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ABSTRACT

CORRELATION LOSS: ENFORCING CORRELATION BETWEEN
CLASSIFICATION AND LOCALIZATION IN OBJECT DETECTION

Kahraman, Fehmi
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sinan Kalkan

Co-Supervisor: Assist. Prof. Dr. Emre Akbaş

August 2022, 42 pages

Object detectors are conventionally trained by a weighted sum of classification and

localization losses. Recent studies (e.g., predicting IoU with an auxiliary head, Gen-

eralized Focal Loss, Rank & Sort Loss) have shown that forcing these two loss terms

to interact with each other in non-conventional ways creates a useful inductive bias

and improves performance. Inspired by these works, we focus on the correlation be-

tween classification and localization and make two main contributions in this thesis:

(i) We provide an analysis about the effects of correlation between classification and

localization tasks in object detectors. We identify why correlation affects the perfor-

mance of various NMS-based and NMS-free detectors, and we devise performance

measures to evaluate the effect of correlation and use them to analyze common detec-

tors. (ii) Motivated by our observations, e.g., that NMS-free detectors can also benefit

from correlation, we propose Correlation Loss, a novel plug-in loss function that im-

proves the performance of various object detectors by directly optimizing correlation

coefficients: E.g., Correlation Loss on Sparse R-CNN, an NMS-free method, yields

1.6 AP gain on COCO dataset. Our best model on Sparse R-CNN reaches 51.0 AP

v



without test-time augmentation on COCO test-dev, reaching state-of-the-art.

Keywords: Object detection, correlation, classification and localization, loss function
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ÖZ

KORELASYON KAYIP FONKSİYONU: NESNE TESPİTİNDE
SINIFLANDIRMA İLE KONUMLANDIRMA ARASINDAKİ

KORELASYONU ARTIRMAK

Kahraman, Fehmi
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Ağustos 2022, 42 sayfa

Nesne tespit edicileri, geleneksel olarak, sınıflandırma ve konumlandırma kayıplar-

nın ağırlıklı toplamı ile eğitilir. Son zamanlardaki çalışmalar (örneğin, auxiliary head

ile IoU’yu tahmin etme, Generalized Focal Loss, Rank & Sort Loss), bu iki ka-

yıp terimini geleneksel olmayan yollarla birbirleriyle etkileşime girmeye zorlama-

nın yararlı bir model varsayımı oluşturduğunu ve iyileştirmeler yaptığını göstermiş-

tir. Bu çalışmalardan esinlenerek, bu tezde sınıflandırma ve konumlandırma arasın-

daki korelasyona odaklanıyoruz ve iki ana katkıda bulunmayı amaçlıyoruz: (i) Nesne

tespit edicilerde sınıflandırma ve konumlandırma görevleri arasındaki korelasyonun

etkileri hakkında bir analiz sunuyoruz. Korelasyonun çeşitli Maksimum-Olmayanı-

Bastırma(NMS) tabanlı ve NMS içermeyen nesne tespit edicilerin performansını ne-

den etkilediğini ortaya koyuyor, korelasyonun etkisini değerlendirmek için perfor-

mans ölçümleri tasarlıyor ve bunları yaygın kullanılan nesne tespit edicileri analiz et-

mek için kullanıyoruz. (ii) NMS içermeyen nesne tespit edicilerin de korelasyondan

yararlanabileceği gibi analizleri içeren analizlerimiz sonucunda korelasyon katsayı-
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larını doğrudan optimize ederek çeşitli nesne tespit edicilerin performansını artıran

yeni bir tak-çalıştır kayıp fonksiyonu olan Korelasyon Kayıp Fonkisyonunu (Corre-

lation Loss) öneriyoruz: Örneğin, Korelasyon Kayıp Fonksiyonu, NMS içermeyen

bir yöntem olan Sparse R-CNN ile COCO veri setinde 1.6 AP puan iyileştirme sağ-

lamaktadır. En iyi modelimiz Sparse R-CNN test safhasında veri artırması yöntemini

kullanmadan COCO tes-dev veri setinde 51.0 AP puanı ile diğer tüm modellerin se-

viyesine ulaşmıştır.

Anahtar Kelimeler: Nesne tespiti, korelasyon, sınıflandırma ve konumlandırma, kayıp

fonksiyonu
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CHAPTER 1

INTRODUCTION

Object detection, a fundamental computer vision task, involves drawing a bounding

box around each object (object localization) and proposing the correct class label

for each object (object classification) in a given image (see Figure 1.1). Thanks to

advances in deep convolutional neural networks, significant progress has been made

in object detection [4, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19] in recent years.

CNN

Classification Loss

Localization Loss

Figure 1.1: Object detection pipeline.

1.1 Motivation and Problem Definition

Most object detectors optimize a weighted sum of classification (Lcls) and localiza-

tion losses (Lloc) during training. Owing to their classification and localization (box

regression) tasks, object detection methods have an overall objective loss [10] defined

as:

LOD =
∑
k∈K

∑
t∈T

λk
tLk

t , (1.1)

which combines the loss functions Lk
t for task t on stage k, weighted by λ.
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Results from recent work suggest that performance improves when these two loss

functions (Lcls and Lloc ) are forced to interact with each other in non-conventional

ways. Object detectors typically output a bounding box together with an associated

class ID and a classification score for each detected object. During training, loss

functions try to maximize both the classification score (pertaining to the correct class)

and its localization quality (as measured by Intersection-over-Union (IoU) with the

ground-truth box). Instead of training classification and localization tasks indepen-

dently (Figure 1.2(a)), several methods have been recently proposed to improve the

correlation between classification scores and IoUs between these tasks.

For example, training an auxiliary head to regress the localization qualities of the

positive examples, e.g. centerness, IoU or mask-IoU, has proven useful [1, 2, 6,

7] (Figure 1.2(b)). Other methods remove such auxiliary heads and aim directly to

enforce correlation in the classification or localization task during training. Among

these methods, Average LRP Loss [8] mainly weighs the examples in the localization

task by ranking them with respect to (wrt.) their classification scores (Figure 1.2(c)).

Using localization quality as an additional supervision signal for classification has

been more commonly adopted (Figure 1.2(d)) [9, 10, 20, 21] in two main ways:

1. Score-based approaches aim to regress the localization qualities [9, 21, 22] in

the classification score.

2. Ranking-based approaches enforce the classifier to rank the confidence scores

with respect to the localization qualities [10, 20].

Despite this growing literature [1, 2, 6, 7, 8, 9, 10, 20, 21, 23], the effect of correlation

on object detectors has not been thoroughly studied. In this thesis, we first identify

that correlation affects the performance of object detectors at two levels:

• Image-level correlation, the correlation between the classification scores and

localization qualities of the detections in a single image before post-processing,

which is important to promote NMS performance

• Class-level correlation, the correlation over the entire dataset for each class

after post-processing, which is related to the COCO-style Average Precision

2



(AP), the de facto performance measure of object detection.

