (χ2(47) = 8563.796, p < 0.0001), KSPC (χ2(47) = 1630.444, p <

0.0001), and ER (χ2(47) = 1156.542, p < 0.0001). Comparing the samples of each

context group in such an unbalanced data could cause biases in the results. There-

fore, we calculated mean and median values of each metric for all participants under

different context groups.

Further statistical analysis showed that typing speed metrics (WPM and KSPS) were

normally distributed for most participant and context group pairs. In contrast, error

rate metrics (KSPC and ER) significantly deviated from a normal distribution for all
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Figure 4.1: Histogram for participants’ sample sizes

participant and context group pairs. The histograms for both KSPC and ER were in

the long tail form. A KSPC value of 1 means no correction and corresponds to 56.1%

of the cases in the data. Similarly, an ER value of 0 means no uncorrected typing error

and corresponds to 59.5% of the cases. WPM and KSPS, on the other hand, had no

such values that dominated the sample. Moreover, WPM and KSPS were measured

based on the text length and duration of the corresponding trial. On the contrary,

KSPC and ER were calculated based on our error detection implementation results.

The mean for these metrics would result in a poor estimate of central tendency, while

the median would yield more valid results [246]. As a result, we used the mean values

of WPM and KSPS and median values of KSPC and ER to investigate context effects

on user performance. In our statistical analysis, the value of each performance met-

ric under one context group was compared to the other group in a pairwise manner

on each context dimension. Therefore, the p-value was adjusted using the Bonfer-

roni correction method to reduce Type-I errors [247] and divided by the number of

pairwise comparisons (0.05/5 = 0.01).

Our statistical analysis first checked if the data were normally distributed for all

groups for each context factor. We conducted Kolmogorov-Smirnov and Shapiro-

Wilk tests. We used the Wilcoxon Signed-Rank Test when the test results showed

that the data significantly deviated from a normal distribution. Otherwise, we used
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Paired T-Test to compare the user performance under two context factors. All tests

were conducted in 95% confidence intervals.

4.2 Research Questions

We addressed the following research questions in our investigation:

R1 – Environment: Does being in an outdoor environment affect text entry perfor-

mance in terms of typing speed (WPM and KSPS), and error rate (KSPC and

ER) compared to being in an indoor environment?

R2 – Mobility: Does walking affect text entry performance in terms of typing speed

(WPM and KSPS), and error rate (KSPC and ER) compared to being stable?

R3 – Social context: Does the presence of other people around affect text entry per-

formance in terms of typing speed (WPM and KSPS), and error rate (KSPC

and ER) compared to being alone?

R4 – Multitasking: Does multitasking affect text entry performance in terms of typ-

ing speed (WPM and KSPS), and error rate (KSPC and ER) compared to having

no multitasking?

R5 – Distractions Does the presence of distractions affect text entry performance

in terms of typing speed (WPM and KSPS), and error rate (KSPC and ER)

compared to having no distractions?

4.3 Results

Table 4.2 and Table 4.3 presents the results of our investigation. Table 4.4 summarizes

these results for each context and performance metric.

4.3.1 R1 – Environment

Environment of the participant significantly affects user performance in terms of

KSPC (Z = 82.0, p = 0.001) and ER (Z = 42.0, p < 0.0001). Participants in outdoor
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Table 4.2: Paired T-Test results for the effect of context on users’ mean WPM and

KSPS values

Context Metric Group N Mean Median Std. dev. Results

Environment WPM Indoor 31 41.832 41.975 6.834 t(30)=0.499, p=0.622

Outdoor 31 41.307 41.155 7.467

KSPS Indoor 31 3.670 3.688 0.604 t(30)=-0.079, p=0.938

Outdoor 31 3.677 3.663 0.646

Mobility WPM Stable 15 45.466 46.047 5.501 t(14)=-0.912, p=0.377

Mobile 15 46.785 44.064 9.441

KSPS Stable 15 4.011 4.032 0.460 t(14)=-0.517, p=0.613

Mobile 15 4.069 3.894 0.763

Social WPM Alone 38 42.281 42.203 6.868 t(37)=1.001, p=0.323

Not Alone 38 41.500 41.225 6.636

KSPS Alone 38 3.711 3.731 0.606 t(37)=0.614, p=0.543

Not Alone 38 3.670 3.636 0.619

Multitasking WPM Nothing 35 41.461 42.049 7.287 t(34)=-1.377, p=0.178

Multitask 35 42.635 43.364 6.415

KSPS Nothing 35 3.644 3.697 0.609 t(34)=-2.217, p=0.033

Multitask 35 3.793 3.850 0.569

Distractions WPM Nothing 35 41.987 41.959 6.836 t(34)=-0.169, p=0.867

Multitask 35 42.145 41.941 8.290

KSPS Nothing 35 3.704 3.726 0.597 t(34)=-0.364, p=0.718

Multitask 35 3.732 3.712 0.727

N Sample size, *p < 0.01, **p < 0.0001

condition had higher KSPC (1.052 ± 0.083) than participants in indoor condition

(1.013 ± 0.028). Similarly, ER was higher for outdoor condition (1.217 ± 1.822)

than indoor condition (0.311 ± 1.028). Environment does not significantly affect

user performance in terms of WPM (t(30)=0.499, p=0.622) and KSPS (t(30)=-0.079,

p=0.938).

4.3.2 R2 – Mobility

Mobility of the participant significantly affects user performance in terms of only ER

(Z = 10.0, p = 0.003). ER was lower for stable condition (0.442± 1.256) than mobile
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Table 4.3: Wilcoxon Signed-Rank Test results for the effect of context on users’

median KSPC and ER values

Context Metric Group N Mean Median Std. dev. Results

Environment KSPC Indoor 31 1.013 1.000 0.028 Z = 82.0, p = 0.001*

Outdoor 31 1.052 1.024 0.083

ER Indoor 31 0.311 0.000 1.028 Z = 42.0, p < 0.0001**

Outdoor 31 1.217 0.000 1.822

Mobility KSPC Stable 15 1.016 1.000 0.033 Z = 30.0, p = 0.095

Mobile 15 1.040 1.031 0.045

ER Stable 15 0.442 0.000 1.256 Z = 10.0, p = 0.003*

Mobile 15 1.057 0.000 1.443

Social KSPC Alone 38 1.013 1.000 0.031 Z = 115.0, p < 0.0001**

Not Alone 38 1.028 1.008 0.038

ER Alone 38 0.303 0.000 0.932 Z = 96.0, p < 0.0001**

Not Alone 38 0.593 0.000 1.153

Multitasking KSPC Nothing 35 1.027 1.000 0.063 Z = 157.0, p = 0.009*

Multitask 35 1.042 1.014 0.059

ER Nothing 35 0.494 0.000 1.410 Z = 129.0, p = 0.002*

Multitask 35 1.223 0.000 2.160

Distractions KSPC Nothing 35 1.017 1.000 0.034 Z = 81.0, p < 0.001*

Multitask 35 1.052 1.008 0.081

ER Nothing 35 0.467 0.000 1.136 Z = 99.0, p < 0.001*

Multitask 35 1.460 0.000 2.122

N Sample size, *p < 0.01, **p < 0.0001

condition (1.057± 1.443). Mobility does not significantly affect user performance in

terms of WPM (t(14)=-0.912, p=0.377), KSPS (t(14)=-0.517, p=0.613) and KSPC (Z

= 30.0, p = 0.095).

4.3.3 R3 – Social Context

Social context significantly affects user performance in terms of KSPC (Z = 115.0, p

< 0.0001) and ER (Z = 96.0, p < 0.0001). The presence of other people resulted in

higher KSPC (1.028 ± 0.038) than participants in alone condition (1.013 ± 0.031).

Similarly, ER increased with the presence of other people (0.593 ± 1.153) compared
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Table 4.4: The effect of context on user performance (↓: decreased, ↑: increased, ⊘:

no significant effect)

Typing Speed Error Rate

Context Factor WPM KSPS KSPC ER

Environment (indoor/outdoor) Being outdoors ⊘ ⊘ ↑ ↑

Mobility (stable/mobile) Being mobile ⊘ ⊘ ⊘ ↑

Social (alone/not alone) Presence of other people ⊘ ⊘ ↑ ↑

Multitasking (with/without multitask) Presence of multitasking ⊘ ⊘ ↑ ↑

Distraction (with/without distraction) Presence of distraction ⊘ ⊘ ↑ ↑

to alone condition (0.303 ± 0.932). The presence of other people does not signifi-

cantly affect user performance in terms of WPM (t(37)=1.001, p=0.323) and KSPS

(t(37)=0.614, p=0.543).

4.3.4 R4 – Multitasking

Multitasking significantly affects user performance in terms of KSPC (Z = 157.0,

p = 0.009), and ER (Z = 129.0, p = 0.002). Multitasking resulted in higher KSPC

(1.042 ± 0.059) than no multitasking (1.027 ± 0.063). Similarly, ER was higher

for multitasking conditions (1.223 ± 2.160) than no multitasking condition (0.494 ±
1.410). Multitasking does not significantly affect user performance in terms of WPM

(t(34)=-1.377, p=0.178), and KSPS (t(34)=-2.217, p=0.033).

4.3.5 R5 – Distractions

Distractions significantly affect user performance in terms of KSPC (Z = 81.0, p <

0.0001) and ER (Z = 99.0, p < 0.0001). Presence of distraction resulted in higher

KSPC (1.052 ± 0.081) than no distraction (1.017 ± 0.034). Similarly, ER was

higher for distraction condition (1.460 ± 2.122) than no distraction condition (0.467

± 1.136). Distractions do not significantly affect user performance in terms of WPM

(t(34)=-0.169, p=0.867) and KSPS (t(34)=-0.364, p=0.718).
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4.3.6 Task Context

Participants entered text in 231 different apps during our study, and 139 apps left after

trial and token validations. The most frequently used apps include WhatsApp, Insta-

gram, Messenger, Google Chrome, Tinder, and Telegram. We retrieved the category

of each app by using the categories in Google Play Store1. Then, we grouped the apps

by their categories and selected the most frequently used app categories: communi-

cation (i.e., Whatsapp), social (i.e., Instagram), tools (i.e., Google), and productivity

(i.e., Notes). Finally, we investigated the effect of the category of the app used on user

performance. A repeated-measures ANOVA with a Greenhouse-Geisser correction

determined that mean WPM differed statistically significantly between different app

types (F(1.878, 20.663) = 3.955, p = 0.037). Participants were fastest while using a

communication app (44.857± 1.962), slowest while using a productivity app (36.083

± 2.604), had 42.037 ± 1.955 WPM in social apps, and had 43.549 ± 3.861 WPM

in tool apps. Post hoc analysis with a Bonferroni adjustment revealed that WPM was

statistically significantly increased from productivity apps to communication apps

(8.774 (95% CI, 1.034 to 16.514), p = 0.036), and from social apps to communication

apps (2.820 (95% CI, 0.201 to 5.439), p = 0.048), but not from productivity apps to

social apps (5.954 (95% CI, -2.128 to 14.036), p = 0.295) and not from tools to others.

Similarly, a repeated-measures ANOVA with a Greenhouse-Geisser correction deter-

mined that mean KSPS differed statistically significantly between app types (F(1.970,

21.672) = 4.859, p = 0.018). Participants were fastest while using a communication

app (3.964 ± 0.171), slowest while using a productivity app (3.179 ± 0.203), had

3.708 ± 0.172 KSPS in social apps, and had 3.765 ± 0.319 KSPS in tool apps. Post

hoc analysis with a Bonferroni adjustment revealed that KSPS was statistically sig-

nificantly increased from productivity apps to communication apps (0.784 (95% CI,

0.202 to 1.366), p = 0.012), and from social apps to communication apps (0.256 (95%

CI, 0.043 to 0.469), p = 0.025), but not from productivity apps to social apps (0.198

(95% CI, -0.444 to 0.840), p = 1.000) and not from tools to others. On the other hand,

the effect of using different app types on error rate was not statistically significant in

terms of KSPC (χ2(3) = 4.480, p = 0.214) and ER (χ2(3) = 2.418, p = 0.490).

1 https://play.google.com/store/apps/details?id=com.whatsapp&hl=en_US&gl=
US, last access: 21.05.2022
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4.3.7 Language Context

Before participating in our study, we asked about our participants’ native language.

The distribution of the participants’ native languages is illustrated in Figure 3.2.e in

Section 3.2.6. We also detected the language of the texts entered during the study

(see Section 3.3.2.1 for details). Using participants’ native language and the lan-

guage of text they entered, we investigated the effect of using the native or a non-

native language on the users’ performance. Pairwise comparisons adjusted with Bon-

ferroni showed statistically significant differences in terms of WPM (t(31)=8.139,

p<0.0001), KSPS (t(31)=7.641, p<0.0001), KSPC (Z = 67.0, p<0.01), and ER (Z =

19.0, p<0.0001) between native and non-native language usage. The participants were

faster while typing in their native languages (WPM: 43.005 ± 6.211, KSPS: 3.793 ±
0.551) than in a non-native language (WPM: 36.253± 7.704, KSPS: 3.241± 0.673).

Moreover, the participants were more accurate in their native language (KSPC: 1.014

± 0.029, ER: 0.277 ± 0.965) than in a non-native language (KSPC: 1.057 ± 0.071,

ER: 1.565 ± 2.574).

4.3.8 Technical Context

We further investigated the effect of technical context on the participants’ perfor-

mance in smartphone brands, screen size, and keyboards used. One-way ANOVA

tests showed that there were no statistically significant differences between the par-

ticipants who used smartphones in different brands in terms of WPM (F(7,40)= 0.740,

p = 0.639) and KSPS (F(7,40)= 0.963, p = 0.471). Similarly, Kruskal-Wallis H tests

showed that the differences between smartphone brands in terms of KSPC (χ2(7) =

10.853, p = 0.145) and ER (χ2(7) = 6.753, p = 0.455) were not statistically significant.

We divided the participants into three based on the screen sizes of their smartphones:

small, medium, and large screens. First, we calculated Q1 (5.5 inches) and Q3 (6.32

inches) based on the overall samples of screen sizes. Then, we classified the screen

sizes smaller than Q1 as small screens, those larger than Q3 as large screens, and

the others as medium screens. One-way ANOVA tests showed that there were no

statistically significant differences between the participants who used smartphones
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in different screen sizes in terms of WPM (F(2,45)= 0.055, p = 0.947) and KSPS

(F(2,45)= 0.061, p = 0.941). Similarly, Kruskal-Wallis H tests showed that the dif-

ferences between screen sizes in terms of KSPC (χ2(2) = 0.759, p = 0.684) and ER

(χ2(2) = 1.595, p = 0.450) were not statistically significant.

Our participants used four different types of soft keyboards during the study: Sam-

sung, Microsoft SwiftKey, Gboard, and Fleksy keyboards (see Table D.1). We ex-

cluded the Fleksy keyboard from our statistical analysis since only one participant

used this keyboard. One-way ANOVA tests showed that there were no statistically

significant differences between different keyboard groups in terms of WPM (F(2,44)=

1.382, p = 0.262) and KSPS (F(2,44)= 1.686, p = 0.197). Similarly, Kruskal-Wallis

H tests showed that the differences between three keyboard groups in terms of KSPC

(χ2(2) = 4.558, p = 0.102) and ER (χ2(2) = 1.633, p = 0.442) were not statistically

significant.

4.3.9 Demographics

Our statistical analysis could not find a main effect of demographic groups, including

age, gender, education level, experience with a mobile device, experience with the

current mobile device, daily screen time, and occupation on typing speed and error

rate performance metrics.

4.3.10 Individual User Performances

To investigate the individual user performances, we repeated the same procedure in

Section 4.1 on the dataset of each participant by using the same performance met-

rics. Figures E.1-E.5 in Appendix E illustrates the individual performance metrics

for each participant under different contextual factors. Table 4.5 also illustrates the

percent of the participants for each metric that have a higher value for each context

factor. For example, 54.8% of participants had higher WPM in indoor conditions,

while 45.2% had higher WPM in outdoor conditions. It is possible to observe indi-

vidual differences in the effect of context. The effects of all context dimensions on

each participant are available in our online repository (see “Online Repository” Sec-
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Table 4.5: Percent of the participants that corresponding metric is higher for the con-

text factor (Participants who had the same value under both conditions are excluded)

Context Factor WPM (%) KSPS (%) KSPC (%) ER (%)

Environment Indoor 54.8 48.4 16.1 6.5

Outdoor 45.2 51.6 51.6 35.5

Mobility Stable 53.3 46.7 26.7 6.7

Mobile 46.7 53.3 46.7 33.3

Social Alone 57.9 55.3 13.2 7.9

Not Alone 42.1 44.7 42.1 23.7

Multitasking Nothing 37.1 25.7 20.0 14.3

Multitasking 62.9 74.3 40.0 28.6

Distractions Nothing 45.7 42.9 11.4 11.4

Distraction 54.3 57.1 42.9 37.1

tion on page 7)2. These results show that some participants’ typing speed or error

rate increase under certain context factors, while the same factor decreases the other

participants’ typing speed or error rate.

4.4 Conclusion

This chapter aimed to observe the effect of context on users’ text entry performance

in their daily settings and without any predefined task model. We calculated a set of

performance metrics using this mechanism and associated them with the correspond-

ing context labels. Finally, we investigated the effect of context on the participants’

performance by using these metrics. Our findings show that contextual factors mainly

affect participants’ typing performance, and their effects on each participant are dif-

ferent.

2 https://iam.ncc.metu.edu.tr/cabas-individual-context-comparisons/, last ac-
cess: 21.01.2022
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CHAPTER 5

MODELLING CONTEXT AND USER PERFORMANCE

The previous two chapters presented our user study and data collection mechanism.

This chapter aims to implement a prediction mechanism based on the sensors and user

performance. The chapter starts with a list of available sensors and widely used fea-

tures in activity recognition studies. It continues with data cleaning and preprocessing

mechanisms. Then, it investigates the sensors that can detect five context dimensions.

Finally, it explains the mechanism to predict user performance problems due to the

context.

Figure 5.1 illustrates the pipeline used for context recognition. The rest of the chapter

details all steps in this pipeline.

5.1 Sensor Selection

This section presents the smartphone sensors collected during our user study. These

sensors are available in the AWARE framework [233] and the data format presented

for each sensor is the format supported by the AWARE Framework. Data collection

process was explained in Section 3.2. The sensors are grouped by the category of data

they measure, including motion, environment, position, and other sensors.

5.1.1 Motion Sensors

Motion sensors provide data about the smartphone’s motion events caused by either

user input or the environment. The motion sensors collected in this study include

accelerometer, gravity, gyroscope, rotation, linear accelerometer, and significant mo-
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Figure 5.1: The context recognition pipeline

tion.

Listing 5.1 illustrates a sample motion sensor data. double_values_0, double

_values_1, and double_values_2 correspond to the values of X, Y, and Z

axes, respectively. accuracy indicates the accuracy level of the recording whereas

3 means high level of accuracy and 0 means unreliable sensor measurements.

5.1.1.1 Accelerometer

The accelerometer sensor has been popular in the activity and context recognition

domain that measures the physical acceleration in three axes. The measurement is
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{

"_id": "1164050",

"timestamp": "1597662501397",

"device_id": "4b11b28f-59b4-...",

"double_values_0": "0.16641500592232",

"double_values_1": "8.5006656646729",

"double_values_2": "5.2661051750183",

"accuracy": "3"

}

Listing 5.1: Motion sensor data example

relative to the free fall and is affected by the force of gravity [248]. The X-axis is

horizontal, and the Y-axis is vertical relative to the phone’s screen. The orientation

changes do not swap the axis [249].

5.1.1.2 Gravity

The gravity sensor measures the gravity force applied to the smartphone correspond-

ing to the direction and magnitude of gravity [249, 250]. It can be used to decide if

the smartphone is moving [250]. The gravity force always applies to smartphones

independent of orientation and mobility [251].

5.1.1.3 Gyroscope

The gyroscope sensor measures the rotation rate caused by the user exerting angular

speed on the phone along three axis [249, 252]. These measurements can be used to

detect the position or orientation [253].

5.1.1.4 Rotation

The rotation sensor is a synthetic sensor that measures the rotation of the global co-

ordinate system to the device’s coordinate system by using the accelerometer, the
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magnetometer, and the gyroscope sensors [249, 254]. It can be used to distinguish

between walking and running [248], or monitoring orientation changes [249].

5.1.1.5 Linear Accelerometer

The linear accelerometer sensor is similar to the acceleration sensor, except that it

excludes the force of gravity [249, 254].

5.1.1.6 Significant Motion

The significant motion sensor detects significant motion events that might cause the

user’s location to change, such as walking or sitting in a moving vehicle [255, 256].

Listing 5.2 illustrates a sample significant motion data. A significant motion is cap-

tured when is_moving value is 1.

{

"_id": "2",

"timestamp": "1595848255634",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"is_moving": "1"

}

Listing 5.2: Significant Motion data example

5.1.2 Environment Sensors

Android platform provides four sensors to sense environmental attributes: ambient

temperature, humidity, light, and ambient air pressure. Although the AWARE Frame-

work supports ambient temperature, none of the devices in our user study has this

sensor. Moreover, the AWARE Framework does not provide integration with the am-

bient humidity sensor. Therefore, we only collected data for ambient air pressure

(barometer) and light sensors.
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5.1.2.1 Barometer

The barometer sensor measures ambient air pressure to predict weather changes [249]

and determine the altitude when a GPS fix cannot be retrieved [254]. It can also

be used for floor localization [257, 258]. Due to internal hardware smoothing, the

barometer does not require a high sampling rate [259]. Sample barometer data is

illustrated in Listing 5.3.

{

"_id": "24",

"timestamp": "1596455388308",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"double_values_0": "997.19091796875",

"accuracy": "3"

}

Listing 5.3: Barometer data example, double_values_0 value corresponds to the

ambient air pressure in mbar/hPa units

5.1.2.2 Light

The light sensor is used to measure the ambient light. Commonly it is used to optimize

screen brightness for environmental lighting conditions [260]. Although the light sen-

sor can be helpful when determining where the user (indoor/outdoor) or smartphone

(into a pocket or bag) is, additional information about the context is required [261].

The official light constants are as follows: [249]

• No moon: 0.001

• Full moon: 0.25

• Cloudy sky: 100.0

• Sunrise: 400.0

• Overcast: 10000.0
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• Shade: 20000.0

• Sunlight: 110000.0

• Sunlight maximum: 120000.0

Sample light data is illustrated in Listing 5.4.

{

"_id": "2",

"timestamp": "1595848162029",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"double_light_lux": "579",

"accuracy": "3"

}

Listing 5.4: Light data example, double_light_lux value corresponds to the

ambient light in lux units

5.1.3 Position Sensors

The AWARE Framework supports two position sensors: magnetometer and proximity

sensors.

5.1.3.1 Magnetometer

The magnetometer sensor measures the strength of the geomagnetic field around the

device in three axis [248, 249]. It can be helpful when determining the device orien-

tation [261]. The magnetometer data format is the same as motion sensors illustrated

in Listing 5.1.

5.1.3.2 Proximity

The proximity sensor measures the distance between the smartphone and the object

in front of it. It triggers an event when the object is closer than three cm [249, 261].
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Sample proximity data is illustrated in Listing 5.5.

{

"_id": "1",

"timestamp": "1595848160998",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"double_proximity": "5",

"accuracy": "3"

}

Listing 5.5: Proximity data example

5.1.4 Other Sensors

Besides motion, environment, and position sensors, the AWARE Framework provides

additional information that might be used to define the context. These data sources in-

clude currently used applications, battery status, incoming and outgoing calls, screen

status, network and sim information, Wi-Fi connections, and GPS coordinates.

5.1.4.1 Applications

The applications sensor keeps track of currently used applications, including those

running in the background [249]. Listing 5.6 illustrates a sample applications data.

The framework adds a new record whenever a new application starts running (either

in the foreground or background).

