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ABSTRACT

INTEGRATION OF MACHINE LEARNING AND ENTROPY METHODS FOR
POSTGENOMEWIDE ASSOCIATION STUDIES ANALYSIS

Yal déz, Bur cu
Ph.D., Department of Health Informatics
Supervisor: Asooc. Prof. Drr.Ye ki m Aydén Son

August2022, 79 pages

Non-linear relationships between genotypes play an essential role in understanding the
genetic interactions of complex disease traits. Gerdhue Association Studies
(GWAS) haverevealed a statistical association between the SNPs in many complex
diseases. As GWAS results could not thoroughly explain the genetic background of
these disorders, Genoréide Interaction Studies started to gain importance. In recent
years, various statiical approaches such as entrtyaped methods have been
suggested for revealing these ramiditive interactions between variants. This study
integrates an entropyased 3wvay interaction information method and machine
learning (PLINKkRandom ForesRandomForest) workflow to capture the hidden
patterns resulting from nelmear relationships between genotypes in tQ@rset
Alzheimeis Disease (LOAD) to discover early and differential diagnosis markers. We
have optimized an entrogyased approach that deethe thirdorder interactions in
PLINK-RFRF models from three different LOAD datasets. A reduced SNP set was
selected for all three datasets by 3WII analysis of PL-RIKRF prioritized SNPs,
promising a model minimization approach. Selected tripletSMPs that show
significant differences between case and control groups in terms of 3WII are proposed
as candidate biomarkers for a genotygoaged LOAD diagnosis. Among SNPs
prioritized by 3WII, four out of 19 SNPs from GenADA, one out of 27 from ADNI,
ard four out of 106 NCRAD are mapped to genes directly associated with Alzi@imer
Disease. For the first time, we have integrated theRRFmodel with the entropy
based model for determining the thagay epistatic interactions for LOAD and
discovered the ammon biological pathways for ADNI, GenADA, and NCRAD
datasets.

Keywords Biomarker, threevay i nteraction, entropy, GWAS,



Oz

GENOMBOYUNCAK L Kk KD K RME | k MA SGNRAS|
ANALKZK KCKN MAEISWKE EBRESPK Y¥NTEMLERK
ENTEGRASYONU

Yal de z, Bur cu

Doktora Saj | eBOlUMG | i K1 mi
Tez YoneticisiDo- . Dr. Yekim Aydén Son

A u s2022,39 sayfa

Genotipler araséendaki dojrusal ol mayan i
genetk et ki |l exki ml eri ni anl amada °neml i bir
Kl'i kkil endirme ¢al ékmal ar e (d&wWwikt&istikselbi r - o}
i i kKkisini ortaya -ékarméxkter. GWAS sonu
tam ol arakjané&hay&maodé Boyutunda Et kil
kazanmaya bakl améxkteéer . Son yéllarda, vVal
et kil exkimlerd:i ortaya -ékarmak 1i-in entro
yakl akeml ar °nera, mGati BaklBangeéeall@adamAaldz h e
(LOAD) erken ve ayéeréceée taneée belirte-1Iler
dojrusal ol mayan ilikkilerden kaynakl an:
entropi tabanl é ¢-1Wl let kiillee kbiimm bmalkgin ey °°n
Random ForesRandom Forest) i K akéké entegre ec
el e gel i kKt-RERH mmeadePLIIeNKi ndeki - ¢éncyg de
yakal anmaséné sajlayan enitlrmipit itREBRRPL IENK
il e °nceli klendiril mick SNPIl erin 3 WI | an
i ndirgenmiK bir SNP seti se-il mik ol up
yakl akémeé ol arak umut vericidir. 3 WI | a -
anlamle farkleléek g°steren se-ilmik SNP
texkhi si i -1in aday bi yobelirte-1er ol a

onceliklendirilen SNBerden; GenADAdan gelen 19 SNEen 4, ADNI&en gelen

27 S NP®vwveNCRADda gelen 106 SNi#en 4y, , Al zhei mer Hast
dojrudan il kKkid genl ere hada caybnkind ér & |
epistati k etkileki ml-RFi mbeeliirl emekopi i hal
entegre edil mik ve ADWwi setleridim rokal Aiyolejile NCR/
yol akl areée kexkfedilmiktir.

Anahtar SézcuklerBiyobelirteg, ¢, - y°nl ¢, edropk GWAS k Alzheimer
Hastal éj] é
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CHAPTER 1

INTRODUCTION

GenomeWide Association Studies (GWAS) explore the statistical association of the
SNPs in complex genetic disorders ushigh-dimensional datase(®larees et al.,
2018) Primarily, these associations are identified with silgbeis approaches,
whereby each SNP is testedlividually for the association. However, the univariate
approach could not explain a large proportion of genetic heritability in most complex
diseases. Interactions at higher dimensions such asSBIWR genagene, and gene
environment interactions candréss the missing heritability problg@ordell, 2009)

While some of these interactionseaidentified in smalscale studies, most are
revealed in Genom®/ide Interaction Studies (GWIS). A variety of machine learning
methods, such as multifactor dimensionality reduction (MDR) and random forest (RF),
are used to disclose the complex interactioh the varian{®ureau et al., 2005;
McKinney et al., 2006; Oki & MotsingdReif, 2011) Also, Entropybased methods
have been proposed to analyzeiorar relationships between genotypes in complex
diseaseg$-errario & Kong, 2018)

Different study designs have suggested various entoapgd approaches for pairwise,
third-order, andhigh-order interactias, such as famihbased, case only, and case
control. Information gain, defined as the difference between the motaahiation in

case and control groups, is used to measure pairwise interactions between two markers.
Threeway interaction information (3WII) and total correlation information are two
guantities used for assessing thindler interactions. 3WII describeset amount of
information common to all variables not present in any other subset alone. In contrast,
total correlation information (TCI) reveals the total dependence among the attributes.
Neverthelesglifferent methods have been introduced to assesaitveige and thired

order interactions based on these measureff@msR, Zhong, MWang, 2011; T.

Hu, Chen, Kiralis, Collins, et al., 2013a; Kwon et al., 2014; Su et al., 2015)

Alzheimer's Disease (AD) is a progressiairodegenerative disorder that is the most
common cause of latenset dementia. More than 55 million people live with dementia
worldwide currently, and it is estimated that AD may contribute t&d@® of the
cases AD is characterized by cognitive impaient; however, a significant

! https:/AMwwwho int/NewsRoom/FaciSheets/Detail/Dementia
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heterogeneity can be observed in clinical progression. It is depicted a®resaty
(EOAD) and lateonset (LOAD) based on the age of onset, and LOAD constitutes
approximately 95% of cases. While EOAD is more likely famaiatl inherited in a
Mendelian pattern, LOAD presents complex genetic inheritance, where interactions of
multiple genetic variations and environmental factors affect the phenotype of
patient¢Reitz & Mayeux, 2014)In early studies, APOE4 was established as a genetic
risk factor for LOAD (Corder et al., 1993; Johanna Kuusisto, Keijo Koivisto, Kari
Kervinen, Leena Mykkanen, Eevdisa Helkala, Matti Vanhanen, Tuomo Hanninen,
Kalevi Py6rala, Y Antero Kesaniemi, RaeRiekkinen, 1994; Xu et al., 2028everal

risk variants have been revealed in recent years in several GWA @tai@d et al.,

n.d.; Lambert et al., 2013; Lee et al., 2011; Reitz et al., 2B8&%¥)des, various studies
have identified epistatic interactiq@mbarros, van Duijn et al., 2009; Granados et
al., 2013; Grunin et al., 2020; Hohman, Bush, Jiang, Br@entry, Torgenson,
Dudek, Mukherjee, Naj, Kunkle, Ritchie, Martin, Schellenberg, Mayeux, Farrer,
PericakVance, Haines, & ThorntewWells, 2016; Meda et al., 2013; Zieselman et al.,
2014) However, only tweway interactions have been considered in previous studies.

This study aims to detect the thiodder interactions in LOAD by calculating the total
information common to all three attributes but not present in any subset (3WII) in a
casecontrol study design. We integrated the machine learning algorithms anglyentro
based 3wvay interaction information method proposed by Fan et al. A large set of SNPs
prioritized by PLINKRFRF analysis of the LOAD GWAS datasets are analyzed
without mapping them to individual genes to reduce the bias. Then the significant SNP
combirations are identified by using the entrepgsed test statistics. These prioritized
SNP combinations are proposed as potential early and differential diagnosis markers.

Chapter 2 explains the Genome Wide Association Studies, epistasimetiatls for
detecting epistasigviachine learning, data miningnd entropybased methodare
explained in detail as we used these approaches in this study. Molecular efdogy,
risk factorsand epistasis in Alare alsexplained.

Chapter 3 explainshe way of obtaining data and methodoldgydetail. After we
overview the methods data acquisition is explained Then, we explain data
preprocessing, GWAS analysand SNP prioritization with Random Forégandom
Forest (RFRF) method. Afterwardhe entopy-based prioritization step is explained
in detail. Subsequently, multiple testing comparisowvariants annotatignand
functional enrichment analysis are explained.

In Chapter 4, the results apeesentedand explainedThis chapter explains variant
prioritization by the LOAD-RFRF model, threevay interaction informationand
two-way mutual information gain and functional enrichment analysis qdribatized
variants.