Moreover, we quantitatively define correlation at each level to enable analyses on

how well an object detector captures correlation ( e.g.βcls in Figure 1.3(a)). Then,

we provide an analysis on both levels of correlation and draw important observa-

tions using common models. Finally, to better exploit correlation, we introduce a

more direct mechanism to enforce correlation: Correlation Loss, a simple plug-in

and detector-independent method (Figure 1.2(e)), improving performance for a wide

range of object detectors including NMS-free detectors, aligning with our analysis

(Figure 1.3(b)). Similar to the novel loss functions [9, 10, 21], our Correlation Loss

also boosts the performance without an auxiliary head, but different from them, it is

a simple plug-in technique that can easily be incorporated into any object detector,

whether NMS-based or NMS-free.

1.2 Contributions and Novelties

In this thesis, we propose the following main contributions:

• We identify how correlation affects NMS-based and NMS-free detectors, and

design appropriate performance measures to evaluate a detector with respect to

its correlation performance.

• We analyze the effects of correlation at different levels on various object detec-

tors.

• We propose Correlation Loss as a plug-in loss function to optimize correlation

explicitly. Thanks to its simplicity, our loss function can be easily incorporated

into a diverse set of object detectors and improves the performance of e.g.,

Sparse R-CNN up to 1.6 AP and 2.0AP75, suggesting, for the first time, that

NMS-free detectors can also benefit from correlation. Our best method reaches

51.0 AP, reaching state-of-the art.
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1.3 The Outline of the Thesis

This thesis consists of six chapters. Chapter 2 presents the background and studies re-

lated to NMS-based and NMS-free object detectors and provides a summary of three

different correlation coefficients. In Chapter 3, we analyze the effects of correlation

on object detectors. Chapter 4 introduces a plug-in loss function, Correlation Loss. In

Chapter 5, we introduce our experimental results. Finally, Chapter 6 concludes this

thesis.
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(e) Correlation Loss (Ours)

Legend 

Ƹ𝑠 : Classification Scores
෠𝐵 : Box Coordinates 
෠ℓ : Localization Quality 

(e.g. centerness)

ℒ : A Loss Function

Figure 1.2: Different ways of handling the classification and localization tasks from

the perspective of correlation. (a) Conventional case of optimizing the two tasks

independently (e.g., [3, 4, 5]). (b) An additional auxiliary head predicts centerness

[1, 6] or IoU [2, 7], which introduces additional learnable parameters. (c) Novel loss

functions replace the standard localization loss [8] or (d) classification loss [9, 10] by

more complicated ones to leverage correlation. (e) Our Correlation Loss explicitly

optimizes a correlation coefficient. It is a simple, plug-in loss function which does

not introduce additional parameters. Black and colored arrows respectively denote the

loss functions (i.e., during training) & the network outputs (i.e., during inference).
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(b) Effect of our Corr. Loss

Figure 1.3: (a) Detection performance, measured by COCO-style AP (APC) vs. cor-

relation quality, measured by class-level correlation (βcls - see Section ?? for details).

The methods proposed to improve the correlation between classification and local-

ization tasks also improve APC. Compare using auxiliary head, QFL, RS Loss with

the baseline ATSS only using Focal Loss (FL – all in red dots) to see the positive

correlation between APC and βcls. Our Correlation Loss as a plug-in loss function

explicitly optimizes a correlation coefficient and improves the detection performance

(APC) over different settings of ATSS (i.e. using FL, auxiliary head, QFL, RS Loss)

consistently owing to increasing βcls, validating our hypothesis (compare green stars

with red dots). (b) Our Correlation Loss as a plug-in loss function optimizes a cor-

relation coefficient and improves (i) ATSS [1] without auxiliary head, an NMS-based

detector by 1.1APC, (ii) Sparse R-CNN, an NMS-free detector by 1.6APC and (iii)

YOLACT, an instance segmentation method by 0.7APC.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Ƹ𝑠𝑝𝑟𝑒
𝐼 (score)

෠𝐵𝑝𝑟𝑒
𝐼 (box)

Image, I

Post-processing

Object 

Detector Remove 

background
NMS Top-k

For each class c 

in image I
For each image I

Collect 

Ƹ𝑠𝑝𝑜𝑠𝑡
𝑐 & ෠𝐵𝑝𝑜𝑠𝑡

𝑐

over all 

images

Ƹ𝑠𝑝𝑜𝑠𝑡
𝐼,𝑐

(score)

෠𝐵𝑝𝑜𝑠𝑡
𝐼,𝑐

(box)

Figure 2.1: Object detection pipeline and notation. Given an input image, I , NMS-

based detectors yield raw detections before post-processing, each of which has a

predicted bounding box (BB) and an array of confidence scores over ground truth

classes. We denote the confidence scores and the predicted bounding boxes pertain-

ing to the positive detections, i.e., the detections matching with ground truth objects

during training, by ŝIpre and B̂I
pre respectively. In order to obtain final detections,

raw detections are post-processed in three steps: (i) Detections with low confidence

scores, i.e., background, are removed, (ii) duplicates are eliminated by NMS, and (iii)

top-k scoring detections are kept. As for these final detections, we denote the con-

fidence scores and bounding boxes of true positive detections for class c in a single

image I by ŝI,cpost and B̂I,c
post respectively, and over the entire dataset by ŝcpost and B̂c

post.

As for NMS-free detectors; NMS, dashed gray box in post-processing, is excluded,

hence post-processing is lighter.

2.1 Object Detection Pipeline.

We group object detectors considering their usage of NMS (see Figure 2.1 for an

overview and notation).
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2.1.1 NMS-based Detectors

To detect all objects with different scales, locations and aspect ratios; most methods

[1, 4, 6, 13, 14, 24, 25, 26] employ a large number of object hypotheses (e.g., an-

chors, points), which are labeled as positive (also known as foreground) or negative

(also known as background) [1, 27, 28, 29] during training, based on whether/how

they match ground truth boxes. In this setting, there is no restriction to prevent an

object to be predicted by multiple object hypotheses, causing duplicates. Accord-

ingly, during inference, NMS picks the detection with the largest confidence score

among the detections that overlap more than a predetermined IoU threshold to avoid

duplicate detections.

2.1.2 NMS-free Detectors

An emerging research direction in the community is to remove the need for doing

NMS, simplifying detection pipeline. They [5, 30, 31, 32, 33, 34] achieve this by

ensuring a one-to-one matching between the ground truths and detections, which su-

pervises the detector to avoid duplicates in the first place.

