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ABSTRACT

TSUNAMI MAXIMUM RUNUP AND FOCUSING THROUGH
EARTHQUAKE SOURCE PARAMETERS

Sharghivand, Naeimeh

Ph.D., Department of Engineering Sciences

Supervisor: Prof. Dr. Mehmet Zülfü Aşık

August 2022, 85 pages

In this study, the N-wave profile is fitted to the seafloor deformation for a large set

of earthquake scenarios, i.e., assuming that the seafloor deformation resulting from

an earthquake instantaneously transfers to the sea surface. Hence, the N-wave pa-

rameters are identified with respect to the earthquake source parameters allowing

to express the initial tsunami profile in terms of the earthquake source parameters.

Then, the maximum tsunami runup is presented through the earthquake fault plane

parameters using the maximum runup formula. The results are tested against field

runup measurements for several events observing good agreement. Then, propagat-

ing the finite crest length initial profile defined using earthquake source parameters,

the tsunami focusing –abnormal wave height in the leading depression side of an N-

wave– is related to the earthquake source parameters. A tsunami can be much more

hazardous for the target coastline when the focusing point is close to the shorelines.

The results presented here can help better understand the unusual observations wit-

nessed in the fields.
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ÖZ

DEPREM KAYNAK PARAMETRELERİ İLE TSUNAMİ RUNUP VE
ODAKLANMA TAHMİNİ

Sharghivand, Naeimeh

Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Zülfü Aşık

Ağustos 2022 , 85 sayfa

Bu çalışmada, depremden kaynaklanan deniz tabanı deformasyonunun anında deniz

yüzeyine aktarıldığı varsayılarak, geniş bir deprem senaryosu seti için N-dalga pro-

fili deniz tabanı deformasyonuna uydurulmuştur. Dolayısıyla, N-dalgası parametre-

leri deprem kaynağı parametreleri cinsiden belirlenerek başlangıç tsunami profilini

ifade etmekte kullanılmıştır. Ardından, maksimum tsunami tırmanma formülü kul-

lanılarak, maksimum tsunami tırmanması deprem fay parametreleri ile sunulmuştur.

Sonuçların, tsunami saha çalışma ölçümlerine karşı test edilerek, arazi tsunami tır-

manma verileri ile uyum içerisinde olduğu gözlenmiştir. Daha sonra, deprem kaynağı

parametreleri kullanılarak tanımlanan sonlu uzunluktaki tsunami başlangıç profili-

nin yayılması, tsunami odaklaması –N-dalgasının çöküntü tarafındaki anormal dalga

yüksekliği– deprem kaynağı parametreleriyle ilişkilendirilmiştir. Odak noktası kıyı

şeridine yakın olduğunda, tsunami hedef kıyı şeridi için çok daha tehlikeli olacaktır.

Burada sunulan sonuçlar, tanık olunan olağandışı gözlemlerin daha iyi anlaşılmasına

yardımcı olabilir.
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Dr. Utku Kânoğlu started a new position at Dokuz Eylül University and was not

officially able to supervise. Prof. Dr. Mehmet Zülfü Aşık stepped in and endorsed to
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CHAPTER 1

INTRODUCTION

Tsunamis are one of the most potent sources of natural catastrophes. As a Japanese

word, tsunami meansharbor (tsu) wave (nami); eyewitnesses' early observations of

these unusual waves had probably been near the coastal areas, e.g., harbors and ports,

hence the name. The historical records of tsunami waves in Japan have existed since

the 9th Century AD. Tsunamis, a series of long waves also known as shallow water-

waves, are surface gravity waves propagating across the ocean with a wavelength (l)

much larger than the ocean's depth (h), i.e., l " h. Their evolution process can be

divided into three main phases: generation, propagation, and runup or inundation. A

tsunami as a massive water wave is generated by large-scale short-duration impulsive

energy transfer to the entire sea column, mainly triggered by underwater earthquakes,

submarine or subaerial landslides, and less commonly by volcanic eruptions and as-

teroid impacts. Gusiakov (2009) categorized the source origins of historical tsunamis,

where tectonic origin, i.e., earthquake-generated tsunamis, were up to75%, landslide

10%, volcanic eruptions4%, and meteorological sources3%of the tsunamis origins.

