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ABSTRACT 

 

INTEGRATION OF MACHINE LEARNING AND ENTROPY METHODS FOR 

POST-GENOME-WIDE ASSOCIATION STUDIES ANALYSIS 

 

Yaldēz, Burcu 

Ph.D., Department of Health Informatics 

Supervisor: Assoc. Prof. Dr. Yeĸim Aydēn Son 

 

 

August 2022, 79 pages 

 

 

Non-linear relationships between genotypes play an essential role in understanding the 

genetic interactions of complex disease traits. Genome-Wide Association Studies 

(GWAS) have revealed a statistical association between the SNPs in many complex 

diseases. As GWAS results could not thoroughly explain the genetic background of 

these disorders, Genome-Wide Interaction Studies started to gain importance. In recent 

years, various statistical approaches such as entropy-based methods have been 

suggested for revealing these non-additive interactions between variants. This study 

integrates an entropy-based 3-way interaction information method and machine 

learning (PLINK-Random Forest-Random Forest) workflow to capture the hidden 

patterns resulting from non-linear relationships between genotypes in Late-Onset 

Alzheimerôs Disease (LOAD) to discover early and differential diagnosis markers. We 

have optimized an entropy-based approach that detects the third-order interactions in 

PLINK-RF-RF models from three different LOAD datasets. A reduced SNP set was 

selected for all three datasets by 3WII analysis of PLINK-RF-RF prioritized SNPs, 

promising a model minimization approach. Selected triplets of SNPs that show 

significant differences between case and control groups in terms of 3WII are proposed 

as candidate biomarkers for a genotyping-based LOAD diagnosis. Among SNPs 

prioritized by 3WII, four out of 19 SNPs from GenADA, one out of 27 from ADNI, 

and four out of 106 NCRAD are mapped to genes directly associated with Alzheimerôs 

Disease. For the first time, we have integrated the RF-RF model with the entropy-

based model for determining the three-way epistatic interactions for LOAD and 

discovered the common biological pathways for ADNI, GenADA, and NCRAD 

datasets. 

Keywords: Biomarker, three-way interaction, entropy, GWAS, Alzheimerôs Disease 
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ÖZ 

 

 

GENOM BOYUNCA ĶLĶķKĶLENDĶRME ¢ALIķMALARI SONRASI 

ANALĶZĶ Ķ¢ĶN MAKĶNE ¥ĴRENMESĶ VE ENTROPĶ Y¥NTEMLERĶNĶN 

ENTEGRASYONU 

 

Yaldēz, Burcu 

 

Doktora, Saĵlēk Biliĸimi Bölümü 

Tez Yöneticisi: Do­. Dr. Yeĸim Aydēn Son 

 
 

Aĵustos 2022, 79 sayfa 

 

Genotipler arasēndaki doĵrusal olmayan iliĸkiler, kompleks hastalēk ºzelliklerinin 

genetik etkileĸimlerini anlamada ºnemli bir rol oynar. Genom Boyutunda 

Ķliĸkilendirme ¢alēĸmalarē (GWAS), bir­ok kompleks hastalēkta SNPôlerin istatistiksel 

iliĸkisini ortaya ­ēkarmēĸtēr. GWAS sonu­larē bu bozukluklarēn genetik arka planēnē 

tam olarak a­ēklayamadēĵēndan, Genom Boyutunda Etkileĸim ¢alēĸmalarē ºnem 

kazanmaya baĸlamēĸtēr. Son yēllarda, varyantlar arasēndaki bu toplamsal olmayan 

etkileĸimleri ortaya ­ēkarmak i­in entropi tabanlē yºntemler gibi ­eĸitli istatistiksel 

yaklaĸēmlar ºnerilmiĸtir. Bu ­alēĸmada, Ge­ Baĸlangē­lē Alzheimer Hastalēĵēônda 

(LOAD) erken ve ayērēcē tanē belirte­lerini keĸfetmek amacē ile genotipler arasēndaki 

doĵrusal olmayan iliĸkilerden kaynaklanan gizli ºr¿nt¿leri ortaya ­ēkarmak i­in 

entropi tabanlē ¿­l¿ etkileĸim bilgi yºntemi (3WII) ile bir makine ºĵrenmesi(PLINK-

Random Forest-Random Forest) iĸ akēĸē entegre edilmiĸtir. ¦­ farklē LOAD veri seti 

ēle geliĸtirilmiĸ PLINK-RF-RF modellerindeki ¿­¿nc¿ dereceden etkileĸimlerin 

yakalanmasēnē saĵlayan entropi tabanlē yaklaĸēmē optimize edilmiĸtir. PLINK-RF-RF 

ile ºnceliklendirilmiĸ SNPlerin 3WII analizi ile ¿­ veri k¿mesinin t¿m¿ i­in 

indirgenmiĸ bir SNP seti se­ilmiĸ olup bu yaklaĸēm, bir model minimizasyon 

yaklaĸēmē olarak umut vericidir. 3WII a­ēsēndan vaka ve kontrol gruplarē arasēnda 

anlamlē farklēlēk gºsteren se­ilmiĸ SNP ¿­l¿leri, genotiplendirmeye dayalē LOAD 

teĸhisi i­in aday biyobelirte­ler olarak ºnerilmektedir. 3WII tarafēndan 

önceliklendirilen SNPôlerden; GenADAôdan gelen 19 SNPôden 4ôü, ADNIôden gelen 

27 SNPôden 1ôi ve NCRADdan gelen 106 SNPôden 4ô¿, Alzheimer Hastalēĵē ile 

doĵrudan iliĸkili genlere haritalandērēlmēĸtēr. Bu ­alēĸmada, LOADôda üç yönlü 

epistatik etkileĸimleri belirlemek i­in ilk kez RF-RF modeli entropi tabanlē model ile 

entegre edilmiĸ ve ADNI, GenADA ve NCRAD veri setlerinin ortak biyolojik 

yolaklarē keĸfedilmiĸtir. 

 

Anahtar Sözcükler: Biyobelirteç, ¿­ yºnl¿ etkileĸim, entropi, GWAS, Alzheimer 

Hastalēĵē  
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CHAPTER 1 

1 INTRODUCTION  

Genome-Wide Association Studies (GWAS) explore the statistical association of the 

SNPs in complex genetic disorders using high-dimensional datasets (Marees et al., 

2018). Primarily, these associations are identified with single-locus approaches, 

whereby each SNP is tested individually for the association. However, the univariate 

approach could not explain a large proportion of genetic heritability in most complex 

diseases. Interactions at higher dimensions such as SNP-SNP, gene-gene, and gene-

environment interactions can address the missing heritability problem (Cordell, 2009).  

While some of these interactions are identified in small-scale studies, most are 

revealed in Genome-Wide Interaction Studies (GWIS). A variety of machine learning 

methods, such as multifactor dimensionality reduction (MDR) and random forest (RF), 

are used to disclose the complex interactions of the variants(Bureau et al., 2005; 

McKinney et al., 2006; Oki & Motsinger-Reif, 2011). Also, Entropy-based methods 

have been proposed to analyze non-linear relationships between genotypes in complex 

diseases(Ferrario & König, 2018). 

Different study designs have suggested various entropy-based approaches for pairwise, 

third-order, and high-order interactions, such as family-based, case only, and case-

control. Information gain, defined as the difference between the mutual information in 

case and control groups, is used to measure pairwise interactions between two markers. 

Three-way interaction information (3WII) and total correlation information are two 

quantities used for assessing third-order interactions. 3WII describes the amount of 

information common to all variables not present in any other subset alone. In contrast, 

total correlation information (TCI) reveals the total dependence among the attributes. 

Nevertheless, different methods have been introduced to assess the pairwise and third-

order interactions based on these measurements(Fan, R, Zhong, M, Wang, 2011; T. 

Hu, Chen, Kiralis, Collins, et al., 2013a; Kwon et al., 2014; Su et al., 2015). 

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that is the most 

common cause of late-onset dementia. More than 55 million people live with dementia 

worldwide currently, and it is estimated that AD may contribute to 60-70% of the 

cases1. AD is characterized by cognitive impairment; however, a significant 

 

1 https://www.who.int/News-Room/Fact-Sheets/Detail/Dementia 
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heterogeneity can be observed in clinical progression. It is depicted as early-onset 

(EOAD) and late-onset (LOAD) based on the age of onset, and LOAD constitutes 

approximately 95% of cases. While EOAD is more likely familial and inherited in a 

Mendelian pattern, LOAD presents complex genetic inheritance, where interactions of 

multiple genetic variations and environmental factors affect the phenotype of 

patients(Reitz & Mayeux, 2014). In early studies, APOE4 was established as a genetic 

risk factor for LOAD (Corder et al., 1993; Johanna Kuusisto, Keijo Koivisto, Kari 

Kervinen, Leena Mykkanen, Eeva-Liisa Helkala, Matti Vanhanen, Tuomo Hanninen, 

Kalevi Py6rala, Y Antero Kesaniemi, Paavo Riekkinen, 1994; Xu et al., 2021). Several 

risk variants have been revealed in recent years in several GWA studies(Harold et al., 

n.d.; Lambert et al., 2013; Lee et al., 2011; Reitz et al., 2011). Besides, various studies 

have identified epistatic interactions(Combarros, van Duijn et al., 2009; Granados et 

al., 2013; Grunin et al., 2020; Hohman, Bush, Jiang, Brown-Gentry, Torstenson, 

Dudek, Mukherjee, Naj, Kunkle, Ritchie, Martin, Schellenberg, Mayeux, Farrer, 

Pericak-Vance, Haines, & Thornton-Wells, 2016; Meda et al., 2013; Zieselman et al., 

2014). However, only two-way interactions have been considered in previous studies. 

This study aims to detect the third-order interactions in LOAD by calculating the total 

information common to all three attributes but not present in any subset (3WII) in a 

case-control study design. We integrated the machine learning algorithms and entropy-

based 3-way interaction information method proposed by Fan et al. A large set of SNPs 

prioritized by PLINK-RF-RF analysis of the LOAD GWAS datasets are analyzed 

without mapping them to individual genes to reduce the bias. Then the significant SNP 

combinations are identified by using the entropy-based test statistics. These prioritized 

SNP combinations are proposed as potential early and differential diagnosis markers. 