2.2 Methods Enforcing Correlation

One common way to ensure correlation is to use an additional auxiliary head, super-

vised by the localization quality of a detection such as centerness [1, 6], IoU [2, 7],

mask IoU [35] or uncertainty [36], during training. Unlike these methods focusing

on loss function design, TOOD [37] mainly focuses on the detection head design

considering correlation.

Centerness. FCOS [6] presents centerness branch (see Figure 2.2 ) to suppress the

low-quality detected bounding boxes produced by the locations far from the center of

an object. [1] proposes the adaptive training sample selection, which automatically

divides positive and negative training samples according to the statistical characteris-

tics of the object.
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Figure 2.2: The plot on the left side is without centerness, and the plot on the right is

with centerness. A dot in the figure indicates a detected bounding box. The dashed

red line is the line y = x. As shown in the figure (right), the low-quality boxes which

are below the line y = x are pushed to above the line. It shows that the scores of

low-quality boxes are reduced significantly. Figure is from [6].

IoU. [7] predicts the IoU between detected bounding boxes and their corresponding

ground-truth boxes, acquiring localization confidence. [2] combines the score of clas-

sification and localization qualities serving as a box selection metric in non-maximum

suppression.

During inference, the predictions of the auxiliary head are then combined with those

of the classifier to improve detection performance. Recent methods show that the

auxiliary head can be removed in two ways:

1. The regressor can prioritize the positive examples [8].

2. The classifier can directly be supervised to prioritize detections with confidence

scores. This is ensured either by regressing the localization qualities by the

classifier [9, 21] or by training the classifier to rank confidence scores [10, 20]

with respect to the localization qualities.
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2.3 Correlation Coefficients

Correlation coefficients measure the strength and direction of the “relation” between

two sets of data values, X = {x1, ..., xN} and Y = {y1, ..., yN}. Different relations

are evaluated by different correlation coefficients. All correlation coefficients have a

range of [−1,+1] where positive/negative correlation corresponds to increasing/de-

creasing relation, while 0 implies no correlation between X and Y .

2.3.1 Pearson Correlation Coefficient

Pearson correlation coefficient, denoted by α(·, ·), measures the linear relationship

between the sets. The closeness of points (see Figure 2.3) determines the correla-

tion.The slope of the line formed by the data points does not indicate the Pearson

Correlation. Pearson correlation coefficient is defined as:

α(X, Y ) =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
, (2.1)

where xi and yi are the ith element of X and Y respectively. x̄ and ȳ are the mean of

X and Y . N is sample size.

2.3.2 Spearman Correlation Coefficient

Spearman correlation coefficient, β(·, ·), corresponds to the ranking relationship. It is

obtained by ranking the values of the two data sets (X and Y ) and then calculating

the Pearson on the resulting ranks. Spearman correlation coefficient is defined as:

β(X, Y ) = α(R(X), R(Y )) =
cov(R(X), R(Y ))

σR(X)σR(Y )

, (2.2)

where R(X) and R(Y ) are the rank values of the data sets, cov is the covariance and

σ is the standard deviation.

2.3.3 Concordance Correlation coefficient

Concordance correlation coefficient, γ(·, ·), is more strict than Pearson correlation

coefficient, measuring the similarity of the values and maximized when xi = yi for
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Figure 2.3: Pearson Correlation Coefficient. α(X, Y ) is the same for red circles and

green triangles but different for the blue squares. Changing the scale of measurement

does not change the value of the correlation (red and green).

all i ∈ 1, ..., N . The concordance correlation line (see Figure 2.4) passes through the

origin[38]. Concordance correlation coefficient is defined as:

γ(X, Y ) =
2α(X, Y )σxσy

σ2
x + σ2

y + (x̄− ȳ)2
, (2.3)

where α(X, Y ) is Pearson correlation coefficient. x̄ and ȳ are the mean of X and Y

respectively, and σ2
x σ

2
y are corresponding variances.

2.4 Comparative Summary

In this thesis, we comprehensively identify, measure, and analyze the effect of ex-

plicitly correlating classification and localization in object detectors. Unlike other

methods that also enforce correlation, some of which are tested only on a single ar-

chitecture [6, 7, 35], we propose a simple solution (see Figure 1.2) by directly opti-

mizing the correlation coefficient, which is auxiliary-head free and easily applicable

to all object detectors, whether NMS-based or NMS-free (see Table 2.1). Also, we

are the first to work on NMS-free detectors in this context.
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Figure 2.4: Concordance Correlation Coefficient. γ(X, Y ) is 1.0 for red circles be-

cause it passes through the origin. Unlike Pearson correlation coefficient, changing

the scale of measurement changes the value of the Concordance correlation coeffi-

cient (red and green).

Table 2.1: Comparison of methods enforcing correlation. While existing methods can

introduce additional learnable parameters, may not be incorporated into a model eas-

ily, or have not been applied to different types of detectors, our proposed Correlation

Loss does not have such deficiencies.

Method Additional learnable parameters? Plug-in? Applied to NMS-based detectors? Applied to NMS-free detectors?

Using Aux Head ✗ ✓ ✓ ✗

Quality Focal Loss ✓ ✗ ✓ ✗

aLRP Loss ✓ ✗ ✓ ✗

RS Loss ✓ ✗ ✓ ✗

Correlation Loss (Ours) ✓ ✓ ✓ ✓
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CHAPTER 3

EFFECTS OF CORRELATION ON OBJECT DETECTORS

This section presents why maximizing correlation is important for object detectors,

introduces performance measures to evaluate object detectors with respect to cor-

relation (Section 3.1), and provides an analysis on common methods designed for

improving correlation (Section 3.2).

3.1 How Correlation Affects Object Detectors: Definition and Performance

Measures

Object detectors are affected by correlation at two different levels: Image-level cor-

relation and class-level correlation – see also Figure 3.1.

