
A MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED
FEATURE SELECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İLYAS ALPER ŞENER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

OPERATIONAL RESEARCH

AUGUST 2022

Approval of the thesis:

A MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED
FEATURE SELECTION

submitted by İLYAS ALPER ŞENER in partial fulfillment of the requirements for
the degree of Master of Science in Operational Research Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Sinan Gürel
Head of Department, Operational Research

Prof. Dr. Cem İyigün
Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Sinan Gürel
Industrial Engineering, METU

Prof. Dr. Cem İyigün
Industrial Engineering, METU

Prof. Dr. Esra Karasakal
Industrial Engineering, METU

Assoc. Prof. Dr. Yeşim Aydın Son
Health Informatics, METU

Assist. Prof. Dr. Kamyar Kargar Mohammadinezhad
Industrial Engineering, TED University

Date: 23.08.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İlyas Alper Şener

Signature :

iv

ABSTRACT

A MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED
FEATURE SELECTION

Şener, İlyas Alper

M.S., Department of Operational Research

Supervisor: Prof. Dr. Cem İyigün

August 2022, 111 pages

Clustering is a well known unsupervised learning method which aims to group the

similar data points and separate the dissimilar ones. Data sets that are subject to

clustering are mostly high dimensional and these dimensions include relevant and re-

dundant features. Therefore, selection of related features is a significant problem to

obtain successful clusters. In this study, it is considered that relevant features for each

cluster can be varied as each cluster in a data set is grouped by different set of features,

so the problem is named as clustering with cluster based feature selection problem.

We approach the problem as a center based clustering and three tasks which are se-

lection of relevant features, decision of cluster centroid locations, and assignment of

data points to the clusters are considered. The problem is combinatorially NP-Hard

and mathematical models are not capable to solve large-size problems. Moreover,

developed heuristics in the literature obtain results with high variance. Therefore,

a metaheuristic framework which follows the problem characteristics is proposed. A

memetic algorithm that integrates a genetic approach and neighborhood search is pro-

posed to solve data sets with high number of data points. A modified version of this

algorithm is also developed for high dimensional data sets. Proposed algorithms have

v

been tested on different problem instances with different size and dimensions. Both

simulated and real data sets are utilized for the tests. Experimental results have shown

that the proposed approach obtains stable results with high accuracy and outperforms

the state of the art.

Keywords: Metaheuristic approach, Memetic algorithm, Center Based Clustering,

Feature selection, Rectilinear distance

vi

ÖZ

KÜME ÖZGÜ ÖZNİTELİK SEÇİMİ İLE KÜMELEME PROBLEMİNE
MEMETİK ALGORİTMA YAKLAŞIMI

Şener, İlyas Alper

Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi: Prof. Dr. Cem İyigün

Ağustos 2022 , 111 sayfa

Kümeleme metodu benzer veri noktalarını aynı gruba, birbirine benzemeyen veri nok-

talarını ise ayrı gruplara yerleştirmeyi hedefleyen yaygın kullanılan bir güdümsüz

öğrenme metodudur. Kümeleme metoduna bağlı olan veri noktaları çoğunlukla yük-

sek boyutlu verilerden oluşmaktadır ve bu veriler ayırt edici ve alakasız öznitelikler

içermektedir. Bu nedenle, başarılı bir kümeleme yapabilmek adına ayırt edici özni-

teliklerin seçilmesi de önemli bir problem arz etmektedir. Bu çalışmada ayırt edici

özelliklerin her bir küme için değişken olabileceği ve her bir küme gruplara ayrı-

lırken farklı öznitelikleri kullanacağı öngörülmüştür. Dolayısıyla odaklamılan prob-

lem küme özgü öznitelik seçimi ile kümeleme problemi olarak adlandırılmıştır. Prob-

lemde kümelemerin bir merkez etrafında oluştuğu yaklaşımıyla, ayırt edici öznitelik-

lerin seçilmesi, küme merkezlerinin belilenmesi ve veri noktalarının kümelere atan-

ması görevleri bir arada değerlendirilmektedir. Bu problem kombinatoryal NP-hard

bir problemdir ve matematiksel modeller büyük ölçekli problemleri çözmekte yeter-

siz kalmaktadır. Ayrıca, literatürde geliştirilmiş olan sezgisel metodlar yüksek de-

ğişkenliğe sahip sonuçlar elde etmektedir. Bu nedenle, problemin çözülmesi adına

vii

probleme odaklı geliştirilen bir metasezgisel yöntem izlenmiştir. Yüksek sayıda veri

noktasına sahip veri setlerini kümelemek adına genetik algoritma ve komşuluk arama

metodlarını içeren bir memetik algoritma önerilmiştir. Ayrıca, yüksek boyutlu veri

setleri üzerinde başarılı sonuçlar elde etmek adına güncellenmiş bir memetik algo-

ritma yaklaşımı geliştirilmiştir. Önerilen algoritmalar farklı problem büyüklüklerine

ve boyutlarına sahip olan farklı veri örnekleri üzerinde test edilmiştir. Bu testler hem

gerçek hem de yapay olarak oluşturulmuş veri setleri üzerinde uygulanmıştır. Yapılan

testler sonucunda geliştirilen algoritmaların mevcut çalışmalardan üstün performans

gösterdiği, ayrıca yüksek başarı ve düşük verimliliğe sahip sonuçlara ulaştığı gözlen-

miştir.

Anahtar Kelimeler: Metasezgisel yaklaşım, Memetik algoritma, Merkeze bağlı kü-

meleme, Öznitelik seçimi, Rektilineer uzaklık

viii

To my dear family

ix

ACKNOWLEDGMENTS

First of all, I want to express my sincere thanks to my thesis advisor, Cem İyigun. I

have learned a lot from him during my graduate studies about academia and life. It

is certainly an honor to work with him and I am grateful to him for his support and

guidance throughout this study.

I would also like to thank the members of the examining committee Prof. Dr. Sinan

Gürel, Prof. Dr. Esra Karasakal, Assoc. Prof. Dr. Yeşim Aydın Son and Assist. Prof.

Dr. Kamyar Kargar for their time in reviewing this work and valuable comments.

I want to thank my colleague Dilay Özkan for her support and friendship throughout

my graduate studies in METU.

No words can be enough to thank my better half Dilan, who always shows her support

to me. I always feel her endless love and patience when I was stuck.

I thank to my mother Fatma, and father Necdet for always believing in me and ex-

pressing their support every time whatever I choose to do in my life.

Finally, I would like to thank TÜBİTAK for financially supporting me through the

2210-A scholarship program during my graduate education.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ALGORITHMS . xix

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 7

2.1 Clustering Problem . 7

2.1.1 Hierarchical Clustering . 9

2.1.2 Partitional Clustering . 10

2.2 Feature Selection in Clustering Problems 11

2.3 Metaheuristic Algorithms for Clustering 13

2.4 Metaheuristic Algorithms for Feature Selection in Clustering 15

3 PROBLEM DEFINITION . 19

3.1 Problem Statement . 19

xi

3.2 Mathematical Model of the Problem 22

3.2.1 Sets and Model Parameters 22

3.2.2 Decision Variables . 22

3.2.3 Nonlinear Mixed Integer Model 23

3.2.4 Linearized Mixed Integer Model 24

4 MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED
FEATURE SELECTION (CCBFS) . 29

4.1 Overview of CCBFS . 29

4.2 Description of CCBFS Algorithm 31

4.2.1 Chromosome Representation 32

4.2.2 Initialization . 35

4.2.3 Uniform Crossover Operator 36

4.2.4 Mutation . 39

4.2.4.1 Mutation - Type 1 . 39

4.2.4.2 Mutation - Type 2 . 41

4.2.4.3 Mutation - Type 3 . 42

4.2.5 Fitness Function . 43

4.2.6 Neighborhood Search . 44

4.2.7 Selection of the Next Generation 45

5 COMPUTATIONAL RESULTS OF CCBFS 47

5.1 Simulated Data Sets . 47

5.2 Performance Measures . 49

5.2.1 Performance Measures on Objective Function 49

xii

5.2.2 Performance Measures on Clustering 50

5.3 Parameter Setting for CCBFS Algorithm 51

5.4 Computational Results for Simulated Data Sets 52

5.5 Comparison of Computational Results with Benchmark Algorithms . 63

6 MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED
FEATURE SELECTION FOR HIGH DIMENSIONAL DATA SETS (CCBFS-
H) . 69

6.1 Overview of CCBFS-H . 69

6.2 Description of CCBFS-H Algorithm 71

6.2.1 Chromosome Representation 71

6.2.2 Initialization . 73

6.2.3 Uniform Crossover Operator 73

6.2.4 Mutation Operator . 76

6.2.5 Fitness Function . 78

6.2.6 Neighborhood Search . 79

6.2.7 Selection of the Next Generation 80

7 COMPUTATIONAL RESULTS OF CCBFS-H 81

7.1 Simulated Data Sets . 81

7.2 Performance Measures and Parameter Settings 82

7.3 Computational Results for Simulated Data Sets 84

7.4 Computational Results for Benchmark Data Sets 89

8 CONCLUSIONS . 93

REFERENCES . 97

xiii

APPENDICES

A EXPERIMENTAL RESULTS OF THE CCBFS-H ALGORITHM 103

B RESULTS OF THE EXPERIMENTS CONDUCTED DURING ALGO-
RITHM DEVELOPMENT . 107

xiv

LIST OF TABLES

TABLES

Table 3.1 Model Parameters . 23

Table 3.2 Number of Constraints and Variables of the Linearized Model 25

Table 4.1 Solution Space on Various Values of p, n, m and q 35

Table 5.1 Details of the Simulated Data Sets 48

Table 5.2 Distributions of Redundant Features 48

Table 5.3 Distributions of Redundant Features 48

Table 5.4 Parameter Setting of the CCBFS Algorithm 51

Table 5.5 Comparison for Ratio of Initial Generation by Type 1, 2 and 3 . . . 52

Table 5.6 Simulation Results of CCBFS Algorithm for p = 2 53

Table 5.7 Simulation Results of CCBFS Algorithm for p = 3 55

Table 5.8 Simulation Results of CCBFS Algorithm for p = 4 57

Table 5.9 Summary of Performance Measures on Simulated Data Sets 62

Table 5.10 Summary of Result Comparison between CCBFS Algorithm and

Öz (2019) [35] . 64

Table 5.11 Comparison of the Results for CCBFS Algorithm and Öz (2019)

[35] on p = 2 . 66

xv

Table 5.12 Comparison of the Results for CCBFS Algorithm and Öz (2019)

[35] on p = 3 . 67

Table 5.13 Comparison of the Results for CCBFS Algorithm and Öz (2019)

[35] p = 4 . 68

Table 6.1 Solution Space on Various Values of n, m and q 73

Table 7.1 Details of the Simulated Data Sets 82

Table 7.2 Contingency Matrix for Partitions A and B 82

Table 7.3 Parameter Setting of the CCBFS-H Algorithm 84

Table 7.4 Results of CCBFS-H Algorithm on High Dimensional Data 85

Table 7.5 Correctly Classified Data Points of Best, Worst and Average Solu-

tions on CCBFS-H and Clustering with Feature Selection Algorithms . . . 90

Table 7.6 Features selected by CCBFS-H and clustering with feature selection

algorithms . 91

Table A.1 Simulation Results of CCBFS-H Algorithm with n = 100, p = 2 and

m = 100 . 103

Table A.2 Simulation Results of CCBFS-H Algorithm with n = 100, p = 2

and m = 300 . 104

Table A.3 Simulation Results of CCBFS-H Algorithm with n = 100, p = 2

and m = 500 . 105

Table B.1 Comparison of Best, Worst and Number of Best Solution Results

on CCBFS Algorithm with and without Neighborhood Search 107

Table B.2 Comparison of Best, Worst and Number of Best Solution Results

on CCBFS - H Algorithm with and without Second Neighborhood Search 110

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Clustering Problems with Feature Selection 3

Figure 3.1 Representation of the Clustering with Cluster Based Feature Se-

lection Problem . 20

Figure 4.1 Flowchart of the CCBFS Algorithm 30

Figure 4.2 Chromosome representation . 33

Figure 4.3 An example for chromosome representation 34

Figure 4.4 Undesirable chromosome split 38

Figure 4.5 Desirable chromosome split . 38

Figure 4.6 Uniform Crossover Operator to Create First Two Offsprings . . . 38

Figure 4.7 Uniform Crossover Operator to Create Last Two Offsprings . . . 39

Figure 4.8 An example for Mutation - Type 1 41

Figure 4.9 An example for Mutation - Type 2 42

Figure 4.10 An example for Mutation - Type 3 42

Figure 5.1 Best and Worst Performances of CCBFS Algorithm vs. Zc . . . 61

Figure 6.1 Flowchart of the CCBFS-H Algorithm 70

Figure 6.2 Chromosome Representation of CCBFS-H 72

xvii

Figure 6.3 Chromosome Representation of CCBFS-H 72

Figure 6.4 Uniform Crossover Operator for CCBFS-H 74

Figure 6.5 An example for Crossover Exception I 75

Figure 6.6 An example for Crossover Exception II 75

Figure 6.7 An example for Mutation in CCBFS-H Algorithm 76

Figure 7.1 Results of ARI and Correctly Selected Features for Different

Number of Selected Features, p = 2, n = 100 88

Figure 7.2 Comparison of CCBFS-H and Clustering with Feature Selection

on Correct Classification . 92

Figure B.1 Development of the Fitness Value with respect to Number of

Generations for 4 Data Instances . 111

xviii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 CCBFS Algorithm . 32

Algorithm 2 Creation of the Initial Population 37

Algorithm 3 Uniform Crossover Operation 40

Algorithm 4 Mutation Operation . 43

Algorithm 5 Fitness Calculation . 44

Algorithm 6 Neighborhood Search 1 . 46

Algorithm 7 Selection of the Next Generation 46

Algorithm 8 Uniform Crossover Operation for CCBFS-H 77

Algorithm 9 Mutation Operation for CCBFS-H 78

Algorithm 10 Fitness Calculation for CCBFS-H 79

Algorithm 11 Neighborhood Search 2 for CCBFS-H 79

xix

xx

CHAPTER 1

INTRODUCTION

Massive quantities of data is generated in the recent years in line with developments

in different technologies. Moreover, data generation is still in an increasing trend so

that more data is created in each year. Higher number of data might be considered as

a useful resource. However, handling of these data can cause problems as well since it

creates difficult problems to solve, and it might be costly in terms of duration. In this

environment, data mining methods have been developed in order to extract valuable

information from a data set within shorter durations.

Problems in data mining mainly divided into two categories as supervised learning

and unsupervised learning. In supervised learning, objects are labeled a priori, and

these labels are utilized to train algorithms. Regression and classification algorithms

are the most known ones in supervised learning.

On the other hand, unsupervised learning methods deal with data sets including unla-

beled objects and aim to deduce meaningful insights from these data sets. Clustering

is the most known unsupervised learning method in the literature which aims to group

similar objects in clusters and separate dissimilar objects to different clusters.

In the literature, clustering methods are mainly divided into two categories which are

hierarchical and partitional clustering. In hierarchical clustering, data set is organized

in an hierarchical structure through iterations. It enables to create different numbers

of clusters due to its dendrogram structure. However, merging or splitting of an hi-

erarchical structure is not possible so that an incorrect decision in previous iterations

cannot be fixed and it may converge to an undesirable clustering result. Partitional

clustering methods aim to find cluster centroids that groups similar objects in the

1

same groups. Assignments in partitional clustering can be done through either soft

or hard partitioning. In soft clustering, data points are assigned to the clusters with

a probability. That is, a data point can belong to more than one cluster. However,

in hard clustering an object becomes a member of one cluster only. The main draw-

back of partitional clustering is the number of clusters that defines the data set is not

known.

Clustering problem has some characteristics that are crucial to consider. Similarity

measure is one of them since it directly affects the results of objective function. So

that, all the procedures are identified according to selected similarity measure. One

of the similarity measures is the distance between data points. Objects closer to each

other can be considered as similar. That is, the larger the distance between objects, the

more dissimilar they are. To calculate the distance between data points, Rectilinear

and Euclidean distances are commonly used metrics in literature.

Determination of the number of clusters is another important decision to make, espe-

cially in partitional clustering methods. Since clustering aims to group similar objects

and to separate dissimilar ones, number of clusters has notable effects on the results.

Another characteristic that should be considered is to decide on the features to be

utilized. Some of the features may not contribute to describe the data at all. In fact,

some features may even adversely affect the cluster quality. These features are defined

as masking variables, and differentiating them from true variables is substantial [5].

In such cases, these attributes should be eliminated so that the clustering algorithm

yields better results. Thus, when clustering is applied, relevant features should be

selected. In other words, dimensionality can be reduced.

In this study, we have worked three types of clustering which are visualized in Figure

1.1. Figure 1.1 (a) represents the clustering with cluster based feature selection prob-

lem. In this problem hard partitioning is applied so that each data point is assigned

to exactly one cluster. Moreover, selected features might be different for clusters and

some of them may not be selected at all. Figure 1.1 (b) represents a subset of the

clustering with cluster based feature selection problem. Here, all clusters must select

the same features. Lastly, Figure 1.1 (c) represents a variation of (a). In this structure,

we have faced with an high dimensional data set which includes more features than

2

(a) Clustering with

Cluster Based Fea-

ture Selection

(b) Clustering with

Feature Selection

(c) Clustering with Cluster Based Fea-

ture Selection in High Dimensional Data

Figure 1.1: Clustering Problems with Feature Selection

the data points.

Clustering with feature selection problem can be modeled as a nonlinear mixed inte-

ger model. However, the model is classified as NP-hard so that optimization models

cannot provide convenient clusters within reasonable durations. Thus, various heuris-

tic methods have developed for clustering problems in the literature.

We propose a metaheuristic framework in order to obtain successful clusters from

a data set within reasonable durations. The proposed algorithm aims to minimize

within-cluster distance by choosing cluster centroids, assignment of data points and

selecting relevant features simultaneously.

Two memetic algorithms are developed in this study which focus on clustering with

cluster based feature selection problem. The first memetic algorithm is developed to

generate clusters on data sets that include high number of objects. In this algorithm,

3

each feasible solution is represented by a chromosome which includes the information

of cluster centroids and feature selection. When the centroids and selected features

are known, data assignment becomes a trivial problem that includes calculation of

distances to centroids. Therefore, chromosome representation reduces the problem

space significantly. Although genetic algorithm is able to find proper solutions, it

has a deficiency on finding local minima. Hence, a neighborhood search algorithm is

added in order to increase exploitation capabilities.

Although initial algorithm obtains successful clustering results for data sets with high

number of objects, it has problem space limitations on high dimensional data sets.

Therefore, a novel algorithm is developed considering high dimensional data sets.

The most fundamental alteration in this algorithm is the chromosome representation

in which chromosomes stores the information of cluster centroids and assignments.

When the centroid and assignment information for each cluster is known, feature

selection becomes an easy problem. In consideration of created clusters and their

centroids, all features can be sorted by distance and the ones that gives the least dis-

tances will be selected as relevant features. Since information of selected features is

neither stored in chromosomes nor added into search process, increasing number of

features does not have a major effect on problem space. Thus, the updated algorithm

is able obtain successful results on high dimensional data sets.

Finally, benefits of cluster based feature selection structure is analyzed. Data sets in

bio-informatics domain generally consists of high number of features, and clusters

may be grouped by different relevant feature sets. Therefore, we obtain the results

of clustering with cluster based feature selection on the Wisconsin Diagnostic Breast

Cancer data set. Then, these results are compared with the clustering problem, which

selects same feature set for all clusters.

In this thesis, our contributions are as follows:

• We propose a unified metaheuristic framework for three different clustering

problems mentioned above.

• We propose a memetic algorithm for the clustering with cluster based feature

selection problem. The metaheuristic algorithm solves both clustering and clus-

4

ter based feature selection problems simultaneously.

• We also develop another memetic algorithm that obtains compelling results on

high dimensional data sets.

• We compare the clustering with cluster based feature selection, and clustering

with feature selection problems. We show that choosing features for each clus-

ter separately obtains better results.

The rest of this study is organized as follows. A background information on cluster-

ing techniques is given and literature related with proposed algorithm is reviewed in

Chapter 2. In Chapter 3, we give the problem definition and introduce a two math-

ematical models to represent the problem. The proposed memetic algorithm is ex-

plained in detail in Chapter 4. Subsequently, experimental result on proposed CCBFS

algorithm is reported in Chapter 5. In Chapter 6, memetic algorithm is updated to

work well with high dimensional data sets and details of the CCBFS-H algorithm is

explained. Chapter 7 presents and discusses the experimental results of CCBFS-H al-

gorithm. Finally, main findings of this study and future research directions are given

in Chapter 8.

5

6

CHAPTER 2

LITERATURE REVIEW

Clustering is a well-known problem for various objectives in the literature, since

grouping of objects is required to deduce meaningful information from a data set.

The main purpose of clustering is to group unlabeled data into distinct clusters such

that objects in each cluster should possess similar attributes. At the same time, objects

that are dissimilar to each other should be separated into different groups [14].

In this chapter, initially clustering problem is defined and two solution approaches of

clustering is introduced in Section 2.1. Subsequently, we briefly explain feature selec-

tion methods in clustering problems in Section 2.2. In 2.3, we discuss metaheuristic

algorithms that are proposed in the literature. Then, developed metaheuristic meth-

ods for feature selection problems is introduced in Section 2.4. Finally, literature on

clustering of data points with feature selection will be presented.

2.1 Clustering Problem

Unsupervised learning methods aim to group similar data points in different clusters.

However, in the unsupervised learning, data has not been labeled, so that it is hard

to group data without prior knowledge. Therefore, these methods aim to find mean-

ingful relationships among objects or features from a data set. In brief, unsupervised

learning is utilized to deduce information about the data and reveal hidden patterns

among them in order to group similar objects [7].

Clustering is the most known unsupervised learning method which studies to orga-

nize and classify the data. It can be utilized in various domains such as customer and

7

image segmentation, biological data analysis, market research, fraud detection [14].

Data in these domains include different types of data like continuous, binary or cate-

gorical, and clustering methods had to deal with each type of data. Since a clustering

algorithm should be compatible with different types of data, distance metrics gain

significant importance.

Distance metrics can be grouped by two as quantitative and qualitative features. For

quantitative features, Minkowski distance metric is the most common one to calcu-

late the distance of two objects. The most common distance metrics -Euclidean and

Rectilinear Distance metrics- are subsets of the Minkowski distance metric. On the

other hand, for quantitative features, similarity of two objects should be considered

to calculate a distance value. Cosine, Pearson Correlation, Extended Jaccard, and

Dice Coefficient measures are the most common similarity measures for quantitative

features [39].

Determining the objective function is another significant issue in clustering algo-

rithms. The objective function should be utilized to maximize similarity among the

objects in the same cluster, and minimize the similarity among the objects in different

clusters. There are several metrics for the evaluation criteria of clustering problem

and these metrics can be grouped into two as internal and external metrics [42].

Internal quality measures mostly aims to measure compactness of the clustering re-

sults. They evaluate the similarity of intra-cluster distances or separability of inter

cluster distances, or both. Some of the internal quality measures are; Sum of squared

error, scatter criteria matrix [39] and category utility metric [12].

On the other hand, external measures compares the clustering results with predefined

clusters to gain information from an external clustering. Some of the external quality

measures are; confusion matrix (or contingency table), normalized mutual informa-

tion (NMI) [28], [49], rand index (RI) [36], adjusted rand index (ARI) [23], [46],

Fowlkes–Mallows index [16], and Jaccard index [24].

Since various domains are in need of clustering, there are substantial amount of clus-

tering approaches. In the literature, those approached are categorized under two main

clustering approaches; Hierarchical Clustering and Partitional Clustering [52].

8

2.1.1 Hierarchical Clustering

Hierarchical clustering handles the clustering problem with tree-based structure which

is called as dendrogram. The dendrogram structure includes nested series of partitions

and each layer provides different clusters. Since the number of clusters should be de-

termined in advance, hierarchical clustering has an advantage to determine number

of clusters, because number of clusters can be obtained in each level of the tree-based

structure [38]. In the literature, hierarchical clustering methods are mainly divided

into two which are agglomerative and divisive methods.

In agglomerative clustering, a bottom-up approach is followed. In these methods,

clustering starts with the clusters that include single data points. Subsequently, clus-

ters are merged in each iteration and this process continues until an all-inclusive clus-

ter is obtained. On the other hand, top-down approach is utilized in divisive methods.

These methods starts with one all-inclusive cluster and subsequently data points are

split into different clusters in each layer to build a dendrogram.

In both algorithms, defining the distance values of clusters are similar, since these

values are utilized in either merge or split operation. Widely studied algorithms in

both metrics are single link, complete link and average link. In single link metric,

similarity of two clusters are determined by their nearest neighbor objects. Contrarily,

similarity of the most distant objects are evaluated in complete link clustering metric.

In average link metric, average of all pair-wise distances in two clusters are utilized.

Although it provides more discrete results, this measure is the most expensive one

especially in large data sets [38].

The most prominent advantage of hierarchical clustering is that the number of clusters

are determined by the tree-based structure. However, it also carries some weaknesses.

In hierarchical clustering, each label is created via greedy algorithms and a misleading

step is not reversible. Therefore, errors in the previous steps can not be corrected.

Furthermore, since each data is handled, hierarchical clustering are computationally

expensive. To overcome these defectives, several algorithms are developed. CURE

[18], BIRCH [54], COBWEB [15], CHAMELEON [26] and SOM [29] are well-

known algorithms in this area.