5.1.4.2 Battery

The battery sensor provides battery-related information such as battery level, charg-

ing, and discharging events [249]. Battery, charge and discharge data samples are

illustrated in Listing 5.5.
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{

"_id": "1",

"timestamp": "1595848606695",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"package_name": "com.android.settings",

"application_name": "Settings",

"is_system_app": "1"

}

Listing 5.6: Applications data example

{

"_id": "400",

"timestamp": "1596001149614",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"battery_status": "3",

"battery_level": "55",

"battery_scale": "100",

"battery_voltage": "3820",

"battery_temperature": "32",

"battery_adaptor": "0",

"battery_health": "2",

"battery_technology": "Li-ion"

}

Listing 5.7: Battery data example
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5.1.4.3 Calls

The communication sensor logs call events without any personal information [249].

Listing 5.8 illustrates a sample call data.

{

"_id": "2",

"timestamp": "1595863377177",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"call_type": "1",

"call_duration": "597",

"trace": "83f25dcc8d927ba24a1"

}

Listing 5.8: Call data example

5.1.4.4 Screen

The screen sensor logs the transitions between the screen on, screen off, screen

locked, and screen unlocked states [249]. Listing 5.9 illustrates a sample screen data.

{

"_id": "1177",

"timestamp": "1596009727675",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"screen_status": "1"

}

Listing 5.9: Screen data example

5.1.4.5 Telephony

The telephony sensor provides network and sim information of the smartphone, as

well as connected and neighboring cell towers [249]. Listing 5.10, Listing 5.11, and

Listing 5.12 illustrate sample telephony data.
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{

"_id": "1514",

"timestamp": "1596190348400",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"data_enabled": "2",

"imei_meid_esn": "",

"software_version": "02",

"line_number": "b3357e446cbd95e1e...",

"network_country_iso_mcc": "tr",

"network_operator_code": "28601",

"network_operator_name": "Turkcell",

"network_type": "13",

"phone_type": "1",

"sim_state": "5",

"sim_operator_code": "28601",

"sim_operator_name": "Paycell | Turkcell",

"sim_serial": "",

"subscriber_id": ""

}

Listing 5.10: Telephony data example
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{

"_id": "1341",

"timestamp": "1596224457369",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"cid": "10814012",

"lac": "50901",

"psc": "417",

"signal_strength": "99",

"bit_error_rate": "0"

}

Listing 5.11: GSM data example, cid, lac, and psc correspond to GSM tower’s

Cell ID, Location Area Code, and Primary Scrambling Code, respectively

{

"_id": "39",

"timestamp": "1596126307591",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"cid": "-1",

"lac": "-1",

"psc": "417",

"signal_strength": "-89"

}

Listing 5.12: GSM neighbour data example, cid, lac, and psc correspond to GSM

tower’s Cell ID, Location Area Code, and Primary Scrambling Code, respectively
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5.1.4.6 Wi-Fi

The Wi-Fi sensor logs the Wi-Fi scan results with detected devices [249]. The Wi-Fi

sensor has been used to detect movement along with cellular signal strength [259].

Listing 5.13 illustrates a sample Wi-Fi data.

{

"_id": "1265",

"timestamp": "1595952010544",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"bssid": "04:d3:11:32:10:ab",

"ssid": "Superbox_WiFi_1014",

"security": "[WPA2-PSK-CCMP][ESS][WPS]",

"frequency": "2417",

"rssi": "-56",

"label": ""

}

Listing 5.13: WiFi data example, bssid, ssid, and rssi correspond to detected

device’s MAC address, name, and RSSI dB, respectively

5.1.4.7 Locations

The locations sensor provides GPS data with the current coordinates of the user and

the current speed [259]. Although GPS can be helpful to detect the user’s activity, it

has high power consumption and cannot cover indoor conditions [259].

5.2 Data Cleaning

We cleaned the sensor data in several ways:

• There were duplicate samples in all sensor datasets due to synchronization

problems. The mobile app might have sent the data more than once, or the
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{

"_id": "27",

"timestamp": "1595965218267",

"device_id": "d6dfe3c6-bf0f-4375-b10b-bbe7a06045e3",

"double_latitude": "38.2304098",

"double_longitude": "26.33042396",

"double_bearing": "149.10000610352",

"double_speed": "0.18000000715256",

"double_altitude": "144.74523925781",

"provider": "gps",

"accuracy": "17.152"

}

Listing 5.14: Locations data example

problem might have been related to the server. We grouped each sensor dataset

by the corresponding participant and sorted it by timestamp in ascending order.

We checked the timestamp values of consecutive rows and ignored the second

one if their timestamp values were equal.

• Some participants’ devices only had a few sensors; therefore, we excluded these

participants from the dataset. Samsung SM-G610F (Galaxy J7 Prime, three par-

ticipants) and Samsung SM-J710FQ (Galaxy J7, one participant) had only the

accelerometer and proximity sensors among motion, position, and environment

sensors. Similarly, Samsung SM-A710F (Galaxy A7, one participant) only had

the accelerometer, light, magnetometer, and proximity sensors. Finally, Xi-

aomi Redmi 6 only had the accelerometer, gravity, light, magnetometer, and

proximity sensors. Overall, we excluded six participants.

• Our data collection mechanism had two conditions to collect sensor data. First,

it was designed to collect data only when the screen is on. Moreover, it syn-

chronized the data only if participants entered text longer than five characters

within the current session. However, if the data included rows when the screen

was off or without text within the session, then we removed such samples from

the dataset.
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5.3 Data Segmentation

The data collected during our user study includes raw sensor recording in one or

more axes based on the sensor type. Modeling on such kinds of raw sensors has

challenges; therefore, the sensor data should be divided into portions of the same

length for feature extraction. This process is called data segmentation, or windowing

[262].

Data segmentation has been widely used in activity recognition studies, and different

window sizes have been used in the literature. According to Ferrari et al. [263], a win-

dow consisting of two to five seconds of sensor data would be enough to recognize

simple activities, such as sitting. The complex activities, on the other hand, required

more oversized windows. Gao et al. [264] commented that even if longer windows

produced more successful results than smaller windows, it depended on the classifi-

cation methods. We used 2, 5, 10, and 20 seconds in our study as window sizes and

compared their results.

Another issue to consider while segmenting the data is the overlap between win-

dows. There are different approaches, including no overlap [265], 50% overlap [266],

and overlap of one second [267]. Figo et al. [268] do not recommend using non-

overlapping windows since it reduces the smoothness of the data.

5.4 Feature Extraction

Section 5.1 presented the set of sensors, and data for each sensor was collected in

raw format. This raw data extracts critical features for exploring useful context in-

formation by being converted or transformed. This process is referred to as feature

extraction [269]. Feature extraction helps to achieve more accurate classification re-

sults rather than using raw data [248, 270], and eliminates redundant features [248].

Moreover, feature extraction minimizes the noise in raw sensor data [248]. In this

thesis work, we reviewed the literature to find commonly used features in the activity

recognition domain. Table 5.1 presents these features with their short descriptions

and formulas. We used tsfresh Python package [271] (version 0.19.0) to calculate
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these features.

5.5 Data Splitting

In order to cross-validate the models, we used the K-fold approach to split data

into training and test sets. However, we wanted to keep the same distribution of

labels among training and test sets. Therefore, in our experiments, we used the

StratifiedKFold object in scikit-learn Python package [273] (version 1.1.1).

This object extends KFold by preserving the distribution of the samples in each

class [273]. We used five splits; therefore, 20% of the data was used as the test set in

each fold.

5.6 Oversampling

Our user study collected data in participants’ natural settings without a predefined

task model. As a result, the study did not control the balance in the distribution of

labels of different contextual factors. We used the synthetic minority over-sampling

technique (SMOTE) [274] for oversampling to compare classification models on bal-

anced data. We used imbalanced-learn Python package [275] (version 0.9.1) and only

oversampled the training data in each fold. We compared the classification models

with both imbalanced and oversampled data.

5.7 Dimensionality Reduction

Taking the sensors in Section 5.1 and features in Section 5.4 together, it is evident

that we have a wide feature space. However, having high dimensionality increases

the cost of modeling and classification. Moreover, it affects the training phase, which

may reduce the accuracy [276]. For dimensionality reduction, we used the principal

component analysis (PCA) [277] method.
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Table 5.1: Features commonly used in the literature

Feature Description Formula

Mean The average value of a sequence µ = 1
n

∑n
i=1 xi

Median The value that 50% of a sequence lies

above [246]

M =
(

n
2 −cf

f

)
(w) + Lm

Variance Total sum of squared deviations from the

mean of sequence divided by one minus

the sequence size [246]

σ2 = 1
n−1

∑n
i=1(xi − µ)2

Standard Deviation Square root value of the variance of a se-

quence [246]

σ =
√

1
n−1

∑n
i=1(xi − µ)2

Minimum The smallest value in a sequence min = minj=1,...n(xj)

Maximum The largest value in a sequence max = maxj=1,...n(xj)

Range Difference between max. and min. [246] range = max−min

Skewness Whether sequence is skewed to larger or

smaller values [246].

S = 1
n

∑n
i=1

[
xi−µ
σ

]3
Kurtosis Tendency of sequence to have extreme

values [246]

K = 1
n

∑n
i=1

[
xi−µ
σ

]4
Mean absolute devi-

ation

Mean of the absolute values of deviations

from mean of the sequence [246]

1
n

∑n
i=1 |xi − µ|

Root mean square Square root of normalized value of sum

of squares of values in sequence

RMS =
√

1
n

∑n
i=1 x

2
i

Total sum Sum of values in a sequence sum =
∑n

i=1 xi

Zero crossing rate Indexes where values change sign in a

seq. [248]

ZCR = 1
X−1

∑X−1
x=1

{XtXt−1 < 0}

Maximum latency Index of max. value in a sequence [272] mxmax
= {m | xm = xmax}

Minimum latency Index of min. value in a sequence [272] mxmin = {m | xm = xmin}
First quartile 25th percentile of a sequence [272] Q1 = xn+1

4

Third quartile 75th percentile of a sequence [272] Q3 = x 3(n+1)
4

Mean of signal gra-

dient

Normalized mean of 1st diff. of seq.

[272]

▽̄ = 1
n

∑n
i=1

(
|xi−xi−1|

xmax

)

Mean of signal

laplacian
Normalized mean of 2nd diff. of seq.

[272]

△̄ = 1
n

∑n
i=1

(
|xi+1−2xi+xi−1|

xmax

)

Entropy Rate of change in a sequence [272] H(x) = −∑n
i=1 p(xi)log2p(xi)

Energy Sum of squared values
∑n

i=1 |xi|2
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5.8 Parameter Search

In our pipeline, some components must be appropriately configured to produce bet-

ter classification results. One of these components is the PCA. The number of di-

mensions that PCA reduces to is configurable. Moreover, the classification model

K-Nearest Neighbors takes K-value as a parameter. The training set should be vali-

dated with different parameters and the parameters resulting in the best results should

be used for the test set. Therefore, we used GridSearchCV object in scikit learn

Python library to choose these parameters [273]. Given a classifier and a set of pre-

defined parameters, GridSearchCV evaluates the model’s performance with every

parameter condition and results in the best parameters. Similar to oversampling, this

process was only applied to the training data.

5.9 Context Classification Results

Context recognition has been a popular topic in the literature for the last two decades.

These studies generally use different sets of sensors and features and compare the

performances of several models with this data. These models can be listed as follows:

• K-Nearest Neighbors (KNN) [278]

• Decision Tree (DT) [278]

• Random Forest (RF) [265, 278–280]

• Multilayer Perceptron (MLP) [278, 280, 281]

• Support-vector Machine (SVM) [253, 282–285]

• AdaBoost [263]

This section aims to compare the performance of these models in recognizing five

context dimensions, environment, mobility, social, multitasking, and distractions, and

the sensor data collected in our user study. First, we investigated the relevant sensors

in the literature for each context dimension. Then, using the pipeline presented in
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the previous sections, we investigated which contextual factors can be detected using

smartphone sensors.

5.9.1 Environment

In our systematic review, we considered the environment as one of the physical con-

text dimensions. Researchers attempted to evaluate the effect of the environment

on users’ performance in terms of being indoor/outdoor [8, 62], ambient noise [50],

weather conditions [106], temperature [47], and vibration/noise level [123]. A con-

siderable amount of literature has been published to detect indoor/outdoor conditions

of the environment. These studies have used the following sensors:

• Accelerometer [248, 286–291]

• Wi-Fi [287, 289–294]

• Magnetometer [248, 286, 291, 292]

• Light [260, 291–293]

• Locations [289, 291, 293, 295]

• GSM [289, 292, 293]

• Barometer [290, 292, 296]

• Gyroscope [287, 288]

• Rotation [248]

• Microphone [291, 297]

• Bluetooth [287, 291]

• Ambient temperature [290, 293, 294]

Our user study did not collect microphone, Bluetooth, and temperature sensors; there-

fore, we ignored these sensors. However, as Sarsenbayeva et al. [49] suggested using

battery temperature to predict ambient temperature, we used the battery sensor as
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well. In our user study, we asked participants to label their current environment as

indoors, in a vehicle, outdoors, and crosswalk options. Then we grouped these labels

as indoor and outdoor as presented in Table 4.1.

Table 5.2 presents the classification results by using different models and window

sizes with 50% overlap for oversampled data. Figure 5.2 compares F1 scores. Ac-

cording to these results, the MLP classifier outperformed the other models and the

random baseline. Moreover, the accuracy and F1-score values are close to each other

for different window sizes.
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Figure 5.2: F1 Score comparison between different classification models and window

sizes on environment context
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Table 5.2: The results for environment context classification using different models

and 50% percent overlapping window sizes

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

2s KNN 0.78 0.66 0.71 ± 0.01 0.81 ± 0.01 0.74 ± 0.01 0.81 ± 0.01

DT 2.64 0.05 0.66 ± 0.01 0.71 ± 0.01 0.67 ± 0.01 0.79 ± 0.01

RF 13.79 0.12 0.85 ± 0.01 0.78 ± 0.02 0.80 ± 0.02 0.90 ± 0.01

MLP 19.69 0.07 0.85 ± 0.02 0.85 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Linear SVM 19.39 0.15 0.69 ± 0.00 0.79 ± 0.01 0.71 ± 0.01 0.79 ± 0.01

AdaBoost 8.82 0.08 0.67 ± 0.02 0.74 ± 0.02 0.69 ± 0.02 0.78 ± 0.01

Baseline 0.65 0.06 0.50 ± 0.01 0.51 ± 0.02 0.44 ± 0.01 0.51 ± 0.01

5s KNN 0.56 0.25 0.77 ± 0.02 0.86 ± 0.02 0.79 ± 0.02 0.84 ± 0.02

DT 1.02 0.03 0.69 ± 0.01 0.73 ± 0.01 0.70 ± 0.01 0.79 ± 0.01

RF 7.30 0.06 0.85 ± 0.02 0.80 ± 0.02 0.82 ± 0.02 0.89 ± 0.01

MLP 9.27 0.04 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.92 ± 0.01

Linear SVM 12.13 0.06 0.72 ± 0.01 0.79 ± 0.01 0.73 ± 0.01 0.80 ± 0.01

AdaBoost 5.27 0.06 0.70 ± 0.02 0.76 ± 0.02 0.72 ± 0.02 0.79 ± 0.02

Baseline 1.19 0.08 0.50 ± 0.01 0.50 ± 0.01 0.45 ± 0.01 0.50 ± 0.01

10s KNN 0.16 0.04 0.79 ± 0.01 0.87 ± 0.01 0.81 ± 0.01 0.85 ± 0.01

DT 0.31 0.01 0.73 ± 0.02 0.77 ± 0.03 0.75 ± 0.02 0.81 ± 0.01

RF 1.77 0.03 0.88 ± 0.02 0.84 ± 0.03 0.86 ± 0.03 0.91 ± 0.01

MLP 3.71 0.02 0.89 ± 0.03 0.88 ± 0.04 0.88 ± 0.03 0.92 ± 0.02

Linear SVM 4.34 0.02 0.79 ± 0.01 0.84 ± 0.01 0.81 ± 0.01 0.85 ± 0.01

AdaBoost 1.24 0.03 0.76 ± 0.03 0.81 ± 0.03 0.78 ± 0.03 0.83 ± 0.02

Baseline 0.20 0.01 0.51 ± 0.02 0.51 ± 0.02 0.47 ± 0.02 0.51 ± 0.02

20s KNN 0.10 0.02 0.82 ± 0.03 0.88 ± 0.02 0.84 ± 0.03 0.87 ± 0.03

DT 0.14 0.01 0.77 ± 0.04 0.78 ± 0.04 0.77 ± 0.04 0.83 ± 0.03

RF 0.75 0.02 0.88 ± 0.02 0.81 ± 0.03 0.83 ± 0.02 0.89 ± 0.01

MLP 1.41 0.01 0.88 ± 0.05 0.87 ± 0.04 0.87 ± 0.04 0.91 ± 0.03

Linear SVM 0.32 0.01 0.81 ± 0.02 0.83 ± 0.05 0.81 ± 0.03 0.86 ± 0.01

AdaBoost 0.62 0.02 0.80 ± 0.05 0.81 ± 0.04 0.80 ± 0.05 0.85 ± 0.04

Baseline 0.08 0.01 0.48 ± 0.03 0.47 ± 0.04 0.45 ± 0.04 0.49 ± 0.05
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5.9.2 Mobility

Mobility is another physical context dimension in our systematic review. Activity

recognition in terms of mobility has been a popular topic in the literature. Many

researchers have attempted to detect mobility condition by using accelerometer and

gyroscope sensors [253, 267, 282, 284, 285, 298–306]. The magnetometer sensor has

also been widely used [284, 298, 300, 303–305, 307]. Other motion sensors such as

gravity [307, 307], rotation [264], and linear acceleration [307] were also used to

detect mobility condition. In this thesis work, we used all motion sensors.

Our user study asked participants to label their current mobility conditions as lying

down, sitting, standing, walking, and running. Then we grouped these labels as stable

and mobile as presented in Table 4.1.

Table 5.3 presents the classification results by using different models and window

sizes with 50% overlap for oversampled data. Figure 5.3 compares F1 scores. Ac-

cording to these results, the MLP classifier outperformed the other models and the

random baseline for windows of 5, 10, and 20 seconds. The MLP and Random Forest

classifiers have relative values for windows of 2 seconds. While the accuracy and F1

score values are close to each other for windows of 5, 10, and 20 seconds, these val-

ues decrease for windows of 2 seconds. This outcome was expected as the literature

suggested more oversized windows to capture complex activities.
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Figure 5.3: F1 Score comparison between different classification models and window

sizes on mobility context
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Table 5.3: The results for mobility context classification using different models and

50% percent overlapping window sizes

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

2s KNN 1.39 0.72 0.65 ± 0.01 0.86 ± 0.01 0.70 ± 0.01 0.90 ± 0.01

DT 2.12 0.06 0.61 ± 0.01 0.73 ± 0.01 0.64 ± 0.01 0.89 ± 0.01

RF 20.72 0.11 0.79 ± 0.02 0.72 ± 0.02 0.75 ± 0.01 0.96 ± 0.00

MLP 12.25 0.07 0.76 ± 0.02 0.75 ± 0.03 0.75 ± 0.03 0.95 ± 0.00

Linear SVM 30.93 0.12 0.59 ± 0.01 0.79 ± 0.02 0.61 ± 0.01 0.84 ± 0.01

AdaBoost 12.92 0.10 0.60 ± 0.00 0.77 ± 0.02 0.63 ± 0.01 0.86 ± 0.01

Baseline 1.36 0.07 0.50 ± 0.00 0.50 ± 0.02 0.38 ± 0.01 0.50 ± 0.01

5s KNN 0.67 0.22 0.72 ± 0.02 0.90 ± 0.01 0.77 ± 0.02 0.91 ± 0.01

DT 0.87 0.04 0.70 ± 0.02 0.81 ± 0.01 0.74 ± 0.01 0.91 ± 0.01

RF 9.32 0.06 0.83 ± 0.02 0.81 ± 0.03 0.82 ± 0.01 0.95 ± 0.00

MLP 7.55 0.04 0.85 ± 0.03 0.86 ± 0.02 0.86 ± 0.02 0.96 ± 0.01

Linear SVM 12.81 0.05 0.68 ± 0.01 0.87 ± 0.02 0.72 ± 0.02 0.88 ± 0.01

AdaBoost 7.60 0.05 0.69 ± 0.01 0.83 ± 0.03 0.73 ± 0.02 0.90 ± 0.01

Baseline 0.69 0.04 0.50 ± 0.01 0.50 ± 0.04 0.39 ± 0.01 0.51 ± 0.01

10s KNN 0.20 0.05 0.76 ± 0.02 0.91 ± 0.01 0.81 ± 0.02 0.91 ± 0.01

DT 0.29 0.02 0.74 ± 0.04 0.83 ± 0.04 0.78 ± 0.04 0.91 ± 0.02

RF 1.41 0.03 0.84 ± 0.01 0.87 ± 0.05 0.85 ± 0.02 0.95 ± 0.01

MLP 2.73 0.02 0.90 ± 0.04 0.90 ± 0.02 0.90 ± 0.03 0.96 ± 0.01

Linear SVM 3.75 0.02 0.78 ± 0.03 0.88 ± 0.01 0.82 ± 0.03 0.93 ± 0.01

AdaBoost 1.96 0.03 0.77 ± 0.02 0.83 ± 0.04 0.80 ± 0.03 0.92 ± 0.01

Baseline 0.23 0.02 0.50 ± 0.01 0.51 ± 0.03 0.41 ± 0.02 0.51 ± 0.03

20s KNN 0.08 0.02 0.80 ± 0.05 0.94 ± 0.02 0.84 ± 0.05 0.92 ± 0.03

DT 0.10 0.01 0.79 ± 0.04 0.86 ± 0.06 0.82 ± 0.04 0.92 ± 0.02

RF 0.51 0.02 0.90 ± 0.04 0.83 ± 0.05 0.86 ± 0.04 0.95 ± 0.01

MLP 1.22 0.01 0.88 ± 0.03 0.91 ± 0.05 0.89 ± 0.03 0.96 ± 0.01

Linear SVM 0.18 0.01 0.80 ± 0.05 0.90 ± 0.07 0.84 ± 0.06 0.93 ± 0.02

AdaBoost 0.56 0.02 0.80 ± 0.09 0.83 ± 0.07 0.81 ± 0.07 0.92 ± 0.03

Baseline 0.13 0.01 0.50 ± 0.04 0.50 ± 0.10 0.41 ± 0.05 0.51 ± 0.05
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5.9.3 Social Context

A relatively small body of literature is concerned with detecting social context. Exler

et al. [278] used accelerometer, gyroscope, and location sensors. Miluzzo et al. Chen

et al. [308] used accelerometer, location, Bluetooth, and microphone. While [309]

used only Bluetooth, Adams et al. [310] combined Bluetooth with location data. In

this thesis work, we used the accelerometer, gyroscope, and location sensors to de-

tect the social context. We also included the light and Wi-Fi sensors based on our

experiments.

Our user study asked participants to label their current social context as alone, with

2-4 friends/family members/colleagues, with a friend/family member/colleague, with

more than 4 friends/family members/colleagues, with strangers (crowded), with stran-

gers (not crowded). Then we grouped these labels as alone and not alone as presented

in Table 4.1.