3.1.1 Image-level Correlation

This level of correlation corresponds to the correlation between the classification

scores and localization qualities of the detections in a single image before post-

processing, and accordingly, we measure it by the Spearman correlation coefficient1,

β(·, ·), averaged over images. Denoting the set of images to be evaluated by I and

IoUs between the bounding boxes of the positive detections (B̂I
pre, Figure 2.1) and

their associated ground truths by IoUI
pre, the performance in terms of image-level

correlation is measured as follows:

1 While analyzing object detectors in terms of correlation, we employ Spearman correlation coefficient, β(·, ·),
to measure the relation between the ranks of the values (i.e., scores and IoUs) instead of the values themselves,
and aim to isolate the correlation performance from the localization and classification performances.
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N
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S

Solid BBs : Ground truths 

Dashed BBs : Detections before         

post-processing ( Ƹ𝑠𝑝𝑟𝑒
𝐼 , ෠𝐵𝑝𝑟𝑒

𝐼 in Fig. 3)

Negatively correlated

(a) Image-level Correlation for better NMS

Positively correlated

A
P 

C
al

cu
la

ti
on

𝐼𝑜𝑈 0.80 N/A 0.60 N/A 0.50

Ƹ𝑠 0.80 0.70 0.60 0.55 0.50

𝐼𝑜𝑈 0.80 N/A 0.60 N/A 0.50

Ƹ𝑠 0.50 0.55 0.60 0.70 0.80

Negatively correlated

Precision Pos. Detections APIoU

P50 1.00 0.67 0.40 0.69

P75 1.00 0.00 0.00 0.33

Precision Pos. Detections APIoU

P50 1.00 0.67 0.40 0.69

P75 0.20 0.00 0.00 0.07

Solid BBs : Ground truths 

Dashed BBs : Detections after 

post-processing ( Ƹ𝑠𝑝𝑜𝑠𝑡
𝐼,𝑐 , ෠𝐵𝑝𝑜𝑠𝑡

𝐼,𝑐
in Fig. 3)

(b) Class-level Correlation for better AP

Figure 3.1: How correlation affects object detection performance. (a) Image-level

correlation. Given detections before post-processing, NMS benefits from positive

image-level correlation, thereby yielding detections with better localization qualities.

Compare the localization qualities of detections in “positively correlated” (i.e., when

the dark-colored ones have larger score) and “negatively correlated” (i.e., when the

light-colored ones have larger score) outputs after NMS. (b) Class-level correlation.

Given detections after post-processing, APs with larger IoUs and COCO-style AP

benefit from positive class-level correlation (compare APIoU columns in “positively

correlated” and “negatively correlated” outputs after AP Calculation to see lower

AP75 for the “negatively correlated” output in the red cell). PIoU: Precision com-

puted on a detection using the threshold IoU, True positives are color-coded in tables

and input, white cells: false positives, and hence their IoU is not available, N/A.
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βimg =
1

|I|
∑
I∈I

β(IoUI
pre, ŝ

I
pre). (3.1)

Maximizing image-level correlation is important for NMS-based detectors since NMS

aims to suppress duplicates, i.e., to keep only a single detection for each ground truth

when there is more than one. More particularly among overlapping detections (e.g.,

dark and light green detections in the detector output image in Figure 3.1(a)), NMS

picks the one with the larger score, and hence, if there is positive correlation between

the confidence scores and localization qualities of those overlapping detections, then

the one with the best localization quality (e.g., dark green detection in the same ex-

ample in Figure 3.1(a)) will survive and detection performance will increase.

3.1.2 Class-level Correlation

This level of correlation indicates the correlation between the classification scores and

localization qualities of the detections obtained after post-processing for each class.

Since class-level correlation is related to COCO-style Average Precision, APC, we

average β(·, ·) over classes to be consistent with the computation of APC:

βcls =
1

|C|
∑
c∈C

β(IoUc
post, ŝ

c
post), (3.2)

where C is the set of classes in the dataset and IoUc
post is the set IoUs of BBs of true

positives for class c (B̂c
post, Figure 2.1).

Class-level correlation affects the performance of all detectors since it is directly re-

lated to APC, the performance measure itself. To be more specific, APC for a single

class is defined as the average of APs computed over 10 different localization quality

thresholds, IoU ∈ {0.50, 0.55, ..., 0.95}, validating the true positives. For a specific

threshold IoU, the detections are first sorted with respect to the classification scores,

and then precision and recall pairs are calculated on each detection. Using these pairs,

a precision-recall (PR) curve is obtained, and the area under the PR curve corresponds

to the single AP value, APIoU. When the correlation between classification and lo-

calization is maximized among true positives, larger precision values are obtained on
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the same detections in larger IoU values (e.g. P75 of orange detection is 1.00 and 0.20

with positive and negative correlation respectively in Figure 3.1(b)).

3.2 Analysis of Object Detectors in Terms of Correlation

This section presents our analysis on how correlation affects object detectors.

See Section 5.1 for dataset and implementation details.

Table 3.1: Evaluation of NMS-based detectors in terms of image-level correlation.

See Equation 3.1 for βimg. AP+1
IoU and AP−1

IoU refer to the upper & lower bound APs

(see analysis setup for details). The values are in %. Our βimg captures correlation

consistently, e.g. that (i) Focal Loss is improved by ctr. head and QFL and (ii) AP

Loss is improved by aLRP Loss and RS Loss wrt. βimg. Also, there is still room for

improvement for object detectors wrt. βimg with a range between 27.2% and 33.8%.

Performance Modify ranking of scores

Method APC AP50 AP75 βimg AP−1
C AP−1

50 AP−1
75 AP+1

C AP+1
50 AP+1

75

Not Enforcing Correlation

ATSS w. AP Loss [3] 38.1 58.2 41.0 27.2 24.9 53.2 19.2 57.0 72.4 62.2

ATSS w. Focal Loss [4] 38.7 57.6 41.5 27.3 25.6 51.8 21.1 55.8 70.6 60.5

Using Aux. Head

ATSS w. ctr. head [1] 39.3 57.5 42.6 28.7 22.4 45.9 19.0 40.6 56.8 41.8

Using Novel Loss

ATSS w. aLRP Loss [8] 37.7 57.4 39.9 33.8 22.7 48.8 17.5 54.2 70.4 58.7

ATSS w. QFL [9] 39.7 58.1 42.7 33.2 25.7 51.1 21.9 55.8 70.9 60.6

ATSS w. RS Loss [10] 39.9 58.9 42.6 30.9 26.2 53.9 21.3 57.1 71.8 62.1

3.2.1 Analysis Setup

We conduct experiments to analyze the effects of the image-level (Table 3.1) and

class-level (Table 3.2) correlations. For both analyses, we compare three sets of meth-

ods, all of which are incorporated into the common ATSS baseline [1] (see Chapter 2

for a discussion of these methods):
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Table 3.2: Evaluation of object detectors wrt. class-level correlation. See Equation

3.2 for βcls. AP+1
IoU and AP−1

IoU denote upper & lower bound APs (analysis setup for

details). The values are in %. NMS-free detectors can also benefit from class-level

correlation (compare AP+1
C with APC for Sparse R-CNN and DETR), and as in βimg

(c.f. Table 3.1 and its caption), βcls measures the correlation consistently.