9

2.1.2 Partitional Clustering

In the partitional clustering method, clustering problem is considered as an optimiza-

tion problem with respect to predetermined objective function. These methods are

advantageous to handle large data sets, and needs less memory and computational

time with respect to hierarchic methods. In partitional clustering, a two layered prob-

lem is studied which includes selection of cluster centroids and assignment of objects.

Unlike hierarchical methods, number of clusters should be defined in advance which

is a challenge of partitional clustering. Moreover, since the methods aims to optimize

objective function, partitional clustering works well with quantitative data sets.

Partitional clustering methods can be divided into two as hard partitioning and soft

partitioning with respect to the assignment type. In hard partitioning, each object

must be assigned to exactly one cluster. On the other hand, objects have membership

probabilities to clusters in soft partitioning, so that each object might be assigned to

more than one cluster.

In hard clustering, k-means [33] and partitioning around medoids (PAM) [37] are

two prominent algorithms in literature. In both of the algorithms, similar iterative

structure is following. It starts with choosing k representative cluster centroids and

assignment of data points to their nearest centroids. Subsequently, cluster centers

are updated with respect to the assignments, and these two steps are repeated in it-

erative basis until stopping criteria are met. There are two main differences in these

algorithms. In PAM, which is a type of k-medoid clustering, objects are selected as

centroids while the point that is the average of the assignments is selected as cen-

troid in k-means. Another difference is that PAM utilizes the sum of the distances in

clusters, and k-means aims to minimize sum of square distances.

In soft clustering, memberships of objects take values between 0 and 1, since one ob-

ject can be assigned to more than one cluster. Soft clustering approach was introduced

in 1984 namely as the fuzzy c-means algorithm [8]. Probabilistic distance clustering

[4] and K-Harmonic means [53] are other prominent algorithms in soft clustering.

These methods are able to provide successful results especially when the data points

are not separated well to form distant clusters.

10

2.2 Feature Selection in Clustering Problems

A data point in a data set is defined through different attributes which are named as

features. Number of features determines the dimensions of a data set, and increasing

number of features hides the meaningful information. Therefore, high number of

features makes the clustering problem complicated and this is known in the literature

as curse of dimensionality [22].

Redundant features may be included in a data set which degrades the relationship

between data points and it causes to spend more computational time while applying

clustering algorithms. In order to obtain relevant features and increase their effect

two methods are utilized which are feature extraction and feature selection.

Feature extraction methods combines the features to obtain low number of features.

After that, clustering is studied on the combined new features. However, this trans-

formation adds noise to the data set since combination of the features are utilized

[48]. Principal Component Analysis (PCA) is the most known method for feature

extraction which aims to create new features as linear functions of the initial ones and

maximize the variance among uncorrelated data. After that, eigenvalue (or eigenvec-

tor) problem is solved through created variables [25].

The motivation behind the feature selection methods is to eliminate redundant fea-

tures from the data set. Therefore, relevant features will be kept in the data set, and

this will improve the quality of the clustering results. There are three main groups

for feature selection methods, which are filter methods, wrapper methods, and hybrid

methods[2].

Filter Methods

Filter methods applied to eliminate features before the onset of clustering algorithm.

Thus, filter methods initially process the data set and evaluate each feature with a

score. Then, clustering algorithm works with the features that have scores above a

pre-determined threshold value [19].

In filter methods, features are evaluated through univariate or multivariate methods.

In univariate filter methods, each feature is assessed separately. On the contrary, mul-

11

tivariate filter methods takes the correlation among features into consideration while

scoring the features. Univariate method is a faster method since it evaluates features

one by one, but multivariate method is promising to discard redundant features from

the data set. [2]

Both of the filter methods are simpler and faster methods, since they are applied only

once at the beginning. Therefore, these methods are applicable to the data sets with

high dimensions. However, due to the lack of communication between clustering

model, it might be disadvantageous in some data sets.

Wrapper Methods

Wrapper methods are working together with the clustering algorithm and utilize the

results of clustering to evaluate the convenience of selected features. In wrapper

methods, clustering starts with the subset selection of features. Subsequently, cluster-

ing results are evaluated for the features in selected subset. According to evaluation,

a new subset is selected and this operation continues in iterative basis until a stop-

ping criterion is met. As all subsets cannot be evaluated in high dimensional data,

generally heuristic methods are applied in wrapper methods.

Feature selection by wrapper methods can be grouped into three categories, which

are sequential [13], bio-inspired [27] and iterative methods [30]. In sequential search

methods selected features are changed sequentially. In order not to stuck in local

optima, bio-inspired methods are developed. Iterative methods considers the feature

selection as an estimation problem to not apply a combinatorial search [45].

Wrapper methods are much expensive than the filter methods, since they are working

iteratively with clustering algorithm, which is the main disadvantage of these meth-

ods. However, this interaction enables wrapper models to provide better clustering

results.

Hybrid Methods

Considering the advantages and disadvantages of both methods, hybrid feature selec-

tion methods have been developed in the literature. Hybrid methods initially apply a

filtering method to select several feature sets. Subsequently, results of each selected

12

subsets are evaluated and the subset that providing best results is selected. Thanks

to utilizing advantageous sides of both methods, hybrid models provide better clus-

tering results with respect to filter methods, and it is less computationally expensive

than wrapper methods.

In this study, two evolutionary algorithms are proposed for clustering with cluster

based feature selection problem. Therefore, a literature review on metaheuristic ap-

proaches for clustering and feature selection problems is provided in the following

sections.

2.3 Metaheuristic Algorithms for Clustering

The clustering problem is an NP-Hard problem so that heuristic approaches are es-

sential to obtain promising clustering solutions. Tabu Search, Variable Neighborhood

Search, Genetic Algorithm (GA), Simulated Annealing and Ant Colony Optimization

are the common metaheuristic methods in the literature.

Rolland et al. [40] develop a tabu search heuristic for the p-median problem. Since

swap moves are computationally expensive, they utilize add and drop moves in their

TS. Then, they apply strategic oscillation method in order not to stuck in a local

optima. In line with strategic oscillation, feasibility may not be maintained so that

algorithm is able to move from one local optima to another one.

Shi and Ólafsson [44] propose a randomized method named as nested partitions. Ini-

tially, they divide the feasible region into subregions. Then, they select the most

promising subregion by using random sampling of the entire feasible region. More-

over, they adapt a local search method to find better clusters in the selected subregion.

It is shown that the proposed algorithm converges to global optima in finite time and

also stopping rules are defined to obtain a solution within a predefined time interval.

Variable Neighborhood Search (VNS) is introduced by Hansen and Mladenovic [20].

VNS aims to explore increasingly distant neighborhoods to find an improvement.

Apart from other local search methods, VNS is capable to quit from a local optima in

most of the cases. Since promising clustering results are found via VNS method, sig-

13

nificant improvements are developed through years. According to Hansen et al. [21]

a VNS heuristic includes three phases that are worked iteratively. In the first phase,

shaking procedure is applied to resolve local minima. Then, improvement procedure

is utilized to improve the solution. After that, neighborhood change procedure is

applied. In this procedure a decision for the exploration of the neighborhood is done.

Chiyoshi and Galvao [11] combine simulated annealing methods with vertex substitu-

tion. They utilize a cooling schedule that incorporate with the notion of temperature

adjustments for simulated annealing. In order not to choose pairs of vertices ran-

domly, the authors utilize vertex substitution method.

Levanova and Loresh [31] develop an implementation for simulated annealing and

ant colony optimization for p-median problem. Authors utilize SA to search new

solution spaces by leaving local optimum points. They apply ant system algorithms

to find shortest paths between two feasible solutions. In this method, shortest paths

provide highest level of pheromones so that ants probably move to the nearest clusters

over some time.

Sheng and Liu [43] propose a hybrid genetic algorithm for k-medoids clustering prob-

lem. They follow a two-fold parent selection method and transfer the best parents and

offsprings to the next generations. To decrease the time of convergence, they develop

a modified David-Bouldin index for fitness calculations. Moreover, a priori assump-

tions for number of clusters are not taken and number of clusters are tested between

the range of 2 and kmax (which equals to
√
n). The experiments have illustrated

the effectiveness of the proposed algorithm by comparing it with related clustering

algorithms.

Beg and Islam [3] argue that a poor-quality initial population may cause to poor qual-

ity genetic algorithm results. Therefore, they propose an algorithm that creates suc-

cessful offsprings in the initial generation. In this algorithm, 50% of the chromosomes

are created by deterministic approach while the remaining 50% are created via ran-

dom selection phase. In the deterministic approach, first, a set of chromosomes are

generated through k-means where each set includes a predefined number of chromo-

somes. Subsequently, chromosomes are sorted in accordance with their fitness value

and chromosomes with best fitness values are selected to the initial generation.

14

Akay et al. [1] define a new fitness function which can be utilized in genetic algo-

rithms. The developed fitness function includes three different components which are

between cluster distance, within cluster distance and silhouette width. The aim of

the new function is minimizing the ratio of intra to inter cluster distances. The re-

sults have shown that the proposed algorithm provides better results than some other

clustering algorithms.

2.4 Metaheuristic Algorithms for Feature Selection in Clustering

As mentioned in Section 2.2, heuristic methods are widely utilized in feature selection

problems, since these problems are too complicated to handle. Brusca (2004) [9]

develops a heuristic approach to eliminate masking variables in a k-means clustering

problem. It is assumed that clusters are known a priori and the data points includes

solely binary values. The proposed algorithm initially selects the subset of features.

Then, one feature from unselected ones are tested and added into the subset in iterative

basis. In each step, success of selected features are recorded and the best subset is

utilized as the result of the proposed algorithm.

Chen et al. [10] utilize support vector machines and genetic algorithm for features

selection problem in clustering. Two heuristic approaches which are GA and an hy-

brid GA/SVM approach is developed to distinguish representative genes of a cancer

from irrelevant ones. Genetic algorithm is utilized to optimize locations of centroids

in consideration of feature selection. Selected features in each clustering were then

ranked according to a distance metric, and top ranked features are taken as represen-

tative genes in the clustering problem.

Rostami and Moradi [41] come up with a three-step feature selection algorithm in

clustering, where k-means and genetic algorithm are both used. Chromosomes are

binary, and they represent the selected features. They run the k-means algorithm

to cluster the features into a predefined number of clusters which indicates the to-

tal number of features to be chosen. They applied one point crossover as crossover

operator.

Wu et al. [51] study feature selection for clustering by using genetic algorithms. In

15

order to speed up the convergence process in GA, two methods are utilized. First,

Taguchi method is followed to eliminate some of the poor offsprings without testing

them. As a second method, similar offsprings are grouped and better offsprings are

selected for retrieval accuracy computations. Hubert’s Γ statistics is utilized in this

method to calculate cluster validity as a measure for fitness.

Benati et al. [6] proposed two mixed integer linear programming formulations for

feature selection in clustering problems. However, it is observed that if clusters over-

lap, even small problems may not be solved. Therefore, two heuristics algorithms

are developed. On the first algorithm they divide the problem into two parts as best

assignment and best feature problems. Then, calculated distances for selected best

features are sorted. In the second heuristic method, features are added to or dropped

from a selected feature set.

Sun et al. [47] proposed a genetic algorithm for feature selection for high-dimensional

data clustering (GA-FSF clustering). They came up with a different fitness function

that considers the features in the chromosomes. Chromosome representation contains

both the features that are used and data points which are chosen as cluster centers.

They select 10% of the best individuals from the previous population, and randomly

choose other individuals from the current population. During the process, it is ensured

that each chromosome possesses different number of features.

Apart from the clustering problems, we have utilized several methods developed for

metaheuristics in the literature. Wang et al. (2019) [50] present a multi-offspring

genetic algorithm with two-point crossover in consideration of biologic theory. In

order to obtain best offsprings, two-point crossover is applied and multiple number of

offsprings are generated in each crossover operation. They also study the relationship

between the number offprings in each iteration and computational speed.

Li et al. [32] propose a localized feature selection method instead of a global feature

selection. They develop an algorithm that computes scatter separability of each clus-

ter, and find feature subsets for these clusters. The proposed algorithm is not only

capable of eliminating redundant features, but also provides better understanding on

creation of the data set. In their experiments they emphasize the benefits of local

feature selection.

16

Frigui and Nasraoui [17] develop an algorithm that perform clustering and feature

weighting simultaneously. They utilize different subset of features for each cluster.

Different to our problem, they do not select certain features for a cluster, but they

assign weights to the features.

Öz [35] works on clustering with cluster based feature selection problem. She studies

hard partitioning and determines the number clusters and number of selected features

a priori. Initially, a nonlinear mixed integer mathematical model is proposed and

linearized. Since the problem is highly complex, proposed mathematical models are

not able to provide convenient results within shorter durations. Thus, two different

heuristic algorithms have developed and experimented on synthetic data sets.

In this study, we work on clustering with cluster based feature selection problem. Our

work differs from the existing literature based on applying a metaheuristic algorithm

with a problem specific approach. Details of the problem and a unified metaheuristic

framework for this problem are provided in the following chapters.

17

18

CHAPTER 3

PROBLEM DEFINITION

In Chapter 2, background information for clustering and several solution methods in-

cluding metaheuristics and local search algorithms are given. In this chapter, we first

define the problem in Section 3.1. Subsequently, a nonlinear mixed integer mathe-

matical model and a linearized model are provided in Section 3.2 which represents

the studied problem.

3.1 Problem Statement

The aim of this study is to cluster the data points based on relevant features of each

cluster. In the problem setting, each cluster includes one data point as a cluster cen-

troid and each data point must be assigned to exactly one cluster. Moreover, one data

point can be selected as centroid for at most one cluster. In this problem, it is assumed

that each data point possesses values for several features. However, different subsets

of features are meaningful for clusters separately. Therefore, relevant features should

be selected considering each cluster individually.

In this clustering problem, dimensions of a data set determines the set of data points,

N , and set of features, M . Furthermore, parameters of number of clusters, p, and

number of selected features, q, should be defined in advance. For instance, if number

of clusters are not given in advance, and the decision is left to a model, the model

would define |N | = n clusters to minimize the total distance. But, it is an undesirable

result since it will create clusters with only one data point so that any meaningful

information about the data set cannot be obtained. Moreover, if a model determines

the number of selected features, it would select only one of them, since an additional

19

feature selection increases the distance value in all cases.

Figure 3.1: Representation of the Clustering with Cluster Based Feature Selection

Problem

Figure 3.1 provides an example for a data set which has |N | = n data points and

|M | = m features, and it is divided into p = 4 clusters. Each cluster utilizes exactly

q features, and inequality of q ≤ m is always valid.

As shown in Figure 3.1, selected features in each cluster may vary. One feature might

be utilized in more than one cluster, so that there may be common features to be used

by each cluster, but it is not a requirement. Moreover, a feature may not be utilized in

any cluster at all.

In the problem setting, hard partitioning is applied by assigning each data point to

exactly one cluster, so that disjoint clusters are constructed. Therefore, sum of the

number of data points in clusters must be equal to total number of data points in the

set, |p1|+ |p2|+ ... = |N |.

We utilize rectilinear (L1 − Norm) distance as a similarity measure between data

points. Since all features are not selected, distance of a data point to its cluster cen-

troid is calculated with respect to selected ones. Let vik denotes the value of ith data

point’s kth feature, and there are a total of m features. Then, rectilinear distance dij

20

between two data points i and j can be calculated through following formula.

dij =
m∑
k=1

dijk (3.1)

where dijk = | vik − vjk | (3.2)

Distance between the centroid and all data points is calculated and sum of these dis-

tances represents the value of within-cluster distance. Minimizing the sum of within-

cluster distances is the aim of this study so that developed methods select the relevant

features and assignments accordingly.

In brief, the problem is named as clustering with cluster based feature selection

(CCBFS). In this problem, we create center-based clusters and each cluster’s center

is one of its points. Moreover, predetermined number of features are selected from

the feature set for each cluster separately. To obtain logical results from a model, we

determine the number of clusters p and number of selected features q in advance. The

objective of the problem is to minimize the total within-cluster distances.

Defined problem is highly similar to well-known p-median problem, as data points are

assigned to several clusters, and a cluster’s center is selected from one of the assigned

data points. Regarding the p-median problem, cluster centroids can be considered as

facility locations, and data points can be considered as customers. On the other hand,

p-median problem has two features for data points, which are x and y coordinates

on the plane, and these two features have to be considered. However, in our prob-

lem, only relevant features should be taken into account to calculate distances and

redundant features should be disregarded for each cluster.

We can define our problem through three tasks, which should be carried simultane-

ously. In the first task (i), data points should be assigned to one of the p clusters. In

the second task (ii), one data point should be located as centroid for each cluster. The

last task (iii) aims to select relevant features on clustering and these features may

vary for each cluster.

This combinatorial problem can be represented through a mathematical model which

is given in the Section 3.2. Objective of the model is to minimize the total distance

between data points and cluster centroids, within-cluster distance, and determine the

21

selected features for each cluster on this purpose.

3.2 Mathematical Model of the Problem

In this section, nonlinear mixed integer model for clustering with cluster based feature

selection problem is provided. Subsequently, linearized version of the model, and its

complexity is reported.

3.2.1 Sets and Model Parameters

Since we aim to cluster data points in a data set by selecting relevant features, the

mathematical model will include two sets; set of data points (rows), N , and set of

features (columns), M .

In the above mentioned problem, number of selected features, q, and number of clus-

ters, p should be determined in advance. Otherwise, the model will define n clusters

and/or select only one feature. Furthermore, distance values between data points for

each feature should be provided to the model. Thus, dijk is a parameter which repre-

sents the distance between the kth feature of object i and j.

In the Table 3.1, the notation used for sets and parameters are summarized.

3.2.2 Decision Variables

Three binary decision variables are defined to model the problem. First variable, xij ,

is introduced to determine assignments of data points to cluster centroids. Since hard

partitioning is utilized, a data point can be assigned exactly one cluster. Aim of the

second variable, yj , is to determine cluster centroids. Finally, third variable, zjk, is

introduced to determine the selected features in j. It enables model to select subsets

of features in each cluster separately.

In the Table 3.1, the notation used for decision variables are also summarized.

22

Table 3.1: Model Parameters

Sets:

N Set of data points

M Set of features

Parameters:

dijk Distance between the data point i to j on feature k,

i ∈ N, j ∈ N, k ∈ m

q Number of selected features

p Number of clusters

Decision Variables:

xij Binary allocation variable takes value of 1 if data point i

is assigned to the data point j, 0 otherwise, i ∈ N, j ∈ N

yj Binary variable takes value of 1 if data point j is selected

as a cluster centroid, 0 otherwise, j ∈ N

zjk Binary variable takes value of 1 if the feature k is selected

for cluster centroid j, 0 otherwise, j ∈ N, k ∈ m

3.2.3 Nonlinear Mixed Integer Model

Öz (2019) [35] provides a nonlinear mixed integer model for clustering with cluster

based feature selection problem. The objective of the mathematical model is to mini-

mize the sum of distances between objects and their corresponding cluster centroids.

It also includes the selected features for each cluster. The nonlinear mixed integer

model is represented as;

23

min
N∑
i=1

N∑
j=1

M∑
k=1

dijkzjkxij (3.3)

s.t. xij ≤ yj ∀i, j ∈ N (3.4)∑
j∈N

xij = 1 ∀i ∈ N (3.5)

∑
j∈N

yj = p (3.6)

∑
k∈M

zjk = q yj ∀j ∈ N (3.7)

xij ∈ {0, 1} ∀i, j ∈ N (3.8)

yj ∈ {0, 1} ∀j ∈ N (3.9)

zjk ∈ {0, 1} ∀j ∈ N, ∀k ∈ M (3.10)

The objective function (3.3) sums up the distance between data points and their cluster

centroids considering the features to be used in each cluster. (3.4) assures that if

object j is a cluster centroid, then object i can be assigned to the cluster with center

j. Otherwise, any data point cannot be assigned to this cluster. (3.5) makes an object

belongs to exactly one cluster. Since p is the total number of clusters, (3.6) ensures

that there are exactly p cluster centers. (3.7) guarantees that the cluster center j has

exactly q features. (3.8), (3.9), and (3.10) show that the decision variables are binary.

3.2.4 Linearized Mixed Integer Model

In the nonlinear model, objective function (3.3) includes two decision variables. Öz

(2019) [35] has applied several linearization methods in order to obtain a linearized

model. She defines an additional decision variable wijk which defined as

wijk = zjk xij .

The linearized model is formulated as;

24

min
N∑
i=1

N∑
j=1

M∑
k=1

dijk wijk (3.11)

s.t.
∑
i∈N

xij ≤ n yj ∀j ∈ N (3.12)

∑
j∈N

xij = 1 ∀i ∈ N (3.13)

∑
j∈N

yj = p (3.14)

∑
k∈M

zjk = q yj ∀j ∈ N (3.15)

∑
k∈M

wijk = q xij ∀i, j ∈ N (3.16)

wijk ≤ zjk ∀i, j ∈ N,∀k ∈ M (3.17)

wijk ≥ 0 ∀i, j ∈ N,∀k ∈ M (3.18)

xij ∈ {0, 1} ∀j ∈ N (3.19)

yj ∈ [0, 1] ∀j ∈ N (3.20)

zjk ∈ {0, 1} ∀j ∈ N,∀k ∈ M (3.21)

Updated objective function (3.11) includes parameter dijk and decision variable of

wijk, therefore it is converted to a linear function. Constraints (3.13), (3.14), (3.15),

(3.19), and (3.21) are the same with the ones in nonlinear model. (3.12) ensures that

if a data point is selected as centroid, at most n data points can be assigned to that

cluster. (3.16) guarantees that if ith data point is assigned to jth cluster, exactly q

number of wijk variable equal to 1. In (3.17) zjk takes values of 0 and 1, so that wijk

is bounded. Since values of dijk is always nonnegative in the objective function and it

is a minimization problem, wijk will always be equal to 0 or 1. Finally, yj is defined as

continuous variable in (3.20), since it always takes values of 0 or 1 in a minimization

problem.

Table 3.2: Number of Constraints and Variables of the Linearized Model

Number of Constraints Number of Variables

Equality Inequality Binary Continuous

Linearized Model n (2 + n) + 1 n (1 + nm) n (n + m) n (1 + nm)

25

In Table 3.2 the number of constraints and number of variables of the linearized model

is reported. Although the model is converted to a linearized one, the model is complex

for higher values of n, since both constraints and variables are increased by the square

of n. Moreover, number of features, m, has also significant effects on both number of

variables and inequalities.

If we consider the defined problem from a combinatorial perspective, clustering with

cluster based feature selection is a NP-hard combinatorial problem, since this problem

can be reduced to p-median problem [34]. When the number of clusters and distance

measure are already given, the optimal clusters can be determined by complete enu-

meration. All combinations of the data points and attributes can be experimented.

However, it would be costly even when there exist a few features and the data set is

small. Öz (2019) [35] formulates the total number of possible solutions as in 3.22.

In the formula, n, p, q and m represent number of data points, number of clusters,

number of features and number of selected features, respectively.

 1

P !

P∑
k=0

(−1)k

 P

k

 (P − k)n

 m

q

P (3.22)

The first term in 3.22 calculates the total number of partitions of n data points into p

clusters. This term is increased exponentially with increasing values of n. Therefore,

problem size become immense on the data sets with high number of data points. On

the other hand, second term illustrates the total number of ways to select q features

from m features for all p clusters. This term indicates that the problem size will be

enlarged by a factorial factor on increasing values of number of features, m.

To illustrate, consider there are only 20 objects, 2 clusters, 4 features, and only 2

of these features are selected. Even in this small data set, there are approximately

1.9 ∗ 107 possible solutions. For a bigger data set of N = 200, p = 4,m = 12, q = 4,

which is analyzed in this study, total number of possible solutions has reached to

6.46 ∗ 10129.

In this manner, mathematical models are able to solve small-sized problems and Öz

(2019) [35] is able obtain optimal clustering for small-sized simulated data sets with

CPLEX. However, since it is an NP-Hard problem, these models are not able to

26

provide clustering results in meaningful durations for bigger data sets. Therefore,

a metaheuristic algorithm might provide better results for this problem. In Chapter 5,

performances of the proposed algorithm and the models in [35] are tested. The details

of the results are provided in Section 5.5.

27

28

CHAPTER 4

MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED

FEATURE SELECTION (CCBFS)

In this chapter, our memetic algorithm for clustering with cluster based feature selec-

tion (CCBFS) is presented. In the Section 4.1, the algorithm is introduced and the

process of the algorithm is explained. Subsequently, in the Section 4.2, each step of

the algorithm is described in detail.

4.1 Overview of CCBFS

Main aim of the proposed algorithm is to cluster data points in a data set by minimiz-

ing the within-cluster distance values. There are |N | = n data points in the data set

and these data points are grouped into p clusters. Each cluster should have exactly one

centroid from data point set, and a data point can be assigned as centroid of at most

one cluster. Furthermore, each data point must be assigned to exactly one cluster. On

the other hand, there are |M | = m features in the data set which assumed to include

relevant and redundant features. We also test the algorithm’s ability to deduce the rel-

evant features among all, and eliminate the non-informative features, by minimizing

the total within-cluster distance.

As discussed in Chapter 3, studied problem is an NP-Hard problem, and a meta-

heuristic approach may provide successful results in shorter durations. That is why,

we developed a memetic algorithm which includes two main components of genetic

algorithm and neighborhood search. Thanks to our representation of chromosomes,

which is explained in detail in Section 4.2.1, we are able to reduce the solution space

significantly to apply a memetic algorithm. In the proposed method, chromosomes

29

include the information of selected features and cluster centroids. When the selected

features and cluster centroids are known, a distance value can be calculated by as-

signing each data point to their nearest cluster centroid. Therefore, assignment task

in our problem can be done with respect to selected features and centroids.