Table 5.4 presents the classification results by using different models and window

sizes with 50% overlap for oversampled data. Figure 5.4 compares F1 scores. Ac-

cording to these results, the MLP and Random Forest classifiers outperformed the

other models and the random baseline for windows of 10 and 20 seconds, while only

Random Forest has the most successful results for windows of 2 and 5 seconds. Both

accuracy and F1 score values increase as the window size gets larger.
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Figure 5.4: F1 Score comparison between different classification models and window

sizes on social context
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Table 5.4: The results for social context classification using different models and 50%

percent overlapping window sizes

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

2s KNN 0.94 0.22 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.73 ± 0.01

DT 2.22 0.06 0.67 ± 0.01 0.68 ± 0.01 0.68 ± 0.01 0.70 ± 0.01

RF 11.64 0.11 0.80 ± 0.01 0.77 ± 0.01 0.78 ± 0.01 0.82 ± 0.01

MLP 15.74 0.06 0.74 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

Linear SVM 16.73 0.13 0.61 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.65 ± 0.02

AdaBoost 3.97 0.09 0.63 ± 0.03 0.65 ± 0.03 0.63 ± 0.03 0.65 ± 0.03

Baseline 1.07 0.07 0.50 ± 0.01 0.50 ± 0.01 0.49 ± 0.01 0.50 ± 0.01

5s KNN 0.64 0.14 0.74 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.77 ± 0.04

DT 0.88 0.04 0.70 ± 0.02 0.71 ± 0.03 0.70 ± 0.03 0.73 ± 0.02

RF 4.85 0.08 0.81 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.83 ± 0.01

MLP 8.97 0.04 0.76 ± 0.06 0.77 ± 0.05 0.76 ± 0.05 0.79 ± 0.05

Linear SVM 7.13 0.05 0.65 ± 0.04 0.65 ± 0.02 0.65 ± 0.03 0.68 ± 0.04

AdaBoost 4.05 0.05 0.69 ± 0.01 0.70 ± 0.01 0.69 ± 0.01 0.71 ± 0.01

Baseline 0.72 0.05 0.49 ± 0.01 0.49 ± 0.01 0.48 ± 0.01 0.49 ± 0.01

10s KNN 0.20 0.04 0.81 ± 0.02 0.84 ± 0.02 0.82 ± 0.02 0.84 ± 0.02

DT 0.29 0.02 0.73 ± 0.04 0.75 ± 0.04 0.74 ± 0.04 0.76 ± 0.04

RF 1.64 0.03 0.84 ± 0.01 0.81 ± 0.02 0.82 ± 0.02 0.85 ± 0.01

MLP 3.28 0.02 0.83 ± 0.01 0.82 ± 0.01 0.82 ± 0.00 0.85 ± 0.01

Linear SVM 2.18 0.02 0.72 ± 0.05 0.70 ± 0.02 0.70 ± 0.03 0.74 ± 0.04

AdaBoost 1.33 0.03 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 0.78 ± 0.01

Baseline 0.24 0.02 0.51 ± 0.02 0.51 ± 0.02 0.50 ± 0.02 0.51 ± 0.03

20s KNN 0.10 0.02 0.83 ± 0.05 0.84 ± 0.06 0.83 ± 0.05 0.86 ± 0.04

DT 0.17 0.01 0.77 ± 0.06 0.78 ± 0.05 0.77 ± 0.06 0.81 ± 0.05

RF 0.56 0.02 0.87 ± 0.02 0.82 ± 0.05 0.84 ± 0.04 0.87 ± 0.02

MLP 1.52 0.01 0.85 ± 0.05 0.83 ± 0.06 0.84 ± 0.05 0.87 ± 0.04

Linear SVM 0.25 0.01 0.77 ± 0.05 0.75 ± 0.04 0.75 ± 0.03 0.79 ± 0.04

AdaBoost 0.63 0.02 0.80 ± 0.03 0.79 ± 0.01 0.79 ± 0.02 0.83 ± 0.03

Baseline 0.12 0.01 0.53 ± 0.04 0.53 ± 0.05 0.50 ± 0.05 0.53 ± 0.05
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5.9.4 Multitasking

Several studies aim to detect the parallel task while using a smartphone. These stud-

ies have used the accelerometer [283, 299, 302, 311–313], gyroscope [299, 302, 312],

locations [299, 312], Wi-Fi [299, 312], magnetometer [302], and temperature [302].

Our user study asked participants to label their current multitasking conditions as

nothing, carrying a box/bag/other, doing home-activities (cleaning, cooking, etc),

having a conversation with someone around me, having breakfast/lunch/dinner, shop-

ping, trying to avoid collision while walking, working, and multiple of these. Then

we grouped these labels as nothing and multitasking as presented in Table 4.1.

Table 5.5 presents the classification results by using different models and window

sizes with 50% overlap for oversampled data. Figure 5.5 compares F1 scores. Ac-

cording to these results, the MLP classifier outperformed the other models and the

random baseline for windows of 2, 5, and 20 seconds. The Random Forest classifier

outperformed the other models and the random baseline for windows of 10 seconds.

Both accuracy and F1 score values increase as the window size gets larger.
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Figure 5.5: F1 Score comparison between different classification models and window

sizes on multitasking context
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Table 5.5: The results for multitasking context classification using different models

and 50% percent overlapping window sizes

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

2s KNN 0.81 0.40 0.73 ± 0.01 0.75 ± 0.01 0.73 ± 0.01 0.74 ± 0.01

DT 1.75 0.05 0.64 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 0.65 ± 0.01

RF 10.65 0.11 0.78 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.78 ± 0.01

MLP 19.90 0.07 0.77 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.78 ± 0.02

Linear SVM 16.66 0.15 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.64 ± 0.01

AdaBoost 7.44 0.09 0.63 ± 0.01 0.64 ± 0.01 0.63 ± 0.01 0.64 ± 0.01

Baseline 0.92 0.08 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

5s KNN 0.61 0.25 0.75 ± 0.02 0.76 ± 0.02 0.75 ± 0.02 0.75 ± 0.02

DT 0.94 0.03 0.65 ± 0.03 0.66 ± 0.03 0.65 ± 0.03 0.66 ± 0.03

RF 4.66 0.07 0.79 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.78 ± 0.01

MLP 9.53 0.04 0.79 ± 0.02 0.79 ± 0.02 0.79 ± 0.02 0.80 ± 0.02

Linear SVM 5.77 0.06 0.62 ± 0.02 0.59 ± 0.02 0.59 ± 0.02 0.63 ± 0.02

AdaBoost 3.26 0.06 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01

Baseline 0.51 0.04 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

10s KNN 0.14 0.04 0.74 ± 0.03 0.74 ± 0.03 0.74 ± 0.03 0.74 ± 0.02

DT 0.20 0.02 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01

RF 1.28 0.03 0.81 ± 0.04 0.79 ± 0.03 0.80 ± 0.03 0.81 ± 0.03

MLP 2.91 0.02 0.80 ± 0.06 0.79 ± 0.06 0.80 ± 0.06 0.80 ± 0.06

Linear SVM 0.92 0.02 0.66 ± 0.03 0.64 ± 0.03 0.64 ± 0.03 0.66 ± 0.03

AdaBoost 0.50 0.02 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.02

Baseline 0.17 0.02 0.47 ± 0.02 0.47 ± 0.02 0.47 ± 0.02 0.47 ± 0.02

20s KNN 0.06 0.02 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03

DT 0.08 0.01 0.73 ± 0.05 0.73 ± 0.05 0.72 ± 0.05 0.73 ± 0.05

RF 0.44 0.02 0.83 ± 0.04 0.82 ± 0.04 0.82 ± 0.04 0.83 ± 0.04

MLP 1.16 0.01 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02

Linear SVM 0.15 0.01 0.70 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.70 ± 0.04

AdaBoost 0.28 0.02 0.72 ± 0.05 0.72 ± 0.05 0.72 ± 0.05 0.72 ± 0.05

Baseline 0.08 0.01 0.48 ± 0.05 0.48 ± 0.06 0.48 ± 0.05 0.48 ± 0.05
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5.9.5 Distractions

The literature on detecting distraction factors around smartphone users using sensors

is limited. We related the studies that aimed to detect stress factors with this context.

Can et al. [280] used the accelerometer and temperature sensors. Sano and Picard

[314] used the accelerometer sensor, location sensor, and calls. Finally, Tigwell et

al. [315] used the calls, locations, and microphone.

Our user study asked participants to label their current distraction conditions as noth-

ing, being in a hurry, being interrupted by someone, being interrupted by something

unexpected, needing to check something from time to time, obstacles/people/cars on

walking path, and multiple of these. Then we grouped these labels as nothing and

distraction as presented in Table 4.1.

Table 5.6 presents the classification results by using different models and window

sizes with 50% overlap for oversampled data. Figure 5.6 compares F1 scores. Ac-

cording to these results, the MLP classifier outperformed the other models and the

random baseline for windows of 5, 10, and 20 seconds. The Random Forest classifier

outperformed the other models and the random baseline for windows of 5 seconds.

Both accuracy and F1 score values increase as the window size gets larger.
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Figure 5.6: F1 Score comparison between different classification models and window

sizes on distraction context
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Table 5.6: The results for distraction context classification using different models and

50% percent overlapping window sizes

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

2s KNN 0.78 0.24 0.65 ± 0.02 0.72 ± 0.02 0.66 ± 0.02 0.73 ± 0.02

DT 2.88 0.06 0.64 ± 0.02 0.67 ± 0.02 0.65 ± 0.02 0.74 ± 0.02

RF 15.46 0.11 0.83 ± 0.02 0.73 ± 0.02 0.77 ± 0.02 0.87 ± 0.01

MLP 26.84 0.07 0.77 ± 0.02 0.77 ± 0.01 0.77 ± 0.01 0.86 ± 0.01

Linear SVM 34.52 0.19 0.59 ± 0.01 0.63 ± 0.01 0.58 ± 0.01 0.65 ± 0.01

AdaBoost 8.94 0.10 0.60 ± 0.01 0.65 ± 0.01 0.60 ± 0.02 0.67 ± 0.02

Baseline 0.76 0.07 0.50 ± 0.01 0.50 ± 0.01 0.45 ± 0.01 0.50 ± 0.01

5s KNN 0.55 0.15 0.65 ± 0.03 0.71 ± 0.04 0.65 ± 0.03 0.73 ± 0.03

DT 1.53 0.04 0.65 ± 0.01 0.69 ± 0.01 0.66 ± 0.01 0.75 ± 0.01

RF 7.37 0.07 0.85 ± 0.01 0.76 ± 0.02 0.79 ± 0.01 0.89 ± 0.00

MLP 14.66 0.04 0.80 ± 0.02 0.79 ± 0.01 0.80 ± 0.01 0.88 ± 0.01

Linear SVM 14.70 0.08 0.63 ± 0.01 0.69 ± 0.01 0.63 ± 0.01 0.70 ± 0.01

AdaBoost 6.09 0.06 0.62 ± 0.01 0.67 ± 0.01 0.62 ± 0.01 0.70 ± 0.01

Baseline 0.60 0.05 0.50 ± 0.01 0.50 ± 0.02 0.45 ± 0.01 0.51 ± 0.01

10s KNN 0.23 0.04 0.70 ± 0.03 0.79 ± 0.04 0.71 ± 0.03 0.78 ± 0.03

DT 0.42 0.02 0.63 ± 0.03 0.67 ± 0.04 0.64 ± 0.03 0.74 ± 0.03

RF 2.05 0.03 0.82 ± 0.02 0.73 ± 0.04 0.76 ± 0.04 0.88 ± 0.01

MLP 4.67 0.02 0.81 ± 0.02 0.80 ± 0.03 0.80 ± 0.02 0.88 ± 0.01

Linear SVM 3.24 0.02 0.63 ± 0.01 0.70 ± 0.02 0.63 ± 0.02 0.71 ± 0.02

AdaBoost 1.83 0.03 0.63 ± 0.03 0.67 ± 0.04 0.64 ± 0.03 0.74 ± 0.01

Baseline 0.21 0.02 0.50 ± 0.01 0.50 ± 0.02 0.45 ± 0.01 0.50 ± 0.01

20s KNN 0.07 0.02 0.75 ± 0.04 0.82 ± 0.04 0.77 ± 0.04 0.85 ± 0.03

DT 0.12 0.01 0.65 ± 0.02 0.67 ± 0.04 0.66 ± 0.03 0.79 ± 0.01

RF 0.71 0.02 0.88 ± 0.06 0.69 ± 0.06 0.74 ± 0.06 0.89 ± 0.02

MLP 1.48 0.01 0.85 ± 0.03 0.83 ± 0.04 0.83 ± 0.03 0.91 ± 0.02

Linear SVM 0.24 0.01 0.69 ± 0.04 0.74 ± 0.05 0.71 ± 0.04 0.81 ± 0.03

AdaBoost 0.67 0.02 0.71 ± 0.06 0.70 ± 0.05 0.70 ± 0.05 0.83 ± 0.02

Baseline 0.07 0.01 0.51 ± 0.04 0.53 ± 0.07 0.44 ± 0.05 0.49 ± 0.04
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5.9.6 Summary and Discussion

In this section, we compared the performances of different classification models in

recognizing five context dimensions. In general, MLP was the most successful model.

Moreover, larger window sizes resulted in better results, as Ferrari et al. [263] sug-

gested. We achieved the best classification results in the environment (0.92 accuracy

and 0.88 F1-score) and mobility (0.96 accuracy and 0.90 F1-score) contexts. These

two contexts have relatively a larger body of literature, and many different approaches

have been tried to recognize these contexts. Available motion, environment, and po-

sition sensors have been widely used in relevant studies.

On the other hand, social context, multitasking, and distraction had relatively more

minor interest in the literature. This minority might be due to the challenges of de-

tecting these contexts with available sensors. Further studies should be conducted to

investigate these contexts.

5.10 Predicting Errors

The previous section investigated the sensors that detect five context dimensions: en-

vironment, mobility, social, multitasking, and distractions. This section continues

this investigation by predicting participants’ errors using these available sensors.

In Chapter 4, we showed that context affects each individual differently. While it may

positively impact a participant’s performance, it may cause performance problems for

another participant. The interaction between a user and his/her smartphone is unique

and should be considered accordingly [316]. We focus on ability-based adaptations

in this study; therefore, we aim to identify and predict the users’ abilities. Moreover,

the number of samples for each participant has a wide range (see Figure 4.1). As a

result, we decided to apply regression models to each participant separately.

We applied the same pipeline in Figure 5.1 except that we used regressor implemen-

tation of each model instead of classifiers [273]. Moreover, we calculated the mean

squared errors instead of accuracy, precision, recall, and F1 score for the regression

tasks. We could not apply deep learning methods such as RNN-LSTM due to the in-
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Table 5.7: The regression results for error detection (mean squared error)

P Sample Size KNN RF SVR AB Baseline

P03 99 0.26± 0.06 0.28± 0.04 0.25± 0.05 0.31± 0.08 0.36± 0.02

P05 928 0.23± 0.02 0.21± 0.01 0.21± 0.01 0.25± 0.00 0.64± 0.00

P08 76 0.25± 0.08 0.29± 0.08 0.23± 0.07 0.35± 0.10 0.55± 0.03

P09 1006 0.25± 0.01 0.24± 0.01 0.32± 0.04 0.25± 0.00 0.39± 0.00

P12 82 0.26± 0.09 0.23± 0.04 0.23± 0.06 0.24± 0.05 0.29± 0.03

P14 322 0.26± 0.03 0.23± 0.02 0.39± 0.34 0.24± 0.00 0.44± 0.01

P15 3332 0.24± 0.01 0.23± 0.00 0.32± 0.06 0.25± 0.00 0.59± 0.00

P16 673 0.26± 0.02 0.25± 0.01 0.28± 0.03 0.25± 0.00 0.55± 0.00

P17 360 0.26± 0.02 0.21± 0.02 0.22± 0.02 0.24± 0.01 0.29± 0.01

P19 281 0.26± 0.02 0.23± 0.01 0.40± 0.33 0.25± 0.01 0.52± 0.00

P22 109 0.28± 0.06 0.29± 0.10 0.29± 0.07 0.29± 0.08 0.39± 0.02

P23 120 0.25± 0.05 0.24± 0.07 0.30± 0.13 0.21± 0.03 0.75± 0.00

P25 677 0.28± 0.01 0.23± 0.01 0.26± 0.04 0.26± 0.01 0.36± 0.00

P26 98 0.27± 0.02 0.25± 0.04 0.22± 0.05 0.23± 0.05 0.51± 0.01

P27 817 0.26± 0.02 0.21± 0.00 0.25± 0.02 0.25± 0.00 0.35± 0.00

P28 219 0.26± 0.02 0.19± 0.02 0.21± 0.04 0.22± 0.02 0.26± 0.01

P29 313 0.25± 0.03 0.23± 0.02 0.26± 0.02 0.24± 0.02 0.43± 0.01

P31 1198 0.26± 0.02 0.24± 0.02 0.25± 0.02 0.25± 0.01 0.54± 0.00

P32 199 0.24± 0.04 0.23± 0.02 0.23± 0.09 0.23± 0.01 0.53± 0.01

P33 110 0.20± 0.06 0.26± 0.04 0.24± 0.04 0.25± 0.03 0.39± 0.02

P35 1104 0.25± 0.01 0.23± 0.01 0.25± 0.02 0.25± 0.00 0.38± 0.00

P38 154 0.26± 0.06 0.21± 0.02 0.54± 0.42 0.23± 0.02 0.35± 0.01

P43 299 0.26± 0.03 0.19± 0.02 0.19± 0.02 0.23± 0.01 0.28± 0.01

P45 505 0.27± 0.04 0.25± 0.01 0.25± 0.03 0.25± 0.01 0.50± 0.00

P47 335 0.28± 0.01 0.24± 0.02 0.25± 0.04 0.25± 0.01 0.38± 0.01

sufficient number of samples [317]. As there are no other studies or publicly available

datasets that we could compare our results, we compared the results of our system to a

random baseline. We used DummyClassifier [273] model of scikit-learn library

for random baseline calculations.

Table 5.7 shows the mean squared error values of the different regression models for

each participants. Some participants were ignored due to insufficient data. Among 42
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participants, seven participants had a non-Turkish native language, and most of their

interactions were eliminated due to language restrictions in this study. Another ten

participants had less than 10 error cases; therefore, we also ignored them.

According to these results, Random Forest regression resulted in the most minor mean

squared errors among different models. Moreover, the Random Forest regression

model outperformed the baseline for all participants.

5.11 Summary and Conclusion

This section started with a description of a pipeline to recognize context with avail-

able sensors. The steps in the pipeline included sensor selection, data cleaning, data

segmentation to windows, feature extraction, splitting data to training and test sets,

oversampling to balance labels, dimensionality reduction, parameter search, and clas-

sification/regression applications.

We first investigated the sensors to recognize context. The literature has many studies

for mobility and environment contexts; therefore, we based our sensor selections on

existing approaches. Even though our sampling rate was less than these approaches,

classification models performed promising results for mobility and environment. On

the other hand, the research on social context, multitasking, and distractions is rela-

tively limited. Therefore, we used different combinations of sensors and compared

their results. However, the classification results for these contexts are not as good as

mobility and environment. This might be explained by the fact that environmental

and motion sensors provide sufficient information about both mobility and environ-

ment contexts. On the other hand, available sensors are limited for the other contexts.

For instance, a smartphone user might put his/her phone on a table and have lunch or

talk to someone else while also texting. Using camera recordings or audio might only

be effective in such cases. However, it would be costly and obtrusive.

We continued our investigation with error prediction. We automatically calculated

participants’ typing errors in transcription streams and associated these errors with

sensor data. Since our previous findings showed that context affects each individual

differently, and the number of samples is unbalanced, we decided to apply regres-
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sion models to individual datasets. The success of these models varies from individ-

ual to individual, as we already expected. In overall, the Random Forrest regressor

performed the best for the majority of the participants and overall dataset. It also

outperformed the random baseline.
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CHAPTER 6

ADAPTATION AND DISCUSSION

The previous chapters investigated the methods to measure users’ performance with-

out a task model, investigated the effect of context on users’ performance, and com-

pared different methods to classify context and predict users’ performance. This chap-

ter discusses different adaptation techniques to overcome SIIDs and the general find-

ings of this thesis work. Section 6.1 starts with explaining the ability-based design

and possible adaptations. Section 6.2 explores the adaptations for smartphones. Sec-

tion 6.3 continues with possible approaches that might use the findings of this thesis

work to overcome SIIDs. Finally, Section 6.4 discusses the general findings of this

thesis work.

6.1 Ability-Based Design and Examples

Chapter 4 investigated the effect of context on users’ typing performance and found

that it affects every individual differently. This diversity shows that every user needs

different strategies to overcome performance problems. One strategy that improves

the performance of some users might not be effective for others [318]. The ability-

based design considers the users’ abilities under different conditions instead of con-

sidering their disabilities [14]. The ability-based design has seven principles [14]:

1. Ability: An ability-based system must focus on the users’ abilities.

2. Accountability: In case of performance problems, an ability-based system must

change itself without expecting users to change.

3. Adaptation: An ability-based system must provide mechanisms for adaptations,
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either by automatically or users’ preference.

4. Transparency: An ability-based system should notify users about adaptations

and provide mechanisms to revert these adaptations.

5. Performance: An ability-based system should monitor and predict users’ per-

formance.

6. Context: An ability-based system should be aware of the context and its effects

on users’ performance.

7. Commodity: An ability-based system should rely on available hardware and

software resources.

One of the examples of the ability-based design is SUPPLE++ [319]. SUPPLE++

models users’ pointing performance in desktop settings and adapts itself for motor

or vision abilities. In case of poor performance, it changes the orientations and sizes

of the widgets on the graphical user interface. Adaptive Click-and-Cross [320] is an-

other example. This approach provides an alternative representation of the interaction

elements (such as small targets) when users click on or near these elements. Smart

Touch [321] aims to increase the touch accuracy of people with motor impairments

by overcoming multiple or unintentional touch problems. It predicts users’ intended

touch points with a personalized template matching algorithm. Finally, PointAs-

sist [322] aims to improve the pointing performance of older adults by configuring

cursor speed in case of a decrease in performance. If the speed and length of sub-

movement are under predefined thresholds, the precision mode was turned on, reduc-

ing the cursor speed to its half.

The possible adaptations can be summarized as follows:

• The system may change the visual elements’ colors, sizes, or orientations (e.g.,

SUPPLE++).

• The system may suggest alternative representations (e.g., Adaptive Click-and-

Cross).

• The system may predict user input and correct it in case of performance prob-

lems (e.g., Smart Touch).
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• The system may change its configurations, such as cursor speed or touch accu-

racy (e.g., PointAssist).

6.2 Adaptations for Smartphones

Using a smartphone itself can cause performance problems similar to those expe-

rienced by users with motor impairments [13]. Contextual factors such as the en-

vironment, the current position, or the accessories used can cause additional prob-

lems. Users generally adopt different strategies to overcome these problems. For

instance, smartphone users change their current locations, remove the accessories

that may introduce problems, adjust the smartphone’s brightness, use their hands for

shadow, or postpone their task for a better condition to prevent situational visual im-

pairments [323]. On the other hand, these performance problems can be addressed

by applying adaptations similar to those for users with physical impairments [324].

For example, to maintain the same performance with a stable condition while walk-

ing, target sizes might be increased [78]. Moreover, modern mobile operating sys-

tems support some adaptations. For example, when the light condition is not suitable

enough to see the contents on the screen, the operating system controls the screen’s

brightness [325]. However, Yu et al. [325] showed that this adaptation is ineffective.

The adaptation process can be automated by using different available data sources.

Goel et al. [36] showed that the accelerometer sensor can be used to overcome the

performance problems experienced while walking. According to Goel et al. [326], de-

tecting hand posture can prevent situations like carrying something with the dominant

hand or grabbing a handle in public transportation from causing performance prob-

lems. Furthermore, Sarsenbayeva et al. [49] suggested that using the smartphone’s

battery temperature can help adapt to interaction in cold environments. This study

collected text entry data in the wild and processed this data offline to measure the

users’ performance. The same approach in Chapter 5 can be applied to measure the

performance online and support the adaptation of the user interfaces to the users’

abilities and context.

Section 3.2.7 presents the participants’ self-evaluations on whether they made a typ-
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ing error or the reason for the typing error as they perceived. In the majority of the

cases, participants did not correlate their editing/correcting behavior with a typing er-

ror or associate the typing problem with a particular reason. Our error correction/edit

classification implementation, on the other hand, classified most of the cases as er-

ror corrections. This finding also supports the necessity of an automated adaptation

mechanism so that even if a user does not perceive the SIIDs, this mechanism can

prevent users from the possible negative impacts of the SIIDs.