Performance Modify ranking of scores

Method APC AP50 AP75 βcls AP−1
C AP−1

50 AP−1
75 AP+1

C AP+1
50 AP+1

75

Not Enforcing Correlation

- NMS-free Detectors

Sparse R-CNN [5] 37.7 55.8 40.5 37.5 30.1 55.8 28.9 48.6 55.8 52.7

DETR [30] 40.1 60.6 42.0 47.0 32.9 60.6 30.6 51.9 60.6 55.8

- NMS-based Detectors

ATSS w. AP Loss [3] 38.1 58.2 41.0 39.4 30.0 58.2 26.6 48.5 58.2 54.0

ATSS w. Focal Loss [4] 38.7 57.6 41.5 40.3 30.2 57.6 27.3 48.7 57.6 53.6

Using Aux. Head

ATSS w. ctr. head [1] 39.3 57.4 42.5 42.5 30.2 57.4 27.6 48.7 57.4 53.5

Using Novel Loss

ATSS w. aLRP Loss [8] 37.7 57.4 39.9 42.0 29.1 57.4 25.0 47.8 57.4 52.7

ATSS w. QFL [9] 39.7 58.1 42.7 45.7 30.6 58.1 27.7 49.1 58.1 53.9

ATSS w. RS Loss [10] 39.9 58.9 42.6 43.2 31.1 58.9 28.1 49.8 58.9 54.8

• AP Loss and Focal Loss as methods not enforcing correlation,

• Using an auxiliary head to enforce correlation,

• Quality Focal Loss (QFL) [9], aLRP Loss [8] and Rank & Sort Loss [10] as

recent loss functions enforcing correlation.

In our class-level analysis, we also employ NMS-free methods to demonstrate the

effects of correlation on that approach.

We compare the methods based on:

1. Their AP-based performance,

2. Our proposed evaluation measures for correlation (Equations 3.1 and 3.2),
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3. Lower/upper bounds, AP+1
C /AP−1

C , obtained by modifying the ranking of the

confidence scores pertaining to the GT classes of the positive detections to min-

imize/maximize Equation 3.1 in Table 3.1 and Equation 3.2 in Table 3.2.

More particularly, in Table 3.1, given ŝIpre and B̂I
pre (Figure 2.1), we collect the ground

truth class probabilities of positive detections and change their ranking in ŝIpre within

an image following the ranking order of IoUs (computed using B̂I
pre), and in Table 3.2,

we do the same operation class-wise for true positives given ŝcpost and B̂c
post (Figure

2.1). To decouple other types of errors as much as possible; in Table 3.1, we do not

modify the scores of the negative detections (i.e., that match with background), the

predicted BBs and the scores of non-GT classes of the positive detections, and in

Table 3.2, we do not modify the scores of the false positives and the predicted BBs

of the true positives. Note that achieving the upper bound for image-level correlation

also corresponds to perfectly minimizing RS Loss.

3.2.2 Observations

Based on Tables 3.1 and 3.2, we observe the following:

(1) Our proposed performance measures in Equations 3.1 and 3.2 can measure the

improvements in correlation consistently.

In Tables 3.1 and 3.2, (i) aLRP Loss [8] and RS Loss [10] are proposed to improve AP

Loss baseline and (ii) using auxiliary head [1] and QFL [9] are proposed to improve

Focal Loss baseline. In both tables, the proposed methods are shown to improve their

baselines in terms of βimg and βcls, suggesting that our measures can consistently

evaluate image-level and class-level correlations respectively.

(2) NMS-free detectors can also potentially benefit from correlation.

All detectors, including NMS-free ones, can benefit from class-level correlation (com-

pare APC and AP+1
C to see ∼ 10 points gap in Table 3.2). However, existing methods

do not enforce this correlation on NMS-free detectors.

(3) Existing methods enforcing correlation have still a large room for improvement.
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Considering that βimg ∈ [27.2%, 33.8%] (Table 3.1) and βcls ∈ [37.5%, 47.0%] (Table

3.2), there is still room for improvement to reach the perfect correlation.

(4) While significantly important, improving correlation may not always imply per-

formance improvement.

For example, aLRP Loss [8] in Table 3.1 has the largest correlation but the lowest

APC. Such a situation can arise, for example, when a method does not have good

localization performance. In the extreme case, assume a detector yields perfect βimg,

image-level ranking correlation, but the IoUs of all positive examples are less than

0.50 implying no TP at all. Hence, boosting the correlation, while simultaneously

preserving a good performance in each branch, is critical.
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CHAPTER 4

CORRELATION LOSS: A NOVEL LOSS FUNCTION FOR OBJECT

DETECTION

Correlation Loss is a simple plug-in loss function to improve correlation of classi-

fication and localization tasks. Correlation Loss is unique in that it can be easily

incorporated into any object detector, whether NMS-based or NMS-free (see Obser-

vation (2) - Section 3.2.2), and improves performance without affecting the model

size, inference time and with negligible effect on training time.

4.1 Definition of Correlation Loss

Given an object detector with loss function LOD, our Correlation Loss (Lcorr) is sim-

ply added using a weighting hyper-parameter λcorr:

LOD + λcorrLcorr. (4.1)

Lcorr is the Correlation Loss defined as:

Lcorr = 1− ρ( ˆIoU, ŝ), (4.2)

where ρ(·, ·) is a correlation coefficient; ŝ and ˆIoU are the confidence scores of the

ground truth class and Intersection-over-Unions of the predicted BBs respectively,

both of which pertaining to the positive examples in the batch.

4.2 Practical Usage

To avoid promoting trivial cases with high correlation but low performance (Obser-

vation (4) - Sec. 3.2.2), similar to QFL [9] and RS Loss [10], we only use the gradi-
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ents of Lcorr with respect to classification score, i.e., we backpropagate the gradients

through only the classifier. We mainly adopt two different correlation coefficients for

ρ(·, ·) and obtain two versions of Correlation Loss:

• Concordance Loss, defined as the Correlation Loss when Concordance cor-

relation coefficient is optimized (ρ(·, ·) = γ(·, ·)), which aims to match the

confidence scores with IoUs. Concordance Loss is differentiable.

• Spearman Loss as Correlation Loss when Spearman correlation coefficient is

optimized (ρ(·, ·) = β(·, ·)), thereby enforcing the ranking of the classification

scores considering IoUs. To tackle the non-differentiability of ranking oper-

ation while computing Spearman Loss, we leverage the differentiable sorting

operation from Blondel et al. [39].

When applying our Correlation Loss to NMS-free methods, which use an iterative

multi-stage loss function, we incorporate Lcorr to every stage.

We also adopt Pearson correlation coefficient for ρ(·, ·) and obtain Pearson Loss as

Correlation Loss when Pearson correlation coefficient is optimized (ρ(·, ·) = α(·, ·)).
Pearson Loss is differentiable. We observe that while Pearson Loss has similar per-

formance with Concordance Loss on ATSS [1] and Spearman Loss on Sparse R-CNN

[5], it does not outperform the other two in both of the cases (see Table 5.6 in Chapter

5).