Although genetic algorithm decreases the solution space dramatically, it has a defi-

ciency on finding local minima in our problem. Therefore, we add a neighborhood

search into our algorithm, which increases exploitation capabilities of the algorithm.

The local search method mainly checks the potential centroid candidates in the neigh-

borhood, and in case a fitter centroid selection is found, it is added into list of possible

solutions.

Figure 4.1: Flowchart of the CCBFS Algorithm

The flowchart of the memetic algorithm is shown in the Figure 4.1. As illustrated in

the flowchart, the process starts with taking the data set and the parameter settings as

inputs.

Since aim of the proposed algorithm is to minimize distance, range differences among

features in the data set might be harmful for correct clustering. This situation is

a common problem especially in real-life data sets. Therefore, standardization of

the data set must be considered before running the CCBFS algorithm to avoid from

scaling factor.

In Step 1, initial population is created with three different methods in order to increase

exploration capability of the algorithm. In this step, unfit individuals are discarded

30

and only feasible individuals are allowed to create offsprings. Total number of indi-

viduals is equal to the population size (popsize).

Crossover operation is conducted as Step 2. Firstly, a mating pool is obtained and four

offsprings are created from two parents via uniform crossover. After that, mutation

operation is applied to the offsprings with a small probability as Step 3. In this step,

offsprings might be mutated with one of the three different types of mutation operator.

After the mutation operator, a fitness value is calculated for each individual in the

population as Step 4. In this step, within-cluster L1−Norm Distance values for each

cluster is calculated and the total distance of an individual is taken as its fitness value.

In Step 5, neighborhood search algorithm is applied to the fittest individual in a pop-

ulation. Since each individual holds the selected feature and cluster centroid infor-

mation, and transfer them via uniform crossover, potential centroids in the neighbor-

hood are not considered through genetic algorithm. The purpose of the neighborhood

search is testing the potential centroids that are close to the current ones which might

provide fitter cluster centroids to a certain assignment. Then, the parents of the next

generation are selected from the feasible individuals of the current generation accord-

ing to selection criteria.

The creation of offspring process continues until the stopping criteria is satisfied

which is the total number of generations (genn). At the end of the algorithm, the

fittest offspring through all generations is taken as the best individual and its pheno-

type is reported as the best result of the CCBFS algorithm.

An overview of the CCBFS algorithm is summarized in Algorithm 1. In Section 4.2,

pseudo-codes for each step in Algorithm 1 are also explained in detail.

4.2 Description of CCBFS Algorithm

In this section, each step of CCBFS algorithm is explained in detail.

31

Algorithm 1: CCBFS Algorithm
Input : Data set

Output: within-cluster distances, selected centroids and cluster specific

features, assignments of data points

1 Step 1: Setting the parameters

2 Step 2: Initialization(Data set,q,p,initialization types) # Algorithm 2

3 for i=1,...,genn do

4 for j=1,...,popsize/2 do

5 Step 3: Uniform Crossover(Current population) # Algorithm 3

6 end for

7 for k=1,...,popsize do

8 Step 4: Mutation(Offsprings) # Algorithm 4

9 Step 5: Fitness Calculation(Data Set, Offspring’s Chromosome)

Algorithm 5
10 end for

11 Sort Offsprings by fitness value

12 Step 6: Neighborhood Search(Chromosome of the fittest offspring)

Algorithm 6

13 Step 7: Selection of the Next Generation(Current Population)

Algorithm 7
14 end for

4.2.1 Chromosome Representation

Appropriate chromosome representation has a crucial importance to obtain success-

ful clusters within a reasonable time period. As an example, if the cluster numbers of

each object are kept in the chromosomes, the algorithm will face with several difficul-

ties. It is possible that one solution can be represented by more than one chromosome

since cluster numbers are arbitrary. In fact, crossover or mutation operators may re-

sult in infeasible solutions, i.e., there is a possibility that total number of clusters may

decrease. To avoid this problem, feasibility of the problem should be checked during

the fitness calculation step. Thus, keeping the cluster numbers is not a good repre-

sentation. Another chromosome representation could be designing a 0-1 matrix in

32

which objects in the same cluster take a value of 1. However, this matrix becomes a

sparse matrix since there would be so many entries of 0 and it would require memory.

Hence, choosing similarity matrix as a chromosome representation is not suitable. To

handle crossover and memory requirement problems, the features that cluster centers

use are kept in the chromosome. Since the cluster centers are chosen from the data

points, a chromosome keeps the features of the data points chosen as cluster centers

and their indices. Figure 4.2 illustrates the chromosome representation in the CCBFS

algorithm.

Figure 4.2: Chromosome representation

The chromosome representation consists of two components. Selected features for

each cluster are recorded in the first component. In this component, features of each

cluster centroid are added to the chromosome part by part. Each part that represents

the selected features is m-dimensional because data sets includes a total of m features.

Therefore, first m values characterize the selected and unselected features for the first

cluster, second m values characterize the second cluster and so on. As an example

zc1k refers to the kth feature of the first cluster. It becomes 1 if the first cluster uses

kth feature, otherwise it becomes 0. Therefore:∑
k∈M

zcik = q ∀i (4.1)

zcik ∈ {0, 1} ∀i, k (4.2)

Length of the first component is equal to the product of number of clusters and number

of binary attributes, which is (p ∗M).

The second component holds the indices of data points assigned as cluster centers.

33

For instance, c1 gives the index of the data point that becomes the first cluster center,

i.e., yc1 = 1. Then zc11, zc12, ..., zc1M refers to the selected features of data point with

index c1. The length of second component is the number of clusters, p. Thus, the

chromosome length is the summation of both component lengths, which is (p∗M+p).

To give an example about the chromosome representation, Figure 4.3 is provided. In

this example, there are p = 3 clusters, and each cluster uses q = 2 features. Cluster

centers are the data points with indexes 121, 23 and 48. While the first cluster uses

1st and 5th features, the second cluster utilizes 1st and 2nd features, and 2nd and 5th

features are selected in third cluster.

Figure 4.3: An example for chromosome representation

This representation keeps less memory, since it does not memorize the clusters that

data points are assigned to. Therefore, to determine which object belongs to which

cluster, data points should be assigned to the clusters based on their distances to clus-

ter centroids kept in the chromosome.

Due to the structure of this representation, CCBFS algorithm is able to work in the

instances with high number of data points. Since assignment can be done in con-

sideration of selected features and cluster centroids, it is not added into exploration

process. Therefore, solution space is squeezed significantly which can be represented

as follows for the proposed memetic algorithm :

[(
m

q

)]p (n

p

)
(4.3)

In Equation 4.3, q features in M are selected for each cluster separately in the first

term. In the second term, p centroids are selected from N . In Table 4.1, combinato-

rial problem sizes in the original problem and CCBFS algorithm are listed for some

variations of p,n,m and q.

34

Table 4.1: Solution Space on Various Values of p, n, m and q

p n m q
of Solutions in

the Original Problem

of Solutions in

CCBFS Algorithm

2 80 5 2 6.04 ∗ 1025 3.16 ∗ 105

2 80 10 4 2.67 ∗ 1028 1.39 ∗ 108

4 80 10 4 1.18 ∗ 1056 3.08 ∗ 1015

4 200 10 4 2.09 ∗ 10128 1.26 ∗ 1017

4.2.2 Initialization

Initialization step has a crucial importance in evolutionary algorithms, since it creates

a basis for the whole generations during the algorithm. Therefore, we create initial

population from three different aspects in order to attain an extensive foundation for

the following generation. The process of initial population creation is explained in

Algorithm 2 .

In the initialization type 1 (InitType1), p different random data points are selected

from the data set for each cluster in order to create cluster centroids. Hence, com-

ponent 2 in the chromosome representation is satisfied by assigning centroids. After

that, since the number of features to be used, q, is fixed, all attributes of these data

points are not utilized and for each data point assigned as cluster centroid, q features

are selected randomly. The random feature selection satisfies the component 1 on a

chromosome (lines 3-7).

In the type 2 (InitType2), we randomly select the features and assignment of the data

points. As a first step, feature selection is done as explained in type 1. In the second

step, each data point is assigned to one of the p clusters randomly.

In order to represent an individual, cluster centroids should be known. Therefore,

all data points in a cluster are considered as cluster centroid and within-cluster dis-

tance values are calculated in accordance with randomly selected features. After that,

the data points with smallest within-cluster distance values are assigned as cluster

centroids for each cluster (lines 11-15).

For the initialization type 3, we first determine the assignment of data points via

35

random selection. Then, one data point randomly selected as cluster centroid for

each cluster. However, we also need to determine selected features for each cluster

to represent individuals’ genotypes. Thus, we calculate the distance contribution of

each feature on this cluster and select the q of them which has minimum addition on

within-cluster distance values (lines 19-23).

As a last step, we control whether generated offspring is feasible or unique. If it is

not, we discard the generated offspring since it is not add a value to the initial gener-

ation. Then, we start to create a new offspring from the beginning until a convenient

individual is obtained.

4.2.3 Uniform Crossover Operator

Uniform crossover is an unbiased operator in terms of ordering of the chromosomes.

Since it increases the exploration capabilities of the algorithm, uniform crossover

is selected for crossover operations. We develop a crossover operator that works

on two parents in the population, and the operator is applied to each component of

the chromosomes by utilizing a crossover mask. The operator is applied to each

component of the chromosomes distinctively. Therefore, it has two parts. In the first

part, first components of the parents, feature component, are crossed. Second part

crosses the cluster centroid indices. Each part yields two offsprings, and we obtain

four offsprings in total out of two parents. Pseudo-code for the operation is provided

in Algorithm 3.

For the first component, the crossover operator should separate the features of cen-

ters, i.e. it splits the first component into p. Then the parents exchange the feature

sets of clusters according to a crossover mask, which is generated randomly. It is im-

portant to note that the crossover operator should divide the chromosome in between

two cluster’s tangent point in order to create feasible offsprings. If is is not divided

properly, selection of q features in each cluster cannot be preserved. Figure 4.4 and

4.5 shows the undesirable and desirable splits of crossover operator for p equals to 2.

Figure 4.4 destroys the chromosome structure because first cluster center is disrupted.

However, in Figure 4.5 the cluster center structure is preserved.

36

Algorithm 2: Creation of the Initial Population
Input : Data set, q, p, Intervals for the initialization types

Output: Initial Population

1 k = 1

2 while k ≤ n do

3 if k ∈ InitType1 then

4 for i=1,...,p do

5 Select a centroid randomly

6 Select q features randomly

7 end for

8 else if k ∈ InitType2 then

9 Assign each data point to one of the p clusters randomly

10 for i=1,...,p do

11 Select q features randomly

12 Select the fittest centroid for cluster i with respect to assignments

and selected features
13 end for

14 else

15 Assign each data point to one of the p clusters randomly

16 for i=1,...,p do

17 Select a centroid among assigned data points randomly

18 Select the fittest features for cluster i with respect to assignments

and selected centroid
19 end for

20 end if

21 if Created offspring is unique & feasible then

22 k = k + 1

23 end if

24 end while

37

Figure 4.4: Undesirable chromosome split

Figure 4.5: Desirable chromosome split

The creation structure of the first two offsprings is illustrated in the Figure 4.6. Here,

two parents are selected for crossover as an initial step. Then, a crossover mask which

is a (1 ∗ (m ∗ p)) boolean vector is created for each feature set of the chromosomes’

first component, and feature sets of each cluster are crossed accordingly (lines 2-11).

While creating the first two offsprings, cluster centers are directly transferred from

their parents (lines 12-13).

Figure 4.6: Uniform Crossover Operator to Create First Two Offsprings

Similar concept is utilized to create third and fourth offsprings which is shown in

Figure 4.7. A crossover mask which is a (1 ∗ p) boolean vector is created for the

38

centroids. Offsprings three and four are generated from the crossover from second

components of their parents (lines 14-25).

In both of the crossover operation, if randomly chosen value in the crossover mask

is 1, then parent 1’s genotype is transferred to 1st/3rd offspring. Similarly parent 2’s

genotype is transferred to offspring 2/4. On the other hand, if randomly chosen value

is 0, then corresponding genotype of parent 1/3 is transferred to offspring 2/4.

Figure 4.7: Uniform Crossover Operator to Create Last Two Offsprings

4.2.4 Mutation

Another operator to be designed in the genetic algorithm is mutation operator. With

a predefined probability (probmut), the parents in the population are mutated. The

mutation operator to be used in the proposed algorithm is called random mutation.

We utilize three different mutation operators in order to have stronger exploration

capability. If an offspring is decided to be mutated, one of the following mutation

types is applied to this offspring. A pseudo-code for this operation is provided in

Algorithm 4.

4.2.4.1 Mutation - Type 1

The aim of this mutation operator is randomly searching for a different feature selec-

tion in one cluster. In this mutation type, a selected feature is turned into an unselected

39

Algorithm 3: Uniform Crossover Operation
Input : Current population

Output: Offsprings

1 for k = 1, ..., popsize/2 do

2 Create a (1 ∗ q) vector of boolean, mask1

3 for a=1,...,q do

4 if mask1(a) = 1 then

5 Offspring1_feature(a)=Parent1_feature(a)

6 Offspring2_feature(a)=Parent2_feature(a)

7 else

8 Offspring1_feature(a)=Parent2_feature(a)

9 Offspring2_feature(a)=Parent1_feature(a)

10 end if

11 end for

12 Offspring1_centroids = Parent1_centroids

13 Offspring2_centroids = Parent2_centroids

14 Create a (1 ∗ p) vector of boolean, mask2

15 for b=1,...,p do

16 if mask2(b) = 1 then

17 Offspring3_centroid(b)=Parent1_centroid(b)

18 Offspring4_centroid(b)=Parent2_centroid(b)

19 else

20 Offspring3_centroid(b)=Parent2_centroid(b)

21 Offspring4_centroid(b)=Parent1_centroid(b)

22 end if

23 end for

24 Offspring3_features = Parent1_features

25 Offspring4_features = Parent2_features

26 end for

40

feature. Initially, one cluster is selected randomly among all. Subsequently, an unas-

signed feature is selected and a selected feature is cancelled at the same time (lines

2-5).

To illustrate, an example is given in Figure 4.8. In the example, the mutation operator

is applied to the clustering problem where the number of clusters p, total number of

features m, and total number of selected features q are equal to 3, 4, and 2, respec-

tively. Red color represents the features selected, and blue color shows the unselected

features. In this example, the center of third cluster is randomly selected. Before mu-

tation, third cluster center uses 1stand 4th attributes, and after the mutation operator,

4th feature becomes unused, and 2nd feature is selected to be used.

Figure 4.8: An example for Mutation - Type 1

4.2.4.2 Mutation - Type 2

The aim of the second mutation operator is also randomly searching for a different

feature selection in one cluster. However, in this mutation type, all of the features

of one cluster is selected randomly. In this mutation type, one cluster is selected

randomly as in Type 1. After that, all of the selected features are cancelled and q of

the features are selected randomly for this cluster (lines 6-8).

To illustrate, an example is given in Figure 4.9.

In the example, same structure of the example in Mutation - Type 1 is utilized. Here,

2nd cluster is randomly selected for mutation. In this cluster 1st and 2nd features are

selected before the mutation operation. After the mutation operator, both of features

41

Figure 4.9: An example for Mutation - Type 2

becomes unused randomly, and 3rd and 4th features are selected to be used in this

cluster.

4.2.4.3 Mutation - Type 3

The aim of the final mutation operator is searching possible feature selections in all of

the clusters. This type is the most disruptive one among all mutation types, since all

of the clusters affected in this mutation operator. In this mutation type, one selected

and one unselected feature is picked randomly for all clusters. After that, their status

is replaced in each cluster (lines 9-13).

To illustrate, an example is given in Figure 4.10.

Figure 4.10: An example for Mutation - Type 3

In this example, same structure of the example in Mutation - Type 1 is utilized. Here,

42

1st and 2nd, 2ndand 4th, 1st and 3rd features are selected for clusters 1, 2, and 3,

respectively. After the mutation operator, status of pre-selected features are switched

to unselected, and status of pre-unselected features are switched to selected.

Algorithm 4: Mutation Operation
Input : Offsprings

Output: Population to be Transferred

1 r=rand[0,1]

2 if r ≤ 1/3 ∗ probmut then

3 Select a cluster randomly

4 Select one assigned and one assigned feature randomly

5 Switch the assignment of selected features

6 else if r ≥ 1/3 ∗ probmut& r ≤ 2/3 ∗ probmut then

7 Select a cluster randomly

8 Switch the current selection with randomly selected q features

9 else

10 for i=1,..,p do

11 Select one assigned and one assigned feature randomly from ith

cluster

12 Switch the assignment of selected features

13 end for

14 end if

4.2.5 Fitness Function

After the mutation operator, assignment of data points to the clusters is done and

fitness values for both parents and offsprings are calculated. We have selected the

objective function of the clustering problem as the fitness function, which is the total

sum of the rectilinear distances between data points and their cluster centers. In

order to calculate the fitness of an offspring, each data point is assigned to its nearest

cluster centroid as an initial step. Subsequently, within-cluster distance values for

each cluster is calculated. Finally, sum of distance values of all p clusters is obtained

and this value is assigned as the fitness value of the corresponding offspring. Pseudo-

43

code for fitness calculation is given in Algorithm 5.

Algorithm 5: Fitness Calculation
Input : Data set, Offspring’s Chromosome

Output: Fitness Value, Cluster Assignment

1 for i=1,...,n do

2 Calculate L1 −Norm distances of ith data point to all centroids

3 Assign each data point to its nearest cluster

4 end for

5 for i=1,...,p do

6 Calculate within-cluster L1 −Norm distance of ith cluster with respect

to the assignments
7 end for

8 Calculate the sum of within-cluster distances as fitness value

4.2.6 Neighborhood Search

We obtain new cluster centroids through crossover operations. However, new off-

springs are totally depend on their parents, and there might be better centroid selec-

tion in the neighborhood of the selected centroids. Therefore, we add a neighborhood

search step on our CCBFS algorithm to increase its exploitation capabilities. The pur-

pose of the neighborhood search is testing the potential centroids that are close to the

current ones which might provide fitter cluster centroids. In this method, neighbor-

hood is defined on the distances among data points. For instance, the data point that

has lowest distance to its centroid considered as the closest neighbor in this cluster.

Search algorithm starts with assignment of all data points to their centroids. Then,

pre-determined number of neighbors of these centroids (s) with respect to selected

features are obtained. Subsequently, obtained data points are evaluated as if they are

centroid separately, and a fitness value is calculated. Therefore, we test (s∗p) possible

solutions in this step.

Unless an alternative centroid selection in the neighborhood is found, neighborhood

search step is terminated. However, in case a fitter offspring found, then the search

44

process is done all over again for (s ∗ p) neighbors. Note that, centroids of (p − 1)

clusters have not changed, but we still look their neighbors in the second step, because

there still might be fitter centroid selection in the updated structure.

After the second step, neighborhood search is completed. If a fitter individual is

found in the neighborhood search, it is attached to the population as a new member,

otherwise, nothing is changed in the current population. In order to maintain evo-

lutionary structure of the algorithm and not to increase computational time, we only

apply neighborhood search to the fittest individual in the population. In Algorithm 6,

pseudo-code of the proposed neighborhood search is provided.

Effects of the neighborhood search on the CCBFS algorithm is tested in this study.

Moreover, a comparison of the two step and recursive neighborhood search is exam-

ined. Experimental results of these tests are presented in Section 5.4.

4.2.7 Selection of the Next Generation

Next generation is created based on the fitness values of parents and offsprings. Be-

fore creation, feasibility of all offsprings is checked and only feasible offsprings are

taken into consideration to transfer.

Selection process starts with sorting the individuals in the current population. Parents

and generated offsprings are sorted in descending order in terms of their fitness values.

After that, first 5% of the population size are transferred directly to the next generation

as parents. Remaining 95% of the next generation is chosen from the remaining

feasible individuals in the current generation randomly. Purpose of 5%- 95% is to

maintain both exploitation and exploration capabilities of the CCBFS Algorithm.

The aim of this selection rule is to improve poor parents and avoid premature conver-

gence. Finally, properties of the best solution are saved into the best solution matrix.

The pseudo-code is reported in Algorithm 7.

45

Algorithm 6: Neighborhood Search 1
Input : Chromosome of the Fittest Offspring

Output: Chromosome of the Fittest Offspring

1 Assign fitness value of the fittest offspring as F

2 Step = 1

3 for i=1,...,p do

4 for j=1,...,s do

5 Select the jth neighbor of ith cluster’s centroid

6 Assign the jth neighbor as centroid,

7 Calculate fitness value and denote as F j
i

8 end for

9 end for

10 if min(F j
i) < F then

11 Switch ith cluster’s centroid with its jth neighbor which gives minimum

distance value

12 if Step == 1 then

13 Step = 2

14 Go back to 3rd line

15 end if

16 end if

Algorithm 7: Selection of the Next Generation
Input : Current Population

Output: Population to be Transferred

1 Sort Individuals in the population based on fitness values

2 Select Population Size * 5% of the fittest offsprings

3 Select Population Size * 95% of the offsprings from the remaining feasible

offsprings randomly

46

CHAPTER 5

COMPUTATIONAL RESULTS OF CCBFS

In this Chapter, computational results of the CCBFS algorithm is explained. Genera-

tion of the simulated sets that are utilized in this study is explained in 5.1. In Section

5.2, utilized performance measures for evaluation are provided. Subsequently, param-

eter settings of the algorithm is explained in 5.3. Then, computational results from

the simulated data sets are presented in Section 5.4. Lastly, computational results on

a benchmark study is reported in Section 5.5.

5.1 Simulated Data Sets

In this study, we utilize simulated data sets in order to examine the performances of

the developed algorithm. Therefore, we generate data sets which include relevant

and redundant features. Moreover, we create data sets in different sizes to test the

CCBFS algorithm in different instances. Details of the data sets are summarized in

Table 5.1. As shown in the Table 5.1, a data set includes n data points and m total

number of features. Among m features, q of them represents related features while

the remaining (m − q) of them represents the irrelevant ones. Mainly, simulations

are done by changing; number of clusters, number of data points, total number of

features, and number of relevant features. The tests include five types of data point

sets (80, 100, 200, 500 and 1000), five types of features (5, 6, 8, 10, 12), and three

types of relevant features (2, 3, 4) for each cluster. Therefore, all tests are done for 75

instances for each value of p.

In order to create a problem instance, we first create an (n ∗m) data set filled with re-

dundant features. For each column, one redundant feature is generated from uniform

47

Table 5.1: Details of the Simulated Data Sets

Number of Clusters (p) {2, 3, 4}

Number of Data Points (n) {80, 100, 200, 500, 1000}

Number of Features (m) {5, 6, 8, 10, 12}

Number of Relevant Features (q) {2, 3, 4}

distribution and the entire column is filled with selected distribution. The distribu-

tion parameters for redundant features are listed in Table 5.2. It should be noted that

selection of the uniform distribution is equally likely for each column.

Table 5.2: Distributions of Redundant Features

Number of Clusters (p) Redundant Parameter Distribution

2 U(0, 20), U(0, 10) and U(0, 5)

3 U(0, 20), U(0, 10), U(0, 5) and U(-10, 0)

4 U(0, 20), U(0, 10), U(0, 5) and U(-10, 0)

After that, q of the m features for each cluster are selected for relevant features. For

these features, we generate numbers from normal distribution in order to obtain denser

values. To differentiate the clusters, they have different mean values, while standard

deviation of the distribution is identical for all. Distribution of the relevant features

for each cluster is shown in Table 5.3. While assigning the relevant features, it is

assumed that each cluster has equal number of points, which is (N/p).

Table 5.3: Distributions of Redundant Features

Number of Clusters (p) Relevant Parameter Distribution

2 N(µ = 0, σ = 1) and N(µ = 5, σ = 1)

3 N(0, 1), N(5, 1) and N(-7, 1)

4 N(0, 1), N(5, 1), N(-7, 1) and N(11, 1)

As a final step, each column is standardized separately. Both relevant and redundant

48

features are created via different distributions, and it causes a scale effect among the

columns of all data instances. Therefore, we rescale each column one by one to an

interval of [0, 1].

5.2 Performance Measures

The proposed evolutionary algorithm is assessed with respect to various performance

measures. Initially, performance measures according to within-cluster distance values

(objective function) are reported in this section, which are percentage gaps, number

of best and worst solutions and computational times. Subsequently, the clustering

performance of the algorithm is tested by its capability on finding the pre-selected

features. Utilized performance measures are summarized in the following sections.

5.2.1 Performance Measures on Objective Function

Percent gap of the best solution from ground truth objective (Best vs. Zc):

After creation of a problem instance, we calculate a ground truth objective (denoted

as Zc) by selecting centroids for each cluster, and Zc value represents the objective

function of a created data instance. Therefore, we compare the best result of the

proposed algorithm and the Zc in all of the instances. We denote the within-cluster

distance of the best solution as ZBest, and the percentage gap of the best solution from

ground truth objective is calculated as follows:

Best vs. Zc =

ZBest − Zc

Zc

 ∗ 100

It should be noted that Best vs. Zc can take negative values. This means that CCBFS

algorithm’s best result finds denser clusters in terms of within-cluster distance value.