Our results also showed individual differences between the effects of different contex-

tual factors on participants. According to our findings in Chapter 4, the same context

factor has different effects on each participant. It may reduce the typing speed or in-

crease the error rate for one participant, while it increases the typing speed or reduces

the error rate for another participant. A possible explanation for these results may be

the different strategies employed to overcome SIIDs. For instance, a user who needs

to send a text message while walking in a public area may wish to complete the typing

tasks as soon as possible, increasing the typing speed and possibly increasing the error

rate. Another user, on the other hand, may prioritize paying attention to the surround-

ings and decrease his/her typing speed. Therefore, each strategy users intentionally

or unintentionally employ under different scenarios may affect user performance dif-

ferently. For this reason, user-specific ability-based interfaces that adapt themselves

based on the users’ abilities should be considered [106]. As software libraries to

sense the context become available, mobile app developers can use them to create

adaptive interfaces [327]. For instance, a background process can send broadcasts

whenever a user is in a situation that may affect his/her performance, and the apps

receiving these broadcasts can apply different adaptations based on the requirements

of the user interface.

An index of performance can be calculated using Fitts’ law [328,329], which uses the

distance to a target and the size of the target. According to Fitts’ law, the difficulty

of a task decreases when movement distance decreases or the target size increases.

A possible implication of Fitts’ law might be that increasing the key sizes in a soft

keyboard balances the task difficulty under conditions that users may have interaction

problems due to contextual factors.
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6.3 Adaptations to Context

There are two approaches that can be used to overcome SIIDs based on our findings in

this thesis work. One possible approach is using the data from available smartphone

sensors and user keyboard interaction data. The keyboard interaction data is converted

to the user performance metrics using the methods presented in Chapter 3. In this the-

sis work, we combined three approaches in the literature to detect typing errors and

distinguish between edits and error corrections. According to the results presented

in Section 3.3.4.4, our implementation outperformed the existing approaches in the

literature. This approach can be used to measure users’ typing performance with-

out a predefined task model. Then, using regression models compared in Chapter 5,

performance is predicted based on current sensor recordings and previous user inter-

actions. If the corresponding regression model predicts a performance problem, the

smartphone notifies the actively running app of possible adaptations. This approach

is illustrated in Figure 6.1.

Keyboard 
Interactions

Smartphone 
Sensor Data

Performance 
Metrics

Regression

Adaptations

Smartphone

Performance 
Problem?

Figure 6.1: Adaptations based on sensor data and keyboard interactions
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Another possible approach is adapting based on the context types that affect users’

performance. The keyboard interaction data is converted to the user performance

metrics, similar to the other approach. Moreover, the system classifies the current

context using the available sensor data and context labels provided by the user, as

explained in Chapter 5. Then, statistical methods presented in Chapter 4 are used to

find correlations between the current context and the user performance. The results

of our statistical analysis presented in Table 4.4 in Section 4.3 showed that environ-

ment, mobility, social context, multitasking, and distraction conditions have the main

effects on users’ typing errors. Moreover, our investigations revealed individual user

typing speed differences under different contextual factors. Suppose the user’s per-

formance is negatively affected by the current context. In that case, the smartphone

again notifies the actively running app of possible adaptations.

Keyboard 
Interactions

Smartphone 
Sensor Data

Performance 
Metrics

Correlation

Smartphone

Classification

Context 
Labels

Context

Adaptations
Affected 

By Context?

Figure 6.2: The context recognition pipeline
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The computational cost of the first approach would be higher since it must monitor

performance changes all the time while detecting only context changes in the second

approach would be sufficient. However, requesting users to provide context labels

might be frustrating. Moreover, it is possible that the user may not have previously

labeled a new context. The second approach applies the adaptations whenever a user

is in a specific context if that context was correlated with performance problems.

On the other hand, the first approach applies adaptations based on situations. Both

approaches must update themselves as users’ abilities and disabilities change over

time.

6.4 General Discussion

In this study, we investigated the effect of context on smartphone users’ text entry per-

formance in real-world settings. We conducted a user study in the wild and collected

participants’ text entry data, sensor data, and context labels. We identified a set of per-

formance metrics to measure users’ typing performance systematically. We combined

several existing approaches to detect typing errors and distinguish between edits and

corrections to better measure typing speed. Finally, we investigated the effect of con-

text on user performance by combining the performance metrics and context labels in

five dimensions: environment, mobility, social, multitasking and distraction.

In reviewing the literature, the text entry studies investigating the effect of context

on users’ performance have been conducted in controlled settings. Our study, on the

other hand, was conducted in the wild. For this purpose, we extended an existing

framework and captured the participants’ keyboard interactions, a set of sensor data,

and context labels submitted by the participants. In our user experiment, the par-

ticipants interacted with their smartphones as they do in their daily lives without a

predefined task model. This approach helped us to collect user data in more realistic

settings.

Measuring user performance without a task model is challenging. There are several

approaches to detect typing errors and measure typing speed; however, these lookup-

based approaches handle daily texting language manually or treat them as typing
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errors. Daily texting language is too common that considering them as typing er-

rors since they are out-of-vocabulary would yield incorrect interpretations about the

effect of context on users’ performance. On the other hand, manual analysis intro-

duces privacy issues and is not applicable for possible applications of error detection

mechanisms. We combined several existing approaches to cover daily texting lan-

guage and detect typing errors in English and Turkish. Our evaluation showed that

our implementation improved the error detection accuracy compared to the literature.

However, even though we applied the text speak rules in the literature, some partic-

ipants’ verdicts for error detection introduced new text speak uses that we did not

cover initially. Therefore, an error detection mechanism should learn common usage

patterns and adapt itself to users.

The majority of the text entry studies investigating the effect of context on users’ per-

formance have primarily focused on different mobility conditions. It may be the case

that different mobility conditions can be easily replicated during a study. Moreover,

there was contradicting evidence in the literature regarding the effect of mobility.

This study considered the context in a broader perspective in five dimensions: envi-

ronment, mobility, social, multitasking, and distraction. The results of our experiment

yielded that being in an outdoor environment, being mobile, presence of other people

and having distractions increased error rate, while they did not affect typing speed.

Multitasking increased the number of keystrokes in a second and error rate. These are

the first empirical evidence on the effect of context on users’ typing performance in a

study conducted in the wild.

6.4.1 The Effect of Context on Users’ Typing Performance

In this thesis work, we focused on five context dimensions. For the environment, the

error rate was significantly lower for the indoor group than for the outdoor group in

terms of KSPC and ER. However, no significant difference between the two groups

was evident for WPM and KSPS. Generally, we are exposed to more external factors

in the outdoor environments. Therefore, people likely pay more attention to these ex-

ternal factors than typing, or some factors make it difficult to type, resulting in higher

error rates. Prior studies have focused on a single aspect of the environment. Sarsen-
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bayeva et al. [50] considered ambient noise and Sarsenbayeva et al. [226] investigated

the effect of ambient light. The present study was designed to consider all aspects of

the environment.

Mobility had a significant effect on the uncorrected error rate. Participants’ error rate

was higher when mobile than when they were stable in terms of ER. No significant

difference between the two groups was evident for WPM, KSPS, and KSPC. We

mainly focus on our surroundings to avoid hazards when we are walking. In general,

therefore, it seems that this causes more typing errors. It also seems possible that users

do not correct their typing errors in mobile conditions. Comparison of the findings

with those of other studies confirms the increase in error rate in the case of mobility.

In contrast to earlier findings, however, no evidence of the effect of mobility on typing

speed was detected.

For the social context, the presence of other people increased the error rate in terms

of KSPC and ER. The participants made fewer typing errors alone than when there

were people around. Similar to the environment and mobility, it did not significantly

affect the typing speed. The presence of other people and social interaction with them

may have shifted the focus from the text entry task to the interaction. Therefore, this

resulted in more typing errors. In reviewing the literature, no data was found on the

effect of social context on users’ typing performance.

Multitasking affected the participants’ error rate, increasing both KSPC and ER. Mul-

titasking did not have a significant effect on typing speed. Like the social context,

focusing on other tasks may have increased the error rate. This finding was also re-

ported by Crease et al. [76]. However, the findings of the current study do not support

Sarsenbayeva et al. [52] who reported no significant effect of multitasking on error

rate. Chen et al. [53] also found the main effect on texting time in case of a dual task

while crossing a street. Our results are also partially supported by the literature on the

target selection task domain with encumbrance conditions. Ng et al. [41,111,113,159]

showed that accuracy of target selection was significantly affected by encumbrance

condition. On the other hand, while they showed a significant effect on task com-

pletion time in two studies [41, 159], they could not find a main effect in another

study [111].
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The presence of distractions increased the error rate in terms of KSPC and ER; how-

ever, it did not affect typing speed. It may be that distraction factors took the par-

ticipants’ primary focus similar to the environment and mobility, and the participants

made more typing errors when they were interrupted. This outcome is contrary to that

of Jain and Balakrishnan [153] who found an increase in typing speed and a decrease

in error rate when participants were distracted.

It is interesting to see individual differences in the effect of context on different par-

ticipants. A context factor may affect a participant negatively by reducing the typing

speed or increasing the error rate, while the same factor may improve another partici-

pant’s performance by increasing the typing speed or reducing the error rate. Ability-

based design is an approach in which users do not adapt themselves to a system;

instead, it measures the user performance and adapts itself. For instance, if a user has

problems tapping on a key on the keyboard, the system may increase the size of the

keys to prevent the error. The ability-based design identifies and exploits users’ abili-

ties rather than their disabilities to enhance interaction using available resources [14].

Overall, these results show that ability-based design could be an approach to bet-

ter consider users’ context. Further research is needed to show the actual effect of

ability-based designed applications on the users’ performance.

6.4.2 Challenges of conducting studies in the wild

There are several issues related to conducting a user study remotely in the wild. Since

our study was remote, participants were asked to install an application on their smart-

phones and share their data during the study. The app running as a background service

consumed battery and bandwidth with data collection and participants’ attentional re-

sources with questionnaires. Finding voluntary participants that would install such

an app and keep it for at least three days was challenging even if we offered a small

amount of compensation. Overall, we collected data from 48 participants. Another

significant issue is privacy. When asked to share daily data with strangers, people

could have privacy concerns. We clearly explained how and why we processed the

data to address the participants’ concerns. Moreover, we provided a mechanism to

pause and resume the experiment so that participants could stop sharing data when
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they felt uncomfortable. Still, we could find more participants if we did not transfer

keyboard data to our server and process them on the participants’ devices. However,

we needed keyboard data to work on a typing error detection mechanism. Data secu-

rity and anonymity are essential in such studies, and researchers should pay attention

to these issues.

Conducting a study in the wild enabled us to collect real-world data from the users

while doing their daily tasks in their everyday context. However, controlling the sam-

ples to maintain a balance between independent groups is challenging in such studies.

This balance is typically ensured in controlled studies. The researchers can specify the

number of observations required for each context factor and continue the experiment

until the expected number of samples is collected. In this study, on the other hand,

we collected data labels during participants’ daily life. We did not ask participants

to change their normal behaviour and use their smartphones under conditions they

would not normally do. Some participants may prefer not to use their smartphones

under specific conditions, such as while walking. Moreover, some participants may

not have encountered certain context factors during the experiment. The imbalance

of the contextual factors is a tradeoff between controlled and in-situ studies.

The study was conducted during the Covid19 pandemic. During this pandemic, peo-

ple were encouraged to isolate themselves from each other and stay at home. To

not risk researchers and participants, we have conducted this study as a completely

remote study. Since the participants would download, install and configure the app

independently, we had to set clear instructions for this process. When a participant

failed to complete this process, we tried to assist him/her remotely. Some partici-

pants abandoned early due to some technical problems, and we could not investigate

the problem effectively since we did not have access to the smartphones. Moreover,

since people were at home most of the time, this might have limited the coverage of

contextual factors in submitted questionnaire answers. On the other hand, we could

reach participants with a broad range of demographic profiles by conducting a remote

experiment.
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6.4.3 Context Classification

A considerable amount of literature has been published on human activity recogni-

tion. This thesis work compares various classification models with our sensor dataset

and context labels. These comparisons showed that each classification model outper-

formed the random baseline. The data collection framework collected sensor data at

the standard sampling rate. Moreover, our user study did not force participants to

interact with their smartphones under predefined contexts, resulting imbalanced dis-

tribution of labels for some contexts. The accuracies and F1 scores of classification

models can be further improved by increasing the sampling rate or collecting more

data to balance contextual factors.

There is a large volume of published studies classifying environment and mobility

contexts. On the other hand, a relatively small body of literature is concerned with

social context, multitasking, and distractions. We followed the existing approaches to

selecting relevant environmental and mobility sensors. However, we had to compare

the different sets of sensors for the other contexts. Furthermore, available environ-

ment, motion, and position sensors in smartphones provide information about the

current environment and mobility conditions.

Nevertheless, these sensors might be limited in some cases, such as when the phone is

on a stable platform. There are existing approaches; however, they propose obtrusive

methods. For instance, ObstacleWatch [330] aims to detect obstacles by using the

microphones in smartphones; however, it requires users to hold their smartphone in

a specific position. Putze et al. [331] aim to detect auto-correction errors using brain

activity and eye gaze. However, capturing brain activity requires additional hardware,

and the user has to use the smartphone in a specific position to capture eye gaze.

6.4.4 Error Prediction

According to Suchman [332] "interaction between people and machines implies mu-

tual intelligibility, or shared understanding" (p. 6). This thesis work aims to take this

implication a step forward and provide a mechanism to predict users’ intentions and

possible interaction problems. For this purpose, the current study compared several
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regression methods for individuals and overall users as a single dataset. This compar-

ison showed that the Random Forest regressor produced the most successful results

and outperformed the random baseline.

Similar to the context classification task, sensing some contextual factors might be

challenging. For instance, a user’s emotional condition or something that confuses

the user’s mind might also cause performance problems. In these cases, the sensors

in a smartphone might be limited. Moreover, predicting performance problems and

applying corresponding adaptations would take a certain amount of time. An imme-

diate distraction that prevents a user from interacting with the smartphone for only

a moment might decrease the user’s performance. However, the system might not

capture this immediate distraction or respond in a reasonable time to adapt. There-

fore, any adaptation technique is limited by smartphones’ computational and sensing

capacities.

6.4.5 Best Practices for Adaptation

People use their smartphones in various contexts and are exposed to the adverse ef-

fects of SIIDs. Monitoring user performance and context can help systems adapt

to overcome these adverse effects of SIIDs. Modern smartphones can support these

adaptations with available sensors. The system can monitor the user performance,

context, and different usage patterns to provide a personalized user interface for dif-

ferent users. These personalized user interfaces can make users focus on the task and

handle task complexity by recognizing their intents [333]. However, the benefits of

the adaptations must outweigh the side effects caused by design problems [334]. This

section covers the usability problems highlighted in the previous studies and provides

suggestions to overcome these problems.

6.4.5.1 Smartphone Capabilities

Smartphones with touchscreens have advantages and disadvantages over the desktop

computers. The soft keyboards support dynamic resizing of the keys and different ori-

entations [335]. On the other hand, smartphones are limited in screen size, processing
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capacities, and bandwidth.

The soft keyboard can be resized in the text entry domain to overcome performance

problems. The adaptive behavior can provide bigger keys when users have difficulty

tapping on a specific key. Moreover, tactile feedback can inform users when a touch

is successful [335].

The two approaches presented in Section 6.3 require real-time user performance and

sensor data monitoring. However, these adaptations should be designed considering

smartphones’ limited capacities and resources. One possible design choice is to train

the models in an external server and use the best model in the smartphone. However,

this would require synchronizing the performance and sensor data regularly. It might

consume the bandwidth of the smartphone. In any case, the performance and sensor

data for training should be kept at an optimal level.

6.4.5.2 Learning the Adaptive Behavior

The adaptive systems change the layout or modality to overcome performance prob-

lems. Novice users may have difficulty learning these adaptations and reverting some

adaptations. Easy-to-use mechanisms are mostly insufficient; therefore, the system

should support users in the learning phase [336]. Alvarez-Cortes et al. [333] and

Jameson [337] suggested providing help mechanisms so that users can learn the adap-

tive behavior with explanations of each function. Moreover, users should be informed

about the consequences of their actions, and the system should make recommenda-

tions on different use cases [337]. Finally, the models with a hard-to-explain process

might prevent users from learning why the system changes in such a way [333].

6.4.5.3 Users’ Acceptance

People are more willing to use adaptive systems on smartphones due to their lim-

ited capabilities [338]. However, usability, trust, and acceptance issues are associated

with adaptive systems [339]. People may have concerns about giving control to an

automated system even if it empowers them [340]. Peissner and Edlin-White [339]
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suggested that using implicit and explicit feedback provides a transparent and con-

trollable interaction and increases user acceptance. According to this approach, the

system should request permissions before applying an adaptation or show a notifica-

tion after it. Jameson [337] commented that users should be provided the system’s

benefits so that they continue to use it. The following two sections continue with

other issues that may jeopardize user acceptance: predictability and accuracy.

6.4.5.4 Predictability of Adaptations

According to Norman [341], a system should be consistent in structure and design

so that users can memorize and predict the operations with minimum memory prob-

lems. People build mental models to predict system behavior. Inconsistent adapta-

tions might cause unpredictable behavior, resulting in user frustration [339]. On the

other hand, a predictable system satisfies users more [342]. Therefore, the adaptations

should be predictable [337, 343] and reliable [344] for user acceptance. Explaining

the actions to the user might increase predictability [337]. Following Nielsen’s us-

ability heuristic on consistency [345], adaptation conventions and standards should

be established. These conventions may help users to build common mental models

across different applications.

6.4.5.5 Accuracy of the System

An adaptive system can not be considered without users, and it can be effective only

if it improves users’ interaction [346]. Even if an adaptive system is designed to

be consistent and predictable, it can have accuracy problems due to the underlying

model. The accuracy of an adaptive system has a significant impact on users’ per-

formance [347]. For instance, Gajos et al. [342] showed that increasing the system’s

accuracy improved the task required to complete a task and the utilization of the sys-

tem. This positive impact on user performance is more significant on small screens

than on large screens [338]. Inaccurate system behavior, on the other hand, causes

confusion and trust issues [337]. Therefore, the system’s accuracy should be consid-

ered one of the most critical factors affecting user acceptance.
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When user control is involved in the interaction, both accurate and inaccurate sys-

tems produce successful results. Moreover, user control increases the user perfor-

mance even if the system has an inaccurate behavior [348]. Therefore, users should

be provided with a control mechanism if the corresponding models are not sufficiently

accurate.

6.4.5.6 Collecting Sufficient Data

Different user characteristics including education level, personality, cognitive skills,

preferences, current mood, goals [349], abilities, interests [350], culture, native lan-

guage, and religion [351] might affect the effectiveness of an adaptive system. More-

over, difficulty and motor or cognitive demands of the corresponding task are also

important [349]. Jameson [337] suggested involving users by combining the adapta-

tion decision process with user feedback.

An adaptive system’s data collection process must be considered an online process.

The data must be updated after each interaction in terms of user performance, and

preference [346]. An adaptive system should learn rapidly, and the number of training

samples is often limited. The developers should focus on the models that can be able

to train with small sample sizes [346].

6.4.5.7 Privacy Concerns

The developers of an adaptive system should consider the trade-off between usability

and privacy. The users of such a system may have privacy concerns [337] as data

collection mechanisms might introduce privacy vulnerabilities, and possible threats

[352]. Jameson [337] suggested that developers should limit the storage of sensitive

data to prevent these issues. Moreover, the users should be provided with descriptive

information about how the collected data will be used, along with mechanisms to

check and modify the user model [337]. Moreover, the captured keyboard interactions

must not be transferred to a server or stored in the smartphone for security and privacy

reasons [6]. Therefore, the system should only store the performance metrics, not the

textual content.
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6.4.5.8 Other Concerns

The other usability concerns can be listed as follows:

1. A fully adaptive system might impair users’ skills over time. This negative

effect can be overcome by involving users with a mixed-initiative [349].

2. The changes in the underlying layout might result in undesirable user interfaces.

Therefore, adaptations should be a part of the early design process [337].

3. The frequency of adaptations can play a significant role in the acceptance of an

adaptive system [347]. Dynamic resizing user interface elements unpredictably

might frustrate users [335].

4. The frequency of use of the feature associated with the adaptive behavior is also

a concern. The adaptations are beneficial in routine tasks. However, intermedi-

ate levels of adaptations should be preferred for non-routine tasks [349].

5. An adaptive system might be unresponsive if the underlying model is slow

[333]. On the other hand, users are concerned about timely adaptations [340].

6.4.6 Design Guidelines

The previous section presented the concerns related to adaptive interfaces. This sec-

tion continues with a discussion of our findings in this thesis work related to these

concerns and proposals for design guidelines. These guidelines are suggested for

both mobile operating system developers and mobile app developers to consider SIID-

related issues and adaptations.

• Smartphone Capabilities: In Section 3.2.6 we mentioned the diversity of

smartphone brands and models participants used during our user study. In Sec-

tion 5.2 we stated that six of these devices had only a few sensors; therefore,

the corresponding data was eliminated in our investigations. The absence of

available sensors might also be the case in a real-world scenario. An adaptive

system should be able to cover such situations.
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Data synchronization might be interrupted due to low battery or offline sta-

tus of the smartphone if the underlying model is trained on an external server.

Moreover, the external server might be temporarily unavailable. In data loss,

the system might fail to predict user performance problems. In such cases, the

system might remain responsive in order not to affect users’ interactions.

Some participants commented on the excessive battery use and the system lock-

ing down during data collection. Although these cases have a cost on users, they

might be ignored if the system proves itself to improve user interaction.

• Learning the Adaptive Behavior: Our user study was remote, and participants

had to install and configure the application. Some participants had difficulty

following the steps even if we provided a detailed description. When the ap-

plication stopped unexpectedly by a technical problem or the operating system,

the participants could not notice it or needed guidance to recover the applica-

tion. This learning issue might be the case for an adaptive system. For users

to properly install, configure and understand an adaptive system, sufficient help

mechanisms should be provided.

• Users’ Acceptance: Our literature review in Chapter 2 revealed that environ-

ment, mobility, social context, multitasking, and distractions significantly affect

users’ performance. The results of our statistical analysis presented in Table

4.4 in Section 4.3 also supported these findings. The literature also suggested

that these performance problems due to contextual factors can be reduced with

adaptations, such as reducing the sizes of user interface elements, automatically

changing modality or configurations, or providing alternative representations.

However, the users’ perception of successful interaction might not match the

theoretical assumptions [347]. Therefore, the adaptation techniques proposed

in this thesis work should be evaluated with a user experiment.

• Predictability of Adaptations: The approach in Figure 6.1 in Section 6.3 aims

to detect user performance problems by using current sensor data. Although

this approach is more situation-specific than the other approach, it also might

make users unable to predict the adaptations. On the other hand, the approach in

Figure 6.2 associates the context with the user performance and might provide

more predictable actions.
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• Accuracy of the System: According to the results presented in Section 3.3.4.4,

even if our error detection implementation outperformed the existing methods,

it still has an 87.1% of accuracy. This result shows that our error detection

mechanism might fail to identify some typing errors or classify some correctly

typed words as errors. This might affect the accuracy of the user performance

predictions and prevent users from trusting the system.

Moreover, although our error prediction mechanism outperformed the baseline

according to the results in Section 5.10, there is still room for improvement.

Inaccurate adaptation behavior might cause users to lose trust in the adaptive

system.

As the literature suggests, an adaptive system should explain its actions to the

user. Moreover, it should collect feedback after specific actions, which should

be used to improve the system’s performance.

• Collecting Sufficient Data: Some participants have entirely or partially ig-

nored the context label questions during our user study. This result might be

due to the operating system preventing notifications of our application from ap-

pearing in the notification panel. Moreover, the users might not have preferred

to pay attention to these questions under certain contextual factors. If the ap-

proach in Figure 6.2 in Section 6.3, insufficient number of context labels might

prevent system to find correlations between the context and user performance.