Chapter 5 discussed the study results and interpreted the importance ofgratedte
entropybased approach for revealing the interactions among L-@g#ddciated
variants



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND INFORMATION

2.1 Single Nucleotide Variants

A variation at a single position in DNA sequence among individuals is called a single
nucleotide polymorphism (SNP). In order to classify a varisa®am SNP, more than
1% of the population must contatme alternativenucleotide at particular position in
thar genome sequendcSingle Nucleotide Polymorphisrm.d.) SNPs are not
distributed across the genome homogenoUgigyoccur in norcoding regions more
frequently than in coding region¥Vhile negative selectiomas globally reduced
population dfferentiation in amino acigltering mutations, particularly in disease
related genes, positive selectibias increased population differentiation in gene
regions, particularly nonsynonymous an@WI'R variants, resulting in regional
adaptation of humangpulationgBarreiro et al., 2008)Besides, recombination rate
can also explain a substantial fraction of the variabilitthaintensity of nucleotide
polymorphism across the human genqidachman, 2001)

There mightbeseveral different consequences dependingloereSNPs ardocated
While SNPsin coding regions can cause monogenic disorg€mdovado et al.,
2012) SNPs in norcoding regions can be an indicationadfigher risk of cance(G.

Li et al.,2014)or may play a role in gene expression level alterations as an expression
guantitative trait locus (eQTL{Nicolae et al., 2010)Besides SNPs can lead to
differences in traits such as susceptibilityveriousdiseases and physical features
between individuals. They can also affect how humans responuhthogens,
chemicas, drugs and vaccinesEven though man$NPs associated witliseassare
considered tancreaseherisk of diseasea growing number of studies have reported
SNPs to beprotective,decreasinghe risk of certain diseas¢€ohen et al., 2005;
Steinthorsdottir et al., 2014)

2.2 Genome Wide Association Studies

GenomeWide Association Studies (GWAS) explore the statistical association of the
SNPs in complex genetic disorders ushigh-dimensional dataset3hese studies
compae the frequency of genetic variationisetween case and contrgtoupsto
determindhe significantly more frequent genetic variations in people thgkisease
Thesevariationslead to the development of new methodgo diagnose, treat and
prevent the disaseby identifying theloci thatinfluence the disease predisposition



They can also give direction to other applications suate@snstructingpopulation
history,ancestry determinatioand population substructure

Sequencing th&hole human genome as part thfe Human Genome Project in the
early 2000sand developingnew analysis tools led to other projects that aimed to
discover more about genomic variations, complex parts of the geaatheegulatory
mechanismsThe International Hadap Project proceeded aftére Human Genome
Projectintending to comparthe genetic sequences of different individuals to identify
chromosomal regions where genetic variants are shiraliowed the spreading of
GWAS as itled to the optimization of asociation analysis by representing the
haplotype blocks.

The first GWAS was published fagerelated macular degeneration in 2q0am et

al., 2019) Afterward, a significantnumber of genomic regions have been identified
for various commouliseasesuch as type 2 diabetes mellitus, coronary artery disease,
cancershipolardisorder,schizophreniaand inflammatory bowel diseagbe Lange
etal., 2017; Z. Lietal., 2017; Mullins et al., n.d.; Nikpay et al., 2015; Sud et al., 2017;
Zhao et al., 2017)The NHGRIEBI GWAS Cataloga publicly available resouroaf
GWAS and their resultscontains 71673 variantrait associations from3730
publicationsas of September 201Buniello et al., 2019)

A typical GWAS is conducted by genotyping individuals using microarrayeat
generation sequencing (NGS) methodshsaswholeexome sequencing (WES) or
whole-genome sequencing (WGS) can be designed ascasecontrol studywhen
the trait of interest is dichotomous with a quantitativestudy design when the
measurements on the whole study sample when the tcaitirgitative(Uffelmann et
al., 2021)

GWAS data ispre-processedvefore the association analysisoughseveral quality
control steps.rputation of untyped variants using haplotype phasing and reference
populationdgs performed, followed bthe statistical test for associatiand optionally

a metaanalysis Laterindependent replicatienare determinedind the results are
interprded by multiple postGWAS analyss steps Figure 1). These standardized
guality control and analysis protoca@ee required to rule out the possible biases and
errors in each step.

While GWAS resultsleterminghe statistical associations of variants and their role in
the biological context, they can also be used for disease risk prediction, heritability,
and theproportion of variation in the trait that can be explained by genetic variatio

the populationBesidesthe role of gengene and genenvironment interactions in
complex traithasbeen represented in various studiesnger et al., 2019; Hohman et
al., 2013) However,this univariate approach iGWAS studies ignores complex
interactions such as SNENP, genggene, or gerenvironment interactiongordell,
2009)
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Figure 1 Overview of GWAS analysis stepg Data can be collected from study cohorts, or
available genetic and phenotypic information can be used from biobanks or repobjtories
Microarrays or next generations sequencing methods (whole genome or whole exome
sequencing) can be used in order tdemblgenotypic data) Quality control can be performed

at wet laboratory or dry laboratory stages (Clustering of individuals according to genetic
substrata is demonstrated in the figud) Untyped genotypes can be imputed using
information from matchedeference populations from repositories such as 1000 Genomes
Project or TopMede) Each variant can be tested for genetic association using a model such
as additive, nomadditive, linear, or logistic regression models. After correcting for
confounders, iduding population strata, and controlling the multiple testing, the output is
inspected for unusual patterns, and summary statistics are gengrRieslilts from multiple
smaller cohorts are combined using standardized statistical pipg)riesernalor external
replication in an independent cohort can be used for replicating the ré3ut$ormation

from external resources can be used for in silico analysis of GWAS. Reprinted from Uffelmann
et. al. (Uffelmann et al., 2021)

Cohort A «—— Cohort B «—— Cohort C




2.3 Epistasis

The additive effect of common variants associated with many complex diseases in
GWA studies is elatively small leading to a missing heritability phenomenon.
Epistasis could partially explain the missing heritability in complex traits. Epistasis
refers to wn-additive interactions between a pair of loci or multiple loci contributing
to a single phenotypéCarlborg & Haley, 2004)(Figure 2). Epistasis can be
considered from two different perspectives, biological and statistitrale biological
epistasis implies the interactions between biological componeritin gene
regulatory networks and biochemical pathwagsatistical epistasis implies the
deviationfrom additive effects between factorssamodel(Moore & Williams, 2005)

It is difficult to make inferences about biological function and causatian foy
statistical result. Besides, correlation is not always an indicator of causality. Therefore,
statistical epistasisnay not indicatebiological epistasisSimilarly, SNPs involved in
epistatic interactions may have very low minor allele frequenaieeh may lead to
biological epistasis that does notply statisticalepistasiRaghavan & Tosto, 2017)
Both have their challenges and benefits.

_— Phenotype

Gene B (bb)

OO
—— [
v

Figure 2 Representain of biologicalepistasis

Experiments to determine biological epistasis are costhd interpretation of
discovered interactions @hallenging However, discovering epistatic interacticats

the biological levelprovidesimportantfunctional andpathway informationSome
studies demonstrated the proportadrineritability explaired by biological epistasis in
model organisms. However, due to tteenplex parameters such as common and rare
variants, structural variationandenvironnental effects that impatte susceptibility

of complex traitsit is hard to estimate the contribution of biologic epistasis to
heritability(Gusareva, Kristel, et al., 2014)

The majorlimitation of the statistical epistasis is the higltes of type 1 and type 2
errorsdue to the extensive multiple comparisofis.exhaustivesearch for detecting
these interactions demandsigh cost of computational resources audfficiently

large sample sizes While these limitations avoid producing replicable results,
statistical epistasis can still give insight into unknown associations by revealing the
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nontadditive effects of multiple genetic fact@vk T. W. Ebbert, Ridge, & Kauwe,
2015) Several methods have been developed for detecting statistical epistasis in
different studiesas described in this c#on.

2.3.1 Methods for Detecting Epistasis

The methodslevelopedo capture epistasepply two majorapproacheshypothesis
free andhypothesisdriven, depending on whethatl SNPsor subset of SNPare
examinedor interactionghatcontribute to theorresponding traitWei etal. grouped
the methods used in human complex traits in the review they published iVWa814
et al., 2014)Figure 3).

Regression

LD

Partition

Frequentist

Bayesian
Hybrid

Knowledge

SNP-based | Statistics

Algorithm

N

J
& gence

Data mining

| Group-based

Module

Figure 3 The different types of methods in two major groups based on gingleotidebased
singlenucleotide polymorphisms (SNPs) and groups of SNPs are outlined-b&s¢d

methods can be further subdivided based on the type of data a(sdigsis in yellow, orange,
and red). LD, linkage disequilibrium. Reprinted from Wei e{\Alei et al., 2014)

Regressiorbased methods argraditional methods usedor assessing the 3N
interactions in disease or quantitative trditsthis approachkischer's saturated and
reduced SNP genotype modetein be compared for testing the interactions
(Cockerham & Zeng, 1996; Cordell, 2002, 2009; J. K. Hu et al., 2014; Ueki &
Cordell2012) In addition, regression models are also useexamine the subset of
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SNP pairs, which are the output of the approximate interaction tests tofakseid
positive and redundant signals. Although the advantage of modern computing
infrastructure and technologies has been taken to reduce the computztistnaf

using these methods, genom&e searchrequires large samplsizesdue to low
power. Focusing @ SNPs whose marginal effects have been identified in GWAS
studies will partially eliminate the problem of low poweowever variants that only
affect the phenotypley interactionwill be ignored

Another approach used to define epistasis islaBed métods. In these methods, the
difference between the interactions between loci in the patient and control groups is
testedby using joint genotype frequenciéssingchi-square statistics witbnedegree

of freedom with these methoddows us to get faster results than regresbased
methals usingfour degrees of freedorBesides, SNP interactions between haplotypes
can be detected by haplotypased methods adapted from the-h&sed statistics.
However, these methods may ignorerardocus interactionsleading to the effect of
unobserved rare variants beingerlooked andmay also cause highfalsepositive

levels in cases where SNPs may show high correlation or both SNPs hayle
marginal effect.