Chapter 2 explains the Genome Wide Association Studies, epistasis, and methods for 

detecting epistasis. Machine learning, data mining, and entropy-based methods are 

explained in detail as we used these approaches in this study. Molecular etiology, AD 

risk factors, and epistasis in AD are also explained.  

Chapter 3 explains the way of obtaining data and methodology in detail. After we 

overview the methods, data acquisition is explained. Then, we explain data 

preprocessing, GWAS analysis, and SNP prioritization with Random Forest-Random 

Forest (RF-RF) method. Afterward, the entropy-based prioritization step is explained 

in detail. Subsequently, multiple testing comparisons, variants annotation, and 

functional enrichment analysis are explained.  

In Chapter 4, the results are presented and explained. This chapter explains variant 

prioritization by the LOAD-RF-RF model, three-way interaction information, and 

two-way mutual information gain and functional enrichment analysis of the prioritized 

variants.  

Chapter 5 discussed the study results and interpreted the importance of our integrated 

entropy-based approach for revealing the interactions among LOAD-associated 

variants.    
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CHAPTER 2 

2 LITERATURE  REVIEW  AND BACKGROUND  INFORMATION  

2.1 Single Nucleotide Variants 

A variation at a single position in DNA sequence among individuals is called a single 

nucleotide polymorphism (SNP). In order to classify a variation as an SNP, more than 

1% of the population must contain the alternative nucleotide at a particular position in 

their genome sequence(Single Nucleotide Polymorphism, n.d.). SNPs are not 

distributed across the genome homogenously. They occur in non-coding regions more 

frequently than in coding regions. While negative selection has globally reduced 

population differentiation in amino acid-altering mutations, particularly in disease-

related genes, positive selection has increased population differentiation in gene 

regions, particularly nonsynonymous and 5ô-UTR variants, resulting in regional 

adaptation of human populations(Barreiro et al., 2008). Besides, recombination rate 

can also explain a substantial fraction of the variability in the intensity of nucleotide 

polymorphism across the human genome (Nachman, 2001).  

There might be several different consequences depending on where SNPs are located. 

While SNPs in coding regions can cause monogenic disorders (Cordovado et al., 

2012), SNPs in non-coding regions can be an indication of a higher risk of cancer (G. 

Li et al., 2014) or may play a role in gene expression level alterations as an expression 

quantitative trait locus (eQTL) (Nicolae et al., 2010). Besides, SNPs can lead to 

differences in traits such as susceptibility to various diseases and physical features 

between individuals. They can also affect how humans respond to pathogens, 

chemicals, drugs, and vaccines. Even though many SNPs associated with diseases are 

considered to increase the risk of disease, a growing number of studies have reported 

SNPs to be protective, decreasing the risk of certain diseases (Cohen et al., 2005; 

Steinthorsdottir et al., 2014). 

2.2 Genome Wide Association Studies 

Genome-Wide Association Studies (GWAS) explore the statistical association of the 

SNPs in complex genetic disorders using high-dimensional datasets. These studies 

compare the frequency of genetic variations between case and control groups to 

determine the significantly more frequent genetic variations in people with the disease. 

These variations lead to the development of new methods to diagnose, treat and 

prevent the disease by identifying the loci that influence the disease predisposition. 
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They can also give direction to other applications such as reconstructing population 

history, ancestry determination, and population substructure.  

Sequencing the whole human genome as part of the Human Genome Project in the 

early 2000s and developing new analysis tools led to other projects that aimed to 

discover more about genomic variations, complex parts of the genome, and regulatory 

mechanisms. The International HapMap Project proceeded after the Human Genome 

Project intending to compare the genetic sequences of different individuals to identify 

chromosomal regions where genetic variants are shared. It allowed the spreading of 

GWAS as it led to the optimization of association analysis by representing the 

haplotype blocks.    

The first GWAS was published for age-related macular degeneration in 2005 (Tam et 

al., 2019). Afterward, a significant number of genomic regions have been identified 

for various common diseases such as type 2 diabetes mellitus, coronary artery disease, 

cancers, bipolar disorder, schizophrenia, and inflammatory bowel disease (De Lange 

et al., 2017; Z. Li et al., 2017; Mullins et al., n.d.; Nikpay et al., 2015; Sud et al., 2017; 

Zhao et al., 2017). The NHGRI-EBI GWAS Catalog, a publicly available resource of 

GWAS and their results, contains 71673 variant-trait associations from 3730 

publications as of September 2018 (Buniello et al., 2019).  

A typical GWAS is conducted by genotyping individuals using microarray or next-

generation sequencing (NGS) methods such as whole-exome sequencing (WES) or 

whole-genome sequencing (WGS). It can be designed as a case-control study when 

the trait of interest is dichotomous or with a quantitative study design when the 

measurements on the whole study sample when the trait is quantitative (Uffelmann et 

al., 2021).  

GWAS data is pre-processed before the association analysis through several quality 

control steps. Imputation of untyped variants using haplotype phasing and reference 

populations is performed, followed by the statistical test for association and optionally 

a meta-analysis. Later independent replications are determined, and the results are 

interpreted by multiple post-GWAS analysis steps (Figure 1). These standardized 

quality control and analysis protocols are required to rule out the possible biases and 

errors in each step.  

While GWAS results determine the statistical associations of variants and their role in 

the biological context, they can also be used for disease risk prediction, heritability, 

and the proportion of variation in the trait that can be explained by genetic variation in 

the population. Besides, the role of gene-gene and gene-environment interactions in 

complex traits has been represented in various studies (Fenger et al., 2019; Hohman et 

al., 2013). However, this univariate approach in GWAS studies ignores complex 

interactions such as SNP-SNP, gene-gene, or gene-environment interactions (Cordell, 

2009). 
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Figure 1 Overview of GWAS analysis steps a) Data can be collected from study cohorts, or 

available genetic and phenotypic information can be used from biobanks or repositories b)  

Microarrays or next generations sequencing methods (whole genome or whole exome 

sequencing) can be used in order to collect genotypic data c) Quality control can be performed 

at wet- laboratory or dry- laboratory stages (Clustering of individuals according to genetic 

substrata is demonstrated in the figure) d) Untyped genotypes can be imputed using 

information from matched reference populations from repositories such as 1000 Genomes 

Project or TopMed. e) Each variant can be tested for genetic association using a model such 

as additive, non-additive, linear, or logistic regression models. After correcting for 

confounders, including population strata, and controlling the multiple testing, the output is 

inspected for unusual patterns, and summary statistics are generated. f) Results from multiple 

smaller cohorts are combined using standardized statistical pipelines. g) Internal or external 

replication in an independent cohort can be used for replicating the results. h) Information 

from external resources can be used for in silico analysis of GWAS. Reprinted from Uffelmann 

et. al.   (Uffelmann et al., 2021) 
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2.3 Epistasis 

The additive effect of common variants associated with many complex diseases in 

GWA studies is relatively small, leading to a missing heritability phenomenon. 

Epistasis could partially explain the missing heritability in complex traits. Epistasis 

refers to non-additive interactions between a pair of loci or multiple loci contributing 

to a single phenotype (Carlborg & Haley, 2004) (Figure 2). Epistasis can be 

considered from two different perspectives, biological and statistical. While biological 

epistasis implies the interactions between biological components within gene 

regulatory networks and biochemical pathways, statistical epistasis implies the 

deviation from additive effects between factors in a model (Moore & Williams, 2005). 

It is difficult to make inferences about biological function and causation from any 

statistical result. Besides, correlation is not always an indicator of causality. Therefore,  

statistical epistasis may not indicate biological epistasis. Similarly, SNPs involved in 

epistatic interactions may have very low minor allele frequencies, which may lead to 

biological epistasis that does not imply statistical epistasis(Raghavan & Tosto, 2017). 

Both have their challenges and benefits. 

 

Figure 2 Representation of biological epistasis  

Experiments to determine biological epistasis are costly, and interpretation of 

discovered interactions is challenging. However, discovering epistatic interactions at 

the biological level provides important functional and pathway information. Some 

studies demonstrated the proportion of heritability explained by biological epistasis in 

model organisms. However, due to the complex parameters such as common and rare 

variants, structural variations, and environmental effects that impact the susceptibility 

of complex traits, it is hard to estimate the contribution of biologic epistasis to 

heritability(Gusareva, Kristel, et al., 2014).  

The major limitation of the statistical epistasis is the high rates of type 1 and type 2 

errors due to the extensive multiple comparisons. An exhaustive search for detecting 

these interactions demands a high cost of computational resources and sufficiently 

large sample sizes. While these limitations avoid producing replicable results, 

statistical epistasis can still give insight into unknown associations by revealing the 
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non-additive effects of multiple genetic factors(M. T. W. Ebbert, Ridge, & Kauwe, 

2015). Several methods have been developed for detecting statistical epistasis in 

different studies, as described in this section. 

2.3.1 Methods for Detecting Epistasis 

The methods developed to capture epistasis apply two major approaches: hypothesis-

free and hypothesis-driven, depending on whether all SNPs or subset of SNPs are 

examined for interactions that contribute to the corresponding trait. Wei et al. grouped 

the methods used in human complex traits in the review they published in 2014(Wei 

et al., 2014) (Figure 3). 

 

Figure 3 The different types of methods in two major groups based on single-nucleotide-based 

single-nucleotide polymorphisms (SNPs) and groups of SNPs are outlined. SNP-based 

methods can be further subdivided based on the type of data analysis (shown in yellow, orange, 

and red). LD, linkage disequilibrium. Reprinted from Wei et al. (Wei et al., 2014). 

Regression-based methods are traditional methods used for assessing the SNP 

interactions in disease or quantitative traits. In this approach, Fischer's saturated and 

reduced SNP genotype models can be compared for testing the interactions 

(Cockerham & Zeng, 1996; Cordell, 2002, 2009; J. K. Hu et al., 2014; Ueki & 

Cordell,2012). In addition, regression models are also used to examine the subset of 
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SNP pairs, which are the output of the approximate interaction tests to avoid false 

positive and redundant signals. Although the advantage of modern computing 

infrastructure and technologies has been taken to reduce the computational cost of 

using these methods, genome-wide search requires large sample sizes due to low 

power. Focusing on SNPs whose marginal effects have been identified in GWAS 

studies will partially eliminate the problem of low power; however, variants that only 

affect the phenotype by interaction will be ignored. 