According to Figure 4.1 in Section 4.1, some participants have spent less time

with their smartphones and entered text less than others. It may take longer to

collect a sufficient size of samples for such users, especially with a model that

requires large samples. This longer period might result in giving up the benefits

of the system and uninstallation of the application. Moreover, the users must

interact with the system under different conditions for a certain period to collect

training data. However, it might cause another frustration once the user expects

the system to adapt but fail due to insufficient data size for training.

• Privacy Concerns: We collected participants’ keyboard interactions during

our user study. This experimental decision raised many questions among our

participants, especially on how we would use, store and process their data. An

adaptive system should only store and synchronize the user performance data.
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Moreover, the users should be well explained about how their data is used for

their benefit.

Some adaptation techniques, such as changing modality, might also cause pri-

vacy issues. For instance, if the system changes its modality to audio interaction

in a public environment due to occupied hands, it might result in other peo-

ple witnessing the user’s potentially private interaction. Therefore, the system

should ask users’ permission before taking action.

148



CHAPTER 7

CONCLUSION AND FUTURE WORK

Smartphones are an essential part of our daily lives, and we can take them wherever

we go. As a result, we use them under various contextual factors. Some of these con-

textual factors can cause SIIDs, which are temporary reductions in user performance

due to exposure to a set of contextual factors. On the other hand, the ability-based

design approach aims to reduce the impact of SIIDs by adapting the system to the

user.

This thesis work aims to understand how context affects user performance and de-

velop a mechanism to detect performance changes due to the context. Moreover,

this thesis work aims to predict performance problems unobtrusively using available

smartphone sensors and propose adaptations for the system. For this purpose, we

systematically reviewed the literature on smartphone use under different contextual

factors. We investigated the effect of context on user performance in five dimen-

sions: physical context, temporal context, social context, task context, and technical

context. Then, we conducted a user study to collect data for user performance mea-

surement and sensing the context. We implemented an error detection mechanism by

combining several approaches in the literature. We applied statistical analysis to see

the effect of context on user performance. Finally, we compared different machine

learning models to predict user performance problems due to context.

Although context has many dimensions, the research on the effect of context on users’

performance has mainly focused on different mobility conditions. Our review also

revealed that only a few studies had been conducted in the natural settings of the users.

Although reproducibility and performance measurement is based on more reliable

methods, studies in the wild reflect more realistic use case scenarios. Therefore, we
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designed our empirical study to be conducted in the wild without a predefined task

model.

A user study to measure user performance without a task model requires a mecha-

nism to predict users’ intentions. There are two main issues to consider in a text entry

task. First, the mechanism must identify intentional and unintentional typing errors.

Then, the mechanism must determine when a user corrected a typing error or changed

his/her mind to type something else. The existing approaches in the literature were

limited as they did not consider daily texting language. Therefore, we combined the

approaches of Nicolau et al. [17], Evans and Wobbrock [18], and Torunoğlu and Ery-

iğit [20] to cover daily texting language and detect typing errors in both English and

Turkish. Our evaluation showed that the combined approach improved error detection

and correction/editing detection.

We asked our participants to label the context in five dimensions: environment, mo-

bility, social, multitasking, and distractions. These five dimensions were identified

based on our systematic review. We investigated the effect of these context dimen-

sions by using performance metrics we calculated from the participants’ transcription

streams. Statical analysis showed that five context dimensions did not have a main

effect on typing speed; however, they significantly affected the error rate. Moreover,

our analysis showed that each participant was differently affected by each context

dimension. While some participants performed better under a particular contextual

factor, others had performance problems under the same factor.

We also collected sensor data in our user study. First, we used this data to explore

relevant sensors to classify different contexts. We compared different classification

models with different parameters. These models outperformed the random baseline.

Then, we applied regression models to individual user data and overall user data as a

single dataset. We combined the sensors to classify different contexts and associated

them with users’ performance data. Random Forrest regressor produced the best

results and outperformed the random baseline.

Finally, we reviewed the existing adaptive systems and identified possible adaptation

approaches. Then, we discussed how to use the sensing, error detection, context

classification, and performance prediction methods in an adaptable system.
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7.1 Limitations

Our study is not without limitations. Even though we combine many different tech-

niques, our accuracy is still not 100% for calculating performance metrics, therefore

there is always a risk of not assessing the users’ typing errors fully. Furthermore, the

following cases were a true challenge for our automated assessment. First, some of

the text-speak uses are identical to typing errors. For instance, character repetitions

may both indicate emotions and a typing error. Therefore, some out-of-vocabulary

words that we identified as intentional errors or text speak may correspond to unin-

tentional typing errors.

A typing error may result in another valid word. Moreover, the spelling of a word may

be correct; however, it may not be grammatically correct in the sentence. Our imple-

mentation does not detect these errors. This problem could be addressed by checking

the occurrence frequencies of the tokens with surrounding words. However, further

studies are needed to explore such Natural Language Processing (NLP) techniques.

This thesis work has collected participants’ data in their daily settings without a pre-

defined task model. As a result, the distribution of the context labels was imbalanced.

A more comprehensive study might enable more data collection in different contexts

and applying deep learning mechanisms to predict users’ performance.

7.2 Future Work

The typing error detection mechanism accepts a token as a correctly spelled word if

a spellchecker or a corpus validates the token or its transformed forms. However, a

typing error, such as a transposition error, may result in another valid token. In such

a case, the word’s spelling may be correct; however, it may not be grammatically

correct in the sentence. In our thesis work, we ignored these cases. However, applying

NLP techniques can detect such kind of typing errors.

Our study focused on typing performance. However, our literature review showed that

smartphone interactions also have different task domains, such as target acquisition

or navigation. Measuring user performance would require different metrics and ap-
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proaches for these task domains. Detecting user performance problems for these task

domains in the wild would introduce new challenges. Further research can investigate

different task domains and possible adaptations to overcome SIIDs.

Our analysis investigated the effect of context on users’ performance in five context

dimensions. It showed that each contextual factor affected the individuals differently.

However, a user is exposed to the contextual factors in all five dimensions simulta-

neously. Further research can also be conducted to investigate which context has the

highest performance impact on a particular user or how composite context combina-

tions negatively affect users’ performance.

This thesis work reviewed and discussed possible adaptations to overcome perfor-

mance problems due to SIIDs. The adaptation approaches discussed in this thesis

work can be implemented, and the effectiveness of these adaptations can be explored

in terms of user performance and perception. The literature states that users might

perceive a different understanding of a successful interaction than theoretical assump-

tions. Moreover, Section 6.4.5 listed the concerns on adaptive systems, especially

user acceptance. Therefore, further user studies should assess and compare different

automatic system adaptations regarding user acceptance and effectiveness.

One of the major challenges of investigating the effect of context on users’ perfor-

mance and predicting user performance with context data is to find or collect data.

In this thesis work, we collected user performance measurements, context labels, and

sensor data from available smartphone sensors. We published our dataset in our pub-

lic repository1.

Finally, our user study collected data from each participant for at most one week.

Considering the pandemic situation and the general nature of the experiment in the

wild, the distribution of different contexts was imbalanced. A user study with a longer

duration might ensure the collection of sufficient data for different contexts.

1 https://github.com/melgin/cabas-dataset
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sion of smartphone sensor data for classification of daily user activities,” Mul-

timedia Tools and Applications, vol. 80, pp. 33527–33546, Oct 2021.

[283] T. Ikuta, K. Tsubouchi, and N. Nishio, “Improving the accuracy of walking

context recognition using step rate,” in 2021 International Conference on In-

door Positioning and Indoor Navigation (IPIN), pp. 1–8, 2021.

[284] D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco, and M. R. Luaces, “A

public domain dataset for real-life human activity recognition using smart-

phone sensors,” Sensors, vol. 20, no. 8, 2020.

[285] S. K. Bashar, A. Al Fahim, and K. H. Chon, “Smartphone based human activity

recognition with feature selection and dense neural network,” in 2020 42nd

Annual International Conference of the IEEE Engineering in Medicine Biology

Society (EMBC), pp. 5888–5891, 2020.

[286] K. A. Nguyen, R. N. Akram, K. Markantonakis, Z. Luo, and C. Watkins, “Lo-

cation tracking using smartphone accelerometer and magnetometer traces,” in

Proceedings of the 14th International Conference on Availability, Reliability

and Security, ARES ’19, (New York, NY, USA), Association for Computing

Machinery, 2019.

[287] M. S. Mashuk, J. Pinchin, P.-O. Siebers, and T. Moore, “A smart phone

based multi-floor indoor positioning system for occupancy detection,” in 2018

IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 216–

227, 2018.

188



[288] A. Esmaeili Kelishomi, A. Garmabaki, M. Bahaghighat, and J. Dong, “Mo-

bile user indoor-outdoor detection through physical daily activities,” Sensors,

vol. 19, no. 3, 2019.

[289] A. Ofstad, E. Nicholas, R. Szcodronski, and R. R. Choudhury, “Aampl: Ac-

celerometer augmented mobile phone localization,” in Proceedings of the First

ACM International Workshop on Mobile Entity Localization and Tracking in

GPS-Less Environments, MELT ’08, (New York, NY, USA), p. 13–18, Asso-

ciation for Computing Machinery, 2008.

[290] E. Welbourne, J. Lester, A. LaMarca, and G. Borriello, “Mobile context infer-

ence using low-cost sensors,” in Proceedings of the First International Con-

ference on Location- and Context-Awareness, LoCA’05, (Berlin, Heidelberg),

p. 254–263, Springer-Verlag, 2005.

[291] L. Zavala, R. Dharurkar, P. Jagtap, T. Finin, and A. Joshi, “Mobile, Collab-

orative, Context-Aware Systems,” in Proceedings of the AAAI Workshop on

Activity Context Representation: Techniques and Languages, AAAI, AAAI

Press, August 2011.

[292] Y. Zhu, H. Luo, F. Zhao, and R. Chen, “Indoor/outdoor switching detection

using multisensor densenet and lstm,” IEEE Internet of Things Journal, vol. 8,

no. 3, pp. 1544–1556, 2021.

[293] Y. Du, V. Issarny, and F. Sailhan, “User-centric context inference for mobile

crowdsensing,” in Proceedings of the International Conference on Internet

of Things Design and Implementation, IoTDI ’19, (New York, NY, USA),

p. 261–266, Association for Computing Machinery, 2019.

[294] J.-H. Park, D.-K. Kim, D. Baek, and J. Lee, “Low-power sensing model

considering context transition for location-based services,” Soft Computing,

vol. 21, pp. 5223–5233, 2017.

[295] Y. Xia, S. Pan, W. Gao, B. Yu, X. Gan, Y. Zhao, and Q. Zhao, “Recurrent

neural network based scenario recognition with multi-constellation gnss mea-

surements on a smartphone,” Measurement, vol. 153, p. 107420, 2020.

189



[296] M. Yu, F. Xue, C. Ruan, and H. Guo, “Floor positioning method indoors

with smartphone’s barometer,” Geo-spatial Information Science, vol. 22, no. 2,

pp. 138–148, 2019.

[297] F. Li, H. Chen, X. Song, Q. Zhang, Y. Li, and Y. Wang, “Condiosense: High-

quality context-aware service for audio sensing system via active sonar,” Per-

sonal Ubiquitous Comput., vol. 21, p. 17–29, Feb. 2017.

[298] J. Sena, J. Barreto, C. Caetano, G. Cramer, and W. R. Schwartz, “Human ac-

tivity recognition based on smartphone and wearable sensors using multiscale

dcnn ensemble,” Neurocomputing, vol. 444, pp. 226–243, 2021.

[299] M. G. Campana and F. Delmastro, “Compass: Unsupervised and online clus-

tering of complex human activities from smartphone sensors,” Expert Systems

with Applications, vol. 181, p. 115124, 2021.

[300] W. Ge and E. Agu, “Cruft: Context recognition under uncertainty using fu-

sion and temporal learning,” in 2020 19th IEEE International Conference on

Machine Learning and Applications (ICMLA), pp. 747–752, 2020.

[301] Khimraj, P. K. Shukla, A. Vijayvargiya, and R. Kumar, “Human activity recog-

nition using accelerometer and gyroscope data from smartphones,” in 2020 In-

ternational Conference on Emerging Trends in Communication, Control and

Computing (ICONC3), pp. 1–6, 2020.

[302] S. Wan, L. Qi, X. Xu, C. Tong, and Z. Gu, “Deep learning models for real-time

human activity recognition with smartphones,” Mobile Networks and Applica-

tions, vol. 25, pp. 743–755, Apr 2020.

[303] H. Gao, “Behaviour-aided environment detection for context adaptive navi-

gation,” in Proceedings of the 31st International Technical Meeting of the

Satellite Division of The Institute of Navigation (ION GNSS+ 2018), (Miami,

Florida), pp. 3283–3296, 2018.

[304] Y. Gu, D. Li, Y. Kamiya, and S. Kamijo, “Integration of positioning and activ-

ity context information for lifelog in urban city area,” NAVIGATION: Journal

of the Institute of Navigation, vol. 67, no. 1, pp. 163–179, 2020.

190



[305] W. Qi, H. Su, and A. Aliverti, “A smartphone-based adaptive recognition

and real-time monitoring system for human activities,” IEEE Transactions on

Human-Machine Systems, vol. 50, no. 5, pp. 414–423, 2020.

[306] N. Ahmed, J. I. Rafiq, and M. R. Islam, “Enhanced human activity recogni-

tion based on smartphone sensor data using hybrid feature selection model,”

Sensors, vol. 20, no. 1, 2020.

[307] R.-A. Voicu, C. Dobre, L. Bajenaru, and R.-I. Ciobanu, “Human physical ac-

tivity recognition using smartphone sensors,” Sensors, vol. 19, no. 3, 2019.

[308] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B.

Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile social net-

works: The design, implementation and evaluation of the cenceme applica-

tion,” in Proceedings of the 6th ACM Conference on Embedded Network Sen-

sor Systems, SenSys ’08, (New York, NY, USA), p. 337–350, Association for

Computing Machinery, 2008.

[309] Z. Chen, Y. Chen, X. Gao, S. Wang, L. Hu, C. C. Yan, N. D. Lane, and C. Miao,

“Unobtrusive sensing incremental social contexts using fuzzy class incremen-

tal learning,” in Proceedings of the 2015 IEEE International Conference on

Data Mining (ICDM), ICDM ’15, (USA), p. 71–80, IEEE Computer Society,

2015.

[310] B. Adams, D. Phung, and S. Venkatesh, “Sensing and using social context,”

ACM Trans. Multimedia Comput. Commun. Appl., vol. 5, Nov. 2008.

[311] M. Ehatisham-ul Haq, F. Murtaza, M. A. Azam, and Y. Amin, “Daily living

activity recognition in-the-wild: Modeling and inferring activity-aware human

contexts,” Electronics, vol. 11, no. 2, 2022.

[312] A. Bolat, D. Kim, and K.-J. Li, “Discovering user-context in indoor space,” in

Proceedings of the 9th ACM SIGSPATIAL International Workshop on Indoor

Spatial Awareness, ISA’18, (New York, NY, USA), p. 1–6, Association for

Computing Machinery, 2018.

[313] Y. Asim, M. A. Azam, M. Ehatisham-ul Haq, U. Naeem, and A. Khalid,

“Context-aware human activity recognition (cahar) in-the-wild using smart-

191



phone accelerometer,” IEEE Sensors Journal, vol. 20, no. 8, pp. 4361–4371,

2020.

[314] A. Sano and R. W. Picard, “Stress recognition using wearable sensors and mo-

bile phones,” in Proceedings of the 2013 Humaine Association Conference on

Affective Computing and Intelligent Interaction, ACII ’13, (USA), p. 671–676,

IEEE Computer Society, 2013.

[315] A. Alberdi, A. Aztiria, and A. Basarab, “Towards an automatic early stress

recognition system for office environments based on multimodal measure-

ments,” J. of Biomedical Informatics, vol. 59, p. 49–75, Feb. 2016.

[316] A. Reiss, Personalized Mobile Physical Activity Monitoring for Everyday Life.

PhD thesis, Technical University of Kaiserslautern, 2014.

[317] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual pre-

diction with lstm,” in 1999 Ninth International Conference on Artificial Neural

Networks ICANN 99. (Conf. Publ. No. 470), vol. 2, pp. 850–855 vol.2, 1999.

[318] K. Z. Gajos, A. Hurst, and L. Findlater, “Personalized dynamic accessibility,”

Interactions, vol. 19, p. 69–73, mar 2012.

[319] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically generating user

interfaces adapted to users’ motor and vision capabilities,” in Proceedings of

the 20th Annual ACM Symposium on User Interface Software and Technology,

UIST ’07, (New York, NY, USA), p. 231–240, Association for Computing

Machinery, 2007.

[320] L. Li and K. Z. Gajos, “Adaptive click-and-cross: Adapting to both abilities

and task improves performance of users with impaired dexterity,” in Proceed-

ings of the 19th International Conference on Intelligent User Interfaces, IUI

’14, (New York, NY, USA), p. 299–304, Association for Computing Machin-

ery, 2014.

[321] M. E. Mott, R.-D. Vatavu, S. K. Kane, and J. O. Wobbrock, “Smart touch:

Improving touch accuracy for people with motor impairments with template

matching,” in Proceedings of the 2016 CHI Conference on Human Factors in

192



Computing Systems, CHI ’16, (New York, NY, USA), p. 1934–1946, Associa-

tion for Computing Machinery, 2016.

[322] J. P. Hourcade, C. M. Nguyen, K. B. Perry, and N. L. Denburg, “Pointassist

for older adults: Analyzing sub-movement characteristics to aid in pointing

tasks,” in Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, CHI ’10, (New York, NY, USA), p. 1115–1124, Association

for Computing Machinery, 2010.

[323] G. W. Tigwell, D. R. Flatla, and R. Menzies, “It’s not just the light: Under-

standing the factors causing situational visual impairments during mobile in-

teraction,” in Proceedings of the 10th Nordic Conference on Human-Computer

Interaction, NordiCHI ’18, (New York, NY, USA), p. 338–351, Association

for Computing Machinery, 2018.

[324] P. Biswas, P. M. Langdon, J. Umadikar, S. Kittusami, and S. Prashant, “How

interface adaptation for physical impairment can help able bodied users in situ-

ational impairment,” in Inclusive Designing (P. M. Langdon, J. Lazar, A. Hey-

lighen, and H. Dong, eds.), (Cham), pp. 49–58, Springer International Publish-

ing, 2014.

[325] J. Yu, J. Zhao, Y. Chen, and J. Yang, “Sensing ambient light for user

experience-oriented color scheme adaptation on smartphone displays,” in Pro-

ceedings of the 13th ACM Conference on Embedded Networked Sensor Sys-

tems, SenSys ’15, (New York, NY, USA), p. 309–321, Association for Com-

puting Machinery, 2015.

[326] M. Goel, A. Jansen, T. Mandel, S. N. Patel, and J. O. Wobbrock, “Contexttype:

Using hand posture information to improve mobile touch screen text entry,”

in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’13, (New York, NY, USA), pp. 2795–2798, ACM, 2013.

[327] J. O. Wobbrock, “Situationally aware mobile devices for overcoming situa-

tional impairments,” in Proceedings of the ACM SIGCHI Symposium on En-

gineering Interactive Computing Systems, EICS ’19, (New York, NY, USA),

pp. 1:1–1:18, ACM, 2019.

193



[328] P. M. Fitts, “The information capacity of the human motor system in control-

ling the amplitude of movement,” Journal of Experimental Psychology, vol. 47,

no. 6, pp. 381–391, 1954.

[329] I. S. MacKenzie, “Fitts’ law as a research and design tool in human-computer

interaction,” Hum.-Comput. Interact., vol. 7, p. 91–139, mar 1992.

[330] Z. Wang, S. Tan, L. Zhang, and J. Yang, “Obstaclewatch: Acoustic-based ob-

stacle collision detection for pedestrian using smartphone,” Proc. ACM Inter-

act. Mob. Wearable Ubiquitous Technol., vol. 2, dec 2018.

[331] F. Putze, T. Ihrig, T. Schultz, and W. Stuerzlinger, Platform for Studying Self-

Repairing Auto-Corrections in Mobile Text Entry Based on Brain Activity,

Gaze, and Context, p. 1–13. New York, NY, USA: Association for Computing

Machinery, 2020.

[332] L. Suchman, “Interactive artifacts,” in Human-Machine Reconfigurations:

Plans and Situated Actions, Learning in Doing: Social, Cognitive and Compu-

tational Perspectives, p. 33–50, Cambridge University Press, 2 ed., 2006.

[333] V. Alvarez-Cortes, B. E. Zayas-Perez, V. H. Zarate-Silva, and J. A. Rami-

rez Uresti, “Current trends in adaptive user interfaces: Challenges and ap-

plications,” in Electronics, Robotics and Automotive Mechanics Conference

(CERMA 2007), pp. 312–317, 2007.

[334] L. Findlater and K. Z. Gajos, “Design space and evaluation challenges of adap-

tive graphical user interfaces,” AI Magazine, vol. 30, p. 68, Sep. 2009.

[335] A. Gunawardana, T. Paek, and C. Meek, “Usability guided key-target resiz-

ing for soft keyboards,” in Proceedings of the 15th International Conference

on Intelligent User Interfaces, IUI ’10, (New York, NY, USA), p. 111–118,

Association for Computing Machinery, 2010.

[336] L. Findlater and J. McGrenere, “A comparison of static, adaptive, and adapt-

able menus,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’04, (New York, NY, USA), p. 89–96, Association

for Computing Machinery, 2004.

194



[337] A. Jameson, “Understanding and dealing with usability side effects of intelli-

gent processing,” AI Mag., vol. 30, pp. 23–40, 2009.

[338] L. Findlater and J. McGrenere, “Impact of screen size on performance, aware-

ness, and user satisfaction with adaptive graphical user interfaces,” in Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’08, (New York, NY, USA), p. 1247–1256, Association for Computing

Machinery, 2008.

[339] M. Peissner and R. Edlin-White, “User control in adaptive user interfaces for

accessibility,” in Human-Computer Interaction – INTERACT 2013 (P. Kotzé,

G. Marsden, G. Lindgaard, J. Wesson, and M. Winckler, eds.), (Berlin, Heidel-

berg), pp. 623–640, Springer Berlin Heidelberg, 2013.

[340] A. Martin-Hammond, A. Ali, C. Hornback, and A. K. Hurst, “Understanding

design considerations for adaptive user interfaces for accessible pointing with

older and younger adults,” in Proceedings of the 12th International Web for

All Conference, W4A ’15, (New York, NY, USA), Association for Computing

Machinery, 2015.

[341] D. A. Norman, “Design rules based on analyses of human error,” Commun.

ACM, vol. 26, p. 254–258, apr 1983.

[342] K. Z. Gajos, K. Everitt, D. S. Tan, M. Czerwinski, and D. S. Weld, “Predictabil-

ity and accuracy in adaptive user interfaces,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’08, (New York,

NY, USA), p. 1271–1274, Association for Computing Machinery, 2008.

[343] T. F. Paymans, J. Lindenberg, and M. Neerincx, “Usability trade-offs for adap-

tive user interfaces: Ease of use and learnability,” in Proceedings of the 9th

International Conference on Intelligent User Interfaces, IUI ’04, (New York,

NY, USA), p. 301–303, Association for Computing Machinery, 2004.

[344] T. Tsandilas and m. c. schraefel, “An empirical assessment of adaptation tech-

niques,” in CHI ’05 Extended Abstracts on Human Factors in Computing Sys-

tems, CHI EA ’05, (New York, NY, USA), p. 2009–2012, Association for

Computing Machinery, 2005.

195



[345] N. Jakob, “Usability heuristics for user interface design,” NN/g Nielsen Nor-

man Group. Retrived from: https://www. nngroup. com/articles/ten-usability-

heuristics, 1994.

[346] P. Langley, “User modeling in adaptive interface,” in UM99 User Modeling

(J. Kay, ed.), (Vienna), pp. 357–370, Springer Vienna, 1999.