On the other hand, Bayesian imatisprovide a flexible model and stochastic search

for epistasis based on the idea that the difference between genotype frequency
distributions between loci will indicate significant interactions. In partic@8ayesian

model averaging antaybrid Bayesia (i.e., acombination of Bayesian framework and
generalized linear moded)pproachesnproveepistasis detection

Data filtering methods are based on the idea of testing the interactiensebbf
selectedSNPsrelying onexisting biological informationstatisticalpropertiespr fast
algorithms. These methods have higher power éxiaustivesearchesincethey can
be appliedfaster,require fewer multiple tests and functional interpretations less
complicated However,limitations in algorithms and existing knowledge should be
considered when applying these methtadavoid potential bias.

It is also possible to test interactions between SNPs grouped on genes or functional
modules. While this approach increases the capture poweresédtibns, it also
reduces the burden of multiple testing.

2.3.2 Machine Learning and Data Mining Methods for Detecting Epistasis

Machine learning andada mining methodalso capture hidden, novel, and significant
patterns through GWAS dataggtsooznia M, Seifuddin F, Judy J, 201Besides,

the high computational and statistical cost of exhaustive search could be reduced by
these approaches' classifiers used for data reducticieatode selection

Various algorithms havearying prediction accuraes such as decision trees, support
vector machines, and Bayesiamd neural networks.Random forests (RF) are
collections of decision trees that build an ensemble model for classificand
regressionRF implementation in genomic analysis has become popular within data
mining techniques that can reveal many predictor variableganérateassembled
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models with interaction@Botta et al., 2014; Sinoquet, 2018)oreover, RF analysis
producesvariable importance measures that aseful to rank the predictor variables
for the prioritization of SNPs

Neverthelesssince the interactions are not testediesély, detectng high-level

interactiongs challenging for data mining and machine learning metHadsldition,
these methods also require new approabtbhredetectinggenomewide higherorder

interactionsdue to limitations such as high computaiibmnd multiple testing
requirementsalong withinsufficient sample sizes.

2.3.3 Entropy-Based Methods for Detecting Epistasis

Entropybased methodsanalyze nonlinear gengene and gerenvironment
interactions in complex diseas@3ong et al., 2008)Shannon entropy & nonlinear
function that measures the uncertaintyafdom variablgShannon, 1949)n other
words, entropy ishe average level of uncertainty associated with a random variable.
The entropy of a discrete random variable X with probability mass function p(x) is
defined as:

") =Jlog(d()]= B Db T | D (Eq 1)

Methods based on Shannon entropy messie strength of prediction of one or
combination of variables in explaining an event. Different combinations of variables
are said to interact when the power of the joint prediction ability of this combination
in describing an event is larger than tliensof the individual prediction abilities of
these variablé€over & Thomas, 1991)

In a casecontrol studydesign disease status of an individual is denoted by D
(control=0; case=1), and three-allelic SNPs are denoted by X, Y, and Z
(reference=0, heterozygous=1, homozygous=2). The entropy of a marker X and the

combined entropy of two markers X and Y in thengral population are defined by
the following equations respectively:

HX)= B 00 1100

HX,Y= B B 00 RO 1 10O RO (Eq 2)
Conditional entropies in the affected population are defined by:

HX\D)= B 00O 'O pliCo 0O p
HX,Y\D= B B 00 HO O pl 10O RO ;O p (Eq3)

The combinedentropy of three markers in general ahd affected population are
defined similarly.



The interaction between two markessmeasured by mutual informatipwhich is
defined inthe general and affected populati¢g6over & Thomas1991; Shannon,
1949)

10X, Y)=HX)+H(Y) -H(X,Y)
I(X,Y \D)=H(X\D)+H(Y\D)-H(X,Y\D) (Eq 4)

Different study designs have suggested various empapgd approaches for
pairwise, thirdorder, andhigh-order interactias such as familbased, case o and
casecontrol.The interaction between two markeseasured by mutual information

and nformation gain, defined as the difference between the mutual information in case
and control groups, is used to measure pairwise interactions betweenarkers.
Threeway interaction information (3WII) and total correlation information are two
guantities used for assessing thirdler interactions. 3WII describes the amount of
information common to all variables not present in any other subset(&iguee 4).

In contrast, total correlation information (TCI) reveals the total dependence among the
attributes. Threeway interaction information is defined ihegeneral population as:

I(X,Y,2)=-H(X)-H(Y)-H(Z2)+H(X,Y)+H(X,2)+H(Y,Z)-H(X,Y,Z) (EqH

X 4

Figure 4 Schematic representation of entropy and enttmgsed concepts a) Entropy of a
random variable X (Eqg 1). b) Joint entropy of two random variables X and Y (Eq 4). c¢)
Conditional entropy of X given the variable Y (Eq 3). d) Mutnébrmation of the variables

X and Y. e) Threavay interaction information of three variables X, Y, and Z (Eq 5). (Adapted
from Ferrario P.G and Konig |.Berrario & Konig, 2018)
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Neverthelessdifferent methods have been introduced based on these measurements
to assess the pairwise and thindler interactioa For instancgFan. et al. proposed

an information gain approach based on mutual information, an erteg®d function

that measures the interaction between maifkes, R, Zhong, M, Wang, 201Tjhey

also developed ondimensional test statistics to analyze sparse data for investigating
2-way, 3way, and K-way interactionsn casecontrol settingand applied tha to the
bladder cancer dataset.

The difference between the mutual information in the affected population and the
general population is defined as information gain:

IG(X,Y\D)=I(X,Y\D)-I(X,Y) (Eq 6)
Interaction information gain of markers X, Y, and Z are defined similarly:
IG(X,Y,Z\D)=I(X,Y,Z\D)-I(X,Y,Z) (Eq 7)

A test statistic is constructed to detect tway orthreeway interactions. Information
gainbased ést statistic (TIG) is calculated by dividing IG or IIG by a specific
nor mali zation factor of wvariancesquare The
distributed with 1 degree of freedom under the null hypothesis that the markers are
independenof the disease.

IGENT, introduced by Kwon et al.uses information gain to detect geyene
interactions associated with the phenotyj@von et al., 2014) They used the
difference betweethe entropy of the phenoty@adthe conditional entropy of the
phenotype, given two genetic variantd(P}H(P|(G, Gj))) as information gin
definition. This equality provides information about the association of the genotype
interaction with the phenotype.

A

Su et al. proposettieInteraction Gain methosli mi | ar t o F adefinedt al . 0
as thedifference between theonditional mutual information of pair of variargiven

the phenotype and the mutual information of the same pair@(B) 1(Gi, Gj)). They

also proposed a parallelization method that speeds up the interaction testing ptocedur

On the other handinlike Fan et al., Chana# al. suggested an approach for 3WIl in

which they used the phenotype as a third variable alongside two genetic
variant§Chanda et al., 2008, 200%hi | e wi t h Fan et al . 0s a
the correlation between variant interactions and phenogpanda et al.'s method

asses the interaction between variants and phgret

Then, Hu etl. suggested a novel approach for measuring purewagénteractions

after removing the onway and tweway effectgT. Hu, Chen, Kiralis, Collins, et al.,
2013b)However, they al so us e dnitinoainodmatioet al
gain in which they also used the phenotype as a parameter (IG&}(B)-1(Gi, P)

1(Gj-P)).
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Additionally, entropybased methods have been performieddemonstratethe
statistical interactions among the output SNPs of machine learning models. In 2014,
Zieselman et al. proposed an approach that combines machine learning analysis of
genegene interactions with larggcale functional genomics data for assessing
biological relationshipgZieselman et al., 2014J his approach uses SNPs mapped
genes for machine learning analydike study was designed in two phases. In the first
phase QMDR is used as a feature selection method. Then, selected genes were used
as an input for functional genomics analysis. Tiweg and fowway interactions
between genes in significantly enriched pathways were identified by applying QMDR
analysis again. Finally, gefgene interactions were assessed by performing entropy
based analyses using the visualizatiorthef statistical epistasis networks (VISEN)
software packagd. Hu, Chen, Kiralis, & Moore, 2013A statistically significant
synergisic interaction among two SNPs located in the intergenic region of an olfactory
gene cluster was found in this study. Similarly, in 2018 Dorani et al. implemented
random forests (RF) and gradient boosting machine (GBM) algorithmes/eal the

SNPs contribting to the colorectal cancer risk. Afterward, significant tway and
threeway interactions were determined for the SNPs identified with the RF and GBM
algorithms(Dorani et al., 2018)

2.4 Alzheimer 6 s Di sease

More than 55 million peopleve with dementia worldwidewith over 60% living in
low- and middleincome countriesThis number is projected to triple by 2050tae
incidence and prevalence of dementia increase dramatically wittaagehe elder
people population is increasing worldwide

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that is the most
common cause of latenset dementidt is estimated that AD may contribute to-60

70% of the case#D is charaterized by cognitive impairment; however, a significant
heterogeneity can be observed in clinical progressBesides, the primary
pathological signs of AD are amylemlet a ( Ab) pl aques, neur ofi br
neuronal losslt is depicted as eadgnset (EOAD) and latenset (LOAD) based on

the age of onset, and LOAD constitutes approximately 95% of c&éde. EOAD is

more likely familial and inherited in a Mendelian pattenmd is diagnosedy the
formation of AD symptomsbeforeage65 (Wu et al., 2022)LOAD emergeswith
cognitive decline symptoms such asemory impairmentand loss of intellectual
abilities after the age of 63Besides,LOAD presents complex genetic inheritance,
where interactins of multiple genetic variations and environmental factors affect the
phenotype of patien{&eitz & Mayeux, 2014)