It is generally sufficient to search over {0.1, 0.2, 0.3.0.4, 0.5} to tune λcorr for all the

models we trained on COCO dataset [40] (see more details in Section 5.5). Outside

of this range, performance drops.
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CHAPTER 5

EXPERIMENTS

We evaluate our Correlation Loss on the COCO dataset [40] with five object detectors

of different types:

• Sparse R-CNN [5], which is NMS-free,

• RetinaNet [4], which is anchor-based,

• FoveaBox [24], which is anchor-free,

• ATSS [1], which is anchor-based with a centerness head,

• PAA [2], which is an anchor-based recent strong baseline.

We also employ Correlation Loss on an instance segmentation method, YOLACT

[41].

5.1 Dataset and Implementation Details

For the rest of the thesis:

• We employ the widely-used and public COCO dataset [40] licensed under Cre-

ative Commons Attribution 4.0.

• We train the models on trainval35K (115K images), test on minival (5k images)

and compare with SOTA on test-dev (20k images) sets.
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• We mainly report AP-based performance measures, and also use Optimal LRP

(oLRP) [42, 43], βimg (Equation 3.1) and βcls (Equation 3.2) to provide more

insights.

• Our implementation is based on the mmdetection framework [44] with Pytorch.

• Unless otherwise explicitly specified, we keep the standard configuration of the

models and use a ResNet-50 backbone with FPN [45].

• Unless otherwise explicitly specified, we train models for 1× (12 epochs) train-

ing schedule for comparison.

• We use distributed training. We train models on 4 GPUs (A100 or V100 type

GPUs in an internal cluster) with 4 images on each GPU (16 batch size).

• All PyTorch-style pretrained backbones on ImageNet [46] are from PyTorch

[47] model zoo.

5.2 Comparison with Methods Not Enforcing Correlation

We train the aforementioned five object detectors and the instance segmentation method

(Tables 5.1, 5.2 and 5.3) with and without our Correlation Loss (as Concordance Loss

or Spearman Loss).

5.2.1 NMS-based Detectors

The results in Table 5.1 suggest ∼ 1.0APC gains on NMS-based detectors:

• Spearman Loss (λcorr = 0.1) improves RetinaNet by 1.0APC and oLRP,

• Concordance Loss (λcorr = 0.2) enhances FoveaBox [24], which is anchor-

free, by 0.7APC,

• Concordance Loss (λcorr = 0.3) improves ATSS [1] (λcorr = 0.3) and PAA [2]

by ∼ 1APC and ∼ 1oLRP.
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Table 5.1: Comparison on NMS-based and NMS-free detectors not considering cor-

relation. Accordingly, we remove auxiliary heads from ATSS [1] and PAA [2] for fair

comparison (see Table 5.4 for comparison with auxiliary heads and novel loss func-

tions). We use ResNet-50 backbone and train the models for 12 epochs. Simply in-

corporating our Correlation Loss provides (i) ∼ 1APC improvement for NMS-based

detectors consistently and (ii) ∼ 1.5APC on the NMS-free Sparse R-CNN.

Method APC ↑ AP50 ↑ AP75 ↑ oLRP ↓ oLRPLoc ↓ oLRPFP ↓ oLRPFN ↓

Retina Net [4] 36.5 55.4 39.1 70.7 16.8 32.0 48.1

w. Conc.Corr (Ours) 37.0 55.7 39.7 70.2 16.3 30.8 49.3

w. Spear.Corr (Ours) 37.5 55.4 40.5 69.7 16.0 31.3 48.4

Fovea Box [24] 36.4 56.5 38.6 70.2 17.0 30.2 47.2

w. Conc.Corr (Ours) 37.1 56.4 39.6 69.7 16.6 28.6 48.1

w. Spear.Corr (Ours) 37.0 55.6 39.3 70.0 16.3 31.0 47.9

ATSS [1] 38.7 57.6 41.5 69.0 16.0 29.1 47.0

w. Conc.Corr (Ours) 39.8 57.9 43.2 68.2 15.4 29.1 46.9

w. Spear.Corr (Ours) 39.3 56.6 42.5 68.7 15.2 31.2 46.7

PAA [2] 39.9 57.3 43.4 68.6 15.0 30.4 47.0

w. Conc.Corr (Ours) 40.7 58.8 44.3 67.7 15.2 28.5 46.3

w. Spear.Corr (Ours) 40.4 58.0 43.7 67.8 14.9 29.5 46.6

Sparse R-CNN [5] 37.7 55.8 40.5 69.5 16.0 28.7 48.6

w. Conc.Corr (Ours) 38.9 57.2 41.8 68.1 15.7 27.7 47.2

w. Spear.Corr (Ours) 39.3 56.7 42.5 68.3 15.3 27.1 48.4

5.2.2 NMS-free Detectors

Our results in Table 5.1 suggest that Sparse R-CNN, an NMS-free method, can also

benefit from our Correlation Loss:

• Both Concordance (λcorr = 0.3) and Spearman Losses (λcorr = 0.2) improve

baseline performance,

• Spearman Loss improves APC significantly by up to 1.6,

• As hypothesized, the gains are owing to APs with larger IoUs, e.g., AP75 im-

proves by up to 2.0,
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Table 5.2: Comparison with a stronger setting of Sparse R-CNN with 36 epochs

training, 300 proposals, multi-scale training and random cropping.

Method AP AP50 AP75

Sparse R-CNN [5] 45.0 64.1 48.9

w. Conc.Corr (Ours) 45.5 64.4 49.7

w. Spear.Corr (Ours) 46.1 64.0 50.4

• Gains can be also observed in a stronger setting of Sparse R-CNN with 36

epochs training, 300 proposals, multi-scale training and random cropping fol-

lowing Sun et al. [5] (Table 5.2).

5.2.3 Instance Segmentation

To analyze the generalizability of Correlation Loss, we trained an instance segmen-

tation method, YOLACT, in its standard setting [41] with Correlation Loss. We ob-

served 0.7 mask AP gain using Spearman Loss (λcorr = 0.5 - Table 5.3), implying

1.7% relative gain.

Table 5.3: Comparison with YOLACT.

Method APmask
C APmask

50 APmask
75

YOLACT [41] 28.3 47.8 28.8

w. Conc.Corr (Ours) 28.8 48.3 29.6

w. Spear.Corr (Ours) 29.0 48.3 30.0

5.3 Comparison with Methods Enforcing Correlation

Table 5.4 compares Correlation Loss with using an auxiliary head [1], QFL [9] and RS

Loss [10] on the common ATSS baseline [1] with respect to detection and correlation

performances:
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5.3.1 Comparison wrt. Detection Performance

Reaching 39.8APC without an auxiliary head, Concordance Loss (as validated in Ta-

ble 5.1 for ATSS) outperforms using an auxiliary head, which introduces additional

learnable parameters (39.8 vs 39.3APC), and reaches on-par performance with the

recently proposed, relatively complicated loss functions, QFL [9] and RS Loss [10].