[347] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld, “Exploring the design

space for adaptive graphical user interfaces,” in Proceedings of the Working

Conference on Advanced Visual Interfaces, AVI ’06, (New York, NY, USA),

p. 201–208, Association for Computing Machinery, 2006.

[348] S. Bouzit, D. Chêne, and G. Calvary, “Evanescent adaptation on small screens,”

in Proceedings of the Annual Meeting of the Australian Special Interest

Group for Computer Human Interaction, OzCHI ’15, (New York, NY, USA),

p. 62–68, Association for Computing Machinery, 2015.

[349] T. Lavie and J. Meyer, “Benefits and costs of adaptive user interfaces,” Inter-

national Journal of Human-Computer Studies, vol. 68, no. 8, pp. 508–524,

2010. Measuring the Impact of Personalization and Recommendation on User

Behaviour.

[350] K. Montague, V. L. Hanson, and A. Cobley, “Designing for individuals: Us-

able touch-screen interaction through shared user models,” in Proceedings of

the 14th International ACM SIGACCESS Conference on Computers and Ac-

cessibility, ASSETS ’12, (New York, NY, USA), pp. 151–158, ACM, 2012.

[351] K. Reinecke and A. Bernstein, “Improving performance, perceived usability,

and aesthetics with culturally adaptive user interfaces,” ACM Trans. Comput.-

Hum. Interact., vol. 18, jul 2011.

[352] F. Hamidi, K. Poneres, A. Massey, and A. Hurst, “Who should have access

to my pointing data? privacy tradeoffs of adaptive assistive technologies,” in

Proceedings of the 20th International ACM SIGACCESS Conference on Com-

puters and Accessibility, ASSETS ’18, (New York, NY, USA), p. 203–216,

Association for Computing Machinery, 2018.

196



[353] A. Mariakakis, S. Parsi, S. N. Patel, and J. O. Wobbrock, “Drunk user inter-

faces: Determining blood alcohol level through everyday smartphone tasks,”

in Proceedings of the 2018 CHI Conference on Human Factors in Computing

Systems, CHI ’18, (New York, NY, USA), pp. 234:1–234:13, ACM, 2018.

[354] F. Wolf and R. Kuber, “Developing a head-mounted tactile prototype to support

situational awareness,” Int. J. Hum.-Comput. Stud., vol. 109, pp. 54–67, Jan.

2018.

[355] D. Kim, K. Han, J. S. Sim, and Y. Noh, “Smombie guardian: We watch for po-

tential obstacles while you are walking and conducting smartphone activities,”

PLOS ONE, vol. 13, pp. 1–21, 06 2018.

[356] Z. Wang, S. Tan, L. Zhang, and J. Yang, “Obstaclewatch: Acoustic-based ob-

stacle collision detection for pedestrian using smartphone,” Proc. ACM Inter-

act. Mob. Wearable Ubiquitous Tech., vol. 2, no. 4, pp. 194:1–194:22, 2018.

[357] W. Zamora, C. T. Calafate, J.-C. Cano, and P. Manzoni, “Smartphone tun-

ing for accurate ambient noise assessment,” in Proceedings of the 15th In-

ternational Conference on Advances in Mobile Computing & Multimedia,

MoMM2017, (New York, NY, USA), pp. 115–122, ACM, 2017.

[358] F. Lyddy, F. Farina, J. Hanney, L. Farrell, and N. Kelly O’Neill, “An analy-

sis of language in university students’ text messages,” Journal of Computer-

Mediated Communication, vol. 19, no. 3, pp. 546–561, 2014.

[359] A. Arslan, “Deasciification approach to handle diacritics in turkish information

retrieval,” Inf. Process. Manage., vol. 52, p. 326–339, Mar. 2016.

[360] A. T. Koksal, O. Bozal, E. Yürekli, and G. Gezici, “#turki$hTweets: A bench-

mark dataset for Turkish text correction,” in Findings of the ACL: EMNLP

2020, (Online), pp. 4190–4198, ACL, Nov. 2020.

[361] S. Yildirim and T. Yildiz, “An unsupervised text normalization architecture for

turkish language,” Res. Comput. Sci., vol. 90, pp. 183–194, 2015.

[362] GSMArena, “Gsmarena.com - mobile phone reviews, news, specifications

and more....” https://www.gsmarena.com/, 2000. Last accessed:

29.06.2022.

197

https://www.gsmarena.com/


198



Appendix A

SUMMARY OF THE CONTEXTUAL FACTORS

This appendix summarizes the contextual factors studied in the literature.

A.1 Physical Context Summary

This section summarizes the literature related to physical context.

Table A.1: Overall physical contexts in the literature

Physical Cont. Types Papers

Location Lab environment [8, 31, 37, 39–41, 45, 46, 50, 52, 61–66, 68–70, 72–84, 87,

88, 90–92, 94–105, 107, 109–114, 116–119, 121, 124, 125,

127, 128, 144, 147, 148, 150–157, 159–162, 164, 166, 168–

181, 184–187, 193, 195, 202, 205, 206, 353, 354]

Indoor environment [8,34,36,42,43,47–49,66,71,85,86,89,93,102,106,108,

115, 120, 122, 124–126, 129–132, 158, 163, 167, 188–190,

194, 196, 199, 200, 208]

Outdoor environment [32, 33, 38, 43, 44, 51, 53, 55, 56, 58, 59, 62, 65, 106, 136–

140, 182, 191, 192, 199, 201, 204, 209, 210, 355, 356]

Pedestrian street or

public area
[8, 35, 57, 63, 64, 68, 133–135]

Virtual environment [114, 141, 142, 162]

Stairs in a building [127, 128]

Public transportation [97, 123]

In the wild [39, 54, 67, 143–146, 197, 198, 207]

Continued on next page
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Table A.1 – Continued from previous page

Physical Cont. Types Papers

Mobility Sitting [8,31,36,37,45,46,52,61–64,68–100,123,125,127,128,

146, 148, 150, 153, 155, 161, 166, 171–173, 175, 176, 182,

184–187, 197, 202, 206, 207, 354]

Standing [8, 33, 47–50, 65, 66, 81, 88, 90, 91, 93, 101–118, 130, 157,

163, 168, 178, 182, 185]

Walking on a route [8, 32–35, 38, 41–44, 61, 63–65, 68, 69, 74–76, 78–81, 84,

86, 89–95, 98–109, 111–113, 115, 117, 119, 120, 124, 126–

132, 134–139, 147, 149–151, 157, 159, 161, 163, 169, 170,

176, 184–186, 188–192, 194, 196, 200, 201, 204, 209, 210,

355, 356]

Walking on a treadmill [40,41,65,68,70,72,77,78,82,83,87,94–96,99,110,114,

116, 118, 119, 121, 122, 148, 154, 162, 179, 354]

Walking on a mini-stepper [124]

Walking after a researcher [36, 88]

Walking on a straight path [51, 62, 92, 152, 158, 165]

Walking through a street or

public area

[53, 55–59, 71]

Going up or down stairs [127, 128, 208]

Public transportation [8, 97, 146]

Jogging or running [44, 199]

Walking [54, 66, 73, 85, 125, 133, 141, 142, 146, 164, 182, 195, 199,

203]

Artifacts Physical obstacles [35,51,57,69,78,92,101,106,126,129,132,134,135,138,

139, 147, 194, 355, 356]

Furniture [71, 74, 75, 79, 80, 94, 95, 99, 112, 119, 150, 161]

Pedestrians [35, 53, 56, 57, 66, 106, 120, 129, 134, 135, 188, 356]

Vehicles [56, 356]

Virtual vehicles or obstacles [141, 142, 162]

Unicycling clown [55]

Sensed

Environm.

Attributes

Lighting levels (low/high) [75, 79, 80, 119, 199]

Weather (cloudy,

partly cloudy, sunny)
[106]

Vibration [123]

Environmental noise [50, 123, 198, 199, 357]

Temperature (cold, warm) [47–49]

Acceleration sensors [34, 36, 85, 117, 146, 182, 184, 203]
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Table A.1 – Continued from previous page

Physical Cont. Types Papers

Gyroscope [85, 146, 203]

Magnetic field sensors [87, 203]

Motion sensors [90, 116]

Heart rate [116, 206]

GPS [182, 192]

A.2 Temporal Context Summary

This section summarizes the literature related to temporal context.

Table A.2: Overall temporal contexts in the literature

Temporal Context Types Papers

Duration Single session for less than 10 min-

utes

[69, 99, 138, 139, 152, 154, 176]

Single session for 10 - 30 minutes [45, 60, 61, 89, 126, 191, 206, 355]

Single session for 30 - 60 minutes [36, 39, 40, 74, 87, 93–96, 108, 115, 121, 129,

136, 163, 170, 175, 189, 190, 197, 203, 207]

Single session for 70 - 90 minutes [8, 50, 52, 100, 134, 135, 151, 178, 187, 192]

Single session for more than 90 min-

utes

[34, 63, 64, 122, 179, 210]

Single session with unknown dura-

tion

[32,33,35,38,42,44,46,51,66,70–73,75,78–

81, 83, 85, 86, 92, 98, 101–105, 109–113, 117,

119,120,123,125,127,128,131,133,137,140,

141, 147–149, 157–159, 161, 162, 164, 165,

169,171,173,174,177,184,185,195,202,208,

209]

Multiple sessions within a single day [47–49, 144, 150]

Multiple sessions on different days [31,37,41,43,65,84,88,90,114,116,153,155,

186, 188, 201, 204, 211, 353]
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Table A.2 – Continued from previous page

Temporal Context Types Papers

Multiple experiments [55,62,68,76,77,82,91,97,106,107,118,124,

130, 132, 142, 156, 160, 166–168, 172, 180–

182, 193, 194, 196, 200, 205, 354]

Longitudinal study [39, 54, 143, 145, 146, 197, 198]

Before, during,

after

ESM [144, 146, 197, 207]

Synchronous/

Asynchronous

Synchronous [44, 55, 141, 142, 147, 160]

Asynchronous [44, 141, 147]

Actions’

relation to time

Hurrying, normal and waiting [8]

Presentation time [157]

Walking speed [41, 65, 78, 157–159]

Time of day,

week and year

Afternoon [106]

Busiest time of the day [53, 71]

Different hours of a day [53, 57, 67]

Spring [35, 56, 60, 355]

Summer [43, 58, 60, 134]
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A.3 Task Context Summary

This section summarizes the literature related to task context.

Table A.3: Overall task contexts in the literature

Task Context Types Papers

Multitasking Walking [8, 32–36, 38, 40–44, 53–55, 57, 61–66, 68–96, 98,

101–117,119,121,122,124–139,141,142,147–152,

154,157,159,161,164,165,169,170,176,179,184–

186, 188–192, 196, 200, 201, 203, 204]

Encumbrance [41, 111, 113, 115, 118, 151, 159]

Exercising, jogging or running [44, 67, 96, 122]

Collision/hazard avoidance [76, 129, 142, 162, 169]

Playing a game [68, 158, 160, 196, 354]

Distraction or cognitive tasks [40, 52, 82, 148, 201]

Conversation or social interaction [67, 202]

Monitoring environment [114, 154]

Others: parenting [60], talking on the phone [160], holding objects with different

sizes [168], working, eating, relax. and traveling [67]

Interruptions Obstacles [35, 53, 56, 57, 66, 69, 71, 71, 74, 75, 78–80, 92, 94,

95, 101, 106, 112, 119, 126, 129, 132, 134, 135, 138,

139, 147, 150, 161, 188, 356]

Eyes-free interaction [31,37,45,46,88,136,145,155,156,160,166,171–

178, 187, 193, 195, 205]

Hands-free interaction [180, 181, 195]

Stressor tasks [52, 197, 207]

Hazard checks [76, 169]

Distraction tasks [121, 153]

Stairs [127, 128]

Virtual objects or vehicles [141, 142]

Others: stop signs [170], visual disruptions [167], alcohol usage [353], interruptions

from children [60], incoming phone calls [39]

Action orien.

task domain

Texting or talk. on the phone [53, 198]

Playing a game [143, 206]

Media control [198]

Continued on next page
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Task Context Types Papers

Goal orien.

task domain

Navigation [32,34,35,38,42,43,54,85,131,134,136,138,139,

170, 184, 188–192, 200, 201, 204, 210]

Target selection [33,41,46–50,52,62,70,71,73,78,81,83,84,87,91,

93, 101, 104, 106–108, 110, 111, 113–116, 124, 126,

156, 159, 166, 167, 193, 196]

Text entry [31,36,37,50–52,57,61,63,64,66,68,69,76,82,86,

88,90,92,97,102,120,123,127,128,144,147,150,

153–155,158,160,165,168,171–175,197,207–209,

353]

Gesture based interaction [45,118,125,130,148,151,176,178,185,186,194]

Reading [33, 44, 74, 75, 79, 80, 98, 100, 117, 119, 121, 145,

147, 157, 161, 165, 355]

Searching [8,50,52,75,94–96,99,112,117,119,140,146,197,

207, 209]

Talking on the phone [44, 55, 141, 142, 147, 149, 158, 203]

Texting [40, 44, 141, 149, 152, 164]

Playing a game [129, 162, 167]

Menu related tasks [132, 133, 177, 187]

Other goal oriented tasks [39, 44, 65, 72, 77, 89, 103, 105, 109, 122, 135, 137,

141, 160, 169, 179–182, 195, 199, 202, 205, 353]

Other goal oriented tasks include audio target acquisition [103], cognitive tasks [89],

cross-modal icon identification [77], dealing with incoming notifications or alerts

[105, 122, 135], foot gesture based interaction [180, 181], gesture recognition [205],

head gesture based target selection [109], recording phone number, checking calen-

dar [160], question answering [39], remembering symbols shown [179], speech based

text entry [72, 169, 195], sports tracking [44, 137], listening to music [141], informa-

tion retrieval [182], browsing bus timetable [199], declining incoming calls [202],

heart rate balancing, simple and choice reaction [353], and visual acuity [65].
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A.4 Social Context Summary

This section summarizes the literature related to social context.

Table A.4: Overall social contexts in the literature

Social Context Types Papers

Persons present Self [8,31–55,57–106,108–122,124–182,184–201,204–210,

353–356]

Other pedestrians [35, 53, 56, 57, 66, 106, 120, 129, 134, 135, 188, 356]

Accompanied [53, 55, 57, 123, 202, 203]

At least one child [60]

Experimenter [160]

Interpersonal interaction One to one [44, 53, 141, 142, 147, 152, 160, 202, 203]

Culture Users from UK and India [143]
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A.5 Technical Context Summary

This section summarizes the literature related to technical context.

Table A.5: Overall technical contexts in the literature

Technical Cont. Types Papers

Device Smartphone with touchscreen [33–39,41,44,47–50,52,53,66,79,80,85,86,

88,92,94–99,105,110,113,114,120,121,125,

133–136,140,143,144,150,151,153–157,159,

162,163,166,167,170–177,179,186,190,192,

195–197,200–202,206,207,209,210,353,354,

356]

PDA [31,62,68,70–72,75,78,82,102,107,108,117,

119, 123, 124, 127, 128, 132, 194, 203]

Tablet [42, 45, 46, 61, 63, 64, 73, 94, 95, 104, 129, 131,

138, 139, 169, 181, 205]

Wearable device [32,42,46,69,77,87,91,93,101,122,132,135,

137, 160, 166, 182, 185, 194]

Smartwatch [43,44,67,96,115,116,118,137,178,179,188,

189, 193]

Participants’ own devices [54,56,58,59,141,144,146,147,152,164,165,

208]

Smartphone with physical keyboard [8, 76, 81, 97, 109, 111, 149, 160, 173, 191]

Smartphone with touch. & phys. key-

board

[83, 90, 107, 112, 148, 168, 184]

UMPC [74, 84, 106, 126, 145]

Media device with touchscreen [65, 98, 161, 170, 187]

Mobile phone with physical keyboard [68, 142, 203]

Smart glasses [100, 188]

Smart bracelet/Wristband [44, 193]

Others: Twiddler [31, 130], Trackball, gyroscopic mouse and touchpad [130], hand-

held device [199], Protractor3D recognizer with acceler. [180], actuators on shoe, eye

tracker [201], head mounted display [74, 89], MT-9B orientation trackers [103], e-

book reader [74], Microsoft Xbox Kinect [180, 181]

Informational

artefacts

Laptop computer [87, 88, 168, 171–173, 175]

Projection screen or floor [69, 72, 76, 154, 154, 169]

Continued on next page
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Technical Cont. Types Papers

Large monitor or wall display [40, 91, 148]

External screen or LCD displays [37, 89, 166]

Desktop computer [31, 91]

Tablet [45]

Interoperability Smartphone - Smartphone [200]

Google Glass - PocketThumb [93]

PDA - wearable device [132]

PDA/Twiddler - Desktop computer [31]

Smartphone - Smart glasses & smart-

watch

[188]

Smartphone - Headphone [173, 195]

Smartphone - Laptop computer [88, 171, 172]

Wearable device - Desktop computer [91]

Laptop computer - PDA [203]

Wearable device - Laptop computer [87]

Wear. device - Smartphone - Ext. mon-

itor

[166]

Actuators on shoe, smartphone,

eye tracker
[201]

Mixed reality

systems
Virtual reality [114, 141, 142]
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Appendix B

TEXT-SPEAK EXAMPLES

Table B.1 illustrates common text-speak techniques in daily texting use and examples

for these techniques.

Table B.1: Common text-speak techniques and their examples

Text-speak technique Example References

Deletion of vowels “msg" for “message" [222, 358]

Deletion of repeated characters “tomorow" for “tomorrow" [222]

Shortening of words “lab" for “laboratory" [222, 224, 358]

Deletion of punctuation “dont" for “don’t" [224, 358]

Deletion the ’g’ at the end in words ending “ing" “goin" for “going" [358]

Deletion of the final characters “hav" for “have" [358]

Phonetic substitution “2" for “too" or “c" for “see" [222, 224, 358]

Abbreviation “lol” for “laughs out loud” [222, 224, 358]

Dialectal and informal usage “gonna” for “going to” [222, 224, 358]

Deletion of function words and pronouns “readin bk" for [222]

Missed capitalization “i’d" for “I’d" [224, 358]

Spelling as pronunciation “fone" for “phone" [20, 224, 358]

Onomatopoeic/ exclamatory “ha", “yay" [224, 358]

Repeating characters for expression “whaaaat" to express surprise [224]

Using upper case/extra punctuation for emotion “WHAT?????" [224]

Using insider words “hottie", “fugly" [224]

Prevention of using Turkish characters “kacmis" for “kaçmış" [20, 359, 360]

Separation errors
“birşey" for “bir şey"

“hiç biri" for “hiçbiri"
[360]

Use of English words in Turkish text [360]

Neologisms “hack-lemek" [360]

Incorrect use of some suffixes “kitapda" for “kitap da" [361]
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Appendix C

OVERALL ESM QUESTIONS

This chapter presents the ESM questions used in the study.

C.1 ESM Questions for Labelling Context

If the participants entered text longer than five characters, the app sent notifications

to ask them to answer a set of questions related to their current context. The overall

questions for context labelling and provided options are as follows:

1. Which one of these best describes your current location?

• Indoors

• Outdoors

• Stairs

• In vehicle

• Crosswalk

• Other

2. Which one of these best describes your mobility condition?

• Lying down

• Sitting

• Standing

• Walking

• Running
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• Other

3. Which one of these best describes people around you?

• Alone

• With a friend/family member/colleague

• With 2-4 friends/family members/colleagues

• With more than 4 friends/family members/colleagues

• With strangers (not crowded)

• With strangers (crowded)

• Other

4. Did you handle any other task along with text entry?

• Nothing

• I am carrying a box/bag/other

• I am trying to avoid collision while walking

• I am having a conversation with someone around me

• I am working

• I am shopping

• I am doing home-activities (cleaning, cooking, etc)

• I am having breakfast/lunch/dinner

• Multiple of these

• Other

5. Is there anything that interrupted/distracted your interaction with mobile de-

vice?

• Nothing

• There are obstacles/people/cars on walking path

• I am in a hurry

• I need to check something from time to time (i.e. a child or cook)

• I am interrupted by someone
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• I am interrupted by something unexpected

• Multiple of these

• Other

C.2 ESM Questions for Participants’ Self Evaluation on Typing Errors

If the participants deleted any characters during a session, we asked participants if

they made a typing error after context questions. If the participants selected yes or

maybe options, we asked them to specify the cause of the typing problem. The overall

questions for self-evaluation and provided options are as follows:

1. Did you just make a typing error?

• Yes

• No

• Maybe

2. What do you think caused this typing error?

• My current location

• My current mobility situation

• People around me

• Other task I am busy with

• Something that interrupts me

• Multiple of these

• Other
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Appendix D

PARTICIPANTS’ DEVICE SUMMARY

Table D.1 provides a summary of participants’ devices. The brand and model names

and Android SDK versions were retrieved from participants’ devices. The screen

sizes were collected from product specifications [362].

Table D.1: Participants’ smartphone brands, models, Android SDK versions and

screen sizes

Brand Model SDK Size (inches) Keyboard #

Asus ASUS_X00QD (Zenfone 5) 28 6.2 Gboard 1

Google Pixel 3 29 5.5 Gboard 1

Huawei ANE-LX1 (P20 lite) 28 5.84 Microsoft SwiftKey 2

Huawei BLA-L09 (Mate 10 Pro) 29 6.0 Gboard 1

Huawei ELE-L29 (P30) 29 6.1 Microsoft SwiftKey 1

Huawei FIG-LX1 (P smart) 28 5.65 Microsoft SwiftKey 1

Huawei RNE-L21 (Mate 10 Lite) 26 5.9 Microsoft SwiftKey 1

Huawei SNE-LX1 (Mate 20 lite) 29 6.3 Microsoft SwiftKey 1

Huawei VTR-L09 (P10) 28 5.1 Microsoft SwiftKey 1

Lenovo Lenovo P2a42 (P2) 24 5.5 Gboard 1

Nokia Nokia 6.1 29 5.5 Gboard 1

Nokia Nokia 7.2 29 6.3 Gboard 1

OnePlus ONEPLUS A6000 29 6.28 Microsoft SwiftKey 1

Samsung SM-A305F (Galaxy A30) 29 6.4 Samsung 1

Samsung SM-A307FN (Galaxy A30s) 29 6.4 Samsung 1

Samsung SM-A505F (Galaxy A50) 29 6.4 Samsung 2

Samsung SM-A520F (Galaxy A5) 26 5.2 Samsung 2

Continued on next page
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Table D.1 – Continued from previous page

Brand Model SDK Size (inches) Keyboard #

Samsung SM-A710F (Galaxy A7) 24 5.5 Microsoft SwiftKey 1

Samsung SM-G610F (Galaxy J7 Prime) 24 5.5 Samsung 1

Samsung SM-G610F (Galaxy J7 Prime) 27 5.5 Samsung 2

Samsung SM-G930F (Galaxy S7) 26 5.1 Microsoft SwiftKey 1

Samsung SM-G935F (Galaxy S7 Edge) 26 5.5 Fleksy 1

Samsung SM-G935F (Galaxy S7 Edge) 26 5.5 Samsung 1

Samsung SM-G950F (Galaxy S8) 28 5.8 Samsung 1

Samsung SM-G950U (Galaxy S8) 28 5.8 Samsung 1

Samsung SM-G965F (Galaxy S9+) 26 6.2 Samsung 1

Samsung SM-G965U1 (Galaxy S9+) 29 6.2 Samsung 1

Samsung SM-J710FQ (Galaxy J7) 27 5.5 Samsung 1

Samsung SM-N950F (Galaxy Note8) 28 6.3 Samsung 1

Samsung SM-N960F (Galaxy Note9) 29 6.4 Samsung 2

Xiaomi MI 6 28 5.15 Gboard 1

Xiaomi MI 6 28 5.15 Microsoft SwiftKey 1

Xiaomi MI 8 Lite 29 6.26 Gboard 1

Xiaomi MI CC 9e 28 6.01 Gboard 1

Xiaomi Mi 9T 28 6.39 Gboard 1

Xiaomi Redmi 6 28 5.45 Microsoft SwiftKey 1

Xiaomi Redmi Note 5 Pro 28 5.99 Gboard 1

Xiaomi Redmi Note 8 28 6.3 Gboard 1

Xiaomi Redmi Note 8 Pro 28 6.53 Gboard 1

Xiaomi Redmi Note 8 Pro 29 6.53 Gboard 3

Xiaomi Redmi Note 9 Pro 29 6.67 Gboard 1
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Appendix E

THE EFFECT OF CONTEXT ON PARTICIPANTS’ INDIVIDUAL

PERFORMANCE

Figure E.1, Figure E.2, Figure E.3, Figure E.4, and Figure E.5 illustrate how indi-

vidual performances change under different context groups of environment, mobility,

social context, multitasking and distractions, respectively. The shape of the marker

indicates the age of the participants (circle ( ): 18 - 24, square (□): 25 - 34, diamond

(⋄): 35 - 54, triangle (△): 55+). Female participants are represented as filled ( ), and

male participants are represented as unfilled ( ). The participants are illustrated with

the same colors in all figures.