"Up to 8%of all the reported historical runups still have unidenti�ed sources," Gusi-

akov (2009) stated.

Characteristics of tsunami waves with small steepness can make them barely de-

tectable by naked eyes in the open ocean. However, as they approach the shorelines

with shallower water depth, wave shoaling is initiated, forcing a signi�cant increase in

tsunami amplitude and decrease in wavelength, making the waves steeper and slow-

ing down the waves in accordance with shallow water-wave speed,c �
?

gh, where

g is the gravitational acceleration.

Tsunamis can be high-impact, long-duration catastrophes, often with multiple dev-
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astating waves penetrating target shorelines (Kâno�glu et al. 2015). Once a tsunami

is generated, waves can travel at a speed of 800 km/h, crossing the entire ocean in

a day or less. They may lead to coastal inundation in both near- and far-�eld, e.g.

the energy propagation maps of the 26 December 2004 Sumatra tsunami (Titov et al.

2005) and the 11 March 2011 Japan tsunami (Tang et al. 2012).

After the 26 December 2004 Indian Ocean (Boxing Day) tsunami resulted from an

Mw 9.3 earthquake (Stein & Okal 2005), nations with potential tsunami threats started

to develop tsunami forecasting capabilities, and the word tsunami made its entrance

in most languages. The Boxing day tsunami was the deadliest tsunami in recorded

history which caused more than 200,000 casualties across the Indian Ocean shore-

lines. The number of victims was above 160,000 in Indonesia, 35,000 in Sri Lanka,

16,000 in India and 8,300 in Thailand (Tsuji et al. 2006). The catastrophic tragedy

has been screened in the drama movieThe Impossiblein 2012. The movie shows the

true story of a Spanish tourist Dr. María Belón and her family in Thailand caught

in the devastating aftermath of the 2004 Indian Ocean tsunami. The Boxing Day

tsunami impacted at least 16 countries, including tourists from many other countries

(Synolakis & Kong, 2006). Four hundred twenty-eight Swedish people out of about

ten million population were among the casualties. Post-tsunami �eld surveys were

conducted by different international teams of scientists to document the damage met-

rics, e.g., �ow depth, inundation, and runup (Borrero et al. 2006; Jaffe et al. 2006;

Tsuji et al. 2006). Borrero et al. (2006)'s measurements in northern Sumatra in the

region around Banda Aceh reveal the runup variations between a minimum of 2.5 and

a maximum of 31 m.

The magnitudeMw 9.1, 11 March 2011 (the Great East Japan Earthquake) was one

of the most powerful earthquakes recorded in the past 100 years. The quake shock

lasts for six minutes. A half-hour later, a massive tsunami penetrated over 650 km

of the Japanese coastline, overtopping sea walls and other coastal defense structures,

�ooding through more than 500 km2 of land causing entire towns and villages to be

washed away. Even though Japan was thought to be the most tsunami-ready country

globally, they were not as prepared as the world estimated for such a giant catastrophe

causing 15,883 fatalities and 2,654 missing in northeastern Japan (Bestor 2013). The

2011 Japan tsunami dramatically revealed that all the efforts after the Boxing Day
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event did not lead to "a world that can coexist with a tsunami hazard," as stated in

Synolakis & Bernard (2006). According to the �eld measurements, the maximum

runup heights larger than 10 and 20 m were measured along 425 and 290 km of the

Japanese coastline (Mori et al. 2011). The runup height reached 16.4 and 20.8 m at

30 and 40 km from the nuclear power plant, and the maximum runup height of 39.7

m was measured at Aneyoshi, Miyako (Mori et al. 2011). The Fukushima, Iwate, and

Miyagi prefectures were the worst-hit areas. The Fukushima Dai-ichi nuclear power

plant (NPP) accident was the third most severe accident in an NPP ever. Synolakis

& Kâno�glu (2015) elucidated how the engineering and regulatory failures resulted in

the Fukushima disaster.

Tsunamis are not only threats to the countries in whose territories they originate. They

can cause devastation locally and across national boundaries. This was again shown

dramatically by the 2011 Japan event, i.e., nuclear accident, harbor oscillations which

could persist for hours (Lynett et al. 2012), and debris �ows (Lebreton & Borrero

2013).