Besides, thanks to its simple usage, Concordance Loss is complementary to the exist-

ing methods: It yields 40.0APC with an auxiliary head (+0.7 APC gain) and 40.2APC

with RS Loss (+0.3 APC gain), outperforming all methods without introducing addi-

tional learnable parameters.

Table 5.4: Comparison with methods enforcing correlation. Correlation Loss (i)

reaches similar results with existing methods on ATSS, (ii) is complementary to those

methods thanks to its simple design and (iii) once combined with RS Loss, outper-

forms compared methods.

Aux. [1] QFL [9] RS Loss[10] Corr. Loss (Ours) APC ↑ AP50 ↑ AP75 ↑ oLRP ↓ βimg ↑ βcls ↑

38.7 57.6 41.5 68.9 27.3 40.3

✓ 39.3 57.5 42.6 68.6 28.7 42.5

✓ 39.7 58.1 42.7 68.0 33.2 45.7

✓ 39.9 58.9 42.6 67.9 30.9 43.2

✓ 39.8 57.6 43.1 68.2 31.6 45.2

✓ ✓ 40.0 58.0 43.3 68.0 31.1 44.8

✓ ✓ 39.9 58.2 43.2 67.7 34.6 45.6

✓ ✓ 40.2 58.6 43.5 67.9 33.6 46.1

5.3.2 Comparison wrt. Correlation Performance

Comparison with respect to correlation (using our proposed performance measures,

βimg in Equation 3.1 and βcls in Equation 3.2) shows:

• Concordance Loss improves baseline correlation performance significantly, en-

hancing βimg (from 27.3% to 31.6%) and βcls (from 40.3% to 45.2%) both by

∼ 5%,
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• Concordance Loss outperforms all methods wrt. βimg and βcls once combined

with QFL and RS Loss respectively.

This set of results confirms that Concordance Loss improves correlation between clas-

sification and localization tasks in both image-level and class-level.

5.4 Comparison with SOTA

Here, we prefer Sparse R-CNN owing to its competitive detection performance and

our large gains. We train our “Corr-Sparse R-CNN” for 36 epochs using DCNv2

[48] and multiscale training by randomly resizing the shorter size within [480, 960]

similar to compared methods, e.g. VFNet [21], GFLv2 [22] and RS Loss [10]. Table

5.5 presents the results on COCO test-dev [40]. We note the following:

5.4.1 NMS-based Methods

On the common ResNet-101-DCN backbone and with similar data augmentation, our

Corr-Sparse R-CNN yields 49.6APC at 13.7 fps (on a V100 GPU) outperforming

recent NMS-based methods, all of which also enforce correlation, e.g.,

• RS-R-CNN [10] by 1.8APC,

• GFLv2 [22] by more than 1APC,

• VFNet [21] in terms of not only APC but also efficiency (with 12.6 fps on a

V100 GPU).

On ResNeXt-101-DCN, our Corr-Sparse R-CNN provides 51.0APC at 6.8 fps, sur-

passing all methods including RS-Mask R-CNN+ (50.2APC at 6.4 fps), which addi-

tionally exploits ground truth masks and Carafe FPN [49].

5.4.2 NMS-free Methods

Our Corr-Sparse R-CNN outperforms;
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Table 5.5: Comparison with SOTA on COCO test-dev. Without bells and whistles,

our Corr-Sparse R-CNN outperforms all recent (i) NMS-based methods, all of which

also enforce correlation, and (ii) NMS-free methods by a notable margin (∼ 1APC

compared to its nearest counterparts). Results are obtained from papers.

Method Backbone Epochs APC AP50 AP75 APS APM APL Venue

N
M

S-
ba

se
d

ATSS [1] ResNet-101-DCN 24 46.3 64.7 50.4 27.7 49.8 58.4 CVPR 2020

GFL [9] ResNet-101-DCN 24 47.3 66.3 51.4 28.0 51.1 59.2 NeurIPS 2020

RS-R-CNN [10] ResNet-101-DCN 36 47.8 68.0 51.8 28.5 51.1 61.6 ICCV 2021

GFLv2 [22] ResNet-101-DCN 24 48.3 66.5 52.8 28.8 51.9 60.7 CVPR 2021

aLRP Loss [8] ResNeXt-101-DCN 100 48.9 69.3 52.5 30.8 51.5 62.1 NeurIPS 2020

VFNet [21] ResNet-101-DCN 24 49.2 67.5 53.7 29.7 52.6 62.4 CVPR 2021

DW [51] ResNet-101-DCN 24 49.3 67.6 53.3 29.2 52.2 63.5 CVPR 2022

TOOD [37] ResNet-101-DCN 24 49.6 67.4 54.1 30.5 52.7 62.4 ICCV 2021

RS-Mask R-CNN+ [10] ResNeXt-101-DCN 36 50.2 70.3 54.8 31.5 53.5 63.9 ICCV 2021

N
M

S-
fr

ee

TSP R-CNN [50] ResNet-101-DCN 96 47.4 66.7 51.9 29.0 49.7 59.1 ICCV 2021

Sparse R-CNN [5] ResNeXt-101-DCN 36 48.9 68.3 53.4 29.9 50.9 62.4 CVPR 2021

Dynamic DETR [31] ResNeXt-101-DCN 36 49.3 68.4 53.6 30.3 51.6 62.5 ICCV 2021

Deformable DETR [34] ResNeXt-101-DCN 50 50.1 69.7 54.6 30.6 52.8 64.7 ICLR 2021

O
ur

s Corr-Sparse R-CNN ResNet-101-DCN 36 49.6 67.8 54.1 29.2 52.3 64.9

Corr-Sparse R-CNN ResNeXt-101-DCN 36 51.0 69.2 55.7 31.1 53.7 66.3

• TSP R-CNN [50] by more than 2APC on ResNet-101-DCN with significantly

less training,

• Sparse R-CNN [5] by ∼ 2APC

• Deformable DETR [34], a recent strong NMS-free method, by ∼ 1APC on

ResNeXt-101-DCN.

5.5 Ablation & Hyper-parameter Analyses

5.5.1 Optimizing Different Correlation Coefficients

Spearman Loss yields better localization performance , i.e. the lowest localization

error with respect to oLRPLoc in all experiments (Table 5.1) while it rarely yields
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the best oLRPFP or oLRPFN, implying its contribution to classification to be weaker

than Concordance Loss.

We tried optimizing Pearson correlation coefficient as well and observed that while it

has similar performance with concordance correlation coefficient on ATSS and Spear-

man correlation coefficient on Sparse R-CNN, it does not outperform the other two

in both of the cases (Table 5.6). Considering the similarities of Spearman and con-

cordance correlation coefficients in terms of scoring the relation of the values, we

preferred concordance correlation coefficient over Spearman correlation coefficient

due to the fact that concordance correlation coefficient enforces the scores to be equal

to the IoUs imposing a tighter constraint than pearson correlation coefficient.