217



Indoor Outdoor
25

30

35

40

45

50

55

W
PM

(a) The effect of environment on WPM

Indoor Outdoor
2

2.5

3

3.5

4

4.5

5

K
SP

S

(b) The effect of environment on KSPS

Indoor Outdoor
1

1.1

1.2

1.3

K
SP

C

(c) The effect of environment on KSPC

Indoor Outdoor
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

E
R

(d) The effect of environment on ER

1Figure E.1: The effect of environment on individual performances

218



Stable Mobile

35

40

45

50

55

60

65
W

PM

(a) The effect of mobility on WPM

Stable Mobile
2.5

3

3.5

4

4.5

5

5.5

K
SP

S

(b) The effect of mobility on KSPS

Stable Mobile

1

1.05

1.1

K
SP

C

(c) The effect of mobility on KSPC

Stable Mobile

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
R

(d) The effect of mobility on ER

1Figure E.2: The effect of mobility on individual performances

219



Alone NotAlone

25

30

35

40

45

50

55

W
PM

(a) The effect of social context on WPM

Alone NotAlone

2

2.5

3

3.5

4

4.5

5

K
SP

S

(b) The effect of social context on KSPS

Alone NotAlone

1

1.1

K
SP

C

(c) The effect of social context on KSPC

Alone NotAlone

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
R

(d) The effect of social context on ER

1Figure E.3: The effect of social on individual performances

220



Nothing Multitask

25

30

35

40

45

50

55
W

PM

(a) The effect of multitasking on WPM

Nothing Multitask

2

2.5

3

3.5

4

4.5

5

K
SP

S

(b) The effect of multitasking on KSPS

Nothing Multitask
1

1.1

1.2

1.3

K
SP

C

(c) The effect of multitasking on KSPC

Nothing Multitask
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5

E
R

(d) The effect of multitasking on ER

1Figure E.4: The effect of multitasking on individual performances

221



Nothing Distraction

20

25

30

35

40

45

50

55

60

65

W
PM

(a) The effect of distraction on WPM

Nothing Distraction
1.5

2

2.5

3

3.5

4

4.5

5

5.5

K
SP

S

(b) The effect of distraction on KSPS

Nothing Distraction
1

1.1

1.2

1.3

K
SP

C

(c) The effect of distraction on KSPC

Nothing Distraction
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

E
R

(d) The effect of distraction on ER

1Figure E.5: The effect of distraction on individual performances

222



Appendix F

CONTEXT RECOGNITION RESULTS

F.1 Environment

Table F.1 illustrates environment context classification results of KNN, DT, RF, MLP,

Linear SVM, and AdaBoost with 50% and 1 second sliding windows of 2, 5, 10 and

20 seconds on imbalanced and oversampled data.

Table F.1: The results for environment classification using different models

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 50% Overlap

2s KNN 0.43 0.44 0.86 ± 0.01 0.73 ± 0.02 0.78 ± 0.02 0.90 ± 0.01

DT 1.12 0.06 0.68 ± 0.02 0.69 ± 0.02 0.68 ± 0.02 0.82 ± 0.01

RF 5.86 0.10 0.90 ± 0.02 0.67 ± 0.02 0.71 ± 0.02 0.88 ± 0.01

MLP 9.10 0.06 0.76 ± 0.05 0.56 ± 0.01 0.57 ± 0.01 0.84 ± 0.01

Linear SVM 8.48 0.08 0.83 ± 0.02 0.62 ± 0.04 0.65 ± 0.04 0.86 ± 0.01

AdaBoost 2.97 0.08 0.72 ± 0.06 0.60 ± 0.08 0.61 ± 0.11 0.85 ± 0.02

5s KNN 0.23 0.18 0.85 ± 0.02 0.77 ± 0.03 0.80 ± 0.03 0.89 ± 0.01

DT 0.42 0.03 0.72 ± 0.03 0.72 ± 0.02 0.72 ± 0.02 0.82 ± 0.02

RF 2.07 0.06 0.90 ± 0.01 0.74 ± 0.02 0.79 ± 0.02 0.89 ± 0.01

MLP 6.26 0.04 0.86 ± 0.02 0.80 ± 0.03 0.83 ± 0.02 0.90 ± 0.01

Linear SVM 7.28 0.04 0.83 ± 0.02 0.70 ± 0.03 0.73 ± 0.03 0.86 ± 0.01

AdaBoost 2.53 0.06 0.78 ± 0.03 0.70 ± 0.01 0.73 ± 0.02 0.85 ± 0.01

10s KNN 0.10 0.04 0.86 ± 0.03 0.80 ± 0.02 0.82 ± 0.02 0.89 ± 0.01

DT 0.12 0.02 0.73 ± 0.02 0.74 ± 0.03 0.74 ± 0.02 0.82 ± 0.01

RF 0.77 0.03 0.92 ± 0.01 0.80 ± 0.02 0.84 ± 0.02 0.90 ± 0.01

Continued on next page
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

MLP 2.48 0.02 0.89 ± 0.03 0.88 ± 0.04 0.88 ± 0.03 0.92 ± 0.02

Linear SVM 1.14 0.02 0.82 ± 0.02 0.78 ± 0.01 0.79 ± 0.01 0.87 ± 0.01

AdaBoost 0.70 0.03 0.83 ± 0.01 0.79 ± 0.03 0.81 ± 0.02 0.87 ± 0.01

20s KNN 0.03 0.02 0.84 ± 0.02 0.81 ± 0.03 0.82 ± 0.02 0.88 ± 0.01

DT 0.03 0.01 0.77 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.83 ± 0.02

RF 0.31 0.02 0.88 ± 0.03 0.80 ± 0.01 0.83 ± 0.01 0.89 ± 0.01

MLP 0.89 0.01 0.89 ± 0.05 0.87 ± 0.05 0.88 ± 0.05 0.91 ± 0.03

Linear SVM 0.08 0.02 0.54 ± 0.22 0.61 ± 0.16 0.57 ± 0.19 0.79 ± 0.05

AdaBoost 0.23 0.02 0.78 ± 0.03 0.77 ± 0.01 0.77 ± 0.02 0.84 ± 0.02

Imbalanced Data, 1s Overlap

2s KNN 0.43 0.44 0.86 ± 0.01 0.73 ± 0.02 0.78 ± 0.02 0.90 ± 0.01

DT 1.12 0.06 0.68 ± 0.02 0.69 ± 0.02 0.68 ± 0.02 0.82 ± 0.01

RF 5.86 0.10 0.90 ± 0.02 0.67 ± 0.02 0.71 ± 0.02 0.88 ± 0.01

MLP 9.10 0.06 0.76 ± 0.05 0.56 ± 0.01 0.57 ± 0.01 0.84 ± 0.01

Linear SVM 8.48 0.08 0.83 ± 0.02 0.62 ± 0.04 0.65 ± 0.04 0.86 ± 0.01

AdaBoost 2.97 0.08 0.72 ± 0.06 0.60 ± 0.08 0.61 ± 0.11 0.85 ± 0.02

5s KNN 0.61 0.71 0.91 ± 0.01 0.84 ± 0.02 0.87 ± 0.02 0.92 ± 0.01

DT 1.61 0.08 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.86 ± 0.01

RF 8.98 0.13 0.94 ± 0.01 0.80 ± 0.02 0.85 ± 0.02 0.92 ± 0.01

MLP 13.54 0.09 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.96 ± 0.00

Linear SVM 2.68 0.11 0.40 ± 0.00 0.50 ± 0.00 0.44 ± 0.00 0.80 ± 0.00

AdaBoost 6.53 0.12 0.79 ± 0.01 0.72 ± 0.01 0.75 ± 0.01 0.86 ± 0.01

10s KNN 0.55 0.37 0.95 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.96 ± 0.00

DT 0.76 0.05 0.87 ± 0.02 0.87 ± 0.02 0.87 ± 0.02 0.91 ± 0.01

RF 5.68 0.09 0.97 ± 0.00 0.91 ± 0.01 0.94 ± 0.01 0.96 ± 0.01

MLP 6.40 0.06 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.00

Linear SVM 11.84 0.09 0.82 ± 0.04 0.80 ± 0.03 0.81 ± 0.03 0.87 ± 0.02

AdaBoost 5.18 0.08 0.84 ± 0.01 0.79 ± 0.02 0.81 ± 0.02 0.88 ± 0.01

20s KNN 0.61 0.35 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

DT 0.79 0.09 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.00

RF 2.01 0.07 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

MLP 4.38 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Linear SVM 8.65 0.05 0.85 ± 0.05 0.84 ± 0.03 0.84 ± 0.04 0.89 ± 0.03

AdaBoost 2.19 0.06 0.88 ± 0.02 0.85 ± 0.01 0.86 ± 0.01 0.90 ± 0.01

Continued on next page

224



Table F.1 – Continued from previous page

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Oversampled Data, 1s Overlap

2s KNN 0.78 0.66 0.71 ± 0.01 0.81 ± 0.01 0.74 ± 0.01 0.81 ± 0.01

DT 2.64 0.05 0.66 ± 0.01 0.71 ± 0.01 0.67 ± 0.01 0.79 ± 0.01

RF 13.79 0.12 0.85 ± 0.01 0.78 ± 0.02 0.80 ± 0.02 0.90 ± 0.01

MLP 19.69 0.07 0.85 ± 0.02 0.85 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Linear SVM 19.39 0.15 0.69 ± 0.00 0.79 ± 0.01 0.71 ± 0.01 0.79 ± 0.01

AdaBoost 8.82 0.08 0.67 ± 0.02 0.74 ± 0.02 0.69 ± 0.02 0.78 ± 0.01

5s KNN 1.62 1.22 0.85 ± 0.01 0.92 ± 0.01 0.88 ± 0.01 0.91 ± 0.01

DT 3.89 0.08 0.75 ± 0.01 0.79 ± 0.02 0.77 ± 0.01 0.84 ± 0.01

RF 19.13 0.14 0.93 ± 0.01 0.88 ± 0.01 0.90 ± 0.01 0.94 ± 0.00

MLP 14.87 0.09 0.95 ± 0.00 0.95 ± 0.01 0.95 ± 0.00 0.97 ± 0.00

Linear SVM 44.61 0.20 0.75 ± 0.01 0.82 ± 0.01 0.77 ± 0.01 0.83 ± 0.01

AdaBoost 14.06 0.12 0.71 ± 0.01 0.78 ± 0.01 0.73 ± 0.01 0.80 ± 0.01

10s KNN 0.95 0.34 0.92 ± 0.02 0.96 ± 0.01 0.94 ± 0.02 0.96 ± 0.01

DT 1.57 0.05 0.87 ± 0.01 0.89 ± 0.01 0.88 ± 0.01 0.91 ± 0.01

RF 11.25 0.10 0.98 ± 0.00 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.00

MLP 7.74 0.07 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

Linear SVM 27.89 0.10 0.80 ± 0.02 0.87 ± 0.01 0.83 ± 0.02 0.86 ± 0.02

AdaBoost 8.87 0.08 0.79 ± 0.01 0.85 ± 0.01 0.81 ± 0.01 0.86 ± 0.00

20s KNN 1.10 0.35 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

DT 2.27 0.10 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01

RF 6.80 0.12 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

MLP 5.55 0.06 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Linear SVM 15.26 0.06 0.82 ± 0.03 0.89 ± 0.02 0.84 ± 0.03 0.87 ± 0.02

AdaBoost 5.06 0.08 0.85 ± 0.02 0.89 ± 0.01 0.87 ± 0.02 0.90 ± 0.01

F.2 Mobility

Table F.2 illustrates mobility context classification results of KNN, DT, RF, MLP,

Linear SVM, and AdaBoost with 50% and 1 second sliding windows of 2, 5, 10 and

20 seconds on imbalanced and oversampled data.
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Table F.2: The results for mobility classification using different models

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 50% Overlap

2s KNN 0.36 0.21 0.80 ± 0.02 0.61 ± 0.04 0.66 ± 0.05 0.95 ± 0.00

DT 0.84 0.06 0.66 ± 0.03 0.67 ± 0.03 0.66 ± 0.03 0.93 ± 0.01

RF 4.91 0.09 0.91 ± 0.04 0.61 ± 0.04 0.67 ± 0.05 0.96 ± 0.00

MLP 7.83 0.06 0.77 ± 0.04 0.58 ± 0.02 0.61 ± 0.02 0.95 ± 0.00

Linear SVM 0.96 0.07 0.47 ± 0.00 0.50 ± 0.00 0.49 ± 0.00 0.95 ± 0.00

AdaBoost 2.05 0.08 0.77 ± 0.03 0.61 ± 0.03 0.65 ± 0.03 0.95 ± 0.00

5s KNN 0.23 0.16 0.90 ± 0.02 0.81 ± 0.03 0.85 ± 0.02 0.96 ± 0.00

DT 0.22 0.04 0.72 ± 0.02 0.72 ± 0.03 0.72 ± 0.02 0.92 ± 0.01

RF 2.13 0.06 0.93 ± 0.02 0.71 ± 0.05 0.77 ± 0.05 0.95 ± 0.01

MLP 5.71 0.04 0.83 ± 0.04 0.76 ± 0.02 0.79 ± 0.03 0.95 ± 0.01

Linear SVM 1.76 0.04 0.61 ± 0.21 0.57 ± 0.10 0.58 ± 0.14 0.93 ± 0.01

AdaBoost 1.03 0.05 0.80 ± 0.02 0.69 ± 0.03 0.73 ± 0.03 0.94 ± 0.01

10s KNN 0.10 0.05 0.89 ± 0.01 0.82 ± 0.04 0.85 ± 0.02 0.95 ± 0.00

DT 0.08 0.02 0.76 ± 0.05 0.77 ± 0.07 0.77 ± 0.06 0.92 ± 0.02

RF 0.49 0.03 0.94 ± 0.02 0.81 ± 0.08 0.86 ± 0.07 0.96 ± 0.01

MLP 2.02 0.02 0.88 ± 0.02 0.84 ± 0.03 0.86 ± 0.02 0.95 ± 0.01

Linear SVM 0.55 0.01 0.84 ± 0.04 0.78 ± 0.04 0.81 ± 0.04 0.94 ± 0.01

AdaBoost 0.56 0.02 0.83 ± 0.06 0.79 ± 0.04 0.81 ± 0.04 0.94 ± 0.02

20s KNN 0.02 0.02 0.86 ± 0.07 0.81 ± 0.09 0.83 ± 0.08 0.94 ± 0.03

DT 0.04 0.01 0.82 ± 0.07 0.79 ± 0.03 0.80 ± 0.04 0.93 ± 0.02

RF 0.27 0.02 0.95 ± 0.03 0.78 ± 0.04 0.84 ± 0.04 0.95 ± 0.01

MLP 0.62 0.01 0.89 ± 0.04 0.84 ± 0.06 0.86 ± 0.05 0.95 ± 0.02

Linear SVM 0.09 0.01 0.83 ± 0.02 0.86 ± 0.08 0.84 ± 0.04 0.94 ± 0.01

AdaBoost 0.19 0.02 0.85 ± 0.08 0.82 ± 0.11 0.83 ± 0.09 0.94 ± 0.03

Imbalanced Data, 1s Overlap

2s KNN 0.36 0.21 0.80 ± 0.02 0.61 ± 0.04 0.66 ± 0.05 0.95 ± 0.00

DT 0.84 0.06 0.66 ± 0.03 0.67 ± 0.03 0.66 ± 0.03 0.93 ± 0.01

RF 4.91 0.09 0.91 ± 0.04 0.61 ± 0.04 0.67 ± 0.05 0.96 ± 0.00

MLP 7.83 0.06 0.77 ± 0.04 0.58 ± 0.02 0.61 ± 0.02 0.95 ± 0.00

Linear SVM 0.96 0.07 0.47 ± 0.00 0.50 ± 0.00 0.49 ± 0.00 0.95 ± 0.00

AdaBoost 2.05 0.08 0.77 ± 0.03 0.61 ± 0.03 0.65 ± 0.03 0.95 ± 0.00
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

5s KNN 0.90 0.69 0.92 ± 0.01 0.87 ± 0.01 0.89 ± 0.01 0.97 ± 0.00

DT 0.56 0.09 0.77 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.94 ± 0.00

RF 5.72 0.13 0.96 ± 0.01 0.79 ± 0.03 0.86 ± 0.02 0.97 ± 0.00

MLP 12.35 0.09 0.86 ± 0.04 0.78 ± 0.08 0.81 ± 0.07 0.95 ± 0.01

Linear SVM 4.43 0.10 0.53 ± 0.15 0.54 ± 0.09 0.53 ± 0.11 0.93 ± 0.01

AdaBoost 2.42 0.12 0.78 ± 0.03 0.66 ± 0.05 0.69 ± 0.05 0.94 ± 0.01

10s KNN 0.57 0.35 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.00

DT 0.60 0.07 0.88 ± 0.03 0.89 ± 0.04 0.88 ± 0.03 0.96 ± 0.01

RF 4.75 0.09 0.99 ± 0.01 0.89 ± 0.01 0.93 ± 0.01 0.98 ± 0.00

MLP 5.75 0.06 0.95 ± 0.07 0.94 ± 0.05 0.94 ± 0.06 0.98 ± 0.02

Linear SVM 5.25 0.06 0.79 ± 0.06 0.77 ± 0.05 0.77 ± 0.05 0.92 ± 0.02

AdaBoost 2.58 0.08 0.84 ± 0.04 0.78 ± 0.03 0.80 ± 0.03 0.94 ± 0.01

20s KNN 0.36 0.18 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00

DT 0.47 0.04 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.01 0.98 ± 0.00

RF 1.98 0.07 1.00 ± 0.00 0.97 ± 0.02 0.98 ± 0.01 0.99 ± 0.00

MLP 6.31 0.05 0.94 ± 0.01 0.92 ± 0.02 0.93 ± 0.01 0.97 ± 0.00

Linear SVM 4.09 0.04 0.87 ± 0.06 0.87 ± 0.04 0.87 ± 0.05 0.95 ± 0.02

AdaBoost 2.09 0.07 0.93 ± 0.04 0.90 ± 0.04 0.91 ± 0.04 0.97 ± 0.01

Oversampled Data, 1s Overlap

2s KNN 1.39 0.72 0.65 ± 0.01 0.86 ± 0.01 0.70 ± 0.01 0.90 ± 0.01

DT 2.12 0.06 0.61 ± 0.01 0.73 ± 0.01 0.64 ± 0.01 0.89 ± 0.01

RF 20.72 0.11 0.79 ± 0.02 0.72 ± 0.02 0.75 ± 0.01 0.96 ± 0.00

MLP 12.25 0.07 0.76 ± 0.02 0.75 ± 0.03 0.75 ± 0.03 0.95 ± 0.00

Linear SVM 30.93 0.12 0.59 ± 0.01 0.79 ± 0.02 0.61 ± 0.01 0.84 ± 0.01

AdaBoost 12.92 0.10 0.60 ± 0.00 0.77 ± 0.02 0.63 ± 0.01 0.86 ± 0.01

5s KNN 2.04 0.89 0.80 ± 0.01 0.95 ± 0.00 0.85 ± 0.01 0.95 ± 0.01

DT 4.05 0.08 0.75 ± 0.01 0.84 ± 0.02 0.78 ± 0.02 0.93 ± 0.00

RF 29.94 0.15 0.89 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.97 ± 0.00

MLP 14.19 0.11 0.93 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.98 ± 0.00

Linear SVM 47.36 0.18 0.67 ± 0.01 0.87 ± 0.02 0.72 ± 0.02 0.87 ± 0.01

AdaBoost 20.52 0.14 0.67 ± 0.01 0.84 ± 0.02 0.71 ± 0.02 0.88 ± 0.01

10s KNN 1.36 0.33 0.92 ± 0.04 0.98 ± 0.01 0.95 ± 0.02 0.98 ± 0.01

DT 2.97 0.06 0.87 ± 0.01 0.92 ± 0.01 0.89 ± 0.01 0.96 ± 0.00

RF 13.86 0.10 0.96 ± 0.01 0.95 ± 0.02 0.95 ± 0.01 0.98 ± 0.00

MLP 6.70 0.07 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.00
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Linear SVM 25.18 0.10 0.73 ± 0.02 0.90 ± 0.02 0.78 ± 0.02 0.89 ± 0.02

AdaBoost 8.87 0.09 0.76 ± 0.02 0.91 ± 0.01 0.81 ± 0.01 0.92 ± 0.01

20s KNN 0.89 0.11 0.95 ± 0.01 0.99 ± 0.01 0.97 ± 0.01 0.99 ± 0.00

DT 1.02 0.05 0.93 ± 0.02 0.96 ± 0.01 0.95 ± 0.01 0.98 ± 0.00

RF 7.11 0.07 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 1.00 ± 0.00

MLP 4.24 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Linear SVM 8.14 0.06 0.83 ± 0.01 0.95 ± 0.01 0.88 ± 0.00 0.94 ± 0.00

AdaBoost 6.80 0.06 0.88 ± 0.03 0.95 ± 0.01 0.91 ± 0.02 0.96 ± 0.01

F.3 Social Context

Table F.3 illustrates social context classification results of KNN, DT, RF, MLP, Linear

SVM, and AdaBoost with 50% and 1 second sliding windows of 2, 5, 10 and 20

seconds on imbalanced and oversampled data.