Emanated dramatic observation from the past tsunami disasters has always proved

the importance of the time factor, especially in the nearshore tsunami warning and

forecasting. The arrival time of the tsunami at the nearest coastline has always been

very short. Hence, it is crucial to provide a reliable warning within minutes of the

event. At present, most of the near- and far-�eld tsunami forecast models employ

tsunami numerical models (Zaytsev et al. 2019; Titov et al. 2016; Miranda et al.

2014; Tinti & Tonini 2013; Liu et al. 1998; Imamura & Imteaz 1995). Besides, the

probabilistic tsunami hazard assessment (PTHA) is used to estimate tsunami hazard

potential on a nationwide or global scale (Behrens et al. 2022; Grezio et al. 2017;

González et al. 2009). The preparation of numerical models requires time and re-

sources to provide models input data, e.g., high-resolution geospatial data. In addi-

tion to the high-resolution bathymetric and topographic data, if a high-performance

computing (HPC) cluster is not accessible in real-time computing, numerical mod-

eling in forecasting nearshore tsunamis might not be effective. However, numerical

simulation and PTHA can be bene�cial in providing tsunami hazard maps (Davies

& Grif�n 2019; Schlurmann et al. 2010; González et al. 2009; Walsh et al. 2004)

and estimating tsunami hazard potential for at-risk communities (Ayd�n et al. 2020;
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Yalç�ner et al. 2019; Sepúlveda et al. 2019; Lynett et al. 2017; Harbitz et al. 2016;

Sharghivand 2014), which can be used in pre-hazard action planning. Alongside the

numerical models and PTHA, the ampli�cation factor (AF) method, i.e., relating the

offshore wave height to the maximum inundation height, is used to faster estimates the

tsunami height (Glimsdal et al. 2019; Løvholt et al. 2016; Baba et al. 2014; Løvholt

et al. 2012).

In terms of studies relating earthquake source parameters to tsunami maximum runup,

Okal & Synolakis (2004) used a data set of 72 models of nearshore seismic disloca-

tions and landslide sources and performed tsunami numerical simulations. They var-

ied fault parameters one by one and presented their individual in�uence on tsunami

runup height. However, their main goal was to establish source discriminant to iden-

tify landslide and earthquake-generated events.

The other study proposed by Sepúlveda & Liu (2016) offers two relationships be-

tween the tsunami runup height and seismic parameters for two types of problems.

The study implemented Carrier & Greenspan (1958)'s solution to provide analytical

relationships for shoreline motion and evaluated shoreline quantities for boundary-

value-problem (BVP) through Madsen & Schäffer (2010) and for initial-value-problem

(IVP) through Kâno�glu (2004). The approach was applied to the 2004 Sumatra and

2010 Chile tsunamis.

In a most recent study, Wronna et al. (2021) de�ned a new parameter called tsunami

runup predictor (TRP) and proposed relationships between the TRP and maximum

runup values for leading elevation and leading depressionN-waves. They developed

the initial tsunami waveforms (ITWs) using the half-space elastic theory (Mansinha

& Smylie 1971) for different scenarios by adjusting the fault plane parameters: dip

angle, fault width, fault depth, and slip amount and also by varying the source dis-

tance to the shore and the beach slope. Then, they used numerical (Miranda & Luis

2019) and analytical (Ayd�n & Kâno�glu 2017) methods to calculate tsunami runup

on constant beach slopes. Wronna et al. (2021) concluded the study by comparing

the TRP runup estimates to the �eld measurements of several past tsunami events and

obtained good agreements.

A high number of tsunami events were registered from 1990 to 2000; accordingly,
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the decade was named as tsunami decade (Synolakis & Bernard 2006). At least six

signi�cant tsunamis were reported between 1992 and 1994, e.g., 1 September 1992

Nicaragua; 12 December 1992 Flores Island, Indonesia; 12 July 1993 Hokkaido-

Nansei-Oki, Japan; 2 June 1994 East Java, Indonesia; 2 October 1994 Kuril Islands,

Russia; and 11 November 1994 Mindoro Island, Philippines. During the �eld sur-

veys of the events conducted by International Tsunami Survey Teams (ITSTs), nearly

all eyewitnesses reported shoreline recession before waves advanced up the coasts.