Another approach used to define epistasis is LD-based methods. In these methods, the 

difference between the interactions between loci in the patient and control groups is 

tested by using joint genotype frequencies. Using chi-square statistics with one degree 

of freedom with these methods allows us to get faster results than regression-based 

methods using four degrees of freedom. Besides, SNP interactions between haplotypes 

can be detected by haplotype-based methods adapted from the LD-based statistics. 

However, these methods may ignore intra-locus interactions, leading to the effect of 

unobserved rare variants being overlooked and may also cause high false-positive 

levels in cases where SNPs may show high correlation or both SNPs have a high 

marginal effect. 

On the other hand, Bayesian methods provide a flexible model and stochastic search 

for epistasis based on the idea that the difference between genotype frequency 

distributions between loci will indicate significant interactions. In particular, Bayesian 

model averaging and hybrid Bayesian (i.e., a combination of Bayesian framework and 

generalized linear model) approaches improve epistasis detection. 

Data filtering methods are based on the idea of testing the interactions of a set of 

selected SNPs relying on existing biological information, statistical properties, or fast 

algorithms. These methods have higher power than exhaustive searches since they can 

be applied faster, require fewer multiple tests, and functional interpretation is less 

complicated. However, limitations in algorithms and existing knowledge should be 

considered when applying these methods to avoid potential bias. 

It is also possible to test interactions between SNPs grouped on genes or functional 

modules. While this approach increases the capture power of interactions, it also 

reduces the burden of multiple testing. 

2.3.2 Machine Learning and Data Mining Methods for Detecting Epistasis 

Machine learning and data mining methods also capture hidden, novel, and significant 

patterns through GWAS datasets(Pirooznia M, Seifuddin F, Judy J, 2012). Besides, 

the high computational and statistical cost of exhaustive search could be reduced by 

these approaches' classifiers used for data reduction and feature selection.  

Various algorithms have varying prediction accuracies, such as decision trees, support 

vector machines, and Bayesian and neural networks. Random forests (RF) are 

collections of decision trees that build an ensemble model for classification and 

regression. RF implementation in genomic analysis has become popular within data-

mining techniques that can reveal many predictor variables and generate assembled 
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models with interactions (Botta et al., 2014; Sinoquet, 2018). Moreover, RF analysis 

produces variable importance measures that are useful to rank the predictor variables 

for the prioritization of SNPs.  

Nevertheless, since the interactions are not tested saliently, detecting high-level 

interactions is challenging for data mining and machine learning methods. In addition, 

these methods also require new approaches for detecting genome-wide higher-order 

interactions due to limitations such as high computational and multiple testing 

requirements, along with insufficient sample sizes. 

2.3.3 Entropy-Based Methods for Detecting Epistasis 

Entropy-based methods analyze nonlinear gene-gene and gene-environment 

interactions in complex diseases (Dong et al., 2008). Shannon entropy is a nonlinear 

function that measures the uncertainty of random variables(Shannon, 1949). In other 

words, entropy is the average level of uncertainty associated with a random variable. 

The entropy of a discrete random variable X with probability mass function p(x) is 

defined as: 

Ὄ(ὢ)=īὉ[log(ὖ(ὢ)]= В ÐØÌÏÇÐØ     (Eq 1)  

Methods based on Shannon entropy measure the strength of prediction of one or 

combination of variables in explaining an event. Different combinations of variables 

are said to interact when the power of the joint prediction ability of this combination 

in describing an event is larger than the sum of the individual prediction abilities of 

these variables(Cover & Thomas, 1991).  

In a case-control study design disease status of an individual is denoted by D 

(control=0; case=1), and three di-allelic SNPs are denoted by X, Y, and Z 

(reference=0, heterozygous=1, homozygous=2). The entropy of a marker X and the 

combined entropy of two markers X and Y in the general population are defined by 

the following equations respectively: 

    H(X)= В ὖὋ ÌÏÇ 0Ὃ  

H(X,Y)= В В ὖὋ  ȟὋ ÌÏÇ 0Ὃ ȟὋ   (Eq 2) 

Conditional entropies in the affected population are defined by:  

H(X\D)= В ὖὋ Ὀ͵ ρÌÏÇ 0Ὃ Ὀ͵ ρ  

H(X,Y\D)= В В ὖὋ  ȟὋ Ὀ͵ ρÌÏÇ 0Ὃ ȟὋ Ὀ͵ ρ  (Eq 3) 

The combined entropy of three markers in general and the affected population are 

defined similarly.  
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The interaction between two markers is measured by mutual information, which is 

defined in the general and affected population (Cover & Thomas, 1991; Shannon, 

1949): 

    I(X,Y)=H(X)+H(Y) -H(X,Y) 

   I(X,Y \D)=H(X\D)+H(Y\D)-H(X,Y\D)   (Eq 4) 

Different study designs have suggested various entropy-based approaches for 

pairwise, third-order, and high-order interactions, such as family-based, case only, and 

case-control. The interaction between two markers is measured by mutual information, 

and information gain, defined as the difference between the mutual information in case 

and control groups, is used to measure pairwise interactions between two markers. 

Three-way interaction information (3WII) and total correlation information are two 

quantities used for assessing third-order interactions. 3WII describes the amount of 

information common to all variables not present in any other subset alone (Figure 4). 

In contrast, total correlation information (TCI) reveals the total dependence among the 

attributes. Three-way interaction information is defined in the general population as: 

 I(X,Y,Z)=-H(X)-H(Y)-H(Z)+H(X,Y)+H(X,Z)+H(Y,Z)-H(X,Y,Z)    (Eq 5) 

 

Figure 4 Schematic representation of entropy and entropy-based concepts a) Entropy of a 

random variable X (Eq 1). b) Joint entropy of two random variables X and Y (Eq 4). c) 

Conditional entropy of X given the variable Y (Eq 3). d) Mutual information of the variables 

X and Y. e) Three-way interaction information of three variables X, Y, and Z (Eq 5). (Adapted 

from Ferrario P.G and König I.R (Ferrario & König, 2018) 
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Nevertheless, different methods have been introduced based on these measurements 

to assess the pairwise and third-order interactions. For instance, Fan. et al. proposed 

an information gain approach based on mutual information, an entropy-based function 

that measures the interaction between markers (Fan, R, Zhong, M, Wang, 2011). They 

also developed one-dimensional test statistics to analyze sparse data for investigating 

2-way, 3-way, and K-way interactions in case-control settings and applied them to the 

bladder cancer dataset.  

The difference between the mutual information in the affected population and the 

general population is defined as information gain: 

IG(X,Y\D)=I(X,Y\D)-I(X,Y)      (Eq 6) 

Interaction information gain of markers X, Y, and Z are defined similarly: 

IIG(X,Y,Z\D)=I(X,Y,Z\D)-I(X,Y,Z)     (Eq 7) 

A test statistic is constructed to detect two-way or three-way interactions. Information 

gain-based test statistic (TIG) is calculated by dividing IG or IIG by a specific 

normalization factor of variance . The resulting test statistics is centrally chi-square 

distributed with 1 degree of freedom under the null hypothesis that the markers are 

independent of the disease. 

IGENT, introduced by Kwon et al., uses information gain to detect gene-gene 

interactions associated with the phenotype (Kwon et al., 2014). They used the 

difference between the entropy of the phenotype and the conditional entropy of the 

phenotype, given two genetic variants (H(P)-H(P|(Gi, Gj))) as information gain 

definition. This equality provides information about the association of the genotype 

interaction with the phenotype.  

Su et al. proposed the Interaction Gain method similar to Fan et al.ôs approach, defined 

as the difference between the conditional mutual information of pair of variants given 

the phenotype and the mutual information of the same pair (I(Gi, Gj|P)- I(Gi, Gj)). They 

also proposed a parallelization method that speeds up the interaction testing procedure.  

On the other hand, unlike Fan et al., Chanda et al. suggested an approach for 3WII in 

which they used the phenotype as a third variable alongside two genetic 

variants(Chanda et al., 2008, 2009). While with Fan et al.ôs approach, we can assess 

the correlation between variant interactions and phenotype, Chanda et al.'s method 

assess the interaction between variants and phenotype.    

Then, Hu et al. suggested a novel approach for measuring pure three-way interactions 

after removing the one-way and two-way effects (T. Hu, Chen, Kiralis, Collins, et al., 

2013b). However, they also used Chanda et al.ôs method as a definition of information 

gain in which they also used the phenotype as a parameter (IG=I(Gi, Gj, P)-I(Gi, P)-

I(Gj-P)).  
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Additionally, entropy-based methods have been performed to demonstrate the 

statistical interactions among the output SNPs of machine learning models. In 2014, 

Zieselman et al. proposed an approach that combines machine learning analysis of 

gene-gene interactions with large-scale functional genomics data for assessing 

biological relationships (Zieselman et al., 2014). This approach uses SNPs mapped to 

genes for machine learning analysis. The study was designed in two phases. In the first 

phase, QMDR is used as a feature selection method. Then, selected genes were used 

as an input for functional genomics analysis. Three-way and four-way interactions 

between genes in significantly enriched pathways were identified by applying QMDR 

analysis again. Finally, gene-gene interactions were assessed by performing entropy-

based analyses using the visualization of the statistical epistasis networks (ViSEN) 

software package(T. Hu, Chen, Kiralis, & Moore, 2013). A statistically significant 

synergistic interaction among two SNPs located in the intergenic region of an olfactory 

gene cluster was found in this study. Similarly, in 2018 Dorani et al. implemented 

random forests (RF) and gradient boosting machine (GBM) algorithms to reveal the 

SNPs contributing to the colorectal cancer risk. Afterward, significant two-way and 

three-way interactions were determined for the SNPs identified with the RF and GBM 

algorithms (Dorani et al., 2018). 

2.4 Alzheimerôs Disease 

More than 55 million people live with dementia worldwide, with over 60% living in 

low- and middle-income countries. This number is projected to triple by 2050 as the 

incidence and prevalence of dementia increase dramatically with age, and the elder 

people population is increasing worldwide.  