2.4.1 Environmental Risk Factors

The association between modifiable risk factors, sucimedical comorbidities,
lifestyle choicesand the reduced risk for cognitive decline is strongly evident from
the populationbased perspecti@®aumgart et al., n.d.; Norton et al., 201%here is
increasing evidence that exposure taxahum and air pollution may play a rolethne
development of AXK.-H. Chang et al., n.d.; Flaten, n.d.; Oudin et al., n.d.; Rondeau
et al., 2009) Association between cardiovascular risk factors, diabetes mellitus,
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midlife hypertensia, midlife obesity, and AD have be&®monstrated in various
studiegJoas et al., 2012; Norton et al., 2014; Ritchie et al.,.rQdher AD-related
factorsinclude sleep disturbances, traumatic brain injumy ather neurodegenerative
disorders, latdife depression, education attainment, physical activity, and social
engagementHowever links between many of these factors and the specific
pathobiology of AD ar@ot wellestablishedRabinovici, 2019)

2.4.2 GeneticRisk Factors

The heritability of LOAD is estimated to be 60 to 80&atz et al., 2006andstudies

on its molecular mechanisms are still ongoimg. early studies, APOE4 was
established as a genetic risk factor for LOAIbrder et al., 1993; Johanna Kuusisto,
Keijo Koivisto, Kari Kervinen, Leena Mykkanen, Eelésa Helkala, Matti
Vanhanen, Tuomo Hanninen, Kalevi Py6rala, Y Antero Kesaniemi, Paavo Riekkinen,
1994; Xu et al., 2021)While ¥4, one of the three common alleles of APOE4, is
associated witlnincreased riskfodeveloping AD, the genotypés/ & anday/ & of

the other two common alleles are found to be protectilmvever, sincehe s allele
represents a risk factor rather than a deterministic, g8R®E4 genotyping is not
currently recommended in the clinicevaluation of patients with suspected AD
(Knopman et al., 2001)

Besidesthere arenore tharROLOAD candidatdoci on genesuch as\BCA7, BIN1,
CD33, CLU, CR1, CD2AP, EPHAL, MS4A6MS4A4E, and PICALMidentifiedin
recent years in several GWA studigs2013,11 new GWAS loci19in total, were
identified through a metaanalysisof 74,046 individuals within the scope of the
International Genomics of Alzheimer's ProjeciGAP) (Lambert et al., 2013)in
2019, in another largecale metanalysis study, 29 associated |ot6 of which
overlapped with the loci identified thel-GAP studywere identifiedand nine novel
significantly associated loci in this study were mappedARAMTS4, HESX1,
CLNK, CNTNAP2, ADAM10, APH1B, KAT8, ALPK2, and AC074212.3 genes
(Jansen et al., 2019Another 13 new AD candidate loci were identified by
Prokopenko et.al. in 20PRrokopenko et al., 20213milarly, in another recent study
four new variants neakPP, CHRNE, PRKD3/NDUFAF7, PLCG2and two exaic
variants in the SHARPIN gemeere identified as associated with AD (Rlojas et al.,
n.d.) Nonethelesghe functional consequences of all LOAD risk genes have not been
fully discovered. Amyloid, inflammation/immune system, lipid transport and
metabolism synatic cell functioning/endocytosisand tau protein bindingare the
primary pathwaysclustered by many Afassociated genes

2.4.3 EpistasisinAl z h e iDiseasel s

GWA studieddentify common variants that increabe disease riskdowever, gnes
significantly associated with AD by GWA studies can explain only 25 percent of the
phenotypic variancgRidge et al.,, 2013)The extensive usage ofextgeneration
sequencing (NGS) technologies give rise to studerstifyingrare variants associated
with AD (Prokopenko et al., 2021Besides polygenic risk scores are computied
predict risk based on the risk variant profile per individa#though predictive power

is not extremely high with current knowledge of heritability, it is a promising approach
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for identifying subjects at high risk for developing AD and diagmggimely those
affected by the disease.

Epistasis $ theothercomponenthat can elucidate the missing heritabilityarious
studies have identified several epistatic interastionthe last two decad.The first

two epistatic interactions were reported between IL6 and IL10 and TF and HFE genes
in the arly 2000s(Infante et al., 2010; Warden & Smith, 2004hd both these
interactions were replicated in independent samf@esnbarros, Van Duijn, et al.,
2009; Kauwe et al., 2010n 2014,Ebbert et alidentifiedtwo significantinteractions
betweenCLU-MS4A4E and CD33VIS4A4E genes and only CLU-MS4A4E was
replicated by an independent sample grddpT. Ebbert et al., 2016; M. T. W. Ebbert,
Ridge, Wilson, et al., 2015550me other studies focused on epistatic interactions
associated witt he di s e as e 0 ssuch g anylbice depositipiprans
atrophy and grey matter densiffdiohman et al., 2013; Koran et al., 2014; Zieselman
et al.,, 2014) The replication of Gusareva et al. identified an interaction between
KHDRBS2 and CRYL1using a thorough genomewide screening approachnd
replicable epistasis associated with AD was identifiming a hypothesidree
screening approactor the first timewith this studyGusareva, Carrasquillo, et al.,
2014) These studies have revealateractions between genes previously known to
be associated with ARBndbetween genesot associated with the disease before and
do not affectheir own.
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CHAPTER 3

MATERIALS AND METHODS

We obtained the SNPs used in this stirdyn GWAS datasets provided by ADNI,
GenADA, and NCRAD initiatives Firstly, quality control was conducted in
genotyping the datasetand a filtering procedure was applied. After performing

PLINK analysisto find ou the LOAD-associated SNPs from each dataset, associated
SNPs were prioritized by thR~RF approaci per f or med byThénur Er
triplets with significant 3vay interactions were obtained by performang entropy

based prioritization step. Subsequgninultiple testing comparisenwere performed

and then obtained triplets were classif fi
by checking the value of information gained between dffected and general
population. Lastly, variants of the obtaingglets were annotateénd functional
enrichmentnalysesvere performed for those variarfiEgureb).

GWAS Analysisfor | Filtering with P-value 0.01 Threshold | Random Forestfor
GenADA, ADNI and NCRAD Dimension Reduction
\. J

Filtering Significant SNPs with P-Value <0.05

~
Information and Two-Way Random Forest for
Mutual Information ’ Modelling
Analysis

Three-Way Interaction (
{ v 1 Filtering Significant SNPs with P-Value <0.05

Filter out the triplets with SNP pairs significant
two-way interactions

(Mul‘ciple TestingCorrection 1 ( Determination of 1

’ L Protective/Risk Variants

Filtering Significant triplets with P-Value <0.05
for GenADA and ADNI, 0.01 for NCRAD

Variant Annotation and
Functional Enrichment

Figure 5 Overview ofthe Methodology
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3.1 Data

High throughput sequencing technaksyquickly scanentire genomes of large
numbers of subject® find genetic variantassociatedvith a trait or diseaseThis
advantage of HTS enables the design of l@gge research studies and generates
more comprehensive information about the genomic signatureariouscomplex
diseases.

Al zhei mer 6s Disease Neur oi manglitha ationati t i ati ve
Centralized Repository for Al zheimer s Di sea
three different initiativeshat collect data for studies focusing oretktiology, early

detection, disease progressiand therapeutic development of ADhis study obtains

three highdimensional datasets from these initiatinea dbGaP control access

(Filippini et al., 2009; H. Li et al 2008) Affymetrix Mapping250K_Nsp and
Mapping250K_Sty with 620901 SNPs lllumina Human610_ Quadvl B 500K with

410969 SNPs and lllumina Humané@Q@iad BeadChip with 590247 SNPs platforms

areused by these initiatives, respectively. 210 controls and &ldsdor ADNI, 777

controls and 798 cases for GenAP¥810 controls and 1289 cases for NCRAI2

genotyped using these platforifiable 1).

Table 1 Overview of data used in this study

Number of Number of
Cases Controls
(phsggng%.A\\/l.pl) 798 777
(ad nﬁalf\lol.org) 344 210
NCRAD 1289 1510

(phs000219.v1.p1)

3.1.1 Data Preprocessing

Irrelevant and redundant informatioor noisy and unreliable datcan produce
misleading results. In order to ensure or enhance perfornthecgta preprocessing
step which comprises manipulation and dropping of data operatisnserformed
before modeling. Accordingly,uglity control wasconductedn terms of genotyjpig

in the datasetsisedwithin the scope of 18 study. Autosomal SNPs with Hardy
Weinberg Equilibrium (HWE) <5€7 arefiltered out with MAF<0.05 and call
rate<0.99. The remaining SNPs with a call rate <0.95hanehlid map location were
also excluded &m the genotyjpg data.
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3.2 PLINK Analysis

GWAS analysis is done for the initial dimension reduction to discover statistically
significant SNPdgor building a LOAD model from each different datagetINK is
anopensource C/C++ool developed for GWASRLINK enables rapid manipulation
and analysis of datasets consistiofjup to millions of markers genotypedor
thousands of individualéC. C. Chang et al., 2015; Purcell et &007) In order to
perform afundamentalcase/control association analysis for a disease aléle
frequencies between cases and conamscomparedsinga chisquare test

In this studyPLINK analysis igperformedusingtheft-a s soc o6 f uncti on f o
the independent statistical significancevafiantsrelated to the LOAD, and SNPs

were filtered usinga 0.05 basic allelic test clsiquare pvalue thresholdMultiple

testing correction was not considered since a fuBhg? prioritization analysis would

be performed using machine learning algorithREINK results were used for

filtering and reducing redundant SNPs that were not directly related to the disease.

3.3 SNPPrioritization with RF-RF Approach

RFs are collectionsfalecision trees that build an ensemble model for classification

and regressidBreiman, 2001)Random forests are constituted by generating random
vectors witithe same distribution that govern each tree's growttie ensemblefter
generatingnanyt r e e s, the model 6s prediction is
popular class among thosedseln this processhie importance of a feature could be
calculated according to its ability to improve the purity of the node by eachrtdee

then averaged for all trees. In other words, the features that improve the purity lead to
more significantnformation gain.