These events resulted in a paradigm shift from a solitary wave to anN-wave as a

more realistic initial waveform of tsunamis. Consequently, Tadepalli & Synolakis

(1994) proposed a class of elevation-depression waves, calledN-waves, to de�ne the

initial waveform of tsunamis. After Tadepalli & Synolakis (1994)'s introduction to

N-wave as a realistic initial waveform of incoming tsunamis, it took several events

for the community to accept it (Madsen & Schäffer 2010). Nonetheless, Tadepalli &

Synolakis (1996) incorporated a steepness parameter as a horizontal length scale and

provedN-wave stability as a geophysically realistic model for long wave propagation.

In seeking to expose a more expeditious real-time forecasting, this study comes up

with a new approach to extract the initial tsunami pro�le and maximum runup for a

simpli�ed beach geometry in terms of earthquake source parameters. Here, �rst, us-

ing regression analysis, the generalizedN-wave pro�le (Tadepalli & Synolakis 1996)

is related to the tsunami initial pro�le calculated through Okada's linear elastic dis-

location model (Okada 1985) andN-wave parameters are identi�ed in terms of the

earthquake source parameters for a large fault plane database. Regression analysis is

an effective statistical curve �tting technique used to predict the relationship between

one or more independent variables and one dependent variable. Today, the technique

is widely used in data science and machine learning to predict the best-�t results in

advanced research, e.g., natural hazards, economics, medicine, etc.

Tadepalli & Synolakis (1996) presented maximum runup for the canonical problem1

for an N-wave type initial condition; here, tsunami maximum runup is related to

the earthquake source parameters through their maximum runup formulation. The

preliminary results were presented in Sharghivand & Kâno�glu (2017 2016).

1 Wave propagation over a constant depth �rst and then sloping beach.
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Two critical factors can in�uence the directivity of tsunami energy radiation and ini-

tiate geometrical focusing of tsunami waves: the bathymetric features of the ocean

bottom and the source con�guration.

Berry (2007) used the diffraction theory and showed the underwater features, e.g.,

trenches' and seamounts' role in the focus of tsunami energy. He demonstrated that

shallower regions in the ocean, such as seamounts, can behave as lenses and concen-

trate tsunami energy, potentially multiplying that 10-fold over a transverse range of

tens of kilometers, causing signi�cant local ampli�cations.

Ben-Menahem (1961) analyzed the radiation of seismic surface waves from �nite

sources and represented that the �nite length of the source plays an important role in

wave propagation patterns. He showed that the azimuthal scattering of waves ampli-

tudes depends highly on the dimensions of the source. Ben-Menahem & Rosenman

(1972) further calculated the radiation pattern from a submarine source using linear

theory and expressed that tsunami energy propagates mainly in a direction normal to

the fault rupture. Later on, Okal (2003) determined differences in directivity patterns

between earthquake- and landslide-generated tsunamis.

TheN-wave initial waveform shows speci�c features which might enhance maximum

runup at a target coastline, referred to as tsunami focusing2.

Dotsenko et al. (1986) employed the two-dimensional linear wave theory and showed

that wave energy ampli�cation might depend on whether the initial condition has

a dipolar shape. Later, the existence of a focusing point3 for a �nite crest length

N-wave-type initial condition was proposed by Marchuk & Titov (1989). Their nu-

merical studies demonstrated that the focusing point stays somewhere on a straight

line coming through the centers of both depression and elevation part of the initial

wave. Kâno�glu et al. (2013) considered two-dimensional propagation of anN-wave

type initial condition with �nite crest length over a �at bottom and showed that focus-

ing effect of anN-wave in the direction of leading depression can enhance the runup.