Percent gap between best and worst solution (Worst vs. Best):

Although heuristic algorithms are beneficial to find feasible solutions for difficult

problems, they may also provide objectionable results in some instances. Therefore,

49

we also compare the performances of the best and worst results of our tests. For this

metric, the algorithm is run for 50 times for each problem instance and the best and

worst results are compared according to following formula:

Worst vs. Best =

ZWorst − ZBest

ZBest

 ∗ 100

Number of best solutions (# of Best):

We test the CCBFS algorithm 50 times for all of the problem instances. This measure

reports us the replication of the best results. If the best result gap between Zc value is

non-positive, and the value for number of best solutions is high, it means that CCBFS

algorithm provides relatively good results in most of the times.

Number of worst solutions (# of Worst):

This measure controls the replication of worst results which is quite similar with the

previous one. However, the idea behind this metric is to test exploration capabilities

of the CCBFS algorithm. If the worst result gap between best result value is high,

and the value for number of worst solutions is high, it means that CCBFS algorithm

is stuck in a local optima and is not able to explore better clusters in these instances.

Computational (CPU) Time:

CPU Time reports the average solution time of the proposed algorithm over 50 tests

in the basis of seconds.

5.2.2 Performance Measures on Clustering

Correct selection of pre-selected features:

Since relevant and redundant features of each cluster are generated with different

distributions, feature selection results of the proposed algorithm can be compared

with the pre-selected ones.

For this measure, first we obtain the selected features of each cluster from the best

solution among 50 trials. Then, compare the pre-selected features with selected ones

50

for each cluster. Since q features are selected in each cluster, there can be at most p∗q
matches.

It should be noted that, correct clustering is a pre-requisite for this measure. If the

clustering is not successful, correct selection of features would not be meaningful.

5.3 Parameter Setting for CCBFS Algorithm

Parameters of data sets are introduced in the Table 5.1. Here, number of clusters, data

points and relevant features are listed. So we are able to test proposed algorithm in

225 instances total.

Table 5.4: Parameter Setting of the CCBFS Algorithm

Population Size 1000

Number of Generations 200

Ratio of Initial Generation by Type 1, 2 and 3 {50%, 25% , 25%}

Crossover Probability 100%

Mutation Probability by Type 1, 2 and 3 {1%, 1%, 1%}

Number of Candidate Centroids for Neighborhood Search 10

Furthermore, parameter setting related with the evolutionary algorithm is given in the

Table 5.4. Population size is set at 1000 for all of the instances as it provides signif-

icant exploration capabilities to the algorithm. To determine number of generations

in the algorithm, we have observed that the best results generally obtained after 100th

generation. That is why, this value is set as 200.

Another decision is the distribution of the initial generation with respect to initializa-

tion types. We tested seven possible distribution here which are, (i) all of the first

generation is taken from either Type 1, Type 2 or Type 3. (ii) one of the types takes

50% of the initial population and others take 25% of it. (iii) Lastly, all initialization

types create equal amount of individuals in the initial population. Then, we select the

setting that 50% of the initial population is created by initialization type 1, since this

setting obtains better results among others in harder problems while they have similar

51

Table 5.5: Comparison for Ratio of Initial Generation by Type 1, 2 and 3

Ratio (%) (50 - 25 - 25) (25 - 50 - 25) (25-25-50) (33 - 33 - 33) (100 - 0 - 0) (0 - 100 - 0) (0 - 0 - 100)

Best vs. Zc -1.36% -1.36% -1.36% -1.36% -1.36% -1.36% -1.36%

Worst vs. Zc 0.57% 0.85% 1.10% 0.78% 0.97% 0.78% 0.79%

of Bests 26.68 22.88 23.64 22.48 23.12 23.6 24.64

results in smaller problem instances.

Since clustering is harder for higher values of p and q, test are done for varying values

of n and m while p = 4, q = 4. In table 5.5, results of the tests regarding initializa-

tion are summarized. In terms of best solution, any difference is not observed, but

proposed ratios provides denser clustering in the worst solutions. Furthermore, main

difference among the tests is observed on number of best solutions. The setting with

proposed initialization ratios clearly obtains the most number of best solutions.

We take crossover probability as 100% and give 1% probability for each type of

mutation. It should be noted that one individual can be mutated at most once in

a generation. Lastly, nearest 10 possible centroids for each cluster are investigated

during neighborhood search operation.

5.4 Computational Results for Simulated Data Sets

The CCBFS algorithm is coded in MATLAB R2021a and simulations to test the al-

gorithm has been carried out on 64-bit Windows 10 PC with 3.6 GHz 12 core Intel

Xeon E-2246G processor and 16 GB RAM.

Initially, we test the effects of neighborhood search on CCBFS algorithm as men-

tioned in Chapter 4.2.6. Since data sets with higher number of clusters are harder

to solve, neighborhood search is tested when q = 4. In terms of best solutions, the

tests with no neighborhood search are always higher than or equal to CCBFS algo-

rithm. Higher differences has observed for the worst solutions. Furthermore, main

difference for neighborhood search is observed on number of best solutions. Since it

increases the exploitation capacity, algorithm with no local search is not able to find

best results repeatedly. Detailed results of the experiments are presented in Table B.1.

52

Furthermore, we also test the number of steps in neighborhood search. We have

compared the results of the proposed method with a recursive search method. In terms

of best results, searching neighborhood recursively and in two steps obtain the same

results in all data instances. Moreover, there is no significant difference between these

two methods in terms of worst results. The only difference between two methods is

the CPU time in which recursive version always obtains results in longer durations.

Therefore, we have utilized two step neighborhood search in our computational tests.

In order to test the effects of memetic algorithm’s abilities on finding better solutions,

results of the CCBFS algorithm are compared with the best results from the initial-

ization step. When we analyze the development through generations, a continuous

decrease on objective function is observed. Although the generation which obtains

the best result is highly variable for each data instance, taking the number of gener-

ation parameter as 200 is more than enough. Development of the fitness value with

respect to the generation is illustrated for 4 data instances in Figure B.1.

To evaluate performance of the CCBFS algorithm, it is tested on the data sets that are

described in Section 5.1. For the simulations, parameter settings explained in Section

5.3 is utilized. Detailed results for each value of p is provided in the Tables 5.6 -

5.8. In the result tables, selected p, n,m and q values in that simulation, ground truth

objective, best, median and worst results among 50 trials, percentage gaps between

best result vs. Zc and worst result, number of best and worst solutions, CPU times

and correctly selected features of the best result are provided. In the last column,

feature selection of the CCBFS is compared with the created data and the common

features for each cluster is reported. Therefore, values on this column is always less

than or equal to the value of q.