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that is the most 

common cause of late-onset dementia. It is estimated that AD may contribute to 60-

70% of the cases. AD is characterized by cognitive impairment; however, a significant 

heterogeneity can be observed in clinical progression. Besides, the primary 

pathological signs of AD are amyloid-beta (Aɓ) plaques, neurofibrillary tangles, and 

neuronal loss. It is depicted as early-onset (EOAD) and late-onset (LOAD) based on 

the age of onset, and LOAD constitutes approximately 95% of cases. While EOAD is 

more likely familial and inherited in a Mendelian pattern and is diagnosed by the 

formation of AD symptoms before age 65 (Wu et al., 2022), LOAD emerges with 

cognitive decline symptoms such as memory impairment and loss of intellectual 

abilities after the age of 65. Besides, LOAD presents complex genetic inheritance, 

where interactions of multiple genetic variations and environmental factors affect the 

phenotype of patients (Reitz & Mayeux, 2014).  

2.4.1 Environmental Risk Factors 

The association between modifiable risk factors, such as medical comorbidities, 

lifestyle choices, and the reduced risk for cognitive decline is strongly evident from 

the population-based perspective (Baumgart et al., n.d.; Norton et al., 2014). There is 

increasing evidence that exposure to aluminum and air pollution may play a role in the 

development of AD (K.-H. Chang et al., n.d.; Flaten, n.d.; Oudin et al., n.d.; Rondeau 

et al., 2009). Association between cardiovascular risk factors, diabetes mellitus, 
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midlife hypertension, midlife obesity, and AD have been demonstrated in various 

studies(Joas et al., 2012; Norton et al., 2014; Ritchie et al., n.d.). Other AD-related 

factors include sleep disturbances, traumatic brain injury and other neurodegenerative 

disorders, late-life depression, education attainment, physical activity, and social 

engagement. However, links between many of these factors and the specific 

pathobiology of AD are not well established (Rabinovici, 2019).   

2.4.2 Genetic Risk Factors 

The heritability of LOAD is estimated to be 60 to 80% (Gatz et al., 2006) and studies 

on its molecular mechanisms are still ongoing. In early studies, APOE4 was 

established as a genetic risk factor for LOAD (Corder et al., 1993; Johanna Kuusisto, 

Keijo Koivisto, Kari Kervinen, Leena Mykkanen, Eeva-Liisa Helkala, Matti 

Vanhanen, Tuomo Hanninen, Kalevi Py6rala, Y Antero Kesaniemi, Paavo Riekkinen, 

1994; Xu et al., 2021). While ὑ4, one of the three common alleles of APOE4, is 

associated with an increased risk of developing AD, the genotypes ắ2/ ắ2 and ắ2/ ắ3 of 

the other two common alleles are found to be protective. However, since the ắ4 allele 

represents a risk factor rather than a deterministic gene, APOE4 genotyping is not 

currently recommended in the clinical evaluation of patients with suspected AD 

(Knopman et al., 2001).  

Besides, there are more than 20 LOAD candidate loci on genes such as ABCA7, BIN1, 

CD33, CLU, CR1, CD2AP, EPHA1, MS4A6AïMS4A4E, and PICALM identified in 

recent years in several GWA studies. In 2013, 11 new GWAS loci, 19 in total, were 

identified through a meta-analysis of 74,046 individuals within the scope of the 

International Genomics of Alzheimer's Project (I-GAP) (Lambert et al., 2013). In 

2019, in another large-scale meta-analysis study, 29 associated loci, 16 of which 

overlapped with the loci identified in the I-GAP study, were identified, and nine novel 

significantly associated loci in this study were mapped to ADAMTS4, HESX1, 

CLNK, CNTNAP2, ADAM10, APH1B, KAT8, ALPK2, and AC074212.3 genes 

(Jansen et al., 2019). Another 13 new AD candidate loci were identified by 

Prokopenko et.al. in 2021(Prokopenko et al., 2021). Similarly, in another recent study, 

four new variants near APP, CHRNE, PRKD3/NDUFAF7, PLCG2, and two exonic 

variants in the SHARPIN gene were identified as associated with AD risk(Rojas et al., 

n.d.). Nonetheless, the functional consequences of all LOAD risk genes have not been 

fully discovered. Amyloid, inflammation/immune system, lipid transport and 

metabolism, synaptic cell functioning/endocytosis, and tau protein binding are the 

primary pathways clustered by many AD-associated genes.  

2.4.3 Epistasis in Alzheimerôs Disease  

GWA studies identify common variants that increase the disease risk. However, genes 

significantly associated with AD by GWA studies can explain only 25 percent of the 

phenotypic variance (Ridge et al., 2013). The extensive usage of next-generation 

sequencing (NGS) technologies give rise to studies identifying rare variants associated 

with AD (Prokopenko et al., 2021). Besides, polygenic risk scores are computed to 

predict risk based on the risk variant profile per individual. Although predictive power 

is not extremely high with current knowledge of heritability, it is a promising approach 
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for identifying subjects at high risk for developing AD and diagnosing timely those 

affected by the disease.   

Epistasis is the other component that can elucidate the missing heritability. Various 

studies have identified several epistatic interactions in the last two decades. The first 

two epistatic interactions were reported between IL6 and IL10 and TF and HFE genes 

in the early 2000s (Infante et al., 2010; Warden & Smith, 2004), and both these 

interactions were replicated in independent samples (Combarros, Van Duijn, et al., 

2009; Kauwe et al., 2010). In 2014, Ebbert et al. identified two significant interactions 

between CLU-MS4A4E and CD33-MS4A4E genes, and only CLU-MS4A4E was 

replicated by an independent sample group (M. T. Ebbert et al., 2016; M. T. W. Ebbert, 

Ridge, Wilson, et al., 2015). Some other studies focused on epistatic interactions 

associated with the diseaseôs endophenotypes, such as amyloid deposition, brain 

atrophy, and grey matter density (Hohman et al., 2013; Koran et al., 2014; Zieselman 

et al., 2014). The replication of   Gusareva et al. identified an interaction between 

KHDRBS2 and CRYL1 using a thorough, genome-wide screening approach, and 

replicable epistasis associated with AD was identified using a hypothesis-free 

screening approach for the first time with this study(Gusareva, Carrasquillo, et al., 

2014). These studies have revealed interactions between genes previously known to 

be associated with AD and between genes not associated with the disease before and 

do not affect their own.
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CHAPTER 3 

3 MATERIALS  AND METHODS 

We obtained the SNPs used in this study from GWAS datasets provided by ADNI, 

GenADA, and NCRAD initiatives. Firstly, quality control was conducted in 

genotyping the datasets, and a filtering procedure was applied. After performing 

PLINK analysis to find out the LOAD-associated SNPs from each dataset, associated 

SNPs were prioritized by the RF-RF approach (performed by Onur Erdoĵan). Then 

triplets with significant 3-way interactions were obtained by performing an entropy-

based prioritization step. Subsequently, multiple testing comparisons were performed, 

and then obtained triplets were classified as óriskô or óprotectiveô in terms of LOAD 

by checking the value of information gained between the affected and general 

population. Lastly, variants of the obtained triplets were annotated, and functional 

enrichment analyses were performed for those variants (Figure 5). 

 

Figure 5 Overview of the Methodology 
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3.1 Data 

High throughput sequencing technologies quickly scan entire genomes of large 

numbers of subjects to find genetic variants associated with a trait or disease. This 

advantage of HTS enables the design of large-scale research studies and generates 

more comprehensive information about the genomic signatures of various complex 

diseases.  

Alzheimerôs Disease Neuroimaging Initiative (ADNI), GenADA, and the National 

Centralized Repository for Alzheimerôs Disease and Related Dementias (NCRAD) are 

three different initiatives that collect data for studies focusing on the etiology, early 

detection, disease progression, and therapeutic development of AD. This study obtains 

three high-dimensional datasets from these initiatives via dbGaP control access 

(Filippini et al., 2009; H. Li et al., 2008). Affymetrix Mapping250K_Nsp and 

Mapping250K_Sty with 620901 SNPs Illumina Human610_Quadv1_B 500K with 

410969 SNPs and Illumina Human610-Quad BeadChip with 590247 SNPs platforms 

are used by these initiatives, respectively. 210 controls and 344 cases for ADNI, 777 

controls and 798 cases for GenADA, 1310 controls and 1289 cases for NCRAD are 

genotyped using these platforms (Table 1). 

Table 1 Overview of data used in this study 

 
Number of 

Cases 

Number of 

Controls 

GenADA 

(phs000168.v1.p1) 
798 777 

ADNI   

(adni-info.org) 

 

344 210 

NCRAD 

(phs000219.v1.p1) 
1289 1310 

3.1.1 Data Preprocessing 

Irrelevant and redundant information, or noisy and unreliable data, can produce 

misleading results. In order to ensure or enhance performance, the data preprocessing 

step, which comprises manipulation and dropping of data operations, is performed 

before modeling. Accordingly, quality control was conducted in terms of genotyping 

in the datasets used within the scope of this study. Autosomal SNPs with Hardy 

Weinberg Equilibrium (HWE) <5e-07 are filtered out with MAF<0.05 and call 

rate<0.99. The remaining SNPs with a call rate <0.95 and no valid map location were 

also excluded from the genotyping data. 
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3.2 PLINK  Analysis 

GWAS analysis is done for the initial dimension reduction to discover statistically 

significant SNPs for building a LOAD model from each different dataset. PLINK is 

an open-source C/C++ tool developed for GWAS. PLINK enables rapid manipulation 

and analysis of datasets consisting of up to millions of markers genotyped for 

thousands of individuals (C. C. Chang et al., 2015; Purcell et al., 2007). In order to 

perform a fundamental case/control association analysis for a disease trait, allele 

frequencies between cases and controls are compared using a chi-square test.  

In this study, PLINK analysis is performed using the ñ--assocò function for identifying 

the independent statistical significance of variants related to the LOAD, and SNPs 

were filtered using a 0.05 basic allelic test chi-square p-value threshold. Multiple 

testing correction was not considered since a further SNP prioritization analysis would 

be performed using machine learning algorithms. PLINK results were used for 

filtering and reducing redundant SNPs that were not directly related to the disease. 