Accordingly, after filtering with PLINK, SNPs found to be significantly associated
with LOAD were used as input for multistep RF modeling. We performed the initial
RF for dimension reduction using feature importance and the second RF Htep as
modeling algorithm. RF was implemented using the RANGER packagggireRnan,
2001)

Overfitting occurs when a model fifgrecisdy against its training data and cannot
perform accurately for unseen daisb-fold crossvalidation (CV) resampling method
was applied to avoid overfittingy splitting data into 5 subsets. Then the model was
trained onfour subsets and tested on the remaining @hés processvasperformed
iteratively until each groupvasheld as the test group, then the average of the models
wasusedasthe resulting model.

I n the modeling phase, Ootwhichiefergtotveausbeper f or
of variables teplit at in each node possibly n d i, which iedecatesthe number

of trees Ntree parameter values up to 1000 were used fdatbetsanil mt r y 0 v al ue
were selected to create a manual gfiok. GenADA, the modelwastuned with mtry

values 2, 5, 10, 20, 41, 83, 166. The mtry parameter values 2, 4, 9, 19, 39, 78, 157
wereused br the ADNI datasetand 5, 10, 20, 41, 83, 166, and 38@reused forthe

NCRAD datasefor RF model tuningThis grid was created with tH&NP number's
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square root and the square root's f&lé tuning split rule was selected to be the "gini
index" Each decision tree in the forest was created as a tree of maximum size.
Importance and importancevalues were lao calculatedand after the first RF,
features witranimportance value smaller than 0.05 were used for the modeling step.
This multimodal approach was implemented for each dataset for prioritization.

3.4 Entropy-Based Prioritization

We aim to minimizéhemodel by reducing the level obmplexinteractions revealed

by LOAD-RF-RF. We focused omortlinearthreeway interactions in this studyjs
mentioned above, several entrapgsed approaches were suggested for pairwise,
third-order, and higtorder interatons for different study designsuch as family
based, casenly, and caseontrol Total correlation information (TCI) and 3Wdlre

the two quantities used for detecting thvesy interactionsWhile TCI refers to the
amount of information common to dhree attributes3WII implies thetotal amount

of information common to all three attributes but not present in any swiseh is

in line with the purpose of this studyhese definitions have been modified differently
by different groupskan etal. express the effects of interaction on a phenotype by the
difference of those interactions of variants between case and control (JEous

IG=3WII(X,Y,Z) cases3WII(X,Y,Z) (Eq 8)

Chanda etl. used the phenotype as the third variaolexplaint he T CI as Othe
information that cannot be obtained without observing all variables and the phenotype

at the same tin@e In order to avoid false positive$lu et al. proposed another

information gain modl based on Chanda akt6 ,swhich subtracs all lower order

effectsfrom the total IG, including the main effects of the three attributes and all

pairwise synergies between thém Hu, Chen, Kiralis, Collins, et al., 2013{&q 9).

IGsticd X, Y,Z,P)=I(X,Y,Z,Pymax{l(X,Y,P),0}-max{l(X,Z,P),0}-max{l(Y,Z,P),0}-
I(X,P)-I(Y,P)-1(Z,P) (Eq 9)

Nevertheless,Chandaatt s | G definition and the other me
this definition assume thatariants interact with the phenotypadainteract with

variants among themselvda.this study our goal is to demonstrate the effectlod

interaction of genetic variants on LOAD. Therefore we used the IG definition of Fan

et al.to assesthe effect ofthreeway interactionsindividual steg of theworkflow

followed arelisted below:

1- The SNPs prioritized by the LOABFRF model are filtered from BED files
and divided into caseontrol groups usinghe following P-LINK commands
Firstly bed files were converted to ped files:

Aplink i bfile bedFileNamé&recodel2 tabi out outPutPedFileName

2- The SNPs prioritized bthe LOAD-RFRF model are filtered from generated
ped files:
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\plink --file outPutPedFileName-out filtered/SNPs --recodel2 --extract
listOfPrioritizedSNPs

3- Filtered SNP pefdiles divided into case and control groups:
\plink --file filteredSNPs--filter-cases-recode12-out caseSNPs
\plink --file filteredSNPs--filter-controls--recode12-out controlSNPs

4- In the last step of PLINK analysis, members hging to each genope are
listed for case and control groups separately:

\plink --file caseSNPslist --out caseSNPsList
\plink --file controlSNPs-list i out controlSNPsList

5- Thefiltered SNPs' genotype frequencies are calculasaty a custom Python
script (Figure6; Appendix A.1). As reviewed in the previous section, these
frequencies are used as parameters4wag interaction information gain and
two-way mutual information gain functiorier identifying SNPs that explain
the susceptibility of LOAD. These two functions are implemented using
custom R scripts adapted from Fan(Ruzong Fan, n.d.YAppendix A.2. ,

A.3 and A.9).

I1G (Eq 7) valuesthe difference o8WII of variants between case and control groups
for each triplet were calculated by the implementation efa§ interaction
information gain functionThen, we calculatd the test statistiby dividing the lIG of

each datasetfwioritized SNPHy a speci fic nor mal iTkReat i on

resulting test statistics is centrally edguare distributed with 1 degree of freedom
under the null hypothesis that the markers are indegmerad the diseas&s mentioned

in Literature Review sectiorSignificantly different interactions are identified by
using pvalues assigned in these test statistics.

Then, tweway mutual information gain test statistics are calculated for the triplets'
variants, which are found to have significant interactions in the previous step. Since
we look for the interactions common to all three variants that cannot be explained by
two-way mutual information gain, the triplets with SNP combinations with significant
two-way mutual information gain are excluded.

3.5 Multiple Test Correction

In cases where we performultiple simultaneousstatistical tes we encounter
multiple comparisonproblens. As the number of tests applied increases, the
probability of obtaining falepositive results also increas® alidation tests based on
multiple testing corrections and resampling technigueb as permutatiebased tests

hawe been performed to counteract the multiple comparisons problem. Multiple testing
correction techniquesuch as BonferronfHaynes, 2013and The Benjamini and
Hochberg (B&H) (Hochberg, 1996 corrections make the statistical tests more
stringent by adjusting theyalues.The total number of observations in a population
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sample is resampled to build an empirical estimate of the null distribution from which
the test statistic has been draw performing the permutation teelmonte &
YurgelunTodd, 2001)

#This function remove the family IDs and recode the genotypes in case gamodyping files

function convertGtypeCoding(SNP list file path):
open SNP file
read SNP file line by line and generate a SNP list
for the element in SNP list
Remove the familiy IDs from the element
Then convert the genotype values
for the element in SNP list
if genotype=="11"
genotype="0'
if genotype='12" or '21'
genotype="1'
if genotype'22'
genotype="2'

return SNP List

#This function generates a csv file with frequencies of triplets or pairs.
function convertgtypell(SNP List,interactionType (3 way or 2 way),outputPath (path fg

output)):

if interactionType is " 3WII"
foriis O to (length of SNP List}1 increase by 4
for j is i+4 to (length of SNP Listy increase by 4
for k is j+4 (length of SNP List} increase by 4
forlinitoi+4
formisjto j+4
for nis k to k+4
if the remainder is not equal to 3 for I/4, m/4 and n/4
Generate sets of individuals for each three SNPs at three genotype ¢
Intersect those sets to calculate the frequency of the relevant triplet
Assign this frequency to the relevantwoin
if the remainder is equal to 3 for I/4
Assing the name of the SNPs to the relevant columns
else
for j is 0 to (length of SNP Lis{] increase by 4
for k is j+4 to (length of SNP List} increase by 4
for mis j to j+4:
for nis k to k+4:
if the remainder is not equal to 3 for m/4 and n/4
Generate sets ofdividuals for each two SNPs at two genotype levels
Intersect those sets to calculate the frequency of the relevant pairs
Assign this frequency to the relevant column
if the remainder is 3 for m/4:
Assing the name of the SNPs to the relevant columns
Save the resulting dataframe to a CSV file
Return

Figure 6 Pseudocodef the algorithm developddr genotype frequency calculation
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This study validates significant interactiongor multiple comparisons using
permutation testingCamargo et al., 2008y performing the following steps:

1. Disease status labels are randpsfiuffled

2. Information gaifbased test statistic is calculated in each iteration for
performing 100€fold permutation testing for GenADA and ADNI datasets.
100006fold permutation testing is performed for the NCRAD dataset to
accommodate prioritized SNPschimniplets, whicthadmore significantriplets
than the other datasets.

3. Then the ratio of test statistics greater than the observed test statistic is
calculated to assign ayalue to the permutation testii@ppendix A.5).

Triplets with ap-value greater than 0.05 and 0.01 are filtered out for GenADA, ADNI,
and NCRAD. As the variants are previously prioritized by the multistep random forest
model, revealing the interactions, we defined thvalpie thresholds by considering the
Type Il erros more than Type | errorBesides, we adjusted different thresholds based
on the number of triplets in each dataset separately.

3.6 Determining Risk and Protective Variants for LOAD

As described abovénformation gainis the difference between tladfectedand the

general populations' mutual infoation If the disease is not associated with the
markers the information gairequalsO. If the mutual information in the affected
population is greater than the general populatrdormation gain is greater than zgro

otherwise it is smaller than zero. Accordingly, we checked thplets' mutual

information valueswhich show significantly different thregay interactions. Then

we identified the triplets with positive informatio gai n val ue as ORI s
the triplets with negative information g

3.7 Variant Annotation

The process of assigning functional information to variants is called variant
annotation. This information could involveseguence conservation measures,
predictions about a variant's effean protein structure and functioand genomic
mapping. SNPNexugChelala et al., 2009; Dayem Ullah et al., 2012, 2013, 2@1h8)
SNiPA(Arnold et al., 2015)ools have been used to annotate the variants in the filtered
triplets.