Table 5.6: Simulation Results of CCBFS Algorithm for p = 2

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

2,80,5,2 10.06 10.06 10.06 10.06 0.0% 0.0% 50 50 [2,2] 18.82

2,80,6,2 12.36 12.33 12.33 12.33 -0.2% 0.0% 50 50 [2,2] 23.94

2,80,8,2 12.87 12.67 12.67 12.67 -1.6% 0.0% 50 50 [2,2] 17.82

2,80,10,2 13.90 13.90 13.90 13.90 0.0% 0.0% 50 50 [2,2] 18.46

2,80,12,2 10.58 10.37 10.37 10.37 -2.0% 0.0% 50 50 [2,2] 19.07

53

Table 5.6 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

2,80,5,3 19.86 19.86 19.86 19.86 0.0% 0.0% 50 50 [3,3] 18.96

2,80,6,3 14.79 14.79 14.79 14.79 0.0% 0.0% 50 50 [3,3] 24.03

2,80,8,3 19.97 19.97 19.97 19.97 0.0% 0.0% 50 50 [3,3] 17.62

2,80,10,3 16.14 16.14 16.14 16.14 0.0% 0.0% 50 50 [3,3] 18.69

2,80,12,3 17.79 17.79 17.79 17.79 0.0% 0.0% 50 50 [3,3] 18.97

2,80,5,4 25.98 25.98 25.98 25.98 0.0% 0.0% 50 50 [4,4] 18.75

2,80,6,4 24.80 24.80 24.80 24.80 0.0% 0.0% 50 50 [4,4] 24.38

2,80,8,4 27.60 27.60 27.60 27.60 0.0% 0.0% 50 50 [4,4] 18.11

2,80,10,4 24.68 24.68 24.68 24.68 0.0% 0.0% 50 50 [4,4] 18.17

2,80,12,4 29.30 29.30 29.30 29.30 0.0% 0.0% 50 50 [4,4] 18.67

2,100,5,2 11.48 11.47 11.47 11.47 -0.1% 0.0% 50 50 [2,2] 16.90

2,100,6,2 13.54 13.54 13.54 13.54 0.0% 0.0% 50 50 [2,2] 17.12

2,100,8,2 12.72 12.22 12.22 12.24 -3.9% 0.1% 45 5 [2,2] 18.08

2,100,10,2 9.31 9.30 9.30 9.30 0.0% 0.0% 50 50 [2,2] 18.70

2,100,12,2 13.56 13.56 13.56 13.56 0.0% 0.0% 50 50 [2,2] 19.21

2,100,5,3 18.12 18.12 18.12 18.12 0.0% 0.0% 50 50 [3,3] 16.92

2,100,6,3 25.00 25.00 25.00 25.00 0.0% 0.0% 50 50 [3,3] 17.50

2,100,8,3 23.02 22.97 22.97 22.97 -0.2% 0.0% 50 50 [3,3] 18.69

2,100,10,3 28.10 28.10 28.10 28.10 0.0% 0.0% 50 50 [3,3] 19.34

2,100,12,3 22.32 22.32 22.32 22.81 0.0% 2.2% 48 2 [3,3] 20.13

2,100,5,4 33.79 33.79 33.79 33.79 0.0% 0.0% 50 50 [4,4] 16.20

2,100,6,4 34.69 34.69 34.69 34.69 0.0% 0.0% 50 50 [4,4] 17.44

2,100,8,4 34.01 34.01 34.01 34.01 0.0% 0.0% 50 50 [4,4] 18.31

2,100,10,4 30.97 30.97 30.97 30.97 0.0% 0.0% 50 50 [4,4] 19.11

2,100,12,4 29.20 29.20 29.20 29.20 0.0% 0.0% 50 50 [4,4] 19.88

2,200,5,2 31.50 31.37 31.37 31.37 -0.4% 0.0% 50 50 [2,2] 17.96

2,200,6,2 28.88 28.65 28.65 28.65 -0.8% 0.0% 50 50 [2,2] 18.88

2,200,8,2 33.90 33.78 33.78 33.78 -0.4% 0.0% 50 50 [2,2] 19.73

2,200,10,2 38.50 38.49 38.49 38.49 0.0% 0.0% 50 50 [2,2] 20.92

2,200,12,2 28.82 28.82 28.82 28.82 0.0% 0.0% 50 50 [2,2] 22.70

2,200,5,3 51.07 51.07 51.07 51.07 0.0% 0.0% 50 50 [3,3] 18.69

2,200,6,3 56.55 56.55 56.55 56.79 0.0% 0.4% 37 13 [3,3] 19.42

2,200,8,3 40.49 40.49 40.49 40.55 0.0% 0.1% 42 8 [3,3] 20.39

2,200,10,3 43.28 43.28 43.28 43.28 0.0% 0.0% 50 50 [3,3] 21.33

2,200,12,3 47.98 46.86 46.86 46.86 -2.3% 0.0% 50 50 [3,3] 23.08

2,200,5,4 63.67 63.67 63.67 63.67 0.0% 0.0% 50 50 [4,4] 17.71

2,200,6,4 68.43 68.43 68.43 68.43 0.0% 0.0% 50 50 [4,4] 18.83

2,200,8,4 60.02 60.02 60.02 60.02 0.0% 0.0% 50 50 [4,4] 20.12

2,200,10,4 68.99 68.99 68.99 69.23 0.0% 0.4% 43 7 [4,4] 20.99

2,200,12,4 52.27 52.27 52.27 52.84 0.0% 1.1% 45 5 [4,4] 22.64

2,500,5,2 55.71 55.71 55.71 55.71 0.0% 0.0% 50 50 [2,2] 22.85

2,500,6,2 79.17 78.98 78.98 79.00 -0.2% 0.0% 44 6 [2,2] 24.19

2,500,8,2 63.96 63.96 63.96 63.96 0.0% 0.0% 50 50 [2,2] 25.88

54

Table 5.6 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

2,500,10,2 68.89 68.59 68.59 68.59 -0.4% 0.0% 50 50 [2,2] 28.42

2,500,12,2 68.80 68.69 68.69 68.69 -0.2% 0.0% 50 50 [2,2] 30.08

2,500,5,3 123.03 122.74 122.74 122.74 -0.2% 0.0% 50 50 [3,3] 22.48

2,500,6,3 115.89 115.89 115.89 117.34 0.0% 1.3% 37 13 [3,3] 24.48

2,500,8,3 109.32 109.31 109.31 111.64 0.0% 2.1% 41 1 [3,3] 26.99

2,500,10,3 101.36 101.35 101.35 101.39 0.0% 0.0% 34 16 [3,3] 28.28

2,500,12,3 97.62 97.62 97.62 98.60 0.0% 1.0% 49 1 [3,3] 29.50

2,500,5,4 146.84 146.84 147.19 148.35 0.0% 1.0% 23 2 [4,4] 22.14

2,500,6,4 155.22 155.22 155.22 158.89 0.0% 2.4% 49 1 [4,4] 23.72

2,500,8,4 148.85 148.85 148.85 150.35 0.0% 1.0% 46 4 [4,4] 25.65

2,500,10,4 162.07 162.07 162.07 162.07 0.0% 0.0% 50 50 [4,4] 28.51

2,500,12,4 136.30 136.21 136.21 138.17 -0.1% 1.4% 30 1 [4,4] 29.69

2,1000,5,2 143.87 143.87 143.87 143.87 0.0% 0.0% 50 50 [2,2] 30.96

2,1000,6,2 119.75 119.61 119.61 119.61 -0.1% 0.0% 50 50 [2,2] 32.60

2,1000,8,2 144.78 144.31 144.31 144.31 -0.3% 0.0% 50 50 [2,2] 36.15

2,1000,10,2 169.73 169.62 169.62 170.96 -0.1% 0.8% 49 1 [2,2] 55.18

2,1000,12,2 155.03 149.15 149.15 149.15 -3.8% 0.0% 50 50 [2,2] 59.28

2,1000,5,3 192.25 192.15 192.15 192.15 -0.1% 0.0% 50 50 [3,3] 30.48

2,1000,6,3 232.70 232.70 232.70 232.70 0.0% 0.0% 50 50 [3,3] 31.66

2,1000,8,3 223.45 223.45 223.45 223.45 0.0% 0.0% 50 50 [3,3] 35.27

2,1000,10,3 144.62 144.62 144.62 144.62 0.0% 0.0% 50 50 [3,3] 54.97

2,1000,12,3 220.51 220.51 220.51 220.51 0.0% 0.0% 50 50 [3,3] 58.31

2,1000,5,4 320.58 320.58 320.58 324.31 0.0% 1.2% 45 5 [4,4] 29.22

2,1000,6,4 309.87 309.87 311.84 318.51 0.0% 2.8% 23 1 [4,4] 31.57

2,1000,8,4 263.76 263.76 263.76 264.51 0.0% 0.3% 38 12 [4,4] 34.82

2,1000,10,4 309.68 309.68 309.68 312.18 0.0% 0.8% 33 4 [4,4] 54.74

2,1000,12,4 258.61 258.61 258.61 258.61 0.0% 0.0% 50 50 [4,4] 57.76

Table 5.7: Simulation Results of CCBFS Algorithm for p = 3

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

3,80,5,2 8.93 8.93 8.93 8.93 0.0% 0.0% 50 50 [2,2,2] 17.03

3,80,6,2 9.22 9.05 9.05 9.05 -1.8% 0.0% 50 50 [2,2,2] 18.48

3,80,8,2 9.09 8.99 8.99 8.99 -1.1% 0.0% 50 50 [2,2,2] 16.43

3,80,10,2 8.86 8.84 8.84 8.84 -0.2% 0.0% 50 50 [2,2,2] 17.42

3,80,12,2 8.42 8.42 8.42 8.42 0.0% 0.0% 50 50 [2,2,2] 18.04

3,80,5,3 11.36 11.36 11.36 11.36 0.0% 0.0% 50 50 [3,3,3] 18.17

3,80,6,3 15.76 15.66 15.66 15.77 -0.7% 0.7% 34 12 [2,3,3] 22.36

3,80,8,3 9.18 9.18 9.18 9.18 0.0% 0.0% 50 50 [3,3,3] 17.87

3,80,10,3 12.12 12.12 12.12 12.78 0.0% 5.4% 40 1 [3,3,3] 18.85

55

Table 5.7 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

3,80,12,3 16.21 16.21 16.21 16.21 0.0% 0.0% 50 50 [3,3,3] 19.74

3,80,5,4 19.57 19.57 19.57 19.57 0.0% 0.0% 50 50 [4,4,4] 17.34

3,80,6,4 16.50 16.50 16.50 16.50 0.0% 0.0% 50 50 [4,4,4] 22.00

3,80,8,4 21.86 20.36 20.36 20.69 -6.8% 1.6% 13 1 [3,3,4] 17.83

3,80,10,4 17.83 17.83 17.83 18.24 0.0% 2.3% 49 1 [4,4,4] 18.74

3,80,12,4 19.60 18.53 18.53 19.31 -5.5% 4.2% 38 1 [3,3,4] 19.48

3,100,5,2 10.83 10.83 10.83 10.83 0.0% 0.0% 50 50 [2,2,2] 15.44

3,100,6,2 9.84 9.84 9.84 9.88 0.0% 0.4% 49 1 [2,2,2] 16.20

3,100,8,2 12.90 11.76 11.76 11.82 -8.9% 0.5% 12 5 [2,1,2] 16.77

3,100,10,2 10.56 10.52 10.52 10.52 -0.4% 0.0% 50 50 [2,2,2] 17.81

3,100,12,2 13.82 12.56 12.56 12.64 -9.1% 0.6% 34 5 [2,1,2] 18.58

3,100,5,3 12.91 12.91 12.91 12.91 0.0% 0.0% 50 50 [3,3,3] 16.75

3,100,6,3 16.09 16.09 16.09 16.13 0.0% 0.2% 22 3 [3,3,3] 17.31

3,100,8,3 17.64 17.64 17.64 17.89 0.0% 1.4% 31 5 [3,3,3] 18.48

3,100,10,3 20.17 19.43 19.43 20.43 -3.7% 5.2% 35 1 [3,2,3] 19.36

3,100,12,3 17.52 17.37 17.37 17.62 -0.9% 1.4% 49 1 [2,3,3] 20.24

3,100,5,4 22.45 22.45 22.45 22.56 0.0% 0.5% 29 1 [4,4,4] 16.02

3,100,6,4 21.80 21.80 21.80 21.80 0.0% 0.0% 50 50 [4,4,4] 17.07

3,100,8,4 22.38 21.43 21.43 21.43 -4.3% 0.0% 50 50 [3,4,4] 18.28

3,100,10,4 19.57 19.57 19.57 19.57 0.0% 0.0% 31 19 [4,4,4] 19.37

3,100,12,4 26.78 24.79 24.79 25.38 -7.4% 2.4% 49 1 [3,3,4] 20.18

3,200,5,2 20.31 20.31 20.31 20.31 0.0% 0.0% 50 50 [2,2,2] 16.79

3,200,6,2 20.36 16.82 16.82 16.82 -17.4% 0.0% 50 50 [1,2,2] 17.52

3,200,8,2 22.06 21.18 21.18 21.18 -4.0% 0.0% 50 50 [1,2,2] 18.73

3,200,10,2 23.46 23.03 23.03 23.03 -1.8% 0.0% 37 13 [2,2,2] 19.87

3,200,12,2 28.26 25.16 25.16 25.16 -11.0% 0.0% 50 50 [2,1,2] 22.16

3,200,5,3 39.84 38.98 38.98 39.84 -2.2% 2.2% 36 2 [3,2,3] 18.18

3,200,6,3 31.85 31.85 31.85 31.85 0.0% 0.0% 50 50 [3,3,3] 19.06

3,200,8,3 34.23 34.18 34.18 34.35 -0.2% 0.5% 42 3 [3,3,3] 20.44

3,200,10,3 29.63 28.39 28.39 29.96 -4.2% 5.5% 47 2 [2,3,3] 21.82

3,200,12,3 26.25 26.25 26.25 26.81 0.0% 2.2% 47 2 [3,3,3] 24.08

3,200,5,4 40.63 40.63 40.63 40.63 0.0% 0.0% 50 50 [4,4,4] 17.53

3,200,6,4 45.66 45.38 45.38 45.61 -0.6% 0.5% 41 9 [4,3,4] 18.87

3,200,8,4 51.96 47.90 47.90 47.90 -7.8% 0.0% 50 50 [3,3,4] 20.28

3,200,10,4 44.03 44.03 44.03 44.95 0.0% 2.1% 23 1 [4,4,4] 21.39

3,200,12,4 50.05 48.46 48.46 49.12 -3.2% 1.4% 32 1 [3,3,4] 22.16

3,500,5,2 59.72 59.18 59.18 59.74 -0.9% 1.0% 48 2 [2,2,2] 22.43

3,500,6,2 47.88 47.88 47.88 48.84 0.0% 2.0% 38 1 [2,2,2] 23.78

3,500,8,2 55.06 54.94 54.94 54.94 -0.2% 0.0% 50 50 [2,2,2] 26.11

3,500,10,2 51.94 51.40 51.40 51.40 -1.0% 0.0% 50 50 [2,2,2] 28.18

3,500,12,2 50.72 50.04 50.04 50.04 -1.3% 0.0% 50 50 [2,2,2] 30.26

3,500,5,3 85.19 81.19 81.46 82.04 -4.7% 1.0% 10 3 [3,2,3] 23.51

3,500,6,3 86.04 86.04 86.04 86.04 0.0% 0.0% 50 50 [3,3,3] 24.95

56

Table 5.7 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

3,500,8,3 105.06 104.91 104.91 107.31 -0.1% 2.3% 47 3 [3,3,3] 28.17

3,500,10,3 90.75 90.64 90.90 92.33 -0.1% 1.9% 15 2 [2,3,3] 30.38

3,500,12,3 87.26 83.35 83.35 87.19 -4.5% 4.6% 47 3 [3,2,3] 32.67

3,500,5,4 103.12 103.12 103.12 105.41 0.0% 2.2% 39 1 [4,4,4] 20.88

3,500,6,4 94.40 94.40 94.40 97.47 0.0% 3.2% 36 2 [4,4,4] 22.91

3,500,8,4 96.99 96.99 96.99 96.99 0.0% 0.0% 50 50 [4,4,4] 25.37

3,500,10,4 102.08 102.08 102.08 105.84 0.0% 3.7% 20 1 [4,4,4] 27.89

3,500,12,4 111.89 107.38 107.38 107.44 -4.0% 0.1% 35 6 [4,3,4] 29.98

3,1000,5,2 79.60 79.60 79.60 80.05 0.0% 0.6% 45 5 [2,2,2] 30.39

3,1000,6,2 124.05 123.52 123.52 123.52 -0.4% 0.0% 50 50 [2,2,2] 32.51

3,1000,8,2 106.86 106.49 106.49 106.49 -0.3% 0.0% 50 50 [2,2,2] 36.30

3,1000,10,2 91.15 90.51 90.51 90.51 -0.7% 0.0% 50 50 [2,2,2] 54.40

3,1000,12,2 116.58 115.70 115.70 116.44 -0.8% 0.6% 46 4 [2,2,2] 58.48

3,1000,5,3 158.61 158.61 158.61 158.61 0.0% 0.0% 12 38 [3,3,3] 32.42

3,1000,6,3 144.34 137.16 137.16 137.59 -5.0% 0.3% 18 24 [2,3,3] 34.40

3,1000,8,3 136.41 136.40 136.40 141.30 0.0% 3.6% 15 1 [3,3,3] 38.80

3,1000,10,3 173.99 173.71 173.71 173.71 -0.2% 0.0% 50 50 [3,3,3] 59.62

3,1000,12,3 155.04 155.04 155.04 158.47 0.0% 2.2% 49 1 [3,3,3] 62.95

3,1000,5,4 176.32 176.32 176.32 179.74 0.0% 1.9% 47 3 [4,4,4] 27.93

3,1000,6,4 159.98 159.98 159.98 160.76 0.0% 0.5% 28 3 [4,4,4] 30.77

3,1000,8,4 204.78 204.78 204.78 207.40 0.0% 1.3% 30 2 [4,4,4] 35.96

3,1000,10,4 181.96 169.22 169.22 173.01 -7.0% 2.2% 23 2 [3,4,4] 54.58

3,1000,12,4 217.74 217.74 217.74 222.68 0.0% 2.3% 45 3 [4,4,4] 61.14

Table 5.8: Simulation Results of CCBFS Algorithm for p = 4

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

4,80,5,2 7.67 7.13 7.13 7.13 -7.0% 0.0% 50 50 [2,1,2,2] 21.55

4,80,6,2 8.96 8.15 8.15 8.35 -9.1% 2.5% 35 1 [1,2,2,2] 25.57

4,80,8,2 7.80 7.80 7.80 7.80 0.0% 0.0% 50 50 [2,2,2,2] 21.53

4,80,10,2 7.72 7.26 7.26 7.62 -5.9% 5.0% 24 2 [2,1,2,2] 22.85

4,80,12,2 7.50 6.96 6.96 7.83 -7.1% 12.4% 15 3 [1,2,2,2] 24.03

4,80,5,3 10.00 10.00 10.00 10.00 0.0% 0.0% 50 50 [3,3,3,3] 27.53

4,80,6,3 9.17 9.17 9.17 9.17 0.0% 0.0% 50 50 [3,3,3,3] 33.07

4,80,8,3 11.75 11.75 11.75 11.91 0.0% 1.4% 25 7 [3,3,3,3] 27.09

4,80,10,3 15.31 14.92 14.92 17.05 -2.5% 14.3% 7 1 [3,2,2,3] 28.40

4,80,12,3 9.51 9.51 9.51 9.51 0.0% 0.0% 50 50 [3,3,3,3] 29.59

4,80,5,4 11.57 11.57 11.57 11.57 0.0% 0.0% 50 50 [4,4,4,4] 19.31

4,80,6,4 14.81 14.72 14.72 14.72 -0.6% 0.0% 50 50 [3,4,4,4] 23.40

4,80,8,4 13.98 13.81 13.81 13.98 -1.2% 1.2% 25 8 [4,3,4,4] 19.72

57

Table 5.8 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

4,80,10,4 12.89 12.89 12.89 12.89 0.0% 0.0% 50 50 [4,4,4,4] 20.80

4,80,12,4 19.30 19.30 19.30 19.83 0.0% 2.7% 26 1 [4,4,4,4] 21.92

4,100,5,2 6.92 6.91 6.91 6.91 -0.2% 0.0% 50 50 [2,2,2,2] 19.92

4,100,6,2 10.50 9.84 9.84 9.84 -6.3% 0.0% 50 50 [1,2,2,2] 20.66

4,100,8,2 11.91 11.50 11.50 11.90 -3.5% 3.5% 42 1 [2,2,2,2] 22.08

4,100,10,2 8.36 8.36 8.36 8.36 0.0% 0.0% 50 50 [2,2,2,2] 23.33

4,100,12,2 10.88 10.68 10.68 12.45 -1.8% 16.6% 19 2 [1,2,2,2] 24.78

4,100,5,3 12.30 12.30 12.30 12.30 0.0% 0.0% 50 50 [3,3,3,3] 25.00

4,100,6,3 12.27 12.27 12.27 12.27 0.0% 0.0% 50 50 [3,3,3,3] 25.67

4,100,8,3 14.28 14.11 14.11 14.28 -1.2% 1.2% 13 1 [3,3,2,3] 26.57

4,100,10,3 16.06 15.19 15.19 15.33 -5.4% 0.9% 9 3 [3,2,3,3] 28.41

4,100,12,3 13.84 13.84 13.84 13.84 0.0% 0.0% 50 50 [3,3,3,3] 28.88

4,100,5,4 15.72 15.72 15.72 15.84 0.0% 0.8% 49 1 [4,4,4,4] 19.63

4,100,6,4 18.74 18.52 18.52 18.52 -1.2% 0.0% 50 50 [3,4,4,4] 23.58

4,100,8,4 17.36 17.36 17.36 17.36 0.0% 0.0% 50 50 [4,4,4,4] 20.41

4,100,10,4 20.76 20.00 20.00 20.78 -3.6% 3.9% 9 2 [4,2,4,4] 21.34

4,100,12,4 23.82 20.89 20.94 22.43 -12.3% 7.4% 15 1 [4,2,4,4] 24.23

4,200,5,2 20.71 20.32 20.32 20.32 -1.9% 0.0% 44 6 [2,2,2,2] 22.02

4,200,6,2 15.65 15.59 15.59 15.87 -0.4% 1.8% 13 1 [1,2,2,2] 21.21

4,200,8,2 21.35 20.83 20.83 21.79 -2.4% 4.6% 48 1 [2,2,2,2] 23.13

4,200,10,2 17.16 17.12 17.12 17.12 -0.2% 0.0% 50 50 [2,2,2,2] 24.59

4,200,12,2 18.96 18.70 18.70 19.18 -1.4% 2.6% 31 1 [2,2,2,2] 27.04

4,200,5,3 25.10 25.10 25.10 25.57 0.0% 1.9% 13 1 [3,3,3,3] 27.06

4,200,6,3 29.73 29.73 29.73 29.73 0.0% 0.0% 50 50 [3,3,3,3] 27.60

4,200,8,3 29.56 29.56 29.56 30.16 0.0% 2.0% 19 5 [3,3,3,3] 29.81

4,200,10,3 27.43 27.43 27.43 28.33 0.0% 3.3% 48 2 [3,3,3,3] 31.02

4,200,12,3 24.93 24.93 24.93 24.93 0.0% 0.0% 50 50 [3,3,3,3] 35.63

4,200,5,4 33.37 33.27 33.27 33.37 -0.3% 0.3% 13 1 [4,3,4,4] 21.11

4,200,6,4 32.82 32.82 32.82 32.96 0.0% 0.4% 3 2 [4,4,4,4] 25.66

4,200,8,4 33.77 33.77 33.77 33.77 0.0% 0.0% 50 50 [4,4,4,4] 22.32

4,200,10,4 40.83 36.63 36.63 36.91 -10.3% 0.8% 37 1 [3,3,4,4] 23.92

4,200,12,4 38.03 38.03 38.38 40.49 0.0% 6.5% 5 1 [4,4,4,4] 27.06

4,500,5,2 39.23 39.14 39.14 39.14 -0.3% 0.0% 50 50 [2,2,2,2] 26.94

4,500,6,2 43.44 42.62 42.64 43.31 -1.9% 1.6% 10 1 [1,2,2,2] 28.95

4,500,8,2 56.33 56.17 56.17 56.17 -0.3% 0.0% 50 50 [2,2,2,2] 32.11

4,500,10,2 48.78 48.08 48.08 48.49 -1.4% 0.9% 12 2 [2,2,1,2] 34.96

4,500,12,2 50.18 46.46 52.34 54.70 -7.4% 17.7% 7 1 [2,1,2,2] 37.72

4,500,5,3 58.69 58.69 58.69 59.27 0.0% 1.0% 32 6 [3,3,3,3] 34.98

4,500,6,3 61.44 61.44 61.44 61.44 0.0% 0.0% 50 50 [3,3,3,3] 36.90

4,500,8,3 67.45 67.01 67.35 70.22 -0.7% 4.8% 23 1 [3,2,3,3] 41.25

4,500,10,3 71.90 68.73 68.80 70.78 -4.4% 3.0% 7 2 [3,2,3,3] 44.57

4,500,12,3 80.47 76.33 76.33 88.72 -5.1% 16.2% 34 1 [2,3,3,3] 47.97

4,500,5,4 75.75 75.75 76.79 78.29 0.0% 3.4% 12 1 [4,4,4,4] 29.82

58

Table 5.8 continued from previous page

p,n,m,q Zc Best Median Worst
Best vs.

Zc

Worst

vs. Best

of

Best

of

Worst

Correctly

Selected

Features

CPU

(s)

4,500,6,4 78.51 78.51 78.51 78.56 0.0% 0.1% 23 13 [4,4,4,4] 35.45

4,500,8,4 92.09 92.09 92.09 93.45 0.0% 1.5% 12 1 [4,4,4,4] 32.53

4,500,10,4 89.16 89.16 89.16 94.77 0.0% 6.3% 26 1 [4,4,4,4] 34.23

4,500,12,4 99.55 98.92 98.92 103.52 -0.6% 4.6% 31 1 [4,3,4,4] 36.92

4,1000,5,2 99.94 99.19 99.19 99.78 -0.8% 0.6% 11 5 [2,2,2,2] 38.06

4,1000,6,2 99.57 98.41 98.41 98.41 -1.2% 0.0% 50 50 [2,2,2,2] 40.95

4,1000,8,2 102.14 102.00 102.00 105.02 -0.1% 3.0% 33 1 [2,2,2,2] 45.97

4,1000,10,2 72.55 72.49 72.49 72.49 -0.1% 0.0% 50 50 [2,2,2,2] 69.88

4,1000,12,2 114.87 107.31 111.57 117.54 -6.6% 9.5% 20 2 [1,2,2,2] 79.15

4,1000,5,3 132.09 131.87 131.87 133.26 -0.2% 1.1% 6 1 [2,3,3,3] 48.69

4,1000,6,3 132.10 132.10 132.10 134.63 0.0% 1.9% 29 2 [3,3,3,3] 57.83

4,1000,8,3 127.05 127.04 127.04 129.47 0.0% 1.9% 12 1 [3,3,3,3] 56.24

4,1000,10,3 126.13 126.13 126.13 126.13 0.0% 0.0% 50 50 [3,3,3,3] 72.24

4,1000,12,3 173.78 173.63 175.28 185.28 -0.1% 6.7% 1 1 [3,3,3,3] 82.01

4,1000,5,4 150.56 150.56 151.34 153.34 0.0% 1.8% 5 1 [4,4,4,4] 36.53

4,1000,6,4 148.63 146.41 146.41 150.36 -1.5% 2.7% 46 2 [3,4,4,4] 43.57

4,1000,8,4 158.48 158.48 159.05 160.65 0.0% 1.4% 14 1 [4,4,4,4] 43.64

4,1000,10,4 190.11 190.11 190.74 191.77 0.0% 0.9% 10 1 [4,4,4,4] 67.73

4,1000,12,4 198.71 193.73 195.87 199.53 -2.5% 3.0% 6 1 [4,3,4,4] 76.69

First of all, best result of the CCBFS algorithm are always less than or equal to the Zc

values in all data instances. It means that, proposed algorithm is either able to obtain

same results with respect to data creation, or it deduces better clustering allocation

than the data creation phase. As observed in the Tables 5.6 - 5.8, when the Zc and Best

result are the same, exactly q number of features are selected correctly in all clusters.

Therefore, in these instances algorithm finds identical clustering and feature selection

with the simulated data. CCBFS algorithm obtains the same clustering results in 113

over all 225 instances with respect to Zc, while it is able to find better results than the

Zc in 108 instances. In these instances, CCBFS algorithm creates different clusters

and/or select different features with respect to the simulated data.

As discussed in Chapter 4, number of clusters, p, affects the solution space dramat-

ically. Therefore, when p = 2, CCBFS mostly finds the same results as in the data

creation. On the other hand, the algorithm is able to obtain better results than Zc,

when number of clusters are more than 2.

59

When the CPU times are compared, we have observed that the population size and

number of clusters have dominant effect on our algorithm, as expected. Although

the difference between two and three clusters are not significant, CPU times of the

instances that p = 4 are much higher. In terms of number of data points, CPU times

are higher especially for the instances with n = 500 and n = 1000. Last but not least,

CPU times have increased in line with number of features, m.

Number of total features, m, has also consists significant effects on the simulation

results. It is observed that, when the number of features are over eight, differences

between best and worst results are higher with respect to instances with 5, 6 and

8 features. Moreover, CPU times also increase with increasing number of features

which is expected since problem space is enlarged by m.

Averages of the performance measures are summarized in Table 5.9 in terms of num-

ber of clusters, p, and number of data points, n by grouping data sets with number of

features m and number of selected features q.

As shown in Table 5.9, CCBFS algorithm is able to find same results in all trials

when p = 2 and n = 80. Moreover, while p = 2, number of best results are 50 in

55 of 75 instances, which means that same results are found in all 50 trials in these

instances. Since best solution is always less than or equal to Zc value, we deduce that

the CCBFS is able to find successful clusters. In the remaining 20 instances, number

of best results are 40 in average among 50 trials, while number of worst results are

5.4 in average.

Averages of number of best results have decreased for the p values of 3 and 4 which

is an expected outcome, since the problem space increases dramatically by number

of clusters. In the tests with three clusters, all results are the same in 31 over 75

instances, and this value has decreased to 26 for the tests with four clusters. Fur-

thermore, number of best results are 40 and 30 in average for three and four clusters,

respectively. On the other hand, number of worst solutions takes low values in almost

all instances, so that it is assumed that the CCBFS algorithm has not stuck in a local

optima in these tests. Number of worst results are above 10 out of 50 in only a few

instances and it is observed that the gap between best and worst results are less than

1% in these instances.

60

(a
)T

w
o

C
lu

st
er

s
(b

)T
hr

ee
C

lu
st

er
s

(c
)F

ou
rC

lu
st

er
s

Fi
gu

re
5.

1:
B

es
ta

nd
W

or
st

Pe
rf

or
m

an
ce

s
of

C
C

B
FS

A
lg

or
ith

m
vs

.Z
c

61

Table 5.9: Summary of Performance Measures on Simulated Data Sets

p n
Best

vs. Zc

Worst vs.

Best

of

Best

of

Worst

CPU

(s)

80 -0.3% 0.0% 50.00 0.00 19.63

100 -0.3% 0.2% 49.53 0.47 18.23

2 200 -0.3% 0.1% 47.80 2.20 20.23

500 -0.1% 0.7% 43.53 3.00 26.19

1000 -0.3% 0.4% 45.87 1.53 42.20

80 -1.1% 1.0% 44.93 1.07 18.65

100 -2.3% 0.8% 39.40 2.80 17.86

3 200 -3.5% 1.0% 43.67 2.20 19.93

500 -1.1% 1.5% 39.00 1.60 26.50

1000 -1.0% 1.0% 37.20 5.73 43.38

80 -2.2% 2.6% 37.13 1.53 24.42

100 -2.4% 2.3% 37.07 0.73 23.63

4 200 -1.1% 1.6% 31.60 1.47 25.95

500 -1.5% 4.1% 25.27 2.07 35.69

1000 -0.9% 2.3% 22.87 1.27 59.88

Another prominent advantage of the proposed algorithm is small percentage gap lev-

els between best and worst solutions. It means that the algorithm is able to provide

convenient clusters in each trial. For two cluster data sets, the average difference be-

tween worst and best solutions are only 0.3% and it is always less than 3%. Average

differences for three and four clusters are 1.1% and 2.6%, respectively. Moreover, the

difference is always below 5.5% for three clusters, and less than 10% for four clusters

in 70 over 75 problem instances. In four of remaining five instances, it is observed

that the difference between best and median results are less than 0.1%, so that CCBFS

algorithm obtains reliable results even in these instances.

In order to show relationship between best and worst solutions of the trials with re-

spect to ground truth objective value, Figure 5.1 is provided. The figure includes data

sets with 500 data points and above. The instances that includes less than 500 data

62

points are not illustrated since the differences are very small to analyze. As illustrated

in the Figure 5.1, the gap between the best and worst solıutions are tight in almost all

the cases. Moreover, they do not differ significantly from the Zc value in all of the

trials.

5.5 Comparison of Computational Results with Benchmark Algorithms

As stated in Section 3.2, we have compared the performance of CCBFS algorithm

with Öz (2019) [35]. She has developed two heuristic algorithms in addition to three

linearized models to solve clustering with cluster based features selection problem.

For the comparison, data sets that are created by Öz (2019) are utilized. Moreover,

the best results among the heuristic algorithms or linearized models are taken into

consideration for each instance separately. We denote the best results of Öz (2019)

as Z∗, and worst results as Z∗
w. It should be noted that, Öz (2019) finds the optimal

results in 80 of 225 instances (36/75 for p = 2, 22/75 for p = 3, and 22/75 for p = 4).

It is important to note that she is able to obtain optimal results in these cases through

heuristic algorithms.

We have compared the results of CCBFS algorithm with respect to following perfor-

mance measures:

% Difference in the Best Solution : ZBest and Z∗ values are compared with respect

to following formula

% Diff. in the Best Solution =

ZBest − Z∗

Z∗

 ∗ 100

% Difference in the Worst Solution : ZWorst and Z∗
w values are compared with

respect to following formula

% Diff. in the Worst Solution =

ZWorst − Z∗
w

Z∗
w

 ∗ 100

of Hits to the Best: This measure reports us the replication of the best results for

both ZBest and Z∗

63

Table 5.10: Summary of Result Comparison between CCBFS Algorithm and Öz

(2019) [35]

of

ZBest <Z∗

Avg. Diff. in

ZBest vs Z∗

of

ZWorst<Z∗
w

of Diff. in

ZWorst vs Z∗
w

of Hits

to Best

in CCBFS

of Hits

to Best

in [35]

p = 2 0/75 - 41/75 -29.4% 41.5 34.9

p = 3 14/75 -2.5% 65/75 -32.2% 23.1 20.3

p = 4 16/75 -2.2% 75/75 -33.7% 24.7 16.9

For the % differences, negative values represent that CCBFS algorithm is able to

obtain smaller within-cluster distances, and vice versa. Detailed results are given

in Tables 5.11 - 5.13 at the end of this section. Furthermore, Table 5.10 provides a

summary of results comparison for various values of p.

First of all, in terms of best solutions, ZBest obtains within-cluster distances that are

less than or equal to with respect to Z∗ in all 225 cases. In the instances with p = 2,

best solutions are the same in two studies for all 75 instances. However, CCBFS

algorithm obtains significantly lower solutions in the worst solutions. ZWorst is less

than Z∗
w in 41 out of 75 instances and it is less than 29.4% in these 41 instances, in

average. Furthermore, CCBFS algorithm also hits the best results in 41.5 out of 50

instances in average. Although best results in both methods are the same, proposed

algorithm is able hit these results more.

Results has shown a similar structure for three and four cluster instances. Among 75

instances ZBest obtains better results in 14 and 16 instances for p = 3 and p = 4, re-

spectively. Moreover, ZBest provides more than 2% improvements in these instances

in average. Furthermore, CCBFS algorithm hits the best results in almost half of the

trials in average. Therefore, it provides more reliable results than Öz (2019). Dif-

ferences in the worst solutions are much more obvious on p values of three and four.

When p = 3, ZWorst is less than Z∗
w in 65 instances and there are 32.2% difference in

these instances. Remarkably, ZWorst obtains better solutions in all 75 instances when

p = 4, and it provides 33.7% difference in average.

As result, CCBFS algorithm obtains much smaller differences between best and worst

64

solutions. Also, we are able to find better best results on more complex problems.

Moreover, our proposed algorithm is able to hit the best results more frequently with

respect to Öz (2019).

65

Table 5.11: Comparison of the Results for CCBFS Algorithm and Öz (2019) [35] on

p = 2

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

2,80,5,2 0.0% 0.0% 50 50 2,200,10,3 0.0% -39.3% 43 47

2,80,6,2 0.0% -38.4% 50 48 2,200,12,3 0.0% -40.8% 37 9

2,80,8,2 0.0% -26.3% 44 4 2,200,5,4 0.0% 0.0% 50 50

2,80,10,2 0.0% -36.8% 49 6 2,200,6,4 0.0% 1.1% 32 50

2,80,12,2 0.0% -28.6% 31 45 2,200,8,4 0.0% 6.4% 48 50

2,80,5,3 0.0% 10.1% 47 47 2,200,10,4 0.0% 25.1% 38 50

2,80,6,3 0.0% 19.1% 49 50 2,200,12,4 0.0% -36.5% 34 32

2,80,8,3 0.0% 10.8% 48 50 2,500,5,2 0.0% 0.0% 50 50

2,80,10,3 0.0% -29.0% 37 36 2,500,6,2 0.0% -44.8% 50 43

2,80,12,3 0.0% -25.3% 5 39 2,500,8,2 0.0% -22.7% 50 3

2,80,5,4 0.0% 0.0% 50 50 2,500,10,2 0.0% -17.5% 50 1

2,80,6,4 0.0% 9.4% 49 50 2,500,12,2 0.0% -14.6% 15 2

2,80,8,4 0.0% 5.5% 31 49 2,500,5,3 0.0% 0.0% 50 49

2,80,10,4 0.0% 30.3% 26 36 2,500,6,3 0.0% -7.8% 50 23

2,80,12,4 0.0% 1.7% 11 49 2,500,8,3 0.0% -47.9% 49 35

2,100,5,2 0.0% 0.0% 28 35 2,500,10,3 0.0% -32.4% 50 43

2,100,6,2 0.0% -42.7% 31 9 2,500,12,3 0.0% -11.6% 30 1

2,100,8,2 0.0% -4.8% 48 32 2,500,5,4 0.0% 0.0% 50 50

2,100,10,2 0.0% -36.3% 47 41 2,500,6,4 0.0% 0.0% 50 50

2,100,12,2 0.0% -3.3% 36 1 2,500,8,4 0.0% 0.0% 50 49

2,100,5,3 0.0% 0.0% 50 50 2,500,10,4 0.0% -30.8% 47 13

2,100,6,3 0.0% 0.0% 50 50 2,500,12,4 0.0% -24.8% 38 28

2,100,8,3 0.0% -42.4% 30 45 2,1000,5,2 0.0% 0.0% 50 50

2,100,10,3 0.0% 31.6% 28 21 2,1000,6,2 0.0% 0.0% 50 50

2,100,12,3 0.0% -16.5% 24 32 2,1000,8,2 0.0% -23.7% 50 5

2,100,5,4 0.0% 0.0% 50 50 2,1000,10,2 0.0% -15.8% 50 13

2,100,6,4 0.0% 6.3% 48 50 2,1000,12,2 0.0% -13.5% 32 10

2,100,8,4 0.0% 24.5% 38 50 2,1000,5,3 0.0% 0.0% 50 50

2,100,10,4 0.0% -32.5% 16 24 2,1000,6,3 0.0% 0.0% 50 50

2,100,12,4 0.0% -25.1% 20 33 2,1000,8,3 0.0% -45.1% 28 33

2,200,5,2 0.0% -33.9% 42 40 2,1000,10,3 0.0% -29.2% 50 35

2,200,6,2 0.0% 0.2% 35 50 2,1000,12,3 0.0% -23.8% 47 5

2,200,8,2 0.0% -34.6% 36 25 2,1000,5,4 0.0% 1.3% 48 50

2,200,10,2 0.0% -35.7% 50 26 2,1000,6,4 0.0% 0.0% 50 50

2,200,12,2 0.0% -32.6% 47 16 2,1000,8,4 0.0% 1.2% 44 50

2,200,5,3 0.0% 3.8% 37 48 2,1000,10,4 0.0% -32.7% 48 12

2,200,6,3 0.0% -27.6% 50 48 2,1000,12,4 0.0% -35.4% 36 26

2,200,8,3 0.0% -39.2% 49 12

66

Table 5.12: Comparison of the Results for CCBFS Algorithm and Öz (2019) [35] on

p = 3

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

3,80,5,2 -8.8% -37.4% 35 13 3,200,10,3 0.0% -26.6% 5 16

3,80,6,2 0.0% -37.2% 42 14 3,200,12,3 -0.9% -29.6% 4 2

3,80,8,2 0.0% -9.6% 49 4 3,200,5,4 0.0% -52.5% 50 36

3,80,10,2 -2.0% -19.2% 9 1 3,200,6,4 0.0% -54.5% 15 39

3,80,12,2 0.0% -16.5% 12 1 3,200,8,4 0.0% -55.7% 16 2

3,80,5,3 0.0% 0.0% 49 36 3,200,10,4 0.0% -36.4% 1 33

3,80,6,3 0.0% -47.6% 22 31 3,200,12,4 0.0% -27.5% 1 23

3,80,8,3 0.0% -18.2% 1 8 3,500,5,2 0.0% -33.4% 50 17

3,80,10,3 -0.1% -31.3% 1 2 3,500,6,2 0.0% -33.4% 50 20

3,80,12,3 0.0% -32.6% 1 17 3,500,8,2 0.0% -12.2% 1 2

3,80,5,4 0.0% -63.6% 31 33 3,500,10,2 0.0% -14.1% 49 2

3,80,6,4 0.0% -55.3% 43 31 3,500,12,2 0.0% -6.2% 14 1

3,80,8,4 0.0% -38.9% 8 42 3,500,5,3 0.0% 0.9% 35 37

3,80,10,4 0.0% -44.4% 4 1 3,500,6,3 0.0% 0.0% 49 39

3,80,12,4 -0.5% -27.3% 1 9 3,500,8,3 0.0% -38.3% 25 27

3,100,5,2 0.0% -36.8% 40 38 3,500,10,3 0.0% -4.6% 18 10

3,100,6,2 -4.7% -33.4% 14 9 3,500,12,3 0.0% -5.3% 1 10

3,100,8,2 -2.6% -13.6% 12 3 3,500,5,4 0.0% 0.5% 41 40

3,100,10,2 -1.4% -21.0% 10 1 3,500,6,4 0.0% -49.4% 43 40

3,100,12,2 -3.0% -13.7% 9 1 3,500,8,4 0.0% -58.4% 31 39

3,100,5,3 0.0% 0.0% 47 37 3,500,10,4 0.0% -44.2% 10 7

3,100,6,3 0.0% -54.4% 44 38 3,500,12,4 0.0% -30.7% 3 1

3,100,8,3 0.0% -19.7% 1 30 3,1000,5,2 0.0% -28.0% 20 18

3,100,10,3 0.0% -31.0% 2 11 3,1000,6,2 0.0% -32.6% 10 25

3,100,12,3 0.0% -29.6% 1 9 3,1000,8,2 0.0% -21.9% 31 15

3,100,5,4 0.0% -54.8% 43 38 3,1000,10,2 0.0% -11.0% 31 1

3,100,6,4 0.0% 0.0% 50 37 3,1000,12,2 0.0% -4.8% 14 1

3,100,8,4 0.0% -49.3% 14 36 3,1000,5,3 0.0% 0.0% 31 40

3,100,10,4 0.0% -42.8% 1 9 3,1000,6,3 0.0% 2.3% 18 34

3,100,12,4 -2.0% -22.1% 1 3 3,1000,8,3 0.0% -43.6% 50 38

3,200,5,2 0.0% -38.8% 50 12 3,1000,10,3 0.0% -32.9% 18 31

3,200,6,2 0.0% -37.7% 36 19 3,1000,12,3 0.0% -5.8% 7 9

3,200,8,2 -4.8 % -15.2% 21 4 3,1000,5,4 0.0% 1.5% 35 38

3,200,10,2 -1.1% -15.4% 11 1 3,1000,6,4 0.0% 3.3% 49 38

3,200,12,2 -0.02 % -11.3% 15 1 3,1000,8,4 0.0% -62.5% 17 38

3,200,5,3 0.0% -53.9% 34 36 3,1000,10,4 0.0% -54.4% 42 34

3,200,6,3 0.0% -48.2% 50 40 3,1000,12,4 -4.3% -36.1% 20 30

3,200,8,3 0.0% -27.0% 16 32

67

Table 5.13: Comparison of the Results for CCBFS Algorithm and Öz (2019) [35]

p = 4

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

p,n,m,q
% Diff. in

the Best

Solution

% Diff. in

the Worst

Solution

of

Best in

CCBFS

of

Best in

[35]