3.3 SNP Prioritization  with RF-RF Approach 

RFs are collections of decision trees that build an ensemble model for classification 

and regression(Breiman, 2001). Random forests are constituted by generating random 

vectors with the same distribution that govern each tree's growth in the ensemble. After 

generating many trees, the modelôs prediction is determined by voting for the most 

popular class among those trees. In this process, the importance of a feature could be 

calculated according to its ability to improve the purity of the node by each tree and 

then averaged for all trees. In other words, the features that improve the purity lead to 

more significant information gain.  

Accordingly, after filtering with PLINK, SNPs found to be significantly associated 

with LOAD were used as input for multistep RF modeling. We performed the initial 

RF for dimension reduction using feature importance and the second RF step as the 

modeling algorithm. RF was implemented using the RANGER package in R (Breiman, 

2001).  

Overfitting occurs when a model fits precisely against its training data and cannot 

perform accurately for unseen data. A 5-fold cross-validation (CV) resampling method 

was applied to avoid overfitting by splitting data into 5 subsets. Then the model was 

trained on four subsets and tested on the remaining one. This process was performed 

iteratively until each group was held as the test group, then the average of the models 

was used as the resulting model. 

In the modeling phase, tuning was performed on ñmtryò, which refers to the number 

of variables to split at in each node possibly, and ñntreeò, which indicates  the number 

of trees. Ntree parameter values up to 1000 were used for all datasets and ñmtryò values 

were selected to create a manual grid. For GenADA, the model was tuned with mtry 

values 2, 5, 10, 20, 41, 83, 166. The mtry parameter values 2, 4, 9, 19, 39, 78, 157 

were used for the ADNI dataset, and  5, 10, 20, 41, 83, 166, and 333 were used for the 

NCRAD dataset for RF model tuning. This grid was created with the SNP number's 
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square root and the square root's fold. RF tuning split rule was selected to be the "gini 

index." Each decision tree in the forest was created as a tree of maximum size. 

Importance and importance p-values were also calculated, and after the first RF, 

features with an importance value smaller than 0.05 were used for the modeling step. 

This multimodal approach was implemented for each dataset for prioritization. 

3.4  Entropy-Based Prioritization 

We aim to minimize the model by reducing the level of complex interactions revealed 

by LOAD-RF-RF. We focused on non-linear three-way interactions in this study. As 

mentioned above, several entropy-based approaches were suggested for pairwise, 

third-order, and high-order interactions for different study designs, such as family-

based, case-only, and case-control. Total correlation information (TCI) and 3WII are 

the two quantities used for detecting three-way interactions. While TCI refers to the 

amount of information common to all three attributes, 3WII implies the total amount 

of information common to all three attributes but not present in any subset, which is 

in line with the purpose of this study. These definitions have been modified differently 

by different groups. Fan et al. express the effects of interaction on a phenotype by the 

difference of those interactions of variants between case and control groups (Eq 8). 

IIG=3WII(X,Y,Z) cases-3WII(X,Y,Z)    (Eq 8) 

Chanda et al. used the phenotype as the third variable to explain the TCI as óthe 

information that cannot be obtained without observing all variables and the phenotype 

at the same timeô. In order to avoid false positives, Hu et al. proposed another 

information gain model based on Chanda et al.ôs, which subtracts all lower order 

effects from the total IG, including the main effects of the three attributes and all 

pairwise synergies between them (T. Hu, Chen, Kiralis, Collins, et al., 2013b) (Eq 9). 

IGstrict(X,Y,Z,P)=I(X,Y,Z,P)-max{I(X,Y,P),0}-max{I(X,Z,P),0}-max{I(Y,Z,P),0}-

I(X,P)-I(Y,P)-I(Z,P)         (Eq 9) 

Nevertheless, Chanda et al.ôs IG definition and the other methods developed based on 

this definition assume that variants interact with the phenotype and interact with 

variants among themselves. In this study, our goal is to demonstrate the effect of the 

interaction of genetic variants on LOAD. Therefore we used the IG definition of Fan 

et al. to assess the effect of three-way interactions. Individual steps of the workflow 

followed are listed below: 

1- The SNPs prioritized by the LOAD-RF-RF model are filtered from BED files 

and divided into case-control groups using the following P-LINK commands. 

Firstly bed files were converted to ped files: 

.\plink ïbfile bedFileName ïrecode12 ïtab ïout outPutPedFileName 

2- The SNPs prioritized by the LOAD-RF-RF model are filtered from generated 

ped files: 
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.\plink --file outPutPedFileName --out filteredSNPs --recode12 --extract 

listOfPrioritizedSNPs 

3- Filtered SNP ped files divided into case and control groups: 

.\plink --file filteredSNPs --filter-cases --recode12 --out caseSNPs 

.\plink --file filteredSNPs --filter-controls --recode12 --out controlSNPs 

4- In the last step of PLINK analysis, members belonging to each genotype are 

listed for case and control groups separately: 

.\plink --file caseSNPs --list --out caseSNPsList 

.\plink --file controlSNPs --list ïout controlSNPsList 

5- The filtered SNPs' genotype frequencies are calculated using a custom Python 

script (Figure6; Appendix A.1.). As reviewed in the previous section, these 

frequencies are used as parameters for 3-way interaction information gain and 

two-way mutual information gain functions for identifying SNPs that explain 

the susceptibility of LOAD. These two functions are implemented using 

custom R scripts adapted from Fan R. (Ruzong Fan, n.d.)  (Appendix A.2. , 

A.3 and A.4).  

IIG (Eq 7) values, the difference of 3WII of variants between case and control groups, 

for each triplet were calculated by the implementation of 3-way interaction 

information gain function. Then, we calculated the test statistic by dividing the  IIG of 

each dataset's prioritized SNPs by a specific normalization factor of variance .    The 

resulting test statistics is centrally chi-square distributed with 1 degree of freedom 

under the null hypothesis that the markers are independent of the disease as mentioned 

in Literature Review section. Significantly different interactions are identified by 

using p-values assigned in these test statistics.  

Then, two-way mutual information gain test statistics are calculated for the triplets' 

variants, which are found to have significant interactions in the previous step. Since 

we look for the interactions common to all three variants that cannot be explained by 

two-way mutual information gain, the triplets with SNP combinations with significant 

two-way mutual information gain are excluded. 

3.5 Multiple  Test Correction 

In cases where we perform multiple simultaneous statistical tests, we encounter 

multiple comparison problems. As the number of tests applied increases, the 

probability of obtaining false-positive results also increases. Validation tests based on 

multiple testing corrections and resampling techniques such as permutation-based tests 

have been performed to counteract the multiple comparisons problem. Multiple testing 

correction techniques such as Bonferroni (Haynes, 2013) and The Benjamini and 

Hochberg (B&H) (Hochberg, 1995)  corrections make the statistical tests more 

stringent by adjusting the p-values. The total number of observations in a population 
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sample is resampled to build an empirical estimate of the null distribution from which 

the test statistic has been drawn by performing the permutation test (Belmonte & 

Yurgelun-Todd, 2001).  

#This function remove the family IDs and recode the genotypes in case control genotyping files 

 

function convertGtypeCoding(SNP list file path): 

    open SNP file 

    read SNP file line by line and generate a SNP list 

    for the element in SNP list 

        Remove the familiy IDs from the element 

    Then convert the genotype values 

    for the element in SNP list 

        if genotype=='11' 

            genotype='0' 

        if genotype='12' or '21'  

            genotype='1' 

        if genotype'22'  

            genotype='2' 

    return SNP List 

 

#This function generates a csv file with frequencies of triplets or pairs.  

function convertgtypeII(SNP List,interactionType (3 way or 2 way),outputPath (path for the 

output)): 

    if interactionType is " 3WII"  

        for i is 0 to (length of SNP List)-11 increase by 4 

            for j is i+4 to (length of SNP List)-7 increase by 4 

 for k is j+4 (length of SNP List)-3 increase by 4 

    for l in i to i+4        

                        for m is j to j+4 

                            for n is k to k+4 

  if the remainder is not equal to 3 for l/4, m/4 and n/4 

      Generate sets of individuals for each three SNPs at three genotype levels 

      Intersect those sets to calculate the frequency of the relevant triplet 

      Assign this frequency to the relevant column 

     if the remainder is equal to 3 for l/4 

        Assing the name of the SNPs to the relevant columns 

     else 

        for j is 0 to (length of SNP List)-7 increase by 4 

            for k is j+4 to (length of SNP List)-3 increase by 4        

                for m is j to j+4: 

                    for n is k to k+4: 

                        if the remainder is not equal to 3 for m/4 and n/4 

                            Generate sets of individuals for each two SNPs at two genotype levels 

             Intersect those sets to calculate the frequency of the relevant pairs 

                            Assign this frequency to the relevant column 

                if the remainder is 3 for m/4: 

                    Assing the name of the SNPs to the relevant columns 

    Save the resulting dataframe to a CSV file 

    Return 

Figure 6 Pseudocode of the algorithm developed for genotype frequency calculation 
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This study validates significant interactions for multiple comparisons using 

permutation testing (Camargo et al., 2008) by performing the following steps:  

1. Disease status labels are randomly shuffled 

2. Information gain-based test statistic is calculated in each iteration for 

performing 1000-fold permutation testing for GenADA and ADNI datasets. 

10000-fold permutation testing is performed for the NCRAD dataset to 

accommodate prioritized SNPs and triplets, which had more significant triplets 

than the other datasets.  

3. Then the ratio of test statistics greater than the observed test statistic is 

calculated to assign a p-value to the permutation testing (Appendix A.5).  

Triplets with a p-value greater than 0.05 and 0.01 are filtered out for GenADA, ADNI, 

and NCRAD. As the variants are previously prioritized by the multistep random forest 

model, revealing the interactions, we defined the p-value thresholds by considering the 

Type II errors more than Type I errors. Besides, we adjusted different thresholds based 

on the number of triplets in each dataset separately.  

3.6 Determining Risk and Protective Variants for LOAD 

As described above, information gain is the difference between the affected and the 

general populations' mutual information. If the disease is not associated with the 

markers, the information gain equals 0. If the mutual information in the affected 

population is greater than the general population, information gain is greater than zero; 

otherwise, it is smaller than zero. Accordingly, we checked the triplets' mutual 

information values, which show significantly different three-way interactions. Then 

we identified the triplets with positive information gain value as óRisk Variantsô and 

the triplets with negative information gain value as óProtective Variantsô.   