Genomic mapping, variant annotationgene/protein consequences, and
phenotype/disease association information have been obtained from thesé&/&ols.
selected the GRCh37 human reference genome assembly for boflot@nisquery.
Gene/protein consequences were obtafread NCBI RefSeqPruitt et al., 2014and
EnsemblHubbard et al., 200%atasetsin the SNPNexus tool. Ensembl was selected
in the SNIPA toolfor the same purpos&NIiPA inkage disequilibrium data and allele
frequenciesvere computed forl000 Genomes Phase 3 v5 datasdéhe European
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population and we obtained the NeRinnish European gnomAD frequencies from
SNPNexus.

While phenotype/disease associations were obtainedtire@enetic Association of
Complex Diseases and Disorders (GA@I ClinVar databases in SNPNexus, this
information was obtaied from OMIM, OrphaneNHGRI GWAS CatalogHGMD,
dbGap and ClinVar datasets.

3.8 Functional Enrichment

Functional enrichment analysis was performed fotripkets' variants witlsignificant
threeway interactionsFirstly, we collected the triplets withll variants mapped to a
gene. Then we queried those triple genes separattig Reactome databasepen
source, open access, manually curzaed peerreviewed pathway database (Fabregat
et al., 2018jo determine if all three genes are found in palysvassociated with AD.

Then,GO Molecular Function, GO Cellular Component, GO Biological Process, and
Reactome pathways are used udingg: GOSt component ahe g: Profiler tool

(Raudvere et al., 2019) for the variants reported in édulet for all datasets. All

analyses have been done with default attributions with a significance threshold of 0.05.
Thepval ue of the enrichment of pathways has
test, and the Bonferroni correction method has been tmednultiple testing

corrections.

Then, EnrichmentMap (Merico et al., n.d.), a plugin foe Cytoscape tool (P.
Shannon et al.,, n.d.), has been used to create networks from Gene Ontology
annotations and Reactome pathwayrder to derive werrepresente functional
groups from functional annotatiofll analyses have been done wath-valueof 0.05,

FDR gvalue cutoffof 0.01, and edge similarity cutadf 0.3(Jaccard metric).
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CHAPTER 4

RESULTS

This studyused an entropipased apprach to detect the thirdrder interactions in
PLINK-RFRF models from three different LOAD dataséigstly, LOAD-associated
variants were determined by performing a PLINK analysis in three different datasets.
Then atwo-step RFRF model is conducted fovariant prioritization. Variants
obtained in this analysis (performed by ORudg a wereusedin further analysis.

32 SNPs found to be associated with LOADtfoe ADNI dataset, 36 SNPs and 218
SNPs for GenADA and NCRAD datasets, respectively, were tsexaminethe
threeway interactions related to the LOAELFirstly, a threeway interaction
information analysis was performed for these variants to determine significant three
way interactions. Afterward two-way mutual information analysis was doiiéen,
triplets involving variant pairs with significant twway interactions were filtered out
since wefocused on the information common to all three attributesttigatwoway
mutual information cannot exphaiMultiple testing correction was appli¢d validate
the significant thresvay interactionsSubsequentlythe selected tripletre examined
based ornthe value of information ga@u for determining the risk and protective
triplets

The variants in triples with significant threewvay interactions and all of which were
mapped to a gensvere queried in the Reactome datab@sdetermine if all three
genes are found in pathways associated with ADthe last stepFunctional
enrichment analysis was perfordheith overlapped genes, nearest downstream genes,
and nearest upstreagenes of all variants in all datasets.

Among SNPs prioritized by 3WII, four out of 19 SNPs from GenADA, one out of 27
from ADNI, and four out of 106 NCRAD are mapped to genes dirasdpciated wit
Alzheimeis Disease.

4.1 Variants Associated with LOAD

After filtering outthe SNPs that failed thguality contro) PLINK association analysis

was performed for each controlled accessed GWAS dataset. Significancewataes
calculated based atomparingallele frequencies between cases and cont@@39
SNPs for ADNI, 3767 SNPs for GenADA, and 16404 SNPs for NCRAD withlpes
smaller than 0.0%elected. We found only one common SNP for these datasets, 18
common SNPs for only NCRAD and GenADA, 206 common SNPs for only NCRAD
and ADNI,andnine common SNPs for only ADNI and GenADjRigure 7).
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Figure 7 Venn Diagram for Number of Filtered SNPs by GWAS Wi

4.2 SNPPrioritization by LOAD -RF-RF Model

After the PLINK association analysis, the RF mogakimplemented for the feature
selection from each datasBepending on the elwmtion of the model tuning with-5
fold fold crossvalidation resultsthe besmtry and ntree parameters were determined
as in Table.

Table 2 The best mtry and ntree parameters determined by parameter tuning

ADNI GenADA NCRAD

mtry 39 2 83

ntree 50 900 1000

The permutation hypothesis test calculates the contribution of random change in the
value of the variation to the accuracy rate. After 100 permutations, 390 variants from
ADNI, 1740 from NCRAD, and 434 from GenADA datasets related to the disease
were seledd as the input set for the modeling step with second RF at a 95%
confidence level (Type | error = 0.05).

In the second step with the multistep LOAP~RF model, 32 SNPs are identified and
selected for the disease at a 95% confidence level for the ADBBataBesides, 36
SNPs and 218 SNPs for GenADA and NCRAD datasets were associated with the
disease at a 99% confidence levE&halfle 10 in Appendix B) (Figure 8) These
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prioritized SNPs are useid examine the -8vay interactions related tine LOAD
interadions

Genotyping Data
ADNI-GenADA-NCRAD

PLINK Association Analysis With P-value Threshold 0.01

[ 7639 SNPs ADNI ] { 3767 SNPs GenADA ] { 16404 SNPs NCRAD ]

RF For Feature Selection, Parameter Tuning
With mtry and ntree

( 1740 SNPs NCRAD

L 4

—
[ 390 SNPs ADNI } [ 434 SNPs GenADA

RF For Modelling, Parameter
Tuning With mtry and ntree

32SNPs (95 % Cl) 36 SNPs (99 % ClI) 218 SNPs (99 % Cl)
ADNI GenADA NCRAD
Entropy Based

Prioritization With
3wl

Figure 8 Workflow and Data Summarin the first step, PLINK association analysis is
performed for genotyping data of three datasets. TheRIRE conducted for feature selection
and modeling, respectively. Outpuiriants of the PLINKRFRF model are prioritized by
3WII analysis

4.3 Three-Way Interaction Information (3 -WII) Analysis

Prioritized SNPs from the RRF model of each dataset have been used to determine
the significant thregvay interactions. ADNI dataset hbsen tested for 4960 three

way interactions. GenADA and NCRAD datasets have been tested for 7140 and
1,703,016 interactions, respectively.

Firstly, the rate of prioritized genotype triplets is calculadegdarately in case and
control groups for each deget Then, the difference of each variant triplet's thues
interaction (3WI) information is estimated between the case and control groups. For
the GenADA dataset, nine out of 7140 triplets had significant-tlvegeinteractions.
However, one of the plets consisting of rs17067596, rs4895529, and rs16993582 is
filtered out since it includes an SNP pair in strong linkage disequilibrium. Likewise,
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ADNI and NCRAD datasets have 17 out of 4960 and 86 out of 1,703,016 significantly
interacted triplets.

In the next step, twavay mutual information gain is calculated for the variants found
in the significant triplets. 171 twavay mutual information gain is calculated for 19
unigue SNPs in GenADA triplets, 32& 26 unique SNPs in ADNI triplets, and 7750
for 125 unique NCRAD triplets.

The SNP triplets with SNP combinations with significant-tmey mutual information

gain are excluded. For GenADA and ADNI, no SNP pairs with significarviay
mutual information gain are found. For NCRAD, 22 triplets with SNPspaith
significant tweway mutual information gain are filtered diable 11 and Table 12

in Appendix B). After this filtering, eight significant triplets with 19 unique SNPs
from GenADA, 17 with 26 unique SNPs from ADNI, and 64 significant tripleth wit

116 unique SNPs from the NCRAD dataset were selected. There were no common
SNPs between these groups.

Lastly, for the validation ofalues assigned by test statistics, a permutation test was
performed. Significant triplets have been selected usingfOr@be pvalue threshold

for GenADA and ADNI datasets. Since there were more triplets for the NCRAD
dataset, 0.01 was used as theahue threshold. Accordingly, 1000 permutations for
GenADA and ADNI and 10000 permutations for the NCRAD dataset wererpexd

in this step Table 3.