4,80,5,2 0.0% -15.1% 26 3 4,200,10,3 -4.7% -19.7% 1 3

4,80,6,2 -3.4% -16.6% 38 6 4,200,12,3 0.0% -16.6% 17 14

4,80,8,2 0.0% -13.0% 42 2 4,200,5,4 0.0% -58.6% 45 21

4,80,10,2 -0.03% -11.3% 36 1 4,200,6,4 0.0% -59.6% 49 28

4,80,12,2 -7.2% -14.8% 3 2 4,200,8,4 0.0% -47.6% 10 40

4,80,5,3 0.0% -64.8% 5 44 4,200,10,4 0.0% -30.1% 41 19

4,80,6,3 0.0% -29.1% 18 28 4,200,12,4 0.0% -20.8% 5 10

4,80,8,3 0.0% -31.3% 35 13 4,500,5,2 0.0% -56.5% 50 14

4,80,10,3 0.0% -11.9% 1 2 4,500,6,2 0.0% -36.7% 50 15

4,80,12,3 0.0% -5.8% 2 9 4,500,8,2 0.0% -33.5% 29 3

4,80,5,4 0.0% -56.4% 46 35 4,500,10,2 -0.5% -9.3% 39 1

4,80,6,4 0.0% -60.4% 24 29 4,500,12,2 -0.1% -9.1% 26 2

4,80,8,4 0.0% -51.1% 17 35 4,500,5,3 0.0% -58.5% 30 43

4,80,10,4 0.0% -27.3% 10 6 4,500,6,3 0.0% -55.1% 34 32

4,80,12,4 0.0% -15.5% 1 3 4,500,8,3 0.0% -38.7% 33 17

4,100,5,2 0.0% -25.9% 50 9 4,500,10,3 0.0% -39.8% 9 12

4,100,6,2 0.0% -18.6% 9 13 4,500,12,3 -3.4% -4.8% 8 16

4,100,8,2 0.0% -7.8% 49 1 4,500,5,4 0.0% -56.8% 50 29

4,100,10,2 -3.9 % -11.3% 23 1 4,500,6,4 0.0% -59.5% 36 30

4,100,12,2 -0.2 % -9.9% 7 1 4,500,8,4 0.0% -38.6% 24 44

4,100,5,3 0.0% -44.3% 48 40 4,500,10,4 0.0% -37.4% 18 26

4,100,6,3 0.0% -52.9% 22 31 4,500,12,4 0.0% -31.8% 2 13

4,100,8,3 0.0% -36.9% 26 15 4,1000,5,2 0.0% -39.0% 37 27

4,100,10,3 -2.7 % -10.0% 1 3 4,1000,6,2 0.0% -40.0% 15 10

4,100,12,3 -0.2 % -14.9% 1 2 4,1000,8,2 0.0% -45.4% 3 1

4,100,5,4 0.0% -58.3% 50 35 4,1000,10,2 -5.9% -8.2% 9 1

4,100,6,4 0.0% -57.7% 50 38 4,1000,12,2 -0.03% -5.2% 10 1

4,100,8,4 0.0% -46.6% 50 37 4,1000,5,3 0.0% -64.8% 15 42

4,100,10,4 0.0% -32.3% 33 8 4,1000,6,3 0.0% -64.2% 50 38

4,100,12,4 -0.6% -11.7% 2 20 4,1000,8,3 0.0% -44.7% 39 27

4,200,5,2 -1.6% -31.2% 46 1 4,1000,10,3 0.0% -38.7% 22 6

4,200,6,2 0.0% -22.5% 50 1 4,1000,12,3 0.0% -24.5% 8 1

4,200,8,2 0.0% -11.5% 32 4 4,1000,5,4 0.0% -65.7% 11 38

4,200,10,2 -0.2% -7.4% 3 2 4,1000,6,4 0.0% -51.7% 6 34

4,200,12,2 0.0% -6.5% 27 1 4,1000,8,4 0.0% -53.9% 41 34

4,200,5,3 0.0% -64.1% 49 35 4,1000,10,4 0.0% -46.5% 5 8

4,200,6,3 0.0% -44.7% 17 17 4,1000,12,4 0.0% -28.3% 1 23

4,200,8,3 0.0% -36.2% 23 14

68

CHAPTER 6

MEMETIC ALGORITHM FOR CLUSTERING WITH CLUSTER BASED

FEATURE SELECTION FOR HIGH DIMENSIONAL DATA SETS

(CCBFS-H)

The CCBFS algorithm provides successful clustering when there are high number

of data points and a few features as discussed in Chapter 4. In clustering, selecting

features from a high dimensional data set is also important to represent clusters in

lower dimensions. However, the proposed could not provide fruitful insights in such

data sets, since solution space of the memetic algorithm is not decreased significantly.

Therefore, CCBFS algorithm is modified in order to obtain successful clusters in high

dimensional data sets.

In this chapter, our modified memetic algorithm for clustering with cluster based fea-

ture selection for high dimensional data sets (CCBFS-H) is presented. In the Section

6.1, the algorithm is introduced and the process of the algorithm is explained. Subse-

quently, in Section 6.2, each step of the algorithm is described in detail.

6.1 Overview of CCBFS-H

The data set possesses the similar features as in the Chapter 4. There are m features

in the data set which assumed to include relevant q and redundant (m − q) features.

On the other hand, there are n data points in a data set, and all data points in the data

set are subject to be assigned one of p clusters. Main difference in this chapter is the

data sets that we studied contain high number of features.

Although CCBFS algorithm obtains successful results by squeezing the solution space

69

for the data sets with high number of points, increasing values of m affects the space

of CCBFS algorithm significantly, which is shown in Table 6.1. Since we store the

information of selected features in the chromosome representation of the CCBFS al-

gorithm, increasing number of features, m, and selected features q, affect the problem

space significantly. Therefore, we modify the algorithm by discarding the selected

features from the chromosome representation which is explained in detail in Section

6.2.

In our renewed memetic algorithm, chromosomes include the information of assign-

ment and cluster centroids. When the assignment and cluster centroids are known,

a distance value can be calculated for each feature. Then, the features are sorted

in terms of their distance value, and q features with minimum distance values are

selected for each cluster. Sum of the distance values for q features in each cluster

represents the fitness value. The main aim of this representation is to work with data

sets including high number of features. Since the fittest features are selected with

respect to centroid and assignment selection, solution space is reduced significantly.

Furthermore, we add another type of local search method in this algorithm. First

method aims to find fitter centroid selections as discussed in Section 4.2.6. The de-

veloped method in this Chapter aims to find better assignments in a pre-determined

neighborhood.

Figure 6.1: Flowchart of the CCBFS-H Algorithm

The flowchart of the memetic algorithm is shown in the Figure 6.1. Steps 1 and 2

70

are similar to CCBFS algorithm. However, due to the representation of chromosomes

some exceptions are defined in these steps. Subsequently, one type of mutation op-

eration is applied to the offsprings with a small probability. After the mutation, a

fitness value is calculated for each individual in the population. In step 5, neighbor-

hood search algorithms are applied to the fittest individual in the population. These

algorithms are added into the proposed method in order to catch some centroids and

assignments which might provide fitter solutions. Then, the parents of the next gener-

ation are selected from the feasible individuals of the current generation. The creation

of offspring process continues until the stopping criteria is satisfied. At the end of the

algorithm, the fittest offspring through all generations is taken as the best individual

and its phenotype is reported as the best result of the CCBFS–H.

6.2 Description of CCBFS-H Algorithm

In this section, each step of CCBFS-H algorithm is explained in detail.

6.2.1 Chromosome Representation

Chromosome representation is the most significant alteration in development of the

CCBFS-H algorithm. Since this algorithm is developed for the inputs with high num-

ber of features, storing the feature information on genotype of the chromosomes will

be resulted as immense increase on the solution space. Thus, we discard the the infor-

mation of the features on the chromosome representation and utilize the assignment

and cluster centroid information as illustrated in the Figure 6.2.

There are 2 components in the chromosome representation. In the first component,

assignments of data points are stored. Each cell stores the information of the assign-

ment of the related data point and it could take a value in the range of 1 and p. There-

fore, length of the component one is equal to the number of data points n. Second

component of a chromosome holds the indices of cluster centroids which represents

the related data point, as in the chromosome representation of CCBFS algorithm. It

is important to note that a centroid of a cluster should be assigned accordingly in the

first component of the chromosome. Furthermore, in accordance with the problem

71

Figure 6.2: Chromosome Representation of CCBFS-H

definition, one data point can be assigned as centroid to at most one cluster. Length

of the second component equals to the number of clusters p.

In Figure 6.3, an example for the chromosome representation is provided. In this

example, we have three clusters and twelve data points. Here, 5th, 8th and 11th data

points are clustered as cluster 1, and 8th data point is selected as the centroid. Sim-

ilarly, 2nd, 3rd, 9th and 12th data points form a cluster and the remaining five data

points form another one.

Figure 6.3: Chromosome Representation of CCBFS-H

This representation keeps only (N + p) values so that it utilizes low amount of mem-

ory. In order to obtain the phenotype of an individual from this representation, the

least costly features are selected from this assignment which is explained in the fitness

calculation.

Last but not the least, chromosome representation of the CCBFS-H algorithm enables

us to work with the data sets including high number of features. As studied in Chapter

7, we test CCBFS-H algorithm in the data sets that have high number of m and q val-

ues. Since features can be analyzed after the selection of centroids and assignments, a

72

dramatic decrease is obtained in the solution space of CCBFS-H algorithm. The total

solution space of an instance in this algorithm can be formulated as follows:

(
n

p

) (
pn−p

)
(6.1)

In the first term of Equation 6.1, cluster centroids are selected among n data points.

These centroids are automatically assigned to their own clusters and remaining (n−p)

data points are assigned either one of the p clusters which is represented in the second

term. It should be noted that the m and q values do not affect the solution space,

therefore the solution space remains the same on constant values of n and p as shown

in Table 6.1. Comparison of the solution sizes with the original problem and proposed

algorithms is also provided in this Table.

Table 6.1: Solution Space on Various Values of n, m and q

p n m q
of Solutions in

the Original Problem

of Solutions in

CCBFS Algorithm

of Solutions in

CCBFS-H Algorithm

2 80 12 4 1.48 ∗ 1029 7.74 ∗ 108 9.55 ∗ 1026

2 100 12 4 1.55 ∗ 1035 1.21 ∗ 109 1.57 ∗ 1033

2 100 500 30 1.32 ∗ 10126 1.03 ∗ 10100 1.57 ∗ 1033

2 100 1000 30 3.74 ∗ 10144 2.92 ∗ 10118 1.57 ∗ 1033

6.2.2 Initialization

The initialization concept of the CCBFS-H algorithm is same as in the CCBFS algo-

rithm, since the idea is the same. In order to obtain individuals in a wide range of

variations, we create initial population from three different methods. Details of the

initial population creation is already explained in Section 4.2.2 and in Algorithm 2.

6.2.3 Uniform Crossover Operator

All of the parents are grouped as pairs in order to create offsprings through crossover

operation. So that half of the population size (popsize) is subject to crossover. The

73

uniform crossover operator is applied to each component of the chromosomes by

utilizing a crossover mask. Therefore, it includes two parts and up to four offsprings

are generated from two parents. Uniform crossover is selected for crossover since it

increases the exploration capabilities of the algorithm, and it is an unbiased operator

in terms of ordering. First two offsprings are generated through the uniform crossover

of parents’ assignments. A crossover mask is created via random binary variables

and crossover is realized. Similarly, a crossover mask is created for the centroids and

offspring three and four are generated from the crossover from second components

of their parents. For a certain data point, if randomly chosen value in the crossover

mask is 1, then parent 1’s genotype is transferred to offspring 1 and similarly parent

2’s genotype is transferred to offspring 2. On the other hand, if randomly chosen value

is 0, then corresponding genotype of parent 1 is transferred to offspring 2. Creation

of four offsprings via uniform crossover is illustrated in Figure 6.4.

Figure 6.4: Uniform Crossover Operator for CCBFS-H

Since two components of the chromosomes are related with each other, we also need

to grant two exceptions on our crossover operator.

i) While generating the first two offsprings, we directly transfer centroids of the

parents to the offsprings. So, the assignment of the corresponding data point

in the first component of the chromosome should be same as the second com-

ponent. Therefore, we separate corresponding assignments of the centroids,

and they are not considered in the crossover operation. This exception is repre-

sented in the Figure 6.5. In the example 3rd and 72nd data points are centroids

74

of parent 1, and 1st and 73rd data points are centroids of parent 2, and no

crossover mask is generated for them since the parents’ centroid selection is

copied to these offsprings. (line 7)

Figure 6.5: An example for Crossover Exception I

ii) The second exception is utilized while generating last two offsprings. As in the

first exemption we directly transfer the assignment information in the centroids

that are switched during crossover in order to keep assignment-centroid coher-

ence in the offsprings. An example for the second exception is illustrated in the

Figure 6.6. (lines 23-26)

Figure 6.6: An example for Crossover Exception II

Apart from the exceptions, it is important to note that some of the offsprings might be

infeasible for our problem. For instance, after the crossover operation one offspring

may have a data point that is the centroid for more than one clusters. This situation is

75

beyond the problem definition and such offsprings are discarded from the population

and neglected in further steps.

Pseudo-code of the uniform crossover operation for CCBFS-H is provided in Algo-

rithm 8

6.2.4 Mutation Operator

Random mutation operator is also designed in the CCBFS-H algorithm, as in the

CCBFS algorithm. The aim of this operator is to switch assignment of the data points.

In this algorithm we only use one type of mutation, since we also search through

assignments in the neighborhood search step. Algorithm 9 explains the flow of the

mutation operator.

All of the individuals in the population with a pre-defined probability (probmut) might

be exposed to mutation, and this probability is considered as constant through gener-

ations. In case the mutation operator is applied to an offspring, two data points in this

offspring from different clusters are selected. Then, their clusters are interchanged.

It should be noted that, one of the selected data points for mutation might be cluster

centroid. In this case, we discard these individuals from the population in the fitness

calculation step. To illustrate, an example is given in Figure 6.7. In the example,

the mutation operator is applied to the clustering problem where the number of data

points and the number of clusters are equal to 14 and 2, respectively. Here, 9th and

12th data points are selected from first and second clusters and their assignments are

switched.

Figure 6.7: An example for Mutation in CCBFS-H Algorithm

76

Algorithm 8: Uniform Crossover Operation for CCBFS-H
Input : Current population

Output: Offsprings

1 k = 1

2 while k ≤ popsize/2 do

3 Offspring1_centroids = Parent1_centroids

4 Offspring2_centroids = Parent2_centroids

5 Create a 1 ∗ n vector of boolean, mask1

6 for a=1,...,n do

7 if mask1(a) = 1 OR a ∈ cji then

8 Offspring1_assignment(a)=Parent1_assignment(a)

9 Offspring2_assignment(a)=Parent2_assignment(a)

10 else

11 Offspring1_assignment(a)=Parent2_assignment(a)

12 Offspring2_assignment(a)=Parent1_assignment(a)

13 end if

14 end for

15 Offspring3_assignment = Parent1_assignment

16 Offspring4_assignment = Parent2_assignment

17 Create a 1 ∗ p vector of boolean mask2

18 for b=1,...,p do

19 if mask2(b) = 1 then

20 Offspring3_centroid(b)=Parent1_centroid(b)

21 Offspring4_centroid(b)=Parent2_centroid(b)

22 else

23 Offspring3_centroid(b)=Parent2_centroid(b)

24 Offspring4_centroid(b)=Parent1_centroid(b)

25 Offspring3_assignment(cb)= Parent2_assignment(cb)

26 Offspring4_assignment(cb)= Parent1_assignment(cb)

27 end if

28 end for

29 end while

77

Algorithm 9: Mutation Operation for CCBFS-H
Input : Offsprings in the Current Population, Probability of mutation

(probmut)

Output: Offsprings after Mutation Operation

1 r=rand[0,1]

2 if r ≤ probmut then

3 k=0

4 while k==0 do

5 Select assignments of two data points randomly, A1 andA2

6 if A1 ̸= A2 then

7 Switch the clusters of selected data points

8 k=1

9 end if

10 end while

11 end if

6.2.5 Fitness Function

After the mutation operation, assignment of data points to the clusters is done and fit-

ness values for both parents and offsprings are calculated. Process of the fitness calcu-

lation in CCBFS-H algorithm is highly similar as in the CCBFS algorithm. However,

as the representation of the chromosomes are different, fitness calculation method is

also differ.

We have selected the objective function of the clustering problem as the fitness func-

tion, which is the total sum of the rectilinear distances between data points and their

cluster centers.

To calculate the fitness of an offspring, we calculate the distance values for each fea-

ture in the data set by considering cluster centroids and assignments. Subsequently,

we order features for each cluster and the q features with least distance value are

selected. Finally, sum of distance values from selected features for all clusters is

obtained and within-cluster distance value is assigned as the fitness value of the cor-

responding offspring.

78

Algorithm 10: Fitness Calculation for CCBFS-H
Input : Data set, Offspring’s Chromosome

Output: Fitness Value, Cluster Assignment

1 for i=1,...,p do

2 for j=1,...,m do

3 Calculate L1 − norm distance of jth feature for ith cluster

4 end for

5 Order the features with respect to total distance in ith cluster

6 Select q features that provides minimum distances

7 Calculate within-cluster distance of ith cluster

8 end for

9 Calculate the sum of within-cluster distances as fitness value

6.2.6 Neighborhood Search

In CCBFS-H Algorithm we utilized two different local search algorithms in order

to search potential centroids, and avoid to make poor assignments. But the main

purpose is testing the potential centroids and data points in the neighborhood which

might provide lower within-cluster distances.

Algorithm 11: Neighborhood Search 2 for CCBFS-H
Input : Chromosome of the Fittest Offspring, (ncand)

Output: Chromosome of the Fittest Offspring

1 for i=1,...,ncand do

2 for j=1,...,p do

3 Select the jth farthest data point in cluster i

4 Calculate its distance to all cluster centroids, and find the closest

cluster k,

5 Switch the assignment of jth farthest data point in cluster i to cluster k

6 end for

7 end for

The first neighborhood search is highly similar to the search method in Section 4.2.6,

and there are minor differences since chromosome representation is different. Here,

79

selected features are determined in accordance with the assignment of the data points

and selected centroids. Then, the same neighborhood search process is applied as in

the Section 4.2.6. Thanks to this local search method, better centroids might be found,

and if there is a fitter centroid selection, this individual is added into the population

as a new member.

Furthermore, since assignments in the chromosome representation are updated through

crossover operator, some of the assignments might be unfit for their clusters. Thus,

a second neighborhood search is developed which aims to detect farthest data points

in a cluster and search a closer cluster centroid for these data points. Second neigh-

borhood search in CCBFS-H is applied after the first neighborhood search. Here,

initially we detect the farthest number of candidate assignments (ncand) in each clus-

ter. Then, each of these data point’s distance to each cluster centroid is calculated,

and these data points are assigned to their nearest cluster. Subsequently, in case a fit-

ter assignment is found, updated individual is attached to the current population. The

process for the second neighborhood search is explained in Algorithm 11. Moreover,

effects of the proposed neighborhood search on the CCBFS-H algorithm is tested in

this study. Experimental results of these tests are presented in Section 7.2.

6.2.7 Selection of the Next Generation

The selection of the next generation concept of the CCBFS-H algorithm is same as in

the CCBFS algorithm which is explained in Chapter 4 and in Algorithm 7. The aim

of this selection rule is to improve poor parents and avoid premature convergence.

80

CHAPTER 7

COMPUTATIONAL RESULTS OF CCBFS-H

In this Chapter, computational results of the CCBFS-H algorithm will be explained.

Simulated data set creation for high-dimensional data is explained in Section 7.1.

After that, utilized performance measures and parameter settings for this algorithm is

summarized in Section 7.2. Subsequently, computational results from the simulated

data sets are presented in Section 7.3. Finally, computational results of the proposed

method on a benchmark data set is reported in Section 7.4.

7.1 Simulated Data Sets

In order to analyze results of the CCBFS-H algorithm, we generate simulated high

dimensional data sets. Other features of utilized data set are highly similar with the

data sets in Section 5.1. The prominent features of the data sets that are utilized in

section are as follows:

• Each instance in the data set is created either in different size or includes dif-

ferent selected features.

• All problem instances include q relevant and m− q redundant features for each

cluster.

• Values of relevant features are created from normal distribution, and uniform

distribution is utilized for redundant features.

In this Chapter, 9 data instances are created in order to test CCBFS-H algorithm.

Three different values are taken for both number of features, m, and number of rel-

evant features, q. It is important to note that all columns are standardized in all data

81

instances as explained in Section 5.1. Details of the data set utilized in this Chapter

is summarized in the Table 7.1.

Table 7.1: Details of the Simulated Data Sets

Number of Clusters (p) 2

Number of Data Points (N) 100

Number of Features (m) {100, 300, 500}

Number of Relevant Features (q) {10, 30, 50}

7.2 Performance Measures and Parameter Settings

Performance Measures:

In order to evaluate the results, we utilise same performance measures explained in

Chapter 5 (Best vs. Zc, Worst vs. Best, # of Best, # of Worst, CPU Time, and correct

selection of features). Moreover, we add another performance measure of ARI in

order to compare partitionings between CCBFS-H algorithm and simulated data sets.

Adjusted Rand Index (ARI):

Adjusted Rand Index (ARI) [23] is a widely utilized metric to evaluate unsupervised

clustering problems which measures similarity between two partitioning. The ARI is

developed over Rand Index (RI) [36], and the idea behind both of the indexes is to

reward correct partitioning of data point pairs and penalize the wrong partitions. The

possible occurrences for pairs are shown in a contingency matrix, Table 7.2.

Table 7.2: Contingency Matrix for Partitions A and B

B

A Pairs in the same group Pairs in different groups

Pairs in the same group a b

Pairs in different groups c d

82

RI can be calculated according to Equation 7.1. In this equation, a means number of

pairs that are in the same cluster in both partitioning, b means number of pairs that

are in different clusters in both partitioning, and n is the total number of data points.

RI =
a + d

a + b + c + d
(7.1)

ARI is developed over RI, since RI may find successful results in some occasions by

chance. Hence, an expected index value is utilized as a benchmark in ARI in order

to consider random partitioning. Its upper bound is 1, which means compared parti-

tionings are perfectly matched. On the other hand, negative values can be obtained

as a lower bound which means that suggested clusters may have worse results than a

random partitioning.

Formulation of the ARI is given in Equation 7.2 [46].

ARI =

(
n

2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n

2

)2

− [(a+ b)(a+ c) + (c+ d)(b+ d)]
(7.2)

Parameter Settings:

For the parameter settings, we also followed a similar structure with Chapter 5. How-

ever, in line with the differences between two algorithms, we also need to make some

alterations on parameter settings which is summarized in Table 7.3.

As we have one type of mutation in CCBFS-H algorithm, mutation probability is

decreased to 1%. Proposed neighborhood search algorithm in CCBFS-H is another

reason to decrease mutation probability, since it also provides searching capabilities

on assignment.

Lastly, the number of candidates for neighborhood search is also changed as we are

working with high-dimensional data and number of data points are limited.

We have tested the effects of second neighborhood search for CCBFS-H algorithm

and report the results in Table B.2. In terms of best solutions any difference is not

observed, but second neighborhood search increases the quality of results in the worst

83

solutions. Moreover, number of best results in the tests with no neighborhood search

are always lower than or equal to the CCBFS-H algorithm. Therefore, we have ap-

plied the second neighborhood search in all of the tests in Chapters 7.3 and 7.4.

Table 7.3: Parameter Setting of the CCBFS-H Algorithm

Population Size 1000

Number of Generations 200

Ratio of Initial Generation by Type 1, 2 and 3 {50%, 25% , 25%}

Crossover Probability 100%

Mutation Probability 1%

Number of Candidates for Neighborhood Search 1 n/20

Number of Candidates for Neighborhood Search 2 n/50

7.3 Computational Results for Simulated Data Sets

Although CCBFS algorithm has provided successful results in the data sets with high

number of points, it is not convenient for high-dimensional data sets. Therefore,

CCBFS-H algorithm has developed in order to cluster such data sets as explained in

Chapter 6. Similar to CCBFS algorithm, CCBFS-H algorithm is coded in MATLAB

R2021a and simulations to test the algorithm has been carried out on 64-bit Windows

10 PC with 3.6 GHz 12 core Intel Xeon E-2246G processor and 16 GB RAM.

Öz (2019) [35] has proposed three linearized models and two heuristic methods. On

simulated high dimensional data sets all of these proposed models do not provide

clustering due to high requirement on memory.

Therefore, to test the performance of CCBFS-H algorithm, 9 synthetic data sets that

are described in Section 7.1 and one benchmark data set is utilized. For the simula-

tions, parameter settings explained in Section 7.2 is utilized. Detailed results for each

simulation are provided in Table 7.4.

The table is constructed as in the Chapter 5. First column includes the information

of parameters, p, n,m and q and Zc value is given in the second column. Remaining

performance metrics are provided in the following columns.

84

Ta
bl

e
7.