3.7 Variant Annotation 

The process of assigning functional information to variants is called variant 

annotation. This information could involve sequence conservation measures, 

predictions about a variant's effect on protein structure and function, and genomic 

mapping. SNPNexus (Chelala et al., 2009; Dayem Ullah et al., 2012, 2013, 2018)  and 

SNiPA (Arnold et al., 2015) tools have been used to annotate the variants in the filtered 

triplets.  

Genomic mapping, variant annotation, gene/protein consequences, and 

phenotype/disease association information have been obtained from these tools. We 

selected the GRCh37 human reference genome assembly for both tools for our query. 

Gene/protein consequences were obtained from NCBI RefSeq (Pruitt et al., 2014) and  

Ensembl (Hubbard et al., 2007) datasets in the SNPNexus tool. Ensembl was selected 

in the SNiPA tool for the same purpose. SNiPA linkage disequilibrium data and allele 

frequencies were computed for 1000 Genomes Phase 3 v5 dataset in the European 
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population, and we obtained the Non-Finnish European gnomAD frequencies from 

SNPNexus.   

While phenotype/disease associations were obtained from the Genetic Association of 

Complex Diseases and Disorders (GAD) and ClinVar databases in SNPNexus, this 

information was obtained from OMIM, Orphanet, NHGRI GWAS Catalog, HGMD, 

dbGap, and ClinVar datasets.  

3.8 Functional Enrichment 

Functional enrichment analysis was performed for the triplets' variants with significant 

three-way interactions. Firstly, we collected the triplets with all variants mapped to a 

gene. Then we queried those triple genes separately in the Reactome database, open-

source, open access, manually curated, and peer-reviewed pathway database (Fabregat 

et al., 2018) to determine if all three genes are found in pathways associated with AD.    

Then, GO Molecular Function, GO Cellular Component, GO Biological Process, and 

Reactome pathways are used using the g: GOSt component of the g: Profiler tool 

(Raudvere et al., 2019) for the variants reported in each triplet for all datasets. All 

analyses have been done with default attributions with a significance threshold of 0.05. 

The p-value of the enrichment of pathways has been computed using Fisherôs exact 

test, and the Bonferroni correction method has been used for multiple testing 

corrections. 

Then, EnrichmentMap (Merico et al., n.d.), a plugin for the Cytoscape tool (P. 

Shannon et al., n.d.), has been used to create networks from Gene Ontology 

annotations and Reactome pathways in order to derive overrepresented functional 

groups from functional annotation. All analyses have been done with a p-value of 0.05, 

FDR q-value cutoff of 0.01, and edge similarity cutoff of 0.3(Jaccard metric). 
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CHAPTER 4 

4 RESULTS 

This study used an entropy-based approach to detect the third-order interactions in 

PLINK-RF-RF models from three different LOAD datasets. Firstly, LOAD-associated 

variants were determined by performing a PLINK analysis in three different datasets. 

Then a two-step RF-RF model is conducted for variant prioritization. Variants 

obtained in this analysis (performed by Onur Erdoĵan) were used in further analysis. 

32 SNPs found to be associated with LOAD for the ADNI dataset, 36 SNPs and 218 

SNPs for GenADA and NCRAD datasets, respectively, were used to examine the 

three-way interactions related to the LOAD. Firstly, a three-way interaction 

information analysis was performed for these variants to determine significant three-

way interactions. Afterward, a two-way mutual information analysis was done. Then, 

triplets involving variant pairs with significant two-way interactions were filtered out 

since we focused on the information common to all three attributes that the two-way 

mutual information cannot explain. Multiple testing correction was applied to validate 

the significant three-way interactions. Subsequently, the selected triplets are examined 

based on the value of information gained for determining the risk and protective 

triplets.  

The variants in triplets with significant three-way interactions and all of which were 

mapped to a gene, were queried in the Reactome database to determine if all three 

genes are found in pathways associated with AD. In the last step, Functional 

enrichment analysis was performed with overlapped genes, nearest downstream genes, 

and nearest upstream genes of all variants in all datasets.  

Among SNPs prioritized by 3WII, four out of 19 SNPs from GenADA, one out of 27 

from ADNI, and four out of 106 NCRAD are mapped to genes directly associated with 

Alzheimerôs Disease. 

4.1 Variants Associated with LOAD 

After filtering out the SNPs that failed the quality control, PLINK association analysis 

was performed for each controlled accessed GWAS dataset. Significance values were 

calculated based on comparing allele frequencies between cases and controls. 7639 

SNPs for ADNI, 3767 SNPs for GenADA, and 16404 SNPs for NCRAD with p-values 

smaller than 0.01 selected. We found only one common SNP for these datasets, 18 

common SNPs for only NCRAD and GenADA, 206 common SNPs for only NCRAD 

and ADNI, and nine common SNPs for only ADNI and GenADA (Figure 7). 
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Figure 7 Venn Diagram for Number of Filtered SNPs by GWAS Analysis 

4.2 SNP Prioritization by LOAD -RF-RF Model 

After the PLINK association analysis, the RF model was implemented for the feature 

selection from each dataset. Depending on the evaluation of the model tuning with 5-

fold fold cross-validation results, the best mtry and ntree parameters were determined 

as in Table 2. 

Table 2 The best mtry and ntree parameters determined by parameter tuning 

 ADNI  GenADA NCRAD 

mtry 39 2 83 

ntree 50 900 1000 

The permutation hypothesis test calculates the contribution of random change in the 

value of the variation to the accuracy rate. After 100 permutations, 390 variants from 

ADNI, 1740 from NCRAD, and 434 from GenADA datasets related to the disease 

were selected as the input set for the modeling step with second RF at a 95% 

confidence level (Type I error = 0.05).  

In the second step with the multistep LOAD-RF-RF model, 32 SNPs are identified and 

selected for the disease at a 95% confidence level for the ADNI dataset. Besides, 36 

SNPs and 218 SNPs for GenADA and NCRAD datasets were associated with the 

disease at a 99% confidence level (Table 10 in Appendix B) (Figure 8). These 
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prioritized SNPs are used to examine the 3-way interactions related to the LOAD 

interactions.  

 

 

Figure 8 Workflow and Data Summary In the first step, PLINK association analysis is 

performed for genotyping data of three datasets. Then RF-RF is conducted for feature selection 

and modeling, respectively. Output variants of the PLINK-RF-RF model are prioritized by 

3WII analysis 

4.3 Three-Way Interaction Information (3 -WII) Analysis  

Prioritized SNPs from the RF-RF model of each dataset have been used to determine 

the significant three-way interactions. ADNI dataset has been tested for 4960 three-

way interactions. GenADA and NCRAD datasets have been tested for 7140 and 

1,703,016 interactions, respectively.  

Firstly, the rate of prioritized genotype triplets is calculated separately in case and 

control groups for each dataset. Then, the difference of each variant triplet's three-way 

interaction (3WI) information is estimated between the case and control groups. For 

the GenADA dataset, nine out of 7140 triplets had significant three-way interactions. 

However, one of the triplets consisting of rs17067596, rs4895529, and rs16993582 is 

filtered out since it includes an SNP pair in strong linkage disequilibrium. Likewise, 
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ADNI and NCRAD datasets have 17 out of 4960 and 86 out of 1,703,016 significantly 

interacted triplets. 

In the next step, two-way mutual information gain is calculated for the variants found 

in the significant triplets. 171 two-way mutual information gain is calculated for 19 

unique SNPs in GenADA triplets, 325 for 26 unique SNPs in ADNI triplets, and 7750 

for 125 unique NCRAD triplets.  

The SNP triplets with SNP combinations with significant two-way mutual information 

gain are excluded. For GenADA and ADNI, no SNP pairs with significant two-way 

mutual information gain are found. For NCRAD, 22 triplets with SNP pairs with 

significant two-way mutual information gain are filtered out (Table 11 and Table 12 

in Appendix B). After this filtering, eight significant triplets with 19 unique SNPs 

from GenADA, 17 with 26 unique SNPs from ADNI, and 64 significant triplets with 

116 unique SNPs from the NCRAD dataset were selected. There were no common 

SNPs between these groups. 

Lastly, for the validation of p-values assigned by test statistics, a permutation test was 

performed. Significant triplets have been selected using 0.05 for the p-value threshold 

for GenADA and ADNI datasets. Since there were more triplets for the NCRAD 

dataset, 0.01 was used as the p-value threshold. Accordingly, 1000 permutations for 

GenADA and ADNI and 10000 permutations for the NCRAD dataset were performed 

in this step (Table 3). 

Table 3 Overview of the SNPs after each filtering step 

 

4.3.1 GenADA Dataset Results 

Following the workflow in Figure 8, eight triplets with 19 unique SNPs for GenADA 

(Table 4) had significant 3-way interaction (3WI) information. All GenADA 3WII 

SNPs are categorized as modifiers based on their impact with the SnpEff tool 

(Cingolani et al., 2012). Four SNPs are mapped to FBLN2, ADAM 10, NHSL1, and 

ST3GAL1 genes, previously associated with Alzheimerôs Disease (Nobrega et al., 

2017; Patel et al., 2019). The SNP mapped to ADAM10 is also associated with 

reticulate acropigmentation of Kitamura. Lastly, one variant is mapped to the RUNX1 

gene associated with chronic myeloid leukemia (Table 5).   