Table F.3: The results for social context classification using different models

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 50% Overlap

2s KNN 0.26 0.20 0.75 ± 0.01 0.70 ± 0.01 0.71 ± 0.01 0.77 ± 0.00

DT 1.01 0.06 0.70 ± 0.01 0.70 ± 0.01 0.70 ± 0.01 0.74 ± 0.01

RF 8.26 0.11 0.85 ± 0.01 0.71 ± 0.01 0.74 ± 0.01 0.80 ± 0.00

MLP 10.05 0.06 0.74 ± 0.01 0.66 ± 0.01 0.67 ± 0.01 0.75 ± 0.00

Linear SVM 36.11 0.09 0.81 ± 0.01 0.55 ± 0.00 0.50 ± 0.01 0.70 ± 0.00

AdaBoost 2.95 0.09 0.69 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.72 ± 0.00

5s KNN 0.29 0.22 0.80 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 0.80 ± 0.02

DT 0.26 0.03 0.69 ± 0.02 0.69 ± 0.03 0.69 ± 0.03 0.73 ± 0.02

RF 3.12 0.07 0.85 ± 0.01 0.76 ± 0.01 0.78 ± 0.01 0.83 ± 0.01

MLP 4.76 0.04 0.77 ± 0.02 0.67 ± 0.01 0.68 ± 0.01 0.76 ± 0.01
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Linear SVM 13.68 0.05 0.83 ± 0.02 0.59 ± 0.01 0.56 ± 0.02 0.72 ± 0.01

AdaBoost 0.73 0.05 0.75 ± 0.01 0.63 ± 0.01 0.64 ± 0.02 0.74 ± 0.01

10s KNN 0.08 0.04 0.85 ± 0.01 0.79 ± 0.02 0.81 ± 0.02 0.85 ± 0.01

DT 0.16 0.02 0.73 ± 0.03 0.73 ± 0.04 0.72 ± 0.03 0.76 ± 0.02

RF 1.18 0.03 0.86 ± 0.03 0.77 ± 0.03 0.79 ± 0.03 0.84 ± 0.02

MLP 1.90 0.02 0.80 ± 0.04 0.70 ± 0.03 0.71 ± 0.04 0.79 ± 0.02

Linear SVM 1.92 0.02 0.85 ± 0.02 0.63 ± 0.02 0.63 ± 0.03 0.76 ± 0.02

AdaBoost 0.28 0.02 0.80 ± 0.02 0.69 ± 0.03 0.71 ± 0.03 0.78 ± 0.02

20s KNN 0.03 0.02 0.83 ± 0.05 0.73 ± 0.04 0.75 ± 0.03 0.82 ± 0.02

DT 0.04 0.01 0.75 ± 0.02 0.74 ± 0.02 0.74 ± 0.01 0.79 ± 0.01

RF 0.44 0.02 0.88 ± 0.04 0.80 ± 0.04 0.83 ± 0.04 0.87 ± 0.02

MLP 0.65 0.01 0.83 ± 0.02 0.74 ± 0.02 0.76 ± 0.02 0.83 ± 0.01

Linear SVM 0.43 0.01 0.89 ± 0.03 0.69 ± 0.04 0.72 ± 0.05 0.82 ± 0.03

AdaBoost 0.24 0.02 0.79 ± 0.04 0.75 ± 0.05 0.77 ± 0.05 0.82 ± 0.03

Imbalanced Data, 1s Overlap

2s KNN 0.26 0.20 0.75 ± 0.01 0.70 ± 0.01 0.71 ± 0.01 0.77 ± 0.00

DT 1.01 0.06 0.70 ± 0.01 0.70 ± 0.01 0.70 ± 0.01 0.74 ± 0.01

RF 8.26 0.11 0.85 ± 0.01 0.71 ± 0.01 0.74 ± 0.01 0.80 ± 0.00

MLP 10.05 0.06 0.74 ± 0.01 0.66 ± 0.01 0.67 ± 0.01 0.75 ± 0.00

Linear SVM 36.11 0.09 0.81 ± 0.01 0.55 ± 0.00 0.50 ± 0.01 0.70 ± 0.00

AdaBoost 2.95 0.09 0.69 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.72 ± 0.00

5s KNN 0.72 0.73 0.87 ± 0.01 0.82 ± 0.01 0.84 ± 0.01 0.87 ± 0.01

DT 1.29 0.09 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.80 ± 0.01

RF 11.01 0.15 0.90 ± 0.01 0.81 ± 0.02 0.83 ± 0.01 0.87 ± 0.01

MLP 14.04 0.09 0.78 ± 0.01 0.73 ± 0.01 0.74 ± 0.01 0.79 ± 0.01

Linear SVM 33.41 0.13 0.84 ± 0.01 0.60 ± 0.01 0.59 ± 0.01 0.74 ± 0.01

AdaBoost 2.05 0.12 0.68 ± 0.02 0.63 ± 0.02 0.63 ± 0.02 0.72 ± 0.01

10s KNN 0.38 0.40 0.92 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.92 ± 0.01

DT 0.76 0.05 0.87 ± 0.02 0.87 ± 0.02 0.87 ± 0.02 0.89 ± 0.02

RF 6.80 0.11 0.95 ± 0.00 0.91 ± 0.01 0.92 ± 0.01 0.94 ± 0.01

MLP 10.31 0.06 0.94 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.94 ± 0.01

Linear SVM 12.46 0.08 0.84 ± 0.01 0.67 ± 0.01 0.69 ± 0.01 0.78 ± 0.00

AdaBoost 2.28 0.08 0.79 ± 0.01 0.74 ± 0.00 0.76 ± 0.01 0.80 ± 0.01
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

20s KNN 0.38 0.23 0.97 ± 0.00 0.96 ± 0.01 0.96 ± 0.00 0.97 ± 0.00

DT 0.62 0.04 0.94 ± 0.02 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01

RF 4.61 0.07 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.00 0.99 ± 0.00

MLP 6.93 0.05 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Linear SVM 7.42 0.05 0.79 ± 0.08 0.71 ± 0.03 0.73 ± 0.04 0.80 ± 0.03

AdaBoost 2.60 0.06 0.85 ± 0.02 0.81 ± 0.02 0.83 ± 0.02 0.86 ± 0.01

Oversampled Data, 1s Overlap

2s KNN 0.94 0.22 0.71 ± 0.01 0.72 ± 0.01 0.71 ± 0.01 0.73 ± 0.01

DT 2.22 0.06 0.67 ± 0.01 0.68 ± 0.01 0.68 ± 0.01 0.70 ± 0.01

RF 11.64 0.11 0.80 ± 0.01 0.77 ± 0.01 0.78 ± 0.01 0.82 ± 0.01

MLP 15.74 0.06 0.74 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

Linear SVM 16.73 0.13 0.61 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.65 ± 0.02

AdaBoost 3.97 0.09 0.63 ± 0.03 0.65 ± 0.03 0.63 ± 0.03 0.65 ± 0.03

5s KNN 1.77 0.74 0.84 ± 0.03 0.86 ± 0.04 0.85 ± 0.03 0.86 ± 0.03

DT 2.10 0.09 0.77 ± 0.02 0.79 ± 0.02 0.78 ± 0.02 0.80 ± 0.02

RF 17.60 0.15 0.91 ± 0.01 0.87 ± 0.01 0.89 ± 0.01 0.90 ± 0.01

MLP 25.37 0.09 0.88 ± 0.03 0.89 ± 0.02 0.88 ± 0.03 0.90 ± 0.02

Linear SVM 20.45 0.17 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.68 ± 0.01

AdaBoost 12.69 0.13 0.70 ± 0.01 0.72 ± 0.01 0.70 ± 0.01 0.72 ± 0.01

10s KNN 1.16 0.40 0.93 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01

DT 1.46 0.06 0.87 ± 0.01 0.88 ± 0.02 0.87 ± 0.02 0.89 ± 0.01

RF 9.28 0.10 0.97 ± 0.00 0.94 ± 0.01 0.95 ± 0.01 0.96 ± 0.00

MLP 15.91 0.06 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01

Linear SVM 14.30 0.11 0.68 ± 0.02 0.68 ± 0.01 0.68 ± 0.02 0.72 ± 0.02

AdaBoost 3.63 0.08 0.73 ± 0.02 0.75 ± 0.02 0.74 ± 0.02 0.76 ± 0.02

20s KNN 0.77 0.19 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00

DT 1.33 0.04 0.94 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01

RF 6.47 0.08 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

MLP 6.77 0.04 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Linear SVM 15.18 0.07 0.78 ± 0.06 0.82 ± 0.06 0.79 ± 0.06 0.82 ± 0.05

AdaBoost 4.86 0.06 0.83 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.86 ± 0.01
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F.4 Multitasking

Table F.4 illustrates multitasking context classification results of KNN, DT, RF, MLP,

Linear SVM, and AdaBoost with 50% and 1 second sliding windows of 2, 5, 10 and

20 seconds on imbalanced and oversampled data.

Table F.4: The results for multitasking classification using different models

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 50% Overlap

2s KNN 0.29 0.38 0.76 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

DT 0.80 0.06 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.66 ± 0.01

RF 8.42 0.11 0.80 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.77 ± 0.01

MLP 14.24 0.07 0.75 ± 0.05 0.74 ± 0.06 0.74 ± 0.06 0.76 ± 0.05

Linear SVM 12.25 0.14 0.70 ± 0.00 0.61 ± 0.00 0.60 ± 0.01 0.68 ± 0.00

AdaBoost 4.98 0.08 0.66 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.67 ± 0.01

5s KNN 0.25 0.17 0.78 ± 0.01 0.76 ± 0.02 0.76 ± 0.02 0.78 ± 0.02

DT 0.56 0.03 0.67 ± 0.02 0.67 ± 0.01 0.67 ± 0.02 0.68 ± 0.02

RF 4.41 0.07 0.80 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

MLP 5.91 0.04 0.74 ± 0.05 0.71 ± 0.07 0.71 ± 0.07 0.74 ± 0.06

Linear SVM 9.50 0.05 0.64 ± 0.02 0.59 ± 0.02 0.58 ± 0.02 0.64 ± 0.01

AdaBoost 0.88 0.05 0.67 ± 0.01 0.64 ± 0.02 0.64 ± 0.02 0.68 ± 0.01

10s KNN 0.05 0.04 0.73 ± 0.03 0.71 ± 0.03 0.72 ± 0.03 0.73 ± 0.02

DT 0.11 0.01 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.70 ± 0.01

RF 1.03 0.03 0.82 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.81 ± 0.01

MLP 1.83 0.01 0.71 ± 0.02 0.67 ± 0.02 0.67 ± 0.03 0.70 ± 0.02

Linear SVM 0.65 0.02 0.67 ± 0.03 0.63 ± 0.02 0.63 ± 0.02 0.67 ± 0.02

AdaBoost 0.26 0.02 0.67 ± 0.03 0.65 ± 0.02 0.65 ± 0.02 0.67 ± 0.02

20s KNN 0.02 0.02 0.84 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04

DT 0.03 0.01 0.71 ± 0.01 0.71 ± 0.02 0.71 ± 0.01 0.71 ± 0.01

RF 0.37 0.02 0.84 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.84 ± 0.02

MLP 0.94 0.01 0.85 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 0.86 ± 0.02

Linear SVM 0.18 0.01 0.69 ± 0.04 0.67 ± 0.03 0.67 ± 0.04 0.69 ± 0.03

AdaBoost 0.31 0.02 0.72 ± 0.05 0.72 ± 0.05 0.72 ± 0.05 0.72 ± 0.04
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Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 1s Overlap

2s KNN 0.29 0.38 0.76 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

DT 0.80 0.06 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.66 ± 0.01

RF 8.42 0.11 0.80 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.77 ± 0.01

MLP 14.24 0.07 0.75 ± 0.05 0.74 ± 0.06 0.74 ± 0.06 0.76 ± 0.05

Linear SVM 12.25 0.14 0.70 ± 0.00 0.61 ± 0.00 0.60 ± 0.01 0.68 ± 0.00

AdaBoost 4.98 0.08 0.66 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.67 ± 0.01

5s KNN 0.92 0.90 0.86 ± 0.00 0.85 ± 0.00 0.85 ± 0.00 0.86 ± 0.00

DT 0.94 0.08 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.75 ± 0.01

RF 11.62 0.16 0.86 ± 0.01 0.81 ± 0.01 0.82 ± 0.01 0.84 ± 0.01

MLP 21.05 0.10 0.87 ± 0.01 0.87 ± 0.00 0.87 ± 0.00 0.87 ± 0.00

Linear SVM 32.17 0.21 0.71 ± 0.01 0.67 ± 0.01 0.67 ± 0.02 0.70 ± 0.01

AdaBoost 4.82 0.11 0.68 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.68 ± 0.01

10s KNN 1.45 1.05 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

DT 1.20 0.06 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01

RF 9.74 0.18 0.94 ± 0.00 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01

MLP 12.93 0.08 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

Linear SVM 17.90 0.09 0.65 ± 0.02 0.62 ± 0.01 0.61 ± 0.01 0.65 ± 0.01

AdaBoost 1.04 0.08 0.72 ± 0.02 0.69 ± 0.01 0.70 ± 0.01 0.72 ± 0.01

20s KNN 0.39 0.22 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

DT 0.51 0.04 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01

RF 3.06 0.07 0.98 ± 0.02 0.97 ± 0.02 0.98 ± 0.02 0.98 ± 0.02

MLP 6.57 0.04 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Linear SVM 5.97 0.06 0.64 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.65 ± 0.01

AdaBoost 1.88 0.06 0.83 ± 0.01 0.82 ± 0.01 0.82 ± 0.01 0.83 ± 0.01

Oversampled Data, 1s Overlap

2s KNN 0.81 0.40 0.73 ± 0.01 0.75 ± 0.01 0.73 ± 0.01 0.74 ± 0.01

DT 1.75 0.05 0.64 ± 0.01 0.65 ± 0.01 0.64 ± 0.01 0.65 ± 0.01

RF 10.65 0.11 0.78 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.78 ± 0.01

MLP 19.90 0.07 0.77 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.78 ± 0.02

Linear SVM 16.66 0.15 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.64 ± 0.01

AdaBoost 7.44 0.09 0.63 ± 0.01 0.64 ± 0.01 0.63 ± 0.01 0.64 ± 0.01

Continued on next page

232



Table F.4 – Continued from previous page

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

5s KNN 1.89 1.22 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01

DT 2.93 0.08 0.72 ± 0.01 0.73 ± 0.01 0.72 ± 0.01 0.73 ± 0.01

RF 15.08 0.15 0.85 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.85 ± 0.01

MLP 27.33 0.10 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

Linear SVM 34.05 0.25 0.66 ± 0.03 0.65 ± 0.03 0.65 ± 0.04 0.67 ± 0.03

AdaBoost 8.24 0.12 0.66 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 0.67 ± 0.01

10s KNN 1.44 0.44 0.94 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.95 ± 0.02

DT 1.61 0.06 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01

RF 8.77 0.10 0.95 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

MLP 11.77 0.08 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

Linear SVM 9.52 0.10 0.61 ± 0.02 0.61 ± 0.02 0.61 ± 0.02 0.63 ± 0.02

AdaBoost 1.96 0.07 0.70 ± 0.02 0.69 ± 0.01 0.70 ± 0.01 0.71 ± 0.01

20s KNN 0.85 0.22 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01

DT 1.01 0.04 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01

RF 5.52 0.07 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.00

MLP 7.47 0.05 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06

Linear SVM 8.65 0.05 0.69 ± 0.07 0.69 ± 0.07 0.69 ± 0.07 0.69 ± 0.07

AdaBoost 3.04 0.06 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.83 ± 0.02

F.5 Distractions

Table F.5 illustrates distraction context classification results of KNN, DT, RF, MLP,

Linear SVM, and AdaBoost with 50% and 1 second sliding windows of 2, 5, 10 and

20 seconds on imbalanced and oversampled data.
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Table F.5: The results for distraction classification using different models

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

Imbalanced Data, 50% Overlap

2s KNN 0.25 0.24 0.78 ± 0.02 0.63 ± 0.02 0.66 ± 0.02 0.84 ± 0.01

DT 1.07 0.06 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.77 ± 0.01

RF 6.70 0.10 0.91 ± 0.01 0.65 ± 0.01 0.69 ± 0.02 0.86 ± 0.01

MLP 8.24 0.06 0.76 ± 0.04 0.57 ± 0.01 0.58 ± 0.01 0.82 ± 0.01

Linear SVM 3.86 0.08 0.40 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.80 ± 0.00

AdaBoost 1.24 0.08 0.73 ± 0.03 0.54 ± 0.01 0.53 ± 0.02 0.81 ± 0.00

5s KNN 0.24 0.24 0.82 ± 0.02 0.68 ± 0.02 0.72 ± 0.02 0.86 ± 0.01

DT 0.30 0.04 0.65 ± 0.01 0.66 ± 0.02 0.65 ± 0.02 0.78 ± 0.01

RF 3.89 0.06 0.91 ± 0.01 0.67 ± 0.01 0.72 ± 0.01 0.87 ± 0.01

MLP 4.58 0.03 0.75 ± 0.03 0.58 ± 0.02 0.59 ± 0.03 0.82 ± 0.01

Linear SVM 1.73 0.04 0.40 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.81 ± 0.00

AdaBoost 0.68 0.05 0.78 ± 0.03 0.56 ± 0.02 0.56 ± 0.04 0.82 ± 0.01

10s KNN 0.11 0.04 0.81 ± 0.04 0.68 ± 0.01 0.71 ± 0.02 0.86 ± 0.01

DT 0.16 0.02 0.65 ± 0.02 0.66 ± 0.02 0.66 ± 0.02 0.78 ± 0.02

RF 1.09 0.03 0.87 ± 0.03 0.65 ± 0.02 0.69 ± 0.03 0.86 ± 0.01

MLP 1.85 0.02 0.82 ± 0.05 0.65 ± 0.08 0.67 ± 0.08 0.85 ± 0.02

Linear SVM 3.89 0.02 0.84 ± 0.02 0.59 ± 0.03 0.60 ± 0.04 0.84 ± 0.01

AdaBoost 0.24 0.03 0.70 ± 0.07 0.57 ± 0.02 0.58 ± 0.03 0.82 ± 0.01

20s KNN 0.02 0.02 0.86 ± 0.05 0.65 ± 0.03 0.69 ± 0.03 0.87 ± 0.01

DT 0.04 0.01 0.66 ± 0.02 0.66 ± 0.04 0.66 ± 0.04 0.81 ± 0.02

RF 0.36 0.02 0.90 ± 0.04 0.70 ± 0.06 0.74 ± 0.06 0.89 ± 0.02

MLP 0.77 0.01 0.87 ± 0.03 0.75 ± 0.08 0.78 ± 0.08 0.90 ± 0.03

Linear SVM 0.12 0.01 0.57 ± 0.21 0.55 ± 0.07 0.54 ± 0.12 0.84 ± 0.02

AdaBoost 0.17 0.02 0.71 ± 0.09 0.62 ± 0.07 0.64 ± 0.09 0.84 ± 0.03

Imbalanced Data, 1s Overlap

2s KNN 0.25 0.24 0.78 ± 0.02 0.63 ± 0.02 0.66 ± 0.02 0.84 ± 0.01

DT 1.07 0.06 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.77 ± 0.01

RF 6.70 0.10 0.91 ± 0.01 0.65 ± 0.01 0.69 ± 0.02 0.86 ± 0.01

MLP 8.24 0.06 0.76 ± 0.04 0.57 ± 0.01 0.58 ± 0.01 0.82 ± 0.01

Linear SVM 3.86 0.08 0.40 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.80 ± 0.00

AdaBoost 1.24 0.08 0.73 ± 0.03 0.54 ± 0.01 0.53 ± 0.02 0.81 ± 0.00

Continued on next page
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Table F.5 – Continued from previous page

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

5s KNN 0.38 0.29 0.84 ± 0.01 0.73 ± 0.01 0.76 ± 0.01 0.88 ± 0.00

DT 0.86 0.07 0.75 ± 0.02 0.75 ± 0.01 0.75 ± 0.01 0.84 ± 0.01

RF 11.18 0.14 0.94 ± 0.00 0.73 ± 0.01 0.78 ± 0.01 0.89 ± 0.01

MLP 13.87 0.08 0.81 ± 0.04 0.65 ± 0.00 0.68 ± 0.01 0.85 ± 0.01

Linear SVM 3.34 0.14 0.40 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.81 ± 0.00

AdaBoost 1.54 0.10 0.74 ± 0.05 0.53 ± 0.01 0.51 ± 0.02 0.81 ± 0.01

10s KNN 0.50 0.37 0.93 ± 0.01 0.84 ± 0.02 0.88 ± 0.02 0.93 ± 0.01

DT 0.93 0.05 0.82 ± 0.02 0.83 ± 0.02 0.82 ± 0.02 0.89 ± 0.01

RF 7.64 0.10 0.96 ± 0.00 0.82 ± 0.01 0.87 ± 0.01 0.93 ± 0.01

MLP 9.67 0.05 0.95 ± 0.06 0.91 ± 0.13 0.92 ± 0.11 0.96 ± 0.05

Linear SVM 1.47 0.07 0.41 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.82 ± 0.00

AdaBoost 1.07 0.07 0.75 ± 0.03 0.57 ± 0.01 0.59 ± 0.02 0.83 ± 0.00

20s KNN 0.35 0.15 0.93 ± 0.03 0.90 ± 0.02 0.91 ± 0.03 0.95 ± 0.01

DT 0.47 0.04 0.92 ± 0.01 0.92 ± 0.02 0.92 ± 0.02 0.95 ± 0.01

RF 4.27 0.07 0.99 ± 0.00 0.95 ± 0.01 0.97 ± 0.00 0.98 ± 0.00

MLP 4.62 0.04 0.98 ± 0.04 0.95 ± 0.09 0.96 ± 0.07 0.98 ± 0.04

Linear SVM 1.21 0.04 0.42 ± 0.00 0.50 ± 0.00 0.45 ± 0.00 0.83 ± 0.00

AdaBoost 0.73 0.05 0.78 ± 0.03 0.65 ± 0.01 0.69 ± 0.01 0.86 ± 0.01

Oversampled Data, 1s Overlap

2s KNN 0.78 0.24 0.65 ± 0.02 0.72 ± 0.02 0.66 ± 0.02 0.73 ± 0.02

DT 2.88 0.06 0.64 ± 0.02 0.67 ± 0.02 0.65 ± 0.02 0.74 ± 0.02

RF 15.46 0.11 0.83 ± 0.02 0.73 ± 0.02 0.77 ± 0.02 0.87 ± 0.01

MLP 26.84 0.07 0.77 ± 0.02 0.77 ± 0.01 0.77 ± 0.01 0.86 ± 0.01

Linear SVM 34.52 0.19 0.59 ± 0.01 0.63 ± 0.01 0.58 ± 0.01 0.65 ± 0.01

AdaBoost 8.94 0.10 0.60 ± 0.01 0.65 ± 0.01 0.60 ± 0.02 0.67 ± 0.02

5s KNN 1.50 1.21 0.80 ± 0.03 0.88 ± 0.03 0.83 ± 0.03 0.88 ± 0.03

DT 3.78 0.07 0.72 ± 0.03 0.77 ± 0.03 0.74 ± 0.03 0.82 ± 0.02

RF 22.63 0.14 0.93 ± 0.01 0.84 ± 0.00 0.88 ± 0.00 0.93 ± 0.00

MLP 29.96 0.10 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.93 ± 0.00

Linear SVM 60.43 0.35 0.63 ± 0.01 0.70 ± 0.01 0.63 ± 0.01 0.70 ± 0.01

AdaBoost 17.33 0.13 0.62 ± 0.00 0.68 ± 0.01 0.63 ± 0.01 0.71 ± 0.01

Continued on next page
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Table F.5 – Continued from previous page

Win. Method Fit Time Score Time Precision Recall F1 Scrore Accuracy

10s KNN 1.02 0.49 0.90 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 0.95 ± 0.01

DT 2.84 0.05 0.78 ± 0.02 0.82 ± 0.02 0.80 ± 0.02 0.87 ± 0.01

RF 13.24 0.09 0.97 ± 0.00 0.92 ± 0.01 0.94 ± 0.01 0.97 ± 0.00

MLP 10.62 0.06 0.97 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.98 ± 0.00

Linear SVM 31.60 0.15 0.67 ± 0.01 0.75 ± 0.02 0.68 ± 0.01 0.75 ± 0.01

AdaBoost 11.34 0.08 0.66 ± 0.01 0.74 ± 0.01 0.68 ± 0.01 0.76 ± 0.01

20s KNN 0.79 0.22 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

DT 1.19 0.04 0.92 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.96 ± 0.01

RF 7.06 0.07 1.00 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00

MLP 6.09 0.04 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

Linear SVM 14.30 0.07 0.74 ± 0.03 0.84 ± 0.02 0.77 ± 0.03 0.83 ± 0.03

AdaBoost 7.22 0.06 0.78 ± 0.01 0.87 ± 0.02 0.81 ± 0.02 0.88 ± 0.01
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3. Elgin Akpinar, Yeliz Yeşilada, and Selim Temizer, “Ability and Context Based

Adaptive System: A Proposal for Machine Learning Approach”, in Proceed-

ings of the CHI’19 Workshop: Addressing the Challenges of Situationally-

Induced Impairments and Disabilities in Mobile Interaction, 8 pages, 2019.

4. Carlos Duarte, Ana Salvado, M. Elgin Akpinar, Yeliz Yeşilada, and Luís Car-
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