4:
R

es
ul

ts
of

C
C

B
FS

-H
A

lg
or

ith
m

on
H

ig
h

D
im

en
si

on
al

D
at

a

p,
n,

m
,q

Z
c

B
es

t
M

ed
ia

n
W

or
st

B
es

tv
s.

Z
c

W
or

st

vs
.B

es
t

#
of

B
es

t

#
of

W
or

st
A

R
I

C
or

re
ct

ly

Se
le

ct
ed

Fe
at

ur
es

C
PU (s
)

2,
10

0,
10

0,
10

95
.7

8
95

.5
5

95
.5

5
95

.5
5

-0
.2

%
0.

0%
50

0
1.

00
[1

0,
9]

45
.1

9

2,
10

0,
10

0,
30

26
7.

78
25

9.
17

25
9.

17
25

9.
17

-3
.2

%
0.

0%
50

0
1.

00
[2

7,
30

]
38

.1
5

2,
10

0,
10

0,
50

47
3.

89
47

2.
06

47
2.

06
47

2.
06

-0
.4

%
0.

0%
50

0
1.

00
[4

8,
50

]
46

.6
4

2,
10

0,
30

0,
10

79
.9

2
79

.9
2

79
.9

2
80

.7
8

0.
0%

1.
1%

43
7

1.
00

[1
0,

10
]

92
.2

3

2,
10

0,
30

0,
30

27
0.

38
26

3.
71

26
3.

71
26

5.
92

-2
.5

%
0.

8%
45

2
1.

00
[2

6,
29

]
81

.5
4

2,
10

0,
30

0,
50

45
6.

18
44

1.
19

44
1.

19
44

1.
19

-3
.3

%
0.

0%
50

0
1.

00
[4

5,
46

]
91

.6
7

2,
10

0,
50

0,
10

81
.4

2
79

.5
9

79
.5

9
82

.3
5

-2
.2

%
3.

5%
33

7
1.

00
[9

,1
0]

12
0.

55

2,
10

0,
50

0,
30

26
2.

32
26

0.
68

26
0.

68
26

0.
68

-0
.6

%
0.

0%
50

0
1.

00
[2

9,
29

]
11

0.
92

2,
10

0,
50

0,
50

45
7.

16
43

6.
70

43
6.

70
44

7.
41

-4
.5

%
2.

5%
36

1
1.

00
[4

5,
47

]
11

0.
23

85

In eight of the nine simulated instances results of CCBFS-H algorithm are less than

Zc values, while it obtains exactly the same clusters in one instance. In these eight in-

stances, CCBFS-H algorithm assigns data points to clusters as in the data simulation.

But, it obtains lower objective function by differentiating some of the features which

provides denser clusters than the ones created in data simulation phase. It should be

noted that, most of the selected features are still same with the data simulation phase,

and that is an expected outcome from a successful algorithm, since data is created

according to specific distribution functions.

CCBFS-H algorithm also provides small differences between best and worst solu-

tions like CCBFS. As shown in Table 7.4 the difference is at most 3.5% among nine

instances while the best and worst results are the same for 5 instances. Moreover,

median value is the same with the best results in all nine instances.

In terms of CPU times, it is observed that number of features, m, has main effect on

duration, while no significant variance is observed on different values of number of

selected features, q. During the memetic algorithm, features are ordered and fittest

ones are selected for each offspring. Therefore varying number of features directly

affect the computational time, although solution space is the same for different m

values in CCBFS-H.

Effects of Selecting Different Number of Features

In the previous problem setting, number of selected features are given, however in

real life data sets, gathering data for each feature might be costly. As an example, we

have tested q values up to 50 in the simulated data sets, however the algorithm might

obtain the same clustering by selecting much less features. Considering that, we have

studied simulated data sets by selecting different number of features with respect to

their creation. We analyze the results in accordance with the following questions for

different values of q.

• Does CCBFS-H able to assign data points to clusters similar to simulated data?

• Does CCBFS-H able to deduce relevant features similar to simulated data?

For the first question, ARI value is analyzed since higher ARI value represents higher

similarity between two assignments. Number of common features is considered for

86

the second question. By looking at the common features we aim to monitor whether

the CCBFS-H algorithm is able to make correct assignment with lower number of

features, or not.

Detailed results for each simulation is given in the Appendix, in Tables A.1 - A.3.

Here q refers the number of features that have normal distribution during data creation

and Zc calculation stage, and sq represents the number of selected features that are

given to the algorithm. Best, median and worst results among 50 trials, percentage

gap between best result and worst result, number of best and worst solutions, CPU

times, adjusted rand index of the best result, and correctly selected features of the best

result are provided in these tables.

Similar to previous simulations, difference between best and worst results remains

low for variable number of features. The average difference is less than 1%, while the

difference figures are always less than 5.3%. It is also observed that marginal increase

of the objective function increases in line with number of selected features. It is an

expected outcome since the algorithm initially selects the least cost features.

To illustrate the effects of different number of selected features on ARI and correct

selection of features, Figure 7.1 is provided. As shown in all graphs, ARI values equal

to 1 in most of the times which means CCBFS-H algorithm makes the same clustering

with simulated data. Moreover, maximum value of ARI is reached by selecting less

than 6 features in all instances. Therefore, to cluster a data set correctly, the CCBFS-

H algorithm do not require to process all of the relevant features, and it is able to

cluster them correctly with much less features.

A decline is observed on ARI when the number of selected features is high and q =

10. It is also an anticipated outcome since there are much more redundant features

than relevant features in these instances. Here, CCBFS-H algorithm finds another

relationship between redundant features so that the assignments are differentiated.

Although the interval is very large in these examples, we can conclude that selection

of correct number of features has significant effects on clustering problems.

On the other hand, as shown in Figure 7.1, correctly selected features around double

of number of selected features which is the maximum value since p = 2. It means

87

(a
)m

=
10
0,

q
=

10
(b

)m
=

3
0
0,

q
=

1
0

(c
)m

=
5
0
0,

q
=

1
0

(d
)m

=
10
0,

q
=

30
(e

)m
=

3
0
0,

q
=

3
0

(f
)m

=
5
0
0,

q
=

3
0

(g
)m

=
10
0,

q
=

50
(h

)m
=

3
0
0,

q
=

5
0

(i
)m

=
5
0
0,

q
=

5
0

Fi
gu

re
7.

1:
R

es
ul

ts
of

A
R

Ia
nd

C
or

re
ct

ly
Se

le
ct

ed
Fe

at
ur

es
fo

rD
iff

er
en

tN
um

be
ro

fS
el

ec
te

d
Fe

at
ur

es
,p

=
2,

n
=

10
0

88

that, CCBFS-H algorithm selects the features that are created as relevant features

during data creation. Therefore, CCBFS-H algorithm is also successful on finding

the relevant features in data set for a clustering problem.

7.4 Computational Results for Benchmark Data Sets

In addition to synthetic data sets, we also test the capabilities of CCBFS-H algorithm

on the Wisconsin Diagnostic Breast Cancer data set. This data includes 30 features

and 569 data points with no missing values. There are two classes in this data set,

namely, benign and malignant. Among 569 observations, 357 of them are labeled as

benign and remaining 212 of them are malignant.

In this section we have two targets. Testing the success of CCBFS-H algorithm on a

benchmark data set is taken as a first target. Another target is to show the effectiveness

of cluster based feature selection over a clustering with feature selection by applying

the same methodology. We set the second target since data sets in bio-informatics

domain includes high number of features and data points in these data sets might be

grouped by different sets of relevant features. Therefore, CCBFS-H algorithm might

provide better results by utilizing much less features. In order to obtain results from

clustering with feature selection, we altered the CCBFS-H algorithm to select same

features for all clusters.

The results are summarized in Table 7.5. In this table, number of correctly classified

data points for different values of number of selected features, q, is reported. Results

of best and worst solutions and the averages of 50 trials for both algorithms are pro-

vided. To illustrate the developments of clustering results of both algorithms on q

values, Figure 7.2 is presented.

As reported in Table 7.5, considering the best solutions, CCBFS-H is able to classify

data points correctly by more than 90%. Correctly classified data points in CCBFS-H

is lower for q values of 2 and 6. For the q values of 10 and above the results reaches

a maturity on best solutions and a significant increase is not observed. Furthermore,

a notable difference on worst solutions is not observed for these q values. Moreover,

averages of 50 trials is increasing with q in almost all instances. It reaches peak when

89

Table 7.5: Correctly Classified Data Points of Best, Worst and Average Solutions on

CCBFS-H and Clustering with Feature Selection Algorithms

CCBFS-H
Clustering with

Feature Selection

q Best Worst Average Best Worst Average

2 524 448 493.6 470 454 458.9

6 529 480 507.1 488 473 478.0

10 538 497 517.7 500 483 497.0

14 541 507 523.7 512 483 498.8

18 538 501 522.8 517 482 504.9

22 536 517 528.0 534 506 514.1

26 536 505 528.2 536 514 527.3

30 541 511 528.6 541 511 528.6

all 30 features are utilized, although difference in averages with q = 22 is only 0.1%.

Considering above-mentioned arguments, CCBFS-H algorithm ensures reliable re-

sults on the benchmark data set. Moreover, after a certain value of selected features

q, the algorithm creates clusters that ensures high number of correctly classified data

points. It is a remarkable outcome since collecting data for all features might be costly

in some circumstances.

When Figure 7.2 is analyzed, it is observed that there is a significant difference be-

tween two methods for q values below 20. It means that cluster specific feature selec-

tion is more successful than selection of same features for each clusters. The differ-

ence is higher for q = 2, and it is getting smaller in line with increasing values of q.

After a certain value of q = 22, simulation results became indifferent, so that similar

results can be obtained in both methods for higher values of q.

We also analyze the selected features of both algorithms for different values of se-

lected features, q. Selected features of the best results among 50 trials are summarized

in Table 7.6 for q values between 2 and 18. It is observed from the table that selected

features in clustering with feature selection (CFS) problem are always selected by

90

one of the clusters in CCBFS-H. Since CCBFS-H algorithm provides better results, it

can be posited that CCBFS-H is able to find same results with CFS, but it can obtain

better results by differentiating feature sets for clusters. Moreover, it is observed that

selected features in lower values of q are always selected in the increasing values of

q. It is an expected outcome, since rectilinear distance is utilized so that the algorithm

initially select features which provide minimum within-cluster distances. When q is

increased, the algorithm selects new features with same rationale.

Table 7.6: Features selected by CCBFS-H and clustering with feature selection algo-

rithms

q Algorithm Cluster Selected Features

2
CCBFS-H

Cluster 1 {13 14}

Cluster 2 {17 20}

CFS All Clusters {13 14}

6
CCBFS-H

Cluster 1 {4 11 13 14 17 24}

Cluster 2 {13 14 15 17 18 20}

CFS All Clusters {11 13 14 17 20 24}

10
CCBFS-H

Cluster 1 {1 3 4 11 13 14 17 21 23 24}

Cluster 2 {11 12 13 14 15 16 17 18 19 20}

CFS All Clusters {4 11 13 14 15 17 20 21 23 24}

14
CCBFS-H

Cluster 1 {1 3 4 7 8 11 13 14 17 18 20 21 23 24}

Cluster 2 {2 5 11 12 13 14 15 16 17 18 19 20 29 30}

CFS All Clusters {1 3 4 11 13 14 15 17 18 20 21 23 24 30}

18
CCBFS-H

Cluster 1 {1 3 4 6 7 8 11 13 14 17 18 20 21 23 24 26 27 30}

Cluster 2 {2 5 6 9 11 12 13 14 15 16 17 18 19 20 25 26 29 30}

CFS All Clusters {1 3 4 8 11 13 14 15 16 17 18 19 20 21 23 24 29 30}

91

Fi
gu

re
7.

2:
C

om
pa

ri
so

n
of

C
C

B
FS

-H
an

d
C

lu
st

er
in

g
w

ith
Fe

at
ur

e
Se

le
ct

io
n

on
C

or
re

ct
C

la
ss

ifi
ca

tio
n

92

CHAPTER 8

CONCLUSIONS

In this thesis, we study clustering with hard partitioning and we focus on a cluster-

ing with cluster based feature selection problem. In the problem setting, each cluster

includes one data point as a cluster centroid and each data point must be assigned to

exactly one cluster. Moreover, relevant features are selected for each cluster sepa-

rately.

Dimensions of the data set determine the number of features and number of data

points. The information of number of clusters and number of features that should be

selected are determined in advance, similar to other partitional clustering methods.

In the problem setting, hard partitioning is applied by assigning each data point to

exactly one cluster, so that disjoint clusters are constructed. As a similarity measure

between data points, we utilize rectilinear distance. Since pre-determined number of

features are selected, distance between a data point to a cluster centroid is calculated

with respect to selected features.

We represent the problem as a nonlinear mixed integer mathematical model. How-

ever, it is an NP-Hard problem and the mathematical model can not obtain convenient

results in meaningful durations, especially for bigger data sets. In this context, we

have developed a memetic algorithm to find successful results in shorter durations.

Objective of the first memetic algorithm is finding the clustering with least within-

cluster distance by using the information of feature selection and cluster centroids.

Since assignment of data points become obvious when the centroids and selected

features are known, the assignments are not stored in chromosome representation.

Thanks to the structure of chromosomes, problem space in the CCBFS algorithm is

93

reduced significantly.

We have tested the proposed algorithm with various number of features, data points

and clusters. The results show that CCBFS algorithm is able to obtain successful

clustering results in all cases. Moreover, differences between best and worst solutions

among all trials are quite low so that the algorithm is able to obtain reliable results.

The algorithm also hits its worst solution in less than 4% of the instances, in average.

Therefore, it is able to quit from the solutions which might be local optima.

Although CCBFS algorithm obtains convenient results on the data sets with high

number of objects, it has deficiencies on the high dimensional data sets. Therefore,

we developed a novel CCBFS-H algorithm by updating the first algorithm, which

has a focus on finding successful clustering results on high dimensional data. The

most fundamental change in the updated algorithm is chromosome representation of

the problem. CCBFS-H algorithm stores assignment and centroid information in the

chromosomes instead of selected features. Due to this structure, increasing number

of features does not affect the problem space harshly and the proposed algorithm is

able to obtain results within reasonable durations.

CCBFS-H algorithm is tested on both synthetic and a benchmark data sets. Results of

the CCBFS-H algorithm are also successful on within-cluster distance of the best so-

lutions. Furthermore, differences between the best and worst solutions in CCBFS-H

are around 1% in average. In addition to obtaining convenient clustering, the al-

gorithm is also successful on finding relevant features which is important to obtain

meaningful information from the data set. We also found that CCBFS-H algorithm

can create same clusters by using lower number of features.

This is the first study that developed memetic algorithm approach on clustering with

cluster based feature selection problem. Since any feature can be selected in any

of the clusters, our proposed method includes the clustering with feature selection

problem. We test the advantage of cluster based feature selection on the benchmark

data set and we have found that it obtains more successful results than fixed feature

selection problem, especially when the number of selected features are low.

In this study, rectilinear distance is utilized as a similarity measure, but different dis-

94

tance measures can be utilized to test both of the algorithms as a future research

direction.

Objectives of the proposed algorithms are to minimize within-cluster distances. They

can also be tested on different objectives such as maximization of inter-cluster dis-

tances.

Finally, our proposed algorithm can be updated to solve k-means clustering. If the

information of selected features and assignment of data points stored in chromo-

some representation, cluster centers can be determined as the average of assigned

data points which can be transformed into k-means clustering.

95

96

REFERENCES

[1] Ö. Akay, E. Tekeli, and G. Yüksel. Genetic algorithm with new fitness func-

tion for clustering. Iranian Journal of Science and Technology, Transactions A:

Science, 44:865–874, 2020.

[2] S. Alelyani, J. Tang, and H. Liu. Feature selection for clustering: A review.

Data Clustering, pages 29–60, 2018.

[3] A. H. Beg and M. Z. Islam. Clustering by genetic algorithm-high quality chro-

mosome selection for initial population. In 2015 IEEE 10th Conference on

Industrial Electronics and Applications (ICIEA), pages 129–134. IEEE, 2015.

[4] A. Ben-Israel and C. Iyigun. Probabilistic d-clustering. Journal of Classifica-

tion, 25(1):5–26, 2008.

[5] S. Benati and S. García. A mixed integer linear model for clustering with vari-

able selection. Computers & operations research, 43:280–285, 2014.

[6] S. Benati, S. García, and J. Puerto. Mixed integer linear programming and

heuristic methods for feature selection in clustering. Journal of the Operational

Research Society, 69(9):1379–1395, 2018.

[7] P. Berkhin. A survey of clustering data mining techniques. In Grouping multi-

dimensional data, pages 25–71. Springer, 2006.

[8] J. Bezdek, R. Enrlich, and W. Full. Fcm: The fuzzy c-means clustering algo-

rithm. computers&geosciences, volume 10, issue 2-3, 1984.

[9] M. J. Brusco. Clustering binary data in the presence of masking variables. Psy-

chological Methods, 9(4):510, 2004.

[10] D. Chen, K. C. Chan, and X. Wu. Gene expression analyses using genetic algo-

rithm based hybrid approaches. In 2008 IEEE Congress on Evolutionary Com-

putation (IEEE World Congress on Computational Intelligence), pages 963–

969. IEEE, 2008.

97

[11] F. Chiyoshi and R. D. Galvão. A statistical analysis of simulated annealing

applied to the p-median problem. Annals of Operations Research, 96(1):61–74,

2000.

[12] J. E. Corter and M. A. Gluck. Explaining basic categories: Feature predictabil-

ity and information. Psychological bulletin, 111(2):291, 1992.

[13] J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning. Journal

of machine learning research, 5(Aug):845–889, 2004.

[14] A. E. Ezugwu, A. K. Shukla, M. B. Agbaje, O. N. Oyelade, A. José-García,

and J. O. Agushaka. Automatic clustering algorithms: a systematic review and

bibliometric analysis of relevant literature. Neural Computing and Applications,

33(11):6247–6306, 2021.

[15] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering.

Machine learning, 2(2):139–172, 1987.

[16] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical

clusterings. Journal of the American statistical association, 78(383):553–569,

1983.

[17] H. Frigui and O. Nasraoui. Unsupervised learning of prototypes and attribute

weights. Pattern recognition, 37(3):567–581, 2004.

[18] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for

large databases. ACM Sigmod record, 27(2):73–84, 1998.

[19] E. Hancer, B. Xue, and M. Zhang. A survey on feature selection approaches for

clustering. Artificial Intelligence Review, 53(6):4519–4545, 2020.

[20] P. Hansen and N. Mladenović. Variable neighborhood search for the p-median.

Location Science, 5(4):207–226, 1997.

[21] P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi. Variable neighbor-

hood search: basics and variants. EURO Journal on Computational Optimiza-

tion, 5(3):423–454, 2017.

98

[22] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of

statistical learning: data mining, inference, and prediction, volume 2. Springer,

2009.

[23] L. Hubert and P. Arabie. Comparing partitions. Journal of classification,

2(1):193–218, 1985.

[24] P. Jaccard. Étude comparative de la distribution florale dans une portion des

alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[25] I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent

developments. Philosophical Transactions of the Royal Society A: Mathemati-

cal, Physical and Engineering Sciences, 374(2065):20150202, 2016.

[26] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering

using dynamic modeling. Computer, 32(8):68–75, 1999.

[27] Y. Kim, W. N. Street, and F. Menczer. Evolutionary model selection in unsuper-

vised learning. Intelligent data analysis, 6(6):531–556, 2002.

[28] Z. F. Knops, J. A. Maintz, M. A. Viergever, and J. P. Pluim. Normalized mutual

information based registration using k-means clustering and shading correction.

Medical image analysis, 10(3):432–439, 2006.

[29] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–

1480, 1990.

[30] M. H. Law, M. A. Figueiredo, and A. K. Jain. Simultaneous feature selection

and clustering using mixture models. IEEE transactions on pattern analysis

and machine intelligence, 26(9):1154–1166, 2004.

[31] T. V. Levanova and M. Loresh. Algorithms of ant system and simulated anneal-

ing for the p-median problem. Automation and remote control, 65(3):431–438,

2004.

[32] Y. Li, M. Dong, and J. Hua. Localized feature selection for clustering. Pattern

Recognition Letters, 29(1):10–18, 2008.

[33] J. MacQueen. Classification and analysis of multivariate observations. In 5th

Berkeley Symp. Math. Statist. Probability, pages 281–297, 1967.

99

[34] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez. The p-median

problem: A survey of metaheuristic approaches. European Journal of Opera-

tional Research, 179(3):927–939, 2007.

[35] S. Önen Öz. Mixed integer programming and heuristics approachesfor cluster-

ing with cluster-based feature selection. Master’s thesis, 2019.

[36] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical association, 66(336):846–850, 1971.

[37] L. Rdusseeun and P. Kaufman. Clustering by means of medoids. In Proceedings

of the statistical data analysis based on the L1 norm conference, neuchatel,

switzerland, volume 31, 1987.

[38] C. K. Reddy and B. Vinzamuri. A survey of partitional and hierarchical clus-

tering algorithms. In Data clustering, pages 87–110. Chapman and Hall/CRC,

2018.

[39] L. Rokach and O. Maimon. Clustering methods data mining and knowledge

discovery handbook (pp. 321-352), 2005.

[40] E. Rolland, D. A. Schilling, and J. R. Current. An efficient tabu search pro-

cedure for the p-median problem. European Journal of Operational Research,

96(2):329–342, 1997.

[41] M. Rostami and P. Moradi. A clustering based genetic algorithm for feature

selection. In 2014 6th Conference on Information and Knowledge Technology

(IKT), pages 112–116. IEEE, 2014.

[42] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,

W. Ding, and C.-T. Lin. A review of clustering techniques and developments.

Neurocomputing, 267:664–681, 2017.

[43] W. Sheng and X. Liu. A genetic k-medoids clustering algorithm. Journal of

Heuristics, 12(6):447–466, 2006.

[44] L. Shi and S. Olafsson. Nested partitions method for global optimization. Op-

erations research, 48(3):390–407, 2000.

100

[45] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad. A re-

view of unsupervised feature selection methods. Artificial Intelligence Review,

53(2):907–948, 2020.

[46] D. Steinley. Properties of the hubert-arable adjusted rand index. Psychological

methods, 9(3):386, 2004.

[47] M. Sun, L. Xiong, H. Sun, and D. Jiang. A ga-based feature selection for high-

dimensional data clustering. In 2009 Third International Conference on Genetic

and Evolutionary Computing, pages 769–772. IEEE, 2009.

[48] J. Tang, S. Alelyani, and H. Liu. Feature selection for classification: A review.

Data classification: Algorithms and applications, page 37, 2014.

[49] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for cluster-

ings comparison: Variants, properties, normalization and correction for chance.

The Journal of Machine Learning Research, 11:2837–2854, 2010.

[50] J. Wang, Z. Cheng, O. K. Ersoy, P. Zhang, and W. Dai. Multi-offspring ge-

netic algorithm with two-point crossover and the relationship between number

of offsprings and computational speed. Journal of Computers, 30(5):111–127,

2019.

[51] Y.-L. Wu, C.-Y. Tang, M.-K. Hor, and P.-F. Wu. Feature selection using genetic

algorithm and cluster validation. Expert Systems with Applications, 38(3):2727–

2732, 2011.

[52] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on

neural networks, 16(3):645–678, 2005.

[53] B. Zhang, M. Hsu, and U. Dayal. K-harmonic means-a spatial clustering al-

gorithm with boosting. In International Workshop on Temporal, Spatial, and

Spatio-Temporal Data Mining, pages 31–45. Springer, 2000.

[54] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. ACM sigmod record, 25(2):103–114, 1996.