 ADNI  GenADA NCRAD 

Number of prioritized SNPs by RF-RF 32 36 218 

Number of triplets 4960 7140 1,703,016 

Number of significantly interacted 

triplets 
17 (26 SNPs) 8 (19 SNPs) 86 (125 SNPs) 

Number of SNP pairs tested for 2WI 325 171 7750 

Number of triplets with significantly 

interacted SNP pairs 
0 0 22 

Number of significantly interacted 

triplets after permutation testing 
17 (26 SNPs) 8 (19 SNPs) 64 (116 SNPs) 



 

 

 

2
7 

 

Table 4 Test Statistics and Permutation Testing Results for GenADA Dataset 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

SNP1 SNP2 SNP3 TIG P-value Permutation p-value Gene1 Gene2 Gene3 

rs17793957 rs605928 rs9911460 8.50 0.003 0.001 FBLN2 ADAM10 NPLOC4 

rs7045548 rs1795977 rs11652714 8.25 0.004 0.001 - - - 

rs1879019 rs17081694 rs605928 6.65 0.009 0.002 - - ADAM10 

rs1608169 rs11862388 rs16993582 7.14 0.007 0.003 - - RUNX1 

rs4895529 rs9314604 rs17081694 8.47 0.003 0.006 NHSL1 
ANGPT2 

/ MCPH1 
- 

rs17067596 rs9314604 rs17081694 8.46 0.003 0.008 NHSL1 -  

rs10050568 rs2978012 rs6098412 7.76 0.005 0.015 SPOCK1 ST3GAL1 - 

rs1879019 rs1519959 rs136687 8.48 0.003 0.036 - - PHF21B 
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         Table 5 The SNPs in GenADA Dataset Mapped to a Gene Associated with a Disease 

    

 

 

 

 

 

 

 

rsID Chr. Pos Gene Phenotype 

rs17067596 6 138,767,012 NHSL1 !ƭȊƘŜƛƳŜǊΩǎ 5ƛǎŜŀǎŜ 

rs2978012 8 134,539,196 ST3GAL1 !ƭȊƘŜƛƳŜǊΩǎ 5ƛǎŜŀǎŜ 

rs4895529 6 138,770,275 NHSL1 !ƭȊƘŜƛƳŜǊΩǎ 5ƛǎŜŀǎŜ 

r605928 15 59,046,163 ADAM10 
!ƭȊƘŜƛƳŜǊΩǎ 5ƛǎŜŀǎŜκ wŜǘƛŎǳƭŀǘŜ 
acropigmentation of Kitamura 

rs17793957 3 13,649,920 FBLN2 Alzheimer Diesase 

rs9314604 8 6,411,499 
MCPH1/ 
ANGPT2 

Microcephaly 

rs16993582 21 37,110,209 RUNX1 
Platelet disorder, familial, with 
associated myeloid malignancy 
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4.3.2 ADNI Dataset Results 

Seventeen triplets with 27 unique SNPs showed significant 3-way interaction (3WI) 

information after permutation testing are identified for the ADNI Dataset (Table 6). 

One variant was mapped to FERMT2, a risk factor for Alzheimerôs disease. Four SNPs 

mapped to SYCP2L, VAV2, SEPSECS, and TMPRSS15 are associated with age-

related hearing impairment, multiple sclerosis, pontocerebellar hypoplasia type 2, 

enterokinase deficiency, respectively. PLAGL1 is associated with transient neonatal 

diabetes mellitus, paternal uniparental disomy of chromosome 6, and NPSR1 is 

associated with asthma-related traits (Table 7). Although some triplets have common 

SNP pairs, none of their elements are in the same LD. All these SNPs are also 

categorized as modifiers.  

4.3.3 NCRAD Dataset Results 

Fifty-two triplets with 106 unique SNPs were significant 3WI for NCRAD (Table 13 

in Appendix B). Only two triplets shared an SNP pair. The third SNPs of the triplets, 

rs12663008, and rs17830067, were found to be in the same LD region. So, one of these 

triplets could be used as a representative. There were also three other SNPs in the same 

LD region, which do not interact with other common SNPs.  

Variants mapped to PVRL2, TOMM40, LCMT1, and RAB3GAP1 genes were 

previously associated with Alzheimerôs disease. Besides, another variant mapped to 

HNRNPA1 is associated with amyotrophic lateral sclerosis and inclusion body 

myopathy with Paget disease of bone and frontotemporal dementia. Other associated 

diseases can be seen in Table 8. 

4.3.4 Protective-Risk Triplets Analysis 

As noted previously, the interaction information gain IIG value represents the 

difference between 3-way interaction information of disease and control groups. A 

positive IIG represents the gain of 3WII in the presence of a disease. In contrast, a 

negative IIG represents the gain of 3WII in the general population versus the affected 

population.  

In GenADA dataset for only two triplets, rs1608169; rs11862388; rs16993582 and 

rs10050568; rs2978012; rs6098412, the IIG was positive, and it was negative for the 

rest of the triplets. Additionally, in ADNI dataset only two triplets 

(rs6705017;rs10017010;rs557098 and rs685677;rs7157639;rs2824808) had positive 

IIG (Table 9). The SNPs are categorized as modifiers as in the other dataset groups. 

However, unlike the other datasets, IIG values are mostly positive in NCRAD (Table 

13 in Appendix B).  
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Table 6 Test Statistics and Permutation Testing Results for ADNI Dataset 

 

 

 

 

SNP1  SNP2  SNP3  TIG  P-

value  

Permutation p-

value  

Gene1  Gene2  Gene3  

rs9366664  rs3780792  rs1150360  8.53  0.003  0.001  SYCP2L  VAV2  FAM76B  

rs6705017  rs10017010  rs557098  7.51  0.006  0.001  UGGT1  PI4K2B  ALDH3B1   

rs11749731  rs3780792  rs7157639  6.74  0.009  0.001  NDFIP1  VAV2  FERMT2  

rs1023276  rs324389  rs2824808  8.81  0.002  0.002  -   NPSR1-

AS1  

TMPRSS15  

rs6751810  rs4561856  rs1023276  7.92  0.004  0.002  -  -  -  

rs4561856  rs4409091  rs2633466  7.61  0.005  0.002  -  -  -  

rs4561856  rs10807701  rs2824808  7.55  0.005  0.002  -  TPST1  TMPRSS15  

rs7091014  rs11006011  rs2633466  7.47  0.006  0.002  -  -  -  

rs6856771  rs7157639  rs2824808  8.18  0.004  0.003  -  FERMT2  TMPRSS15  

rs9366664  rs10960174  rs1150360  7.69  0.005  0.003  SYCP2L  -  FAM76B  

rs11749731  rs10807701  rs7157639  7.42  0.006  0.003  NDFIP1  TPST1  FERMT2  

rs6705017  rs11006011  rs2633466  7.77  0.005  0.005  UGGT1  -  -  

rs9313264  rs12056012  rs2633466  7.69  0.005  0.005  -  -  -  

rs6705017  rs2633466  rs462074  7.38  0.006  0.006  UGGT1  -  -  

rs10017010  rs9313264  rs2207851  8.65  0.003  0.008  PI4K2B   -  PLAGL1  

rs4561856  rs9896368  rs2824808  8.88  0.002  0.009  -   MMP28   TMPRSS15  

rs4561856  rs7157639  rs717840  7.784  0.005  0.022  -  FERMT2  CDH13  
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 Table 7 The SNPs in ADNI Dataset Mapped to a Gene Associated with a Disease 

            
rsID Chr. Pos Gene Phenotype 

rs7157639 14 53,388,161 FERMT2 Alzheimerôs Disease/Hereditary Spastic Paraplegia 

rs9366664 6 10,892,499 SYCP2L Age-related hearing impairment 

rs10017010 4 25,188,718 SEPSECS Pontocerebellar hypoplasia type 2es 

rs2207851 6 144,337,886 PLAGL1 Transient neonatal diabetes mellitus / Paternal 

uniparental disomy of chromosome 6 

rs2824808 21 19,775,220 TMPRSS15 Enterokinase deficiency 

rs324389 7 34,777,714 NPSR1 Asthma-Related Traits 

rs3780792 9 136,835,343 VAV2 Multiple Sclerosis 
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Table 8 The SNPs in ADNI Dataset Mapped to a Gene Associated with a Disease 

 

Table 9 Risk/Protective Triplets Distribution Among Datasets 

 Number of Risk 

Triplets 

Number of Protective 

Triplets 

GenADA 2 6 

ADNI  2 15 

NCRAD 38 14 

 

rsID Chr. Pos Gene Phenotype 

rs2075650 19 45,395,619 TOMM40  Alzheimerôs Disease  

rs6859 19 45,382,034 PVRL2 Alzheimer's Disease 

rs10445686 2 135,893,372 RAB3GAP1 Alzheimer's Disease/Leiomyoma, 

Uterine 

rs11645986 16 25,127,645 LCMT1 Alzheimer's Disease 

rs1920045 12 54,670,398 HNRNPA1 Amyotrophic lateral sclerosis/ inclusion 

body myopathy with Paget disease of 

bone and frontotemporal dementia 

rs7181139 15 77,977,667 LINGO1 Mental retardation / Essential tremor & 

Parkinson's 

rs3775162 4 72,397,710 SLC4A4 Proximal renal tubular acidosis with 

ocular abnormalities  

rs4076290 2 1,378,969 TPO Thyroid dyshormonogenesis  

rs1560964 15 33,766,809 RYR3 Epileptic encephalopathy  

rs1530498 5 13,902,220 DNAH5 Primary ciliary dyskinesia 

rs17576289 3 45,458,733 LARS2 Perrault syndrome 

rs17742907 22 18,890,615 DGCR6 Velocardiofacial syndrome 

rs2108392 5 130,533,828 LYRM7 Mitochondrial Complex iii Deficiency 

rs2432762 6 5,435,756 FARS2 Combined oxidative phosphorylation 

defect type 14 

rs3785113 16 68,369,213 PRMT7 Pseudohypoparathyroidism-like disorder 

rs3888795 18 11,863,899 GNAL Dystonia  

rs991974 6 70,481,267 LMBRD1 Methylmalonic acidemia with 

homocystinuria 
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4.4 Functional Enrichment 

We queried the triplets variants with significant three-way interactions, all of which were 

mapped to a gene in the Reactome database to determine if all three genes are found in 

pathways associated with AD. Variants of one triplet for GenADA, four triplets for ADNI, 

and 15 triplets for NCRAD were examined.  

No 3WII triplets had variants enriched in the same pathway. ADAM10 and FBLN2 genes 

were significantly enriched in the extracellular matrix organization, to which two 

GenADA variants are mapped. The third variant in the identical triplet was mapped to the 

NPLOC4 gene, enriched in the post-translational protein modification pathway in 

ADAM10. VAV2 and FERMT2 genes with two ADNI variants mapped were significantly 

enriched in five different pathways. PI4K2B and ALDH3B1, another gene pair that two 

of the ADNI variants are mapped to, were significantly enriched in the metabolism of the 

lipids pathway (Table 14 in Appendix B). No triplets in NCRAD dataset involve triplets 

with variants pairs enriched in the same pathway. 