They studied tsunami focusing using linear non-dispersive (Ayd�n 2011) and linear

dispersive (Kervella et al. 2007) theories analytically and nonlinear non-dispersive

2 An unexpected wave ampli�cation in the direction of depression side of anN-wave.
3 A point in the leading depression side of anN-wave where abnormal wave amplitude is registered.
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(Titov et al. 2011) and weakly nonlinear weakly dispersive (Zhou et al. 2011) theo-

ries numerically. Their study exposes the existence of the focusing point in tsunami

evolution using all four approaches. Kâno�glu et al. (2013) referred to the focusing

as a possible explanation for unusual high runup observations of the 17 July 1998

Papua New Guinea; the 17 July 2006 Java, Indonesia; and the 11 March 2011 Japan

tsunamis. Further, Kanoglu (2016)'s preliminary results suggested that later waves

could be higher on the leading depression side for anN-wave, i.e., sequencing de-

�ned by Okal & Synolakis (2016) is more pronounced on the leading depression side

for dispersive wave propagation. Thereon, Ayd�n (2018) explored how the variation

in the initial wave's geometric parameters, e.g., wave steepness and crest length, can

adjust the focusing amplitude and location of the focusing point by comparing the

maximum wave envelopes for different initial pro�les. He used the linear shallow

water theory and showed that the maximum wave amplitude increases substantially

with the initial wave crest length for mild initial waves, i.e., waves with small steep-

ness; however, the location of the focusing point stays almost invariant. While, the

focusing point dislocates signi�cantly for steep initial waves, i.e., waves with large

steepness, although it causes a slight increase in the wave maximum.

Here, the study's second objective is to put a new perspective on tsunami focusing by

relating it directly to the earthquake source parameters and exploring their impacts

on tsunami focusing. Hence, the study examines how the focusing amplitude4 and

location of the focusing point can vary due to different source con�gurations.

In summary, �rst, the one- and two-dimensional generalizedN-wave pro�les and

maximum runup equation are de�ned in terms of earthquake source parameters, i.e.,

N-wave through Earthquake Parameters (NEP) and Runup through Earthquake Pa-

rameters (REP), respectively. Then, using the linear shallow water-wave theory, a

propagation database is developed for a set of two-dimensional �nite crest length

NEP pro�les to investigate the in�uences of the earthquake source parameters on

tsunami focusing. Hence, the impacts of fault plane parameters in the variation of

location and amplitude of focusing point are studied.

4 The maximum wave amplitude at the location of the focusing point.
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CHAPTER 2

TSUNAMI INITIAL PROFILE AND MAXIMUM RUNUP THROUGH

EARTHQUAKE SOURCE PARAMETERS

Tsunamis generated by submarine earthquakes have a �nite crest length, and their ini-

tial waveform is calculable from estimates of the seismic parameters through Okada

(1985)'s sea�oor deformation. In practice, sea�oor deformation is transferred to the

sea surface, assuming that the deformation takes place instantaneously. Okada's lin-

ear dislocation model enables to calculate sea bottom deformation using a set of seis-

mic parameters, i.e., seismic moment (M 0), fault length (L), fault width (W), fault

depth (d), fault slip amount (u), dip angle (� ), rake angle (� ), and strike angle (� ) (see

Figure 2.1).

Tsunamis caused by the nearshore earthquakes have often resulted in the shorelines

receding before advancing up on the beaches, i.e., tens of eyewitnesses' descriptions

and mareogram records of recent tsunamis con�rmed that subduction zone earth-

quakes typically generate leading depression wave propagating toward the adjacent

shoreline while leading elevation wave propagates toward the open ocean. Tadepalli

& Synolakis (1994, 1996) suggested classes of waves, calledN-waves, to describe

the evolution and runup of nearshore tsunamis. They de�ned two particular classes

of N-waves: leading depressionN-wave (LDN) and leading elevationN-wave (LEN)

and showed that LDN runs up higher than its mirror image, LEN. They suggested

LDN as a more appropriate initial waveform for nearshore tsunamis.

In this chapter, using regression analyses, the generalizedN-wave pro�le and the

maximum runup equation (Tadepalli & Synolakis 1996) will be de�ned in terms of the

earthquake source parameters. Accordingly, the initial tsunami pro�le and maximum

runup will be provided with respect to the earthquake source parameters.

9



Figure 2.1: De�nition sketch for the fault plane parameters:� , � , and� are the strike,

the rake, and the dip angles, respectively;L , W, d, andu are the fault length, the fault

width, the fault depth, and the fault slip amount, respectively.