Table3 Overview of the SNPs after each filtering step

ADNI GenADA NCRAD
Number of prioritized SNPs by RRF 32 36 218
Number of triplets 4960 7140 1,703,016
tl;li%rlg?ser of significantlynteracted 17 (26 SNPs) 8 (19 SNPs) 86 (125 SNPs)
Number of SNP pairs tested for 2WI 325 171 7750
Number of triplets with significantly 0 0 29

interacted SNP pairs

Number of significantly interacted

triplets after permutation testing 17(26SNPs) 8 (19 SNPs) 64 (116 SNPs)

4.3.1 GenADA Dataset Results

Following the workflow inFigure 8, eight triplets with 19 unique SNPs for GenADA

(Table 4) had significant 3vay interaction (3WI) informationAll GenADA 3WII

SNPs are categorized as modifiers based on their impiictthe SnpEff tool

(Cingolani et al., 2012Four SNPs are mapped to FBLN2, ADAM 10, NHSL1, and

ST3GAL1 genes, previously aqMWloegaettled with A
2017; Patel et al., 2019The SNP mapped to ADAM10 is also associated with

reticulate acropigmentation of Kitamura. Lastly, one variant is nthfipthe RUNX1

gene associated with chronic myeloid leuke(iable 5).
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Table 4 Test Statistics and Permutation Testing Results for GenADA Dataset

SNP1 SNP2 SNP3 Tic P-value Permutation p-value Genel Gene Gene3
117793957 rs605928 rs9911460 8.50 0.003 0.001 FBLN2 ADAM10 NPLOC4
(s7045548 rs1795977 rs11652714 8.25 0.004 0.001 i ) i
rs1879019 rs17081694 rs605928 6.65 0.009 0.002 i ; ADAM10
rs1608169 rs11862388 rs16993582 7.14 0.007 0.003 i ] RUNX1
(s4895529 rs9314604 rs17081694 8.47 0.003 0.006 NHsL1 ANGPT2

/ MCPH1
rs17067596 rs9314604 rs17081694 8.46 0.003 0.008 NHSL1 ]
rs10050568 rs2978012 rs6098412 7.76 0.005 0.015 SPOCK1 ST3GALL -
rs1879019 rs1519959 rs136687 8.48 0.003 0.036 i ] PHF21B




8¢

Table 5 The SNPs in GenADA Dataset Mapped to a Gene Associated with a Disease

rsiD Chr. Pos Gene Phenotype
rs17067596 6 138,767,012 NHSL1 1f 1T KSAYSNRA
rs2978012 8 134,539,196  ST3GAL1 1fT KSAYSNRA
rs4895529 6 138,770,275 NHSL1 1t T KSAYSNDa
| & & x :
r605928 15 59,046,163 ADAM10 b .K S A Y.S N‘n.a 5A:
acropigmentation of Kitamura
rs17793957 3 13,649,920 FBLN2 Alzheimer Diesase
MCPH1/ .
rs9314604 8 6,411,499 ANGPT?2 Microcephaly
1516993582 21 37.110,209 RUNX1 Platelet disorder, familial, with

associated myeloid malignancy




4.3.2 ADNI Dataset Results

Seventeertriplets with 27 unique SNPs showed significarnw@y interaction (3WI)

information after permutation testing are identified for the ADNI Dat@kaible 6).

One variantvas mappedto FERMT3, r i sk factor for Al zhei mi
mapped to SYCP2LVAV2, SEPSECS, and TMPRSS15 are associated with age

related hearing impairment, multiple sclerosis, pontocerebellar hypoplasia type 2,
enterokinase deficiency, respectively. PLAGL1 is associated with transient neonatal
diabetes mellitus, paternal unipatal disomy of chromosome 6, and NPSR1 is
associated with asthnrralated trait§Table 7). Although some triplets have common

SNP pairs, none of their elements are in the same LD. All these SNPs are also
categorized as modifiers.

4.3.3 NCRAD Dataset Results

Fifty-two triplets with 106 unique SNPs were significant 3WI for NCRARMK]e 13

in Appendix B). Only two triplets shared an SNP pair. The third SNPs of the triplets,
rs12663008, and rs17830067, were found to be in the same LD region. So, one of these
triplets could be used as a representative. There were also three other SNPs in the same
LD region, which do not interact with other common SNPs.

Variants mapped to PVRL2, TOMM40, LCMT1, and RAB3GAP1 genes were
previously associated with Al zhei merdos d
HNRNPAL is associated with amyotrophic lateral sclerosid anclusion body

myopathy with Paget disease of bone and frontotemporal dementia. Other associated
diseases can be seen in Table 8.

4.3.4 Protective-Risk Triplets Analysis

As noted previously, the interaction information gain 1IG value represents the
differencebetween 3way interaction information of disease and control groups. A
positive 1IG represents the gain of 3WIl in the presence of a disease. In contrast, a
negative 11G represents the gain of 3WIl in the general population versus the affected
population.

In GenADA dataset for only two tripletss1608169; rs11862388; rs16993582 and
rs10050568; rs2978012; rs6098412, the IIG was positive, and it was negative for the
rest of the triplets. Additionally, in ADNI dataset only two triplets
(rs6705017;rs10017048557098 and rs685677;rs7157639;rs2824808) had positive
IIG (Table 9). The SNPs are categorized as modifiers as in the other dataset groups.
However, unlike the other datasets, IIG values are mostly positive in NCRa\ibe(

13in Appendix B).
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Table 6 Test Statistics and Permutation Testing Results for ADNI Dataset

SNP1 SNP2 SNP3 Tic P-  Permutation p- Genel Gene2 Gene3
value value
rs9366664 rs3780792 rs1150360 8.53 0.003 0.001 SYCP2L VAV2 FAM76B
rs6705017 rs10017010 rs557098 7.51 0.006 0.001 UGGT1 Pl4K2B ALDH3B1
rs11749731 rs3780792 rs7157639 6.74 0.009 0.001 NDFIP1  VAV2 FERMT2
rs1023276 rs324389 rs2824808 8.81 0.002 0.002 - NPSRX TMPRSS15
AS1

rs6751810 rs4561856 rs1023276 7.92 0.004 0.002 - - -
rs4561856 rs4409091 rs2633466 7.61 0.005 0.002 - - -
rs4561856 rs10807701 rs2824808 7.55 0.005 0.002 - TPST1 TMPRSS15
rs7091014 rs11006011 rs2633466 7.47 0.006 0.002 - - -
rs6856771 rs7157639 rs2824808 8.18 0.004 0.003 - FERMT2 TMPRSS15
rs9366664 rs10960174 rs1150360 7.69 0.005 0.003 SYCP2L - FAM76B
rs11749731 rs10807701 rs7157639 7.42 0.006 0.003 NDFIP1  TPST1 FERMT2
rs6705017 rs11006011 rs2633466 7.77 0.005 0.005 UGGT1 - -
rs9313264 rs12056012 rs2633466 7.69 0.005 0.005 - - -
rs6705017 rs2633466 rs462074 7.38 0.006 0.006 UGGT1 - -
rs10017010 rs9313264 rs2207851 8.65 0.003 0.008 Pl4K2B - PLAGL1
rs4561856 rs9896368 rs2824808 8.88 0.002 0.009 - MMP28 TMPRSS15
rs4561856 rs7157639 rs717840 7.784 0.005 0.022 - FERMT2 CDH13
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Table 7 The SNPs in ADNI Dataset Mapped to a Gene Associated with a Disease

rsiD Chr. Pos Gene Phenotype

rs7157639 14 53,388,161 FERMT2 Al zhei merds Diseasel/ H

rs9366664 6 10,892,499 SYCP2L Age-related hearing impairment

rs10017010 4 25,188,718 SEPSECS Pontocerebellar hypoplasia type 2es

rs2207851 6 144,337,886 PLAGL1 Transient neonatal diabetes mellitus / Patern:
uniparental disomy of chromosome 6

rs2824808 21 19,775,220 TMPRSS15 Enterokinase deficiency

rs324389 7 34,777,714 NPSR1 AsthmaRelated Traits

rs3780792 9 136,835,343 VAV2 Multiple Sclerosis




Table 8 The SNPs in ADNI Dataset Mapped to a Gene Associated with a Disease

rsiD Chr. Pos Gene Phenotype
rs2075650 19 45395619 TOMMA40 Al zhei mer és D
rs6859 19 45382034 PVRL2 Alzheimer's Disease
rs10445686 2 135,893,372 RAB3GAP1 Alzheimer's Disease/Leiomyoma,
Uterine
rs11645986 16 25,127,645 LCMT1 Alzheimer's Disease
rs1920045 12 54,670398 HNRNPA1l Amyotrophic lateral sclerosis/ inclusio
body myopathy with Paget disease ¢
bone androntotemporal dementia
rs7181139 15 77977667 LINGO1 Mental retardation / Essential tremor ¢
Parkinson's
rs3775162 4 72,397,710 SLC4A4 Proximal renal tubular acidosis with
ocular abnormalities
rs4076290 2 1,378969 TPO Thyroid dyshormonogenesis
rs1560964 15 33766809 RYR3 Epileptic encephalopathy
rs1530498 5 13902220 DNAH5 Primary ciliary dyskinesia
rs17576289 3 45458733 LARS2 Perrault syndrome
rs17742907 22 18,890615 DGCR6 Velocardiofacial syndrome
rs2108392 5 130,533,828 LYRM7 Mitochondrial Complex iii Deficiency
rs2432762 6 5,435756 FARS2 Combined oxidative phosphorylation
defect type 14
rs3785113 16 68369213 PRMT7  Pseudohypoparathyroidishike disorder
rs3888795 18 11,863899 GNAL Dystonia
rs991974 6 70,481,267 LMBRD1 Methylmalonic acidemia with

homocystinuria

Table 9 Risk/Protective Triplets Distribution Among Dataset

Number of Risk

Number of Protective

Triplets Triplets
GenADA 2 6
ADNI 2 15
NCRAD 38 14
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4.4 Functional Enrichment

We queriedhetriplets variants with significant thregay interactionsall of which were
mapped to a gene in the Reactome datatzadetermine if all three genes are found in
pathways associated with AMariantsof one triplet for GenADAfour triplets for ADNI,
and 15 triplets for NCRADvere examined

No 3WII tripletshadvarians enriched in the same pathway. ADAM10 and FBLNBege
were significantly enriched irthe extracellular matrix organization, to which two
GenADA variants are mappetihe third variant in thlenticaltriplet was mapped tine
NPLOC4 geng enriched inthe posttranslational protein modificatiopathway in
ADAM10. VAV2 and FERMT2 genesith two ADNI variants mappedere significantly
enriched infive different pathwaysP14K2B and ALDH3B 1, another gene pathat two
of the ADNI variants are mapped to, were significantly enriched imttabolism othe
lipids pathway(Table 14 in Appendix B). No triplets in NCRAD dataset involve triplets
with variants pairs enriched in the same pathway.

Functional enrichment analysis was conducted for the gene set, which combined the genes
mapped in all three datasets. These variants are annotated with SNPXexXus.ctional
enrichment analysis involves overlapped nearest upstream and downstrear(T glelee

15in Appendix B).