Functional enrichment analysis was conducted for the gene set, which combined the genes 

mapped in all three datasets. These variants are annotated with SNPNexus. The functional 

enrichment analysis involves overlapped nearest upstream and downstream genes (Table 

15 in Appendix B).  

Firstly, GO Molecular Function, GO Cellular Component, GO Biological Process, and 

Reactome pathways are obtained for the resulting dataset. Calcium ion binding, 

extracellular matrix, external encapsulating structure, and RUNX1 regulates estrogen 

receptor-mediated transcription pathways are significantly enriched.  

Then, functional enrichment networks are created by Enrichment Map. The common 

functions of extracellular matrix and external encapsulating structure pathways are 

observed on the same network (Figure 9).  
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Figure 9 Functional enrichment network created by Enrichment Map 
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CHAPTER 5 

DISCUSSION 

Similar to most complex diseases, unveiling the missing heritability is a challenge in AD. 

Various studies have revealed epistatic relationships and offer a potential solution to this 

problem. In earlier studies, interactions between genes in pathways associated with AD 

are examined (Infante et al., 2010; Robson et al., 2004), while recent studies focus on the 

interactions between GWAS-identified LOAD genes (M. T. W. Ebbert, Ridge, Wilson, et 

al., 2015). Also, few studies reported epistatic effects associated with ADôs 

endophenotype or intermediate traits such as amyloid deposition and brain atrophy 

(Hohman et al., 2013; Meda et al., 2013; Zieselman et al., 2014).       

The limitations of epistatic interaction studies are the extensive multiple comparisons and 

low power, leading to high error rates of type 1 and type 2. Besides, the high cost of 

computational resources required for an exhaustive search is another constraint that 

challenges the interactions' detection. These limitations also avoid producing replicated 

results.  

We have proposed an integrative approach where multistep LOAD-RF-RF is followed by 

3WII entropy analysis to overcome these limitations. The LOAD-RF-RF model is 

developed using PLINK and RF-RF workflow for three LOAD datasets from different 

datasets. Then, triplets with significant 3-way interactions are identified among the 

prioritized SNPs. RF is a powerful tool to address the missing heritability problem, 

revealing high-dimensional interactions between variants. Applying the 3 WII methods 

after the RF let us focus on the non-linear high-dimensional interactions found with RF. 

Prioritization of SNPs through multistep RF before 3-WII analysis reduces the need for 

extensive computational resources for exhaustive analysis. Since we examined the 

interactions between disease-associated variants, we ignored the variants that only affect 

the phenotype by interaction as a part of the limitations of this study. 

For all three datasets, the number of unique SNPs is reduced after the 3WII analysis, 

promising for applying 3-way interaction information analysis for model minimization. 

Zieselman et al. and Dorani et al. performed similar integrated entropy-based approaches 

to demonstrate the statistical interactions among the output SNPs of machine learning 

models (Dorani et al., 2018; Zieselman et al., 2014). In Zieselmanôs model, machine 
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learning analysis of gene-gene interactions was combined with large-scale functional 

genomics data for assessing biological relationships. While they used SNPs mapped to 

genes for machine learning analysis, we did not perform a biological-knowledge-driven 

approach. In addition, they applied this method to grey matter density as an 

endophenotype for late-onset Alzheimerôs disease rather than the disease itself. In Dorani 

et al.ôs study, after performing data preprocessing and feature selection steps, random 

forests (RF) and gradient boosting machine (GBM) algorithms were implemented 

separately to reveal the SNPs contributing to the colorectal cancer risk. Common SNPs 

prioritized by both algorithms were used for further examination. In both studies, 

significant two-way and three-way interactions of prioritized SNPs were determined using 

the information gain approach proposed by Hu et al. (T. Hu, Chen, Kiralis, Collins, et al., 

2013b). In those studies this step was applied only to demonstrate the existing interactions 

instead of being used for model minimization as in our study. Besides, Hu et al.ôs method 

assessed the interaction between variants and phenotype rather than the correlation 

between variant interactions and phenotype as we did use Fan et al.ôs approach.   

Implementing the 3WII step allowed us to recognize the informative variant triplets 

among the LOAD-RF-RF prioritized SNPs, which could be informative candidate 

biomarkers. On the other side, Hohman et al. and Gusareva et al. also performed an 

exhaustive genome-wide interaction information analysis(Gusareva, Carrasquillo, et al., 

2014; Hohman, Bush, Jiang, Brown-Gentry, Torstenson, Dudek, Mukherjee, Naj, Kunkle, 

Ritchie, Martin, Schellenberg, Mayeux, Farrer, Pericak-Vance, Haines, Thornton-Wells, 

et al., 2016). Hohman et al. used a biological knowledge-driven approach to assess the 

interactions, while we did not use prior knowledge to reveal the significant interactions. 

Apart from that, both studies focus on 2-way rather than 3-way interactions.  

IIGs are calculated for triplets dependent on the disease based on test statistics (TIG). Only 

a few IIGs are positive for GenADA and ADNI datasets. IIGs for 38 triplets out of 52 

significant triplets have positive IIG. In various studies, while positive gain of information 

is referred to as synergy between variables, loss of information indicates the redundancy 

between them (Anastassiou, 2007; T. Hu, Chen, Kiralis, Collins, et al., 2013b; Moore & 

Hu, 2015). In those studies, the phenotype was treated as the third variable in the definition 

of IG. This definition of IG enables us to examine the interaction between variants and 

phenotype. However, in this study, we assess the correlation between variant interactions 

and phenotype using Fan et al.'s approach. Therefore, in our study, positive IIG 

demonstrates that the disease groupôs 3-way interaction information is greater than the 

control group. Accordingly,  the triplets with positive IIG are considered a risk factor for 

LOAD, while the IIG negative triplets should be further investigated as protective 

markers.  

3WII analysis is performed to prioritize SNPs by the LOAD-RF-RF model for all datasets. 

The number of prioritized SNPs differs between different datasets, so the number of 
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significant triplets differed. Also, we observed a higher number of significant interactions 

with the NCRAD dataset, which was the most extensive dataset. Although the NCRAD 

SNPs are reduced with the LOAD-RF-RF model, similar to the other two datasets before 

the 3WII analysis, the high number of SNPs prioritized leads to a higher number of 

significant triplets identified.  

Complex diseases are also polygenic since multiple genes and environmental interactions 

contribute to the phenotype. Here we have observed that most common disease-risk 

variants map to noncoding sequences, known as modifiers. Also, in literature, complex 

disease genes overlap with genes related to Mendelian disorders. Our observations parallel 

the literature as some significant interactions revealed for LOAD are SNPs mapped to 

Mendelian disorder genes. Up to ten variants are mapped to Alzheimerôs disease genes 

within the prioritized SNPs in all datasets.  Five SNPs are associated with neurological 

disorders like multiple sclerosis, epileptic encephalopathy, and Parkinsonôs disease. 3-

way interaction information describes the amount of information gained for all variables 

but does not present any subset alone. Therefore, although prioritized SNPs are not 

previously annotated as LOAD-associated SNPs, their interaction could still inform the 

LOAD risk. New clinical studies can validate the prioritized SNPs and tripletsô association 

with the LOAD.  

Functional enrichment analysis of 3WI variants from three different LOAD datasets at the 

gene level showed enrichment of collagen-containing extracellular matrix (ECM) and 

external encapsulating structure, and estrogen receptor (ER) mediated transcription 

pathways. The ECM supports the basement membranes and microcircular environment of 

the tissues. Several recent studies have reported the link between ECM changes and aging 

and neurodegenerative diseases (Damodarasamy et al., 2020; Ma et al., 2020). Even 

though the exact molecular impact of changes in the ECM proteins during AD 

development is still under investigation, its effects on synaptic transmission, amyloid-ɓ-

plaque generation and degradation, Tau-protein production, oxidative-stress response, and 

inflammatory response have been reviewed (Wilhelm Steinbusch et al., 2021).  

Additionally, the role of ERs in cognition and memory has been investigated, and it has 

been demonstrated that ERs act as a neuroprotectant by modulating several 

neuroprotective pathways, including immune response, neurogenesis, glial cell functions, 

and response to excitotoxicity. As the female predominance in developing AD suggests 

the involvement of gender-specific factor(s), the potential role of ER alpha in AD 

pathogenesis has been explored in many studies (Maioli et al., 2021; Wang et al., 2016).   

These functional-level observations support the proposed entropy-based post-GWAS 

analysis, LOAD-RF-RF followed by 3WII, as the prioritized variants and genes show 

association with LOAD and provide insights into early LOAD pathogenesis.  

Nevertheless, although the variants of the prioritized triplets are not enriched in AD-

associated functional pathways, their interactions can still imply the LOAD risk.
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CHAPTER 6 

CONCLUSION 

Random forest and entropy-based methods reveal non-linear genetic and environmental 

factors contributing to complex traits. The proposed workflow in this study demonstrates 

an efficient framework for revealing the complex interactions that contribute significantly 

as genetic factors for LOAD. 3WII is used as a model minimization method and 

determines the significant 3-way interactions between the prioritized SNPs by PLINK-

RF-RF.  

In this study: 

¶ The proposed integrated method was applied to three different LOAD GWAS 

datasets. 

¶ We used the three-way interaction information method proposed by Fan et al. and 

integrated this method with a two-step RF-based model for the first time to 

examine the correlation between the interaction of variants and the phenotype. 

¶ The correlation between the three-way interactions rather than two-way of the 

potential LOAD-associated variants and their protective or risk status for LOAD 

was examined for the first time.  

In the future, the SNPs detected by this optimized in-silico model could be examined in a 

clinical context to decide if the resulting triplets have predictive power for early or 

differential LOAD diagnosis. 

This framework is a promising approach for post-GWAS analysis of other complex 

genetic disorders. The method can be improved by applying it to the GWAS data obtained 

from large-scale data repositories such as UK BioBank (Sudlow et al., 2015) and Estonian 

Biobank (Leitsalu et al., 2015), and the FinnGen2 study. Besides, the proposed method in 

 

2 https://finngen.gitbook.io/documentation/ 
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this study could be improved by using larger datasets of other complex diseases and  

LOAD, and it could also be modified by integrating other machine learning and entropy-

based interaction method. 
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