2.1 N-wave through Earthquake Source Parameters

Here, the generalizedN-wave pro�le is considered as in Tadepalli & Synolakis (1996)

but in dimensional form as:

� pxq � " 1D H px � X 2qsech2 
 px � X 1q; (2.1)

where" 1D   1(km� 1) is a scaling parameter to de�ne the initial off-shore wave

amplitude ofH (m), X 1 (km) andX 2 (km) represent the distance from the origin of

the coordinate system, and
 �
a

3p0 H {4(km� 1), with a steepness parameterp0

(km� 2 m� 1). X 2 � X 1 adjusts the initial pro�le's depression and elevation sides. For

small and negative distanceX 2 � X 1, the generalizedN-wave pro�le is an LDN, with

a smaller amplitude leading depression wave than the elevation wave following it (see

Figure 2.2).

This study sets down to identify relationships betweenN-wave parameters used in

Eq. 2.1 and the earthquake source parameters. In this regard, a comprehensive set of

submarine earthquake scenarios are de�ned and the initial ocean surface pro�les are
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Figure 2.2: De�nition sketch for the canonical problem andN-wave parameters.

estimated through Okada (1985) linear elastic dislocation formulation1. The maxi-

mum vertical displacement of the sea surface and consequently the maximum initial

wave height is generated when the rake angle� � 90� (reverse fault) or� � � 90�

(normal fault). Thus, the rake angle is retained constant as� � 90� and the fault's

orientation or strike angle as� � 270� to ensure that the tsunami source is parallel

to the shoreline and its bisector gives LDN (Figure 2.2). Then, the fault slip amount,

u, is varied as1, 5, 10, 15, and20m, the fault width,W, is considered from20 to

150 km by 10km increments, the fault depth,d, from 5 to 70km by the interval of

5km, and the dip angle� , from 5 to 40� by 5� increments one by one to de�ne a set

of earthquake source scenarios (Table 2.1).

Table 2.1: Range of earthquake source scenarios used in �tting database.

Fault Plane Parameter Value

Strike angle (� ) 270�

Rake angle (� ) 90�

Dip angle (� ) 5 � 40� , 5� increments

Slip amount (u) 1; 5; 10; 15; 20m

Fault width (W ) 20� 150km, 10km increments

Fault depth (d) 5 � 70km, 5 km increments

Using the de�ned scenarios, �rst, the nonlinear least squares regression method is

used and 7840 curve �tting analyses are executed to �t the generalizedN-wave pro�le

(Eq. 2.1) to the dimensional initial surface pro�le obtained through Okada (1985)
1 A Matlab code is used to calculate Okada's sea bottom deformation, available in MATLAB Central File

Exchange (François 2010).
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along the bisector, i.e., one-dimensional �tting. To overlap theN-wave pro�le with

Okada (1985)'s coordinate system,X 1 is �xed as zero in Eq. 2.1 in �tting processes.

The yielded database shows that the depression wave amplitude (trough) decreases

with increasing dip angle in the initial pro�le. The depression part almost disappears

at the dip angle of40� . Thus, in the following steps, the results of the40� dip angle

are excluded from the database.

Following the �rst step, the �tting results are used and again regressions are per-

formed to determine the correlation betweenN-wave parameters" 1D , H , X 2, andp0

and the earthquake source parameters. The second step will be explained in detail in

the following subsections, and the �tting results will be presented.

2.1.1 Scaling parameter," 1D

The curve �tting results imply that" 1D is independent of the slip amount and an

optimal value for it can be obtained by a relation among the fault depth, the fault

width and the dip angle, i.e.," 1D � " 1D pd; W; � q. Considering the observations," 1D

decreases logarithmically with the fault depth. De�ning the relationship between" 1D

and fault depth as

" 1D pd; W; � q � � a1 ln d � a2; (2.2)

a set ofa1pW; � qanda2pW; � q is determined using the" 1D andd couplings from the

database. Examples of these couplings are given in Figure 2.3. Then, regression

analyses are conducted to determine the relationships ofa1pW; � qanda2pW; � qwith

W (Figure 2.4), which leads to power relations:

a1pW; � q � a3W � a4 and a2pW; � q � a5W � a6 : (2.3)

Using the coef�cients set ofa3p� q to a6p� q, the regression analyses are further ex-

tended and the relationships ofa3p� qto a6p� qare identi�ed with the dip angle (Figure

2.5) as

a3p� q � a7ea8 � ; a4p� q � a9� a10 ; a5p� q � a11ea12 � ; and a6p� q � a13� a14 :

(2.4)
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