101

102

Appendix A

EXPERIMENTAL RESULTS OF THE CCBFS-H ALGORITHM

Simulation Results of CCBFS-H Algorithm

Table A.1: Simulation Results of CCBFS-H Algorithm with n = 100, p = 2 and m =

100

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

10 2 9.11 9.11 9.16 0.6% 36 7 1.00 [2,2] 42.41

10 4 23.02 23.02 23.27 1.1% 41 9 1.00 [4,4] 49.03

10 6 42.99 42.99 43.19 0.5% 39 11 1.00 [6,6] 45.43

10 8 65.63 65.63 66.77 1.7% 39 1 1.00 [8,8] 45.20

10 10 95.55 95.55 95.55 0.0% 50 50 1.00 [10,9] 45.19

10 15 187.22 187.22 189.76 1.4% 42 1 1.00 [10,10] 47.21

10 20 299.15 299.15 302.70 1.2% 41 3 1.00 [10,10] 45.79

10 25 419.04 419.04 421.99 0.7% 38 3 1.00 [10,10] 45.36

10 30 543.51 543.51 547.87 0.8% 37 1 1.00 [10,10] 45.15

10 35 670.53 670.53 673.42 0.4% 42 8 1.00 [10,10] 44.97

10 40 801.71 801.71 806.70 0.6% 38 1 1.00 [10,10] 45.34

10 45 936.92 936.92 941.58 0.5% 43 7 1.00 [10,10] 45.48

10 50 1078.08 1078.08 1084.09 0.6% 47 1 0.96 [10,10] 45.28

10 60 1372.67 1372.67 1375.48 0.2% 35 1 1.00 [10,10] 44.30

10 70 1689.65 1689.65 1690.10 0.0% 37 1 0.92 [10,10] 49.79

10 80 2025.12 2025.12 2028.52 0.2% 38 3 0.88 [10,10] 45.25

10 90 2400.83 2400.83 2402.86 0.1% 37 1 0.84 [10,10] 45.51

10 100 2856.65 2856.65 2865.78 0.3% 30 1 0.77 [10,10] 45.70

30 2 6.84 6.84 6.85 0.3% 10 4 0.92 [2,2] 39.79

30 4 14.54 14.54 14.68 1.0% 40 10 1.00 [4,4] 37.96

30 6 25.22 25.22 25.22 0.0% 50 50 1.00 [6,6] 37.76

30 8 36.86 36.86 36.86 0.0% 50 50 1.00 [8,8] 38.00

30 10 51.11 51.11 51.37 0.5% 48 2 1.00 [10,10] 38.29

30 15 90.56 90.56 90.56 0.0% 50 50 1.00 [15,15] 39.32

30 20 137.40 137.40 137.40 0.0% 50 50 1.00 [20,20] 40.87

30 25 192.08 192.08 192.08 0.0% 50 50 1.00 [25,25] 38.23

30 30 259.17 259.17 259.17 0.0% 50 50 1.00 [27,30] 38.15

30 35 347.81 347.81 347.81 0.0% 50 50 1.00 [28,30] 38.44

30 40 455.18 455.18 455.18 0.0% 50 50 1.00 [29,30] 38.40

30 45 571.01 571.01 571.01 0.0% 50 50 1.00 [30,30] 38.43

30 50 695.20 695.20 695.20 0.0% 50 50 1.00 [30,30] 38.24

30 60 957.15 957.15 957.15 0.0% 50 50 1.00 [30,30] 43.26

30 70 1242.72 1242.72 1242.72 0.0% 50 50 1.00 [30,30] 44.26

30 80 1544.79 1544.79 1544.79 0.0% 50 50 1.00 [30,30] 41.59

30 90 1882.87 1882.87 1882.87 0.0% 50 50 1.00 [30,30] 38.25

30 100 2322.74 2322.74 2322.74 0.0% 50 50 1.00 [30,30] 38.45

103

Table A.1 continued from previous page

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

50 2 7.32 7.32 7.33 0.1% 28 22 0.96 [2,2] 38.83

50 4 15.59 15.59 15.60 0.1% 44 6 1.00 [4,4] 38.07

50 6 25.91 25.91 26.00 0.4% 49 1 1.00 [6,6] 38.00

50 8 37.23 37.23 37.23 0.0% 50 50 1.00 [8,8] 37.89

50 10 49.45 49.45 49.45 0.0% 50 50 1.00 [10,10] 38.06

50 15 85.62 85.62 85.62 0.0% 50 50 1.00 [15,15] 49.36

50 20 126.17 126.17 126.67 0.4% 49 1 1.00 [20,20] 50.74

50 25 170.20 170.20 170.20 0.0% 50 50 1.00 [25,25] 46.83

50 30 216.45 216.45 216.45 0.0% 50 50 1.00 [30,30] 47.45

50 35 268.63 268.63 268.63 0.0% 50 50 1.00 [35,35] 47.32

50 40 330.01 330.01 330.01 0.0% 50 50 1.00 [40,40] 46.89

50 45 393.63 393.63 393.63 0.0% 50 50 1.00 [45,45] 46.44

50 50 472.06 472.06 472.06 0.0% 50 50 1.00 [49,49] 46.64

50 60 671.16 671.16 671.16 0.0% 50 50 1.00 [50,50] 47.55

50 70 917.12 917.12 917.12 0.0% 50 50 1.00 [50,50] 47.03

50 80 1186.01 1186.01 1186.01 0.0% 50 50 1.00 [50,50] 47.48

50 90 1505.55 1505.55 1505.55 0.0% 50 50 1.00 [50,50] 47.74

50 100 1919.66 1919.66 1919.66 0.0% 50 50 1.00 [50,50] 47.58

Table A.2: Simulation Results of CCBFS-H Algorithm with n = 100, p = 2 and

m = 300

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

10 2 7.97 7.97 7.98 0.2% 48 2 1.00 [2,2] 95.89

10 4 19.09 19.09 19.09 0.0% 50 50 1.00 [4,4] 88.18

10 6 35.44 35.44 35.55 0.3% 39 11 1.00 [6,6] 87.72

10 8 55.68 55.68 56.01 0.6% 42 8 1.00 [8,8] 87.88

10 10 79.92 79.92 80.78 1.1% 43 7 1.00 [10,10] 92.23

10 15 176.33 176.33 177.27 0.5% 35 1 1.00 [10,10] 88.02

10 20 281.79 281.79 286.08 1.5% 40 1 1.00 [10,10] 87.94

10 25 394.11 394.11 397.42 0.8% 43 7 1.00 [10,10] 88.30

10 30 510.26 510.26 512.76 0.5% 29 2 1.00 [10,10] 88.79

10 35 628.02 628.02 629.58 0.2% 39 2 1.00 [10,10] 88.79

10 40 747.73 747.73 747.74 0.0% 44 6 1.00 [10,10] 88.98

10 45 867.66 867.66 874.38 0.8% 41 1 1.00 [10,10] 88.87

10 50 989.18 989.18 990.84 0.2% 45 5 1.00 [10,10] 88.35

10 60 1237.16 1237.16 1240.33 0.3% 49 1 1.00 [10,10] 88.77

10 70 1490.94 1490.94 1506.89 1.1% 45 1 1.00 [10,10] 88.90

10 80 1749.73 1749.73 1751.47 0.1% 47 2 1.00 [10,10] 89.16

10 90 2014.65 2014.65 2026.27 0.6% 40 1 0.96 [10,10] 88.90

10 100 2283.12 2283.12 2291.85 0.4% 36 1 0.96 [10,10] 89.35

10 200 5279.29 5279.63 5303.98 0.5% 17 1 0.88 [10,10] 85.33

10 300 9364.73 9368.05 9395.70 0.3% 9 2 0.33 [10,10] 82.44

30 2 7.25 7.25 7.36 1.5% 43 3 1.00 [2,2] 85.79

30 4 17.17 17.17 17.43 1.6% 37 1 1.00 [4,4] 76.61

30 6 28.11 28.11 28.13 0.1% 39 2 1.00 [6,6] 76.36

30 8 39.37 39.37 39.51 0.4% 40 10 1.00 [8,8] 76.56

30 10 51.32 51.32 51.32 0.0% 50 50 1.00 [10,10] 77.67

30 15 87.20 87.20 87.26 0.1% 45 1 1.00 [15,15] 77.66

30 20 134.15 134.15 135.18 0.8% 44 1 1.00 [20,20] 77.44

30 25 192.71 192.71 193.79 0.6% 41 1 1.00 [24,25] 77.74

30 30 263.71 263.71 265.92 0.8% 45 2 1.00 [26,29] 77.54

30 35 353.10 353.10 356.46 1.0% 41 1 1.00 [29,30] 77.56

30 40 455.34 455.34 458.96 0.8% 32 1 1.00 [30,30] 77.43

104

Table A.2 continued from previous page

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

30 45 564.86 564.86 564.86 0.0% 50 50 1.00 [29,29] 77.52

30 50 675.71 675.71 675.71 0.0% 50 50 1.00 [29,29] 77.68

30 60 905.17 905.17 911.25 0.7% 48 2 1.00 [29,30] 78.13

30 70 1143.21 1143.21 1148.45 0.5% 42 8 1.00 [29,30] 77.89

30 80 1387.90 1387.90 1394.54 0.5% 46 4 1.00 [30,30] 77.55

30 90 1638.98 1638.98 1645.18 0.4% 42 4 1.00 [30,30] 77.73

30 100 1895.99 1895.99 1901.88 0.3% 42 6 1.00 [30,30] 77.63

30 200 4779.86 4779.86 4779.86 0.0% 50 50 1.00 [30,30] 82.49

30 300 8868.46 8868.46 8868.46 0.0% 50 50 1.00 [30,30] 83.51

50 2 6.39 6.39 7.04 10.3% 48 1 0.96 [2,2] 88.49

50 4 13.85 13.85 14.00 1.0% 37 1 1.00 [4,4] 96.75

50 6 22.22 22.22 22.41 0.9% 44 6 1.00 [6,6] 91.04

50 8 31.03 31.03 31.23 0.7% 39 3 1.00 [8,8] 91.39

50 10 40.43 40.43 40.69 0.6% 49 1 1.00 [10,10] 95.28

50 15 68.54 68.54 69.48 1.4% 47 3 1.00 [15,15] 100.50

50 20 102.54 102.54 105.32 2.7% 43 1 1.00 [20,20] 94.08

50 25 142.99 142.99 144.95 1.4% 41 9 1.00 [25,25] 93.46

50 30 187.94 187.94 188.62 0.4% 42 1 1.00 [30,30] 91.88

50 35 236.81 236.81 237.57 0.3% 44 6 1.00 [35,35] 91.08

50 40 294.26 294.26 296.62 0.8% 42 2 1.00 [40,40] 90.97

50 45 362.87 362.87 362.87 0.0% 50 50 1.00 [43,44] 91.60

50 50 441.19 441.19 441.19 0.0% 50 50 1.00 [45,46] 91.67

50 60 617.37 617.37 623.05 0.9% 49 1 1.00 [48,49] 104.03

50 70 833.06 833.06 836.31 0.4% 49 1 1.00 [50,49] 107.37

50 80 1064.17 1064.17 1064.17 0.0% 50 50 1.00 [50,49] 101.04

50 90 1301.66 1301.66 1301.66 0.0% 50 50 1.00 [50,49] 102.14

50 100 1546.38 1546.38 1546.38 0.0% 50 50 1.00 [50,49] 105.12

50 200 4351.44 4351.44 4351.44 0.0% 50 50 1.00 [50,50] 107.75

50 300 8306.69 8306.69 8306.69 0.0% 50 50 1.00 [50,50] 92.44

Table A.3: Simulation Results of CCBFS-H Algorithm with n = 100, p = 2 and

m = 500

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

10 2 10.05 10.07 10.47 4.2% 24 1 0.96 [2,2] 137.10

10 4 22.00 22.00 22.34 1.6% 30 1 1.00 [4,4] 126.44

10 6 35.33 35.33 36.42 3.1% 43 7 1.00 [6,6] 122.57

10 8 54.82 54.82 56.79 3.6% 47 1 1.00 [8,8] 119.89

10 10 79.59 79.59 82.35 3.5% 33 7 1.00 [9,10] 120.55

10 15 171.81 171.81 173.33 0.9% 39 4 1.00 [10,10] 127.11

10 20 279.43 279.43 281.76 0.8% 35 2 1.00 [10,10] 126.95

10 25 391.12 391.12 392.68 0.4% 48 2 1.00 [10,10] 122.58

10 30 503.61 503.61 504.89 0.3% 45 5 1.00 [10,10] 123.03

10 35 618.01 618.01 619.02 0.2% 45 5 1.00 [10,10] 122.62

10 40 733.72 733.72 735.87 0.3% 38 1 1.00 [10,10] 126.22

10 45 850.43 850.43 851.97 0.2% 37 13 1.00 [10,10] 120.61

10 50 968.80 968.80 973.17 0.5% 42 3 1.00 [10,10] 122.84

10 60 1209.28 1209.28 1220.25 0.9% 42 1 1.00 [10,10] 145.98

10 70 1452.28 1452.28 1463.68 0.8% 26 1 0.96 [10,10] 144.98

10 80 1698.21 1699.83 1708.93 0.6% 19 1 0.96 [10,10] 129.59

10 90 1948.00 1949.00 1956.01 0.4% 23 2 0.96 [10,10] 128.86

10 100 2200.21 2200.83 2214.08 0.6% 3 1 0.74 [10,10] 128.47

10 200 4870.59 4879.27 4898.03 0.6% 2 1 0.57 [10,10] 129.67

10 300 7863.57 7876.43 7912.12 0.6% 1 1 0.40 [10,10] 122.94

105

Table A.3 continued from previous page

q sq Best Median Worst
Worst

vs. Best

of

Best

of

Worst
ARI

Correctly

Selected

Features

CPU

(s)

10 400 11430.21 11450.94 11488.49 0.5% 1 1 0.43 [10,10] 122.55

10 500 15866.77 15877.03 15934.48 0.4% 6 1 -0.01 [10,10] 126.90

30 2 7.40 7.40 7.46 0.8% 41 3 0.96 [2,2] 108.65

30 4 15.59 15.59 15.61 0.1% 32 18 1.00 [4,4] 114.76

30 6 24.29 24.29 24.81 2.1% 38 3 1.00 [6,6] 110.78

30 8 36.10 36.10 36.47 1.0% 37 12 1.00 [8,8] 110.46

30 10 48.79 48.79 49.65 1.8% 40 3 1.00 [10,10] 110.67

30 15 89.70 89.70 90.23 0.6% 37 12 1.00 [15,15] 112.21

30 20 137.62 137.62 139.18 1.1% 34 1 1.00 [20,20] 114.27

30 25 194.83 194.83 194.83 0.0% 50 50 1.00 [25,25] 110.94

30 30 260.68 260.68 260.68 0.0% 50 50 1.00 [29,29] 110.92

30 35 347.03 347.03 349.24 0.6% 49 1 1.00 [29,30] 110.91

30 40 447.02 447.02 450.31 0.7% 43 2 1.00 [30,30] 110.73

30 45 557.22 557.22 557.22 0.0% 50 50 1.00 [30,30] 110.82

30 50 667.59 667.59 671.50 0.6% 49 1 1.00 [30,30] 110.89

30 60 894.21 894.21 899.26 0.6% 42 8 1.00 [30,30] 131.30

30 70 1126.24 1126.24 1129.97 0.3% 44 6 1.00 [30,30] 128.06

30 80 1363.65 1363.65 1366.16 0.2% 44 6 1.00 [30,30] 127.71

30 90 1606.37 1606.37 1606.97 0.0% 45 5 1.00 [30,30] 126.90

30 100 1851.07 1851.07 1858.82 0.4% 36 1 1.00 [30,30] 108.50

30 200 4485.59 4485.59 4487.72 0.0% 47 3 1.00 [30,30] 115.00

30 300 7462.70 7462.70 7462.94 0.0% 47 3 1.00 [30,30] 111.51

30 400 10931.79 10931.79 10932.04 0.0% 49 1 0.96 [30,30] 111.68

30 500 15354.65 15354.65 15355.82 0.0% 46 4 0.92 [30,30] 111.97

50 2 6.69 6.69 7.05 5.3% 46 2 0.92 [2,2] 112.57

50 4 14.41 14.41 14.53 0.8% 47 1 1.00 [4,4] 114.28

50 6 22.21 22.21 22.47 1.1% 38 12 1.00 [6,6] 110.97

50 8 30.78 30.78 31.75 3.2% 35 1 1.00 [8,8] 110.37

50 10 40.43 40.43 40.86 1.1% 41 9 1.00 [10,10] 124.99

50 15 67.69 67.69 68.74 1.6% 39 1 1.00 [15,15] 112.43

50 20 100.56 100.56 101.40 0.8% 45 5 1.00 [20,20] 110.09

50 25 137.65 137.65 139.93 1.7% 46 4 1.00 [25,25] 109.67

50 30 180.21 180.21 180.21 0.0% 50 50 1.00 [30,30] 110.13

50 35 230.45 230.45 230.45 0.0% 50 50 1.00 [35,35] 109.95

50 40 291.42 291.42 291.61 0.1% 47 3 1.00 [39,40] 110.25

50 45 355.21 355.21 355.21 0.0% 50 50 1.00 [44,45] 110.90

50 50 436.70 436.70 447.41 2.5% 36 1 1.00 [45,47] 110.23

50 60 622.71 622.71 628.88 1.0% 47 3 1.00 [48,47] 119.17

50 70 833.79 833.79 833.79 0.0% 50 50 1.00 [49,49] 126.24

50 80 1053.10 1053.10 1056.17 0.3% 39 11 1.00 [50,49] 123.81

50 90 1283.00 1283.00 1283.00 0.0% 50 50 1.00 [50,49] 123.26

50 100 1519.38 1519.38 1519.38 0.0% 50 50 1.00 [50,49] 112.76

50 200 4078.80 4078.80 4078.80 0.0% 50 50 1.00 [49,50] 115.28

50 300 6971.11 6971.11 6971.11 0.0% 50 50 1.00 [49,50] 120.11

50 400 10464.09 10464.09 10464.09 0.0% 50 50 1.00 [50,50] 119.26

50 500 14926.58 14926.58 14931.86 0.0% 49 1 1.00 [50,50] 120.61

106

Appendix B

RESULTS OF THE EXPERIMENTS CONDUCTED DURING ALGORITHM

DEVELOPMENT

In this appendix, we provide experimental results which are conducted in order to

develop proposed CCBFS and CCBFS-H algorithms.

Table B.1: Comparison of Best, Worst and Number of Best Solution Results on

CCBFS Algorithm with and without Neighborhood Search

p,n,m,q Best
Best -

No NS
Worst

Worst -

No Ns

of

Best

of Best -

No NS

4,80,5,2 7.13 7.13 7.13 7.63 50 6

4,80,6,2 8.15 8.15 8.35 8.41 35 4

4,80,8,2 7.80 7.80 7.80 8.50 50 1

4,80,10,2 7.26 7.26 7.62 7.79 24 2

4,80,12,2 6.96 6.96 7.83 7.89 15 4

4,80,5,3 10.00 10.00 10.00 10.40 50 2

4,80,6,3 9.17 9.17 9.17 9.70 50 10

4,80,8,3 11.75 11.75 11.91 12.47 25 2

4,80,10,3 14.92 14.92 17.05 16.58 7 1

4,80,12,3 9.51 9.51 9.51 10.58 50 1

4,80,5,4 11.57 11.57 11.57 12.63 50 16

4,80,6,4 14.72 14.72 14.72 15.55 50 16

4,80,8,4 13.81 13.81 13.98 14.71 25 2

4,80,10,4 12.89 12.89 12.89 14.13 50 2

4,80,12,4 19.30 19.30 19.83 22.84 26 3

4,100,5,2 6.91 6.91 6.91 7.12 50 7

107

Table B.1 continued from previous page

p,n,m,q Best
Best -

No NS
Worst

Worst -

No Ns

of

Best

of Best -

No NS

4,100,6,2 9.84 9.84 9.84 10.41 50 11

4,100,8,2 11.50 11.50 11.90 12.02 42 2

4,100,10,2 8.36 8.36 8.36 8.82 50 2

4,100,12,2 10.68 10.68 12.45 12.14 19 1

4,100,5,3 12.30 12.30 12.30 12.80 50 4

4,100,6,3 12.27 12.27 12.27 13.48 50 3

4,100,8,3 14.11 14.11 14.28 15.09 13 2

4,100,10,3 15.19 15.21 15.33 16.49 9 2

4,100,12,3 13.84 13.84 13.84 14.84 50 1

4,100,5,4 15.72 15.72 15.84 16.30 49 11

4,100,6,4 18.52 18.52 18.52 19.31 50 1

4,100,8,4 17.36 17.43 17.36 18.77 50 2

4,100,10,4 20.00 20.00 20.78 21.56 9 3

4,100,12,4 20.89 20.89 22.43 23.16 15 1

4,200,5,2 20.32 20.32 20.32 21.00 44 2

4,200,6,2 15.59 15.62 15.87 16.26 13 1

4,200,8,2 20.83 20.87 21.79 22.26 48 1

4,200,10,2 17.12 17.12 17.12 18.52 50 1

4,200,12,2 18.70 18.74 19.18 20.01 31 1

4,200,5,3 25.10 25.10 25.57 26.32 13 1

4,200,6,3 29.73 29.80 29.73 31.90 50 1

4,200,8,3 29.56 29.56 30.16 31.35 19 1

4,200,10,3 27.43 27.65 28.33 30.20 48 1

4,200,12,3 24.93 25.08 24.93 28.22 50 1

4,200,5,4 33.27 33.27 33.37 34.56 13 2

4,200,6,4 32.82 32.82 32.96 35.05 3 1

4,200,8,4 33.77 33.94 33.77 37.69 50 1

4,200,10,4 36.63 36.63 36.91 39.78 37 1

4,200,12,4 38.03 38.03 40.49 41.24 5 1

108

Table B.1 continued from previous page

p,n,m,q Best
Best -

No NS
Worst

Worst -

No Ns

of

Best

of Best -

No NS

4,500,5,2 39.14 39.32 39.14 41.18 50 1

4,500,6,2 42.62 42.76 43.31 43.86 10 1

4,500,8,2 56.17 56.38 56.17 61.40 50 1

4,500,10,2 48.08 48.34 48.49 51.19 12 1

4,500,12,2 46.46 46.65 54.70 55.04 7 1

4,500,5,3 58.69 58.80 59.27 62.49 32 1

4,500,6,3 61.44 62.28 61.44 67.47 50 1

4,500,8,3 67.01 67.98 70.22 71.73 23 1

4,500,10,3 68.73 69.24 70.78 75.98 7 1

4,500,12,3 76.33 77.94 88.72 92.88 34 1

4,500,5,4 75.75 76.51 78.29 80.15 12 1

4,500,6,4 78.51 79.91 78.56 86.24 23 1

4,500,8,4 92.09 93.05 93.45 100.59 12 1

4,500,10,4 89.16 89.74 94.77 100.59 26 1

4,500,12,4 98.92 100.00 103.52 113.93 31 1

4,1000,5,2 99.19 99.41 99.78 105.04 11 1

4,1000,6,2 98.41 99.04 98.41 101.96 50 1

4,1000,8,2 102.00 102.50 105.02 108.66 33 1

4,1000,10,2 72.49 73.24 72.49 82.00 50 1

4,1000,12,2 107.31 108.90 117.54 117.61 20 1

4,1000,5,3 131.87 133.41 133.26 139.20 6 1

4,1000,6,3 132.10 133.97 134.63 140.96 29 1

4,1000,8,3 127.04 128.89 129.47 145.82 12 1

4,1000,10,3 126.13 129.02 126.13 139.44 50 1

4,1000,12,3 173.63 175.85 185.28 189.96 1 1

4,1000,5,4 150.56 153.68 153.34 161.46 5 1

4,1000,6,4 146.41 147.61 150.36 158.31 46 1

4,1000,8,4 158.48 161.74 160.65 177.31 14 1

4,1000,10,4 190.11 191.45 191.77 214.37 10 1

109

Table B.1 continued from previous page

p,n,m,q Best
Best -

No NS
Worst

Worst -

No Ns

of

Best

of Best -

No NS

4,1000,12,4 193.73 197.69 199.53 213.11 6 1

Table B.2: Comparison of Best, Worst and Number of Best Solution Results on

CCBFS - H Algorithm with and without Second Neighborhood Search

p,n,m,q Best
Best -

No NS 2
Worst

Worst -

No NS 2

of

Best

of Best -

No NS 2

2,100,100,10 95.55 95.55 95.55 95.55 50 50

2,100,100,30 259.17 259.17 259.17 259.17 50 50

2,100,100,50 472.06 472.06 472.06 472.06 50 50

2,100,300,10 79.92 79.92 79.92 81.55 43 32

2,100,300,30 263.71 263.71 265.92 265.92 45 45

2,100,300,50 441.19 441.19 441.19 441.19 50 33

2,100,500,10 79.59 79.59 82.35 83.68 33 33

2,100,500,30 260.68 260.68 260.68 269.29 50 49

2,100,500,50 436.70 436.70 447.41 447.41 36 35

110

(a
)n

=
10
00
,
p
=

4,
m

=
1
2,

q
=

2
(b

)n
=

1
0
0
0,

p
=

4,
m

=
1
2,

q
=

3

(c
)n

=
10
00
,
p
=

4,
m

=
1
2,

q
=

4
(d

)n
=

1
0
0
0,

p
=

3,
m

=
1
2,

q
=

4

Fi
gu

re
B

.1
:D

ev
el

op
m

en
to

ft
he

Fi
tn

es
s

V
al

ue
w

ith
re

sp
ec

tt
o

N
um

be
ro

fG
en

er
at

io
ns

fo
r4

D
at

a
In

st
an

ce
s

111

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	Introduction
	Literature Review
	Clustering Problem
	Hierarchical Clustering
	Partitional Clustering

	Feature Selection in Clustering Problems
	Metaheuristic Algorithms for Clustering
	Metaheuristic Algorithms for Feature Selection in Clustering

	Problem Definition
	Problem Statement
	Mathematical Model of the Problem
	Sets and Model Parameters
	Decision Variables
	Nonlinear Mixed Integer Model
	Linearized Mixed Integer Model

	Memetic Algorithm for Clustering with Cluster Based Feature Selection (CCBFS)
	Overview of CCBFS
	Description of CCBFS Algorithm
	Chromosome Representation
	Initialization
	Uniform Crossover Operator
	Mutation
	Mutation - Type 1
	Mutation - Type 2
	Mutation - Type 3

	Fitness Function
	Neighborhood Search
	Selection of the Next Generation

	Computational Results of CCBFS
	Simulated Data Sets
	Performance Measures
	Performance Measures on Objective Function
	Performance Measures on Clustering

	Parameter Setting for CCBFS Algorithm
	Computational Results for Simulated Data Sets
	Comparison of Computational Results with Benchmark Algorithms

	Memetic Algorithm for Clustering with Cluster Based Feature Selection for High Dimensional Data Sets (CCBFS-H)
	Overview of CCBFS-H
	 Description of CCBFS-H Algorithm
	Chromosome Representation
	Initialization
	Uniform Crossover Operator
	Mutation Operator
	Fitness Function
	Neighborhood Search
	Selection of the Next Generation

	Computational Results of CCBFS-H
	Simulated Data Sets
	Performance Measures and Parameter Settings
	Computational Results for Simulated Data Sets
	Computational Results for Benchmark Data Sets

	Conclusions
	REFERENCES
	Experimental Results of the CCBFS-H Algorithm
	Results of the Experiments Conducted During Algorithm Development