Table 5.6: Effect of using Pearson correlation coefficient.

Method APC AP50 AP75

ATSS w/o aux head 38.7 57.6 41.5

w. Pearson Corr 39.4 56.6 42.7

w. Conc.Corr 39.8 57.9 43.2

w. Spear.Corr 39.3 56.6 42.5

Sparse R-CNN 37.7 55.9 40.5

w. Pearson Corr 39.3 56.6 42.2

w. Conc.Corr 38.9 57.2 41.8

w. Spear.Corr 39.3 56.7 42.5

5.5.2 Sensitivity to λcorr

We found it generally sufficient to search over {0.1, 0.2, 0.3.0.4, 0.5} to tune λcorr for

all the models we trained.

In Table 5.7, we see that (i) λcorr = 0.2 provides the best performance overall, (ii) the

performance is not very sensitive to λcorr and (iii) a grid search over {0.1, 0.2, 0.3.0.4, 0.5}
is sufficient (outside of this range, performance drops).
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Table 5.7: Grid search to tune λcorr on different models.

λcorr 0.0 0.1 0.2 0.3 0.4 0.5

ATSS w/o aux. head + Concordance Loss 38.7 38.8 39.3 39.8 39.7 39.7

ATSS w. RS Loss + Concordance Loss 39.9 39.8 40.2 40.1 39.8 39.5

Sparse R-CNN + Spearman Loss 37.7 38.7 39.3 39.1 39.0 38.1

YOLACT + Concordance Loss 28.3 28.6 28.8 28.8 29.0 28.8

5.5.3 Effect on Training Time

The training speed is measure with seconds/iteration. The lower, the better. Using

Spearman or Correlation Loss to train Sparse R-CNN, computing the loss for 6 times

each iteration, increases iteration time 0.50 seconds to 0.51 seconds on V100 GPUs,

suggesting a negligible additional overhead.

5.5.4 Effect on Backpropagating Different Heads

On Sparse R-CNN, we observed that the performance degrades when we backprop-

agate either only localization head (37.5 AP) or both heads (38.9 AP). Hence, we

preferred backpropagating the gradients only through the classification head (39.3

AP).

5.5.5 Effect on Different Classes

Our Correlation Loss on Sparse R-CNN improves 64 of the 80 classes, implying that

its effect is not limited to a small subset of the classes (See Table 5.8 ).
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Table 5.8: Effect on Classes. Correlation Loss on Sparse R-CNN improves 64 of the

80 classes.

Class Name mAP (Sparse R-CNN) mAP (Corr Sparse R-CNN)

person 49.7 51.3

motorcycle 38.6 39.5

train 61.4 61.1

traffic light 22.4 23.0

parking meter 45.0 45.6

cat 68.3 72.3

sheep 46.7 46.1

bear 72.4 75.3

backpack 13.3 14.9

tie 27.0 28.5

skis 21.4 21.8

kite 37.1 39.4

skateboard 50.1 49.2

bottle 30.2 33.7

fork 29.6 28.3

bowl 36.9 38.6

sandwich 34.2 35.3

carrot 16.5 20.3

donut 40.2 40.8

couch 42.7 41.8

dining table 27.2 28.4

laptop 54.9 56.9

keyboard 46.4 44.6

oven 30.9 32.7

refrigerator 52.6 54.8

vase 33.4 33.0

hair drier 16.1 2.4

Continued on next page
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Table 5.8 (continued)

Class Name mAP (Sparse R-CNN) mAP (Corr Sparse R-CNN)

bicycle 25.1 25.6

airplane 65.8 66.4

truck 32.4 33.1

fire hydrant 63.2 62.4

bench 22.1 21.5

dog 64.3 64.3

cow 54.6 56.5

zebra 64.4 66.2

umbrella 31.1 34.2

suitcase 30.3 35.0

snowboard 33.9 34.8

baseball bat 24.4 28.7

surfboard 30.6 37.0

wine glass 28.5 29.1

knife 11.5 14.2

banana 18.5 19.2

orange 26.7 30.5

hot dog 29.2 34.0

cake 29.7 31.8

potted plant 21.6 22.7

toilet 56.9 58.4

mouse 55.8 58.7

cell phone 30.0 33.0

toaster 22.1 37.7

book 8.6 9.9

scissors 31.2 29.1

toothbrush 15.4 23.9

car 37.2 39.1

bus 61.7 62.9

Continued on next page
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Table 5.8 (continued)

Class Name mAP (Sparse R-CNN) mAP (Corr Sparse R-CNN)

boat 21.5 23.4

stop sign 64.0 63.1

bird 32.1 33.4

horse 55.1 58.6

elephant 63.8 64.9

giraffe 64.7 64.7

handbag 10.2 12.3

frisbee 64.2 65.1

sports ball 45.7 46.2

baseball glove 34.7 35.5

tennis racket 44.5 46.1

cup 35.8 38.2

spoon 12.0 11.7

apple 14.7 18.1

broccoli 18.2 20.3

pizza 51.0 50.2

chair 20.5 22.1

bed 45.4 48.6

tv 53.2 54.8

remote 22.1 25.5

microwave 48.2 54.1

sink 30.1 33.7

clock 48.4 51.7

teddy bear 43.2 44.7
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CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis, we studied deep object detectors from the perspective of correlation

between the classification and localization branches. For this end, we first provided an

analysis on the importance and the effect of correlation on different stages of an object

detector. Then, motivated by the results of this analysis, we introduced a novel plug-in

loss function for improving the correlation between the classification and localization

branches.

As our first contribution, we analysed the effects of correlation between classifica-

tion and localization tasks in object detectors. With this analysis, we identified why

correlation affects the performance of various NMS-based and NMS-free detectors.

Furthermore, we devised performance measures to evaluate the effect of correlation

and use them to analyze common detectors.

As our second contribution, motivated by our observations from the analysis, we pro-

posed Correlation Loss, a novel plug-in loss function that improves the performance

of various object detectors by directly optimizing correlation coefficients. Our exten-

sive experiments on six detectors show that Correlation Loss consistently improves

the detection and correlation performances and reaches state of the art results.

6.2 Limitations and Future Work

In this work, while we emphasized the importance of correlation for detection per-

formance, Observation (4) (Section 3.2.2) suggests that the localization and the clas-

35



sification performances should be preserved while optimizing correlation; hence cor-

relation may not be the sole objective of the training. On a related note, following

prior work [9, 10], we supervised only the classifier considering the localization per-

formance (and not the other way around), which may be a limitation since correlation

is not enforced on both tasks.
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