Firstly, GO Molecular Function, GO Cellular Component, GO Biological Process, and
Reactome pathways are obtained for the resulting dataset. Calcium ion binding,
extracellular matrix, external encapsulating structure, and RUNXdlateg estrogen
receptormediated transcription pathways are significantly enriched.

Then, functional enrichment networks are created by Enrichment Map. The common
functions of extracellular matrix and external encapsulating structure pathways are
observe on the same netwo(kigure 9).
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Figure 9 Functional enrichment network created by Enrichment Map
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CHAPTER 5

DISCUSSION

Similar tomostcomplex diseases, unveiling the missing heritability is a challenge in AD.
Various studies have revealegistatic relationship and offer a potential solutida this

problem. In earlier studies, interactions between genes in pathways associated with AD

are examinedinfante et al., 2010; Robson et al., 2QQ4hile recent studies focus on the
interactions between GWA8entified LOAD genegM. T. W. Ebbert, Ridge, Wilson, et

al., 2015) Al so, few studies reported epi st e
endophenotype or intermediate traits such as amyloid deposition and brain atrophy
(Hohman et al., 2013; Meda et al., 2013; Zieselman et al., 2014)

The limitations of epistatimteraction studies are the extensive multiple comparisons and
low power,leadingto high error rates of type 1 and type 2. Besides, the high cost of
computational resources required fam exhaustive search is another constraint that
challenges the intactions' detectianThese limitations also avoid producing replicated
results.

We have proposed an integrative approach where multistep ERARF is followed by
3WII entropy analysis to overcome these limitations. The LG™BRF model is
developed usingLINK and RFRF workflow for three LOAD datasets from different
datasets. Then, triplets with significartw@y interactions are identified among the
prioritized SNPs. RF is a powerful tool to address the missing heritability problem
revealinghigh-dimensonal interactions between variangspplying the 3 WII methods
after the RHet usfocuson the nonlinear highdimensionainteractionsfound with R-.
Prioritization of SNPs through multistep RF befor®\3l analysis reduces the need for
extensive computational resources for exhaustive anal@sike we examined the
interactions between diseaassociated variants, we ignored tlaiants that only affect
the phenotype by interacti@s a part othelimitations of this study.

For all three datasetshe number of unique SNPs is reduced after the 3WII analysis,
promisingfor applying 3-way interaction information analysis for model minimization.
Zieselman eal. and Dorani etl. performed similar integratedteopy-based approaches

to demonstrate the statistical interactions among the output SNPs of machine learning
models(Dorani et al., 2018; Zieselman etal., 2014n Zi e s e |l machides model ,
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learning analysis of gergene interactionsvas combinedwith largescale functional
genomics data for assessing biological relationsfsle they used SNPs mapped to
genes for machine learning analysi® did not perform a biologicé&nowledgedriven
approach. In addition, they applied this method giey matter density as an
endophenotype forlate n s et Al z h eratimeethadhsdisdasesiteel. 1 ®orani
et a |l . @fter pesformimgydata preprocessing and feature selection steyakom
forests (RF) and gradient boosting machine (GBM) algori were implemented
separately to reveal the SNPs contributinghe colorectal cancer riskommon SNPs
prioritized by both algorithms were used for further examination. In both studies,
significant tweway and threavay interactions of prioritized SNRgere determined using
theinformation gain approach proposed by é¢tal. (T. Hu, Chen, Kiralis, Collins, et al.,
2013Db) In those studiests step was applied only temonstratéhe existingnteractions

instead of being used for model nmmzation as in our studesidesHu et al . 6s met ho
assessd the interaction between variants and phenotygider thanthe correlation
between variant interactions and phenotgpeve ddusFan et al . 6s approach.

Implementing the 3WII stellowed us to recognize the informative variant triplets
among the LOABRFRF prioritized SNPs, which could be informative candidate
biomarkers. On the other side, Hohman et al. and Gusareva et al. also performed an
exhaustive genormeide interaction infamation analysi&Gusareva, Carrasquillo, et al.,
2014; Hohman, Bush, Jiang, Brov@entry, Torstenson, Dudek, Mukherjee, Naj, Kunkle,
Ritchie, Martin, Schellenberg, Mayeux, FarregfifakVance, Haines, Thorntewells,

et al., 2016) Hohman etl. used a biological knowledegriven approaciio assess the
interactions, while welid notuse prior knowledge to revetile significant interactions.

Apart from that, both studies focus @way rather than-8vay interactions.

[IGs are calculated for triplets dependent on the disease based on test statistics (TIG). Only
a few lIGs are positive for GenADA and ADNI datasets. IIGs for 38 triplets out of 52
significant triplets have positiMéG. In various studies, while positive gain of information

is referred to as synergy between variables, loss of information indicates the redundancy
between thenfAnastassiou, 2007; T. Hu, Chen, Kiralis, Collins, et al., 2013b; Moore &
Hu, 2015) In those studieshephenotype was treated as the third variable in the definition

of IG. This definiion of IG enablesusto examinethe interaction between variants and
phenotypeHowever, in this studyye assess the correlation between variant interactions
and phenotype using Fan et al.'s approatherefore,in our study, positive 11G
denonstrates hat t he di-wag iateractiomyinfarmagod s gr8ater than the
control groupAccordingly, the triplets with positive IIG are considered a risk factor for
LOAD, while the 1IIG negative triplets should be further investigated as pinatec
markers.

3WII analysis is performed to prioritize SNPstbgLOAD-RFRF model for all datasets.
The number ofprioritized SNPs differs between different datasets, so the number of
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significant triplets differedAlso, we observed a higher number of significant interactions
with the NCRAD dataset, which was theost extensivelataset. Although the NCRAD
SNPs are reduced with the LOARFRF mode] similar to the other two datasets before
the 3WII analysis the hidh number ofSNPs prioritizedleads to ahigher number of
significant triplets identified.

Complex diseases are also polygenic since multiple genes and environmental interactions
contribute to the phenotype. Here we have observed that most common -d&ease
variants map to noncoding sequences, known as modifiers. Also, in literature, complex
disease genes overlap with genes related to Mendelian disorders. Our obsqrasaiteis

the literature as some significant interactions revealed for LOAD are 8idpged to

Mendelian disorder genes. Up to ten variants are mappddta hei mer 6 s di s e a
within the prioritized SNPs in all datasetBive SNPs are associated with neurological
disorders like multiple sclerosis, epileptic encephalopathy, and Parkiies d+ seas e.
way interaction information describes the amount of information gained for all variables

but does not present any subset alone. Therefore, although prioritized SNPs are not
previously annotated as LOA&ssociated SNPs, their interaction Icostill inform the

LOAD risk. New clinical studies can valida
with the LOAD.

Functional enrichment analysis of 3WI variants from three different LOAD dataskés at
gene level showed enrichment of collag®ntaining extracellular matrix (ECM) and
external encapsulating structurend estrogen receptdER) mediated transcription
pathways. The ECM supports the basement membranes and microcircular environment of
the tissuesSeveral recent studies have regpd the link between ECM changes and aging
and neurodegenerative diseagpamodarasamy et al., 2020; Ma et al., 20ZD)en

though the exact molecular impact of changes in the ECM proteins during AD
development is still under investigatidts effects on synaptic transmission, amybid

plaque generation and degradation,-pantein production, oxidativetress responsand
inflammatory response have been revieilhelm Steinlusch et al., 2021)

Additionally, the role of ERs in cognition and memory has been investigateslit has
been demonstrated that ERs act as neuroprotectant by a@dulaing several
neuroprotective pathwayscluding immune response, neurogenesis) gkll functions,
and response to excitotoxicitgs the female predominanage developing AD suggests
the involvement of gendeapecific factor(s) the potential role of ERalphain AD
pathogenesis has been exploredhany studiegMaioli et al., 2021; Wang et al., 2016)

Thesefunctionallevel observationsupportthe proposed entropgyased posGWAS
analysis, LOADRF-RF followed by 3WII, as the prioritized variants and genes show
association with LOAD and provide insights into early LOAD pathogenesis.
Nevertheless, although the variants of the prioritized tspéee not enriched in AD
associated functional pathwayiseir interactions can still imply the LOAD kis
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CHAPTER 6

CONCLUSION

Random forest and entrojipased methods reveal nbnear genetic and environmental
factors contributing toamplex traits. The proposed workflow in this study demonstrates
an efficient framework for revealing the complex interactions that contribute significantly
as genetic factors for LOAD3WII is used as a model minimization methadd
determines the signifamt 3way interactions between the prioritized SNPs by PLINK
RFRF.

In this study

1 The proposed integrated method was applied to three different LOAD GWAS
datasets.

1 We used the thre@ay interactiorinformationmethodproposed by Fan al. and
integrated this method with a tvwgtep RFbased model for the first time to
examine the correlation between theeraction of variants and the phenotype.

1 The correlation between the thre@y interactiongather than tweway of the
potentialLOAD-associagd variants antheir protetive or riskstatus fol.OAD
wasexaminedor the first time

In the future, he SNPs detected by this optimizeesilico model could be examined in a
clinical context to decide if the resulting triplets have predictive pdaerearly or
differential LOAD diagnosis.

This framework is a promising approach for pGWAS analysis of other complex
genetic disordersThe method can bhenprovedby applying it to th&WAS data obtained
from largescale data repositoriesich as UK BioBankSudlow et al., 20159ndEstonian
Biobank(Leitsalu et al., 2015)nd the FinnGeérstudy. Besides, the proposed method in

2 https://finngen.gitbook.io/documentation/
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this study could be improved by using larger datasetsttidracomplex diseasesic
LOAD, and it could also be modified by integrating other machine learning and entropy
based interaction mettlo
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